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tispectral data are used to perform the classification and, indeed, the spectral
pattern present within the data for each pixel is used as the numerical basis for
categorization. That is, different feature tvpes manifest different combinations
of DNs based on their inherent spectral reflectance and emittance properties.
In this light, a spectral “pattern” is not at all geometric in character. Rather,
the term pattern refers to the set of radiance measurements obtained in the
various wavelength bands for each pixel. Spectral pattern recognition refers to
the family of classification procedures that utilizes this pixel-by-pixel spectral
information as the basis for automated land cover classification.

Spatial pattern recognition involves the categorization of image pixels on
the basis of their spatial relationship with pixels surrounding them. Spatial
classifiers might consider such aspects as image texture, pixel proximity, fea-
ture size, shape, directionality, repetition, and context. These tvpes of classi-
fiers attempt to replicate the kind of spatial svnthesis done by the human
analyst during the visual interpretation process. Accordingly, they tend to be
much more complex and computationally intensive than spectral pattern
recognition procedures.

Temporal pattern recognition uses time as an aid in feature identification.
In agricultural crop surveys, for example, distinct spectral and spatial
changes during a growing season can permit discrimination on multidate im-
agery that would be impossible given any single date. For example, a field of
winter wheat might be indistinguishable from bare soil when freshly seeded
in the fall and spectrally similar to an alfalfa field in the spring. An interpreta-
tion of imagery from either date alone would be unsuccessful, regardless of
the number of spectral bands. If data were analvzed from both dates, how-
ever, the winter wheat fields could be readily identified, since no other field
cover would be bare in late fall and green in late spring.

As with the image restoration and enhancement techniques we have de-
scribed, image classifiers may be used in combination in a hybrid mode. Also,
there is no single “right” manner in which to approach an image classification
problem. The particular approach one might take depends upon the nature of
the data being analvzed, the computational resources available, and the in-
tended application of the classified data.

In the remaining discussion we emphasize spectrally oriented classifica-
tion procedures for land cover mapping. (As stated earlier, this emphasis is
based on the relative state of the art of these procedures. They currently form
the backbone of most multispectral classification activities.) First, we describe
supervised classification. In this type of classification the image analyst “super-
vises” the pixel categorization process by specifying, to the computer algo-
rithm, numerical descriptors of the various land cover types present in a
scene. To do this, representative sample sites of known cover tvpe, called train-
ing areas, are used to compile a numerical “interpretation key” that describes
the spectral attributes for each feature type of interest. Each pixel in the data
set is then compared numerically to each category in the interpretation key
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and labeled with the name of the category it “looks most like.” As we see in the
next section, there are a number of numerical strategies that can be employed
to make this comparison between unknown pixels and training set pixels.

Following our discussion of supervised classification we treat the subject
of unsupervised classification. Like supervised classifiers, the unsupervised pro-
cedures are applied in two separate steps. The fundamental difference between
these techniques is that supervised classification involves a training step fol-
lowed by a classification step. In the unsupervised approach the image data are
first classified by aggregating them into the natural spectral groupings, or clus-
ters, present in the scene. Then the image analyst determines the land cover
identity of these spectral groups by comparing the classified image data to
ground reference data. Unsupervised procedures are discussed in Section 7.11.

Following our treatment of supervised and unsupervised classification we
discuss hvbrid classification procedures. Such techniques involve aspects of
both supervised and unsupervised classification and are aimed at improving
the accuracy or efficiency (or both) of the classification process. Hybrid clas-
sification is the subject of Section 7.12.

We reiterate that the various classification procedures we discuss in the
next several sections are generally applied to multispectral data sets. We defer
discussion of hyperspectral image analysis until Section 7.18.

7.8 SUPERVISED CLASSIFICATION

We use a hypothetical example to facilitate our discussion of supervised clas-
sification. In this example, let us assume that we are dealing with the analysis
of five-channel airborne multispectral scanner data. (The identical procedures
would apply to Landsat, SPOT, or virtually any other source of multispectral
data.) Figure 7.37 shows the location of a single line of data collected for our
hypothetical example over a landscape composed of several cover types. For
each of the pixels shown along this line, the multispectral scanner has mea-
sured scene radiance in terms of DNs recorded in each of the five spectral
bands of sensing: blue, green, red, near infrared, and thermal infrared. Below
the scan line, typical DNs measured over six different land cover types are
shown. The vertical bars indicate the relative gray values in each spectral
band. These five outputs represent a coarse description of the spectral re-
sponse patterns of the various terrain features along the scan line. If these
spectral patterns are sufficiently distinct for each feature type, they may form
the basis for image classification.

Figure 7.38 summarizes the three basic steps involved in a typical super-
vised classification procedure. In the training stage (1), the analyst identifies rep-
resentative training areas and develops a numerical description of the spectral
attributes of each land cover type of interest in the scene. Next, in the classifica-
tion stage (2), each pixel in the image data set is categorized into the land cover
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Figure 7.38 Basic steps in supervised classification.

class it most closely resembles. If the pixel is insufficiently similar to any train-
ing data set, it is usually labeled “unknown.” The category label assigned to each
pixel in this process is then recorded in the corresponding cell of an interpreted
data set (an “output image”). Thus, the multidimensional image matrix is used
to develop a corresponding matrix of interpreted land cover category tvpes.
After the entire data set has been categorized, the results are presented in the
output stage (3). Being digital in character, the results may be used in a number
of different ways. Three typical forms of output products are thematic maps, ta-
bles of full scene or subscene area statistics for the various land cover classes,
and digital data files amenable to inclusion in a GIS. In this latter case, the clas-
sification “output” becomes a GIS “input.”

We discuss the output stage of image classification in Section 7.14. Our
immediate attention is focused on the training and classification stages. We
begin with a discussion of the classification stage because it is the heart of the
supervised classification process—during this stage the spectral patterns in
the image data set are evaluated in the computer using predefined decision
rules to determine the identity of each pixel. Another reason for treating the
classification stage first is because familiarity with this step aids in under-
standing the requirements that must be met in the training stage.

7.9 THE CLASSIFICATION STAGE

Numerous mathematical approaches to spectral pattern recognition have been
developed and extensive discussion of this subject can be found in the various
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references found at the end of this chapter. Our discussion only “scratches the
surface” of how spectral patterns may be classified into categories.

Our presentation of the various classification approaches is illustrated
with a two-channel (bands 3 and 4) subset of our hypothetical five-channel
multispectral scanner data set. Rarely are just two channels employed in an
analysis, yet this limitation simplifies the graphic portrayal of the various
techniques. When implemented numerically, these procedures may be ap-
plied to any number of channels of data.

Let us assume that we take a sample of pixel observations from our two-
channel digital image data set. The two-dimensional digital values, or measure-
ment vectors, attributed to each pixel may be expressed graphically by plotting
them on a scatter diagram (or scatter plot), as shown in Figure 7.39. In this dia-
gram, the band 3 DNs have been plotted on the y axis and the band 4 DNs on
the x axis. These two DNs locate each pixel value in the two-dimensional “mea-
surement space” of the graph. Thus, if the band 4 DN for a pixel is 10 and the
band 3 DN for the same pixel is 68, the measurement vector for this pixel is
represented by a point plotted at coordinate (10, 68) in the measurement space.

Let us also assume that the pixel observations shown in Figure 7.39 are
from areas of known cover type (that is, from selected training sites). Each pixel
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Figure 7.39 Pixel observations from selected training sites plotted on scat-
ter diagram.
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value has been plotted on the scatter diagram with a letter indicating the cate-
gory to which it is known to belong. Note that the pixels within each class do
not have a single, repeated spectral value. Rather, they illustrate the natural cen-
tralizing tendencv—vet variability—of the spectral properties found within each
cover class. These “clouds of points” represent multidimensional descriptions of
the spectral response patterns of each category of cover type to be interpreted.
The following classification strategies use these “training set” descriptions of the
category spectral response patterns as interpretation kevs by which pixels of
unidentified cover tvpe are categorized into their appropriate classes.

Minimum-Distance-to-Means Classifier

Figure 7.40 illustrates one of the simpler classification strategies that mav be
used. First, the mean, or average, spectral value in each band for each category
is determined. These values comprise the mean vector for each category. The
category means are indicated by +'s in Figure 7.40. By considering the two-
channel pixel values as positional coordinates (as they are portraved in the
scatter diagram), a pixel of unknown identity may be classified by computing
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Figure 7.40 Minimum distance to means classification sirategy.
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the distance between the value of the unknown pixel and each of the category
means. In Figure 7.40, an unknown pixel value has been plotted at point 1. The
distance between this pixel value and each category mean value is illustrated by
the dashed lines. After computing the distances, the unknown pixel is assigned
to the “closest” class, in this case “corn.” If the pixel is farther than an analyst-
defined distance from any category mean, it would be classified as “unknown.”

The minimum-distance-to-means strategy is mathematically simple and
computationally efficient, but it has certain limitations. Most importantly, it
is insensitive to different degrees of variance in the spectral response data. In
Figure 7.40, the pixel value plotted at point 2 would be assigned by the
distance-to-means classifier to the “sand” category, in spite of the fact that the
greater variability in the “urban” category suggests that “urban” would be a
more appropriate class assignment. Because of such problems, this classifier
is not widely used in applications where spectral classes are close to one an-
other in the measurement space and have high variance.

