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xi

A great discovery solves a great problem but there is a grain of discovery in the
solution of any problem. Your problem may be modest; but if it challenges your
curiosity and brings into play your inventive faculties, and if you solve it by your
own means, you may experience the tension and enjoy the triumph of discovery.

G E O R G E P O L Y A

The art of teaching, Mark Van Doren said, is the art of assisting discovery. I have tried to
write a book that assists students in discovering calculus—both for its practical power and
its surprising beauty. In this edition, as in the first six editions, I aim to convey to the stu-
dent a sense of the utility of calculus and develop technical competence, but I also strive
to give some appreciation for the intrinsic beauty of the subject. Newton undoubtedly
experienced a sense of triumph when he made his great discoveries. I want students to
share some of that excitement.

The emphasis is on understanding concepts. I think that nearly everybody agrees that
this should be the primary goal of calculus instruction. In fact, the impetus for the current
calculus reform movement came from the Tulane Conference in 1986, which formulated
as their first recommendation: 

Focus on conceptual understanding.

I have tried to implement this goal through the Rule of Three: “Topics should be presented
geometrically, numerically, and algebraically.” Visualization, numerical and graphical exper-
imentation, and other approaches have changed how we teach conceptual reasoning in fun-
damental ways. The Rule of Three has been expanded to become the Rule of Four by
emphasizing the verbal, or descriptive, point of view as well.

In writing the seventh edition my premise has been that it is possible to achieve con-
ceptual understanding and still retain the best traditions of traditional calculus. The book
contains elements of reform, but within the context of a traditional curriculum.

I have written several other calculus textbooks that might be preferable for some instruc-
tors. Most of them also come in single variable and multivariable versions.

■ Calculus, Seventh Edition, Hybrid Version, is similar to the present textbook in 
content and coverage except that all end-of-section exercises are available only in
Enhanced WebAssign. The printed text includes all end-of-chapter review material.

■ Calculus: Early Transcendentals, Seventh Edition, is similar to the present textbook
except that the exponential, logarithmic, and inverse trigonometric functions are cov-
ered in the first semester.

Alternative Versions

Preface
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■ Calculus: Early Transcendentals, Seventh Edition, Hybrid Version, is similar to Cal-
culus: Early Transcendentals, Seventh Edition, in content and coverage except that all
end-of-section exercises are available only in Enhanced WebAssign. The printed text
includes all end-of-chapter review material.

■ Essential Calculus is a much briefer book (800 pages), though it contains almost all
of the topics in Calculus, Seventh Edition. The relative brevity is achieved through
briefer exposition of some topics and putting some features on the website.

■ Essential Calculus: Early Transcendentals resembles Essential Calculus, but the
exponential, logarithmic, and inverse trigonometric functions are covered in Chapter 3.

■ Calculus: Concepts and Contexts, Fourth Edition, emphasizes conceptual understand-
ing even more strongly than this book. The coverage of topics is not encyclopedic 
and the material on transcendental functions and on parametric equations is woven
throughout the book instead of being treated in separate chapters. 

■ Calculus: Early Vectors introduces vectors and vector functions in the first semester
and integrates them throughout the book. It is suitable for students taking Engineering
and Physics courses concurrently with calculus.

■ Brief Applied Calculus is intended for students in business, the social sciences, and
the life sciences.

The changes have resulted from talking with my colleagues and students at the University
of Toronto and from reading journals, as well as suggestions from users and reviewers.
Here are some of the many improvements that I’ve incorporated into this edition:

■ Some material has been rewritten for greater clarity or for better motivation. See, for
instance, the introduction to maximum and minimum values on page 198, the intro-
duction to series on page 727, and the motivation for the cross product on page 832.

■ New examples have been added (see Example 4 on page 1045 for instance). And the
solutions to some of the existing examples have been amplified. A case in point: I
added details to the solution of Example 1.6.11 because when I taught Section 1.6
from the sixth edition I realized that students need more guidance when setting up
inequalities for the Squeeze Theorem.

■ Chapter 1, Functions and Limits, consists of most of the material from Chapters 1 
and 2 of the sixth edition. The section on Graphing Calculators and Computers is 
now Appendix G.

■ The art program has been revamped: New figures have been incorporated and a sub-
stantial percentage of the existing figures have been redrawn.

■ The data in examples and exercises have been updated to be more timely.

■ Three new projects have been added: The Gini Index (page 351) explores how to
measure income distribution among inhabitants of a given country and is a nice appli-
cation of areas between curves. (I thank Klaus Volpert for suggesting this project.) 
Families of Implicit Curves (page 163) investigates the changing shapes of implicitly
defined curves as parameters in a family are varied. Families of Polar Curves (page
688) exhibits the fascinating shapes of polar curves and how they evolve within a
family.

What’s New in the Seventh Edition?
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■ The section on the surface area of the graph of a function of two variables has been
restored as Section 15.6 for the convenience of instructors who like to teach it after
double integrals, though the full treatment of surface area remains in Chapter 16. 

■ I continue to seek out examples of how calculus applies to so many aspects of the 
real world. On page 933 you will see beautiful images of the earth’s magnetic field
strength and its second vertical derivative as calculated from Laplace’s equation. I
thank Roger Watson for bringing to my attention how this is used in geophysics and
mineral exploration.

■ More than 25% of the exercises are new. Here are some of my favorites: 2.2.13–14,
2.4.56, 2.5.67, 2.6.53–56, 2.7.22, 3.3.70, 3.4.43, 4.2.51–53, 5.4.30, 6.3.58, 11.2.49–50,
11.10.71–72, 12.1.44, 12.4.43–44, and Problems 4, 5, and 8 on pages 861–62.

■ The media and technology to support the text have been enhanced to give professors
greater control over their course, to provide extra help to deal with the varying levels
of student preparedness for the calculus course, and to improve support for conceptual
understanding. New Enhanced WebAssign features including a customizable Cengage
YouBook, Just in Time review, Show Your Work, Answer Evaluator, Personalized
Study Plan, Master Its, solution videos, lecture video clips (with associated questions),
and Visualizing Calculus (TEC animations with associated questions) have been
developed to facilitate improved student learning and flexible classroom teaching.

■ Tools for Enriching Calculus (TEC) has been completely redesigned and is accessible
in Enhanced WebAssign, CourseMate, and PowerLecture. Selected Visuals and 
Modules are available at www.stewartcalculus.com.

CONCEPTUAL EXERCISES The most important way to foster conceptual understanding is through the problems that
we assign. To that end I have devised various types of problems. Some exercise sets begin
with requests to explain the meanings of the basic concepts of the section. (See, for
instance, the first few exercises in Sections 1.5, 1.8, 11.2, 14.2, and 14.3.) Similarly, all the
review sections begin with a Concept Check and a True-False Quiz. Other exercises test
conceptual understanding through graphs or tables (see Exercises 2.1.17, 2.2.33–38,
2.2.41–44, 9.1.11–13, 10.1.24–27, 11.10.2, 13.2.1–2, 13.3.33–39, 14.1.1–2, 14.1.32–42,
14.3.3–10, 14.6.1–2, 14.7.3–4, 15.1.5–10, 16.1.11–18, 16.2.17–18, and 16.3.1–2).

Another type of exercise uses verbal description to test conceptual understanding (see
Exercises 1.8.10, 2.2.56, 3.3.51–52, and 7.8.67). I particularly value problems that com-
bine and compare graphical, numerical, and algebraic approaches (see Exercises 3.4.31–
32, 2.7.25, and 9.4.2).

GRADED EXERCISE SETS Each exercise set is carefully graded, progressing from basic conceptual exercises and skill-
development problems to more challenging problems involving applications and proofs.

REAL-WORLD DATA My assistants and I spent a great deal of time looking in libraries, contacting companies and
government agencies, and searching the Internet for interesting real-world data to intro-
duce, motivate, and illustrate the concepts of calculus. As a result, many of the examples
and exercises deal with functions defined by such numerical data or graphs. See, for
instance, Figure 1 in Section 1.1 (seismograms from the Northridge earthquake), Exercise

Technology Enhancements

Features
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2.2.34 (percentage of the population under age 18), Exercise 4.1.16 (velocity of the space
shuttle Endeavour), and Figure 4 in Section 4.4 (San Francisco power consumption).
Functions of two variables are illustrated by a table of values of the wind-chill index as a
function of air temperature and wind speed (Example 2 in Section 14.1). Partial derivatives
are introduced in Section 14.3 by examining a column in a table of values of the heat index
(perceived air temperature) as a function of the actual temperature and the relative humid-
ity. This example is pursued further in connection with linear approximations (Example 3
in Section 14.4). Directional derivatives are introduced in Section 14.6 by using a temper-
ature contour map to estimate the rate of change of temperature at Reno in the direction of
Las Vegas. Double integrals are used to estimate the average snowfall in Colorado on
December 20–21, 2006 (Example 4 in Section 15.1). Vector fields are introduced in Sec-
tion 16.1 by depictions of actual velocity vector fields showing San Francisco Bay wind
patterns.

PROJECTS One way of involving students and making them active learners is to have them work (per-
haps in groups) on extended projects that give a feeling of substantial accomplishment
when completed. I have included four kinds of projects: Applied Projects involve applica-
tions that are designed to appeal to the imagination of students. The project after Section
9.3 asks whether a ball thrown upward takes longer to reach its maximum height or to fall
back to its original height. (The answer might surprise you.) The project after Section 14.8
uses Lagrange multipliers to determine the masses of the three stages of a rocket so as to
minimize the total mass while enabling the rocket to reach a desired velocity. Laboratory
Projects involve technology; the one following Section 10.2 shows how to use Bézier
curves to design shapes that represent letters for a laser printer. Writing Projects ask stu-
dents to compare present-day methods with those of the founders of calculus—Fermat’s
method for finding tangents, for instance. Suggested references are supplied. Discovery
Projects anticipate results to be discussed later or encourage discovery through pattern
recognition (see the one following Section 7.6). Others explore aspects of geometry: tetra-
hedra (after Section 12.4), hyperspheres (after Section 15.7), and intersections of three
cylinders (after Section 15.8). Additional projects can be found in the Instructor’s Guide
(see, for instance, Group Exercise 4.1: Position from Samples).

PROBLEM SOLVING Students usually have difficulties with problems for which there is no single well-defined
procedure for obtaining the answer. I think nobody has improved very much on George
Polya’s four-stage problem-solving strategy and, accordingly, I have included a version of
his problem-solving principles following Chapter 1. They are applied, both explicitly and
implicitly, throughout the book. After the other chapters I have placed sections called
Problems Plus, which feature examples of how to tackle challenging calculus problems. In
selecting the varied problems for these sections I kept in mind the following advice from
David Hilbert: “A mathematical problem should be difficult in order to entice us, yet not
inaccessible lest it mock our efforts.” When I put these challenging problems on assign-
ments and tests I grade them in a different way. Here I reward a student significantly for
ideas toward a solution and for recognizing which problem-solving principles are relevant.

There are two possible ways of treating the exponential and logarithmic functions and each
method has its passionate advocates. Because one often finds advocates of both approaches
teaching the same course, I include full treatments of both methods. In Sections 6.2, 6.3,
and 6.4 the exponential function is defined first, followed by the logarithmic function as
its inverse. (Students have seen these functions introduced this way since high school.) In
the alternative approach, presented in Sections 6.2*, 6.3*, and 6.4*, the logarithm is
defined as an integral and the exponential function is its inverse. This latter method is, of
course, less intuitive but more elegant. You can use whichever treatment you prefer.

If the first approach is taken, then much of Chapter 6 can be covered before Chapters 4
and 5, if desired. To accommodate this choice of presentation there are specially identified

DUAL TREATMENT OF EXPONENTIAL
AND LOGARITHMIC FUNCTIONS
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problems involving integrals of exponential and logarithmic functions at the end of the
appropriate sections of Chapters 4 and 5. This order of presentation allows a faster-paced
course to teach the transcendental functions and the definite integral in the first semester
of the course.

For instructors who would like to go even further in this direction I have prepared an
alternate edition of this book, called Calculus, Early Transcendentals, Seventh Edition, in
which the exponential and logarithmic functions are introduced in the first chapter. Their
limits and derivatives are found in the second and third chapters at the same time as poly-
nomials and the other elementary functions.

TEC is a companion to the text and is intended to enrich and complement its contents. (It
is now accessible in Enhanced WebAssign, CourseMate, and PowerLecture. Selected
Visuals and Modules are available at www.stewartcalculus.com.) Developed by Harvey
Keynes, Dan Clegg, Hubert Hohn, and myself, TEC uses a discovery and exploratory
approach. In sections of the book where technology is particularly appropriate, marginal
icons direct students to TEC modules that provide a laboratory environment in which they
can explore the topic in different ways and at different levels. Visuals are animations of
figures in text; Modules are more elaborate activities and include exercises. Instruc-
tors can choose to become involved at several different levels, ranging from simply
encouraging students to use the Visuals and Modules for independent exploration, to
assigning specific exercises from those included with each Module, or to creating addi-
tional exercises, labs, and projects that make use of the Visuals and Modules.

HOMEWORK HINTS Homework Hints presented in the form of questions try to imitate an effective teaching
assistant by functioning as a silent tutor. Hints for representative exercises (usually odd-
numbered) are included in every section of the text, indicated by printing the exercise 
number in red. They are constructed so as not to reveal any more of the actual solution than
is minimally necessary to make further progress, and are available to students at 
stewartcalculus.com and in CourseMate and Enhanced WebAssign.

ENHANCED WE BAS S I G N Technology is having an impact on the way homework is assigned to students, particularly
in large classes. The use of online homework is growing and its appeal depends on ease of
use, grading precision, and reliability. With the seventh edition we have been working with
the calculus community and WebAssign to develop a more robust online homework sys-
tem. Up to 70% of the exercises in each section are assignable as online homework, includ-
ing free response, multiple choice, and multi-part formats.

The system also includes Active Examples, in which students are guided in step-by-step
tutorials through text examples, with links to the textbook and to video solutions. New
enhancements to the system include a customizable eBook, a Show Your Work feature, 
Just in Time review of precalculus prerequisites, an improved Assignment Editor, and an
Answer Evaluator that accepts more mathematically equivalent answers and allows for
homework grading in much the same way that an instructor grades.

www.stewartcalculus.com This site includes the following.
■ Homework Hints
■ Algebra Review
■ Lies My Calculator and Computer Told Me
■ History of Mathematics, with links to the better historical websites
■ Additional Topics (complete with exercise sets): Fourier Series, Formulas for the

Remainder Term in Taylor Series, Rotation of Axes
■ Archived Problems (Drill exercises that appeared in previous editions, together with

their solutions)
■ Challenge Problems (some from the Problems Plus sections from prior editions)

TOOLS FOR 
ENRICHING™ CALCULUS
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■ Links, for particular topics, to outside web resources

■ Selected Tools for Enriching Calculus (TEC) Modules and Visuals

Diagnostic Tests The book begins with four diagnostic tests, in Basic Algebra, Analytic Geometry, Func-
tions, and Trigonometry.

A Preview of Calculus This is an overview of the subject and includes a list of questions to motivate the study of
calculus.

1  Functions and Limits From the beginning, multiple representations of functions are stressed: verbal, numerical,
visual, and algebraic. A discussion of mathematical models leads to a review of the stan-
dard functions from these four points of view. The material on limits is motivated by a
prior discussion of the tangent and velocity problems. Limits are treated from descriptive,
graphical, numerical, and algebraic points of view. Section 1.7, on the precise epsilon-delta
definition of a limit, is an optional section.

2   Derivatives The material on derivatives is covered in two sections in order to give students more time
to get used to the idea of a derivative as a function. The examples and exercises explore
the meanings of derivatives in various contexts. Higher derivatives are introduced in Sec-
tion 2.2.

3  Applications of Differentiation The basic facts concerning extreme values and shapes of curves are deduced from the Mean
Value Theorem. Graphing with technology emphasizes the interaction between calculus and
calculators and the analysis of families of curves. Some substantial optimization problems
are provided, including an explanation of why you need to raise your head 42° to see the
top of a rainbow.

4  Integrals The area problem and the distance problem serve to motivate the definite integral, with
sigma notation introduced as needed. (Full coverage of sigma notation is provided in
Appendix E.) Emphasis is placed on explaining the meanings of integrals in various con-
texts and on estimating their values from graphs and tables.

5  Applications of Integration Here I present the applications of integration—area, volume, work, average value—that
can reasonably be done without specialized techniques of integration. General methods are
emphasized. The goal is for students to be able to divide a quantity into small pieces, esti-
mate with Riemann sums, and recognize the limit as an integral.

As discussed more fully on page xiv, only one of the two treatments of these functions
need be covered. Exponential growth and decay are covered in this chapter.

7  Techniques of Integration All the standard methods are covered but, of course, the real challenge is to be able to 
recognize which technique is best used in a given situation. Accordingly, in Section 7.5, I
present a strategy for integration. The use of computer algebra systems is discussed in 
Section 7.6.

Here are the applications of integration—arc length and surface area—for which it is use-
ful to have available all the techniques of integration, as well as applications to biology,
economics, and physics (hydrostatic force and centers of mass). I have also included a sec-
tion on probability. There are more applications here than can realistically be covered in a
given course. Instructors should select applications suitable for their students and for
which they themselves have enthusiasm.

Content

6  Inverse Functions:
Exponential, Logarithmic, and 

Inverse Trigonometric Functions

8  Further Applications 
of Integration
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9  Differential Equations Modeling is the theme that unifies this introductory treatment of differential equations.
Direction fields and Euler’s method are studied before separable and linear equations are
solved explicitly, so that qualitative, numerical, and analytic approaches are given equal
consideration. These methods are applied to the exponential, logistic, and other models for
population growth. The first four or five sections of this chapter serve as a good introduc-
tion to first-order differential equations. An optional final section uses predator-prey mod-
els to illustrate systems of differential equations.

This chapter introduces parametric and polar curves and applies the methods of calculus
to them. Parametric curves are well suited to laboratory projects; the three presented here
involve families of curves and Bézier curves. A brief treatment of conic sections in polar
coordinates prepares the way for Kepler’s Laws in Chapter 13.

11  Infinite Sequences and Series The convergence tests have intuitive justifications (see page 738) as well as formal proofs.
Numerical estimates of sums of series are based on which test was used to prove conver-
gence. The emphasis is on Taylor series and polynomials and their applications to physics.
Error estimates include those from graphing devices.

The material on three-dimensional analytic geometry and vectors is divided into two chap-
ters. Chapter 12 deals with vectors, the dot and cross products, lines, planes, and surfaces.

13  Vector Functions This chapter covers vector-valued functions, their derivatives and integrals, the length and
curvature of space curves, and velocity and acceleration along space curves, culminating
in Kepler’s laws.

14  Partial Derivatives Functions of two or more variables are studied from verbal, numerical, visual, and alge-
braic points of view. In particular, I introduce partial derivatives by looking at a specific
column in a table of values of the heat index (perceived air temperature) as a function of
the actual temperature and the relative humidity. 

15  Multiple Integrals Contour maps and the Midpoint Rule are used to estimate the average snowfall and average
temperature in given regions. Double and triple integrals are used to compute probabilities,
surface areas, and (in projects) volumes of hyperspheres and volumes of intersections of
three cylinders. Cylindrical and spherical coordinates are introduced in the context of eval-
uating triple integrals.

16  Vector Calculus Vector fields are introduced through pictures of velocity fields showing San Francisco Bay
wind patterns. The similarities among the Fundamental Theorem for line integrals, Green’s
Theorem, Stokes’ Theorem, and the Divergence Theorem are emphasized.

Since first-order differential equations are covered in Chapter 9, this final chapter deals
with second-order linear differential equations, their application to vibrating springs and
electric circuits, and series solutions.π

Calculus, Seventh Edition, is supported by a complete set of ancillaries developed under
my direction. Each piece has been designed to enhance student understanding and to facil-
itate creative instruction. With this edition, new media and technologies have been devel-
oped that help students to visualize calculus and instructors to customize content to better
align with the way they teach their course. The tables on pages xxi–xxii describe each of
these ancillaries.

10  Parametric Equations 
and Polar Coordinates

12  Vectors and 
The Geometry of Space

17  Second-Order 
Differential Equations

Ancillaries
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The preparation of this and previous editions has involved much time spent reading the
reasoned (but sometimes contradictory) advice from a large number of astute reviewers. 
I greatly appreciate the time they spent to understand my motivation for the approach taken.
I have learned something from each of them.
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Ancillaries for Instructors

PowerLecture
ISBN 0-8400-5414-9

This comprehensive DVD contains all art from the text in both
jpeg and PowerPoint formats, key equations and tables from the
text, complete pre-built PowerPoint lectures, an electronic ver-
sion of the Instructor’s Guide, Solution Builder, ExamView test-
ing software, Tools for Enriching Calculus, video instruction,
and JoinIn on TurningPoint clicker content.

Instructor’s Guide
by Douglas Shaw
ISBN 0-8400-5407-6

Each section of the text is discussed from several viewpoints.
The Instructor’s Guide contains suggested time to allot, points
to stress, text discussion topics, core materials for lecture, work-
shop/discussion suggestions, group work exercises in a form
suitable for handout, and suggested homework assignments. An
electronic version of the Instructor’s Guide is available on the
PowerLecture DVD.

Complete Solutions Manual

Single Variable 
By Daniel Anderson, Jeffery A. Cole, and Daniel Drucker
ISBN 0-8400-5302-9

Multivariable
By Dan Clegg and Barbara Frank
ISBN 0-8400-4947-1

Includes worked-out solutions to all exercises in the text.

Solution Builder
www.cengage.com /solutionbuilder

This online instructor database offers complete worked out solu-
tions to all exercises in the text. Solution Builder allows you to
create customized, secure solutions printouts (in PDF format)
matched exactly to the problems you assign in class.

Printed Test Bank
By William Steven Harmon
ISBN 0-8400-5408-4

Contains text-specific multiple-choice and free response test
items.

ExamView Testing
Create, deliver, and customize tests in print and online formats
with ExamView, an easy-to-use assessment and tutorial software.
ExamView contains hundreds of multiple-choice and free
response test items. ExamView testing is available on the Power-
Lecture DVD.

Ancillaries for Instructors and Students

Stewart Website
www.stewartcalculus.com

Contents: Homework Hints ■ Algebra Review ■ Additional
Topics ■ Drill exercises ■ Challenge Problems ■ Web Links ■

History of Mathematics ■ Tools for Enriching Calculus (TEC) 

Tools for Enriching™ Calculus
By James Stewart, Harvey Keynes, Dan Clegg, and 
developer Hu Hohn

Tools for Enriching Calculus (TEC) functions as both a power-
ful tool for instructors, as well as a tutorial environment in
which students can explore and review selected topics. The
Flash simulation modules in TEC include instructions, writ-
ten and audio explanations of the concepts, and exercises. 
TEC is accessible in CourseMate, WebAssign, and Power-
Lecture. Selected Visuals and Modules are available at 
www.stewartcalculus.com.

Enhanced WebAssign
www.webassign.net

WebAssign’s homework delivery system lets instructors deliver,
collect, grade, and record assignments via the web. Enhanced
WebAssign for Stewart’s Calculus now includes opportunities
for students to review prerequisite skills and content both at the
start of the course and at the beginning of each section. In addi-
tion, for selected problems, students can get extra help in the
form of “enhanced feedback” (rejoinders) and video solutions.
Other key features include: thousands of problems from Stew-
art’s Calculus, a customizable Cengage YouBook, Personal
Study Plans, Show Your Work, Just in Time Review, Answer
Evaluator, Visualizing Calculus animations and modules,
quizzes, lecture videos (with associated questions), and more!

