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Curve Fitting

Applications of numerical techniques in science and engineering often involve curve
fitting of experimental data. For example, in 1601 the German astronomer Johmges
Kepler formulated the third law of planetary motion, T = Cx3/2, where x is the dis-
tance to the sun measured in millions of kilometers, T is the orbital period measured
in days, and C is a constant. The observed data pairs (x, T) for the first four planets,
Mercury, Venus, Earth, and Mars, are (58, 88), (108, 225), (150, 365), and (228, 687),
and the coefficient C obtained from the method of least squares is C = 0.199769. The
curve 7 = 0.199769x%/2 and the data points are shown in Figure 5.1.

T
750 |
500 - T=0.199769 x372
250
Figure 5.1 The least-squares fit
T = 0.199769x%2 for the first four
L L - . x  planets using Kepler’s third law of

planetary motion.
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Least-squares Line

In science and engineering it is often the case that an experiment produces a set of
data points (x1, ¥1), ..., (xn, yn), where the abscissas {xx} are distinct. One goal of
numerical methods is to determine a formula ¥ = f(x) that relates these variables.
Usually, a class of allowable formulas is chosen and then coefficients must be deter-
mined. There are many different possibilities for the type of function that can be used.
Often there is an underlying mathematical model, based on the physical situation, that
will determine the form of the function. In this section we emphasize the class of linear
functions of the form

(1 y= f(x) = Ax + B.

In Chapter 4 we saw how to construct a polynomial that passes through a set of
points. If all the numerical values {x¢}, {y¢} are known to several significant digits
of accuracy, then polynomial interpolation can be used successfuily; otherwise it can-
not. Some experiments are devised using specialized equipment so that the data points
will have at least five digits of accuracy. However, many experiments are done with
equipment that is reliable only to three or fewer digits of accuracy. Often there is an
experimental error in the measurements, and although three digits are recorded for the
values {xi} and {y}, it is realized that the true value f(x;) satisfies

@ FOr) = yu + ex,

where e, is the measurement error.

How do we find the best linear approximation of the form (1) that goes near (not
always through) the points? To answer this question, we need to discuss the errors
(also called deviations or residuals):

&) e =flu)—y for t<k<N.

There are several norms that can be used with the residuals in (3) to measure how

farthe curve y = f(x) lies from the data.

@ Maximum error:  Eool(f) = ]g}ixN{Jf(xk) — welh
. 1
5 Average error: Ei(f)= N /;1 [fxr) — yal,
L ) 12
L)) Sr(;g;:-mean-square Exf)= (_ﬁ ’; | f (e} — yxl ) .

The next example shows how to apply these norms when a function and a set of
wpoints are given.
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Table 5.1 Calculations for Finding E1(f)} and E2( ) for

Example 5.1
Xk Ve Flxi) = 8.6 — L6ay leg] e
-1 10.0 10.2 0.2 0.04
0 9.0 8.6 0.4 0.16
1 7.0 7.0 0.0 0.00
2 50 5.4 0.4 0.16
3 40 3.8 0.2 0.04
4 3.0 2.2 0.8 0.64
5 0.0 0.6 0.6 0.36
6 | —10 ~1.0 0.0 0.00
26 1.40

Example 5.1. Compare the maximum error, average error, and rms error for the lincur
approximation y = f(x) = 8.6 — 1.6x to the data points (-1, 10), 0.9), (1,7), (2,7
(3,4, (4, 3),(5,0), and (6, —1).

The errors are found using the values for f(xz) and e; given in Table 5.1.

)] Ex(f) = max{0.2,04,0.0,0.4,0.2,0.8, 0.6,0.0} = 0.8,
) E\(f) = %(2.@ — 0.325,

1.4 1/2
) Ex(f) = (?) ~0.41833

We can see that the maximum error is largest, and if one point is badly in error. 1t
value determines Eq( f). The average error E1(f) simply averages the absolute value of
the error at the various points. It is often used because it is easy to compute. The erro
E2(f) is often used when the statistical nature of the errors is considered.

A best-fitting line is found by minimizing one of the quantities in equations (4) through
(6). Hence there are three best-fitting lines that we could find. The third norm £2(f) is the
traditional choice because it is much easier to minimize computationally. ]

Finding the Least-squares Line

Let {(xx, yk)]fil be a set of N points, where the abscissas {x;} are distinct. The least-
squares line y = f(x) = Ax + B is the line that minimizes the root-mean-square error
E2(f).

The quantity £2(f) will be a minimum if and only if the quantity N(E2(f)? =
Z,f‘;l (Axg + B — ) is a minimum. The latter is visualized geometrically by mini-
mizing the sum of the squares of the vertical distances from the points to the line. The
next result explains this process.
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¥

Figure 5.2 The vertical distances
between the points {(xg, )} and
the least-squares line y = Ax + B.

X

Theorem 5.1 (Least-squares Line). Suppose that {(xi, y&)}}_, are N points, where
the abscissas {xy },"(V=1 are distinct. The coefficients of the least-squares line

y=Ax~+ B

are the solution to the following linear system, known as the normal equations:
N s N N
(Zxk A+ (Zxk) B= chm,
k=1 k=1 k=1
N N
(Zxk) ArNE=Y e
k=1 k=1

Proof Geometrically, we start with the line y = Ax + B. The vertical distance dj
frorn the point (xx, yx) to the point (x¢, Axx + B) on the line is dy = |Axx + B — y|
(see Figure 5.2). We must minimize the sum of the squares of the vertical distances d:

(to)

N N
an E(A,B)=) (Ax+B—y)* =) df.
k=1 k=1

The minimum value of E(A, B) is determined by setting the partial derivatives
dE/3A and D E /3 B equal to zero and solving these equations for A and B. Notice that
{xx} and {yx} are constants in equation (11) and that A and B are the variables! Hold
£ fixed, differentiate £(A, B) with respect to A, and get

3E(A, BY & N
(1 ——-= gzmxk + B = y)(x) = 2;(“% + B — %)
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Table 5.2  Obtaining the Coefficients for

Normal Equations
2

Xk Yk Xy Xk Yk
-1 10 1 -~10
0 9 0 0
1 7 1 7
2 5 4 10
3 4 9 12
4 3 16 12
5 0 25 0
6 -1 36 -6
20 37 92 25

Now hold A fixed and differentiate E(A, B) with respect to B and get

dE(A, B)

(13 dB

N N
=Y 2Axn+B-y)=2) (Axe+B -y
k=1 k=1
Setting the partial derivatives equal to zero in (12) and {13}, use the distributive
properties of summation to obtain

N N i N
(14) O=Z(Axf+BXk—xkyk)=AZX;%+BZIJ< —ZXkyk,
k=1 k=1 k=1 k=1

N N N
(15) 0= (An+B-y)=AY x+NB—-) wn. .
k=1 k=1 k=1

Equations (14) and (15) can be rearranged in the standard form for a system and
result in the normal equations (10). The solution to this system can be obtained by one
of the techniques for solving a linear system from Chapter 3. However, the method
employed in Program 5.1 translates the data points so that a well-conditioned matrix is
employed (see exercises).

Example 5.2. Find the least-squares line for the data points given in Example 5.1.
The sums required for the normal equations (10) are easily obtained using the values
in Table 5.2. The linear system involving A and B is

92A420B =25
20A+ 8B =13T.
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Figare 5.3 The least-squares line
y = —1.6071429x + 8.6428571.

The solution of the linear system is A &~ —1.6071429 and B = 8.6428571. Therefore, the
least-squares line is (see Figure 5.3)

y = —1.6071429x + 8.6428571 ]

The Power Fit y = AxM

Some situations involve f(x) = Ax™, where M is a known constant. The example of
planetary motion given in Figure 5.1 is an example. In these cases there is only one
parameter A to be determined.

Theorem 5.2 (Power Fit). Suppose that {(xg, y,;c)},‘i‘L1 are N points, where the ab-
scissas are distinct. The coefficient A of the least-squares power curve y = Ax™ is
given by

o eEe)/(e)

Using the least-squares technique, we seek a minimum of the function E(A):

N
an E(A) =) (Ax{ -y
k=1

In this case it will suffice to solve E’(A) = 0. The derivative is

N N
(18) E'(A) =2 (As} —y0xf) =23 (AxfM — <} yp).
k=1 k=1
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Table 5.3  Obtaining the Coefficient for a Power Fit

Time, Distance, dj dy? I
0.200 0.1960 0.00784 0.0016
0.400 0.7850 0.12560 0.0256
0.600 1.7665 0.63594 0.1296
0.800 3.1405 2.00992 0.4096
1.000 4.9075 4.90750 1.0000

7.68680 1.5664

Hence the coefficient A is the solution of the equation
N N
(19) O=AfoM—fo4yk,
k=1 k=1

which reduces to the formula in equation (16).

Example 5.3. Students collected the experimental data in Tabie 5.3. The relation is
d= %grz, where d is distance in meters and 7 is time in seconds. Find the gravitational

constant g.
The values in Table 5.3 are used to find the summations required in formula (16), where

the power used is M = 2.
The coefficient is A = 7.68680/1.5664 = 4.9073, and we get d = 4.9073:> and

g = 2A = 9.7146 m/sec?. .

The following program for constructing a least-squares line is computationally sta-
ble: it gives reliable results in cases when the normal equations (10} are ill conditioned.
The reader is asked to develop the algorithm for this program in Exercises 4 through 7.

Program 5.1 (Least-squares Line). To construct the least-squares line y = Ax +
B that fits the N data points (x1, y1), .... {xn§, YN).

function [4,B]=lsline(X,Y)

#Input - X is the 1xn abscissa vector

% - Y is the 1xn ordinate vector

#0utput - A is the coefficient of x in &x + B

% - B is the constant coefficient in Ax + B

xmean=mean (X) ;
ymean=mean(Y) ;
sumx2=(X-xmean) * (X-xmean) ’;
sumxy=(Y¥-ymean) * (X-xmean) ’;
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A=sumxy/sumx?2;
B=ymean-A*xmean;

Exercises for Least-squares Line

In Exercises 1 and 2, find the least-squares line y = f(x) = Ax + B for the data and
calculate Ez(f)

L (@) b
Xy Yo | filxe) Xk Yo | fOx)
-2 i 1.2 —6 7 7.0
-1 2 1.9 -2 5 4.6
0 3 2.6 0 3 34
1 3 3.3 2 2 2.2
2 4 4.0 6 0 -0.2
(©)
Xk Ye | flxe)
—4 -3 -3.0
-1 -1 -0.9
0 0 0.2
2 1 1.2
3 2 1.9
2. (@ (b)
X Y o flx) Xk Ye | [(xe)
—4 1.2| 044 —6 =53 | —-6.00
-2 2.8 3.34 -2 -35| -2.84
0 6.2 6.24 0 -1.7|-1.26
2 7.8 9.14 2 0.2 0.32
4 13.2 | 12.04 6 4.0 3.48
(c}
Xk Ye | SFxg)
-8 | 68| 7.32
-2 5.0 3.81
0 2.2 2.64
4 0.5 0.30
6 —-1.3 | —-0.87

_ 3. Find the power fit y = Ax, where M = 1, which is a line through the origin, for the
data and calculate E»(f).
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{a) {b)
Xt Ye | filxe) Xk Y | flxe)
-4 -3 -2.8 3 1.6 1.722
—1 ~1 -0.7 4 24 2.296
0 0 0.0 5 2.9 2.870
2 1 1.4 6 34 3.444
3 2 2.1 8 4.6 4,502
(c)
Xk v | SFG&o)
1 1.6 1.58
2 2.8 3.16
3 4,7 4.74
4 6.4 6.32
5 8.0 7.90

. Define the means X and ¥ for the points {(xk, yo)}b.; by

Show that the point (X, ¥) lies on the least-squares line determined by the given set of

points.
. Show that the solution of the system in (10) is given by

where

D= NZxk

La-(5n)

Hint. Use Gaussian elimination on the system in (10).