Parallelepiped Classifier

We can introduce sensitivity to category variance by considering the range of
values in each category training set. This range may be defined by the highest
and lowest digital number values in each band and appears as a rectangular
area in our two-channel scatter diagram, as shown in Figure 7.41. An un-
known pixel is classified according to the categorv range, or decision region,
in which it lies or as “unknown” if it lies outside all regions. The multidimen-
sional analogs of these rectangular areas are called parallelepipeds, and this
classification strategy is referred to by that tongue-twisting name. The paral-
lelepiped classifier is also very fast and efficient computationally.

The sensitivity of the parallelepiped classifier to category variance is exem-
plified by the smaller decision region defined for the highly repeatable “sand”
category than for the more variable “urban” class. Because of this, pixel 2
would be appropriately classified as “urban.” However, difficulties are encoun-
tered when category ranges overlap. Unknown pixel observations that occur in
the overlap areas will be classified as “not sure” or be arbitrarily placed in one
(or both) of the two overlapping classes. Overlap is caused largely because cat-
egory distributions exhibiting correlation or high covariance are poorly de-
scribed by the rectangular decision regions. Covariance is the tendency of
spectral values to vary similarly in two bands, resulting in elongated, slanted
clouds of observations on the scatter diagram. In our example, the “corn” and
“hay” categories have positive covariance (they slant upward to the right),
meaning that high values in band 3 are generally associated with high values in
band 4, and low values in band 3 are associated with low values in band 4. The
water category in our example exhibits negative covariance (its distribution
slants down to the right), meaning that high values in band 3 are associated
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Figure 7.41 Parallelepiped classification strategy.

with low values in band 4. The “urban” class shows a lack of covariance, result-
ing in a nearly circular distribution on the scatter diagram.

In the presence of covariance, the rectangular decision regions fit the cat-
egory training data very poorly, resulting in confusion for a parallelepiped
classifier. For example, the insensitivity to covariance would cause pixel 1 to
be classified as “hay” instead of “corn.”

Unfortunately, spectral response patterns are frequently highly correlated,
and high covariance is often the rule rather than the exception. The resulting
problems can be somewhat alleviated within the parallelepiped classifier by
modifying the single rectangles for the various decision regions into a series of
rectangles with stepped borders. These borders then describe the boundaries
of the elongated distributions more specifically. This approach is illustrated in
Figure 7.42.

Gaussian Maximum Likelihood Classifier

The maximum likelihood classifier quantitatively evaluates both the variance
and covariance of the category spectral response patterns when classifying an
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Figure 7.42  Parallelepiped classification strategy emploving stepped deci-
sion region boundaries.

unknown pixel. To do this, an assumption is made that the distribution of the
cloud of points forming the category training data is Gaussian (normally distrib-
uted). This assumption of normalitv is generally reasonable for common spectral
response distributions. Under this assumption, the distribution of a category
response pattern can be completely described by the mean vector and the co-
variance matrix. Given these parameters, we may compute the statistical proba-
bility of a given pixel value being a member ol a particular land cover class.
Figure 7.43 shows the probability values plotted in a three-dimensional graph.
The vertical axis is associated with the probability ol a pixel value being a mem-
ber of one of the classes. The resulting bell-shaped surfaces are called probability
density functions, and there is one such function for each spectral category.

The probability density functions are used to classify an unidentified pixel
by computing the probability of the pixel value belonging to each categorv.
That is, the computer would calculate the probability of the pixel value occur-
ring in the distribution of class “corn,” then the likelihood of its occurring in
class “sand,” and so on. Alter evaluating the probability in each category, the
pixel would be assigned to the most likelv class (highest probability value) or
be labeled “unknown” il the probability values are all below a threshold set by
the analvst.
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Figure 7.43  Probability density functions defined by a maximum likelihood classitier.

In essence, the maximum likelihood classifier delineates ellipsoidal
“equiprobability contours” in the scatter diagram. These decision regions are
shown in Figure 7.44. The shape of the equiprobability contours expresses the
sensitivity of the likelihood classifier to covariance. For example, because of
this sensitivity, it can be seen that pixel 1 would be appropriatelv assigned to
the “corn” category.

An extension of the maximum likelihood approach is the Bavesian classi-
fier. This technique applies two weighting factors to the probability estimate.
First, the analyst determines the “a priori probability,” or the anticipated
likelihood of occurrence for each class in the given scene. For example, when
classifving a pixel, the probability of the rarely occurring “sand” category
might be weighted lightly, and the more likely “urban” class weighted heav-
ilv. Second, a weight associated with the “cost” of misclassification is applied
to each class. Together, these factors act to minimize the “cost” of misclassi-
fications, resulting in a theoretically optimum classification. In practice,
most maximum likelihood classification is performed assuming equal proba-
bility of occurrence and cost of misclassification for all classes. If suitable
data exist for these factors, the Bayesian implementation of the classifier is
preferable.
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Figure 7.44 Equiprobability contours defined by a maximum likelihood
classifier.

The principal drawback of maximum likelihood classification is the large
number of computations required to classify each pixel. This is particularly
true when either a large number of spectral channels are involved or a large
number of spectral classes must be differentiated. In such cases, the maxi-
mum likelihood classifier is much slower computationally than the previous
techniques.

Several approaches may be taken to increase the efficiency of maximum
likelihood classifiers. In the lookup table implementation of such algorithms,
the category identity for all possible combinations of digital numbers occur-
ring in an image is determined in advance of actually classifying the image.
Hence, the complex statistical computation for each combination is only
made once. The categorization of each pixel in the image is then simply a
matter of indexing the location of its multichannel gray level in the lookup
table.

Another means of optimizing the implementation of the maximum likeli-
hood classifier is to use some method to reduce the dimensionality of the data
set used to perform the classification (thereby reducing the complexity of the
required computations). As stated earlier, principal or canonical component
transformations of the original data may be used for this purpose.
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Decision tree, stratified, or lavered classifiers have also been utilized to sim-
plifv classification computations and maintain classification accuracy. These
classifiers are applied in a series of steps, with certain classes being separated
during each step in the simplest manner possible. For example, water might
first be separated from all other classes based on a simple threshold set in a
near-infrared band. Certain other classes may require only two or three bands
for categorization and a parallelepiped classifier may be adequate. The use of
more bands or the maximum likelihood classifier would then only be required
for those land cover categories where residual ambiguity exists between over-
lapping classes in the measurement space.

7.10 THE TRAINING STAGE

Whereas the actual classification of multispectral image data is a highly auto-
mated process, assembling the training data needed for classification is any-
thing but automatic. In many ways, the training effort required in supervised
classification is both an art and a science. It requires close interaction be-
tween the image analyst and the image data. It also requires substantial refer-
ence data and a thorough knowledge of the geographic area to which the data
apply. Most importantly, the quality of the training process determines the
success of the classification stage and, therefore, the value of the information
generated from the entire classification effort.

The overall objective of the training process is to assemble a set of statis-
tics that describe the spectral response pattern for each land cover type to be
classified in an image. Relative to our earlier graphical example, it is during
the training stage that the location, size, shape, and orientation of the “clouds
of points” for each land cover class are determined.

To yield acceptable classification results, training data must be both rep-
resentative and complete. This means that the image analyst must develop
training statistics for all spectral classes constituting each information class to
be discriminated by the classifier. For example, in a final classification output,
one might wish to delineate an information class called “water.” If the image
under analysis contains only one water body and if it has uniform spectral re-
sponse characteristics over its entire area, then only one training area would
be needed to represent the water class. If, however, the same water body con-
tained distinct areas of very clear water and very turbid water, a minimum of
two spectral classes would be required to adequatelv train on this feature. If
multiple water bodies occurred in the image, training statistics would be re-
quired for each of the other spectral classes that might be present in the
water-covered areas. Accordingly, the single information class “water” might
be represented by four or five spectral classes. In turn, the four or five spectral
classes would eventually be used to classify all the water bodies occurring in
the image.
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By now it should be clear that the training process can become quite in-
volved. For example, an information class such as “agriculture” might contain
several crop types and each crop type might be represented by several spec-
tral classes. These spectral classes could stem from different planting dates,
soil moisture conditions, crop management practices, seed varieties, topo-
graphic settings, atmospheric conditions, or combinations of these factors.
The point that must be emphasized is that all spectral classes constituting each
information class must be adequately represented in the training set statistics
used to classify an image. Depending upon the nature of the information
classes sought, and the complexity of the geographic area under analysis, it is
not uncommon to acquire data from 100 or more training areas to adequately
represent the spectral variability in an image.

The location of training areas in an image is normally established by
viewing windows, or portions of the full scene, in an enlarged format on an
interactive color display device. The image analyst normally obtains training
sample data by outlining training areas using a reference cursor. The cursor
may be controlled by any of several means (e.g., a mouse, track ball, or joy-
stick). Figure 7.45 shows the boundaries of several training site polygons that
have been delineated in this manner. Note that these polygons have been
carefully located to avoid pixels located along the edges between land cover
types. The row and column coordinates of the vertices for these polygons are
used as the basis for extracting (from the image file) the digital numbers for
the pixels located within each training area boundary. These pixel values then
form the sample used to develop the statistical description of each training
area (mean vector and covariance matrix in the case of the maximum likeli-
hood classifier).

Figure 7.45 Training area polygons delineated on a computer monitor.
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An alternative to manually delineating training area polygons is the use of
a seed pixel approach to training. In this case, the display cursor is placed
within a prospective training area and a single “seed” pixel is chosen that is
thought to be representative of the surrounding area. Then, according to vari-
ous statistically based criteria, pixels with similar spectral characteristics that
are contiguous to the seed pixel are highlighted on the display and become
the training samples for that training area.