Cengage Customizable YouBook
YouBook is a Flash-based eBook that is interactive and cus-
tomizable! Containing all the content from Stewart’s Calculus,
YouBook features a text edit tool that allows instructors to mod-
ify the textbook narrative as needed. With YouBook, instructors
can quickly re-order entire sections and chapters or hide any
content they don’t teach to create an eBook that perfectly
matches their syllabus. Instructors can further customize the
text by adding instructor-created or YouTube video links. 
Additional media assets include: animated figures, video clips,
highlighting, notes, and more! YouBook is available in
Enhanced WebAssign.

TEC

■ Electronic items ■ Printed items    (Table continues on page xxii.)
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CourseMate
www.cengagebrain.com

CourseMate is a perfect self-study tool for students, and
requires no set up from instructors. CourseMate brings course
concepts to life with interactive learning, study, and exam
preparation tools that support the printed textbook. CourseMate
for Stewart’s Calculus includes: an interactive eBook, Tools 
for Enriching Calculus, videos, quizzes, flashcards, and more! 
For instructors, CourseMate includes Engagement Tracker, a
first-of-its-kind tool that monitors student engagement.

Maple CD-ROM
Maple provides an advanced, high performance mathe-
matical computation engine with fully integrated numerics 
& symbolics, all accessible from a WYSIWYG technical docu-
ment environment. 

CengageBrain.com
To access additional course materials and companion resources,
please visit www.cengagebrain.com. At the CengageBrain.com
home page, search for the ISBN of your title (from the back
cover of your book) using the search box at the top of the page.
This will take you to the product page where free companion
resources can be found.

Ancillaries for Students

Student Solutions Manual

Single Variable 
By Daniel Anderson, Jeffery A. Cole, and Daniel Drucker
ISBN 0-8400-4949-8

Multivariable
By Dan Clegg and Barbara Frank
ISBN 0-8400-4945-5

Provides completely worked-out solutions to all odd-numbered
exercises in the text, giving students a chance to check their
answers and ensure they took the correct steps to arrive at an
answer.

Study Guide

Single Variable 
By Richard St. Andre
ISBN 0-8400-5409-2

Multivariable
By Richard St. Andre
ISBN 0-8400-5410-6

For each section of the text, the Study Guide provides students
with a brief introduction, a short list of concepts to master, as

well as summary and focus questions with explained answers.
The Study Guide also contains “Technology Plus” questions,
and multiple-choice “On Your Own” exam-style questions.

CalcLabs with Maple

Single Variable By Philip B. Yasskin and Robert Lopez
ISBN 0-8400-5811-X

Multivariable By Philip B. Yasskin and Robert Lopez
ISBN 0-8400-5812-8

CalcLabs with Mathematica

Single Variable By Selwyn Hollis
ISBN 0-8400-5814-4

Multivariable By Selwyn Hollis
ISBN 0-8400-5813-6

Each of these comprehensive lab manuals will help students
learn to use the technology tools available to them. CalcLabs
contain clearly explained exercises and a variety of labs and
projects to accompany the text.

A Companion to Calculus
By Dennis Ebersole, Doris Schattschneider, Alicia Sevilla, 
and Kay Somers
ISBN 0-495-01124-X

Written to improve algebra and problem-solving skills of stu-
dents taking a Calculus course, every chapter in this companion
is keyed to a calculus topic, providing conceptual background
and specific algebra techniques needed to understand and solve
calculus problems related to that topic. It is designed for calcu-
lus courses that integrate the review of precalculus concepts or
for individual use.

Linear Algebra for Calculus
by Konrad J. Heuvers, William P. Francis, John H. Kuisti, 
Deborah F. Lockhart, Daniel S. Moak, and Gene M. Ortner
ISBN 0-534-25248-6

This comprehensive book, designed to supplement the calculus
course, provides an introduction to and review of the basic
ideas of linear algebra.
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Reading a calculus textbook is different from reading a news-
paper or a novel, or even a physics book. Don’t be discouraged
if you have to read a passage more than once in order to under-
stand it. You should have pencil and paper and calculator at
hand to sketch a diagram or make a calculation.

Some students start by trying their homework problems and
read the text only if they get stuck on an exercise. I suggest that
a far better plan is to read and understand a section of the text
before attempting the exercises. In particular, you should look 
at the definitions to see the exact meanings of the terms. And
before you read each example, I suggest that you cover up the
solution and try solving the problem yourself. You’ll get a lot
more from looking at the solution if you do so.

Part of the aim of this course is to train you to think logically.
Learn to write the solutions of the exercises in a connected,
step-by-step fashion with explanatory sentences—not just a
string of disconnected equations or formulas.

The answers to the odd-numbered exercises appear at the
back of the book, in Appendix I. Some exercises ask for a verbal
explanation or interpretation or description. In such cases there
is no single correct way of expressing the answer, so don’t
worry that you haven’t found the definitive answer. In addition,
there are often several different forms in which to express a
numerical or algebraic answer, so if your answer differs from
mine, don’t immediately assume you’re wrong. For example, 
if the answer given in the back of the book is and you
obtain , then you’re right and rationalizing the
denominator will show that the answers are equivalent.

The icon ; indicates an exercise that definitely requires 
the use of either a graphing calculator or a computer with graph-
ing software. (Appendix G discusses the use of these graphing
devices and some of the pitfalls that you may encounter.) But
that doesn’t mean that graphing devices can’t be used to check
your work on the other exercises as well. The symbol is

1�(1 � s2)
s2 � 1

CAS

reserved for problems in which the full resources of a computer
algebra system (like Derive, Maple, Mathematica, or the 
TI-89/92) are required.

You will also encounter the symbol | , which warns you
against committing an error. I have placed this symbol in the
margin in situations where I have observed that a large propor-
tion of my students tend to make the same mistake.

Tools for Enriching Calculus, which is a companion to this
text, is referred to by means of the symbol and can be
accessed in Enhanced WebAssign and CourseMate (selected
Visuals and Modules are available at www.stewartcalculus.com).
It directs you to modules in which you can explore aspects of
calculus for which the computer is particularly useful.

Homework Hints for representative exercises are indicated
by printing the exercise number in red: 5. These hints can be
found on stewartcalculus.com as well as Enhanced WebAssign
and CourseMate. The homework hints ask you questions that
allow you to make progress toward a solution without actually
giving you the answer. You need to pursue each hint in an active
manner with pencil and paper to work out the details. If a partic-
ular hint doesn’t enable you to solve the problem, you can click
to reveal the next hint. 

I recommend that you keep this book for reference purposes
after you finish the course. Because you will likely forget some
of the specific details of calculus, the book will serve as a 
useful reminder when you need to use calculus in subsequent
courses. And, because this book contains more material than
can be covered in any one course, it can also serve as a valu-
able resource for a working scientist or engineer.

Calculus is an exciting subject, justly considered to be one 
of the greatest achievements of the human intellect. I hope you
will discover that it is not only useful but also intrinsically
beautiful.

JAMES STEWART

TEC

xxiii

To the Student
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Diagnostic Tests

Success in calculus depends to a large extent on knowledge of the mathematics
that precedes calculus: algebra, analytic geometry, functions, and trigonometry. 
The following tests are intended to diagnose weaknesses that you might have in
these areas. After taking each test you can check your answers against the given
answers and, if necessary, refresh your skills by referring to the review materials
that are provided.

Diagnostic Test: AlgebraA

1. Evaluate each expression without using a calculator.

(a) (b) (c)

(d) (e) (f )

2. Simplify each expression. Write your answer without negative exponents.

(a)

(b)

(c)

3. Expand and simplify.

(a) (b)

(c) (d)

(e)

4. Factor each expression.

(a) (b)

(c) (d)

(e) (f )

5. Simplify the rational expression.

(a) (b)

(c) (d)

��3�4 �34 3�4

523

521 �2

3�
�2

16�3�4

s200 � s32

�3a3b3��4ab2�2

�3x 3�2y 3

x 2y�1�2��2

3�x � 6� � 4�2x � 5� �x � 3��4x � 5�

(sa � sb )(sa � sb ) �2x � 3�2

�x � 2�3

4x 2 � 25 2x 2 � 5x � 12

x 3 � 3x 2 � 4x � 12 x 4 � 27x

3x 3�2 � 9x 1�2 � 6x�1�2 x 3y � 4xy

x 2 � 3x � 2

x 2 � x � 2

2x 2 � x � 1

x 2 � 9
�

x � 3

2x � 1

x 2

x 2 � 4
�

x � 1

x � 2

y

x
�

x

y

1

y
�

1

x

xxiv
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DIAGNOSTIC TESTS xxv

6. Rationalize the expression and simplify.

(a) (b)

7. Rewrite by completing the square.

(a) (b)

8. Solve the equation. (Find only the real solutions.)

(a) (b)

(c) (d)

(e) (f )

(g)

9. Solve each inequality. Write your answer using interval notation.

(a) (b)

(c) (d)

(e)

10. State whether each equation is true or false.

(a) (b)

(c) (d)

(e) (f )

s10

s5 � 2
s4 � h � 2

h

x 2 � x � 1 2x 2 � 12x � 11

x � 5 � 14 �
1
2 x

2x

x � 1
�

2x � 1

x

x2 � x � 12 � 0 2x 2 � 4x � 1 � 0

x 4 � 3x 2 � 2 � 0 3� x � 4 � � 10

2x�4 � x��1�2 � 3s4 � x � 0

�4 � 5 � 3x � 17 x 2 � 2x � 8

x�x � 1��x � 2� � 0 � x � 4 � � 3

2x � 3

x � 1
� 1

�p � q�2 � p2 � q 2
sab � sa sb

sa2 � b2 � a � b
1 � TC

C
� 1 � T

1

x � y
�

1

x
�

1

y

1�x

a�x � b�x
�

1

a � b

1. (a) (b) (c)

(d) (e) (f )

2. (a) (b) (c)

3. (a) (b)
(c) (d)
(e)

4. (a) (b)
(c) (d)
(e) (f )

5. (a) (b)

(c) (d)

81 �81 1
81

25 9
4

1
8

6s2 48a5b7 x

9y7

11x � 2 4x 2 � 7x � 15
a � b 4x 2 � 12x � 9
x 3 � 6x 2 � 12x � 8

�2x � 5��2x � 5� �2x � 3��x � 4�
�x � 3��x � 2��x � 2� x�x � 3��x 2 � 3x � 9�
3x�1�2�x � 1��x � 2� xy�x � 2��x � 2�

x � 2

x � 2

x � 1

x � 3
1

x � 2
��x � y�

6. (a) (b)

7. (a) (b)  

8. (a) (b) (c)

(d) (e) (f )

(g)

9. (a) (b)
(c) (d)
(e)

10. (a) False (b) True (c) False
(d) False (e) False (f ) True

6 1 �3, 4

�1 �
1
2s2 �1, �s2 2

3, 22
3

12
5

��4, 3� ��2, 4�
��2, 0� � �1, �� �1, 7�
��1, 4�

5s2 � 2s10
1

s4 � h � 2

(x �
1
2)2

�
3
4 2�x � 3�2 � 7

Answers to Diagnostic Test A: Algebra

If you have had difficulty with these problems, you may wish to consult  
the Review of Algebra on the website www.stewartcalculus.com
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xxvi DIAGNOSTIC TESTS

1. Find an equation for the line that passes through the point and

(a) has slope 

(b) is parallel to the -axis

(c) is parallel to the -axis

(d) is parallel to the line 

2. Find an equation for the circle that has center and passes through the point .

3. Find the center and radius of the circle with equation .

4. Let and be points in the plane.

(a) Find the slope of the line that contains and .

(b) Find an equation of the line that passes through and . What are the intercepts?

(c) Find the midpoint of the segment .

(d) Find the length of the segment .

(e) Find an equation of the perpendicular bisector of .

(f ) Find an equation of the circle for which is a diameter.

5. Sketch the region in the -plane defined by the equation or inequalities.

(a) (b)

(c) (d)

(e) (f )

�2, �5�
�3

x

y

2x � 4y � 3

��1, 4� �3, �2�

x 2 � y2 � 6x � 10y � 9 � 0

A��7, 4� B�5, �12�
A B

A B

AB

AB

AB

AB

xy

�1 � y � 3 � x � � 4 and � y � � 2

y � 1 �
1
2 x y � x 2 � 1

x 2 � y 2 � 4 9x 2 � 16y 2 � 144

Diagnostic Test: Analytic GeometryB

1. (a) (b)

(c) (d)

2.

3. Center , radius 5

4. (a)
(b) ; -intercept , -intercept 
(c)
(d)
(e)
(f )

y � �3x � 1 y � �5

x � 2 y � 1
2 x � 6

�x � 1�2 � �y � 4�2 � 52

�3, �5�

�
4
3

4x � 3y � 16 � 0 x �4 y �
16
3

��1, �4�
20
3x � 4y � 13
�x � 1�2 � �y � 4�2 � 100

5.

y

x1 2
0

y

x0

y

x0 4

3

_1

2

y

x
0

y

x0 4_4

y

x0 2

1

(a) (b) (c)

(d) (e) (f)

_1

3
2

_2

y=≈-1

≈+¥=4

 

y=1-   x
1
2

Answers to Diagnostic Test B: Analytic Geometry

If you have had difficulty with these problems, you may wish to 
consult the review of analytic geometry in Appendixes B and C.
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DIAGNOSTIC TESTS xxvii

1. The graph of a function is given at the left.
(a) State the value of .
(b) Estimate the value of .
(c) For what values of is ?
(d) Estimate the values of such that .
(e) State the domain and range of .

2. If , evaluate the difference quotient and simplify your answer.

3. Find the domain of the function.

(a) (b) (c)

4. How are graphs of the functions obtained from the graph of ?

(a) (b) (c)

5. Without using a calculator, make a rough sketch of the graph.

(a) (b) (c)

(d) (e) (f )

(g) (h)

6. Let 

(a) Evaluate and . (b) Sketch the graph of .

7. If and , find each of the following functions.
(a) (b) (c)

f
f ��1�

f �2�
x f �x� � 2

x f �x� � 0
f

f �x� � x 3 f �2 � h� � f �2�
h

f �x� �
2x � 1

x2 � x � 2
t�x� �

s
3 x

x 2 � 1
h�x� � s4 � x � sx 2 � 1

f

y � �f �x� y � 2 f �x� � 1 y � f �x � 3� � 2

y � x 3 y � �x � 1�3 y � �x � 2�3 � 3

y � 4 � x 2 y � sx y � 2sx

y � �2x y � 1 � x�1

f �x� � �1 � x 2

2x � 1

if x � 0

if x � 0

f ��2� f �1� f

f �x� � x 2 � 2x � 1 t�x� � 2x � 3
f � t t � f t � t � t

Diagnostic Test: FunctionsC

y

0 x

1

1

FIGURE FOR PROBLEM 1

1. (a) (b) 2.8

(c) (d)

(e)

2.

3. (a)

(b)

(c)

4. (a) Reflect about the -axis
(b) Stretch vertically by a factor of 2, then shift 1 unit downward
(c) Shift 3 units to the right and 2 units upward

5.

�2

�3, 1 �2.5, 0.3

��3, 3�, ��2, 3�

12 � 6h � h2

���, �2� � ��2, 1� � �1, ��
���, ��
���, �1� � �1, 4�

x

y

x0

(a)

1

1

y(b)

x0

1

_1

(c) y

x0

(2, 3)

6. (a) 7. (a)
(b) (b)

(c)

y(d)

x0

4

2

(e) y

x0 1
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Answers to Diagnostic Test C: Functions

If you have had difficulty with these problems, you should look at Sections 1.1–1.3 of this book.
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xxviii DIAGNOSTIC TESTS

1. Convert from degrees to radians.

(a) (b)

2. Convert from radians to degrees.

(a) (b)

3. Find the length of an arc of a circle with radius 12 cm if the arc subtends a central angle of
.

4. Find the exact values.

(a) (b) (c)

5. Express the lengths and in the figure in terms of .

6. If and , where and lie between and , evaluate .

7. Prove the identities.

(a)

(b)

8. Find all values of such that and .

9. Sketch the graph of the function without using a calculator.

300� �18�

5��6 2

30�

tan���3� sin�7��6� sec�5��3�

a b �

sin x � 1
3 sec y � 5

4 x y 0 �� 2 sin�x � y�

tan �  sin � � cos � � sec �

2 tan x

1 � tan2x
� sin 2x

x sin 2x � sin x 0 � x � 2�

y � 1 � sin 2x

Diagnostic Test: TrigonometryD

a

¨

b

24

FIGURE FOR PROBLEM 5

If you have had difficulty with these problems, you should look at Appendix D of this book.

1. (a) (b)

2. (a) (b)

3.

4. (a) (b) (c)

5. (a) (b)

���105��3

360��� � 114.6�150�

2� cm

2�
1
2s3

24 cos �24 sin �

6.

8.

9.

1
15 (4 � 6s2 )
0, ��3, �, 5��3, 2�

_π π x0

2

y

Answers to Diagnostic Test D: Trigonometry
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A Preview of Calculus

Calculus is fundamentally different from the mathematics that you have studied previously: calculus 
is less static and more dynamic. It is concerned with change and motion; it deals with quantities that
approach other quantities. For that reason it may be useful to have an overview of the subject before
beginning its intensive study. Here we give a glimpse of some of the main ideas of calculus by showing
how the concept of a limit arises when we attempt to solve a variety of problems.
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By the time you finish this course, you will be able to estimate the
number of laborers needed to build a pyramid, explain the forma-
tion and location of rainbows, design a roller coaster for a smooth
ride, and calculate the force on a dam.
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2 A PREVIEW OF CALCULUS

The Area Problem
The origins of calculus go back at least 2500 years to the ancient Greeks, who found areas
using the “method of exhaustion.” They knew how to find the area of any polygon by
dividing it into triangles as in Figure 1 and adding the areas of these triangles.

It is a much more difficult problem to find the area of a curved figure. The Greek
method of exhaustion was to inscribe polygons in the figure and circumscribe polygons
about the figure and then let the number of sides of the polygons increase. Figure 2 illus-
trates this process for the special case of a circle with inscribed regular polygons.

Let be the area of the inscribed polygon with sides. As increases, it appears that
becomes closer and closer to the area of the circle. We say that the area of the circle is

the limit of the areas of the inscribed polygons, and we write

The Greeks themselves did not use limits explicitly. However, by indirect reasoning,
Eudoxus (fifth century BC) used exhaustion to prove the familiar formula for the area of a
circle: 

We will use a similar idea in Chapter 4 to find areas of regions of the type shown in Fig-
ure 3. We will approximate the desired area by areas of rectangles (as in Figure 4), let
the width of the rectangles decrease, and then calculate as the limit of these sums of
areas of rectangles.

The area problem is the central problem in the branch of calculus called integral cal-
culus. The techniques that we will develop in Chapter 4 for finding areas will also enable
us to compute the volume of a solid, the length of a curve, the force of water against a dam,
the mass and center of gravity of a rod, and the work done in pumping water out of a tank.

The Tangent Problem
Consider the problem of trying to find an equation of the tangent line to a curve with
equation at a given point . (We will give a precise definition of a tangent line in y � f �x� P

t
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In the Preview Visual, you can see how
areas of inscribed and circumscribed polygons 
approximate the area of a circle.
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A PREVIEW OF CALCULUS 3

Chapter 1. For now you can think of it as a line that touches the curve at as in Figure 5.)
Since we know that the point lies on the tangent line, we can find the equation of if we
know its slope . The problem is that we need two points to compute the slope and we
know only one point, , on . To get around the problem we first find an approximation to

by taking a nearby point on the curve and computing the slope of the secant line
. From Figure 6 we see that

Now imagine that moves along the curve toward as in Figure 7. You can see that
the secant line rotates and approaches the tangent line as its limiting position. This means
that the slope of the secant line becomes closer and closer to the slope of the tan-
gent line. We write

and we say that is the limit of as approaches along the curve. Since approaches
as approaches , we could also use Equation 1 to write

Specific examples of this procedure will be given in Chapter 1.
The tangent problem has given rise to the branch of calculus called differential calcu-

lus, which was not invented until more than 2000 years after integral calculus. The main
ideas behind differential calculus are due to the French mathematician Pierre Fermat
(1601–1665) and were developed by the English mathematicians John Wallis 
(1616–1703), Isaac Barrow (1630–1677), and Isaac Newton (1642–1727) and the German
mathematician Gottfried Leibniz (1646–1716).

The two branches of calculus and their chief problems, the area problem and the tan-
gent problem, appear to be very different, but it turns out that there is a very close con-
nection between them. The tangent problem and the area problem are inverse problems in
a sense that will be described in Chapter 4.

Velocity
When we look at the speedometer of a car and read that the car is traveling at 48 mi�h, what
does that information indicate to us? We know that if the velocity remains constant, then
after an hour we will have traveled 48 mi. But if the velocity of the car varies, what does it
mean to say that the velocity at a given instant is 48 mi�h?

In order to analyze this question, let’s examine the motion of a car that travels along a
straight road and assume that we can measure the distance traveled by the car (in feet) at 
l-second intervals as in the following chart:

2 m � lim
x l a

f �x� � f �a�
x � a

Q P
m mPQ Q P x

a

m � lim
Q lP

mPQ

mPQ m

Q P

1
mPQ �

f �x� � f �a�
x � a

PQ
Q mPQ

P t
m

m
P t

P

t � Time elapsed (s) 0 1 2 3 4 5

d � Distance (ft) 0 2 9 24 42 71

0

y

x

P

y=ƒ

t

P

Q

t

0 x

y

y

0 xa x

ƒ-f(a)P{a, f(a)}

x-a

t

Q{x, ƒ}

FIGURE 5 
The tangent line at P

FIGURE 6
The secant line PQ

FIGURE 7
Secant lines approaching the
tangent line

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



4 A PREVIEW OF CALCULUS

As a first step toward finding the velocity after 2 seconds have elapsed, we find the aver-
age velocity during the time interval :

Similarly, the average velocity in the time interval is

We have the feeling that the velocity at the instant � 2 can’t be much different from the
average velocity during a short time interval starting at . So let’s imagine that the dis-
tance traveled has been measured at 0.l-second time intervals as in the following chart:

Then we can compute, for instance, the average velocity over the time interval :

The results of such calculations are shown in the following chart:

The average velocities over successively smaller intervals appear to be getting closer to
a number near 10, and so we expect that the velocity at exactly is about 10 ft�s. In
Chapter 1 we will define the instantaneous velocity of a moving object as the limiting
value of the average velocities over smaller and smaller time intervals.

In Figure 8 we show a graphical representation of the motion of the car by plotting the
distance traveled as a function of time. If we write , then is the number of feet
traveled after seconds. The average velocity in the time interval is

which is the same as the slope of the secant line in Figure 8. The velocity when
is the limiting value of this average velocity as approaches 2; that is,

and we recognize from Equation 2 that this is the same as the slope of the tangent line to
the curve at .P

v � lim
t l 2

f �t� � f �2�
t � 2

t
PQ v t � 2

average velocity �
change in position

time elapsed
�

f �t� � f �2�
t � 2

t �2, t�
d � f �t� f �t�

t � 2

average velocity �
15.80 � 9.00

2.5 � 2
� 13.6 ft�s

�2, 2.5�

t � 2
t

average velocity �
24 � 9

3 � 2
� 15 ft�s

2 � t � 3

� 16.5 ft�s

�
42 � 9

4 � 2

average velocity �
change in position

time elapsed

2 � t � 4

FIGURE 8 
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A PREVIEW OF CALCULUS 5

Thus, when we solve the tangent problem in differential calculus, we are also solving
problems concerning velocities. The same techniques also enable us to solve problems
involving rates of change in all of the natural and social sciences.

