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6.3 The Indefinite Integral

The indefinite integral of a function y = f(x) is usually written as:

Jﬂx)dx =F(x)+C (6.9)
where:

* f(x)is known as the |
e (s an arbitrary constant called the 1
*  F(x)+ Cis known as the indefi i

The new function, y = F(x)+ C, which we obtain after integration, must
be such that its derivative is equal to f{x), to ensure that the definition
conforms with the requirement that integration is the reverse (or inverse)
of differentiation. Thus, we must have:

S F0) 1+ 0 = F') =) (6.10)

The relation between the indefinite integral of f{x) and f{x) itself is shown
schematically in Figure 6.6 for the functions f{x) = 18x% and F(x) = 6x".

So, to summarize: the indefinite integral is determined by finding a
suitable function, F(x), which, on differentiation, yields the function we
are trying to integrate, and to which we then add a constant. In common
with the strategjes described in Chapter 4 for finding the derivative of a
given function, an analogous set of strategies can be constructed for
finding the indefinite integral of a function. For simple functions, a set of
standard indefinite integrals can be constructed without too much
difficulty, some of which are listed in Table 6.1.

Figure 6.5 A plot of the radial
probability density,

D(r) = Nrle /= tor the 1s
orbital of the hydrogen atom.
where a, is the Bohr radius (units,
m) and N has units of m~3
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Figure 6.6 Integration of the
function f(x) =18x2 (right) yields
a family of functions given by the
indefinite integral F(x) = 6x°+C
(left), where C can take any
value. Differentiation of F(x)
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yields the original function, f(x)

Table 6.1 A selection of functions, £x), and their indefinite integrals, F(x)+C

f(%) Integrate F(x+C
x¥(a# —1) _3&11-—114 c

% In(x),+C

+a in(x+a)+C
cos(ax) % sin(ax)+C
sin(ax) —%cos(ax)+C
e %ea" +C
sec?(x) tan(x)+C

f00) differentiate F(x)+C

Worked Probiem 6.1

Q (2) Show that: ag;c In(l — 2x) = —
(b) Deduce that: [ -ly=dx=—1In(1-2x) + C.

2
I_..Zx'

A (a) Since the first step involves establishing that the derivative
of y=In(1 —2x) is — %, it is simplest to use the chain rule (see
Section 4.2.4). If u=1-2x, then:
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dy d 9
dx  dx dudx  u T 1-2x
(b) Reversing the procedure by integration yields the following
result, where B is the constant of integration:

2 1 1
—Il_zxdx—ln(l—Zx)+B =>J'1_2xdx——§ln(l—2x)+C

In(1 — 2x) = 3% _1 2

where C= — BJ2.

Problem 6.1 \

(a) Evaluate ad}ez" and hence deduce that | eXdx = %ez" + C.

X

df 1 \_ e*
(b) Show that {1 (1) = 7 and hence find [ € dx.

_.__ €
(1+€%) )

6.4 General Strategies for Solving More

Complicated Integrals

Integrals involving complicated forms for f{x) require strategies for

reducing the integral to one or more integrals of simpler (standard) form,
thus making it possible to find F(x). If all else fails, or we do not have an
explicit form for f{x), then numerical integration must be carried out,

using methods described elsewhere.!
Some of the strategies involved in simplifying the form of an integral

are quite straightforward. For example:

If f{x) is in the form of a linear combination of simpler functions, e.g.:
J(3x2+2x+1)dx (6.11)

then we may be able to rewrite such an integral as a sum of standard
integrals that are immediately recognizable:

J'(3x2+2x+ 1)dx = _[3x2dx+_[2xdx+_[ldx (6.12)

Integrals can be simplified by placing constant terms outside the
integral, e.g.:

I(3x2+2x+1)dx=3jx2dx+2jxdx+J'1dx (6.13)

A chemical example of a function
which does not have an explicit
form can be found in
thermodynamics, where the
entropy is determined by
integrating Cp/T. which may be
known only at selected
temperatures.
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Problem 6.2

Integrate the function y = f{x) = 9x? + 2¢?* + %

In practice, we may find ourselves faced with more complicated functions,
the solutions to which require us to use methods involving adaptation of
some of the rules for differentiation. The choice of method more often
than not involves some guesswork, but coming up with the correct
guesses is all part of the fun! In addition, it may be necessary to use a
combination of several methods. In the following two sections, we discuss
integration by parts and the substitution method