Irrespective of how training areas are delineated, when using any statisti-
cally based classifier (such as the maximum likelihood method), the theoreti-
cal lower limit of the number of pixels that must be contained in a training
set is n + 1, where n is the number of spectral bands. In our two-band exam-
ple, theoretically only three observations would be required. Obviously, the
use of fewer than three observations would make it impossible to appropri-
ately evaluate the variance and covariance of the spectral response values. In
practice, a minimum of from 10n to 100n pixels is used since the estimates
of the mean vectors and covariance matrices improve as the number of pix-
els in the training sets increases. Within reason, the more pixels that can be
used in training, the better the statistical representation of each spectral
class.

When delineating training set pixels, it is important to analyze several
training sites throughout the scene. For example, it would be better to define
the training pattern for a given class by analyzing 20 locations containing 40
pixels of a given type than one location containing 800 pixels. Dispersion of
the sites throughout the scene increases the chance that the training data will
be representative of all the variations in the cover types present in the scene.

The trade-off usually faced in the development of training data sets is that
of having sufficient sample size to ensure the accurate determination of the
statistical parameters used by the classifier and to represent the total spectral
variability in a scene, without going past a point of diminishing returns. In
short, one does not want to omit any important spectral classes occurring in
a scene, but one also does not want to include redundant spectral classes in
the classification process from a computational standpoint. During the
process of training set refinement the analyst attempts to identify such gaps
and redundancies.

As part of the training set refinement process, the overall quality of the
data contained in each of the original candidate training areas is assessed and
the spectral separability between the data sets is studied. The analyst care-
fully checks to see if all data sets are essentially normally distributed and
spectrally pure. Training areas that inadvertently include more than one spec-
tral class are identified and recompiled. Likewise, extraneous pixels may be
deleted from some of the data sets. These might be edge pixels along agricul-
tural field boundaries or within-field pixels containing bare soil rather than
the crop trained upon. Training sets that might be merged (or deleted) are
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identified, and the need to obtain additional training sets for poorly repre-
sented spectral classes is addressed.

One or more of the following tvpes of analyses are typically involved in
the training set refinement process:

1.

Graphical representation of the spectral response patterns.
The distributions of training area response patterns can be graphi-
cally displaved in many formats. Figure 7.46 shows a hypothetical
histogram for one of the “hay” category training sites in our five-
channel multispectral scanner data set. (A similar display would be
available for all training areas.) Histogram output is particularly im-
portant when a maximum likelihood classifier is used, since it pro-
vides a visual check on the normality of the spectral response
distributions. Note in the case of the hay category that the data ap-
pear to be normally distributed in all bands except band 2, where the
distribution is shown to be bimodal. This indicates that the training
site data set chosen by the analvst to represent “hay” is in fact com-
posed of two subclasses with slightly different spectral characteris-
tics. These subclasses may represent two different varieties of hay or
different illumination conditions, and so on. In any case, the classifi-
cation accuracy will generally be improved if each of the subclasses is
treated as a separate category.

Histograms illustrate the distribution of individual categories
very well; vet they do not facilitate comparisons between different
category types. To evaluate the spectral separation between cate-
gories, it is convenient to use some form of coincident spectral plot, as
shown in Figure 7.47. This plot illustrates, in each spectral band, the
mean spectral response of each category (with a letter) and the vari-
ance of the distribution (*2 standard deviations shown by black
bars). Such plots indicate the overlap between category response pat-
terns. For example, Figure 7.47 indicates that the hay and corn re-
sponse patterns overlap in all spectral bands. The plot also shows
which combination of bands might be best for discrimination be-
cause of relative reversals of spectral response (such as bands 3 and 5
for hay/corn separation).

The fact that the spectral plots for hay and corn overlap in all
spectral bands indicates that the categories could not be accurately
classified on any single multispectral scanner band. However, this
does not preclude successful classification when two or more bands
are analyzed (such as bands 3 and 4 illustrated in the last section).
Because of this, two-dimensional scatter diagrams (as shown in Fig-
ures 7.39 to 7.42) provide better representations of the spectral re-
sponse pattern distributions.
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Figure 7.46 Sample histograms for data points included in the training areas for cover type “hay.”




7.10  THE TRAINING STAGE

567

w
=S
sumes F arsessss
Band 1 -
(Blue)
0 63 127 191 255
1 1 L
w ngnay
S &
Band 2
(Green)
T T T
0 63 127 191 255
1 1 1
oW
22 S =
gmey F s
Band 3 mamryrims U imernmmess:
(Red) sy C s
e H ssammses
T T =1
0 63 127 191 255
1 1 1
.w,
v S o
viegizea Foronopanm
Band 4 -
(Near IR) s G prmme
1 L |
0 63 127 191 255
1 1 1
W
o T S Lx
F
Band 5 s |J v
(Thermal IR) - C e
TR ) R
T T T
0 63 127 191 255

Figure 7.47 Coincident spectral plots for training data obtained in five bands for six cover types.
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Figure 7.48 SPOT HRV multispectral images of Madison, WI: (a) band 1 (green); (b) band 2 (red); (¢) band 3
(near IR).
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The utility of scatter diagrams (or scatter plots) is further illustrated
in Figures 7.48 to 7.50. Shown in Figure 7.48 are SPOT multispectral
HRV images depicting a portion of Madison, Wisconsin. The band 1
(green), band 2 (red), and band 3 (near-IR) images are shown in (a), (b),
and (¢), respectively. Figure 7.49 shows the histograms for bands 1 and
2 as well as the associated scatter diagram for these two bands. Note
that the data in these two bands are highly correlated and a very com-
pact and near-linear “cloud of points” is shown in the scatter diagram.

Figure 7.50 shows the histograms and the scatter diagram for bands
2 and 3. In contrast to Figure 7.49, the scatter diagram in Figure 7.50

[ Band 1 Histogiam [_IO]
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Figure 7.49 Histograms and two-dimensional scatter diagram for the images shown in Figures 7.48a and b:
{a) band 1 (green) histogram; (b) band 2 (red) histogram; (c) scatter diagram plotting band 1 (vertical axis) versus
band 2 (horizontal axis). Note the high correlation between these two visible bands.
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Figure 7.50

Histograms and two-dimensional scatter diagram for the images shown in Figures 7.48b and c:

(a) band 2 (red) histogram; (b) band 3 (near-IR) histogram; (c) scatter diagram plotting band 2 (vertical axis) ver-
sus band 3 (horizontal axis). Note the relative lack of correlation between these visible and near-IR bands.

shows that bands 2 and 3 are much less correlated than bands 1 and 2.
Whereas various land cover types might overlap one another in bands 1
and 2, they would be much more separable in bands 2 and 3. In fact,
these two bands alone may be adequate to perform a generalized land
cover classification of this scene.

2. Quantitative expressions of category separation. A measure of
the statistical separation between category response patterns can be
computed for all pairs of classes and can be presented in the form of
a matrix. One statistical parameter commonly used for this purpose is
transformed divergence, a covariance-weighted distance between cate-
gory means. In general, the larger the transformed divergence, the
greater the “statistical distance” between training patterns and the



7.10 THE TRAINING STAGE 571

TABLE 7.1 Portion of a Divergence Matrix Used to Evaluate Pairwise

Training Class Spectral Separability

Spectral

Wi
w2
w3
C1
C2
Cc3
C4
H1
H2

Class® W1 w2 W3 Cl c2 C3 C4 H1 H2..
0
1185 0
1410 680 0

1997 2000 1910 0

1953 1890 1874 860 0

1980 1953 1930 1340 1353 0

1992 1997 2000 1700 1810 1749 0

2000 1839 1911 1410 1123 860 1712 0
1995 1967 1935 1563 1602 1197 1621 721 0

‘W, water; C, corn; H, hay.

higher the probability of correct classification of classes. A portion of
a sample matrix of divergence values is shown in Table 7.1. In this ex-
ample, the maximum possible divergence value is 2000, and values
less than 1500 indicate spectrally similar classes. Accordingly, the
data in Table 7.1 suggest spectral overlap between several pairs of
spectral classes. Note that W1, W2, and W3 are all relatively spec-
trally similar. However, note that this similarity is all among spectral
classes from the same information class (“water”). Furthermore, all
the “water” classes appear to be spectrally distinct from the spectral
classes of the other information classes. More problematic is a situa-
tion typified by the divergence between the H1 and C3 spectral classes
(860). Here, a “hay” spectral class severely overlaps a “corn” class.

[Another statistical distance measure of the separability of two
spectral classes is the Jeffries—Matusita (JM) distance. It is similar to
transformed divergence in its interpretation but has a maximum
value of 1414.]

Self-classification of training set data. Another evaluation of spec-
tral separability is provided by classifying the training set pixels. In
such an effort, a preliminary classification of only the training set pix-
els (rather than the full scene) is made, to determine what percentage
of the training pixels are actually classified as expected. These percent-
ages are normally presented in the form of an error matrix (to be de-
scribed in Section 7.16).

It is important to avoid considering an error matrix based on
training set values as a measure of overall classification accuracy
throughout an image. For one reason, certain land cover classes might
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be inadvertently missed in the training process. Also, the error matrix
simply tells us how well the classifier can classify the rraining areas
and nothing more. Because the training areas are usually good, homo-
geneous examples of each cover type, they can be expected to be clas-
sified more accurately than less pure examples that may be found
elsewhere in the scene. Overall accuracy can be evaluated only by con-
sidering test areas that are different from and considerably more ex-
tensive than the training areas. This evaluation is generally performed
after the classification and output stages (as discussed in Section 7.16).