The Limit of a Sequence
In the fifth century BC the Greek philosopher Zeno of Elea posed four problems, now
known as Zeno’s paradoxes, that were intended to challenge some of the ideas concerning
space and time that were held in his day. Zeno’s second paradox concerns a race between
the Greek hero Achilles and a tortoise that has been given a head start. Zeno argued, as fol-
lows, that Achilles could never pass the tortoise: Suppose that Achil les starts at position 

and the tortoise starts at position . (See Figure 9.) When Achilles reaches the point
, the tortoise is farther ahead at position . When Achilles reaches , the tor-

toise is at . This process continues indefinitely and so it appears that the tortoise will
always be ahead! But this defies common sense.

One way of explaining this paradox is with the idea of a sequence. The successive posi-
tions of Achilles or the successive positions of the tortoise
form what is known as a sequence.

In general, a sequence is a set of numbers written in a definite order. For instance,
the sequence

can be described by giving the following formula for the th term:

We can visualize this sequence by plotting its terms on a number line as in Fig-
ure 10(a) or by drawing its graph as in Figure 10(b). Observe from either picture that the
terms of the sequence are becoming closer and closer to 0 as increases. In fact,
we can find terms as small as we please by making large enough. We say that the limit
of the sequence is 0, and we indicate this by writing

In general, the notation

is used if the terms approach the number as becomes large. This means that the num-
bers can be made as close as we like to the number by taking sufficiently large.an L n

an L n

lim
n l �
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n l �

1

n
� 0

n
an � 1�n n
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1
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6 A PREVIEW OF CALCULUS

The concept of the limit of a sequence occurs whenever we use the decimal represen-
tation of a real number. For instance, if

then

The terms in this sequence are rational approximations to .
Let’s return to Zeno’s paradox. The successive positions of Achilles and the tortoise

form sequences and , where for all . It can be shown that both sequences
have the same limit:

It is precisely at this point that Achilles overtakes the tortoise.

The Sum of a Series
Another of Zeno’s paradoxes, as passed on to us by Aristotle, is the following: “A man
standing in a room cannot walk to the wall. In order to do so, he would first have to go half
the distance, then half the remaining distance, and then again half of what still remains.
This process can always be continued and can never be ended.” (See Figure 11.)

Of course, we know that the man can actually reach the wall, so this suggests that per-
haps the total distance can be expressed as the sum of infinitely many smaller distances as
follows:
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A PREVIEW OF CALCULUS 7

Zeno was arguing that it doesn’t make sense to add infinitely many numbers together. But
there are other situations in which we implicitly use infinite sums. For instance, in decimal
notation, the symbol means

and so, in some sense, it must be true that

More generally, if denotes the nth digit in the decimal representation of a number, then

Therefore some infinite sums, or infinite series as they are called, have a meaning. But we
must define carefully what the sum of an infinite series is.

Returning to the series in Equation 3, we denote by the sum of the first terms of the
series. Thus

Observe that as we add more and more terms, the partial sums become closer and closer
to 1. In fact, it can be shown that by taking large enough (that is, by adding sufficiently
many terms of the series), we can make the partial sum as close as we please to the num-
ber 1. It therefore seems reasonable to say that the sum of the infinite series is 1 and to
write
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8 A PREVIEW OF CALCULUS

In other words, the reason the sum of the series is 1 is that

In Chapter 11 we will discuss these ideas further. We will then use Newton’s idea of
combining infinite series with differential and integral calculus.

Summary
We have seen that the concept of a limit arises in trying to find the area of a region, the
slope of a tangent to a curve, the velocity of a car, or the sum of an infinite series. In each
case the common theme is the calculation of a quantity as the limit of other, easily calcu-
lated quantities. It is this basic idea of a limit that sets calculus apart from other areas of
mathematics. In fact, we could define calculus as the part of mathematics that deals with
limits.

After Sir Isaac Newton invented his version of calculus, he used it to explain the motion
of the planets around the sun. Today calculus is used in calculating the orbits of satellites
and spacecraft, in predicting population sizes, in estimating how fast oil prices rise or fall,
in forecasting weather, in measuring the cardiac output of the heart, in calculating life
insurance premiums, and in a great variety of other areas. We will explore some of these
uses of calculus in this book.

In order to convey a sense of the power of the subject, we end this preview with a list
of some of the questions that you will be able to answer using calculus:

1. How can we explain the fact, illustrated in Figure 12, that the angle of elevation
from an observer up to the highest point in a rainbow is 42°? (See page 206.)

2. How can we explain the shapes of cans on supermarket shelves? (See page 262.)

3. Where is the best place to sit in a movie theater? (See page 461.)

4. How can we design a roller coaster for a smooth ride? (See page 140.)

5. How far away from an airport should a pilot start descent? (See page 156.)

6. How can we fit curves together to design shapes to represent letters on a laser
printer? (See page 677.)

7. How can we estimate the number of workers that were needed to build the Great
Pyramid of Khufu in ancient Egypt? (See page 373.)

8. Where should an infielder position himself to catch a baseball thrown by an out-
fielder and relay it to home plate? (See page 658.)

9. Does a ball thrown upward take longer to reach its maximum height or to fall
back to its original height? (See page 628.)

10. How can we explain the fact that planets and satellites move in elliptical orbits?
(See page 892.)

11. How can we distribute water flow among turbines at a hydroelectric station so as
to maximize the total energy production? (See page 990.)

12. If a marble, a squash ball, a steel bar, and a lead pipe roll down a slope, which of
them reaches the bottom first? (See page 1063.)

lim
n l �

sn � 1

rays from sun

observer

rays from sun

42°

FIGURE 12

138°
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Functions and Limits1

9
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The fundamental objects that we deal with in calculus are functions. We stress that a function can be
represented in different ways: by an equation, in a table, by a graph, or in words. We look at the main
types of functions that occur in calculus and describe the process of using these functions as mathematical
models of real-world phenomena.

In A Preview of Calculus (page 1) we saw how the idea of a limit underlies the various branches of
calculus. It is therefore appropriate to begin our study of calculus by investigating limits of functions and
their properties. 

A ball falls faster and faster as time
passes. Galileo discovered that the
distance fallen is proportional to the
square of the time it has been falling.
Calculus then enables us to calculate the
speed of the ball at any time.
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10 CHAPTER 1 FUNCTIONS AND LIMITS

Functions arise whenever one quantity depends on another. Consider the following four
situations.

A. The area of a circle depends on the radius of the circle. The rule that connects
and is given by the equation . With each positive number there is associ-
ated one value of , and we say that is a function of .

B. The human population of the world depends on the time . The table gives estimates
of the world population at time for certain years. For instance,

But for each value of the time there is a corresponding value of and we say that
is a function of .

C. The cost of mailing an envelope depends on its weight . Although there is no
simple formula that connects and , the post office has a rule for determining
when is known.

D. The vertical acceleration of the ground as measured by a seismograph during an
earthquake is a function of the elapsed time Figure 1 shows a graph generated by
seismic activity during the Northridge earthquake that shook Los Angeles in 1994.
For a given value of the graph provides a corresponding value of .

Each of these examples describes a rule whereby, given a number ( , , , or ), another
number ( , , , or ) is assigned. In each case we say that the second number is a func-
tion of the first number.

A function is a rule that assigns to each element in a set exactly one ele-
ment,   called , in a set .

We usually consider functions for which the sets and are sets of real numbers. The
set is called the domain of the function. The number is the value of at and is
read “ of .” The range of is the set of all possible values of as varies through-
out the domain. A symbol that represents an arbitrary number in the domain of a function

is called an independent variable. A symbol that represents a number in the range of
is called a dependent variable. In Example A, for instance, r is the independent variable
and A is the dependent variable.
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1.1 Four Ways to Represent a Function

Population
Year (millions)

1900 1650
1910 1750
1920 1860
1930 2070
1940 2300
1950 2560
1960 3040
1970 3710
1980 4450
1990 5280
2000 6080
2010 6870
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SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION 11

It’s helpful to think of a function as a machine (see Figure 2). If is in the domain of
the function then when enters the machine, it’s accepted as an input and the machine
produces an output according to the rule of the function. Thus we can think of the
domain as the set of all possible inputs and the range as the set of all possible outputs.

The preprogrammed functions in a calculator are good examples of a function as a
machine. For example, the square root key on your calculator computes such a function.
You press the key labeled (or ) and enter the input . If , then is not in the
domain of this function; that is, is not an acceptable input, and the calculator will indi-
cate an error. If , then an approximation to will appear in the display. Thus the

key on your calculator is not quite the same as the exact mathematical function
defined by .

Another way to picture a function is by an arrow diagram as in Figure 3. Each arrow
connects an element of to an element of . The arrow indicates that is associated
with is associated with , and so on.

The most common method for visualizing a function is its graph. If is a function with
domain , then its graph is the set of ordered pairs

(Notice that these are input-output pairs.) In other words, the graph of consists of all
points in the coordinate plane such that and is in the domain of .

The graph of a function gives us a useful picture of the behavior or “life history” of
a function. Since the -coordinate of any point on the graph is , we can read
the value of from the graph as being the height of the graph above the point (see
Figure 4). The graph of also allows us to picture the domain of on the -axis and its
range on the -axis as in Figure 5.

The graph of a function is shown in Figure 6.
(a) Find the values of and .
(b) What are the domain and range of ?

SOLUTION
(a) We see from Figure 6 that the point lies on the graph of , so the value of
at 1 is . (In other words, the point on the graph that lies above is 3 units
above the -axis.)

When , the graph lies about 0.7 unit below the x-axis, so we estimate that
.

(b) We see that is defined when , so the domain of is the closed inter-
val . Notice that takes on all values from to 4, so the range of is�0, 7� f �2 f

f �x� 0 � x � 7 f

f �5� � �0.7
x � 5
x

f �1� � 3 x � 1
�1, 3� f f

f
f �1� f �5�

EXAMPLE 1 f

0

y � ƒ(x)

domain

range

FIGURE 4

{x, ƒ}

ƒ
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0 1 2 x

FIGURE 5
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x � 0 sx
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FIGURE 2
Machine diagram for a function ƒ

x
(input)

ƒ
(output)

f

f
D E

ƒ

f(a)a

x

FIGURE 3 
Arrow diagram for ƒ

The notation for intervals is given in 
Appendix A.
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12 CHAPTER 1 FUNCTIONS AND LIMITS

Sketch the graph and find the domain and range of each function.
(a) (b) 

SOLUTION
(a) The equation of the graph is , and we recognize this as being the equa-
tion of a line with slope 2 and -intercept . (Recall the slope-intercept form of the
equation of a line: . See Appendix B.) This enables us to sketch a portion of
the graph of in Figure 7. The expression is defined for all real numbers, so the
domain of is the set of all real numbers, which we denote by . The graph shows that
the range is also .

(b) Since and , we could plot the points and
, together with a few other points on the graph, and join them to produce the

graph (Figure 8). The equation of the graph is , which represents a parabola (see
Appendix C). The domain of is . The range of consists of all values of , that is,
all numbers of the form . But for all numbers and any positive number is a
square. So the range of is . This can also be seen from Figure 8.

If and , evaluate .

SOLUTION We first evaluate by replacing by in the expression for :

Then we substitute into the given expression and simplify:

Representations of Functions
There are four possible ways to represent a function:

■ verbally (by a description in words)

■ numerically (by a table of values)

■ visually (by a graph)

■ algebraically (by an explicit formula)

If a single function can be represented in all four ways, it’s often useful to go from one
representation to another to gain additional insight into the function. (In Example 2, for
instance, we started with algebraic formulas and then obtained the graphs.) But certain
functions are described more naturally by one method than by another. With this in mind,
let’s reexamine the four situations that we considered at the beginning of this section.

�
4ah � 2h2 � 5h

h
� 4a � 2h � 5

�
2a2 � 4ah � 2h2 � 5a � 5h � 1 � 2a2 � 5a � 1

h

f �a � h� � f �a�
h

�
�2a2 � 4ah � 2h2 � 5a � 5h � 1� � �2a2 � 5a � 1�

h

� 2a2 � 4ah � 2h2 � 5a � 5h � 1

� 2�a2 � 2ah � h2� � 5�a � h� � 1

f �a � h� � 2�a � h�2 � 5�a � h� � 1

f �a � h� x a � h f �x�

EXAMPLE 3 f �x� � 2x 2 � 5x � 1 h � 0
f �a � h� � f �a�

h

t �y � y � 0	 � �0, ��
x 2 x 2 � 0 x y

t � t t�x�
y � x 2

��1, 1�
t�2� � 22 � 4 t��1� � ��1�2 � 1 �2, 4�

�

f �

f 2x � 1
y � mx � b

y �1
y � 2x � 1

f �x� � 2x � 1 t�x� � x 2
EXAMPLE 2

FIGURE 7
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y=2x-1
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-1
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1
2

(_1, 1)
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0

y

1

x1

y=≈

FIGURE 8

The expression

in Example 3 is called a difference quotient
and occurs frequently in calculus. As we will 
see in Chapter 2, it represents the average 
rate of change of between and

.

f �a � h� � f �a�
h

x � a � h
x � af �x�
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SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION 13

A. The most useful representation of the area of a circle as a function of its radius is
probably the algebraic formula , though it is possible to compile a table of
values or to sketch a graph (half a parabola). Because a circle has to have a positive
radius, the domain is , and the range is also .

B. We are given a description of the function in words: is the human population of
the world at time t. Let’s measure so that corresponds to the year 1900. The
table of values of world population provides a convenient representation of this func-
tion. If we plot these values, we get the graph (called a scatter plot) in Figure 9. It too
is a useful representation; the graph allows us to absorb all the data at once. What
about a formula? Of course, it’s impossible to devise an explicit formula that gives
the exact human population at any time t. But it is possible to find an expression
for a function that approximates . In fact, using methods explained in Section 1.2,
we obtain the approximation

Figure 10 shows that it is a reasonably good “fit.” The function is called a mathe-
matical model for population growth. In other words, it is a function with an explicit
formula that approximates the behavior of our given function. We will see, however,
that the ideas of calculus can be applied to a table of values; an explicit formula is not
necessary. 

The function is typical of the functions that arise whenever we attempt to apply
calculus to the real world. We start with a verbal description of a function. Then we
may be able to construct a table of values of the function, perhaps from instrument
readings in a scientific experiment. Even though we don’t have complete knowledge
of the values of the function, we will see throughout the book that it is still possible to
perform the operations of calculus on such a function.

C. Again the function is described in words: Let be the cost of mailing a large enve-
lope with weight . The rule that the US Postal Service used as of 2010 is as follows:
The cost is 88 cents for up to 1 oz, plus 17 cents for each additional ounce (or less)
up to 13 oz. The table of values shown in the margin is the most convenient represen-
tation for this function, though it is possible to sketch a graph (see Example 10).

D. The graph shown in Figure 1 is the most natural representation of the vertical acceler-
ation function . It’s true that a table of values could be compiled, and it is even 
possible to devise an approximate formula. But everything a geologist needs to
know—amplitudes and patterns—can be seen easily from the graph. (The same is 
true for the patterns seen in electrocardiograms of heart patients and polygraphs for
lie-detection.)

t � 0t

�r � r 	 0	 � �0, ��

FIGURE 10FIGURE 9
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 10 9� � �1.01395�t
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A�r� � �r 2
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0 1650
10 1750
20 1860
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110 6870

t
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1.22
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�
�
�

�
�
�

4 � w � 5
3 � w � 4
2 � w � 3
1 � w � 2
0 � w � 1

C�w�w

A function defined by a table of values is called a
tabular function.
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14 CHAPTER 1 FUNCTIONS AND LIMITS

In the next example we sketch the graph of a function that is defined verbally.

When you turn on a hot-water faucet, the temperature of the water 
depends on how long the water has been running. Draw a rough graph of as a function
of the time that has elapsed since the faucet was turned on.

SOLUTION The initial temperature of the running water is close to room temperature
because the water has been sitting in the pipes. When the water from the hot-water tank
starts flowing from the faucet, increases quickly. In the next phase, is constant at
the tempera ture of the heated water in the tank. When the tank is drained, decreases 
to the temperature of the water supply. This enables us to make the rough sketch of as
a function of in Figure 11.

In the following example we start with a verbal description of a function in a physical
situation and obtain an explicit algebraic formula. The ability to do this is a useful skill in
solving calculus problems that ask for the maximum or minimum values of quantities.

A rectangular storage container with an open top has a volume of 10 m .
The length of its base is twice its width. Material for the base costs $10 per square meter;
material for the sides costs $6 per square meter. Express the cost of materials as a func-
tion of the width of the base.

SOLUTION We draw a diagram as in Figure 12 and introduce notation by letting and
be the width and length of the base, respectively, and be the height.

The area of the base is , so the cost, in dollars, of the material for the
base is . Two of the sides have area and the other two have area , so the
cost of the material for the sides is . The total cost is therefore

To express as a function of alone, we need to eliminate and we do so by using the
fact that the volume is 10 m . Thus

which gives

Substituting this into the expression for , we have

Therefore the equation

expresses as a function of .

Find the domain of each function.

(a) (b) 

SOLUTION
(a) Because the square root of a negative number is not defined (as a real number), 
the domain of consists of all values of such that . This is equivalent to

, so the domain is the interval .

EXAMPLE 6

v EXAMPLE 5

EXAMPLE 4

��2, ��x � �2
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w 	 0C�w� � 20w2 �
180

w

C � 20w2 � 36w
 5

w2� � 20w2 �
180

w

C

h �
10

2w2 �
5

w2

w�2w�h � 10

3
hwC
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FIGURE 11
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FIGURE 12

In setting up applied functions as in 
Example 5, it may be useful to review the 
principles of problem solving as discussed on
page 97, particularly Step 1: Understand the
Problem.

PS

Domain Convention
If a function is given by a formula and the
domain is not stated explicitly, the convention is
that the domain is the set of all numbers for
which the formula makes sense and defines a
real number.
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SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION 15

(b) Since

and division by is not allowed, we see that is not defined when or .
Thus the domain of is

which could also be written in interval notation as

The graph of a function is a curve in the -plane. But the question arises: Which curves
in the -plane are graphs of functions? This is answered by the following test.

The Vertical Line Test A curve in the -plane is the graph of a function of if and
only if no vertical line intersects the curve more than once.

The reason for the truth of the Vertical Line Test can be seen in Figure 13. If each ver-
tical line intersects a curve only once, at , then exactly one functional value 
is defined by . But if a line intersects the curve twice, at and ,
then the curve can’t represent a function because a function can’t assign two different val-
ues to .

For example, the parabola shown in Figure 14(a) is not the graph of a func-
tion of because, as you can see, there are vertical lines that intersect the parabola twice.
The parabola, however, does contain the graphs of two functions of . Notice that the equa-
tion implies , so Thus the upper and lower halves
of the parabola are the graphs of the functions [from Example 6(a)] and

. [See Figures 14(b) and (c).] We observe that if we reverse the roles of
and , then the equation does define as a function of (with as

the independent variable and as the dependent variable) and the parabola now appears as
the graph of the function .

�x � x � 0, x � 1	
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16 CHAPTER 1 FUNCTIONS AND LIMITS

Piecewise Defined Functions
The functions in the following four examples are defined by different formulas in dif ferent
parts of their domains. Such functions are called piecewise defined functions.

A function is defined by

Evaluate , , and and sketch the graph.

SOLUTION Remember that a function is a rule. For this particular function the rule is the
following: First look at the value of the input . If it happens that , then the value
of is . On the other hand, if , then the value of is .

How do we draw the graph of ? We observe that if , then , so 
the part of the graph of that lies to the left of the vertical line must coincide
with the line , which has slope and -intercept 1. If , then

, so the part of the graph of that lies to the right of the line must
coincide with the graph of , which is a parabola. This enables us to sketch the
graph in Figure 15. The solid dot indicates that the point is included on the
graph; the open dot indicates that the point is excluded from the graph.

The next example of a piecewise defined function is the absolute value function. Recall
that the absolute value of a number , denoted by , is the distance from to on the
real number line. Distances are always positive or , so we have

for every number 

For example,

In general, we have

(Remember that if is negative, then is positive.)

Sketch the graph of the absolute value function .

SOLUTION From the preceding discussion we know that

Using the same method as in Example 7, we see that the graph of coincides with the
line to the right of the -axis and coincides with the line to the left of the
-axis (see Figure 16).

EXAMPLE 8

EXAMPLE 7v
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x 2f �x�x 	 �11 � xf �x�
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FIGURE 15
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For a more extensive review of absolute values,
see Appendix A.
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SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION 17

Find a formula for the function graphed in Figure 17.

SOLUTION The line through and has slope and -intercept , so
its equation is . Thus, for the part of the graph of that joins to , we
have

The line through and has slope , so its point-slope form is

So we have

We also see that the graph of coincides with the -axis for . Putting this infor-
mation together, we have the following three-piece formula for :

In Example C at the beginning of this section we considered the cost
of mailing a large envelope with weight . In effect, this is a piecewise defined function
because, from the table of values on page 13, we have

The graph is shown in Figure 18. You can see why functions similar to this one are
called step functions—they jump from one value to the next. Such functions will be
studied in Chapter 2.

Symmetry
If a function satisfies for every number in its domain, then is called an
even function. For instance, the function is even because

The geometric significance of an even function is that its graph is symmetric with respect 

EXAMPLE 9 f

EXAMPLE 10
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Point-slope form of the equation of a line:

See Appendix B.

y � y1 � m�x � x1 �
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18 CHAPTER 1 FUNCTIONS AND LIMITS

to the -axis (see Figure 19). This means that if we have plotted the graph of for ,
we obtain the entire graph simply by reflecting this portion about the -axis.

If satisfies for every number in its domain, then is called an odd
function. For example, the function is odd because

The graph of an odd function is symmetric about the origin (see Figure 20). If we already
have the graph of for , we can obtain the entire graph by rotating this portion
through about the origin.

Determine whether each of the following functions is even, odd, or 
neither even nor odd.
(a) (b) (c) 

SOLUTION

(a)

Therefore is an odd function.

(b)

So is even.

(c)

Since and , we conclude that is neither even nor odd.

The graphs of the functions in Example 11 are shown in Figure 21. Notice that the
graph of h is symmetric neither about the y-axis nor about the origin.

FIGURE 21
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SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION 19

1. If and , is it true 
that ?

2. If

and    

is it true that ?

3. The graph of a function is given.
(a) State the value of .
(b) Estimate the value of .
(c) For what values of is ?
(d) Estimate the value of such that .
(e) State the domain and range of .
(f) On what interval is increasing?

4. The graphs of and t are given.
(a) State the values of and .
(b) For what values of is ?x f �x� � t�x�

f ��4� t�3�
f

f � t

t�x� � xf �x� �
x 2 � x

x � 1

f � t

t�u� � u � s2 � uf �x� � x � s2 � x

y

0 x1

1

f
f

f �x� � 0x
f �x� � 1x

f ��1�
f �1�

f

(c) Estimate the solution of the equation .
(d) On what interval is decreasing?
(e) State the domain and range of 
(f) State the domain and range of .

5. Figure 1 was recorded by an instrument operated by the Cali-
fornia Department of Mines and Geology at the University
Hospital of the University of Southern California in Los Ange-
les. Use it to estimate the range of the vertical ground accelera-
tion function at USC during the Northridge earthquake.

6. In this section we discussed examples of ordinary, everyday
functions: Population is a function of time, postage cost is a
function of weight, water temperature is a function of time.
Give three other examples of functions from everyday life that
are described verbally. What can you say about the domain and
range of each of your functions? If possible, sketch a rough
graph of each function.

g

x

y

0

f
2

2

t

f.
f

f �x� � �1

1.1 Exercises

1. Homework Hints available at stewartcalculus.com

Increasing and Decreasing Functions
The graph shown in Figure 22 rises from to , falls from to , and rises again from 
to . The function is said to be increasing on the interval , decreasing on , and
increasing again on . Notice that if and are any two numbers between and 
with , then . We use this as the defining property of an increasing 
function.