. Show that the value of D in Exercise 5 is nonzero.

Hint. Show that D = N Y8 (xx — D)%

. Show that the coefficients A and B for the least-squares line can be computed -
follows. First compute the means X and y in Exercise 4, and then perform the calvu-
lations:

N N
C=) -0 A= Zxk—mm— B =7 - A%.
k=1 k=

SEC

10.

11,

12.
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Hint. Use Xy = x; — X, ¥ = yx — ¥ and first find the line ¥ = AX.

. Find the power fits y = Ax? and y = Bx? for the following data and use E»(f) to

determine which curve fits best,

(a) (b
Xk Yk Xk Yk
2.0 5.1 2.0 5.9
2.3 7.5 2.3 8.3
26| 10.6 261 10.7
291 144 291 13.7
3.2 190 321170

. Find the power fits y = A/x and y = B/x? for the following data and use E2(f) 1o

determine which curve fits best.

(a) (b)
Xk Yk Xk Yk
0.5 7.1 0.7 8.1
0.8 4.4 09 4.9
1.1 | 32 1.1 | 33
1.8 19 16| 1.6
4.0 0.9 3.0 0.5

(a) Derive the normal equation for finding the least-squares linear fit through the
origin y = Ax.

(b) Derive the normal equation for finding the least-squares power fit y = Ax?.

(c) Derive the normal equations for finding the least-squares parabola y = Ax?+ B.

Consider the construction of a least-squares line for each of the sets of data points
determined by Sy = {(%, (%)2)},"‘;1, where N = 2,3,4,.... Note that, for each
value of N the points in Sy all lie on the graph of f(x) = x? over the closed interval
[0, 1]. Let ¥ and ¥, be the means for the given data points (see Exercise 4). Let X
be the mean of the values of x in the interval [0, 1], and let ¥ be the mean (average)
value of f(x) = x? over the interval [0, 1].

(a) Show limy e X¥ = X.
(b) Showlimy_ ¥y = .

Consider the construction of a least-squares line for each of the sets of data points:

k k
Sw = —a)5 +a F(b - )5 +a)}ie,

for N =2,3,4,.... Assume that y = f(x) is an integrable function over the closed
interval [a, b]. Repeat parts (a) and (b) from Exercise 11.
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52 Curve Fitting
Data Linearization Method for y = Ce4*
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Algorithms and Programs

1. Hooke’s law states that ' = kx, where F is the force (in ounces) used to streich

a spring and x is the increase in its length (in inches). Use Program 5.1 to find an Suppose t‘hat we are given the points (x;, ¥1), (x2, ¥2), ..., (xn, yn) and want to fit an
approximation to the spring constant £ for the following data, expotiential curve of the form
a)
( ® Xk F el y = Ce™
02 53 The first step is to take the logarithm of both sides:
04| 10.6
061 159 e In(y) = Ax + In(C).
?3 iéi Then introduce the change of variables:
2. Write a program to find the gravitational constant g for the following sets of data. Ux. 3 Y=In(y), X=x, and B=In(C).
the power fit that was shown in Example 5.3. ) L ) .
(a) (b This resuits in a linear relation between the new variables X and ¥:
Time, # Distance, di Time, 1¢ Distance, dx
@) Y =AX+ B.
Q.200 4.1960 0.200 0.1965 ) ]
0.400 0.7835 0.400 0.7855 The original points (xy, vk} in the xy-plane are transformed into the points (X, V) =
Q.600 1.7630 0.600 1.7675 (xt. In(y)) in the X ¥-plane. This process is called data linearization. Then the least-
0.800 3.1345 0.800 3.1420 squares line (4) is fit to the points {(X, ¥;)}. The normal equations for finding A and
1.000 t 48975 1.000 4.9005 B are
3. The following data give the distances of the nine planets from the sun and their side N N N
real period in days. ZX;E A+ ZXk B=ZXkYk,
=1 =] =]
Distance from Sidereal period ® N N
Planet sun (km x 105) (days) ( Xk) A+ NEB _ Z Y.
Mercury 57.59 87.99 k=1 k=1
Venus 108.11 224.70 . . .
Earth 149.57 365.26 After A and B have been found, the parameter C in equation (I) is computed:
Mars 227.84 686.98 B
Tupiter 778.14 43324 {6 C=e".
Satumn 1427.0 10,759
Uranus 2870.3 30,684 Exampie 5.4. Use the data linearization method and find the exponential fit y = C e*
Neptune 4499.9 60,188 for the five data points (0, 1.5), (1,2.5), (2.3.5), (3, 5.0), and (4, 7.5).
Pluto 5909.0 90,710 Apply the transformation (3) to the original points and obtain
Moclif);i yo;:'h pr?gram frogl I;;'gl;ler? 2 ut10 ;lso falcul]ate Ey( );) Uasfl it' to ﬁind the . {(Xe Yo} = {0, In(L.5), (1, In2.5)), 2, n(3.5)), (3, In(5.0)), (4, n(7.5))
power fit of the form y = Cx or (a) the first four planets and (b) all nine planets. ) — 10, 0.40547), (1,0.91629), (2, 1.25276), (3. L. ). @ 2.01490)}.
4. (a) Find the least-squares line for the data points {(xi, yk)}},, where x¢ = (0.1)k
and yi = x;. + cos(k!/2). These transformed points are shown in Figure 5.4 and exhibit a linearized form. The equa-
(b} Calculate E5(f). tion of the least-squares line ¥ == AX + B for the points (7) in Figure 5.4 is
(c} Plot the set of data points and the least-squares line on the same coordinate ) ¥ = 0.391202X + 0.457367.

system.
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" 4 I 1

X Figure 54 The transformed 1. .
0 1 2 3 4 points {(X, Y¢)}.

Table 5.4  Obtaining Coefficients of the Normal Equations for the Transformed Data Points
((Xx, Y )i

Sec. 5.2 CURVE FITTING

X Y Xy Yy = In(y) X2 XYy
0.0 1.5 0.0 0.405465 0.0 0.000000
1.0 2.5 1.0 0.916291 1.0 0.916291
2.0 35 2.0 1.252763 4.0 2.505526
3.0 5.0 3.0 1.609438 9.0 4.828314
4.0 7.5 4.0 2.014903 16.0 8.059612

10.0 6.198860 300 16.309743
=2 X =X =YX =X XYy

Calculation of the coefficients for the normal equations in (5) is shown in Table 5.4.
The resulting linear system (5) for determining A and B is

30A + 10B = 16.309742

@ 10A+ 5B = 6.198860.

The solutionis 4 = 0.3912023 and B = 0.457367. Then C is obtained with the calculation

C = e%%57367 — 1579910, and these values for A and C are substituted into equation (1)
to obtain the exponential fit (see Figure 5.5):

(10) y = 1.579910%3%1203% (£t by data linearization). .

265

Figure 5.5 The ex nential.ﬁt
L . . —Lx y= 1.579910e0'39ug%“'0btamed by
0 1 2 3 4 using the data linearization method.

Nonlinear Least-squares Method for y = Ce?x

Suppose that we are given the points (x1, ¥1), (¥2, ¥2), - -, (xn, yn) and want o fitan
exponential curve:

A
an y=Ce™.

The nonlinear least-squares procedure requires that we find a minimum of
N
(12) E(A,C) =Y (Ce™ —yp)*.
k=1

The partial derivatives of E(A, C) with respect to A and C are

N
(13) 9E _ 2 (Ce™™ — y)(Cxre™™)
8A
and
N
(14) OF _ 23 (Cett — et
aC k=1

When the partial derivatives in (13) and (14) are set equal to zero and then simplified,
the resulting normal equations are

N N
Axp o
c ZxkeZAxk _ Z-’Ck)’ke T o (),
k==1 k=1

(15) N i .
Cy e — ) yett =0,
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The equations in (13) are nonlinear in the unknowns A and C and can be solved using
Newton's method. This is a time-consuming computation and the iteration involved
requires good starting values for A and C. Many software packages have a built-in
minimization subroutine for functions of several variables that can be used to minimize
E(A, €) directly, For example, the Nedler-Mead simplex algorithm can be used to
minimize (12} directly and bypass the need for equations (13) through (15).

Example 5.5. Use the least-squares method and determine the exponential fit y = Ce#*
for the five data points (0, 1.5), (1, 2.5), (2, 3.5), (3, 5.0), and (4, 7.5).
For this solution we must minimize the quantity E(A, C), which is

E(A,C) = (C ~ 1.5 + (Ce* —~ 2.5)% + (C** — 3.5)*

16
(16) +(Ce3A —5.0)% + (Ce*t - 7.5)%

We use the fmins command in MATLAB to approximate the values of A and C that n.r
mize E(A, C). First we define E(A, C) as an M-file in MATLAB.

function z=E(u)

A=u(1);

C=u(2);

2z={C-1.5) .~ 2+{(C.*+exp(A)~2.5} . "2+(C.*exp(2%A)-3.5) . "2+. ..
(C.*axp(3+A)-5.0) . "2+ (C.*exp(4*4)~7.5) . "2;

Using the fmins command in the MATLAB Command Window and the initial valucs
A=10and C = 1.0, we find
>>fmins (’E’, [1 1))
ans =

0.38367046980073 1.61089952247928

Thus the exponential fit to the five data points is
an y = 1.6108995¢%3835705  (fit by nonlinear least squares).

A comparison of the solutions using data linearization and nonlinear least squares 1~
given in Table 5.5. There is a slight difference in the coefficients. For the purpose oi
interpolation it can be seen that the approximations differ by no more than 2% over 1hw
interval [0, 4] (see Table 5.5 and Figure 5.6). If there is a normal distribution of the errors
in the data, (17) is usually the preferred choice. When extrapolation beyond the range of
the data is made, the two solutions will diverge and the discrepancy increases to about 6«
when x = 10.