Interactive preliminary classification. Most modern image pro-
cessing systems incorporate some provision for interactively display-
ing how applicable training data are to the full scene to be classified.
Often, this involves performing a preliminary classification with a
computationally efficient algorithm (e.g., parallelepiped) to provide a
visual approximation of the areas that would be classified with the
statistics from a given training area. Such areas are typically high-
lighted in color on the display of the original raw image.

This is illustrated in Plate 29, which shows a partially completed
classification of a subset of the data included in Figure 7.50 (bands 2
and 3). Shown in (a) are selected training areas delineated on a color
infrared composite of bands 1, 2, and 3 depicted as blue, green, and
red, respectively. Part (b) shows the histograms and scatter plot for
bands 2 and 3. Shown in (c¢) are the parallelepipeds associated with
the initial training areas an image analyst has chosen to represent
four information classes: water, trees, grass, and impervious surfaces.
Part (d) shows how the statistics from these initial training areas
would classify various portions of the original scene.

Representative subscene classification. Often, an image analyst
will perform a classification of a representative subset of the full
scene to eventually be classified. The results of this preliminary classi-
fication can then be used interactivelv on an overlay to the original
raw image. Selected classes are then viewed individually or in logical
groups to determine how they relate to the original image.

In general, the training set refinement process cannot be rushed with the
“maximum efficiency” attitude appropriate in the classification stage. It is
normally an iterative procedure in which the analyst revises the statistical de-
scriptions of the category types until they are sufficiently spectrally separable.
That is, the original set of “candidate” training area statistics is revised
through merger, deletion, and addition to form the “final” set of statistics
used in classification.

Training set refinement for the inexperienced data analyst is often a diffi-
cult task. Typically, an analyst has little difficulty in developing the statistics
for the distinct “nonoverlapping” spectral classes present in a scene. If there



7.11  UNSUPERVISED CLASSIFICATION 573

are problems, they typically stem from spectral classes on the borders be-
tween information classes—“transition” or “overlapping” classes. In such
cases, the impact of alternative deletion and pooling of training classes can be
tested by trial and error. In this process the sample size, spectral variances,
normality, and identity of the training sets should be rechecked. Problem
classes that occur only rarely in the image may be eliminated from the train-
ing data so that they are not confused with classes that occur extensively.
That is, the analyst may accept misclassification of a class that occurs rarely
in the scene in order to preserve the classification accuracy of a spectrally
similar class that appears over extensive areas. Furthermore, a classification
might initially be developed assuming a particular set of detailed information
classes will be maintained. After studying the actual classification results, the
image analyst might be faced with aggregating certain of the detailed classes
into more general ones (for example, “birch” and “aspen” may have to be
merged into a “deciduous” class or “corn” and “hay” into “agriculture”).

One final note to be made here is that training set refinement is usually the
key to improving the accuracy of a classification. However, if certain cover
types occurring in an image have inherently similar spectral response patterns,
no amount of retraining and refinement will make them spectrally separable!
Alternative methods, such as using data resident in a GIS, performing a visual
interpretation, or making a field check, must be used to discriminate these
cover types. Multitemporal or spatial pattern recognition procedures may also
be applicable in such cases. Increasingly, land cover classification involves some
merger of remotely sensed data with ancillary information resident in a GIS.

7.11  UNSUPERVISED CLASSIFICATION

As previously discussed, unsupervised classifiers do not utilize training data
as the basis for classification. Rather, this family of classifiers involves algo-
rithms that examine the unknown pixels in an image and aggregate them into
a number of classes based on the natural groupings or clusters present in the
image values. The basic premise is that values within a given cover type
should be close together in the measurement space, whereas data in different
classes should be comparatively well separated.

The classes that result from unsupervised classification are spectral
classes. Because they are based solely on the natural groupings in the image
values, the identity of the spectral classes will not be initially known. The ana-
lyst must compare the classified data with some form of reference data (such
as larger scale imagery or maps) to determine the identity and informational
value of the spectral classes. Thus, in the supervised approach we define use-
ful information categories and then examine their spectral separability; in the
unsupervised approach we determine spectrally separable classes and then
define their informational utility.
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We illustrate the unsupervised approach by again considering a two-chan-
nel data set. Natural spectral groupings in the data can be visually identified
by plotting a scatter diagram. For example, in Figure 7.51 we have plotted
pixel values acquired over a forested area. Three groupings are apparent in
the scatter diagram. After comparing the classified image data with ground
reference data, we might find that one cluster corresponds to deciduous trees,
one to conifers, and one to stressed trees of both types (indicated by D, C, and
S in Figure 7.51). In a supervised approach, we may not have considered
training for the “stressed” class. This highlights one of the primary advantages
of unsupervised classification: The classifier identifies the distinct spectral
classes present in the image data. Many of these classes might not be initially
apparent to the analyst applying a supervised classifier. Likewise, the spectral
classes in a scene may be so numerous that it would be difficult to train on all
of them. In the unsupervised approach they are found automatically.

There are numerous clustering algorithms that can be used to determine
the natural spectral groupings present in a data set. One common form of
clustering, called the “K-means” approach, accepts from the analyst the num-
ber of clusters to be located in the data. The algorithm then arbitrarily “seeds,”
or locates, that number of cluster centers in the multidimensional measure-
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Figure 7.51 Spectral classes in two-channel image data.
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ment space. Each pixel in the image is then assigned to the cluster whose arbi-
trarv mean vector is closest. After all pixels have been classified in this man-
ner, revised mean vectors for each of the clusters are computed. The revised
means are then used as the basis to reclassify the image data. The procedure
continues until there is no significant change in the location of class mean vec-
tors between successive iterations of the algorithm. Once this point is reached,
the analyst determines the land cover identitv of each spectral class.

A widely used variant on the K-means method for unsupervised clustering
is an algorithm called [terative Self-Organizing Data Analysis, or ISODATA
(Tou and Gonzalez, 1974). This algorithm permits the number of clusters to
change from one iteration to the next, by merging, splitting, and deleting
clusters. The general process follows that described above for K-means. How-
ever, in each iteration, following the assignment of pixels to the clusters, the
statistics describing each cluster are evaluated. If the distance between the
mean points of two clusters is less than some predefined minimum distance,
the two clusters are merged together. On the other hand, if a single cluster
has a standard deviation (in any one dimension) that is greater than a prede-
fined maximum value, the cluster is split in two. Clusters with fewer than the
specified minimum number of pixels are deleted. Finally, as with K-means, all
pixels are then reclassified into the revised set of clusters, and the process re-
peats, until either there is no significant change in the cluster statistics or
some maximum number of iterations is reached.

Another common approach to unsupervised classification is the use of al-
gorithms that incorporate a sensitivity to image “texture” or “roughness” as a
basis for establishing cluster centers. Texture is typically defined by the multi-
dimensional variance observed in a moving window passed through the image
(e.g., a 3 X 3 window). The analyst sets a variance threshold below which a
window is considered “smooth” (homogeneous) and above which it is consid-
ered “rough” (heterogeneous). The mean of the first smooth window encoun-
tered in the image becomes the first cluster center. The mean of the second
smooth window encountered becomes the second cluster center, and so forth.
As soon as an analyst-specified maximum number of cluster centers is
reached (e.g., 50), the classifier considers the distances between all previously
defined cluster centers in the measurement space and merges the two closest
clusters, combining their statistics. The classifier continues through the image
combining the closest two clusters encountered until the entire image is ana-
Ivzed. The resulting cluster centers are then analvzed to determine their sepa-
rability on the basis of an analvst-specified statistical distance. Those clusters
separated by less than this distance are combined and their statistics are
merged. The final clusters resulting from the analysis are used to classify the
image (e.g., with a minimum distance or maximum likelihood classifier).

Data from supervised training areas are sometimes used to augment the
results of the above clustering procedure when certain land cover classes are
poorly represented in the purely unsupervised analysis. (We discuss other such
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hybrid approaches in Section 7.12.) Roads and other linear features, for exam-
ple, may not be represented in the original clustering statistics if these features
do not happen to meet the smoothness criteria within the moving window.
Likewise, in some unsupervised classifiers the order in which different feature
types are encountered can result in poor representation of some classes. For
example, the analyst-specified maximum number of classes may be reached in
an image long before the moving window passes throughout the scene.

Before ending our discussion of unsupervised classification, we reiterate
that the result of such efforts is simply the identification of spectrally distinct
classes in image data. The analyst must still use reference data to associate
the spectral classes with the cover types of interest. This process, like the
training set refinement step in supervised classification, can be quite involved.

Table 7.2 illustrates several possible outcomes of associating spectral
classes with information classes for data from a scene covering a forested
area. The ideal result would be outcome 1, in which each spectral class is
found to be associated uniquely with a feature type of interest to the analyst.

TABLE 7.2 Spectral Classes Resulting from Clustering a Forested Scene

Corresponding Desired

Spectral Class Identity of Spectral Class Information Category
Possible Outcome 1
1 Water » Water
2 Coniferous trees » Coniferous trees
3 Deciduous trees » Deciduous trees
4 Brushland » Brushland
Possible Qutcome 2
Turbid wate
urbid water >  Water

Clear water
Sunlit conifers —m
Shaded hillside conifers —>

Upland deciduous ———— Deciduous trees
Lowland deciduous — > ous R

Brushland » Brushland

Coniferous trees

-~ o U o W=

Possible Outcome 3
Turbid water —————— 5

1

2 Clear water = Water

3 Coniferous trees » Coniferous trees
4 Mixed coniferous/deciduous <:

5 Deciduous trees » Deciduous trees
6 Deciduous/brushland =—=———3 Brushland
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This outcome will occur only when the features in the scene have highly dis-
tinctive spectral characteristics.