6.4.1 Integration by Parts

This method starts from the familiar product rule, used in differential
calculus (equation 4.9):

ax T Vax T
Integration over x yields:
d du dv
J'a}(uv)dx—_[vadx+jua}dx (6.14)

and, on using the properties of differentials, the left side [ f—x (uv)dx
becomes [ d(uv) = uv. It follows that rearrangement of the above
expression yields:
dv .~ du

juadx—uv—Jvadx (615)
Equation (6.15) shows that the integral on the left side, which is the one
sought, is replaced by two terms, one of which is another integral which
we hope is more tractable than the initial integral. This method of integral
evaluation is appropriate for integrands of product form. The success of
the method relies on making the right choices for  and dv/dx. The term
identified as u is differentiated to form part of the integrand on the right
side of equation (6.15); the other part of the integrand is formed by
integrating the term identified as dv/dx.

Worked Problem 6.2

Q Given the integrand f(x) = x cos x, find the indefinite integral.
A The integrand is the product of x and cos X, and in this case we
identify x with # and dv/dx with cos x in equation (6.15): u=x and
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dv/dx = cosx. Thus, du/dx =1 and v=sinx, and so equation
(6.15) becomes:

jx cosxdx = xsinx — j sin x dx.

The final step simply requires us to evaluate [ sinxdx, which we
know by reference to Table 6.1 to be —cos x+ C. Thus:

Ix cosxdx = xsinx+ cosx+ D

where D= —C. If, on the other hand, we had identified u and dv/dx
the other way round, we end up with a more complicated integral to
evaluate:

2

X2,
xcosxdx = x° cosx+ 7s1nxdx

Clearly, some practice is required in identifying » and dv/dx for use
in equation (6.15), when it seems that integration by parts is
appropriate.

Use the method of integration by parts to evaluate [ xe *dx,
assuming;

() u=x and dv/dx = e™*; (b) u=€ ™ and dv/dx = x.

Comment on which choice you think is the most appropriate for
this integral.

6.4.2 Integration Using the Substitution Method

The second integration technique, known as the substitution method,
derives from the inversion of the chain rule for differentiation described
in Chapter 4. The objective here, once again, is to transform the
integrand into a simpler or, preferably, a standard form. However, just
like the integration by parts method, there is usually a choice of
substitutions and although, in some cases, different substitutions yield
different answers, these answers must only differ by a constant
(remember that, for an indefinite integral, the answer is determined
by inclusion of a constant). The substitution method is best illustrated
using a worked problem.
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Worked Problem 6.3

Q Evaluate | xe® dx.

A Here f{x) = xe . Let us try the substitution #=ax? in order to
transform the integral over x to an integral over u. From the
properties of differentials we know that:

du = ii—lidx = 2axdx
dx

This result enables us to express dx in terms of du, according to
dx = Z};du, thus transforming the integral into:

du 1 1
u - u —__ aH
Jxe Y 2aje du 25¢ +C
We now express the result in terms of the original variable, x, by
substituting back for u:

J'xe“"zdx = le‘erz +C
2a

At this point, it is good practice to check the result by differentiating
the function F(x) = Z—Ia €™, to ensure that the original integrand f{x)
is regenerated (see equation 6.10):

F(x) = %(%eaf) i _22%x_eax2 S ot

as required.

Problem 6.4

Repeat Worked Problem 6.3, using the substitution u=x’.

Worked Problem 6.4

Q Evaluate

X
Imdx.
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A A possible substitution is given by u=(1-—x)!/2

follows that:

, from which it
W=1-x=>x=1-1
Differentiating the last equation with respect to u gives:

d—{ = =2u=>dx=—-2udu
du

= —2-[(1 —u¥)du= —2u+§u3+C

=" x = —%(1 -2+ x)+C

Problem 6.5

Evaluate the indefinite integral j——de using the substi-
tution u=1—x% )

Problem 6.6

(a) Find j'x(x2 + 4)1/ 2dx, using the substitution u = 2+ 4.

(b) Show that | Ylll_x dx = In(In x) + C, using the substitution u=
In x.