A function is called increasing on an interval if

It is called decreasing on if

In the definition of an increasing function it is important to realize that the inequality
must be satisfied for every pair of numbers and in with .

You can see from Figure 23 that the function is decreasing on the interval
and increasing on the interval .�0, �����, 0�

f �x� � x 2
x1 � x2Ix2x1f �x1 � � f �x2 �

whenever x1 � x2 in If �x1 � 	 f �x2 �

I

whenever x1 � x2 in If �x1 � � f �x2 �

If

f �x1 � � f �x2 �x1 � x2

bax2x1�c, d �
�b, c��a, b�fD

CCBBA

A

B

C

D

y=ƒ

f(x¡)

a

y

0 xx¡ x™ b c d

FIGURE 22

f(x™)

FIGURE 23

0

y

x

y=≈
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20 CHAPTER 1 FUNCTIONS AND LIMITS

7–10 Determine whether the curve is the graph of a function of . 
If it is, state the domain and range of the function.

7. 8.

9. 10.

11. The graph shown gives the weight of a certain person as a
function of age. Describe in words how this person’s weight
varies over time. What do you think happened when this
person was 30 years old?

12. The graph shows the height of the water in a bathtub as a 
function of time. Give a verbal description of what you think
happened.

13. You put some ice cubes in a glass, fill the glass with cold
water, and then let the glass sit on a table. Describe how the
temperature of the water changes as time passes. Then sketch a
rough graph of the temperature of the water as a function of the
elapsed time.

14. Three runners compete in a 100-meter race. The graph depicts
the distance run as a function of time for each runner. Describe 

0

height
(inches)

15

10

5

time
(min)

5 10 15

age
(years)

weight
(pounds)

0

150

100

50

10

200

20 30 40 50 60 70

y

x0 1

1

y

x0

1

1

y

x0 1

1

y

x0 1

1

x in words what the graph tells you about this race. Who won the
race? Did each runner finish the race?

15. The graph shows the power consumption for a day in Septem-
ber in San Francisco. ( is measured in megawatts; is mea -
sured in hours starting at midnight.)
(a) What was the power consumption at 6 AM? At 6 PM?
(b) When was the power consumption the lowest? When was it

the highest? Do these times seem reasonable?

16. Sketch a rough graph of the number of hours of daylight as a
function of the time of year.

17. Sketch a rough graph of the outdoor temperature as a function
of time during a typical spring day.

18. Sketch a rough graph of the market value of a new car as a
function of time for a period of 20 years. Assume the car is
well maintained.

19. Sketch the graph of the amount of a particular brand of coffee
sold by a store as a function of the price of the coffee.

20. You place a frozen pie in an oven and bake it for an hour. Then
you take it out and let it cool before eating it. Describe how the
temperature of the pie changes as time passes. Then sketch a
rough graph of the temperature of the pie as a function of time.

21. A homeowner mows the lawn every Wednesday afternoon.
Sketch a rough graph of the height of the grass as a function of
time over the course of a four-week period.

22. An airplane takes off from an airport and lands an hour later at
another airport, 400 miles away. If t represents the time in min-
utes since the plane has left the terminal building, let be x�t�

P

0 181512963 t21

400

600

800

200

Pacific Gas & Electric

tP

0

y (m)

100

t (s)20

A B C
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SECTION 1.1 FOUR WAYS TO REPRESENT A FUNCTION    21

the horizontal distance traveled and be the altitude of the
plane.
(a) Sketch a possible graph of .
(b) Sketch a possible graph of .
(c) Sketch a possible graph of the ground speed.
(d) Sketch a possible graph of the vertical velocity.

23. The number N (in millions) of US cellular phone subscribers is
shown in the table. (Midyear estimates are given.)

(a) Use the data to sketch a rough graph of N as a function of 
(b) Use your graph to estimate the number of cell-phone sub-

scribers at midyear in 2001 and 2005.

24. Temperature readings (in °F) were recorded every two hours
from midnight to 2:00 PM in Phoenix on September 10, 2008.
The time was measured in hours from midnight.

(a) Use the readings to sketch a rough graph of as a function
of 

(b) Use your graph to estimate the temperature at 9:00 AM.

25. If , find , , , ,
, , , , and .

26. A spherical balloon with radius r inches has volume
. Find a function that represents the amount of air

required to inflate the balloon from a radius of r inches to a
radius of r � 1 inches.

27–30 Evaluate the difference quotient for the given function. 
Simplify your answer.

27. ,    

28. ,    

29. ,    

30. ,    

31–37 Find the domain of the function.

31. 32.

33. 34. t�t� � s3 � t � s2 � tf �t� � s
3 2t � 1

f �x� �
2x 3 � 5

x 2 � x � 6
f �x� �

x � 4

x 2 � 9

f �x� � f �1�
x � 1

f �x� �
x � 3

x � 1

f �x� � f �a�
x � a

f �x� �
1

x

f �a � h� � f �a�
h

f �x� � x 3

f �3 � h� � f �3�
h

f �x� � 4 � 3x � x 2

V�r� � 4
3 �r 3

f �a � h�[ f �a�]2,f �a2�f �2a�2 f �a�f �a � 1�
f ��a�f �a�f ��2�f �2�f �x� � 3x 2 � x � 2

t.
T

t

T

t.

y�t�
x�t�

y�t�
35. 36.

37.

38. Find the domain and range and sketch the graph of the 
function .

39–50 Find the domain and sketch the graph of the function.

39. 40.

41. 42.

43. 44.

45. 46.

47.

48.

49.

50.

51–56 Find an expression for the function whose graph is the 
given curve.

51. The line segment joining the points and 

52. The line segment joining the points and 

53. The bottom half of the parabola 

54. The top half of the circle 

55. 56.

57–61 Find a formula for the described function and state its
domain.

57. A rectangle has perimeter 20 m. Express the area of the rect -
angle as a function of the length of one of its sides.

F�p� � s2 � sp

f �u� �
u � 1

1 �
1

u � 1

y

0 x

1

1

y

0 x

1

1

x 2 � �y � 2�2 � 4

x � �y � 1�2 � 0

�7, �10���5, 10�

�5, 7��1, �3�

f �x� � �x � 9

�2x

�6

if x � �3

if � x � � 3

if x � 3

f �x� � �x � 2

x 2

if x � �1

if x � �1

f �x� � �3 �
1
2 x

2x � 5

if x � 2

if x � 2

f �x� � �x � 2

1 � x

if x � 0

if x � 0

t�x� � � x � � xG�x� �
3x � � x �

x

F�x� � � 2x � 1 �t�x� � sx � 5

H�t� �
4 � t 2

2 � t
f �t� � 2t � t 2 

F �x� � x 2 � 2x � 1f �x� � 2 � 0.4x

h�x� � s4 � x 2 

h�x� �
1

s
4 x 2 � 5x

t 1996 1998 2000 2002 2004 2006

N 44 69 109 141 182 233

t 0 2 4 6 8 10 12 14

T 82 75 74 75 84 90 93 94
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22 CHAPTER 1 FUNCTIONS AND LIMITS

58. A rectangle has area 16 m . Express the perimeter of the rect-
 angle as a function of the length of one of its sides.

59. Express the area of an equilateral triangle as a function of the
length of a side.

60. Express the surface area of a cube as a function of its volume.

61. An open rectangular box with volume 2 m has a square base.
Express the surface area of the box as a function of the length
of a side of the base.

62. A Norman window has the shape of a rectangle surmounted by
a semicircle. If the perimeter of the window is 30 ft, express
the area of the window as a function of the width of the
window.

63. A box with an open top is to be constructed from a rectangular
piece of cardboard with dimensions 12 in. by 20 in. by cutting
out equal squares of side at each corner and then folding up
the sides as in the figure. Express the vol ume of the box as a
function of .

64. A cell phone plan has a basic charge of $35 a month. The plan
includes 400 free minutes and charges 10 cents for each addi-
tional minute of usage. Write the monthly cost as a function
of the number of minutes used and graph as a function of
for .

65. In a certain state the maximum speed permitted on freeways is
and the minimum speed is . The fine for vio-

lating these limits is $15 for every mile per hour above the
maximum speed or below the minimum speed. Express the
amount of the fine as a function of the driving speed and
graph for .

66. An electricity company charges its customers a base rate of 
$10 a month, plus 6 cents per kilowatt-hour (kWh) for the first
1200 kWh and 7 cents per kWh for all usage over 1200 kWh.
Express the monthly cost as a function of the amount of
electricity used. Then graph the function for .E 0 � x � 2000

E x

2

F�x� 0 � x � 100
F x

40 mi�h65 mi�h

0 � x � 600
x C x

C

20

12
x

x

x

x

x x

x x

x

x
V

x

xA

3

67. In a certain country, income tax is assessed as follows. There is
no tax on income up to $10,000. Any income over $10,000 is
taxed at a rate of 10%, up to an income of $20,000. Any income
over $20,000 is taxed at 15%.
(a) Sketch the graph of the tax rate R as a function of the

income I.
(b) How much tax is assessed on an income of $14,000? 

On $26,000?
(c) Sketch the graph of the total assessed tax T as a function of

the income I.

68. The functions in Example 10 and Exercise 67 are called step
functions because their graphs look like stairs. Give two other
examples of step functions that arise in everyday life.

69–70 Graphs of and are shown. Decide whether each function
is even, odd, or neither. Explain your reasoning.

69. 70.

71. (a) If the point is on the graph of an even function, what
other point must also be on the graph?

(b) If the point is on the graph of an odd function, what
other point must also be on the graph?

72. A function has domain and a portion of its graph is
shown.
(a) Complete the graph of if it is known that is even.
(b) Complete the graph of if it is known that is odd.

73–78 Determine whether is even, odd, or neither. If you have a
graphing calculator, use it to check your answer visually.

73. 74.

75. 76.

77. 78. f �x� � 1 � 3x 3 � x 5f �x� � 1 � 3x 2 � x 4

f �x� �
x

x � 1
f �x� � x � x �

f �x� �
x

x 2 � 1
f �x� �

x 2

x 4 � 1

f

x0

y

5_5

f f
f f

f ��5, 5�

�5, 3�

�5, 3�

y

x

f

g

y

x

f

g
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SECTION 1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS    23

79. If and are both even functions, is even? If  and are
both odd functions, is odd? What if is even and is
odd? Justify your answers.

f t f � t f t

f � t f t

80. If and are both even functions, is the product even? If
and are both odd functions, is odd? What if is even and 

is odd? Justify your answers.
t ft f

t

f t ft f

A mathematical model is a mathematical description (often by means of a function or an
equation) of a real-world phenomenon such as the size of a population, the demand for a
product, the speed of a falling object, the concentration of a product in a chemical reaction,
the life expectancy of a person at birth, or the cost of emission reductions. The purpose of
the model is to understand the phenomenon and perhaps to make predictions about future
behavior.

Figure 1 illustrates the process of mathematical modeling. Given a real-world problem,
our first task is to formulate a mathematical model by identifying and naming the inde-
pendent and dependent variables and making assumptions that simplify the phenomenon
enough to make it mathematically tractable. We use our knowledge of the physical situation
and our mathematical skills to obtain equations that relate the variables. In situations where
there is no physical law to guide us, we may need to collect data (either from a library or
the Internet or by conducting our own experiments) and examine the data in the form of a
table in order to discern patterns. From this numeri cal representation of a function we may
wish to obtain a graphical representation by plotting the data. The graph might even sug-
gest a suitable algebraic formula in some cases.

The second stage is to apply the mathematics that we know (such as the calculus that will
be developed throughout this book) to the mathematical model that we have formulated in
order to derive mathematical conclusions. Then, in the third stage, we take those mathe-
matical conclusions and interpret them as information about the original real-world phe-
nomenon by way of offering explanations or making predictions. The final step is to test our
predictions by checking against new real data. If the predictions don’t compare well with
reality, we need to refine our model or to formulate a new model and start the cycle again.

A mathematical model is never a completely accurate representation of a physical situ-
ation—it is an idealization. A good model simplifies reality enough to permit mathematical
calculations but is accurate enough to provide valuable conclusions. It is important to real-
ize the limitations of the model. In the end, Mother Nature has the final say.

There are many different types of functions that can be used to model relationships 
observed in the real world. In what follows, we discuss the behavior and graphs of these 
functions and give examples of situations appropriately modeled by such functions.

Linear Models
When we say that y is a linear function of x, we mean that the graph of the function is a
line, so we can use the slope-intercept form of the equation of a line to write a formula for 

FIGURE 1 The modeling process

Real-world
problem

Mathematical
model

Real-world
predictions

Mathematical
conclusions

Test

Formulate Solve Interpret

1.2 Mathematical Models: A Catalog of Essential Functions

The coordinate geometry of lines is reviewed 
in Appendix B.
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24 CHAPTER 1 FUNCTIONS AND LIMITS

the function as

where m is the slope of the line and b is the y-intercept.
A characteristic feature of linear functions is that they grow at a constant rate. For in-

stance, Figure 2 shows a graph of the linear function and a table of sample
values. Notice that whenever x increases by 0.1, the value of increases by 0.3. So
increases three times as fast as x. Thus the slope of the graph , namely 3, can be
interpreted as the rate of change of y with respect to x.

(a) As dry air moves upward, it expands and cools. If the ground temperature is
and the temperature at a height of 1 km is , express the temperature T (in °C) as a
function of the height h (in kilometers), assuming that a linear model is appropriate.
(b) Draw the graph of the function in part (a). What does the slope represent?
(c) What is the temperature at a height of 2.5 km?

SOLUTION
(a) Because we are assuming that T is a linear function of h, we can write

We are given that when , so

In other words, the y-intercept is .
We are also given that when , so

The slope of the line is therefore and the required linear function is

(b) The graph is sketched in Figure 3. The slope is , and this represents
the rate of change of temperature with respect to height.

(c) At a height of , the temperature is

EXAMPLE 1v

T � �10�2.5� � 20 � �5	C

h � 2.5 km

m � �10	C�km

T � �10h � 20

m � 10 � 20 � �10

10 � m � 1 � 20

h � 1T � 10
b � 20

20 � m � 0 � b � b

h � 0T � 20

T � mh � b

10	C
20	C

x

y

0

y=3x-2

_2

FIGURE 2 

y � 3x � 2
f �x�f �x�

f �x� � 3x � 2

y � f �x� � mx � b

x

1.0 1.0
1.1 1.3
1.2 1.6
1.3 1.9
1.4 2.2
1.5 2.5

f �x� � 3x � 2

FIGURE 3 
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SECTION 1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS    25

If there is no physical law or principle to help us formulate a model, we construct an
empirical model, which is based entirely on collected data. We seek a curve that “fits” the
data in the sense that it captures the basic trend of the data points.

Table 1 lists the average carbon dioxide level in the atmosphere, measured
in parts per million at Mauna Loa Observatory from 1980 to 2008. Use the data in Table 1
to find a model for the carbon dioxide level.

SOLUTION We use the data in Table 1 to make the scatter plot in Figure 4, where repre-
sents time (in years) and represents the level (in parts per million, ppm).

Notice that the data points appear to lie close to a straight line, so it’s natural to
choose a linear model in this case. But there are many possible lines that approximate
these data points, so which one should we use? One possibility is the line that passes
through the first and last data points. The slope of this line is

and its equation is

or

Equation 1 gives one possible linear model for the carbon dioxide level; it is graphed
in Figure 5.

EXAMPLE 2v

C � 1.675t � 2977.81

C � 338.7 � 1.675�t � 1980�

385.6 � 338.7

2008 � 1980
�

46.9

28
� 1.675

C

FIGURE 4   Scatter plot for the average CO™ level
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Linear model through 
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TABLE 1

level level
Year (in ppm) Year (in ppm)

1980 338.7 1996 362.4
1982 341.2 1998 366.5
1984 344.4 2000 369.4
1986 347.2 2002 373.2
1988 351.5 2004 377.5
1990 354.2 2006 381.9
1992 356.3 2008 385.6
1994 358.6

CO2CO2
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26 CHAPTER 1 FUNCTIONS AND LIMITS

Notice that our model gives values higher than most of the actual levels. A better
linear model is obtained by a procedure from statistics called linear regression. If we use
a graphing calculator, we enter the data from Table 1 into the data editor and choose the
linear regression command. (With Maple we use the fit[leastsquare] command in the
stats package; with Mathematica we use the Fit command.) The machine gives the slope
and y-intercept of the regression line as

So our least squares model for the level is

In Figure 6 we graph the regression line as well as the data points. Comparing with
Figure 5, we see that it gives a better fit than our previous linear model.

Use the linear model given by Equa tion 2 to estimate the average
level for 1987 and to predict the level for the year 2015. According to this model, when
will the level exceed 420 parts per million?

SOLUTION Using Equation 2 with , we estimate that the average level in
1987 was

This is an example of interpolation because we have estimated a value between observed
values. (In fact, the Mauna Loa Observatory reported that the average level in 1987
was 348.93 ppm, so our estimate is quite accurate.)

With , we get

So we predict that the average level in the year 2015 will be 395.3 ppm. This is 
an example of extrapolation because we have predicted a value outside the region of
observations. Consequently, we are far less certain about the accuracy of our prediction.

Using Equation 2, we see that the level exceeds 420 ppm when

Solving this inequality, we get

CO2

t �
3358.07

1.65429
	 2029.92

1.65429t � 2938.07 � 420

CO2

CO2

C�2015� � �1.65429��2015� � 2938.07 	 395.32

t � 2015

CO2

C�1987� � �1.65429��1987� � 2938.07 	 349.00

t � 1987 CO2

CO2

v EXAMPLE 3 CO2

FIGURE 6
The regression line
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2 C � 1.65429t � 2938.07

CO2

m � 1.65429 b � �2938.07

A computer or graphing calculator finds the
regression line by the method of least squares,
which is to minimize the sum of the squares of
the vertical distances between the data points
and the line. The details are explained in 
Section 14.7.
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SECTION 1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS    27

We therefore predict that the level will exceed 420 ppm by the year 2030. This 
pre diction is risky because it involves a time quite remote from our observations. In fact,
we see from Figure 6 that the trend has been for levels to increase rather more rap-
idly in recent years, so the level might exceed 420 ppm well before 2030.

Polynomials
A function is called a polynomial if

where is a nonnegative integer and the numbers are constants called the
coefficients of the polynomial. The domain of any polynomial is If the 
leading coefficient , then the degree of the polynomial is . For example, the 
function

is a polynomial of degree 6.
A polynomial of degree 1 is of the form and so it is a linear function. 

A polynomial of degree 2 is of the form and is called a quadratic
function. Its graph is always a parabola obtained by shifting the parabola , as we
will see in the next section. The parabola opens upward if and downward if .
(See Figure 7.)

A polynomial of degree 3 is of the form

and is called a cubic function. Figure 8 shows the graph of a cubic function in part (a) and
graphs of polynomials of degrees 4 and 5 in parts (b) and (c). We will see later why the
graphs have these shapes.

FIGURE 8 (a) y=˛-x+1
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P�x� � ax 3 � bx 2 � cx � d a � 0

The graphs of quadratic
 functions are parabolas.

FIGURE 7 0
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a � 0 a � 0
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28 CHAPTER 1 FUNCTIONS AND LIMITS

Polynomials are commonly used to model various quantities that occur in the natural
and social sciences. For instance, in Section 2.7 we will explain why economists often use
a polynomial to represent the cost of producing units of a commodity. In the fol-
lowing example we use a quadratic function to model the fall of a ball.

A ball is dropped from the upper observation deck of the CN Tower, 450 m
above the ground, and its height h above the ground is recorded at 1-second intervals in
Table 2. Find a model to fit the data and use the model to predict the time at which the
ball hits the ground.

SOLUTION We draw a scatter plot of the data in Figure 9 and observe that a linear model
is inappropriate. But it looks as if the data points might lie on a parabola, so we try a
quadratic model instead. Using a graphing calculator or computer algebra system (which
uses the least squares method), we obtain the following quadratic model:

In Figure 10 we plot the graph of Equation 3 together with the data points and see
that the quadratic model gives a very good fit.

The ball hits the ground when , so we solve the quadratic equation

The quadratic formula gives

The positive root is , so we predict that the ball will hit the ground after about
9.7 seconds.

Power Functions
A function of the form , where is a constant, is called a power function. We con-
sider several cases.

f �x� � xa a

t 	 9.67

t �
�0.96 � s�0.96�2 � 4��4.90��449.36�

2��4.90�

�4.90t 2 � 0.96t � 449.36 � 0

h � 0

FIGURE 10
Quadratic model for a falling ball

2

200

400

4 6 8 t0

FIGURE 9
Scatter plot for a falling ball

200

400

t
(seconds)

0 2 4 6 8

hh
(meters)

3 h � 449.36 � 0.96t � 4.90t 2

EXAMPLE 4

P�x� x

TABLE 2

Time Height
(seconds) (meters)

0 450
1 445
2 431
3 408
4 375
5 332
6 279
7 216
8 143
9 61
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SECTION 1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS    29

(i) , where n is a positive integer
The graphs of for , and are shown in Figure 11. (These are poly-
nomials with only one term.) We already know the shape of the graphs of (a line
through the origin with slope 1) and [a parabola, see Example 2(b) in Section 1.1].

The general shape of the graph of depends on whether is even or odd. If
is even, then is an even function and its graph is similar to the parabola

. If is odd, then is an odd function and its graph is similar to that of

. Notice from Figure 12, however, that as increases, the graph of
becomes flatter near 0 and steeper when . (If is small, then is smaller, is
even smaller, is smaller still, and so on.)

(ii) , where n is a positive integer
The function is a root function. For it is the square root 
function , whose domain is and whose graph is the upper half of the 
parabola . [See Figure 13(a).] For other even values of n, the graph of is
similar to that of . For we have the cube root function whose
domain is (recall that every real number has a cube root) and whose graph is shown
in Figure 13(b). The graph of for n odd is similar to that of .

(b) ƒ=Œ„x

x

y

0

(1, 1)

(a) ƒ=œ„x

x

y

0

(1, 1)

FIGURE 13
Graphs of root functions
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FIGURE 12
Families of power functions
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30 CHAPTER 1 FUNCTIONS AND LIMITS

(iii)

The graph of the reciprocal function is shown in Figure 14. Its graph
has the equation , or , and is a hyperbola with the coordinate axes as its
asymptotes. This function arises in physics and chemistry in connection with Boyle’s
Law, which says that, when the temperature is constant, the volume of a gas is
inversely proportional to the pressure :

where C is a constant. Thus the graph of V as a function of P (see Figure 15) has the
same general shape as the right half of Figure 14.

Power functions are also used to model species-area relationships (Exercises 26–27),
illumination as a function of a distance from a light source (Exercise 25), and the period
of revolution of a planet as a function of its distance from the sun (Exercise 28).

Rational Functions
A rational function is a ratio of two polynomials:

where and are polynomials. The domain consists of all values of such that . 
A simple example of a rational function is the function , whose domain is

; this is the reciprocal function graphed in Figure 14. The function

is a rational function with domain . Its graph is shown in Figure 16.