A more likely result is presented in outcome 2. Here, several spectral
classes are attributable to each information categorv desired by the analvst.
These “subclasses” may be of little informational utility (sunlit versus shaded
conifers) or they may provide useful distinctions (turbid versus clear water
and upland versus lowland deciduous). In either case, the spectral classes
may be aggregated after classification into the smaller set of categories de-
sired by the analyst.

Outcome 3 represents a more troublesome result in which the analyst
finds that several spectral classes relate to more than one information cate-
gory. For example, spectral class 4 was found to correspond to coniferous
trees in some locations and deciduous trees in others. Likewise, class 6 in-
cluded both deciduous trees and brushland vegetation. This means that these
information categories are spectrallv similar and cannot be differentiated in
the given data set.

As with supervised classification, access to efficient hardware and soft-
ware is an important factor in determining the ease with which an unsuper-
vised classification can be performed. The quality of the classification still
depends upon the analyst’s understanding of the concepts behind the classi-
fiers available and knowledge about the land cover tvpes under analysis.

7.12  HYBRID CLASSIFICATION

Various forms of hybrid classification have been developed to either stream-
line or improve the accuracy of purely supervised or unsupervised proce-
dures. For example, unsupervised training areas might be delineated in an
image in order to aid the analyst in identifying the numerous spectral classes
that need to be defined in order to adequately represent the land cover infor-
mation classes to be differentiated in a supervised classification. Unsuper-
vised training areas are image subareas chosen intentionally to be quite
different from supervised training areas.

Whereas supervised training areas are located in regions of homogeneous
cover type, the unsupervised training areas are chosen to contain numerous
cover types at various locations throughout the scene. This ensures that all
spectral classes in the scene are represented somewhere in the various subar-
eas. These areas are then clustered independently and the spectral classes
from the various areas are analyzed to determine their identity. Theyv are sub-
jected to a pooled statistical analysis to determine their spectral separability
and normality. As appropriate, similar clusters representing similar land
cover types are combined. Training statistics are developed for the combined
classes and used to classify the entire scene (e.g., by a minimum distance or
maximum likelihood algorithm).
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Hvbrid classifiers are particularly valuable in analyses where there is
complex variability in the spectral response patterns for individual cover
types present. These conditions are quite common in such applications as
vegetation mapping. Under these conditions, spectral variability within cover
tvpes normallv comes about both from variation within cover types per se
(species) and from different site conditions (e.g., soils, slope, aspect, crown
closure). Guided clustering is a hybrid approach that has been shown to be
quite effective in such circumstances.

In guided clustering, the analvst delineates numerous “supervised-like”
training sets for each cover type to be classified in a scene. Unlike the training
sets used in traditional supervised methods, these areas need not be perfectly
homogeneous. The data from all the training sites for a given information
class are then used in an unsupervised clustering routine to generate several
(as many as 20 or more) spectral signatures. These signatures are examined
by the analyst; some may be discarded or merged and the remainder are con-
sidered to represent spectral subclasses of the desired information class. Sig-
natures are also compared among the different information classes. Once a
sufficient number of such spectral subclasses have been acquired for all infor-
mation classes, a maximum likelihood classification is performed with the
full set of refined spectral subclasses. The spectral subclasses are then aggre-
gated back into the original information classes.

Guided clustering may be summarized in the following steps:

1. Delineate training areas for information class X.

2. Cluster all class X training area pixels at one time into spectral sub-
classes X, ..., X, using an automated clustering algorithm.

3. Examine class X signatures and merge or delete signatures as appro-
priate. A progression of clustering scenarios (e.g., from 3 to 20 cluster
classes) should be investigated, with the final number of clusters and
merger and deletion decisions based on such factors as (1) display of
a given class on the raw image, (2) multidimensional histogram
analvsis for each cluster, and (3) multivariate distance measures (e.g.,
transformed divergence or JM distance).

4. Repeat steps 1 to 3 for all additional information classes.

5. Examine all class signatures and merge or delete signatures as
appropriate.

6. Perform maximum likelihood classification on the entire image with
the full set of spectral subclasses.

7. Aggregate spectral subclasses back to the original information
classes.

Bauer et al. (1994) demonstrated the utility of guided clustering in the
classification of forest types in northern Minnesota. Based on this success,
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Lillesand et al. (1998) made the technique a central part of the Upper Mid-
west Gap Analysis Program image processing protocol development for clas-
sifving land cover throughout the states of Michigan, Minnesota, and
Wisconsin. Given the extent and diversity of cover types in this area, the
method was found to not only increase classification accuracy relative to ei-
ther a conventional supervised or unsupervised approach but also increase
the efficiency of the entire classification process. Among the advantages of
this approach is its ability to help the analyst identify the various spectral
subclasses representing an information class “automatically” through cluster-
ing. At the same time, the process of labeling the spectral clusters is straight-
forward because these are developed for one information class at a time. Also,
spurious clusters due to such factors as including multiple-cover-type condi-
tions in a single training area can be readily identified (e.g., openings contain-
ing understory vegetation in an otherwise closed forest canopy, bare soil in a
portion of a crop-covered agricultural field). The method also helps identify
situations where mixed pixels might inadvertently be included near the edges
of training areas.

7.13 CLASSIFICATION OF MIXED PIXELS

As we have previously discussed (Sections 1.9 and 5.2), mixed pixels result
when a sensor’s IFOV includes more than one land cover type or feature on
the ground. The extent to which mixed pixels are contained in an image is
both a function of the spatial resolution of the remote sensing system used to
acquire an image and the spatial scale of the surface features in question. For
example, if a sensor with a narrow field of view is positioned within a few me-
ters of a healthy soybean crop canopy, the sensor’s field of view may be en-
tirely covered by soybean leaves. A lower resolution sensor operating at
higher altitude might focus on the same field yet have its field of view occu-
pied by a mixture of soybean leaves, bare soil, and grass. These mixed pixels
present a difficult problem for image classification, since their spectral char-
acteristics are not representative of any single land cover type. Spectral nix-
ture analysis and fuzzy classification are two procedures designed to deal with
the classification of mixed pixels. They represent means by which “subpixel
classification” is accomplished.

Spectral Mixture Analysis

Spectral mixture analysis involves a range of techniques wherein mixed spec-
tral signatures are compared to a set of “pure” reference spectra (measured in
the laboratory, in the field, or from the image itself). The basic assumption is
that the spectral variation in an image is caused by mixtures of a limited
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number of surface materials. The result is an estimate of the approximate
proportions of the ground area of each pixel that are occupied by each of the
reference classes.

Spectral mixture analysis differs in several ways from other image pro-
cessing methods for land cover classification. Conceptually, it is a determinis-
tic method rather than a statistical method, since it is based on a physical
model of the mixture of discrete spectral response patterns. It provides useful
information at the subpixel level, since multiple land cover types can be de-
tected within a single pixel. Many land cover types tend to occur as heteroge-
neous mixtures even when viewed at very fine spatial scales; thus, this
method provides a more realistic representation of the true nature of the sur-
face than would be provided by the assignment of a single dominant class to
every pixel.

Many applications of spectral mixture analysis make use of linear mixture
models, in which the observed spectral response from an area on the ground
is assumed to be a linear mixture of the individual spectral signatures of the
various land cover tvpes present within the area. These pure reference spec-
tral signatures are referred to as endmenibers, because they represent the
cases where 100 percent of the sensor’s field of view is occupied by a single
cover tvpe. In this model, the weight for any given endmember signature is
the proportion of the area occupied by the class corresponding to the end-
member. The input to a linear mixture model consists of a single observed
spectral signature for each pixel in an image. The model’s output then con-
sists of “abundance” or “fraction” images for each endmember, showing the
fraction of each pixel occupied by each endmember.

Linear mixture analysis involves the simultaneous satisfaction of two
basic conditions for each pixel in an image. First, the sum of the fractional
proportions of all potential endmembers included in a pixel must equal 1. Ex-
pressed mathematically,

N
ZFE=F1+F2+”‘+F:\'= l (710)
i=1

where F|, F,, ..., Fy represent the fraction of each of N possible endmembers
contained in a pixel.

The second condition that must be met is that for a given spectral band A
the observed digital number DN, for each pixel represents the sum of the DNs
that would be obtained from a pixel that is completely covered by a given
endmember weighted by the fraction actually occupied by that endmember
plus some unknown error. This can be expressed by

DN_{ = F1DNL1 + F‘?DN*_Z heene o FNDNA,N + EA (7‘11)

where DN, is the composite digital number actually observed in band A;
F,, ..., Fy equal the fractions of the pixel actually occupied by each of the N
endmembers; DN, , ..., DN, y equal the digital numbers that would be ob-



7.13  CLASSIFICATION OF MIXED PIXELS 581

served if a pixel were completely covered by the corresponding endmember;
and E, is the error term.

With multispectral data, there would be one version of Eq. 7.11 for each
spectral band. So, for B spectral bands, there would be B equations, plus Eq.
7.10. This means that there are B + 1 equations available to solve for the vari-
ous endmember fractions (Fy, . .., Fy). If the number of endmember fractions
(unknowns) is equal to the number of spectral bands plus 1, the set of equa-
tions can be solved simultaneously to produce an exact solution without any
error term. If the number of bands B + 1 is greater than the number of end-
members N, the magnitude of the error term along with the fractional cover
for each endmember can be estimated (using the principles of least squares
regression). On the other hand, if the number of endmember classes present
in a scene exceeds B + 1, the set of equations will not yield a unique solution.