Transformations for Data Linearization

The technique of data linearization has been used by scientists to fit curves such .~
y = Ce'®® y = Aln{x) + B, and y = A/x + B. Once the curve has been chosen.
1 suitable transformation of the variables must be found so that a linear relation is
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Table 5.5 Comparison of the Two Exponential Fits

Xi Vi 1.5799,0-39120x 1.61090-38357x
0.0 1.3 1.5799 1.6109
1.0 25 2.3363 2.3640
2.0 35 3.4548 3.4692
3.0 5.0 5.1088 5.0911
4.0 1.5 7.5548 7.4713
5.0 11.1716 10,9644
6.0 16.5202 16.0904
7.0 24.4293 23.6130
8.0 36.1250 34.6527
90 53.4202 50.8535
16.0 | 78.9955 74.6287

y
80
60
s}
0
7 T T T —— * Figure 5.6 A graphical compari-
0 2 4 ] B 10 son of the two exponential curves.

obtained. For example, the reader can verify that y = D/(x + () is transformed
into a linear problem ¥ = AX + B by using the change of variables (and constants)
X =xy,Y = y,C = —1/A, and D = —B/A. Graphs of several cases of the
possibilities for the curves are shown in Figure 5.7, and other useful transformations
are given in Table 5.6,

Linear Least Squares

The linear least-squares problem is stated as follows. Suppose that N data points
(3%, Y)} and a set of M linear independent functions {f;(x)} are given. We want
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/

__x _-1 _ .3
y-A-l-Bx' A-T.B—] y=Alll(x)+B;A=2'B=i. y=Aln(x)+B; A=-2,B=2
. 1 2 l
y=Celi A=3.C=3 y=Ce* A=-1.C=3 yaceh A=t c-2
2

1
]
'
|
1
1
'
|
]
1
1
1
L]

1
y=.__i;A-_-4.B=_3 )’=CX8_DJ;C=]2,D= _ L . _
(Ax + B) 1 Y= T L=5C=204=2

Figure 5.7  Possibilities for the curves used in “data linearization™.
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Table 5.6 Change of Variable(s) for Data Linearization

269

Change of variable(s) and constants

Fuaction, y = f(x) Linearized form, ¥ = Ax + B
A 1
y=—+B8 y=A-+8B
X X
b + a2
= —ix —
Y=i+c yrewTT
L ! Ax + B
= - o Ay
Y= Ax+ B y
_ x l—Al-{»B
y"Ax+B y x
y=Aln(x)+ B y=Aln(x)+ B
y = Cett In(y) = Ax + In(C)
y=Cx? In(y) = Aln(x) + In(C)
y=(Ax+ B)~2 y V2= Ax+B
y = Cxe~Px In (X) = —Dx +1n(C)
X
L ln(L 1) Ax + In(C)
= — —_— = Ax
7T T4 Cetx y

X=-Y=y

X=xy, Y=y
-1 —B
C= D= —
A A

1

X=x,Y=-

y

1

X=1,Y=—

X ¥

X=x¥=In(y)
C=e8

X =Inx). ¥ =In(y)
C=eB
X=x¥Y=y2
X=x¥Y=In (%)

C=eB. D=-A

L
X=x,Y=ln(~——l)
y

€ = ¢ and L is a constant
that must be given

to find M coefficients {c;]} so that the function f (x) given by the linear combination

M
(18) fEy =3 c;fix)
j=1

will minimize the sum of the squares of the errors

N

k=1

N M 2
(19)  Elcr,ca...oom =9 (fa—yi=Y ((Zc;f,-(xo) - )%) :
k=1 j=1
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For E to be minimized it is necessary that each partial derivative be zero (i.e.,
dE/dc; =0fori =1,2,..., M), and this results in the system of equations

N M
20) Z((Zc;f;(xk))—yk) () =0 fori=1,2, ..., M.

k=1 j=1

Interchanging the order of the summations in (20) will produce an M x M system
of linear equations where the unknowns are the coefficients {c;}. They are called the
normal equations:

M N N
(21) Z( fi(xk)fj(xk)) cj= Ef}(xk)yk fori=1,2, .... M.
k=] k=1

i=1

The Matrix Formulation

Although (21) is easily recognized as a system of M linear equations in M unknowns,
one must be clever so that wasted computations are not performed when writing the
system in matrix notation. The key is to write down the matrices F and F’ as follows:

AGn frlx) - fulx)

Hitx2)  falx2) o fulx)

F=1A0G3) filxay -+ fa(xs)

N (;rN) fz(;rN) E fM(.xN)
fie)  fAix2) A3 - AGN)
P fxy ol fax3) - falaw)
fM-(xl) fM&xz) fMix3) fM(‘xN)

Consider the product of F’ and the column matrix ¥:

Hx)y  fitx2) fAilxsy - Al | [ 2
22) FY < fz(zx1) fz(:n) fz(:xs) fz(jw) ):2
fm(x1) fM‘(JfZ) fMiﬂ) e fM(xN) Y‘N

The element in the ith row of the product F'Y in (22) is the same as the ith element 1n
‘he column matrix in equation (21); that is,

N
23) Y fiom=row F'-[y y2 ... y].
k=1
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Now consider the product F'F, which is an M x M matrix:

F'F =
Ay 2D - fr(x)
YRS vl | Y 1 R e
e - M i) faGs) o fule) |,
TuG) fua) fuCs) - fule) f](;flv) fZ(:YN) fMixN)

The element in the ith row and jth column of F'F is the coefficient of ¢; in the
ith row in equation (21); that is,

N
(24) Y filts) fit) = [ File) + FGE i) + -+ fiGen) £ Cen).
k=1

When M is small, a computationally efficient way to calcuiate the linear least-squares
coefficients for (18) is to store the matrix F, compute F'F, and F'Y and then solve
the linear system

(25) F'FC = F'Y forthe coefficient matrix  C.

Polynomial Fitting

When the foregoing method is adapted to using the functions { f;(x) = x/ —13 and the
index of summation ranges from j = 1to j = M + 1, the function f(x) will be a
polynomial of degree M:

(26) flx)=ci+cx +c3x? 4+ ey x™.

We now show how to find the least-squares parabola, and the extension to a poly-
nomiat of higher degree is easily made and is left for the reader.

Theorem 5.3 (Least-squares Parabola). Suppose that {(x, y,q)}}c‘"___1 are N points,
where the abscissas are distinct. The coefficients of the least-squares parabola

27) y=f(x)=Ax’+Bx+C

are the solution values A, B, and C of the linear system

N N N N
(ng) A+ (ng) B+ (z,g) C=3 sk
k=1 k=1 1 k=1

N N k:f N
(28) (fo) A+ (fo) B+( Ik) =Y nu,
= - =1 k=1
: N l N ‘ N
(ng) A+ ():xk) B NC=Y m
k=1, k=1 =1
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Table 5.7 Obtaining the Coefficients for the Least-Squares Parabola of Example 5.6

X Yk 2 X x XYk x2 vk
-3 3 ~27 81 9 27
0 1 0 0 0 0 0
2 1 4 8 16 2 4
4 3 16 64 256 12 48
3 8 29 45 353 5 79

Proof. 'The coefficients A, B, and C will minimize the quantity:

N
(29) E(A, B,C) =Y (Ax}+ Bxi +C — y)*
k=1

The partial derivatives 3E/dA, 3E /9B, and 9 E /9C must all be zero. This results in

_9E(A,B,C) _ ZN 2 1.2
0= A = 2k=l(Axk +Bxk+c .Yk) (xk)1
_OE(AB.O) _{h 1
(30 0= 5 = 2k§=l(Axk + Bxp + C — yi)' (xi).
dE(A, B,C) ad 2 1
0=T=2§ (Axi + Bxp + C ~ yp)'(1).

k=1

Using the distributive property of addition, we can move the values A, B, and C
outside the summations in (30) to obtain the normal equations that are given in (28). »

Example 5.6. Find the least-squares parabola for the four points (-3, 3), (0, 1), (2. 1),
and (4, 3).
The entries in Table 5.7 are used to compute the summations required in the linear
system (28).
The linear system (28) for finding A, B, and C becomes
353A+45B+29C =19
45A+29B+ 3C= 5
29A+4+ 3B+ 4C= 8.
The solution to the linear system is A = 585/3278, B = —631/3278,and C = 1394/1639,
and the desired parabola is (see Figure 5.8)
_ 585 , 631 1394

— 2 _
y= 32,7,8.7c 3278x 1639 = 0.178462x° — 0.192495x + 0.850519, ]
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4 L ! L L 4 — x Figure 5.8 The least-squares
-3 -2 -1 0 1 2 3 4 parabola for Example 5.6.

Polynomial Wiggle

It is tempting to use a least-squares polynomial to fit data that is nonlinear. But if the
data do not exhibit a polynomial nature, the resulting curve may exhibit large oscilla-
tions. This phenomenon, called polynomial wiggle, becomes more pronounced with
higher-degree polynomials. For this reason we seldom use a polynomial of degree 6 or
above unless it is known that the true function we are working with is a polynomial.

For example, let f{x) = 1.44/x% + 0.24x be used to generate the six data points
(0.25,23.1), (1.0, 1.68), (1.5, 1.0), (2.0, 0.84), (2.4, 0.826), and (5.0, 1.2576). The
result of curve fitting with the least-squares polynomiais

Py(x) = 22.93 — 16.96x + 2.553x2,
P3(x) = 33.04 — 46.51x + 19.51x% — 2.296x3,
Py(x) = 39.92 — 80.93x + 58.39x% — 17.15x> + 1.680x*,

and

Ps(x) = 46.02 — 118.1x + 119.4x% ~ 57.51x> + 13.03x* — 1.085x°

is shown in Figure 5.9(a) through (d). Notice that P3(x), P4(x), and Ps(x) exhibit a
large wiggle in the interval [2, 5]. Even though Ps(x} goes through the six points, it
produces the worst fit. If we must fit a polynomial to these data, P2(x) should be the
choice.

The following program uses the matrix F with entries f;(x) = x/~! from equa-
tion (18).
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A=F*F;

B=F’*Y?;

C=A\B;

C=f1ipud(C);

@) ®) Exercises for Curve Fitting

()

)

1. Find the least-squares parabola f(x) = Ax% + Bx + C for each set of data.

(a) (b)
Xk | Wk Xk | Yk
-3 i5 -3 | -1
-1 5 -1 |25
1 1 1 |25
3 5 3 1

2. Find the least-squares parabola f(x) = Ax? + Bx + C for each set of data.

Figure 5.9 (a) Using P2(x) to fit data. (b) Using Ps(x) to fit data, (c) Using Ps(x) to (a) (b) ©
fit data. (d) Using Ps(x) to fit data. Xk Yk Xi Y Xk Yi
-2 |—58 -2 2.8 -2 10
- -1 1.1 -1 2.1 -1 1
Program 5.2 (Least-squares Polynomial). To construct the least-squares polyno- ) 3.8 0 325 0 0
mial of degree M of the form 1 33 I 6.0 1 2
a M1 M 2 j-15 2 11.5 2 9
Pyx)=c14+ecx+ec3x“+---+coyx + opme1X
3. For the given set of data, find the least-squares curve:
that fits the N data points {(xg, yk)}f":;- (@ f(x) = Ce**, by using the change of variables X = x, ¥ = In(y), and C = &5,
. from Table 5.6, to linearize the data points.
function C = lspoly(X,Y,M) (b) f(x) = Cx4, by using the change of variables X = In(x), ¥ = In(y), and
#lmput - X is the lxm abscissa vector C = ¢®, from Table 5.6, to linearize the data points.
h - Y is the 1xn ordinate vector ) (¢} Use E3(f) to determine which curve gives the best fit.
% - M is the degree of the least-squares polynomial
% Output - C is the coefficient list for the polymomial
n=length(X); T |
B=zeros(1:M+1); 1] 0.6
F=zeros{(n,M+1); 2 1.9
#Fill the columns of F with the powers of X 3 4.3
for k=1:M+1 4 7.6
F(: k=X .7 (k-1); 5 12.6

end

%Solve the linear system from (25}
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4. For the given set of data, find the least-squares curve: (@) Assume that L = 8§ x 10° (b) Assume that L = 8 % 10°
(@ f(x) = Ce™, by using the change of variables X = x, ¥ = In(y),and C = e®.
from Table 5.6, to linearize the data points. Year I P, Year | # | Pi
() f(x) = 1/(Ax + B), by using the change of variables X = x and ¥ = 1/y. 1800 | —10 53 19006 | 0 76.1
from Table 5.6, to linearize the data poinis. iggg —g 232 1920} 2 | 106.5
) ] . 76.1 1940 | 4 | 1326
(¢) Use Ez(f) to determine which curve gives the best fit. 1950 5 152.3 190! 6 | 180.7
1980) 8 | 226.5
Xk Yk .
n Exercises 8 through 15, carry out the indicated change of variables in Table 5.6, and
-1 6.62 lerive the linearized form for each of the following functions.
0 3.94
1 217 A D
2 | 135 B.y=2+8 y=3Tc
3 0.89 1 x
i y= 1L y=
Y= Ax+ B Y= A1 Bx
1. y=Aln(x)+ B 13, y=CxA
— -2 - ~D
5. For each set of data, find the least-squares curve: H.y=(Ax+8) 1. y=Cxe™™
(a) f(x) = CeA.x’ by using the change of variables X = x, Y = ln(y). and C = &* i6. (a) Follow the pl'OCCdlll‘e outlined in the p‘l'OOfOfThCO‘l'Cm 5.3 and derive the normal
from Table 5.6, to linearize the data points. equations for the least-squares curve f(x) = A cos(x) + B sin(x).
®) fx) = (Ax + B2, by using the change of variables X = x and ¥ = Yyl (b) Us;=r the results from pa'n (a) to find the least-squares curve f(x) = A cos(x) +
from Table 5.6, to linearize the data points. Bsin(x) for the following data:
(¢) Use E2(f) to determine which curve gives the best fit.
@ @i Xk Yk
Xy Yk Xk Vi
~3.0(-0.1385
-1 13.45 -1 13.65 —~1.5 | —2.1587
0 3.01 0 1.38 0.0} 0.8330
1 0.67 1 0.49 1.5 22774
2 0.15 3 0.15 3.0 | =0.5110