Algebraic Functions
A function is called an algebraic function if it can be constructed using algebraic opera-
tions (such as addition, subtraction, multiplication, division, and taking roots) starting with
polynomials. Any rational function is automatically an algebraic function. Here are two
more examples:

When we sketch algebraic functions in Chapter 3, we will see that their graphs can assume
a variety of shapes. Figure 17 illustrates some of the possibilities.

a � �1
f �x� � x�1 � 1�x

xy � 1y � 1�x

V
P

V �
C

P

P

V

0

FIGURE 15
Volume as a function of pressure

at constant temperature

f

f �x� �
P�x�
Q�x�

Q�x� � 0xQP
f �x� � 1�x

�x � x � 0�

f �x� �
2x 4 � x 2 � 1

x 2 � 4

�x � x � �2�

f

t�x� �
x 4 � 16x 2

x � sx
� �x � 2�s

3 x � 1f �x� � sx 2 � 1

FIGURE 14
The reciprocal function
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SECTION 1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS    31

An example of an algebraic function occurs in the theory of relativity. The mass of a
particle with velocity is

where is the rest mass of the particle and km�s is the speed of light in a
vacuum.

Trigonometric Functions
Trigonometry and the trigonometric functions are reviewed on Reference Page 2 and also
in Appendix D. In calculus the convention is that radian measure is always used (except
when otherwise indicated). For example, when we use the function , it is 
understood that means the sine of the angle whose radian measure is . Thus the graphs
of the sine and cosine functions are as shown in Figure 18.

Notice that for both the sine and cosine functions the domain is and the range
is the closed interval . Thus, for all values of , we have

or, in terms of absolute values,

Also, the zeros of the sine function occur at the integer multiples of ; that is,

An important property of the sine and cosine functions is that they are periodic func-
tions and have period . This means that, for all values of ,

FIGURE 17
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FIGURE 18
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�

n an integerx � n�whensin x � 0
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The Reference Pages are located at the front 
and back of the book.
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32 CHAPTER 1 FUNCTIONS AND LIMITS

The periodic nature of these functions makes them suitable for modeling repetitive phe-
nomena such as tides, vibrating springs, and sound waves. For instance, in Example 4 in 
Section 1.3 we will see that a reasonable model for the number of hours of daylight in
Philadelphia t days after January 1 is given by the function

The tangent function is related to the sine and cosine functions by the equation

and its graph is shown in Figure 19. It is undefined whenever , that is, when
, Its range is . Notice that the tangent function has per iod :

The remaining three trigonometric functions (cosecant, secant, and cotangent) are 
the reciprocals of the sine, cosine, and tangent functions. Their graphs are shown in 
Appendix D.

Exponential Functions
The exponential functions are the functions of the form , where the base is a
positive constant. The graphs of and are shown in Figure 20. In both cases
the domain is and the range is .

Exponential functions will be studied in detail in Chapter 6, and we will see that they 
are useful for modeling many natural phenomena, such as population growth ( if )
and radioactive decay ( if 

Logarithmic Functions
The logarithmic functions , where the base is a positive constant, are the 
inverse functions of the exponential functions. They will be studied in Chapter 6. Figure 21
shows the graphs of four logarithmic functions with various bases. In each case the 
domain is , the range is , and the function increases slowly when .

Classify the following functions as one of the types of functions that we
have discussed.
(a) (b)

(c) (d)

SOLUTION
(a) is an exponential function. (The is the exponent.)

(b) is a power function. (The is the base.) We could also consider it to be a
polynomial of degree 5.

(c) is an algebraic function.

(d) is a polynomial of degree 4.u�t� � 1 � t � 5t 4

h�x� �
1 � x

1 � sx

xt�x� � x 5

EXAMPLE 5

xf �x� � 5x

u�t� � 1 � t � 5t 4h�x� �
1 � x

1 � sx

t�x� � x 5f �x� � 5x

x 	 1���, ���0, ��

af �x� � loga x

a 
 1�.
a 	 1

�0, �����, ��
y � �0.5�xy � 2x

af �x� � ax

for all xtan�x � �� � tan x

����, ���3��2, . . . .x � ���2
cos x � 0

tan x �
sin x

cos x

L�t� � 12 � 2.8 sin
 2�

365
�t � 80��

FIGURE 19
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SECTION 1.2 MATHEMATICAL MODELS: A CATALOG OF ESSENTIAL FUNCTIONS    33

1–2 Classify each function as a power function, root function,
polynomial (state its degree), rational function, algebraic function,
trigonometric function, exponential function, or logarithmic 
function.

1. (a) (b)

(c) (d)

(e) (f)

2. (a) (b)

(c) (d)

(e) (f)

3–4 Match each equation with its graph. Explain your choices.
(Don’t use a computer or graphing calculator.)

3. (a) (b) (c) 

4. (a) (b)
(c) (d)

5. (a) Find an equation for the family of linear functions with
slope 2 and sketch several members of the family.

(b) Find an equation for the family of linear functions such that
and sketch several members of the family.

(c) Which function belongs to both families?
f �2� � 1

G

f

g

F

y

x

y � s
3 xy � x 3

y � 3xy � 3x

f

0

g
h

y

x

y � x 8y � x 5y � x 2

y �
sx 3 � 1

1 � s
3 x

y �
s

1 � s

y � tan t � cos ty � x 2�2 � x 3�

y � x�y � � x

w��� � sin � cos2�v�t� � 5 t

u�t� � 1 � 1.1t � 2.54t 2h�x� �
2x 3

1 � x 2

t�x� � s
4 xf �x� � log2 x

6. What do all members of the family of linear functions
have in common? Sketch several mem-

bers of the family.

7. What do all members of the family of linear functions
have in common? Sketch several members of 

the family.

8. Find expressions for the quadratic functions whose graphs are
shown.

9. Find an expression for a cubic function if and
.

10. Recent studies indicate that the average surface tempera-
ture of the earth has been rising steadily. Some scientists 
have modeled the temperature by the linear function

, where is temperature in and
represents years since 1900.
(a) What do the slope and -intercept represent?
(b) Use the equation to predict the average global surface 

temperature in 2100.

11. If the recommended adult dosage for a drug is ( in mg), then
to determine the appropriate dosage for a child of age ,
pharmacists use the equation . Suppose
the dosage for an adult is 200 mg.
(a) Find the slope of the graph of . What does it represent?
(b) What is the dosage for a newborn?

12. The manager of a weekend flea market knows from past expe-
rience that if he charges dollars for a rental space at the mar-
ket, then the number of spaces he can rent is given by the
equation .
(a) Sketch a graph of this linear function. (Remember that the

rental charge per space and the number of spaces rented
can’t be negative quantities.)

(b) What do the slope, the -intercept, and the -intercept of
the graph represent?

13. The relationship between the Fahrenheit and Celsius
temperature scales is given by the linear function .
(a) Sketch a graph of this function.
(b) What is the slope of the graph and what does it represent?

What is the F-intercept and what does it represent?

14. Jason leaves Detroit at 2:00 PM and drives at a constant speed
west along I-96. He passes Ann Arbor, 40 mi from Detroit, at
2:50 PM.
(a) Express the distance traveled in terms of the time elapsed.

xy

F � 9
5 C � 32

�C��F�

y � 200 � 4x
y

x

c

c � 0.0417D�a � 1�
ac

D

T

t�CTT � 0.02t � 8.50

f ��1� � f �0� � f �2� � 0
f �1� � 6f

y

(0, 1)

(1, _2.5)

(_2, 2)

y

x0

(4, 2)

f

g
x0

3

f �x� � c � x

f �x� � 1 � m�x � 3�

1.2 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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34 CHAPTER 1 FUNCTIONS AND LIMITS

(b) Draw the graph of the equation in part (a).
(c) What is the slope of this line? What does it represent?

15. Biologists have noticed that the chirping rate of crickets of a
certain species is related to temperature, and the relationship
appears to be very nearly linear. A cricket produces 113 chirps
per minute at and 173 chirps per minute at .
(a) Find a linear equation that models the temperature T as a

function of the number of chirps per minute N.
(b) What is the slope of the graph? What does it represent?
(c) If the crickets are chirping at 150 chirps per minute,

estimate the temperature.

16. The manager of a furniture factory finds that it costs $2200 
to manufacture 100 chairs in one day and $4800 to produce
300 chairs in one day.
(a) Express the cost as a function of the number of chairs pro-

duced, assuming that it is linear. Then sketch the graph.
(b) What is the slope of the graph and what does it represent?
(c) What is the y-intercept of the graph and what does it 

represent?

17. At the surface of the ocean, the water pressure is the same as
the air pressure above the water, . Below the surface,
the water pressure increases by for every 10 ft of
descent.
(a) Express the water pressure as a function of the depth below

the ocean surface.
(b) At what depth is the pressure ?

18. The monthly cost of driving a car depends on the number of
miles driven. Lynn found that in May it cost her $380 to drive
480 mi and in June it cost her $460 to drive 800 mi.
(a) Express the monthly cost as a function of the distance

driven assuming that a linear relationship gives a suitable
model.

(b) Use part (a) to predict the cost of driving 1500 miles per
month.

(c) Draw the graph of the linear function. What does the slope
represent?

(d) What does the C-intercept represent?
(e) Why does a linear function give a suitable model in this 

situation?

19–20 For each scatter plot, decide what type of function you
might choose as a model for the data. Explain your choices.

19. (a) (b)

0 x

y

0 x

y

d,
C

100 lb�in2

4.34 lb�in2
15 lb�in2

80�F70�F

20. (a) (b)

; 21. The table shows (lifetime) peptic ulcer rates (per 100 popu-
lation) for various family incomes as reported by the National
Health Interview Survey.

(a) Make a scatter plot of these data and decide whether a 
linear model is appropriate.

(b) Find and graph a linear model using the first and last data
points.

(c) Find and graph the least squares regression line.
(d) Use the linear model in part (c) to estimate the ulcer rate

for an income of $25,000.
(e) According to the model, how likely is someone with an

income of $80,000 to suffer from peptic ulcers?
(f) Do you think it would be reasonable to apply the model to

someone with an income of $200,000?

; 22. Biologists have observed that the chirping rate of crickets of a
certain species appears to be related to temperature. The table
shows the chirping rates for various temperatures.

(a) Make a scatter plot of the data.
(b) Find and graph the regression line.
(c) Use the linear model in part (b) to estimate the chirping rate

at .100�F

0 x

y

0 x

y

Ulcer rate
Income (per 100 population)

$4,000 14.1
$6,000 13.0
$8,000 13.4

$12,000 12.5
$16,000 12.0
$20,000 12.4
$30,000 10.5
$45,000 9.4
$60,000 8.2

Temperature Chirping rate Temperature Chirping rate
(°F) (chirps�min) (°F)  (chirps�min)

50 20 75 140
55 46 80 173
60 79 85 198
65 91 90 211
70 113
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; 23. The table gives the winning heights for the men’s Olympic
pole vault competitions up to the year 2004.

(a) Make a scatter plot and decide whether a linear model is
appropriate.

(b) Find and graph the regression line.
(c) Use the linear model to predict the height of the winning

pole vault at the 2008 Olympics and compare with the
actual winning height of 5.96 meters.

(d) Is it reasonable to use the model to predict the winning
height at the 2100 Olympics?

; 24. The table shows the percentage of the population of
Argentina that has lived in rural areas from 1955 to 2000.
Find a model for the data and use it to estimate the rural per-
centage in 1988 and 2002.

25. Many physical quantities are connected by inverse square
laws, that is, by power functions of the form . In
particular, the illumination of an object by a light source is
inversely proportional to the square of the distance from the
source. Suppose that after dark you are in a room with just
one lamp and you are trying to read a book. The light is too
dim and so you move halfway to the lamp. How much
brighter is the light?

26. It makes sense that the larger the area of a region, the larger
the number of species that inhabit the region. Many

f �x� � kx�2

ecologists have modeled the species-area relation with a
power function and, in particular, the number of species of
bats living in caves in central Mexico has been related to the
surface area of the caves by the equation .
(a) The cave called Misión Imposible near Puebla, Mexico,

has a surface area of . How many species of
bats would you expect to find in that cave?

(b) If you discover that four species of bats live in a cave,
estimate the area of the cave.

; 27. The table shows the number of species of reptiles and
amphibians inhabiting Caribbean islands and the area of
the island in square miles.

(a) Use a power function to model as a function of .
(b) The Caribbean island of Dominica has area . How

many species of reptiles and amphibians would you
expect to find on Dominica?

; 28. The table shows the mean (average) distances d of the plan-
ets from the sun (taking the unit of measurement to be the
distance from the earth to the sun) and their periods T (time
of revolution in years).

(a) Fit a power model to the data.
(b) Kepler’s Third Law of Planetary Motion states that

“The square of the period of revolution of a planet 
is propor tional to the cube of its mean distance from
the sun.” 

Does your model corroborate Kepler’s Third Law?

A S � 0.7A0.3

S

A � 60 m2

291 m2

AN

A
N

Year Height (m) Year Height (m)

1896 3.30 1960 4.70
1900 3.30 1964 5.10
1904 3.50 1968 5.40
1908 3.71 1972 5.64
1912 3.95 1976 5.64
1920 4.09 1980 5.78
1924 3.95 1984 5.75
1928 4.20 1988 5.90
1932 4.31 1992 5.87
1936 4.35 1996 5.92
1948 4.30 2000 5.90
1952 4.55 2004 5.95
1956 4.56

Percentage Percentage
Year rural Year rural

1955 30.4 1980 17.1
1960 26.4 1985 15.0
1965 23.6 1990 13.0
1970 21.1 1995 11.7
1975 19.0 2000 10.5

Planet d T

Mercury 0.387 0.241
Venus 0.723 0.615
Earth 1.000 1.000
Mars 1.523 1.881
Jupiter 5.203 11.861
Saturn 9.541 29.457
Uranus 19.190 84.008
Neptune 30.086 164.784

Island

Saba 4 5
Monserrat 40 9
Puerto Rico 3,459 40
Jamaica 4,411 39
Hispaniola 29,418 84
Cuba 44,218 76

NA
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In this section we start with the basic functions we discussed in Section 1.2 and obtain new
functions by shifting, stretching, and reflecting their graphs. We also show how to combine
pairs of functions by the standard arithmetic operations and by composition.

Transformations of Functions
By applying certain transformations to the graph of a given function we can obtain the
graphs of certain related functions. This will give us the ability to sketch the graphs of 
many functions quickly by hand. It will also enable us to write equations for given graphs.
Let’s first consider translations. If c is a positive number, then the graph of is
just the graph of shifted upward a distance of c units (because each y-coordinate
is increased by the same number c). Likewise, if , where , then the
value of at x is the same as the value of at (c units to the left of x). There-
fore the graph of is just the graph of shifted units to the right (see
Figure 1).

Vertical and Horizontal Shifts Suppose . To obtain the graph of

Now let’s consider the stretching and reflecting transformations. If , then the 
graph of is the graph of stretched by a factor of c in the vertical 
direction (because each y-coordinate is multiplied by the same number c). The graph of

is the graph of reflected about the -axis because the point is y � �f �x� y � f �x� x �x, y�

y � f �x�y � cf �x�
c 	 1

FIGURE 2
Stretching and reflecting the graph of ƒ

y=   ƒ1
c

x

y

0

y=f(_x)

y=ƒ

y=_ƒ

y=cƒ
(c>1)

FIGURE 1
Translating the graph of ƒ

x

y

0

y=f(x-c)y=f(x+c) y =ƒ

y=ƒ-c

y=ƒ+c

c

c

c c

y � f �x � c�, shift the graph of y � f �x� a distance c units to the left

y � f �x � c�, shift the graph of y � f �x� a distance c units to the right

y � f �x� � c, shift the graph of y � f �x� a distance c units downward

y � f �x� � c, shift the graph of y � f �x� a distance c units upward

c 	 0

cy � f �x�y � f �x � c�
x � cft

c 	 0t�x� � f �x � c�
y � f �x�

y � f �x� � c

1.3 New Functions from Old Functions
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replaced by the point . (See Figure 2 and the following chart, where the results of
other stretching, shrinking, and reflecting transformations are also given.)

Vertical and Horizontal Stretching and Reflecting Suppose . To obtain the 
graph of

Figure 3 illustrates these stretching transformations when applied to the cosine function
with . For instance, in order to get the graph of we multiply the y-coordi-
nate of each point on the graph of by 2. This means that the graph of
gets stretched vertically by a factor of 2.

Given the graph of , use transformations to graph ,

, , , and .

SOLUTION The graph of the square root function , obtained from Figure 13(a) 
in Section 1.2, is shown in Figure 4(a). In the other parts of the figure we sketch

by shifting 2 units downward, by shifting 2 units to the right,
by reflecting about the -axis, by stretching vertically by a factor 

of 2, and by reflecting about the -axis.

(a) y=œ„x (b) y=œ„-2x (c) y=œ„„„„x-2 (d) y=_œ„x (e) y=2œ„x (f ) y=œ„„_x

0 x

y

0 x

y

0 x

y

20 x

y

_2

0 x

y

1

10 x

y

y � s�x y
y � �sx x y � 2sx
y � sx � 2 y � sx � 2

y � sx

y � s�x

y � sx � 2

y � sx � 2 y � �sx y � 2sx

v EXAMPLE 1 y � sx

FIGURE 3

x

1

2

y

0

y=cos x

y=cos 2x

y=cos    x1

2

x

1

2

y

0

y=2 cos x

y=cos x

y=    cos x1

2

1

y � cos x y � cos x
c � 2 y � 2 cos x

y � f ��x�, reflect the graph of y � f �x� about the y-axis

y � �f �x�, reflect the graph of y � f �x� about the x-axis

y � f �x�c�, stretch the graph of y � f �x� horizontally by a factor of c

y � f �cx�, shrink the graph of y � f �x� horizontally by a factor of c

y � �1�c� f �x�, shrink the graph of y � f �x� vertically by a factor of c

y � cf �x�, stretch the graph of y � f �x� vertically by a factor of c

c 	 1

�x, �y�

SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS    37

FIGURE 4
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38 CHAPTER 1 FUNCTIONS AND LIMITS

Sketch the graph of the function .

SOLUTION Completing the square, we write the equation of the graph as

This means we obtain the desired graph by starting with the parabola and shifting
3 units to the left and then 1 unit upward (see Figure 5).

Sketch the graphs of the following functions.
(a) (b)

SOLUTION
(a) We obtain the graph of from that of by compressing horizon-
tally by a factor of 2. (See Figures 6 and 7.) Thus, whereas the period of is ,
the period of is .

(b) To obtain the graph of , we again start with . We reflect 
about the -axis to get the graph of and then we shift 1 unit upward to get

(See Figure 8.)

Figure 9 shows graphs of the number of hours of daylight as functions of the
time of the year at several latitudes. Given that Philadelphia is located at approximately

latitude, find a function that models the length of daylight at Philadelphia.40�N

EXAMPLE 4

FIGURE 8
x

1

2

y

π0 2π

y=1-sin x

π

2

3π

2

y � 1 � sin x.
x y � �sin x

y � 1 � sin x y � sin x

FIGURE 6

x0

y

1

π

2
π

y=sin x

FIGURE 7

x0

y

1

π

2

π

4
π

y=sin 2x

y � sin 2x 2��2 � �
y � sin x 2�

y � sin 2x y � sin x

y � sin 2x y � 1 � sin x
EXAMPLE 3

FIGURE 5 (a) y=≈ (b) y=(x+3)@+1

x0_1_3

1

y

(_3, 1)

x0

y

y � x 2

y � x 2 � 6x � 10 � �x � 3�2 � 1

EXAMPLE 2 f (x) � x 2 � 6x � 10
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SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS    39

SOLUTION Notice that each curve resembles a shifted and stretched sine function. By
looking at the blue curve we see that, at the latitude of Philadelphia, daylight lasts about
14.8 hours on June 21 and 9.2 hours on December 21, so the amplitude of the curve (the
factor by which we have to stretch the sine curve vertically) is .

By what factor do we need to stretch the sine curve horizontally if we measure the
time t in days? Because there are about 365 days in a year, the period of our model
should be 365. But the period of is , so the horizontal stretching factor is

.
We also notice that the curve begins its cycle on March 21, the 80th day of the year,

so we have to shift the curve 80 units to the right. In addition, we shift it 12 units
upward. Therefore we model the length of daylight in Philadelphia on the t th day of the
year by the function

Another transformation of some interest is taking the absolute value of a function. If
, then according to the definition of absolute value, when and
when . This tells us how to get the graph of from the graph

of : The part of the graph that lies above the -axis remains the same; the part that
lies below the -axis is reflected about the -axis.

Sketch the graph of the function .

SOLUTION We first graph the parabola in Figure 10(a) by shifting the parabola
downward 1 unit. We see that the graph lies below the -axis when ,

so we reflect that part of the graph about the -axis to obtain the graph of
in Figure 10(b).

Combinations of Functions
Two functions and can be combined to form new functions , , , and 
in a manner similar to the way we add, subtract, multiply, and divide real numbers. The
sum and difference functions are defined by

EXAMPLE 5v

� f � t��x� � f �x� � t�x�� f � t��x� � f �x� � t�x�

f�tftf � tf � ttf

y � � x 2 � 1�x
�1 
 x 
 1xy � x 2

y � x 2 � 1

y � � x 2 � 1 �

xx
xy � f �x�

y � � f �x��f �x� 
 0y � �f �x�
f �x� 
 0y � f �x�y � � f �x��

L�t� � 12 � 2.8 sin
 2�

365
�t � 80��

c � 2��365
2�y � sin t

1
2 �14.8 � 9.2� � 2.8

FIGURE 9
Graph of the length of daylight

from March 21 through December 21
at various latitudes

Lucia C. Harrison, Daylight, Twilight, Darkness and Time  
(New York, 1935) page 40.
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(a) y=≈-1
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40 CHAPTER 1 FUNCTIONS AND LIMITS

If the domain of is A and the domain of is B, then the domain of is the intersec-
tion because both and have to be defined. For example, the domain of

is and the domain of is , so the domain
of is .

Similarly, the product and quotient functions are defined by

The domain of is , but we can’t divide by 0 and so the domain of is
. For instance, if and , then the domain of

the rational function is , or . 
There is another way of combining two functions to obtain a new function. For exam-

ple, suppose that and . Since y is a function of u and u
is, in turn, a function of x, it follows that is ultimately a function of x. We compute this
by substitution:

The procedure is called composition because the new function is composed of the two
given functions and .

In general, given any two functions and , we start with a number x in the domain of
and find its image . If this number is in the domain of , then we can calculate

the value of . Notice that the output of one function is used as the input to the next
function. The result is a new function obtained by substituting into . It is
called the composition (or composite) of and and is denoted by (“ f circle t”).

Definition Given two functions and , the composite function (also called
the composition of and ) is defined by

The domain of is the set of all in the domain of such that is in the domain
of . In other words, is defined whenever both and are defined. Fig-
ure 11 shows how to picture in terms of machines.

If and , find the composite functions and .

SOLUTION We have

| NOTE You can see from Example 6 that, in general, . Remember, the 
notation means that the function is applied first and then is applied second. In
Example 6, is the function that first subtracts 3 and then squares; is the function
that first squares and then subtracts 3.

�x � A � B � t�x� � 0�
�x � x � 1�

t � ff � t

ftf � t

f � t � t � f

EXAMPLE 6

�t � f ��x� � t� f �x�� � t�x 2 � � x 2 � 3

� f � t��x� � f �t�x�� � f �x � 3� � �x � 3�2

t � ff � tt�x� � x � 3f �x� � x 2

f � t

f �t�x��t�x�� f � t��x�f
t�x�txf � t

� f � t��x� � f �t�x��

tf
f � ttf

f � ttf
fth�x� � f �t�x��

f �t�x��
ft�x�t�x�t

tf
tf

y � f �u� � f �t�x�� � f �x2 � 1� � sx 2 � 1

y
u � t�x� � x 2 � 1y � f �u� � su

���, 1� � �1, ��� f�t��x� � x 2��x � 1�
t�x� � x � 1f �x� � x 2

f�tA � Bft

� f

t
	�x� �

f �x�
t�x�

� ft��x� � f �x�t�x�

A � B � 
0, 2�� f � t��x� � sx � s2 � x
B � ���, 2�t�x� � s2 � xA � 
0, ��f �x� � sx

t�x�f �x�A � B
f � ttf

f

g

FIGURE 11

f{©}

f • g

The f • g machine is composed of 
the g machine (first) and then
the f machine.

x

©

(input)

(output)
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SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS    41

If and , find each function and its domain.
(a) (b) (c) (d) 

SOLUTION

(a)

The domain of is .