For example, a spectral mixture analysis of a four-band SPOT HRVIR
multispectral image could be used to find estimates ol the fractional propor-
tions of five different endmember classes (with no estimate of the amount of
error), or of four, three, or two endmember classes (in which case an estimate
of the error would also be produced). Without additional information, this
image alone could not be used in linear spectral mixture analysis to derive
fractional cover estimates for more than five endmember classes.

Figure 7.52 shows an example of the output from a linear spectral mix-
ture analysis project in which Landsat TM imagery was used to determine the
fractional cover of trees, shrubs, and herbaceous plants in the Steese National
Conservation Area of central Alaska. Figure 7.52a shows a single band (TM
band 4, near IR), while 7.52b through 7.52d show the resulting output for
each of the endmember classes. Note that these output images are scaled
such that higher fractional cover values appear brighter while lower frac-
tional cover values appear darker.

One drawback of linear mixture models is that they do not account for cer-
tain factors such as multiple reflections, which can result in complex nonlineari-
ties in the spectral mixing process. That is, the observed signal from a pixel mayv
include a mixture of spectral signatures from various endmembers, but it may
also include additional radiance reflected multiple times between scene compo-
nents such as leaves and the soil surface. In this situation, a more sophisticated
nonlinear spectral mixture model may be required (Borel and Gerstl, 1994). Ar-
tificial neural networks (Section 7.17) may be particularly well suited for this
task, because thev do not require that the input data have a Gaussian distribu-
tion and they do not assume that spectra mix linearly (Moody et al., 1996).

Fuzzy Classification

Fuzzy classification attempts to handle the mixed-pixel problem by employ-
ing the fuzzy set concept, in which a given entity (a pixel) may have partial
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Figure 7.52 Linear spectral mixture analysis of a Landsat TM image including the Steese National Conservation
Area of central Alaska: (a) band 4 (near IR) of original image; fractional cover images for trees (b), shrubs (c), and
herbaceous plants (d). Brighter pixels represent higher fractional cover. (Courtesy Bureau of Land Management-
Alaska and Ducks Unlimited, Inc.)
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membership in more than one categorv (Jensen, 1996; Schowengerdt,
1997). One approach to fuzzy classification is fuzzy clustering. This proce-
dure is conceptually similar to the K-means unsupervised classification ap-
proach described earlier. The difference is that instead of having “hard”
boundaries between classes in the spectral measurement space, fuzzy re-
gions are established. So instead of each unknown measurement vector
being assigned solely to a single class, irrespective of how close that mea-
surement may be to a partition in the measurement space, membership
grade values are assigned that describe how close a pixel measurement is to
the means of all classes.

Another approach to fuzzy classification is fuzzy supervised classification.
This approach is similar to application of maximum likelihood classification;
the difference being that fuzzy mean vectors and covariance matrices are de-
veloped from statistically weighted training data. Instead of delineating train-
ing areas that are purely homogeneous, a combination of pure and mixed
training sites may be used. Known mixtures of various feature types define
the fuzzy training class weights. A classified pixel is then assigned a member-
ship grade with respect to its membership in each information class. For ex-
ample, a vegetation classification might include a pixel with grades of 0.68 for
class “forest,” 0.29 for “street,” and 0.03 for “grass.” (Note that the grades for
all potential classes must total 1.)

7.14 THE OUTPUT STAGE

The utility of any image classification is ultimately dependent on the produc-
tion of output products that effectively convey the interpreted information to
its end user. Here the boundaries between remote sensing, computer graph-
ics, digital cartography, and GIS management become blurred. A virtually un-
limited selection of output products may be generated. Three general forms
that are commonly used include hardcopy graphic products, tables of area
statistics, and digital data files.

Graphic Products

Since classified data are in the form of a two-dimensional data array, hard-
copy graphic output can be easilv computer generated by displayving different
colors, tones, or characters for each cell in the array according to its assigned
land cover category. A broad range of peripheral equipment can be used for
this purpose, including a variety of black and white and color printers, film
recorders, and large-format scanners/writers. Printouts can be prepared ei-
ther in black and white or in color and can vary significantly in color fidelity
and geometric precision.
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Plate 30 shows a land cover classification of the states of New York and
New Jersey that was derived from Landsat TM data. This color output prod-
uct was prepared on a film recorder as part of a project at the USGS EROS
Data Center that will create a generalized and consistent (i.e., “seamless”)
land cover data layer for the entire conterminous United States. Twenty-eight
TM scenes were analyzed to create this classification, and 18 land cover
classes are shown at this level of detail.

Tabular Data

Another common form of classification output is a table that lists summary
statistics on the areal extent of the cover types present in a scene or in user-
defined subscene areas. It is a simple task to derive area statistics from the
grid-based interpreted data file. First, the boundary of a region of interest,
such as a watershed or a county, is digitized in terms of its image matrix co-
ordinates. Within the boundary, the number of cells in each land cover class
is tabulated and multiplied by the ground area covered by a single cell. This
process is considerably simpler than manually measuring areas on a map
and represents a major advantage of processing land cover data in a digital
format.

Digital Information Files

The final general class of output is interpreted data files containing the classi-
fication results recorded on some type of computer storage medium. As we il-
lustrate in Section 7.17, the interpreted data in this form may be conveniently
input to a GIS for merger with other geographic data files.

7.15 POSTCLASSIFICATION SMOOTHING

Classified data often manifest a salt-and-pepper appearance due to the inher-
ent spectral variability encountered by a classifier when applied on a pixel-
by-pixel basis (Figure 7.53a). For example, in an agricultural area, several
pixels scattered throughout a corn field may be classified as soybeans, or vice
versa. In such situations it is often desirable to “smooth” the classified output
to show only the dominant (presumably correct) classification. Initially, one
might consider the application of the previously described low pass spatial
filters for this purpose. The problem with this approach is that the output
from an image classification is an array of pixel locations containing num-
bers serving the function of labels, not quantities. That is, a pixel containing
land cover 1 may be coded with a 1; a pixel containing land cover 2 may be
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Figure 7.53 Postclassification smoothing: (a) original classification; (b) smoothed using a 3 X 3 pixel-majority filter;
(¢) smoothed using a 5 X 5-pixel majority filter.

coded with a 2; and so on. A moving low pass filter will not properly smooth
such data because, for example, the averaging of class 3 and class 5 to arrive
at class 4 makes no sense. In short, postclassification smoothing algorithms
must operate on the basis of logical operations, rather than simple arithmetic
computations.

One means of classification smoothing involves the application of a ma-
jority filter. In such operations a moving window is passed through the classi-
fied data set and the majority class within the window is determined. If the
center pixel in the window is not the majority class, its identity is changed to
the majority class. If there is no majority class in the window, the identity of
the center pixel is not changed. As the window progresses through the data
set, the original class codes are continually used, not the labels as modified
from the previous window positions. (Figure 7.53b was prepared in this man-
ner, applying a 3 X 3-pixel majority filter to the data shown in Figure7.53a.
Figure 7.53¢ was prepared by applying a 5 X 5-pixel filter.)

Majority filters can also incorporate some form of class and/or spatial
weighting function. Data may also be smoothed more than once. Certain al-
gorithms can preserve the boundaries between land cover regions and also in-
volve a user-specified minimum area of any given land cover type that will be
maintained in the smoothed output.

One way of obtaining smoother classifications is to integrate the types
of logical operations described above directly into the classification process.
This involves the use of spatial pattern recognition techniques that are sen-
sitive to such factors as image texture and pixel context. Compared to purely
spectrally based procedures, these types of classifiers have received only
limited attention in remote sensing in the past. However, with the continued
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improvement in the spatial resolution of remote sensing systems and the in-
creasing computational power of image processing systems, such proce-
dures will likely become more common.

7.16 CLASSIFICATION ACCURACY ASSESSMENT

Another area that is continuing to receive increased attention by remote sens-
ing specialists is that of classification accuracy assessment. Historically, the
ability to produce digital land cover classifications far exceeded the ability to
meaningfully quantify their accuracy. In fact, this problem sometimes pre-
cluded the application of automated land cover classification techniques even
when their cost compared favorably with more traditional means of data col-
lection. The lesson to be learned here is embodied in the expression “A classi-
fication is not complete until its accuracy is assessed,”

Congalton and Green (1999) have prepared a thorough overview of the
principles and practices currently in use for assessing classification accuracy.
Many of the concepts we present here in brief are more fully described in this
reference.

Classification Error Matrix

One of the most common means of expressing classification accuracy is the
preparation of a classification error matrix (sometimes called a confusion
matrix or a contingency table). Error matrices compare, on a category-by-
category basis, the relationship between known reference data (ground
truth) and the corresponding results of an automated classification. Such
matrices are square, with the number of rows and columns equal to the
number of categories whose classification accuracy is being assessed.

Table 7.3 is an error matrix that an image analyst has prepared to deter-
mine how well a classification has categorized a representative subset of pix-
els used in the training process of a supervised classification. This matrix
stems from classifying the sampled training set pixels and listing the known
cover types used for training (columns) versus the pixels actually classified
into each land cover category by the classifier (rows).