6. Logistic population growth. When the population P(r) is bounded by the limiting
value L, it follows a logistic curve and has the form P(r) = L/(1 + Ce*’). Find .4

i . is a kn lue.
and C for the following data, where L is a known value 17. The least-squares plane z = Ax + By + C for the N points (xi, y1,21), ...,

(@) (0,200), (1,400), (2, 650), (3, 850), (4,950), and L = 1000. {xn, yn,2Zn) is obtained by minimizing
(b) (0, 5000, {1, 1000), (2, 1800), (3, 2800), (4, 3700), and L = 5000.

N
7. Use the data for the U.S. population and find the logistic curve P(z). Estimate the E(A,B,C)= Z(Ax" + By +C — 2%
population in the year 2000. : k=1
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Derive the normal equations:

N N N N

(Zx%) A+ (Zxkyk) B+ (Zxk) C= szxk,
k=1 k=1 k=1 k=1
N N N N

(me) A+ (ny) B+ (Z )’k) C=)
k=1 k=1 =1 k=1
N N N

(th) A+ (Z)’k) B+NC=) z.

k=1 k=1 k=1

18. Find the least-squares planes for the following data.
@ (1,1,7),(1,2,9),(2,1,10),(2,2,11), (2,3, 12)
M (1,2,6),(2,3,7,(1,1,8).2,2,8),(2,1,9)
© (3,1,-3,@2,1,-1),2,2,00,(1,1,1),(1,2,3)

19. Consider the following table of data

Xk Yk
101 20
20| 5.0
3.0 100
401 17.0
501 26.0

When the change of variables X = xy and ¥ = 1/y are used with the func
y = D/(x + C), the transformed least-squares fit is
_ —17.719403

Y= 5476617
When the change of variables X = x and ¥ = 1/y are used with the function
1/(Ax + B), the wransformed least-squares fit is

_ 1
¥ = Z0.1064253x + 0.4987330°

Determine which fit is best and why one of the solutions is completely absurd.

Algorithms and Programs

1. The temperature cycle in a suburb of Los Angeles on November 8 is given in

accompanying table below. There are 24 data points.
(a) Follow the procedure cutlined in Example 5.5 (use the fmins command) to
the least-squares curve of the form f(x) = A cos(Bx)+Csin(Dx) fortheg

set of data.
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Determine Ea( f).
Plot the data and the least-squares curve from part (a) on the same coordinate
system.

Time, pm. | Degrees Time, am. | Degrees
1 66 1 58
2 66 2 58
3 65 3 58
4 64 4 58
5 63 5 57
6 63 6 57
7 62 7 57
8 61 8 58
9 60 9 60
10 60 10 64
11 59 11 67
Midnight 58 Noon 68

Interpolation by Spline Functions

Polvnomial ipterpolation for a set of N + 1 points {{xy, yk)};?;o is frequently unsatis-
lactory. As discussed in Section 5.2, a polynomial of degree N can have N — | relative

Marima and minima, and the graph can wiggle in order to pass through the points.

j-\nnther method is to piece together the graphs of lower-degree polynomials Sg(x) and
inte1 polate between the successive nodes (x, y&) and (Xg41, Ye41) (see Figure 5.10).

(X ¥

Gy_pIn-yp

(XN- ¥ N)

L L 1 1 L 1 1
X X X- X, .Il ’ *
0 1 2 & k41 IN-1 XN

Figure 5.18 Piecewise polynomial interpolation.
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(g Yi)

y_ponoy)

(Xys ¥u)
) I—— i e i 4 i x
T 1 L | L T T
X o n Xk s v Ay

Figure 5.11 Piecewise linear interpolation (a linear spline).

The two adjacent portions of the curve y = Si(x} and y = Sg41(x), which lie above
(xk xk+1] and [xg11, Xg42], respectively, pass through the common knot (xz.41, Yi+1).

The two portions of the graph are tied together at the knot (x¢+;, yi+1), and the set of

functions {S; (x)} forms a piecewise polynomial curve, which is denoted by S(x).

Piecewise Linear Interpolation
The simplest polynomial to use, a polynomial of degree 1, produces a polygonal path

that consists of line segments that pass through the points. The Lagrange polynomial
from Section 4.3 is used to represent this piecewise linear curve:

— Xl X —Xf
k

+1 for  xp < x < X4t
— X1 Xi+1 — *k

M S = Yk:;

The resulting curve looks like a broken line (see Figure 5.11).
An equivalent expression can be obtained if we use the point-slope formula for a
line segment:

Se(x) = yg + die(x — xz),

where di = (yk+1 — yu)/(xk+1 — xx)- The resulting linear spline function can be
written in the form

[ y0+ do(x ~ x0) for x in [xg, x1],

v +di{x —x1) for x in [xy, x2],
(2) S(x) = ) o

Yi +di(x — xi) for x in [xg, xp41].

yv-y+dyoilx —xn-1) forxin{xy—y, xnl.
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The form of equation (2) is better than equation (1) for the explicit calculation of
Sty It is assumed that the abscissas are ordered xp < x; < -+ < xy_] < xy. For
a fixed value of x, the interval [xg, xz4;] containing x can be found by successively
computing the differences x — xy, ..., X — Xk, X — Xp4+1 until k 4 1 is the smallest
integer such that x — xz| < 0. Hence we have found % so that x; < x < x4, and
the value of the spline function S(x) is

Y S(x) = Sp(x) = yp +dp(x — xx)  for  xp £ x < xpq-

Thewe techniques can be extended to higher-order polynomials. For example, if an
odd number of nodes xg, xy, ..., x2pr 18 given, then a piecewise guadratic polyno-
muil can be constructed on each subinterval {xo, x2k42), fork =0, 1, ..., M — 1.
A shortcoming of the resulting quadratic spline is that the curvature at the even nodes
x> changes abruptly, and this can cause an undesired bend or distortion in the graph.
The second derivative of a quadratic spline is discontinuous at the even nodes. If we
use piecewise cubic polynomials, then both the first and second derivatives can be
made continuous.

Piecewise Cubic Splines

The fitting of a polynomial curve to a set of data points has applications in CAD
{computer-assisted design), CAM (computer-assisted manufacturing), and computer
graphics systems. An operator wants to draw a smooth curve through daia points that
are not subject to error. Traditionally, it was commeoen to use a french curve or an ar-
chitect’s spline and subjectively draw a curve that looks smooth when viewed by the
eye. Mathematically, it is possible to construct cubic functions Si(x) on each inter-
val [xy, x;41] so that the resulting piecewise curve y = S{x) and its first and second
derivatives are all continuous on the larger interval [xg, x,,]. The continuity of §’(x)
means that the graph y = §(x) will not have sharp corners. The continuity of 5% (x)
means that the radius of curvature is defined at each point.

Definition 5.1 (Cubic Spline Interpolant). Suppose that {(xz, yk)};?' —g are N + 1
points, where @ = xg < x3 < --- < xy = b, The function S(x) is called a cubic
spline if there exist N cubic polynomials Sy (x) with coefficients s;.0, S,1. 5k,2, and
i3 that satisfy the properties:

L S(x) = Sk(x) = Se.0 + 6108 — xp) + sp.2(x — xx)? + sp.3(x — x)?

forx € [x¢, xp+1]and k =0,1,..., N — L.
. S(xp) = w fork=0,1,...,N.
I Selxg+1) = Sp1{xk+1} fork=0,1,...,. N -2,
V. S;c(xk+1) = S;:+l(xk+1) fork=0,1,...,N—-2.
V. 8 (xe1) = Slfc’+l(‘xk+1) fork=0,1,....,N-2. N
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Property ! states that $(x) consists of piecewise cubics. Property II states that the
piecewise cubics interpolate the given set of data peints. Properties Il and IV requir.
that the piecewise cubics represent a smooth continuous function. Property V state-
that the second derivative of the resulting function is also continuous.

Existence of Cubic Splines

Let us try to determine if it is possible to construct a cubic spline that satisfies proper-
ties I through V. Each cubic polynomial S¢(x) has four unknown constants (s . Sk,|-
k.2, and sy 3); hence there are 4N coefficients to be determined. Loosely speaking.
we have 4N degrees of freedom or conditions that must be specified. The data point.
supply N + 1 conditions, and properties III, IV, and V each supply N — 1 conditions
Hence, N + 1+ 3(N — 1) = 4N — 2 conditions are specified. This leaves us two addi-
tiona) degrees of freedom. We will call them end-point constraints: they will involve
either S'(x) or §”(x) at xg and xy and will be discussed later. We now proceed with
the construction.

Since S(x) is piecewise cubic, its second derivative S”(x) is piecewise linear on
[xg, xn]. The linear Lagrange interpolation formula gives the following representation
for §”(x) = S§{/(x):

~ Xi4l X — X

It X
(4) Si (x) = 5" (xe) + 8" (xe41)
X — Xp+1 Xe+1 — Xk
Use my = §"(xi), mgy1 = 8" (xe41), and by = xp41 — 2 in (4) to get

My
(x —xp)

) S{(x) = %(ml 0+
k

forx; <x < xppyandk =0,1,..., N — 1. Integrating (5) twice will introduce tv
constants of integration, and the result can be manipulated so that it has the form

Mgl
6h;

Substituting x; and xx4 into equation (6) and using the values y; = Sp(x;) and
Vg1 = Si(xy+1) yields the following equations that involve py and gk, respectively;

Mp+1

6) Si(x)= ;"T"(le -+ (x —x0)°  + pr(gr — X) + gelx — xp).
k

my

6
These two equations are easily solved for p; and gy, and when these values are sub-
stituted into equation (6), the result is the following expression for the cubic function
Sp(x):

hi + gehy.