Use of Trigonometrical Substitutions

The integrand in Problem 6.5 is of a form which suggests that a
trigonometrical substitution might be appropriate. Bearing in mind the
key identity cos?u + sin’u = 1, the appearance of a factor like (1 — x2)!/?
in the integrand suggests the substitutions x=cosu or x=sinu.
Thus, for the substitution x=cosu, the factor (1 —x*)!/2 becomes
(1 — cos? u)!/? =sin u.
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(a) Repeat Problem 6.5, using the trigonometrical substitution
X =COS U.

Hint. You will need to remember that sin’u=1— cos’u and
consequently that sinu = (1 — cos?u)!/? for the final step of your
integration. You should have obtained the same result as your
answer to Problem 6.5.

2

(b) Show that J::;Cdx = In(sinx) + C using the substitution
u=sin Xx.

General Comment

The choice of method for evaluating indefinite integrals relies on
experience to a large extent. Sometimes, integration by parts and the
substitution methods are equally applicable; however, in many cases they
are not. For example, the integration by parts method is much more
suited to finding the integral of the function f{x) = x cos x, described in
Worked Problem 6.2, than the substitution method (which would prove
frustrating and fruitless in this case). It may also be necessary to use
several applications of one or both methods before the answer is
accessible. However, whichever method is used, the answer may always
be checked by verifying that F’(x) = f(x).

6.5 The Connection Between the Definite
and Indefinite Integral

As we saw in Section 6.2.1, the concept of integration emerged from
attempts to determine the area bounded by a plot of a function f{x) and
the x-axis, within some interval [a,b]. This area is given by the definite
integral, the definition of which derives from numerical methods
involving limits (see Section 6.2.1). Such numerical methods can be
tedious to apply in practice (although instructive!) but, fortunately, there
is a direct link between the indefinite integral, F(x) + C, of a function, f{x),
and the definite integral, in which x is constrained to the interval [a,b].
The relationship between the two forms of integration is provided by the
fundamental theorem of calculus:

b
L A(x)dx = (F(b) + C) — (F(a) + C) = F(b) — F(a) (6.16)

where F(a) is the value of F(x) at x=a and F(b) is the value of F(x) at
x=>b. In other words, the definite integral over the interval [a,b] is
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obtained by subtracting the indefinite integral at the point x = a from that
at x=>. Furthermore, we see that the constant of integration, which
appears in the indefinite integral, does not appear in the final result (see

equation 6.16).

Worked Problem 6.5
0 se

Q Evaluatej —dx.
ol+x

A The first step requires us to find the indefinite integral jH_Lxdx.
Using the substitution ¥ =1+ x, the integral becomes:

Ju_lduzj(l—%)du=u—lnu+C=(1+x)—ln(1+x)+C

u

Thus identifying F(x) with (1 + x)—In(l + x), the definite integral
can be evaluated from:

1
X
_[l_i_xdx—F(l)—F(O)—2—ln2——1—0—l—ln2
0

Problem 6.8
=l (22,

(a) Evaluate (i) I ;dx; (ii) L x(x” + 4) /2dx (see Problem 6.6a).
1

2
(b) Show that X _dx= l1n 2, using an appropriate sub-
o (x%+4) 2
stitution.

Problem 6.9

For the expansion of a perfect gas at constant temperature, the
reversible work is given by the expression:

Yy
W= J pdV
Va
where p=nRT/V and ¥V, and ¥}, are the initial and final volumes,

respectively. Derive an expression for the work done by evaluating
the integral between the limits ¥, and V5.
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Problem 6.10

Let K be the equilibrium constant for the formation of CO, and H,
from CO and H,O at a given temperature 7. From thermodynamics,
we know that:

d o) 2
a—fan—AH /RT (6.17)
(a) Assuming that AH* is independent of temperature, integrate
equation (6.17) to find how In K varies with 7.

(b) Given AH*=42.3 kJ mol ', find the change in In K as the
temperature is raised from 500 K to 600 K.