Several characteristics about classification performance are expressed by
an error matrix. For example, one can study the various classification errors
of omission (exclusion) and commission (inclusion). Note in Table 7.3 that
the training set pixels that are classified into the proper land cover categories
are located along the major diagonal of the error matrix (running from upper
left to lower right). All nondiagonal elements of the matrix represent errors of
omission or commission. Omission errors correspond to nondiagonal column
elements (e.g., 16 pixels that should have been classified as “sand” were omit-
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TABLE 7.3 Error Matrix Resulting from Classifying Training Set Pixels

Training Set Data (Known Cover Tvpes)"

Row
W S F u C H Total
Classification data
W 480 0 5 0 0 0 485
S 0 52 0 20 0 0 72
F 0 0 313 40 0 0 353
U 0 16 0 126 0 0 142
(& 0 0 0 38 342 79 459
H 0 0 38 24 60 359 481
Column total 480 68 356 2438 402 4338 1992
Producer’s Accuracy User's Accuracy
W = 480/480 = 100% W = 480/485 = 99%
S = 052/068 = 76% S = 052/072 = 72%
F = 313/356 = 88% F = 313/353 = 87%
U = 126/248 = 51% U = 126/142 = 89%
C = 342/402 = 85% C = 342/459 = 74%
H = 359/438 = 82% H = 359/481 = 75%

Overall accuracy = (480 + 52 + 313 + 126 + 342 + 359)/1992 = 84%

“W, water; S, sand; F, forest; U, urban; C, corn; H, hay.

ted from that category). Commission errors are represented by nondiagonal
row elements (e.g., 38 “urban” pixels plus 79 “hay” pixels were improperly in-
cluded in the “corn” category).

Several other descriptive measures can be obtained from the error matrix.
For example, the overall accuracy is computed by dividing the total number of
correctly classified pixels (i.e., the sum of the elements along the major diago-
nal) by the total number of reference pixels. Likewise, the accuracies of indi-
vidual categories can be calculated by dividing the number of correctly
classified pixels in each category by either the total number of pixels in the
corresponding row or column. What are often termed producer’s accuracies
result from dividing the number of correctly classified pixels in each category
(on the major diagonal) by the number of training set pixels used for that cat-
egory (the column total). This figure indicates how well training set pixels of
the given cover type are classified.

User’s accuracies are computed by dividing the number of correctly classi-
fied pixels in each category by the total number of pixels that were classified
in that category (the row total). This figure is a measure of commission error
and indicates the probability that a pixel classified into a given category actu-
ally represents that category on the ground.
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Note that the error matrix in Table 7.3 indicates an overall accuracy of 84
percent. However, producer’s accuracies range from just 51 percent (“urban”)
to 100 percent (“water”) and user’s accuracies vary from 72 percent (“sand”)
to 99 percent (“water”). Furthermore, this error matrix is based on training
data. It should be remembered that such procedures onlv indicate how well the
statistics extracted from these areas can be used to categorize the same areas! 1f
the results are good, it means nothing more than that the training areas are
homogeneous, the training classes are spectrally separable, and the classifica-
tion strategy being emploved works well in the training areas. This aids in the
training set refinement process, but it indicates little about how the classifier
performs elsewhere in a scene. One should expect training area accuracies to
be overly optimistic, especially if they are derived from limited data sets.
(Nevertheless, training area accuracies are sometimes used in the literature as
an indication of overall accuracy. They should not be!)

Sampling Considerations

Test areas are areas of representative, uniform land cover that are different
from and considerably more extensive than training areas. They are often lo-
cated during the training stage of supervised classification by intentionally
designating more candidate training areas than are actually needed to de-
velop the classification statistics. A subset of these may then be withheld for
the postclassification accuracy assessment. The accuracies obtained in these
areas represent at least a first approximation to classification performance
throughout the scene. However, being homogeneous, test areas might not
provide a valid indication of classification accuracy at the individual pixel
level of land cover variability.

One way that would appear to ensure adequate accuracy assessment at
the pixel level of specificity would be to compare the land cover classification
at every pixel in an image with a reference source. While such “wall-to-wall”
comparisons may have value in research situations, assembling reference land
cover information [or an entire project area is expensive and defeats the whole
purpose of performing a remote-sensing-based classification in the first place.

Randon sampling of pixels circumvents the above problems, but it is
plagued with its own set of limitations. First, collection of reference data for a
large sample of randomly distributed points is often very difficult and costly.
For example, travel distance and access to random sites might be prohibitive.
Second, the validity of random sampling depends on the ability to precisely
register the reference data to the image data. This is often difficult to do. One
way to overcome this problem is to sample only pixels whose identity is not
influenced by potential registration errors (for example, points at least several
pixels away from field boundaries).
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Another consideration is making certain that the randomly selected test
pixels or areas are geographically representative of the data set under analy-
sis. Simple random sampling tends to undersample small but potentially im-
portant areas. Stratified random sampling, where each land cover category
may be considered a stratum, is frequently used in such cases. Clearly, the
sampling approach appropriate for an agricultural inventorv would differ
from that of a wetlands mapping activity. Each sample design must account
for the area being studied and the cover type being classified.

One common means of accomplishing random sampling is to overlay
classified output data with a grid. Test cells within the grid are then selected
randomly and groups of pixels within the test cells are evaluated. The cover
tvpes present are determined through ground verification (or other reference
data) and compared to the classification data.

Several papers have been written about the proper sampling scheme to be
used for accuracy assessment under various conditions, and opinions vary
among researchers. Several suggest the concept of combining both random
and systematic sampling. Such a technique may use systematically sampled
areas to collect some accuracy assessment data early in a project (perhaps as
part of the training area selection process) and random sampling within
strata after the classification is complete.

Consideration must also be given to the sample unit employed in accuracy
assessment. Depending upon the application, the appropriate sample unit
might be individual pixels, clusters of pixels, or polygons. Polygon sampling is
the most common approach in current use.

Sample size must also weigh heavily in the development and interpreta-
tion of classification accuracy figures. Again, several researchers have pub-
lished recommendations for choosing the appropriate sample size. However,
these techniques primarily produce the sample size of test areas or pixels
needed to compute the overall accuracy of a classification or of a single cate-
gory. In general, they are not appropriate for filling in a classification error
matrix wherein errors of omission and commission are of interest.

As a broad guideline, it has been suggested that a minimum of 50 samples
of each vegetation or land use category be included in the error matrix. Fur-
ther, “if the area is especially large (i.e., more than a million acres) or the clas-
sification has a large number of vegetation or land use categories (i.e., more
than 12 categories), the minimum number of samples should be increased to
75 or 100 samples per category” (Congalton and Green, 1999, p. 18). Simi-
larly, the number of samples for each category might be adjusted based on
the relative importance of that category for a particular application (i.e., more
samples taken in more important categories). Also, sampling might be allo-
cated with respect to the variability within each category (i.e., more samples
taken in more variable categories such as wetlands and fewer in less variable
categories such as open water).



590 CHAPTER 7 DIGITAL IMAGE PROCESSING
Evaluating Classification Error Matrices

Once accuracy data are collected (either in the form of pixels, clusters of pixels,
or polygons) and summarized in an error matrix, they are normally subject to
detailed interpretation and further statistical analysis. For example, a number
of features are readily apparent from inspection of the error matrix included in
Table 7.4 (resulting from randomly sampled test pixels). First, we can begin to
appreciate the need for considering overall, producer’s, and user’s accuracies
simultaneously. In this example, the overall accuracy of the classification is 65
percent. However, if the primary purpose of the classification is to map the lo-
cations of the “forest” category, we might note that the producer’s accuracy of
this class is quite good (84 percent). This would potentially lead one to the con-
clusion that although the overall accuracy of the classification was poor (65
percent), it is adequate for the purpose of mapping the forest class. The prob-
lem with this conclusion is the fact that the user’s accuracy for this class is only
60 percent. That is, even though 84 percent of the forested areas have been cor-
rectly identified as “forest,” only 60 percent of the areas identified as “forest”
within the classification are truly of that category. A more careful inspection of

TABLE 7.4 Error Matrix Resulting from Classifying Randomly Sampled Test
Pixels

Reference Data”

Row
w S F U C H Total

Classification data
W 226 0 0 12 0 1 239
S 0 216 0 92 1 0 309
F 3 0 360 228 3 5 599
U 2 108 2 397 8 4 521
(& 1 4 48 132 190 78 453
H 1 0 19 84 36 219 359
Column total 233 328 429 945 238 307 2480

PRODUCER’S ACCURACY USER'’S ACCURACY

W = 226/233 = 97%
S =216/328 = 66%
F = 360/429 = 84%
U = 397/945 = 42%
C = 190/238 = 80%
H = 219/307 = 71%

W = 226/239 = 94%
S = 216/309 = 70%
F = 360/599 = 60%
U = 397/521 = 76%
C = 190/453 = 42%
H = 219/359 = 61%

Overall accuracy = (226 + 216 + 360 + 397 + 190 + 219)/2480 = 65%

“W, water; S, sand; F, forest; U, urban; C, corn; H, hay.
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the error matrix shows that there is significant confusion between the “forest”
and “urban” classes. Accordingly, although the producer of the classification
can reasonably claim that 84 percent of the time an area that was forested was
identified as such, a user of this classification would find that only 60 percent of
the time will an area visited on the ground that the classification says is “forest”
actually be “forest.” In fact, the only highlv reliable category associated with
this classification from both a producer’s and a user’s perspective is “water.”