(M Yo = —hi + pxhy and  ypoq =

Sk(x) = —ﬂ(xk+l —-x)’+ m—“—l(x —x)?
® 6hy 6hy
Yk Mkhk) _ Yetl _ mghe)
+ (hk ~5 (Xp+1 —x) + ( e 6 )(x Xe)-
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Notice that the representation (8) has been reduced to a form that involves only
the unknown coefficients {my}. To find these values, we must use the derivative of (8),
which is

m m
Sx) = ~ 5 (g — 2+ 2L (- )
9 2hy 2hy
2 _ (}i_k _ mkhk) Vit Mgtk
hy 6 hy he

Evaluating (9) at x4 and simplifying the result yield

m -
19 S = —%hk - ’%‘!’hk +dy, where ;= ___.y”;l Yk
k

Similarly, we cap replace & by k — 1 in (9) to get the expression for §;_,(x) and
evaluate it at x; to obtain

my M
(1) Semt ) = S himt + =it + .
Now use property 1V and equations (10) and (11) to obtain an important relation
involving sy, my, and my,1:

112) Bi—tmg_1 + 20hi_y + hedmy + hanter) = uy

where uy =6 (d), —dy—y)fork=1,2,....N~1.

Construction of Cubic Splines

Observe that the unknowns in (12) are the desired values {my), and the other terms
dre constants obtained by performing simple arithmetic with the data points {(x, y¢)}.
iihere_fore, in reality system (12) is an underdetermined system of ¥ — 1 linear equa-
tiens involving N 4 1 unknowns. Hence two additional equations must be supplied.
They are used to eliminate mg from the first equation and my from the (N —~ 1)st
equation in system (12). The standard strategies for the end-point constraints are sum-
marized in Table 5.8.

Consider strategy (v) in Table 5.8. If mg is given, then komg can be computed, and
the first equation (when & = 1) of (12) is

(13) 2(ho + kydmy + hymay = uy — homy.

Similarly, if m y is given, then hy_ m w can be computed, and the last equation (when
K=N-—1of (12)is

(i9) hn-amy 2+ 2hy-2+hn-Dmyi =uy_) —hy_imy.
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Table 5.8 End-point Constraints for a Cubic Spline

Description of the strategy Equations involving mg and m y

(1) Clamped cubic spline: spec-
ify 8 (xp), $'(xn)
(the “best choice™ if the

3 it s
mp = 1 (do = S — 5

derivatives are known)
3 " my—1
my = h—(S (xn)—dy_1)— 3
N-1
(iiy Natural cubic spline my=0my =0
{a “relaxed curve™)
(iii) Extrapolate $”(x) to the
endpoints ho(my — my)
1
hn_10my—1 —my—2)

my =mpy_1 +
hn—2

(tv)  §”(x) is constant near the
endpoints

(v) Specify §”(X) at each
endpoint

mp=mp,my =my_|

mg = §"(xp), my = §"(xn)

Equations (13) and (14) with (12) used fork = 2,3, ..., N -2 form N — 1 lmes
equations involving the coefficients my, my, ..., my_1.

Regardless of the particular strategy chosen in Table 5.8, we can rewrite equa-
tions 1 and N — 1 in (12) and obtain a tridiagonal linear system of the form HM = V,

which involves m(, ma, ..., my—1:
b ¢l m v
ay b my v2
(15) : = :
an-3 by-2 cn_a||my2 vN_2
ay—z bn_1| | mno) UN_1|

The linear system in (15) is strictly diagonally dominant and has a unique solu-
tion (see Chapter 3 for details). After the coefficients {m;} are determined, the spline
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coefficients {s;_ 7} for S¢(x) are computed using the formulas

he(Qmy 4+ mgyr)
55,0 = Yks Sk = dk — —-k——k—é—li
skzz—k Sk3=L_£.
' 27 ' 6k

Each cubic polynomial Si(x) can be written in nested multiplication form for effi-
cient computation:

(in Se(x) = ((sg3w + s 2)w + s, 1)w + v, where w=x—x;

and S; (x} is used on the interval xp < x < x41.

Equations (12) together with a strategy from Table 5.8 can be used to construct a
tubic spline with distinctive properties at the end points. Specifically, the values for mq
and my in Table 5.8 are used to customize the first and last equations in (12) and form
te system of N — 1 equations given in {15). Then the tridiagonal system is solved for
the remaining coefficients m |, ma, . . ., mpy—;. Finally, the formulas in (16) are used to
determine the spline coefficients. For reference, we now state how the equations must
Be prepared for each different type of spline.

Ead-point Constraints

The following five lemmas show the form of the tridiagonal linear system that must be
golved for each of the different endpoint constraints in Table 5.8.

lethma 5.1 (Clamped Spline). There exists a unique cubic spline with the first
derivative boundary conditions $'(a) = dg and S'(b) = dy.

Proof.  Solve the linear system

3
(Eho + 2h1) my + hymz = uy — 3(dy — §'(xo)

Rg_ymy1 + 2(he_1 + hpmg + Bhemie) = ug for k=2,3, ..., N-2

3 y
hy_omy—2+ (2hy_2 + EhN—l)mN-l =uy—t — 3§ (xn) —dy-1). .

Remark. The clamped spline involves slope at the ends. This spline can be visualized
as the curve obtained when a flexible elastic rod is forced to pass through the data
points, and the rod is clamped at each end with a fixed slope. This spline would be
useful to a draftsman for drawing a smooth curve through several points.

Lemma 5.2 (Natural Spline). There exists a unique cubic spline with the free
boundary conditions §”(a) = 0 and $”(b) = 0.
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Proof. Solve the linear system
2(hp + hiymy + hymy = uy

he_1mi—1 + 2(hg—1 + hedmy + hgmis ) = ui for k=2,3, ..., N—-1
hy_amy—2 +2€hy_2+hAn-)MN-] = BEN-1. .

Remark. The natural spline is the curve obtained by forcing a flexible elastic rod
through the data points, but letting the slope at the ends be free to equilibrate to the
position that minimizes the oscillatory behavior of the curve. It is useful for fitting ¢
curve to experimental data that are significant to several significant digits.

Lemma 5.3 (Extrapolated Spline). There exists a unique cubic spline that use:
extrapotation from the interior nodes at xt and x; to determine $”(a) and extrapolatiot

from the nodes at xy_1 and xy_3 to determine 5" (b).

Proof. Solve the linear system

h3 h}
Sho + 20 + 2 | mi+ [ = 2 | m2 = m
h1 hl

hi—1my-1 + 2(hi—1 + hdme + hemgey = we - for k=23 ..., N-2

» h3
N-1 N1 =
(hN——Z 5 ) my-2+ (2hNA2 +3hy-1+ T;) MN-| = UN-1- g

Remark. The exirapolated spline is equivalent to assuming that the end cubic is as
extension of the adjacent cubic; that is, the spline forms a single cubic curve over the
interval [xg, x2] and another single cubic over the interval [xy_2, X1

Lemma 5.4 (Parabolically Terminated Spline). There exists a unique cubic spline
that uses S”(x) = 0 on the interval [xo, x1] and §”(x) = O on [xy-1, xn).

Proof. Solve the linear system

(3ho + 2hymy + himz = u)
he_my—1 + 2(hg_1 + hi)my +hmpyy =up  for k=2,3, ..., N~ 2
hy_amy—2 + (Qhy_2 + 3hN-1)mN-1 = UN-1.

Remark. The assumption that $”(x) = 0 on the interval [xg, x1] forces the cubic‘§ '

degenerate to a quadratic over [xo, x1], and a similar situation occurs over [xy—1, XN
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Lefnma‘S.S (End-point Curvature-adjusted Spline). There exists a unique cubic
spline with the second derivative boundary conditions §” () and 5" (k) specified.

Proof. Solve the linear system

2(ho + hiymy + hyma = uy — hoS” (xq)
hioymp_1+ 20— +heyme +hempy =uy for k=23, ..., N=-2
hy-amy_2+2(hy2+hy-1)my_1 =uy_) — hy_18"(xn). .

Remark. Imposing values for §”(a) and S”(b) permits the practitioner to adjust the
curvature at each endpoint.

The next five ex.a'mples illustrate the behavior of the various splines. It is possible
10 mix thg c_nd conditions to obtain an even wider variety of possibilities, but we leave
these variations to the reader to investigate.

Example 5.7. Find the clamped cubic spline that passes tiuough 0,0),(1,0.5, (2,2.0)

~ and (3, 1.5) with the first derivative boundary conditions §'(0) = 0.2 and §'(3) = —1.

First, compute the quantities

hh=hy=h; =1

do=(y1 —y0)/ho = (0.5~ 0.0)/1 =0.5
dy=(y2—n1)/h1 =(2.0-05)/1= 1.5
dy=(y3—y2)/ha=(1.5-20)/1=-05
w1 =06(d; —do) =6(1.5-0.5)=6.0

uz = 6(dz —dy) = 6(—0.5-1.5) = —12.0.

Then use Lemma 5.1 and obtain the equations

3
(5 +2)ml +my =60-3(0.5-02)=5.1,

3
my + (2 + -2-) mz = —~12.0 — 3(=1.0— (-0.5)) = —-10.5.

when these equations are simplified and put in matrix notation, we have

35 LOf(m| _ 5.1
1.0 3.5({m2]| " [—-10.5]"
Risa straightforward task to computc the solution my; = 2.25 and my = —3.72 Now

#pply the equations in (i) of Table 5.8 (o determine the coefficients mp and ma:

mo=3(0.5-0.2) ~ 3;2 = -0.36,

my = 3(—1.0 +0.5) — _—322 = 0.36.
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Figure 512 The clamped cubic
spline with derivative boundary condi-
tions: $'(0) = 0.2 and §'(3) = —1

Figure 513 The natural cubic spline
with §7(0) = 0 and §”(3) = 0.

Next, the values mg = —0.36, m; = 2.25, m3 = —3.72, and m3 = 0.36 are substituied
into the equations (16) to find the spline coefficients. The solution is

So(x) = 0.48x> — 0.18x% + 0.2x for 0<x =<1,
S1(x) = —1.04(x — 1)* + 1.26(x — 1)2
(18) +1.28x - 1)+ 0.5 for l<x <2,
S2(x) = 0.68(x — 2)* — 1.86(x — 2)?
+0.68(x -2)+2.0 for2<x <3
This clamped cubic spline is shown in Figure 5.12. n

Example 5.8, Find the natural cubic spline that passes through (0, 0.0), (1, 0.5),(2, 2.0),
and (3, 1.5) with the free boundary conditions 5”(x) = 0 and $”(3) = 0.

Use the same values {hx), {dx}, and {1 ] that were computed in Example 5.7. Then
use Lemma 5.2 and obtain the equations

2(1 + Dmy 4+ m3 = 6.0,
my+2(1 + Dmy = —12.0.

The matrix form of this linear system is

[to %o} [m]=1-120)

It is easy to find the solution m) = 2.4 and ma = —3.6. Since mo= 5"(0) = 0 and
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m3y = §"(3) = 0, when equations (16) are used to find the spline coefficients, the result is

So(x) = 0.4x> 4 0.1x for 0<x<1,
Si(x) = —(x ~ 1* +1.2(x — 1)
(19) +13(x — 1) +0.5 for 1<x<2,
S2(x) = 0.6(x — 2)° — 1.8(x —2)2
+0.7(x —2) +2.0 for 2<x <3.
“This natural cubic spline is shown in Figure 5.13. =

Example 5.9. Find the extrapolated cubic spline through (0, 0.0), (1, 0.5), (2, 2.0}, and
(3,1.5).