(b)

For to be defined we must have . For to be defined we must have
If , then . , that is, , or . Thus we have , so the domain of

is the closed interval .

(c)

The domain of is .

(d)

This expression is defined when both and The first
inequality means , and the second is equivalent to , or , or

. Thus , so the domain of is the closed interval .

It is possible to take the composition of three or more functions. For instance, the com-
posite function is found by first applying , then , and then as follows:

Find if , and .

SOLUTION

So far we have used composition to build complicated functions from simpler ones. But
in calculus it is often useful to be able to decompose a complicated function into simpler
ones, as in the following example.

Given , find functions , , and h such that .

SOLUTION Since , the formula for F says: First add 9, then take the
cosine of the result, and finally square. So we let

Then

EXAMPLE 9

EXAMPLE 8

EXAMPLE 7v
t � tf � ft � ff � t

t�x� � s2 � xf �x� � sx

� 
cos�x � 9��2 � F�x�

� f � t � h��x� � f �t�h�x��� � f �t�x � 9�� � f �cos�x � 9��

f �x� � x 2
t�x� � cos xh�x� � x � 9

F�x� � 
cos�x � 9��2

F � f � t � htfF�x� � cos2�x � 9�

� f ��x � 3�10 � �
�x � 3�10

�x � 3�10 � 1

� f � t � h��x� � f �t�h�x��� � f �t�x � 3��

h�x� � x � 3f �x� � x��x � 1�, t�x� � x 10f � t � h

� f � t � h��x� � f �t�h�x���

fthf � t � h


�2, 2�t � t�2 � x � 2x � �2
2 � x � 4s2 � x � 2x � 2

2 � s2 � x � 0.2 � x � 0

�t � t��x� � t�t�x�� � t(s2 � x ) � s2 � s2 � x


0, ��f � f

� f � f ��x� � f � f �x�� � f (sx ) � ssx � s
4 x


0, 4�t � f
0 � x � 4x � 4sx � 22 � sx � 0a 2 � b 20 � a � b

s2 � sxx � 0sx

�t � f ��x� � t� f �x�� � t(sx ) � s2 � sx

� �x � x � 2� � ���, 2��x � 2 � x � 0�f � t

� f � t��x� � f �t�x�� � f (s2 � x ) � ss2 � x � s
4 2 � x
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42 CHAPTER 1 FUNCTIONS AND LIMITS

1. Suppose the graph of is given. Write equations for the graphs
that are obtained from the graph of as follows.
(a) Shift 3 units upward. (b) Shift 3 units downward.
(c) Shift 3 units to the right. (d) Shift 3 units to the left.
(e) Reflect about the -axis. (f) Reflect about the -axis.
(g) Stretch vertically by a factor of 3.
(h) Shrink vertically by a factor of 3.

2. Explain how each graph is obtained from the graph of .
(a) (b)
(c) (d)
(e) (f)

3. The graph of is given. Match each equation with its
graph and give reasons for your choices.
(a) (b)
(c) (d)
(e)

4. The graph of is given. Draw the graphs of the following
functions.
(a) (b)
(c) (d)

5. The graph of is given. Use it to graph the following 
functions.
(a) (b)
(c) (d)

x

y

0 1

1

y � �f ��x�y � f ��x�
y � f ( 1

2 x)y � f �2x�

f

x

y

0 1

2

y � f ( 1
3 x) � 1y � �2 f �x�

y � f �x � 2�y � f �x� � 2

f

!@

$

%

#f

y

3

_3

6

0 x3_3_6 6

y � 2 f �x � 6�
y � �f �x � 4�y � 1

3 f �x�
y � f �x� � 3y � f �x � 4�

y � f �x�

y � 8 f ( 1
8 x)y � �f �x� � 1

y � f �8x�y � 8 f �x�
y � f �x � 8�y � f �x� � 8

y � f �x�

yx

f
f 6–7 The graph of is given. Use transformations to

create a function whose graph is as shown.

6. 7.

8. (a) How is the graph of related to the graph of
? Use your answer and Figure 6 to sketch the

graph of .
(b) How is the graph of related to the graph of

? Use your answer and Figure 4(a) to sketch the
graph of .

9–24 Graph the function by hand, not by plotting points, but by
starting with the graph of one of the standard functions given in Sec-
tion 1.2, and then applying the appropriate transformations.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. The city of New Orleans is located at latitude . Use Fig-
ure 9 to find a function that models the number of hours of
daylight at New Orleans as a function of the time of year. To
check the accuracy of your model, use the fact that on March 31
the sun rises at 5:51 AM and sets at 6:18 PM in New Orleans. 

_4
_1

_2.5

x

y

_1 0

y � � x � � 2

30�N

y � � cos �x �y � � sx � 1 �

y �
1

4
 tan�x �

�

4 	y � � x � 2 �

y � 1 � 2x � x 2

y � 1 � 2sx � 3y � 1
2�1 � cos x�

y �
2

x
� 2y � sin(1

2 x)

y � 4 sin 3xy � sx � 2 � 1

y � x 2 � 6x � 4y � �s
3 x

y � �x � 1�3y �
1

x � 2

y � s3x � x 2 

y � 1 � sx
y � sx

y � 1 � sx
y � 2 sin x

y � sin x
y � 2 sin x

5 x

y

20

3

1.5
y=œ„„„„„„3x-≈

x

y

30

1.3 Exercises

1. Homework Hints available at stewartcalculus.com
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SECTION 1.3 NEW FUNCTIONS FROM OLD FUNCTIONS    43

26. A variable star is one whose brightness alternately increases
and decreases. For the most visible variable star, Delta Cephei,
the time between periods of maximum brightness is 5.4 days,
the average brightness (or magnitude) of the star is 4.0, and its
brightness varies by magnitude. Find a function that
models the brightness of Delta Cephei as a function of time.

27. (a) How is the graph of related to the graph of ?

(b) Sketch the graph of .

(c) Sketch the graph of .

28. Use the given graph of to sketch the graph of .
Which features of are the most important in sketching

? Explain how they are used.

29–30 Find (a) , (b) , (c) , and (d) and state their
domains.

29. ,  

30. ,  

31–36 Find the functions (a) , (b) , (c) , and (d)
and their domains.

31. ,  

32. ,  

33. ,  

34. ,  

35. ,  

36. ,  

37–40 Find 

37. ,  ,  

38. ,  ,  

39. ,  ,  

40. ,  ,  h�x� � s
3 xt�x� �

x

x � 1
f �x� � tan x

h�x� � x 3 � 2t�x� � x 2f �x� � sx � 3

h�x� � sxt�x� � 2 xf �x� � � x � 4 �
h�x� � x 2

t�x� � sin xf �x� � 3x � 2

f � t � h.

t�x� � sin 2xf �x� �
x

1 � x

t�x� �
x � 1

x � 2
f �x� � x �

1

x

t�x� � s
3 1 � xf �x� � sx

t�x� � cos xf �x� � 1 � 3x

t�x� � x 2 � 3x � 4f �x� � x � 2

t�x� � 2x � 1f �x� � x 2 � 1

t � tf � ft � ff � t

t�x� � sx 2 � 1f �x� � s3 � x

t�x� � 3x 2 � 1f �x� � x 3 � 2x 2

f�tftf � tf � t

1

10 x

y

y � 1�f �x�
f

y � 1�f �x�f

y � s� x �
y � sin � x �

fy � f (� x �)

	0.35

x 1 2 3 4 5 6

3 1 4 2 2 5

6 3 2 1 2 3t�x�

f �x�

41–46 Express the function in the form 

41. 42.

43. 44.

45. 46.

47–49 Express the function in the form 

47. 48.

49.

50. Use the table to evaluate each expression.
(a) (b) (c) 

(d) (e) (f)

51. Use the given graphs of and to evaluate each expression, 
or explain why it is undefined.
(a) (b) (c) 

(d) (e) (f)

52. Use the given graphs of and to estimate the value of
for . Use these estimates to

sketch a rough graph of .

f � t.

v�t� � sec�t 2� tan�t 2�

g

f

x

y

0 1

1

f � t

x � �5, �4, �3, . . . , 5
f t

f �t�x��

x

y

0

fg

2

2

� f � f ��4��t � t���2��t � f ��6�
� f � t��0�t� f �0��f �t�2��

tf

� f � t��6��t � f ��3�t�t�1��
f � f �1��t� f �1��f �t�1��

H�x� � sec4(sx )

H�x� � s
8 2 � � x �R�x� � ssx � 1

f � t � h.

u�t� �
tan t

1 � tan t

G�x� � � x

1 � x
3F�x� �

s
3 x

1 � s
3 x

F�x� � cos2xF�x� � �2x � x 2�4
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44 CHAPTER 1 FUNCTIONS AND LIMITS

53. A stone is dropped into a lake, creating a circular ripple that
travels outward at a speed of .
(a) Express the radius of this circle as a function of the 

time ( in seconds).
(b) If is the area of this circle as a function of the radius, find

and interpret it.

54. A spherical balloon is being inflated and the radius of the bal-
loon is increasing at a rate of .
(a) Express the radius of the balloon as a function of the 

time ( in seconds).
(b) If is the volume of the balloon as a function of the radius,

find and interpret it.

55. A ship is moving at a speed of parallel to a straight
shoreline. The ship is 6 km from shore and it passes a light-
house at noon.
(a) Express the distance between the lighthouse and the ship

as a function of , the distance the ship has traveled since
noon; that is, find so that .

(b) Express as a function of , the time elapsed since noon;
that is, find so that .

(c) Find . What does this function represent?

56. An airplane is flying at a speed of at an altitude of
one mile and passes directly over a radar station at time .
(a) Express the horizontal distance ( in miles) that the plane

has flown as a function of .
(b) Express the distance between the plane and the radar 

station as a function of .
(c) Use composition to express as a function of .

57. The Heaviside function H is defined by

It is used in the study of electric circuits to represent the
sudden surge of electric current, or voltage, when a switch is
instantaneously turned on.
(a) Sketch the graph of the Heaviside function.
(b) Sketch the graph of the voltage in a circuit if the 

switch is turned on at time and 120 volts are applied
instantaneously to the circuit. Write a formula for in
terms of .

V�t�
t � 0

V�t�

H�t� � 
0

1

if t 
 0

if t � 0

s t
d

s
t

d
t � 0

350 mi�h

f � t

t d � t�t�
d t

f s � f �d�
d

s

30 km�h

V � r
V

t
r

2 cm�s

A � r
A

t
r

60 cm�s

H�t�

(c) Sketch the graph of the voltage in a circuit if the
switch is turned on at time seconds and 240 volts are
applied instantaneously to the circuit. Write a formula for

in terms of . (Note that starting at corre -
sponds to a translation.)

58. The Heaviside function defined in Exercise 57 can also be used
to define the ramp function , which represents a
gradual increase in voltage or current in a circuit.
(a) Sketch the graph of the ramp function .
(b) Sketch the graph of the voltage in a circuit if the

switch is turned on at time and the voltage is gradu-
ally increased to 120 volts over a 60-second time interval.
Write a formula for in terms of for .

(c) Sketch the graph of the voltage in a circuit if the
switch is turned on at time seconds and the voltage is
gradually increased to 100 volts over a period of
25 seconds. Write a formula for in terms of for

.

59. Let and be linear functions with equations
and . Is also a linear function? If so,
what is the slope of its graph?

60. If you invest dollars at 4% interest compounded annually,
then the amount of the investment after one year is

. Find , , and . What
do these compositions represent? Find a formula for the com-
position of copies of .

61. (a) If and , find a function
such that . (Think about what operations you

would have to perform on the formula for to end up with
the formula for .)

(b) If and , find a function
such that .

62. If and , find a function such that
.

63. Suppose t is an even function and let . Is h always an
even function?

64. Suppose t is an odd function and let . Is h always an
odd function? What if is odd? What if is even?

t � 5
V�t�

ff
h � f � t

h � f � t

t � f � h
th�x� � 4x � 1f �x� � x � 4

f � t � ht

h�x� � 3x 2 � 3x � 2f �x� � 3x � 5
h

t

f � t � hf
h�x� � 4x 2 � 4x � 7t�x� � 2x � 1

An

A � A � A � AA � A � AA � AA�x� � 1.04x
A�x�

x

f � tt�x� � m2 x � b2

f �x� � m1x � b1tf

t � 32
H�t�V�t�

t � 7
V�t�

t � 60H�t�V�t�

t � 0
V�t�

y � tH�t�

y � ctH�t�

t � 5H�t�V�t�

In this section we see how limits arise when we attempt to find the tangent to a curve or
the velocity of an object.

The Tangent Problem
The word tangent is derived from the Latin word tangens, which means “touching.” Thus
a tangent to a curve is a line that touches the curve. In other words, a tangent line should have
the same direction as the curve at the point of contact. How can this idea be made precise?

1.4 The Tangent and Velocity Problems
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For a circle we could simply follow Euclid and say that a tangent is a line that intersects
the circle once and only once, as in Figure 1(a). For more complicated curves this defini-
tion is inadequate. Figure l(b) shows two lines and passing through a point on a curve

. The line intersects only once, but it certainly does not look like what we think of as
a tangent. The line , on the other hand, looks like a tangent but it intersects twice.

To be specific, let’s look at the problem of trying to find a tangent line to the parabola
in the following example.

Find an equation of the tangent line to the parabola at the 
point .

SOLUTION We will be able to find an equation of the tangent line as soon as we know its
slope . The difficulty is that we know only one point, , on , whereas we need two
points to compute the slope. But observe that we can compute an approximation to by
choosing a nearby point on the parabola (as in Figure 2) and computing the slope

of the secant line . [A secant line, from the Latin word secans, meaning cutting,
is a line that cuts ( intersects) a curve more than once.]

We choose so that . Then

For instance, for the point we have

The tables in the margin show the values of for several values of close to 1. The
closer is to , the closer is to 1 and, it appears from the tables, the closer is to 2.
This suggests that the slope of the tangent line should be .

We say that the slope of the tangent line is the limit of the slopes of the secant lines,
and we express this symbolically by writing

and    

Assuming that the slope of the tangent line is indeed 2, we use the point-slope form
of the equation of a line (see Appendix B) to write the equation of the tangent line
through as

l t P
C l C

t C

t
y � x 2

v EXAMPLE 1 y � x 2

P�1, 1�

t
m P t

m
Q�x, x 2 �

mPQ PQ

x � 1 Q � P

mPQ �
x 2 � 1

x � 1

Q�1.5, 2.25�

mPQ �
2.25 � 1

1.5 � 1
�

1.25

0.5
� 2.5

mPQ x
Q P x mPQ

t m � 2

lim
Q lP

mPQ � m lim
x l 1

x 2 � 1

x � 1
� 2

�1, 1�

FIGURE 1 (a)

t

(b)

P
Ct

l

y � 2x � 1ory � 1 � 2�x � 1�
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FIGURE 2 

x

y

0

y=≈

tQ{x, ≈}

P(1, 1)

x

2 3
1.5 2.5
1.1 2.1
1.01 2.01
1.001 2.001

mPQ

x

0 1
0.5 1.5
0.9 1.9
0.99 1.99
0.999 1.999

mPQ
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46 CHAPTER 1 FUNCTIONS AND LIMITS

Figure 3 illustrates the limiting process that occurs in this example. As approaches
along the parabola, the corresponding secant lines rotate about and approach the

tangent line .

Many functions that occur in science are not described by explicit equations; they are
defined by experimental data. The next example shows how to estimate the slope of the
tangent line to the graph of such a function.

The flash unit on a camera operates by storing charge on a capacitor and
releasing it suddenly when the flash is set off. The data in the table describe the charge Q
remaining on the capacitor (measured in microcoulombs) at time t (measured in seconds
after the flash goes off ). Use the data to draw the graph of this function and estimate the
slope of the tangent line at the point where t � 0.04. [Note: The slope of the tangent line
represents the electric current flowing from the capacitor to the flash bulb (measured in
microamperes).]

SOLUTION In Figure 4 we plot the given data and use them to sketch a curve that approx-
imates the graph of the function.

Q approaches P from the right

Q approaches P from the left

P

y

x0

Q

t

P

y

x0

Q

t

P

y

x0

Q

t

P

y

x0

Q

t

P

y

x0

Q

t

x0

P

y
Q

t

FIGURE 3 

t

Q
PP

EXAMPLE 2v

FIGURE 4
t

Q

A

B C

P

0 0.02 0.04 0.06 0.08 0.1

90

100

60

70

80

50

(seconds)

(microcoulombs)

In Visual 1.4 you can see how 
the process in Figure 3 works for additional 
functions.

TEC

t Q

0.00 100.00
0.02 81.87
0.04 67.03
0.06 54.88
0.08 44.93
0.10 36.76
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Given the points and on the graph, we find that the
slope of the secant line PR is

The table at the left shows the results of similar calculations for the slopes of other
secant lines. From this table we would expect the slope of the tangent line at to
lie somewhere between �742 and �607.5. In fact, the average of the slopes of the two
closest secant lines is

So, by this method, we estimate the slope of the tangent line to be �675.
Another method is to draw an approximation to the tangent line at P and measure the

sides of the triangle ABC, as in Figure 4. This gives an estimate of the slope of the tan-
gent line as

The Velocity Problem
If you watch the speedometer of a car as you travel in city traffic, you see that the needle
doesn’t stay still for very long; that is, the velocity of the car is not constant. We assume from
watching the speedometer that the car has a definite velocity at each moment, but how is the
“instantaneous” velocity defined? Let’s investigate the example of a falling ball.

Suppose that a ball is dropped from the upper observation deck of the CN
Tower in Toronto, 450 m above the ground. Find the velocity of the ball after 5 seconds.

SOLUTION Through experiments carried out four centuries ago, Galileo discovered that
the distance fallen by any freely falling body is proportional to the square of the time it
has been falling. (This model for free fall neglects air resistance.) If the distance fallen
after seconds is denoted by and measured in meters, then Galileo’s law is expressed
by the equation

The difficulty in finding the velocity after 5 s is that we are dealing with a single
instant of time , so no time interval is involved. However, we can approximate the
desired quantity by computing the average velocity over the brief time interval of a tenth
of a second from to :

P�0.04, 67.03� R�0.00, 100.00�

mPR �
100.00 � 67.03

0.00 � 0.04
� �824.25

t � 0.04

1
2 ��742 � 607.5� � �674.75

� � AB �
� BC � � �

80.4 � 53.6

0.06 � 0.02
� �670

v EXAMPLE 3

t s�t�

s�t� � 4.9t 2

�t � 5�

t � 5 t � 5.1

average velocity �
change in position

time elapsed

�
s�5.1� � s�5�

0.1

�
4.9�5.1�2 � 4.9�5�2

0.1
� 49.49 m�s
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R

(0.00, 100.00) �824.25
(0.02, 81.87) �742.00
(0.06, 54.88) �607.50
(0.08, 44.93) �552.50
(0.10, 36.76) �504.50

mPR

The physical meaning of the answer in 
Example 2 is that the electric current flowing
from the capacitor to the flash bulb after
0.04 second is about –670 microamperes.
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The CN Tower in Toronto was the tallest free-
standing building in the world for 32 years.

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



48 CHAPTER 1 FUNCTIONS AND LIMITS

The following table shows the results of similar calculations of the average velocity over
successively smaller time periods.

It appears that as we shorten the time period, the average velocity is becoming closer to
49 m�s. The instantaneous velocity when is defined to be the limiting value of
these average velocities over shorter and shorter time periods that start at . Thus 
the ( instantaneous) velocity after 5 s is

You may have the feeling that the calculations used in solving this problem are very sim-
ilar to those used earlier in this section to find tangents. In fact, there is a close connec-
tion between the tangent problem and the problem of finding velocities. If we draw the
graph of the distance function of the ball (as in Figure 5) and we consider the points

and on the graph, then the slope of the secant line 
is

which is the same as the average velocity over the time interval . Therefore the
velocity at time (the limit of these average velocities as approaches 0) must be 
equal to the slope of the tangent line at (the limit of the slopes of the secant lines).

Examples 1 and 3 show that in order to solve tangent and velocity problems we must be
able to find limits. After studying methods for computing limits in the next four sections, we
will return to the problems of finding tangents and velocities in Chapter 2.

t � 5
t � 5

v � 49 m�s

P�a, 4.9a 2 � Q�a � h, 4.9�a � h�2 �
PQ

mPQ �
4.9�a � h�2 � 4.9a 2

�a � h� � a


a, a � h�
t � a h

P

FIGURE 5
t

s

Q

a a+h0

slope of secant line
� average velocity

P

s=4.9t @

t

s

0 a

slope of tangent line
� instantaneous velocityP

s=4.9t @

Time interval Average velocity (m�s)

53.9
49.49
49.245
49.049
49.00495 � t � 5.001

5 � t � 5.01
5 � t � 5.05
5 � t � 5.1
5 � t � 6
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SECTION 1.4 THE TANGENT AND VELOCITY PROBLEMS 49

1. A tank holds 1000 gallons of water, which drains from the 
bottom of the tank in half an hour. The values in the table show
the volume V of water remaining in the tank ( in gallons) after
t minutes.

(a) If P is the point on the graph of V, find the slopes
of the secant lines PQ when Q is the point on the graph
with , 10, 20, 25, and 30.

(b) Estimate the slope of the tangent line at P by averaging the
slopes of two secant lines.

(c) Use a graph of the function to estimate the slope of the 
tangent line at P. (This slope represents the rate at which the
water is flowing from the tank after 15 minutes.)

2. A cardiac monitor is used to measure the heart rate of a patient
after surgery. It compiles the number of heartbeats after t min-
utes. When the data in the table are graphed, the slope of the
tangent line represents the heart rate in beats per minute.

The monitor estimates this value by calculating the slope of 
a secant line. Use the data to estimate the patient’s heart rate
after 42 minutes using the secant line between the points with
the given values of t.
(a) t � 36  and  t � 42 (b) t � 38  and  t � 42
(c) t � 40  and  t � 42 (d) t � 42  and  t � 44

What are your conclusions?

3. The point lies on the curve .
(a) If is the point , use your calculator to find

the slope of the secant line (correct to six decimal
places) for the following values of :

( i ) 1.5 ( ii ) 1.9 ( iii ) 1.99 ( iv) 1.999
(v) 2.5 (vi) 2.1 (vii ) 2.01 (viii ) 2.001

(b) Using the results of part (a), guess the value of the slope 
of the tangent line to the curve at .

(c) Using the slope from part (b), find an equation of the
tangent line to the curve at .

4. The point lies on the curve .
(a) If is the point , use your calculator to find 

the slope of the secant line (correct to six decimal
places) for the following values of :

( i ) 0 ( ii ) 0.4 ( iii ) 0.49 ( iv) 0.499
(v) 1 (vi) 0.6 (vii ) 0.51 (viii ) 0.501

(b) Using the results of part (a), guess the value of the slope 
of the tangent line to the curve at .P�0.5, 0�

x
PQ

�x, cos �x�Q
y � cos �xP�0.5, 0�

P�2, �1�

P�2, �1�

x
PQ

�x, 1��1 � x��Q
y � 1��1 � x�P�2, �1�

t � 5

�15, 250�

(c) Using the slope from part (b), find an equation of the
tangent line to the curve at .