Summary of Key Points

This chapter provides an introduction to integral calculus, together
with examples set in a chemical context. However, as we shall see in
the following chapter, we need integral calculus to solve the
differential equations which appear in chemical kinetics, quantum
mechanics, spectroscopy and other areas of chemistry. The key
points discussed in this chapter include:

1. The definition of integration as the inverse of differentiation,
yielding the indefinite integral.

2. The definition of integration as a means of evaluating the area
bounded by a plot of a function over a given interval and the x-axis,
yielding the definite integral.

3. The use of integration by parts method for integrating products
of functions.

4. The use of the substitution method for reducing more
complicated functions to a simpler or standard form.

5. The use of trigonometric substitutions in the substitution
method.

Reference

1. See, for example, M. J. Englefield, Mathematical Methods for Engineer-
ing and Science Students, Amold, London, 1987, chap. 15.
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Differential Equations

In Chapter 2 we explored some of the methods used for finding the roots
of algebraic equations in the form y = f{x). In all of the examples given we
were seeking to determine the value of an unknown (typically the value of
the independent variable, x) that resulted in a particular value for y, the
dependent variable. In general, the methods discussed can be used to solve
algebraic equations where the dependent variable takes a value other than
zero, because the equation can always be rearranged into a form in which
y=0. For example, if we seek the solution to the equation:

4=x*-5
then we can rearrange it to:

0=x*-9

by subtracting 4 from both sides. The problem now boils down to one in
which we search for the two roots of the equation which, in this case, are
x=+3.

In this chapter we are concerned with equations containing derivatives
of functions. Such equations are termed d tial eg ,and arise in
the derivation of model equations describing processes involving rates of
change, as in, for example:

* Chemical kinetics (concentrations changing with time).

e Quantum chemical descriptions of bonding (probability density
changing with position).

e Vibrational spectroscopy (atomic positional coordinates changing
with time).

In these three, as well as in other, examples we are trying to determine how
the chosen property (such as concentration, probability density or atomic
position) varies with respect to time, position or some other variable. This
is a problem which requires the solution of one or more differential
equations in a procedure that is made possible by using the tools of
differentiation and integration discussed in Chapters 4 and 6, respectively.

135
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This chapter builds on the content of earlier chapters to develop
techniques for solving equations associated with processes involving
rates of change. By the end of this chapter you should be able to:

* Identify a differential equation and classify it according to its
order

¢ Use simple examples to demonstrate the origin and nature of
differential equations

e Identify the key areas of chemistry where differential equations
most often appear

e Use the separation of variables method to find the general
solutions to first-order differential equations of the form % =
f(x)g(y)

* Use the integrating factor method to find the general solutions to
first-order differential equations linear in y

* Find the general solutions to linear second-order differential
equations with constant coefficients by substitution of trial
functions

* Apply constraints (boundary conditions) to the solution(s) of
differential equations

7.1 Using the Derivative of a Function
to Create a Differentiai Equation

Consider the function:
y=Be™ (7.1)
where B is a constant. The first derivative of this function takes the form:

dy —2x
— = —2B 7.2
O~ 2Be (7.2)

If we now substitute for y, using equation (7.1), we obtain the f
differential equation:
dy _

-2 7.3
Ox y (7.3)

which must be solved for y as a function of x. In other words, the solution
to this problem will provide us with an equation which shows quanti-
tatively how y varies as a function of x. The solution is, of course,
provided by the original equation (7.1), but the purpose here is to explore
the means by which we find that out for ourselves!
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If we now differentiate equation (7.2) with respect to x, and substitute
for dy/dx using equation (7.3), we obtain the second-order differential
equation (7.4):

=4y (7.4)

This differential equation is of : r, simply because the highest
order derivative is two.

(a) Express the first and second derivatives of the function y =1/xin
the form of differential equations, and give their orders.

(b) Express the second derivative of the function y=cos ax in the
form of a differential equation.

(c) Show that the function y = Ae** is a solution of the differential

equations%—4y=0 and 3—3—5%+4y=0

The last part of Problem 7.1 demonstrates that a given function does T
not necessarily correspond to the solution of only one differential ' 7.1(c). the
equation. In later sections we shall address the question of how to
determine the number of different functions (where each function differs
from another by more than simply multiplication by a constant) that are
solutions of a given differential equation.