Use the values {A}, {di}, and () from Example 5.7 with Lemma 5.3 and obtain the
linear system

GB+24+Dm+ (1 —Dmz = 6.0,
(I=Dmi+ Q2434+ Dmy = ~-120.

6.0 00([m| 6.0

00 6.0)(mz]  |-12.0|"
and it is trivial to obtain m; = 1.0 and my = —2.0. Now apply the equations in (iii) of
Table 5.8 to compute mg and m3:

The matrix form is

mp=10-(-20-1.0)=4.0,
m3 = —204+(-2.0- 1.0) = -5.0.

Finaily, the values for {m} are substituted ir equations (16) to find the spline coefficients.
The solution is

So(x) = —0.5x> + 2.0x% — x for0<x <1,
S1(x) = —0.5¢x — 1)* + 0.5(x — 1)2
20) +15(x—-1)+05 for lsx <2,
5(0) = —05(x—2° - (x —2)2
+x-2)+2.0 for 2<x <3,
The extrapolated cubic spline is shown in Figure 5.14, [

Example 5.10. Find the parabolically terminated cubic spline through (0, 0.0), (1, 0.5),
-£2.2.0), and (3, 1.5).
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20f

0.5

1 R ] ‘— x Figure 514 The extrapolated cu-
S5 1.0 15 20 25 3.0 bic spline.

Use {hz}, {di), and {u; ) from Example 5.7 and then apply Lenima 5.4 to obtain

3+ 2ymy +mx=6.0,
mi1+ (24 3)my = —12.0.

50 1.0][m| _ 6.0
1.0 50)|m2]| ™ [=120]|"
and the solotion is m) = 1.75 and m» = ~2.75. Since §7(x) = 0 on the subinterval at

each end, formulas (iv) in Table 5.8 imply that we have mg = m| = 1.75,and m3 = m1- =
—2.75. Then the values for {m;} are substituted in equations (16) to get the solution

The matrix form is

So(x) = 0.875x2 — 0.375x for 0<x <1,
§)(x) = ~0.75(x — 1)* + 0.875(x — 1)2
+1.375(x — 1) + 0.5

$3(x) = —1.375(x — 2)% + 0.875(x — 2) + 2.0

21
@b for 1 <x <2,

for 2<x <3.

This parabolically terminated cubic spline is shown in Figure 5.15. ]
Example 5.11. Find the curvature-adjusted cubic spline through (0, 0.0), (1,0.51.
{2,2.0), and (3, 1.5) with the second derivative boundary conditions 57(0) = —0.3 .nd

§"(3) =33
Use {Ai}, {di}, and (uy} from Example 5.7 and then apply Lemma 5.5 to obtain

20+ Dmy +mz = 6.0~ (—0.3) = 6.3,
my+2(1 + Dmy = ~12.0— (3.3) = ~15.3.

5 wol[m]=[-i53]

The matrix form is
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¥y
20}
15+
1.0
05F
e — : . ' Figure 5.15 The parabolicaliv
05 10 15 20 25 30 terminated cubic spline.
¥y
20
1.5F
1.0F
05
Figure 5.16 The curvature ad-
. 1 . L— justed cubic spline with §”(0) =
and the solution 1s m| = 2.7 and my = —4.5. The given boundary conditions are used
lo determine mg = S7(0) = —0.3 and m3 = S$”(3) = 3.3. Substitution of {m;} in

equations (16) produces the solution

So(x) = 0.5x% — 0.15x% + 0.15x for 0<x <1,
Spix) = —1.2(x — 1)° + 1.35(x — 1)2
(22 +1.35(x — 1)+ 05
$(x) = 1.3(x = 2)* — 2.25(x - 2)*
+045(x —2)+ 2.0

This curvature-adjusted cubic spline is shown in Figure 5.16. .

for 1l <x <2,

for 2<x <3.

Suitability of Cubic Splines

A practical feature of splines is the minimum of the oscillatory behavior that they
possess. Consequently, among all functions f{x) that are twice continuously differen-
tiable on [a, b] and interpolate a given set of data points {(xx, yi)}}_. the cubic spline
has less wiggle. The next result explains this phenomenon.
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Theorem 5.4 (Minimum Property of Cubic Splines). Assume that f € C{a, b]
and S(x) is the unique cubic spline interpolant for f(x) that passes through the points
{(xx, F (x,())}f=0 and satisfies the clamped end conditions S'(a) = fl(@) and S'(b) =
f'(b). Then

b b
(23) / (8"(x))dx < f (f"(x))dx.

Proof.  Use integration by parts and the end conditions to obtain
b
| 5w e - sy ax
‘ x=b b
= 8" (%) — S’(x))\ «f S"x)f(x) — §'(x)) dx
xX=a &

b
=0-0—~ f S"(x)(f'(x) — §(x)) dx.
Since §”(x) = 65 3 on the subinterval [x;, xz], it follows that

X1 X=x
| TSm0 @ - s dr = bss£) - senf T =0

& X=Xk

fork=0,1,..., ¥ — |. Hence f: $"(x)(f"(x) — §”(x)) dx = 0, and it follows thn

b b
(24) f §"(x)f"(x)dx = f (S"(x))* dx.
Since 0 < (f"(x) — $"(x))?, we get the integral relationship
b
0< f (f"(x) - §"(x))? dx

25) b b b
:f (F"(x))?dx —2/ f”(x)s”(x)dx+f ($"(x))dx.
a a a

Now the result in (24) is substituted into (25) and the result is

b b
0 sf (f"(x)) dx —f (8"(x)) dx.

This is easily rewritten to obtain the relation (23) and the resuit is proved. o

The following program constructs a clamped cubic spline interpolant for the dat:
points {{(x, }’k)},'?;o. The coefficients, in descending order, of Si(x), fork = 0, 1.
.., N — 1, are found in the (k — 1)st row of the output mamx S. In the exercises the
reader will be asked to modify the program for the other end-point constraints listed in
Table 5.8 and described in Lemmas 5.2 through 5.5.
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Program 5.3 (Clamped Cubic Spline). To construct and evaluate a clamped cubic
spline interpolant S(x) for the N + 1 data points {(xk, ye)}) .

function S=csfit(X,Y,dx0,dxn)

%Input - X is the 1xmn abscissa vector

% - Y is the 1xn ordinate vector

A - dx0 = S?(x0) first derivative boundary condition
A - dxn = $’(xn) first derivative boundary condition
%Butput - 8: rows of 5 are the coefficients, in descending
% order, for the cubic interpclants

N=length(X}-1;

B=diff(X);

D=diff(Y)./H;
A=H(2:N-1);
B=2*(H(1:N~1)+H(2:N));
C=H(2:N)};

U=6*diff (D) ;

%#Clamped spline endpoint constraints
B(1)=B(1)-H(1)/2;
U(L)=U(1)-3*(D(1)-dx0) ;
B(N-1)=B(N-1)-H(N)/2;
U{N-1)}=U(N-1) -3*(dxn-D{N));
for k=2:N-1
temp=A(k-1)/B(k-1);
B(k)=B(k)-temp*C(k-1};
U(k)=U(k) -temp*U(k-1) ;
end

M(N)=U(N-1)}/B(N-1);

for k=N-2:-1:1
M(k+1)=(UX)-C(k)*M(k+2)) /B (k) ;

end

M(1)=3%(D(1)-dx0) /H(1)-M(2)/2;

M(N+1)=3*(dxn-D{N)) /H(N)-M(N) /2;

for k=0:N-1
S(k+1,1)=(M(k+2)-M(k+1) )/ (6%H(k+1));
S(k+1,2)=M(k+1)/2;
S(k+1,3)=D(k+1)-H(k+1)* (2*M{k+1)+M(k+2}) /6;
S(k+1,4)=Y(k+1);

end
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Example 5.12. Find the clamped cubic spline that passes through (0, 0.0), (1.0 51
(2,2.0), and (3, 1.5) with the first derivative boundary conditions $'(0) = 0.2 and §'(31 =
—1.
In MATLAB:

>>X=[0 1 2 3]; Y=[0 0.5 2.0 1.5];dx0=0.2; dxn=-1;
>5>8=¢sfit(X,Y,dx0,dxn)
S =

0.4800 -0.1800 0.2000 O

-1.0400 1.2600 1.2800 0.5000
0.6800 -1.8600 0.6800 2.0000

Notice that the rows of § are precisely the coefficients of the cubic spline interpolant- in
equation (18) in Example 5.7. The fo.'owing commands show how to plot the cubic spiine
interpolant using the polyval command. The resulting graph is the same as Figure 5.12
>>x1=0:.01:1; yi=polyval(S(1,:),x1-X{(1));
>>x2=1:.01:2; y2=polyval(8(2,:),x2-X(2));

»>>x3=2:.01:3; y3=polyval(S(3,:),x3-X(3));
>>plot(x1.yl,x2,y2,x3,y3,x,Y,'.’) &

Exercises for Interpolation by Spline Functions

1. Consider the polynomial S(x) = ap + a1x + azx? + azx3,
(a) Show that the conditions 5(1) = 1, $'(1) =0, $(2) = 2, and §'(2) = 0 produce
the system of equations

a+ a1+ e+ az=1
ar+2a;+ 3a3=0
ap+2a) +4a; + 8ay3 =12

ay +4az + 12a3 =0

(b) Solve the system in part (a) and graph the resulting cubic polynomial.

2. Consider the polynomial S(x) = ap + aix + a2x? + a3x>.
(a}) Show that the conditions S(1) = 3, S =-4,82)=1,ad §(2) -2
produce the system of equations

a+ a1+ ax+ az= 3
a;+2a+ 3az=-4
ap+2a1 +4a+ 8az= 1
a+4a+12a3= 2

(b) Solve the system in part () and graph the resulting cubic polynomial.
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18,

. Determine which of the following functions are cubic splines. Hint. Which, if any, of

the five parts of Definition 5.1 does a given function f(x) not satisfy?

B—8x 152 - B3 forl<x=<2
@ fE=115 i

T+Tx—21x2+7x3 for2 <=x<3

11 — 24x + 18x% — 4x3 forl <x <2
(b) flx)=

—54 + 72x — 30x2 + 4x3 for2<x=<3
© f© 18 — Bx +26x2 — Y3 forl <x <2
C X) =

70+ 185 — 402 + i3 for2<x <3

13 — 31x + 23x2 — 5x3 forl<x=<?2
@ fix)=

—354 51x — 22x2 4 313 for2 <x=<3

. Find the clamped cubic spline that passes through the points (-3, 2), (-2, 0}, (1, 3),

and (4, 1) with the first derivative boundary conditions §'(—=3) = —1 and §'(4) = 1.

. Find the natural cubic spline that passes through the points (-3, 2), (—2,0), (1, 3),

and (4, 1) with the free boundary conditions §”(—3) = 0 and §”(4) = 0.

. Find the extrapolated cubic spline that passes through the points (-3, 2), (-2, 0),

(1, 3), and (4, 1).

. Find the parabolically terminated cubic spline that passes through the points (—3, 2),

(—2,0),(1,3),and (4, 1).

. Find the curvature-adjusted cubic spline that passes through the points (-3, 2),

(=2.0), (1, 3), and (4, 1) with the second derivative boundary conditions §”(—3) =
—1and " (4) = 2.

. (a) Find the clamped cubic spline that passes through the points {(xz, f (xk))}i=0,

on the graph of f(x) = x + % using the nodes xop = 1/2,x = 1,x; = 3/2,
and x3 = 2. Use the first derivative boundary conditions $'(xo) = f'(xop) and
§'(x3) = f'(x3). Graph f and the clamped cubic spline interpolant on the same
coordinate system.