(d) Sketch the curve, two of the secant lines, and the tangent
line.

5. If a ball is thrown into the air with a velocity of 40 ft�s, its
height in feet seconds later is given by .
(a) Find the average velocity for the time period beginning

when and lasting
( i) 0.5 second ( ii ) 0.1 second

( iii ) 0.05 second ( iv) 0.01 second
(b) Estimate the instantaneous velocity when 

6. If a rock is thrown upward on the planet Mars with a velocity
of 10 m�s, its height in meters seconds later is given by

(a) Find the average velocity over the given time intervals:
( i ) [1, 2] ( ii ) [1, 1.5] ( iii ) [1, 1.1]

( iv) [1, 1.01] (v) [1, 1.001]
(b) Estimate the instantaneous velocity when .

7. The table shows the position of a cyclist.

(a) Find the average velocity for each time period:
( i ) ( ii ) ( iii ) ( iv) 

(b) Use the graph of as a function of to estimate the instan-
taneous velocity when .

8. The displacement ( in centimeters) of a particle moving back 
and forth along a straight line is given by the equation of
motion , where is measured in 
seconds.
(a) Find the average velocity during each time period:

( i ) [1, 2] ( ii ) [1, 1.1]
( iii ) [1, 1.01] ( iv) [1, 1.001]

(b) Estimate the instantaneous velocity of the particle 
when .

9. The point lies on the curve .
(a) If is the point , find the slope of the secant

line (correct to four decimal places) for , 1.5, 1.4,
1.3, 1.2, 1.1, 0.5, 0.6, 0.7, 0.8, and 0.9. Do the slopes
appear to be approaching a limit?

; (b) Use a graph of the curve to explain why the slopes of the
secant lines in part (a) are not close to the slope of the tan-
gent line at .

(c) By choosing appropriate secant lines, estimate the slope of
the tangent line at .P

P

x � 2PQ
�x, sin�10��x��Q

y � sin�10��x�P�1, 0�

t � 1

ts � 2 sin � t � 3 cos � t

t � 3
ts


3, 4�
3, 5�
2, 3�
1, 3�

t � 1

y � 10t � 1.86t 2.
t

t � 2.

t � 2

y � 40t � 16t 2t

P�0.5, 0�

1.4 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com

t (min) 5 10 15 20 25 30

V (gal) 694 444 250 111 28 0

t (min) 36 38 40 42 44

Heartbeats 2530 2661 2806 2948 3080 t (seconds) 0 1 2 3 4 5

s (meters) 0 1.4 5.1 10.7 17.7 25.8
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50 CHAPTER 1 FUNCTIONS AND LIMITS

Having seen in the preceding section how limits arise when we want to find the tangent to
a curve or the velocity of an object, we now turn our attention to limits in general and nu-
merical and graphical methods for computing them.

Let’s investigate the behavior of the function defined by for val-
ues of near 2. The following table gives values of for values of close to 2 but not
equal to 2.

From the table and the graph of (a parabola) shown in Figure 1 we see that when is
close to 2 (on either side of 2), is close to 4. In fact, it appears that we can make the
values of as close as we like to 4 by taking sufficiently close to 2. We express this by
saying “the limit of the function as approaches 2 is equal to 4.” The
notation for this is

In general, we use the following notation.

Definition Suppose is defined when is near the number . (This means
that is defined on some open interval that contains , except possibly at itself.)
Then we write

and say “the limit of , as approaches , equals ”

if we can make the values of arbitrarily close to (as close to L as we like) by
taking x to be sufficiently close to (on either side of ) but not equal to .

Roughly speaking, this says that the values of approach as approaches . In other
words, the values of tend to get closer and closer to the number as gets closer and
closer to the number (from either side of ) but . (A more precise definition will be
given in Section 1.7.)

An alternative notation for

is as    

which is usually read “ approaches as approaches .”

f f �x� � x 2 � x � 2
x f �x� x

f x
f �x�

f �x� x
f �x� � x 2 � x � 2 x

lim
x l2

�x 2 � x � 2� � 4

1 f �x� x a
f a a

lim
x l a

f �x� � L

f �x� x a L

f �x� L
a a a

f �x� L x a
f �x� L x
a a x � a

lim
x l a

f �x� � L

f �x� l L x l a

f �x� L x a

1.5 The Limit of a Function

4

ƒ

approaches
4.

x

y

2
As x approaches 2,

y=≈-x+2

0

FIGURE 1

x

3.0 8.000000
2.5 5.750000
2.2 4.640000
2.1 4.310000
2.05 4.152500
2.01 4.030100
2.005 4.015025
2.001 4.003001

f �x�x

1.0 2.000000
1.5 2.750000
1.8 3.440000
1.9 3.710000
1.95 3.852500
1.99 3.970100
1.995 3.985025
1.999 3.997001

f �x�

      Copyright 2010 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s). 
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



SECTION 1.5 THE LIMIT OF A FUNCTION    51

Notice the phrase “but ” in the definition of limit. This means that in find ing the
limit of as approaches , we never consider . In fact, need not even be 
defined when . The only thing that matters is how is defined near .

Figure 2 shows the graphs of three functions. Note that in part (c), is not defined and
in part (b), . But in each case, regardless of what happens at , it is true that

.

Guess the value of .

SOLUTION Notice that the function is not defined when ,
but that doesn’t matter because the definition of says that we consider values
of that are close to but not equal to .

The tables at the left give values of (correct to six decimal places) for values of
that approach 1 (but are not equal to 1). On the basis of the values in the tables, we make
the guess that

Example 1 is illustrated by the graph of in Figure 3. Now let’s change slightly by giv-
ing it the value 2 when and calling the resulting function :

This new function still has the same limit as approaches 1. (See Figure 4.)

x � a
f �x� x a x � a f �x�

x � a f a
f �a�

f �a� � L a
lim x l a f �x� � L

(c)

x

y

0

L

a

(b)

x

y

0

L

a

(a)

x

y

0

L

a

FIGURE 2 lim ƒ=L in all three cases
x    a

EXAMPLE 1 lim
x l1

x � 1

x 2 � 1

f �x� � �x � 1���x 2 � 1� x � 1
lim x l a f �x�

x a a
f �x� x

lim
x l 1

x � 1

x 2 � 1
� 0.5

f f
x � 1 t

t(x) � � x � 1

x 2 � 1
if x � 1

2 if x � 1

t x

0 1

0.5

x-1
≈-1

y=

FIGURE 3 FIGURE 4 

0 1

0.5

y=©

2

y

x

y

x

0.5 0.666667
0.9 0.526316
0.99 0.502513
0.999 0.500250
0.9999 0.500025

x � 1 f �x�

1.5 0.400000
1.1 0.476190
1.01 0.497512
1.001 0.499750
1.0001 0.499975

x � 1 f �x�
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52 CHAPTER 1 FUNCTIONS AND LIMITS

Estimate the value of .

SOLUTION The table lists values of the function for several values of near 0.

As approaches 0, the values of the function seem to approach and so we
guess that

In Example 2 what would have happened if we had taken even smaller values of The
table in the margin shows the results from one calculator; you can see that something strange
seems to be happening.

If you try these calculations on your own calculator you might get different values, but
eventually you will get the value 0 if you make sufficiently small. Does this mean that 
the answer is really 0 instead of ? No, the value of the limit is , as we will show in the

| next section. The problem is that the calculator gave false values because is very
close to 3 when is small. (In fact, when is sufficiently small, a calculator’s value for

is to as many digits as the calculator is capable of carrying.)
Something similar happens when we try to graph the function

of Example 2 on a graphing calculator or computer. Parts (a) and (b) of Figure 5 show quite
accurate graphs of , and when we use the trace mode ( if available) we can estimate eas-
ily that the limit is about . But if we zoom in too much, as in parts (c) and (d), then we get
inaccurate graphs, again because of problems with subtraction.

t

t 0.1666666 . . .

lim
t l 0

st 2 � 9 � 3

t 2 �
1

6

t?

t
1
6

1
6

st 2 � 9
t t

st 2 � 9 3.000. . .

f �t� �
st 2 � 9 � 3

t 2

f
1
6

FIGURE 5

0.1

0.2

(a) �_5, 5� by �_0.1, 0.3�

0.1

0.2

(b) �_0.1, 0.1� by �_0.1, 0.3� (c) �_10–^, 10–^� by �_0.1, 0.3� (d) �_10–&, 10–& � by �_0.1, 0.3�

EXAMPLE 2 lim
t l 0

st 2 � 9 � 3

t 2

t

�1.0 0.16228
�0.5 0.16553
�0.1 0.16662
�0.05 0.16666
�0.01 0.16667

st 2 � 9 � 3

t 2

t

�0.0005 0.16800
�0.0001 0.20000
�0.00005 0.00000
�0.00001 0.00000

st 2 � 9 � 3

t 2

www.stewartcalculus.com

For a further explanation of why calculators
sometimes give false values, click on Lies My
Calculator and Computer Told Me. In particular,
see the section called The Perils of Subtraction.
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SECTION 1.5 THE LIMIT OF A FUNCTION    53

Guess the value of .

SOLUTION The function is not defined when . Using a calculator
(and remembering that, if , means the sine of the angle whose radian mea-
sure is ), we construct a table of values correct to eight decimal places. From the table at
the left and the graph in Figure 6 we guess that

This guess is in fact correct, as will be proved in Chapter 2 using a geometric argument.

Investigate .

SOLUTION Again the function is undefined at 0. Evaluating the function
for some small values of , we get

Similarly, On the basis of this information we might be
tempted to guess that

| but this time our guess is wrong. Note that although for any integer
, it is also true that for infinitely many values of that approach 0. You can

see this from the graph of shown in Figure 7.

f �x� � �sin x��x x � 0
x � � sin x

x

lim
x l 0

sin x

x
� 1

0 x_1 1

y
sin x

x
y=1

FIGURE 6 

v EXAMPLE 4 lim
x l 0

sin 
�

x

f �x� � sin���x�
x

f �1� � sin � � 0 f ( 1
2 ) � sin 2� � 0

f ( 1
3) � sin 3� � 0 f ( 1

4 ) � sin 4� � 0

f �0.1� � sin 10� � 0 f �0.01� � sin 100� � 0

f �0.001� � f �0.0001� � 0.

lim
x l 0

sin 
�

x
� 0

f �1�n� � sin n� � 0
n f �x� � 1 x

f

FIGURE 7

y=sin(π/x)

x

y

1

1

_1

_1

v lim
x l 0

sin x

x
EXAMPLE 3

x

�1.0 0.84147098
�0.5 0.95885108
�0.4 0.97354586
�0.3 0.98506736
�0.2 0.99334665
�0.1 0.99833417
�0.05 0.99958339
�0.01 0.99998333
�0.005 0.99999583
�0.001 0.99999983

sin x

x

Computer Algebra Systems
Computer algebra systems (CAS) have
commands that compute limits. In order to
avoid the types of pitfalls demonstrated in
Examples 2, 4, and 5, they don’t find limits by
numerical experimentation. Instead, they use
more sophisticated techniques such as com-
puting infinite series. If you have access to a
CAS, use the limit command to compute the
limits in the examples of this section and to
check your answers in the exercises of this
chapter.
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54 CHAPTER 1 FUNCTIONS AND LIMITS

The dashed lines near the -axis indicate that the values of oscillate between
1 and infinitely often as approaches 0. (See Exercise 43.) 

Since the values of do not approach a fixed number as approaches 0,

Find .

SOLUTION As before, we construct a table of values. From the first table in the margin it
appears that

But if we persevere with smaller values of , the second table suggests that

Later we will see that ; then it follows that the limit is 0.0001.

| Examples 4 and 5 illustrate some of the pitfalls in guessing the value of a limit. It is easy
to guess the wrong value if we use inappropriate values of , but it is difficult to know when
to stop calculating values. And, as the discussion after Example 2 shows, sometimes cal-
culators and computers give the wrong values. In the next section, however, we will de-
velop foolproof methods for calculating limits.

The Heaviside function is defined by

[This function is named after the electrical engineer Oliver Heaviside (1850–1925) and
can be used to describe an electric current that is switched on at time .] Its graph is
shown in Figure 8.

As approaches 0 from the left, approaches 0. As approaches 0 from the right,
approaches 1. There is no single number that approaches as approaches 0.

Therefore does not exist.

One-Sided Limits
We noticed in Example 6 that approaches 0 as approaches 0 from the left and 
approaches 1 as approaches 0 from the right. We indicate this situation symbolically by
writing

and    

The symbol “ ” indicates that we consider only values of that are less than 0. Like-
wise, “ ” indicates that we consider only values of that are greater than 0.

f �x� x

lim
x l 0

sin 
�

x
does not exist

EXAMPLE 5 lim
x l 0

 �x 3 �
cos 5x

10,000	

lim
x l 0

 �x 3 �
cos 5x

10,000	 � 0

x

lim
x l 0

 �x 3 �
cos 5x

10,000	 � 0.000100 �
1

10,000

lim x l 0 cos 5x � 1

x

v EXAMPLE 6 H

H�t� � �0

1

if t � 0

if t � 0

t � 0

t H�t� t
H�t� H�t� t

lim t l 0 H�t�

H�t� t H�t�
t

lim
t l0�

H�t� � 0 lim
t l0�

H�t� � 1

t l 0� t
t l 0� t

x�1
sin���x�y

t

y

1

0

FIGURE 8 
The Heaviside function

x

0.005 0.00010009
0.001 0.00010000

x 3 �
cos 5x

10,000

x

1 1.000028
0.5 0.124920
0.1 0.001088
0.05 0.000222
0.01 0.000101

x 3 �
cos 5x

10,000
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Definition We write

and say the left-hand limit of as approaches [or the limit of as 
approaches from the left] is equal to if we can make the values of arbi-
trarily close to L by taking x to be sufficiently close to a and x less than a.

Notice that Definition 2 differs from Definition 1 only in that we require to be less 
than . Similarly, if we require that be greater than , we get “the right-hand limit of

as approaches is equal to ” and we write

Thus the symbol “ ” means that we consider only . These definitions are illus-
trated in Figure 9.

By comparing Definition l with the definitions of one-sided limits, we see that the fol-
lowing is true.

if and only if   and  

The graph of a function is shown in Figure 10. Use it to state the values
(if they exist) of the following:

(a) (b) (c) 

(d) (e) (f) 

SOLUTION From the graph we see that the values of approach 3 as approaches 2
from the left, but they approach 1 as approaches 2 from the right. Therefore

(a) and    (b) 

(c) Since the left and right limits are different, we conclude from that 
does not exist.

The graph also shows that

(d) and    (e) 

2

lim
x la�

f �x� � L

xf �x�axf �x�
f �x�La

x

f �x�
axa

Lax

lim
x la�

f �x� � L

x � ax l a�

0 x

y

L

xa0 x

y

ƒ
L

x a

ƒ

x    a+x    a_
(a) lim  ƒ=L (b) lim  ƒ=LFIGURE 9 

lim
x la�

f �x� � Llim
x la�

f �x� � Llim
x l a

f �x� � L3

tEXAMPLE 7v

lim
x l 2

t�x�lim
x l 2�

t�x�lim
x l 2�

t�x�

lim
x l 5

t�x�lim
x l 5�

t�x�lim
x l 5�

t�x�

xt�x�
x

lim
x l 2�

t�x� � 1lim
x l 2�

t�x� � 3

limx l 2 t�x�3

lim
x l 5�

t�x� � 2lim
x l 5�

t�x� � 2

FIGURE 10

y

0 x

y=©

1 2 3 4 5

1

3

4
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56 CHAPTER 1 FUNCTIONS AND LIMITS

(f) This time the left and right limits are the same and so, by , we have

Despite this fact, notice that 

Infinite Limits

Find if it exists.

SOLUTION As becomes close to 0, also becomes close to 0, and becomes very
large. (See the table in the margin.) In fact, it appears from the graph of the function

shown in Figure 11 that the values of can be made arbitrarily large by
taking close enough to 0. Thus the values of do not approach a number, so

does not exist.

To indicate the kind of behavior exhibited in Example 8, we use the notation

| This does not mean that we are regarding as a number. Nor does it mean that the limit 
exists. It simply expresses the particular way in which the limit does not exist: can be
made as large as we like by taking close enough to 0.

In general, we write symbolically

to indicate that the values of tend to become larger and larger (or “increase without
bound”) as becomes closer and closer to .

Definition Let be a function defined on both sides of , except possibly at
itself. Then

means that the values of can be made arbitrarily large (as large as we please)
by taking sufficiently close to , but not equal to a.

Another notation for is

as    

Again, the symbol is not a number, but the expression is often read as

“the limit of , as approaches , is infinity”

or “ becomes infinite as approaches ”

or “ increases without bound as approaches ”

This definition is illustrated graphically in Figure 12.

3

lim
x l 5

t�x� � 2

t�5� � 2.

lim
x l 0

1

x 2EXAMPLE 8

1�x 2x 2x

f �x�f �x� � 1�x 2

f �x�x
lim x l 0 �1�x 2 �

lim
x l 0

1

x 2 � 	

	
1�x 2

x

lim
x l a

f �x� � 	

f �x�
ax

aaf4

lim
x l a

f �x� � 	

f �x�
ax

limx l a f �x� � 	

x l af �x� l 	

lim x l a f �x� � 		

axf �x�

axf �x�

axf �x�

x

�1 1
�0.5 4
�0.2 25
�0.1 100
�0.05 400
�0.01 10,000
�0.001 1,000,000

1

x2

FIGURE 11 

y=

0

y

x

1
≈

x    a

FIGURE 12
lim ƒ=`

x

y

x=a

y=ƒ

a0
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SECTION 1.5 THE LIMIT OF A FUNCTION    57

A similar sort of limit, for functions that become large negative as gets close to , is
defined in Definition 5 and is illustrated in Figure 13.

Definition Let be defined on both sides of , except possibly at itself. Then

means that the values of can be made arbitrarily large negative by taking
sufficiently close to , but not equal to a.

The symbol can be read as “the limit of , as approaches , is
negative infinity” or “ decreases without bound as approaches .” As an example we
have

Similar definitions can be given for the one-sided infinite limits

remembering that “ ” means that we consider only values of that are less than ,
and similarly “ ” means that we consider only . Illustrations of these four cases
are given in Figure 14.

Definition The line is called a vertical asymptote of the curve
if at least one of the following statements is true:

For instance, the -axis is a vertical asymptote of the curve because
. In Figure 14 the line is a vertical asymptote in each of the four

cases shown. In general, knowledge of vertical asymptotes is very useful in sketching graphs.

ax

aaf5

lim
x l a

f �x� � �	

xf �x�
a

axf �x�limx l a f �x� � �	
axf �x�

lim
x l0

 ��
1

x 2	 � �	

lim
x la�

f �x� � 	lim
x la�

f �x� � 	

lim
x la�

f �x� � �	lim
x la�

f �x� � �	

axx l a�

x � ax l a�

(d) lim  ƒ=_`

a

y

0 x

x a+x a_
(c) lim  ƒ=_`

y

0 a x

(a) lim  ƒ=`

y

0 a x

x a_
(b) lim  ƒ=`

a

y

x

x a+

0

FIGURE 14

x � a6 y � f �x�

lim
x la�

f �x� � 	lim
x la�

f �x� � 	lim
x la

f �x� � 	

lim
x la�

f �x� � �	lim
x la�

f �x� � �	lim
x la

f �x� � �	

y � 1�x 2y
x � alimx l 0 �1�x 2 � � 	

0 x

y

x=a

y=ƒ

a

FIGURE 13
lim ƒ=_`
x    a

When we say a number is “large negative,” we
mean that it is negative but its magnitude
(absolute value) is large.
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58 CHAPTER 1 FUNCTIONS AND LIMITS

Find and .

SOLUTION If is close to 3 but larger than 3, then the denominator is a small posi-
tive number and is close to 6. So the quotient is a large positive number.
Thus, intuitively, we see that

Likewise, if is close to 3 but smaller than 3, then is a small negative number but
is still a positive number (close to 6). So is a numerically large negative

number. Thus

The graph of the curve is given in Figure 15. The line is a verti-
cal asymptote.

Find the vertical asymptotes of .

SOLUTION Because

there are potential vertical asymptotes where . In fact, since as
and as , whereas is positive when x is near

, we have

and    

This shows that the line is a vertical asymptote. Similar reasoning shows 
that the lines , where n is an integer, are all vertical asymptotes of

. The graph in Figure 16 confirms this.

EXAMPLE 9 lim
x l3�

2x

x � 3
lim

x l3�

2x

x � 3

x x � 3
2x 2x��x � 3�

lim
x l3�

2x

x � 3
� 	

x x � 3
2x 2x��x � 3�

lim
x l3�

2x

x � 3
� �	

y � 2x��x � 3� x � 3

EXAMPLE 10 f �x� � tan x

tan x �
sin x

cos x

cos x � 0 cos x l 0�

x l ���2�� cos x l 0� x l ���2�� sin x
��2

lim
x l���2��

tan x � 	 lim
x l���2��

tan x � �	

x � ��2
x � �2n � 1���2

f �x� � tan x

y=

FIGURE 16
tan x

__
x

y

π0_π

1

π

2

3π

 2
π

2

3π

 2

FIGURE 15

5

2x

x-3
y=

0 x

y

x=3
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1. Explain in your own words what is meant by the equation

Is it possible for this statement to be true and yet ?
Explain.

2. Explain what it means to say that

and    

In this situation is it possible that exists? 
Explain.

3. Explain the meaning of each of the following.

(a) (b)

4. Use the given graph of to state the value of each quantity, 
if it exists. If it does not exist, explain why.

(a) (b) (c)

(d) (e) (f)

5. For the function whose graph is given, state the value of each
quantity, if it exists. If it does not exist, explain why.

(a) (b) (c)

(d) (e)

6. For the function whose graph is given, state the value of each
quantity, if it exists. If it does not exist, explain why.

(a) (b) (c)

lim
x l 2

f �x� � 5

f �2� � 3

lim
x l 1�

f �x� � 3 lim
x l 1�

f �x� � 7

limx l 1 f �x�

lim
x l�3

f �x� � 	 lim
x l 4�

f �x� � �	

f

lim
x l2�

f �x� lim
x l 2�

f �x� lim
x l 2

f �x�

f �2� lim
x l 4

f �x� f �4�

y

0 x2 4

4

2

f

lim
x l 1

f �x� lim
x l 3�

f �x� lim
x l 3�

f �x�

lim
x l 3

f �x� f �3�

y

0 x2 4

4

2

h

lim
x l �3�

h�x� lim
x l �3�

h�x� lim
x l �3

h�x�

(d) (e) (f)

(g) (h) ( i )

( j) (k) (l)

7. For the function whose graph is given, state the value of each
quantity, if it exists. If it does not exist, explain why.

(a) (b) (c)

(d) (e) (f)

(g) (h)

8. For the function whose graph is shown, state the following.

(a) (b)

(c) (d)

(e) The equations of the vertical asymptotes.

h��3� lim
xl0�

h�x� lim
x l0�

h�x�

lim
x l 0

h�x� h�0� lim
x l 2

h�x�

h�2� lim
x l5�

h�x� lim
x l5�

h�x�

y

0 x2_2_4 4 6

t

lim
t l 0�

t�t� lim
t l 0�

t�t� lim
t l 0

t�t�

lim
t l 2�

t�t� lim
t l 2�

t�t� lim
t l 2

t�t�

t�2� lim
t l 4

t�t�

y

t2 4

4

2

R

lim
x l2

R�x� lim
x l 5

R�x�

lim
x l �3�

R�x� lim
x l �3�

R�x�

x

y

0 2 5_3

1.5 Exercises

; Graphing calculator or computer required 1. Homework Hints available at stewartcalculus.com
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60 CHAPTER 1 FUNCTIONS AND LIMITS

9. For the function whose graph is shown, state the follow-
ing.

(a) (b) (c)

(d) (e)

(f) The equations of the vertical asymptotes.