7.2 Some Examples of Differential Equations Arising
in Classical and Chemical Contexts

One of the principal motivations for the development of calculus by
Newton and Leibnitz in the 18th century came from the need to solve
physical problems. Examples of such problems include:

* The description of a body falling under the influence of the force of
gravity:
&n_
de?
¢ The motion of a pendulum, which is an example of simple harmonic
motion, described by the equation:

-g (7.5) = gin

d?x
= —wx (7.6)



138 Maths for Chemists

If we extend this last example to the modelling of molecular vibrations,
we need to include additional terms in the differential equation to account
for non-harmonic (anharmonic) forces.

In these last two examples of equations of motion, the objective is to

determine functions of the form h=f{r) or x =g(¢), respectively, which
satisfy the appropriate differential equation. For example, the solution of
the classical harmonic motion equation is an oscillatory function,
x=g(t), where g(t) =cos wt, and « defines the frequency of oscillation.
This function is represented schematically in Figure 7.1 (see also Worked
Problem 4.4).

Figure 7.1 A plot of the func-
tion g(f) = cos wt, describing

X g(f) = coswt

simple harmonic motion

In chemistry, we are mostly concerned with changing quantities. For
example:

In kinetics, the concentration of a species A may change with timeina
manner described by the solution of the differential equation:

d[A]
dt
In quantum mechanics, the value of a wave function, ¥, changes with

the position. For a single particle system, i is obtained as the solution
of the Schrédinger equation:

= k[A] (7.7)

w &y
v = Fi 7.8
2m dx? + Vv 4 (7:8)
where the Hamiltonian operator, H, given by —%Ed?}"' V(x), is

associated with the total energy, E, and V(x) is the potential energy
of the particle; m is the mass of the particle and 7 is the Planck
constant divided by 27.
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¢ In spectroscopy, the response of a molecule to an oscillating
electromagnetic field leads to absorption of energy, the details of
which are revealed after solving an equation of the form:

ih‘i—‘/t’ ={a+ 8@y (7.9)

e In vibrational spectroscopy, where the treatment of molecular
vibrations is based on the differential equation for an harmonic
oscillator:

2 42
%‘% + kY = Eg (7.10)

In all of the examples given above, we are faced with having to deal

with the relationship between some property and its rate of change.

The differential equations that describe such relationships contain

first-, second- or even higher-order derivatives. Most examples of this

type of equation that we meet in chemistry are either of the first or
second order, and so this is where we shall concentrate our efforts.

7.3 First-order Differential Equations

As already indicated, a first-order differential equation involves the first
derivative of a function, and takes the general form:

Y = Fxy) (7.11)

where y is a function of x, and F(x,y) is, in general, a function of both x
and y. The method used to solve equation (7.11) depends upon the form
of F(x,y).

7.3.1 Fixy)is Independent of y

In this simplest example, where F(x,y) = f(x), the general solution is found
by a simple one-step integration:

%:ﬂx) :>y:Jj(x)dx=F(x)+C (7.12)

where F(x)+C is the indefinite integral and C is the constant of
integration (see Chapter 6), which can, in principle, take any value. It is
important to note that the solution to a first-order equation involves:

One step of integration.
e  One constant of integration.
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Figure 7.2 The family of
solutions y = Frx+ C (for
C=..,315/0 -15 -3,..)
to the differential equation

g% =x2+1. Note that

F(x)= €+x. The dashed line

is the solution satisfying the
boundary condition y=0,
x=3

The solution of an sth order differential equation involves »n steps of
integration and yields » constants of integration.

Q Solve %= x*+1.
A Simple integration yields the general solution:

3

y=%+x+C

which can be described in terms of a family of cubic functions, each
with a different value of C (see Figure 7.2). In this example, F(x) =

3
X
3+x.

F(x)

—15-|

7.3.2 Boundary Conditions

In the case of a first-order differential equation, the constant of
integration is usually determined by a n, O constraint
on the solution. For example, if y is known at x =0, then this boundary
condition is sufficient to determine the constant of integration, C. Thus,
out of the family of possible solutions, only one solution is acceptable and
this is the one satisfying the boundary condition.

For example, if the boundary condition for the solution of the
differential equation in Worked Problem 7.1 is such that y=3 at x=0,
then the solution is constrained to take the form:

3
y=F(x)+3:iC3—+x+3

since F(0) = 0 = C = 3 (see the dashed-line solution in Figure 7.2).