(b) Find the natural cubic spline that passes through the points {(x;, f (xk))}?go’ on
the graph of f(x) = x + Z, using the nodes xo = 1/2,x) = 1,x2 = 3/2, and
x3 = 2. Use the free boundary conditions $”(xo) = 0 and §”(x3) = 0. Graph
f and the natural cubic spline interpolant on the same coordinate system.

(a) Find the clamped cubic spline that passes through the points {(x, f (xk))]LO,
on the graph of f(x) = cos(x?), using the nodes xo = 0,x; = 7/2,x2 =
V3772, and x3 = /37/2. Use the first derivative boundary conditions $’(xo} =
f'(xp) and §'(x3) = f'(x3). Graph f and the clamped cubic spline interpolant
on the same coordinate system.

(b) Find the natural cubic spline that passes through the points {(xz, f (xk))]z=0,
on the graph of f(x) = cos(x?), using the nodes xo = 0,x; = /7/2,x3 =
V3772, and x3 = /57/2. Use the free boundary conditions 5”(xp) = 0 and
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$”(x3) = 0. Graph f and the natural cubic spline interpolant on the sam: 2. Modify Program 5.3 to find the (a) natural, (b) extrapolated, (¢) parabolically termi-
coordinate system. nated, or {(d) end-point curvature-adjusted cubic splines for a given set of points.
Use your programs from Problem 2 to find the five different cubic splines for the
points (0, 1), (1,0), (2,0), (3. 1), (4,2), (5,2), and (6, 1), where §'(0) = —0.6,
el — X = hg + (x5 — x) 5'(6) = —1.8, §"(0) = 1, and S (6) = —1. Plot the five cubic splines and the points
on the same coordinate system.
and 4. Use your programs from Problem 2 to find the five different cubic splines for the
points (0,0), (1,4), (2.8), 3.9, 4,9), (5,8) and (6, 6), where $'(0) = 1,
$'(6) = —2, §7(0) = 1, and §”(6) = —1. Plot the five cubic splines and the points
on the same coordinate system.

11, Use the substitutions 3

(xkr1 — %)% = B} + 3R3xe = x) + 3h(xe — x)2 + (xf — x)°

to show that when equation (8) is expanded into powers of (x; — x), the coefficients
are those given in equations (16). 5

The accompanying table gives the hourly temperature readings (Fahrenheit) during
a 12-hour period in a suburb of Los Angeles. Find the natural cubic spline for the
data, Graph the natural cubic spline and the data on the same coordinate system. Use
the natural cubic spline and the results of part (a) of Exercise 12 to approximate the

12. Consider each cubic function Sg (x) over the interval [x, x¢11].
(a) Give a formuia for [**" Sy (x) dx.

x .
Then evaluate fx(f S(x)dx in part (a) of average temperature during the 12-hour period.
(b) Exercise 10 (¢} Exercise 11
13. Show how strategy (i) in Table 5.8 and system (12) are combined to obtain the equa- Time, am. | Degrees || Time, a.m. | Degrees
tions in Lemma 5.1. 1 58 7 57
14. Show how strategy (iii) in Table 5.8 and system (12) are combined to obtain the 2 58 8 58
equation in Lemma 5.3. 3 58 9 60
. s 4 58 10 64
15. (@) Using the nodes xp = —2 and x| = 0, show that f(x) = x° — x is its own 5 57 11 67
clamped cubic spline on the interval {2, 0]. 6 57 Noon 68
{(b) Using the nodes xg = —2, x; = 0, and x; = 2, show that f(x) = 2% - v is
its own clamped cubic spline on the interval [—2, 21. Note. f has an inflection 6. Approximate the graph of f(x) = x — cos(x?) over the interval {—3,3] using a
pont at xy. clamped cubic spline.

(c)  Use the results from parts (a) and (b) to show that any third-degree polynomial,
f(x) = ap+a1x + azx? + a3x3, is its own clamped cubic spiine on any closed
interval [a, b].
{d) What, if anything, can be said about the other four types of cubic splines de- i . * . . .
scribed in Lemmas 5.2 through 5.57 84 Fourier Series and Trigonometric Polynomials
Scientists and engineers often study physical phenomena, such as light and sound, that
‘have a periodic character. They are described by functions f(x) that are periodic,

Algorithms and Programs
) glx+ P)=g(x) for all x.

1. The distance dy that a car traveled at time #; is given in the follwoing table, Use

Program 5.3 with the first derivative boundary conditions 5/(0) = 0 and 5'(8) = 98 The number P is called a period of the function.

It will suffice to consider functions that have period 2. If g(x) has period P, then

and find the clamped cubic spline for the points.
pec cUblc spiine for the points £(x) = g(Px/2m) will be periodic with period 2. This is verified by the observation
P P
Time, &y, 02 |4 6 8 (2) f(x+2:r)-—.g(2—x+P)=g(—2—x)=f(x)-
Distance, dg | 0 | 40 | 160 | 300 | 480 4 o
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4
' ;

2m 0 o 4
Figure 5.17 A continuous function f(x) with period 2.

. f
\ — —

t t y ' ' ' i o
0 I L Lo L L=b

a

Figure 5.18 A piecewise continuous function over [a, b].

Hepccforth in this section we shall assume that f(x) is a function that is periodic wilh
period 2, that is,

(3) Ffx+2m)= f(x) for all x.

The graph y = f(x) is obtained by repeating the portion of the graph in any interval

of length 2, as shown in Figure 5.17.
- Examplfas of functions with period 27 are sin(jx) and cos(jx), where Jis an
integer. This raises the following question: Can a periodic function be represente

by the sum of terms involving a; cos(jx) and b jsin(jx)? We will soon see that the
answer is yes.

Deﬁl:ntlon 5.2 (Pieceyvise Continuous). The function f(x) is said to be piecewise
continuous on [a, b] if there exist values fo, 1, ..., 1¢ witha = 5y < n o< ---
tx = b such that f(x) is continuous on each openinterval ; | <x <, fori =1, .

..., K,and f(x) has left- and right-hand limits at each of the points # ituati
is illustrated in Figure 5.18. points - The Slmatl":
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Definition 5.3 (Fourier Series). Assume that f(x) is periodic with period 2x and
that f(x) is piecewise continuous on -7, 7). The Fourier series S(x) for f(x)is

o0
m S(x) = %" + 'S (aj cos(jx) + b; sin(jx)),
=

w here the coefficients a; and b; are computed with Euler’s formulas:

1 n
(3 aj=; flx)cos(jxydx for j=0,1, ...
-
and
l T
(6 bj= poy fixysin(jxydx for j=1,2,.... A

-

The factor % in the constant term ag,/2 in the Fourier series (4) has been introduced
for convenience so that @g could be obtained from the general formula (5) by setting
j = 0. Convergence of the Fourier series is discussed in the next result.

Theorem 5.5 (Fourier Expansion). Assume that S(x) is the Fourier series for f(x)
over [—, ). If f'(x) is piecewise continuous on [, 7r] and has both a left- and
right-hand derivative at each point in this interval, then §(x) is convergent for all x €
{—m, m]. The relation

S(x) = f(x)
holds at all points x € [—m, ], where f(x) is continuous, If x = a is a point of

discontinuity of f, then

- +
Sa) = fla );-f(a ),

where f(a~) and f(a™) denote the left- and right-hand limits, respectively. With this
understanding, we obtain the Fourier expansion:

o0
- ag . .
7 flx) = 7 + jgil(aj cos(jx) + b;sin(jx)).

A brief outline of the derivation of formulas (5) and (6} is given at the end of the
section.
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Example 5.13. Show that the function f(x) = x/2 for - < x < 7, extended periodi-
caliy by the equation f(x + 2r) = f(x), has the Fourier series representation

—1)it! i
f()-—z( b Sln(]x)—sm(x)_gm_(zx_) M._
j=1
Using Euler’s formulas and integration by parts, we get
x xsin(jx) cos(fx)im
j;” cos(jx)dx = 2 + 212 |on = 0

forj=1,2,3,...,and

1 x| . ~xcos(jx) sin(jx) T (—1)i+1
T _[,, 7 Sintyjx)dx 2 + 2nj? |x j
for j = 1,2,3,.... The coefficient ap is obtained by a separate calculation:

1 ™ x d x2 =
“=z f 3=l
These calculations show that all the coefficients of the cosine functions are ze:ro.The
graph of f(x) and the partial sums

=0.

S2(x) = sin(x) — S“'(;x),

sin(2x) + sin(3x)

S$3(x) = sin(x) —

2 3
and
. sin(2x in(3 sin(4
S4(x) = sin{x) — (2 ) + sm(3 %) - - ;x)
are shown in Figure 5.19. =

We now state some general properties of Fourier series. The proofs are left a-
exercises,

Theorem 5.6 (Cosine Series). Suppose that f(x) is an even function; that i is, sup-
pose f(-—x) = f(x) holds for all x. If f(x) has period 2 and if f(x) and f'(x) are
piecewise continuous, then the Fourier series for f(x) involves only cosine terms:

(8) flx )——+Za,cos(;x)

j=1

where

9 aj = %[Q f(x)cos(jx)dx for j=0, 1,
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hd y= S4(x)

15 ¥ =850 v =f(x)

~1.5

Figure 5.19 The function f(x) = x/2 over [~n, x] and its trigono-
metric approximation Sz (x), S3(x) and Sz(x).

Theorem 5.7 (Sine Series). Suppose that f(x) is an odd function; that is, fl—x) =
— f(x) holds for all x. If f(x) has period 27 and if f(x) and f’(x) are piecewise
continuous, then the Fourier series for f(x) involves only the sine terms:

(10) fx) =Y bjsin(jx),
i=1
where
(1 b, = %f fx)sin(jx)dx for j =1, 2,
0

Example 5.14. Show that the function f(x) = {x| for —r < x < m, extended periodi-
cally by the equation f(x 4+ 2) = f(x), has the Fourier cosine representation

T cos{(2j — 1)x)
fx) = 3T Z

(2j — 1y
@ {3x) (5x)
T 4 cos{3x cos(Sx
=5~—(c0()+ 32 52 +)

The function f(x) is an even function, so we can use Theorem 5.6 and need only to
compute the coefficients {a;}:

2 7 2x sin(j 2cos(jx) |
a; == [ xcos(jx)dx = 25MUX) | 2c08(jx)
I T Jo T

_ 2c08(jm) -2 _ 2((—=1)/ = 1)
n w2 B mj?

for j=1,23, ...
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Since ({(—1)Y — 1) = 0 when J is even, the cosine series will involve only the odd terms.
The odd coefficients have the pattern
-4 —4 -4
a) = —, a3 = as = —,
| 3 5= 252

P 73
The coefficient ag is obtained by the separate calculation
ag=zfnxdx=f-2—in=zr.
T Jo 7 lo
Therefore, we have found the desired coefficients in (12). =
Proof of Euler’s Formulas for Theorem 5.5.  The following heuristic argument as-

sumes the existence and convergence of the Fourier series representation. To deter-
mine ag, we can integrate both sides of (7) and get

f fx)dx -_-] (%‘1 + Y (ajcos(jx) + by sin(jx))) dx
—-m —n j=l

(13) T apg > ” >
= —dx+ Zaj[ cos(jx)dx-{—ijf sin(jx) dx
j=l - j=!