10. A patient receives a 150-mg injection of a drug every
4 hours. The graph shows the amount of the drug in the
blood stream after hours. Find

and    

and explain the significance of these one-sided limits.

11–12 Sketch the graph of the function and use it to determine
the values of for which exists.

11.

12.

; 13–14 Use the graph of the function to state the value of each
limit, if it exists. If it does not exist, explain why.

(a) (b) (c)

13. 14.

f

lim
x l 0

f �x�lim
x l�3

f �x�lim
x l�7

f �x�

lim
x l 6�

f �x�lim
x l 6�

f �x�

x

y

0 6_3_7

f �t�
t

lim
tl 12�

f �t�lim
tl 12�

f �t�

4 8 12 16 t

f(t)

150

0

300

limx l a f �x�a

f �x� � �1 � x

x 2

2 � x

if x � �1

if �1 � x � 1

if x � 1

f �x� � �1 � sin x

cos x

sin x

if x � 0

if 0 � x � �

if x � �

f

lim
x l 0

f �x�lim
x l 0�

f �x�lim
x l 0�

f �x�

f �x� �
x 2 � x

sx 3 � x 2 
f �x� �

1

1 � 2 1�x

15–18 Sketch the graph of an example of a function that 
satisfies all of the given conditions.

15. ,  ,

16. ,  , ,

,  

17. , ,  ,

,  

18. ,  , ,

,  ,  

19–22 Guess the value of the limit ( if it exists) by evaluating
the function at the given numbers (correct to six decimal places).

19. ,  

20. ,

21. ,  , , , , , 

22. ,  

, , , , 

23–26 Use a table of values to estimate the value of the limit. 
If you have a graphing device, use it to confirm your result 
graphically.

23. 24.

25. 26.

; 27. (a) By graphing the function
and zooming in toward the point where the graph crosses
the -axis, estimate the value of .

f

f �0� � 1lim
x l 0�

f �x� � 2lim
x l 0�

f �x� � �1

lim
x l 3�

f �x� � 2lim
x l 3�

f �x� � �2lim
x l 0

f �x� � 1

f �3� � 1f �0� � �1

lim
x l �2

f �x� � 2lim
x l 3�

f �x� � 2lim
x l 3�

f �x� � 4

f ��2� � 1f �3� � 3

lim
x l 4�

f �x� � 3lim
x l 0�

f �x� � 0lim
x l 0�

f �x� � 2

f �4� � 1f �0� � 2lim
x l 4�

f �x� � 0

lim
x l2

x 2 � 2x

x 2 � x � 2
x � 2.5, 2.1, 2.05, 2.01, 2.005, 2.001,
1.9, 1.95, 1.99, 1.995, 1.999

lim
x l � 1

x 2 � 2x

x 2 � x � 2
x � 0, �0.5, �0.9, �0.95, �0.99, �0.999,
�2, �1.5, �1.1, �1.01, �1.001

lim
hl 0

�2 � h�5 � 32

h
	0.0001	0.001	0.01	0.1h � 	0.5

lim
x l 0

tan 3x

tan 5x
lim
x l 0

sx � 4 � 2

x

lim
x l 0

9 x � 5 x

x
lim
x l 1

x6 � 1

x10 � 1

f �x� � �cos 2x � cos x��x 2

lim x l 0 f �x�y

lim
x l 0

sin x

x � tan x
x � 	1 	0.5 	0.2 	0.1 	0.05 	0.01
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SECTION 1.5 THE LIMIT OF A FUNCTION    61

(b) Check your answer in part (a) by evaluating for 
values of that approach 0.

; 28. (a) Estimate the value of

by graphing the function . State
your answer correct to two decimal places.

(b) Check your answer in part (a) by evaluating for 
values of that approach 0.

29–37 Determine the infinite limit.

29. 30.

31. 32.

33. 34.

35. 36.

37.

38. (a) Find the vertical asymptotes of the function

; (b) Confirm your answer to part (a) by graphing the function.

39. Determine and 

(a) by evaluating for values of that
approach 1 from the left and from the right,

(b) by reasoning as in Example 9, and

; (c) from a graph of .

; 40. (a) By graphing the function and zooming
in toward the point where the graph crosses the y-axis,
estimate the value of .

(b) Check your answer in part (a) by evaluating for 
values of x that approach 0.

f �x�
x

lim
x l 0

sin x

sin �x

f �x� � �sin x���sin �x�

f �x�
x

lim
x l�3�

x � 2

x � 3
lim

x l�3�

x � 2

x � 3

lim
x l 0

x � 1

x 2�x � 2�
lim
x l1

2 � x

�x � 1�2

lim
x l��

cot xlim
x l�2�

x � 1

x 2�x � 2�

lim
x l 2�

x 2 � 2x

x 2 � 4x � 4
lim

x l 2��
x csc x

lim
x l2�

x 2 � 2x � 8

x 2 � 5x � 6

y �
x 2 � 1

3x � 2x 2

lim
x l1�

1

x 3 � 1
lim

x l1�

1

x 3 � 1
xf �x� � 1��x 3 � 1�

f

f �x� � �tan 4x��x

lim x l 0 f �x�
f �x�

41. (a) Evaluate the function for 1,
0.8, 0.6, 0.4, 0.2, 0.1, and 0.05, and guess the value of

(b) Evaluate for � 0.04, 0.02, 0.01, 0.005, 0.003, and
0.001. Guess again.

42. (a) Evaluate for , 0.5, 0.1, 0.05,
0.01, and 0.005.

(b) Guess the value of .

(c) Evaluate for successively smaller values of until
you finally reach a value of for . Are you still confi-
dent that your guess in part (b) is correct? Explain why
you eventually obtained 0 values. (In Section 6.8 a
method for evaluating the limit will be explained.)

; (d) Graph the function h in the viewing rectangle 
by . Then zoom in toward the point where the graph
crosses the y-axis to estimate the limit of as x
approaches 0. Continue to zoom in until you observe 
distortions in the graph of h. Compare with the results of
part (c).

; 43. Graph the function of Example 4 in the
viewing rectangle by . Then zoom in toward
the origin several times. Comment on the behavior of this
function.

44. In the theory of relativity, the mass of a particle with 
velocity is

where is the mass of the particle at rest and is the speed 
of light. What happens as ?

; 45. Use a graph to estimate the equations of all the vertical
asymptotes of the curve

Then find the exact equations of these asymptotes.

; 46. (a) Use numerical and graphical evidence to guess the value
of the limit

(b) How close to 1 does have to be to ensure that the func-
tion in part (a) is within a distance 0.5 of its limit?

0 h�x�

��1, 1�
�0, 1�

h�x�

f �x� � sin���x�
��1, 1� ��1, 1�

v

m �
m0

s1 � v2�c2 

m0 c
v l c�

y � tan�2 sin x� �� � x � �

lim
x l 1

x3 � 1

sx � 1

x

lim
x l 0

tan x � x

x 3

xh�x�

xf �x�

x � 1h�x� � �tan x � x��x 3

lim
x l 0

�x 2 �
2x

1000	
x �f �x� � x 2 � �2x�1000�
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62 CHAPTER 1 FUNCTIONS AND LIMITS

In Section 1.5 we used calculators and graphs to guess the values of limits, but we saw that
such methods don’t always lead to the correct answer. In this section we use the following
properties of limits, called the Limit Laws, to calculate limits.

Limit Laws Suppose that is a constant and the limits

exist. Then

1.

2.

3.

4.

5.

These five laws can be stated verbally as follows:

Sum Law 1. The limit of a sum is the sum of the limits.

Difference Law 2. The limit of a difference is the difference of the limits.

Constant Multiple Law 3. The limit of a constant times a function is the constant times the limit of the 
function.

Product Law 4. The limit of a product is the product of the limits.

Quotient Law 5. The limit of a quotient is the quotient of the limits (provided that the limit of the
denominator is not 0).

It is easy to believe that these properties are true. For instance, if is close to and
is close to , it is reasonable to conclude that is close to . This gives

us an intuitive basis for believing that Law 1 is true. In Section 1.7 we give a precise defi-
nition of a limit and use it to prove this law. The proofs of the remaining laws are given in
Appendix F.

Use the Limit Laws and the graphs of and t in Figure 1 to evaluate the fol-
lowing limits, if they exist.

(a) (b) (c) 

SOLUTION
(a) From the graphs of and t we see that

c

lim
x l a

f �x� and lim
x l a

t�x�

lim
x l a

� f �x� � t�x�� � lim
x l a

f �x� � lim
x l a

t�x�

lim
x l a

� f �x� � t�x�� � lim
x l a

f �x� � lim
x l a

t�x�

lim
x l a

�cf �x�� � c lim
x l a

f �x�

lim
x l a

� f �x� t�x�� � lim
x l a

f �x� � lim
x l a

t�x�

lim
x l a

f �x�
t�x�

�
lim
x l a

f �x�

lim
x l a

t�x�
if lim

x l a
t�x� � 0

f �x� L
t�x� M f �x� � t�x� L � M

EXAMPLE 1 f

lim
x l �2

� f �x� � 5t�x�� lim
x l 1

� f �x�t�x�� lim
x l 2

f �x�
t�x�

f

lim
x l �2

t�x� � �1andlim
x l �2

f �x� � 1

1.6 Calculating Limits Using the Limit Laws

FIGURE 1 

x

y

0

f

g

1

1
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SECTION 1.6 CALCULATING LIMITS USING THE LIMIT LAWS    63

Therefore we have

(by Law 1)

(by Law 3)

(b) We see that . But does not exist because the left and
right limits are different:

So we can’t use Law 4 for the desired limit. But we can use Law 4 for the one-sided
limits:

The left and right limits aren’t equal, so does not exist.

(c) The graphs show that

Because the limit of the denominator is 0, we can’t use Law 5. The given limit does not
exist because the denominator approaches 0 while the numerator approaches a nonzero
number.

If we use the Product Law repeatedly with , we obtain the following law.

Power Law 6. where is a positive integer

In applying these six limit laws, we need to use two special limits: 

7. 8.

These limits are obvious from an intuitive point of view (state them in words or draw
graphs of and ), but proofs based on the precise definition are requested in the
exercises for Section 1.7.

If we now put in Law 6 and use Law 8, we get another useful special limit.

9. where is a positive integer

A similar limit holds for roots as follows. (For square roots the proof is outlined in Exer-
cise 37 in Section 1.7.)

10. where is a positive integer

(If is even, we assume that .)

lim
x l �2

� f �x� � 5t�x�� � lim
x l �2

f �x� � lim
x l �2

�5t�x��

� lim
x l �2

f �x� � 5 lim
x l �2

t�x�

� 1 � 5��1� � �4

lim x l 1 t�x�lim x l 1 f �x� � 2

lim
x l 1�

t�x� � �1lim
x l 1�

t�x� � �2

lim
x l 1�

� f �x�t�x�� � 2 � ��1� � �2lim
x l 1�

� f �x�t�x�� � 2 � ��2� � �4

lim x l 1 � f �x�t�x��

lim
x l 2

t�x� � 0andlim
x l 2

f �x� 
 1.4

t�x� � f �x�

nlim
x la

� f �x��n � [ lim
x la

f �x�]n

lim
x l a

x � alim
x l a

c � c

y � xy � c

f �x� � x

nlim
x l a

xn � an

nlim
x l a

s
n x � s

n a

a � 0n
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64 CHAPTER 1 FUNCTIONS AND LIMITS

More generally, we have the following law, which is proved in Section 1.8 as a conse-
quence of Law 10.

Root Law 11. where is a positive integer

[If is even, we assume that ]

Evaluate the following limits and justify each step.

(a) (b) 

SOLUTION

(a) (by Laws 2 and 1)

(by 3)

(by 9, 8, and 7)

(b) We start by using Law 5, but its use is fully justified only at the final stage when we
see that the limits of the numerator and denominator exist and the limit of the denomina-
tor is not 0.

(by Law 5)

(by 1, 2, and 3)

(by 9, 8, and 7)

NOTE If we let , then . In other words, we would have
gotten the correct answer in Example 2(a) by substituting 5 for x. Similarly, direct substi-
tution provides the correct answer in part (b). The functions in Example 2 are a polynomial
and a rational function, respectively, and similar use of the Limit Laws proves that direct
substitution always works for such functions (see Exercises 55 and 56). We state this fact
as follows.

Direct Substitution Property If is a polynomial or a rational function and is in
the domain of , then

nlim 
x la

s
n f �x) � s

n lim
x la

f �x)

lim
x la

f �x� � 0.n

EXAMPLE 2

lim
x l�2

x 3 � 2x 2 � 1

5 � 3x
lim
x l5

�2x 2 � 3x � 4�

lim
x l5

�2x 2 � 3x � 4� � lim
x l5

�2x 2 � � lim
x l5

�3x� � lim
x l5

4

� 2 lim
x l5

x 2 � 3 lim
x l5

x � lim
x l5

4

� 2�52 � � 3�5� � 4

� 39

lim
x l�2

x 3 � 2x 2 � 1

5 � 3x
�

lim
x l�2

�x 3 � 2x 2 � 1�

lim
x l�2

�5 � 3x�

�
lim

x l�2
x 3 � 2 lim

x l�2
x 2 � lim

x l�2
1

lim
x l�2

5 � 3 lim
x l�2

x

�
��2�3 � 2��2�2 � 1

5 � 3��2�

� �
1

11

f �5� � 39f �x� � 2x 2 � 3x � 4

af
f

lim
x la

f �x� � f �a�

Newton and Limits

Isaac Newton was born on Christmas Day in
1642, the year of Galileo’s death. When he
entered Cambridge University in 1661 Newton
didn’t know much mathematics, but he learned
quickly by reading Euclid and Descartes and 
by attending the lectures of Isaac Barrow. Cam-
bridge was closed because of the plague in
1665 and 1666, and Newton returned home to
reflect on what he had learned. Those two years
were amazingly productive for at that time he
made four of his major discoveries: (1) his repre-
senta tion of functions as sums of infinite series,
including the binomial theorem; (2) his work on
differential and integral calculus; (3) his laws 
of motion and law of universal gravitation; and
(4) his prism experi ments on the nature of light
and color. Because of a fear of controversy and
criticism, he was reluctant to publish his dis-
coveries and it wasn’t until 1687, at the urging
of the astronomer Halley, that Newton published
Principia Mathematica. In this work, the great-
est scientific treatise ever written, Newton set
forth his version of calculus and used it to
investigate mechanics, fluid dynamics, and
wave motion, and to explain the motion of 
planets and comets.

The beginnings of calculus are found in 
the calculations of areas and volumes by
ancient Greek scholars such as Eudoxus and
Archimedes. Although aspects of the idea 
of a limit are implicit in their “method of
exhaustion,” Eudoxus and Archimedes never
explicitly formulated the concept of a limit. Like-
wise, mathematicians such as Cavalieri, Fermat,
and Barrow, the immediate precursors of New-
ton in the development of calculus, did not actu-
ally use limits. It was Isaac Newton who was
the first to talk explicitly about limits. He
explained that the main idea behind limits is
that quantities “approach nearer than by any
given difference.” Newton stated that the limit
was the basic concept in calculus, but it was
left to later mathe maticians like Cauchy to clar-
ify his ideas about limits.
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SECTION 1.6 CALCULATING LIMITS USING THE LIMIT LAWS    65

Functions with the Direct Substitution Property are called continuous at a and will be
studied in Section 1.8. However, not all limits can be evaluated by direct substitution, as the
following examples show.

Find .

SOLUTION Let . We can’t find the limit by substituting
because isn’t defined. Nor can we apply the Quotient Law, because the limit of the
denominator is 0. Instead, we need to do some preliminary algebra. We factor the numer-
ator as a difference of squares:

The numerator and denominator have a common factor of . When we take the limit
as approaches 1, we have and so . Therefore we can cancel the com-
mon factor and compute the limit as follows:

The limit in this example arose in Section 1.4 when we were trying to find the tangent to
the parabola at the point .

NOTE In Example 3 we were able to compute the limit by replacing the given function
by a simpler function, , with the same limit. This is

valid because except when , and in computing a limit as approaches 1
we don’t consider what happens when is actually equal to 1. In general, we have the fol-
lowing useful fact.

, provided the limits exist.

Find where 

SOLUTION Here is defined at and , but the value of a limit as
approaches 1 does not depend on the value of the function at 1. Since for

, we have

Note that the values of the functions in Examples 3 and 4 are identical except when
(see Figure 2) and so they have the same limit as approaches 1.

lim
x l 1

x 2 � 1

x � 1
EXAMPLE 3

x � 1f �x� � �x 2 � 1���x � 1�
f �1�

x 2 � 1

x � 1
�

�x � 1��x � 1�
x � 1

x � 1
x � 1 � 0x � 1x

lim
x l 1

x 2 � 1

x � 1
� lim

x l 1

�x � 1��x � 1�
x � 1

� lim
x l 1

�x � 1�

� 1 � 1 � 2

�1, 1�y � x 2

t�x� � x � 1f �x� � �x 2 � 1���x � 1�
xx � 1f �x� � t�x�

x

If f �x� � t�x� when x � a, then lim
x l a

f �x� � lim
x l a

t�x�

lim
x l1

t�x�EXAMPLE 4

t�x� � �x � 1

�

if x � 1

if x � 1

xt�1� � �x � 1t

t�x� � x � 1
x � 1

lim
x l 1

t�x� � lim
x l 1

�x � 1� � 2

x � 1 x

y=©

1 2 3

1

x

y

0

2

3

y=ƒ

1 2 3

1

x

y

0

2

3

FIGURE 2 
The graphs of the functions f (from
Example 3) and g (from Example 4)
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66 CHAPTER 1 FUNCTIONS AND LIMITS

Evaluate .

SOLUTION If we define 

then, as in Example 3, we can’t compute by letting since is
undefined. But if we simplify algebraically, we find that

(Recall that we consider only when letting approach 0.) Thus

Find .

SOLUTION We can’t apply the Quotient Law immediately, since the limit of the denomi-
nator is 0. Here the preliminary algebra consists of rationalizing the numerator:

This calculation confirms the guess that we made in Example 2 in Section 1.5.

Some limits are best calculated by first finding the left- and right-hand limits. The fol-
lowing theorem is a reminder of what we discovered in Section 1.5. It says that a two-sided
limit exists if and only if both of the one-sided limits exist and are equal.

Theorem if and only if    

When computing one-sided limits, we use the fact that the Limit Laws also hold for one-
sided limits.

EXAMPLE 5 lim
h l 0

�3 � h�2 � 9

h

F�h� �
�3 � h�2 � 9

h

lim h l 0 F�h� h � 0 F�0�
F�h�

F�h� �
�9 � 6h � h 2 � � 9

h
�

6h � h 2

h
� 6 � h

h � 0 h

lim
h l 0

�3 � h�2 � 9

h
� lim

h l 0
�6 � h� � 6

EXAMPLE 6 lim
t l 0

st 2 � 9 � 3

t 2

lim
t l 0

st 2 � 9 � 3

t 2 � lim
t l 0

st 2 � 9 � 3

t 2 �
st 2 � 9 � 3

st 2 � 9 � 3

� lim
t l 0

�t 2 � 9� � 9

t 2(st 2 � 9 � 3)

� lim
t l 0

t 2

t 2(st 2 � 9 � 3)

� lim
t l 0

1

st 2 � 9 � 3

�
1

slim
t l 0

�t 2 � 9� � 3

�
1

3 � 3
�

1

6

1 lim
x l a

f �x� � L lim
x la�

f �x� � L � lim
x la�

f �x�

v
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Show that .

SOLUTION Recall that

Since for , we have

For we have and so 

Therefore, by Theorem 1, 

Prove that does not exist.

SOLUTION

Since the right- and left-hand limits are different, it follows from Theorem 1 that
does not exist. The graph of the function is shown in Fig-

ure 4 and supports the one-sided limits that we found.

If

determine whether exists.

SOLUTION Since for , we have

Since for , we have

The right- and left-hand limits are equal. Thus the limit exists and

The graph of is shown in Figure 5.

lim
x l 0

� x � � 0

� x � � �x

�x

if x � 0

if x � 0

� x � � x x � 0

lim
x l0� � x � � lim

x l0�
x � 0

x � 0 � x � � �x

lim
x l0� � x � � lim

x l0�
��x� � 0

lim
x l 0

� x � � 0

v EXAMPLE 8 lim
x l 0

� x �
x

lim
x l0�

� x �
x

� lim
x l0�

x

x
� lim

x l0�
1 � 1

lim
x l0�

� x �
x

� lim
x l0�

�x

x
� lim

x l0�
��1� � �1

lim x l 0 � x ��x f �x� � � x ��x

EXAMPLE 9

f �x� � �sx � 4

8 � 2x

if x � 4

if x � 4

lim x l 4 f �x�

f �x� � sx � 4 x � 4

lim
x l4�

f �x� � lim
x l4�

sx � 4 � s4 � 4 � 0

f �x� � 8 � 2x x � 4

lim
x l4�

f �x� � lim
x l4�

�8 � 2x� � 8 � 2 � 4 � 0

lim
x l 4

f �x� � 0

f

EXAMPLE 7

The result of Example 7 looks plausible 
from Figure 3.

FIGURE 3 

y

x0

y=|x|

1

_1

x

y

0

y=
|x|
x

FIGURE 4 

4 x

y

0
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It is shown in Example 3 in 
Section 1.7 that .lim x l 0� sx � 0
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The greatest integer function is defined by the largest integer 
that is less than or equal to . (For instance, , , , , 

) Show that does not exist.

SOLUTION The graph of the greatest integer function is shown in Figure 6. Since
for , we have

Since for , we have

Because these one-sided limits are not equal, does not exist by Theorem 1.

The next two theorems give two additional properties of limits. Their proofs can be
found in Appendix F.

Theorem If when is near (except possibly at ) and the limits
of and both exist as approaches , then

The Squeeze Theorem If when is near (except 
possibly at ) and

then

The Squeeze Theorem, which is sometimes called the Sandwich Theorem or the Pinch-
ing Theorem, is illustrated by Figure 7. It says that if is squeezed between and

near , and if and have the same limit at , then is forced to have the same
limit at .

Show that .

SOLUTION First note that we cannot use

|

because does not exist (see Example 4 in Section 1.5).
Instead we apply the Squeeze Theorem, and so we need to find a function smaller

than and a function bigger than such that both and 

�x
 �
x �4
 � 4 �4.8
 � 4 �� 
 � 3 �s2 
 � 1

��
1
2 
 � �1. lim x l3 �x


�x
 � 3
3 � x � 4

lim
x l3�

�x
 � lim
x l3�

3 � 3

�x
 � 2 2 � x � 3

lim
x l3�

�x
 � lim
x l3�

2 � 2

lim x l3 �x


2 f �x� � t�x� x a a
f t x a

lim
x l a

f �x� � lim
x l a

t�x�

3 f �x� � t�x� � h�x� x a
a

lim
x l a

f �x� � lim
x l a

h�x� � L

lim
x l a

t�x� � L

t�x� f �x�
h�x� a f h L a t

L a

v EXAMPLE 11 lim
x l 0

x 2 sin 
1

x
� 0

lim
x l 0

x 2 sin 
1

x
� lim

x l 0
x 2 � lim

x l 0
sin 

1

x

lim x l 0 sin�1�x�
f

t�x� � x 2 sin�1�x� h t f �x� h�x�

EXAMPLE 10Other notations for are and . The
greatest integer function is sometimes called
the floor function.

⎣x⎦�x��x 
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Greatest integer function
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