—x —=
=may+0+0.

Justification for switching the order of integration and summation requires a detailed
treatment of uniform convergence and can be found in advanced texts. Hence we have
shown that

1 n
(14) ag = — fx)ydx.
T J—x
To determine a,,, we let m > 0 be a fixed integer, multiply both sides of (7) by
cos(mx}, and integrate both sides to obtain

(15)

k4 x > T
f(x)cos(mx)dx = % f cos(mx)dx + Zaj / cos(jx)cos(mx)d.
—r - j=l1 -

00 b4
+ ij f sin(jx) cos(mx) dx.
j=1 -

Equation (15) can be simplified by using the orthogonal properties of the trigonometric
functions, which are now stated. The value of the first term on the right- hand side
of (15} is

. .
(16) % cos(mx) dx = o sinmx) i
2m —-x

-

=0.
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The Yalue of the term involving cos(jx) cos(mx) is found by using the trigonometric
identity

an cos(jx) cos(mx) = % cos((j +m)x) + %cos((j —m)x).

When j # m, then (17) is used to get

r
. 1 i
aj-f cos(jx)cos(mx)dx = —ﬂjf cos((j +m)x)dx
—x 2 _
(18) "
l b g
+ zajf cos({(j —m)x)dx =04+0=0.

When j = m, the value of the integral is

(19) amf cos(jx)cos(mx) dx = a,x.

-

T_he value of the term on the right side of (15) involving sin{ jx) cos(mx) is found
by using the trigonometric identity

C . 1
(20 sin(jx) cos(mx) = 3 sin((j + m)x) + % sin((j — m)x).

For all values of j and m in (20), we obtain

bjf sin(jx) cos(mx)dx = lbjf sin((f + m)x) dx
—r 2 _
Q) L
+§bjf sin{(j —m)x)dx =0+0=0.

b4

'tf:;refore, using the results of (16), (18), (19}, and {21) in equation (15), we conclude

ki 4

22) Tdy, = f{x)cos(mx)dx, form=1, 2, ....

-
Therefore, Euler's formula (5) is established. Euler's formula (6) 1s proved
simfiarly. .

Trigonometric Polynomial Approximation
Definition 5.4 (Trigonometric Polynomial). A series of the form

M
@3) Ty (x) = 529 + ;(a,- cos(jx) + by sin(jx))

i called a trigonometric polynomial of order M. A
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Theorem 5.8 (Discrete Fourier Series). Suppose that {(x}, yj)] g are N+1 pomis
where y; = f(x;), and the abscissas are equally spaced:

2jm
24 — 7
(24) Xj T+

If f(x) is periodic with period 27 and 2M < N, then there exists a trigonometric
polynomial T37(x) of the form (23) that minimizes the quantity

for j=0,1, ..., N.

(25) :E(f(xk) — Ta (xe))?.
=l
The coefficients a; and b; of this polynomial are computed with the formulas
2 N
(26) aj = F;f(xk)cos(jxk) for j=0,1,..., M,
and
2 N
2N bj = WZ: (xo)sin(xg) for j=1,2, ..., M.

Although formulas (26) and (27) are defined with the least-squares procedure, they
can also be viewed as numerical approximations to the integrals in Euler’s formulas (5)
and (6). Euler’s formulas give the coefficients for the Fourier series of a continuous
function, whereas formulas (26) and (27) give the trigonometric polynomial coeffi-
cients for curve fitting to data points. The next example uses data points generated by
the function f(x) = x/2 at discrete points, When more points are used, the trigono-
metric pelynomial coefficients get closer to the Fourier series coefficients.

Example 5.15. Use the 12 equally spaced points x; = —m + kx /6, fork =1,2,..., 12,
and find the tngonometric polynomial approximation for M = 5 to the 12 data points
{(xk, f (xk))}k_l, where f(x) = x/2. Also compare the results when 60 and 360 points
are used and with the first five terms of the Fourier series expansion for f(x) that is given
in Example 5.13.

Since the periodic extension is assumed, at a point of discontinuity, the function value
f () must be computed using the formula

fa™)y+ flah) _wf2—m/2
2 - 2
The function f(x) is an odd function; hence the coefficients for the cosine terms are all
zero (i.e., a; = 0 for ail j). The trigonometric polynomial of degree M = 5 involves only
the sine terms, and when formula (27) is used with (28), we get
Ts (x) = 0.9770486 sin(x) — 0.4534498 sin(2x) + 0.26179938 sin(3x)
—0.1511499 sin(4x) + 0.0701489 sin(5x).

=0.

(28} Sy =

(29}
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15} y=Tsx) °
10}

05+

-0.5

-10F

° -1.5F

Figure 5.20 The trigonometric polynomial T5(x) of degree
M =35, based on 12 data points that lie on the line y = x/2.

Table 5.9 Comparison of Trigonometric Polynomial Coefficients for
Approximations to f{x) = x/2 over [—-x, &}

Trigonometric polynomial coefficients Fourier seies
12 points 60 points 360 points coefficients
by 0.97704862 0.99908598 0.99997462 1.0
by | —0.45344984 —0.49817096 —0.49994923 0.5
b3 0.26179939 0.33058726 0.33325718 0.33333333
by | —0.15114995 —0.24633386 —0.24989845" -0.25
bs 0.07014893 0.19540972 0.19987306 0.2

The following program constructs matrices A and B that contain the coefficients a;
and b}, respectively, of the trigonometric polynomial (23) of order M.

The graph of T5(x) is shown in Figure 5.20.
The coefficients of the fifth-degree trigonometric polynomial change slightly when the
number of interpolation points increases to 60 and 360. As the number of points increases,
they get closer to the coefficients of the Fourier series expansion of f(x). The results are

compared in Table 5.9.
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Program 5.4 (Trigonometric Polynomials). To construct the trigonometric poly-
nomial of order M of the form

Px) == +Z(a, c0s(jx) + b; sin(jx))
j=1

based on the N equally spaced values x; = —x +2mk/N, fork=1,2,..., N. The
construction is possible provided that 2M + 1 < N.

function [4,Bl=tpcoeff(X,Y,M)

%Input - X is a vector of equally spaced abscissas in [-pi,pil
% - Y is a vector of ordinates

% - M is the degree of the trigonometric polynomial
%0utput - A is a vector containing the coefficients of cos{(jx>
% - B is a vector containing the coefficients of sin(jx)

N=length(X)-1;
max1l=fix{((N-1)/2);
if M>maxl
M=max1;
end
A=zeros(1,M+1);
B=zeros(1,M+1);
Yends={Y{1)+Y(N+1))/2;
Y(1)=Yends;
Y(N+1)=Yends;
A(1)=sum(Y);
for j=1:M
A(j+1)=cos(j*X)*Y’;
B(j+1)=sin{(j*X)*Y’;
end
A=2#A/N;
B=24B/N;
A(1)=A01)/2;

The following short program will evaluate the trigonometric polynomial Plx) of
order M from Program 5.4 at a particular value of x.

function z=tp(4,B,x,M)

z=A{1);
for j= 1:M

z=z+A (j+1)*cos (j*x)+B(j+1) *sin(j*x);
end
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For example, the following sequence of commands in the MATLAB command
window will produce a graph analogous to Figure 5.20.
>>x=-pi:.01:pi;
>>y=tp(4,B,x,M};
>>plot(x,y,X%,Y,’0")

Exercises for Fourier Series and Trigonometric Polynomials

In Exercises 1 through 5, find the Fourier series representation of the given function,
Hint. Follow the procedures outlined in Examples 5.13 and 5.14. Graph each function
and the partial sums S7(x), S3(x), and S4{x) of its Fourier series representation on the
same coordinate system (see Figure 5.19).

L f(x) = [

-1 for —-m<x<0 +x for -m<x<0

F—x for0sx<m

2, f(x)-{

1 for0O<x<m

-1 for%<x<1r
4. f(x)y= 1 forle<x<§
~1 for —r <x < F

0 for —m<x<0

3 fx)= [x

for0<x<nm

—r —x for -—Jrsx<_2—”
S fx)= x for i<x<-’21
n—X for <X <
6. In Exercise 1, set x = :r/2 and show that

A
-1 LI

4 3°5
7. In Exercise 2, set x = 0 and show that
LATR NS +5 Ly
8 32" 52 )

8. Find the Fourier cosine series representation for the periodic function whose defini-
tion on one period is F{x) = x2/4 where -7 < x < 7.

9. Suppose that f(x) is a periodic function with period 2P; that is, f(x +2P) = f(x)
for all x. By making an appropriate substitution, show that Euler’s formulas (5) and
(6) for f are

1 P
ag = —/ flx)ydx

8; = +f f(x)cos(iF—) dx for j=1,2, ...

b= mf f(x)sm(j—P—) for j=1,2,....
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In Exercises 10 through 12, use the results of Exercise 9 to find the Fourier series rep
resentation of the given function. Graph f(x), S4(x), and Ss(x) on the same coordinat

system.
—1 for -3 <x<-—I Table 5,10  Data for Problem 5
0 for -2<x<0 _
10. f(x)= {1 for 0<x <2 11. f(x)=4¢Ix| for ~-l<x <1 Time, p.m. Degrees Time, a.m. Degrees
- I forl<x<3
1 66 1 58
12. f(x)=—x2+9 for ~3<x <3 2 66 2 58
3 65 3 58
13. Prove Theorem 5.6. 2 4 " P
14. Prove Theorem 5.7. 5 63 5 57
6 63 6 57
7 62 7 57
. 8 61 8
Algorithms and Programs 9 s . 2(8,
10 60 10 64
1. Use Program 5.4 with N = 12 points and follow Example 5.15 to find the trigono 11 59 11 67
metric polynomial of degree M = 5 for the equally spaced points {(x;, f (xk))}}‘il. Midnight 58 Noon 68
where f{x) is the function in (a) Exercise 1, (b) Exercise 2, (¢) Exercise 3, and
(d) Exercise 4. In each case, produce a graph of f(x), T5(x}, and {(x, f(xk))]}(il
on the sarme coordinate system.
2. Use Program 5.4 to find the coefficients of T5(x) in Example 5.15 when first 60 and
then 360 equally spaced points are used.
3. Modify Program 5.4 so that it will find the trigonometric polynomial of period 2P =
b — a when the data points are equally spaced over the interval [a, b].
4. Use Program 5.4 to find Ts(x) for (a) f(x) in Exercise 10, using 12 equally spaced Table 5.11  Data for Problem 6
data points, and (b) £ (x) in Exercise 12, using 60 equally spaced data points. In eacl
case, graph Ts(x) and the data points on the same coordinate system. Calendar date | Average degrees
5. The temperature cycle (Fahrenheit) in a suburb of Los Angeles on November 8 i Jan. 1 -14
given in Table 5.10. There are 24 data points. Jan. 29 -9
(a) Find the trigonometric polynomial T7(x). ) f;:: 222 1§
(b) Graph 7T7(x) and the 24 data points on the same coordinate system. Apr.b23 35
(¢) Repeat parts (a) and (b) using temperatures from your locale. May 21 52
June 18 62
6. The yearly temperature cycle (Fahrenheit) for Fairbanks, Alaska, is given in Ta July 16 63
ble 5.11. There are 13 equally spaced data points, which correspond to a measuremen Aug. 13 58
every 28 days. Sept. 10 50
(a) Find the trigonometric polynomial Tg(x). N »
(b} Graph Tg(x) and the 13 data points on the same coordinate system. Dec. 3 -5
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