A turther point to be made about interpreting classification accuracies is the
fact that even a completely random assignment of pixels to classes will produce
percentage correct values in the error matrix. In fact, such a random assignment
could result in a surprisingly good apparent classification result. The k (“KHAT")
statistic is a measure of the difference between the actual agreement between
reference data and an automated classifier and the chance agreement between
the reference data and a random classifier. Conceptually, k can be defined as

observed accuracy — chance agreement

}2: e

1 — chance agreement

(7.12)

This statistic serves as an indicator of the extent to which the percentage cor-
rect values of an error matrix are due to “true” agreement versus “chance”
agreement. As true agreement (observed) approaches 1 and chance agree-
ment approaches 0, k approaches 1. This is the ideal case. In reality, k usually
ranges between 0 and 1. For example, a k value of 0.67 can be thought of as
an indication that an observed classification is 67 percent better than one re-
sulting from chance. A k of 0 suggests that a given classification is no better
than a random assignment of pixels. In cases where chance agreement is
large enough, k can take on negative values—an indication of verv poor clas-
sification performance. (Because the possible range of negative values de-
pends on the specific matrix, the magnitude of negative values should not be
interpreted as an indication of relative classification performance).
The KHAT statistic is computed as

r

NS =3 (e x)
- i=]

k . (7.13)
2
N = ¥ ok
i=1
where
r = number of rows in the error matrix
x; = number of observations in row i and column i (on the major

diagonal)
x;. = total of observations in row i (shown as marginal total to right of
the matrix)
x,; = total of observations in column i (shown as marginal total at
bottom of the matrix)
N = total number of observations included in matrix
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To illustrate the computation of KHAT for the error matrix included in
Table 7.4,

S x, =226 + 216 + 360 + 397 + 190 + 219 = 1608
i=1

(x;, *x.;) = (239 - 233) + (309 - 328) + (599 - 429)
i=1
+ (521 - 945) + (453 - 238) + (359 - 307) = 1,124,382

. _ 2480(1608) — 1,124,382
(2480)* — 1,124,382

B

= 0.57

Note that the KHAT value (0.57) obtained in the above example is somewhat
lower than the overall accuracy (0.65) computed earlier. Differences in these
two measures are to be expected in that each incorporates different forms of
information from the error matrix. The overall accuracy only includes the
data along the major diagonal and excludes the errors of omission and com-
mission. On the other hand, KHAT incorporates the nondiagonal elements of
the error matrix as a product of the row and column marginal. Accordingly, it
is not possible to give definitive advice as to when each measure should be
used in any given application. Normally, it is desirable to compute and ana-
lvze both of these values.

One of the principal advantages of computing KHAT is the ability to use
this value as a basis for determining the statistical significance of any given
matrix or the differences among matrices. For example, one might wish to
compare the error matrices resulting from different dates of images, classifi-
cation techniques, or individuals performing the classification. Such tests are
based on computing an estimate of the variance of k and then using a Z test
to determine if an individual matrix is significantly different from a random
result and if k values from two separate matrices are significantly different
from one another. Readers interested in performing such analyses and learn-
ing more about accuracy assessment in general are urged to consult the vari-
ous references on this subject in the Selected Bibliography.

There are three other facets of classification accuracy assessment that we
wish to emphasize before leaving the subject. The first relates to the fact that
the quality of any accuracy estimate is only as good as the information used
to establish the “true” land cover types present in the test sites. To the extent
possible, some estimate of the errors present in the reference data should be
incorporated into the accuracy assessment process. It is not uncommon to
have the accuracy of the reference data influenced by such factors as spatial
misregistration, photo interpretation errors, data entry errors, and changes in
land cover between the date of the classified image and the date of the refer-
ence data. The second point to be made is that the accuracy assessment pro-
cedure must be designed to reflect the intended use of the classification. For
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example, a single pixel misclassified as “wetland” in the midst of a “corn” field
might be of little significance in the development of a regional land use plan.
However, this same error might be intolerable if the classification forms the
basis for land taxation or for enforcement of wetland preservation legislation.
Finally, it should be noted that remotely sensed data are normally just a small
subset of many possible forms of data resident in a GIS. How errors accumu-
late through the multiple lavers of information in a GIS is the subject of on-
going research.

7.17 DATA MERGING AND GIS INTEGRATION

Manyv applications of digital image processing are enhanced through the
merger of multiple data sets covering the same geographical area. These data
sets can be of a virtually unlimited variety of forms. Similarly, the merger of
the data may or may not take place in the context of a GIS. For example, one
frequently applied form of data merger is the combining of multiresolution data
acquired by the same sensor. We earlier illustrated (Plate 19) the application of
this procedure to IKONOS 1-m panchromatic and 4-m multispectral data.

Also, in Plate 1, we illustrated the merger of automated land cover classifi-
cation data with soil erodibility and slope information in a GIS environment
in order to assist in the process of soil erosion potential mapping. We also il-
lustrated the use of raster remotely sensed imagery as a backdrop for vector
overlay data (Figure 1.24). Thus, the reader should already have a basic ap-
preciation for the diversity of forms of data and tvpes of mergers that charac-
terize current spatial analysis procedures. In the remainder of this section, we
briefly discuss the following additional data merging operations: multitempo-
ral data merging, change detection procedures, multisensor image merging,
merging of image and ancillary data in the image display process, and incor-
porating GIS data in land cover classification.

We have made the above subdivisions of the topic of data merging and
GIS integration purely for convenience in discussing the various procedures
involved. As we will see, many of the operations we discuss are extensively
used in combination with one another. Similarly, the boundaries between
digital image processing and GIS operations have become blurred, and fully
integrated spatial analysis svstems have become the norm.

Multitemporal Data Merging

Multitemporal data merging can take on many different forms. One such op-
eration is simply combining images of the same area taken on more than one
date to create a product useful for visual interpretation. For example, agricul-
tural crop interpretation is often facilitated through merger of images taken
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early and late in the growing season. In early season images in the upper Mid-
west, bare soils often appear that later will probably be planted in such crops
as corn or sovbeans. At the same time, early season images might show
perennial alfalfa or winter wheat in an advanced state of maturity. In the late
season images, substantial changes in the appearance of the crops present in
the scene are typical. Merging various combinations of bands from the two
dates to create color composites can aid the interpreter in discriminating the
various crop tvpes present.

Plate 31 illustrates two examples of multitemporal NDVI data merging.
Shown in (a) is the use of this technique to aid in mapping invasive plant
species, in this case reed canary grass (Phalaris arundinacea L.). This part of
the plate consists of a multitemporal color composite of NDVI values derived
from Landsat-7 ETM+ images of southern Wisconsin on March 7 (blue),
April 24 (green), and October 15 (red). The reed canarv grass, which invades
native wetland communities, tends to have a relatively high NDVI in the fall
(October) compared to the native species and hence appears bright red to
pink in the multitemporal composite. It can also be seen that features such as
certain agricultural crops also manifest such tones. To eliminate the interpre-
tation of such areas as “false positives” (identifying the areas as reed canary
grass when they are not of this cover type) a GIS-derived wetland boundary
layer (shown in vellow) has been overlain on the image. In this manner, the
image analyst can readily focus solely upon those pink to red areas known to
be included in wetlands.

Plate 31b represents a multitemporal color composite that depicts the
three northernmost lakes shown in 31a. In this case, a slightly different set
of dates and color assignments have been used to produce the color com-
posite of NDVI values. These include April 24 (blue), October 31 (green),
and October 15 (red). It so happened that the timing of the October 31
image corresponded with the occurrence of algal blooms in two of the
three lakes shown. These blooms appear as the bright green features within
the lakes.

As one would suspect, automated land cover classification is often en-
hanced through the use of multidate data sets. In fact, in many applications
the use of multitemporal data is required to obtain satisfactory cover type dis-
crimination. The extent to which use of multitemporal data improves classifi-
cation accuracy and/or categorized detail is clearly a function of the
particular cover types involved and both the number and timing of the vari-
ous dates of imagerv used.

Various strategies can be employed to combine multitemporal data in
automatic land cover classification. One approach is to simply register all
spectral bands from all dates of imaging into one master data set for classifi-
cation. For example, the 6 reflectance (nonthermal) bands of a TM or ETM +
image from one date might be combined with the same 6 bands for an image
acquired on another date, resulting in a 12-band data set to be used in the
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classification. Alternatively, principal components analysis can be used to re-
duce the dimensionality of the combined data set prior to classification. For
example, the first three principal components for each image could be com-
puted separately and then merged to create a final 6-band data set for classifi-
cation. The 6-band image can be stored, manipulated, and classified with
much greater efficiency than the original 12-band image.

Another means of dealing with multitemporal data for crop classification
is the multitemporal profile approach. In this approach, classification is based
on physical modeling of the time behavior of each crop’s spectral response
pattern. It has been found that the time behavior of the greenness of annual
crops is sigmoidal (Figure 7.54), whereas the greenness of the soils (G,) in a
given region is nearly constant. Thus, the greenness at any time ¢ can be mod-
eled in terms of the peak greenness G, the time of peak greenness 7, and the
width o of the profile between its two inflection points. (The inflection points,
t, and t,, are related to the rates of change in greenness early in the growing
season and at the onset of senescence.) The features G, to and o account for
more than 95 percent of the information in the original data and can there-
fore be used for classification instead of the original spectral response pat-
terns. These three features are important because they not only reduce the

Greenness —————=
Q

Time ————

Figure 7.54 Temporal profile model for greenness. Key parameters include spectral emer-
gence date (fy), time (t) of peak greenness (G,), and width of the profile (o). (Adapted from
Bauer, 1985, after Badhwar, 1985.)
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dimensionality of the original data but also provide variables directly relat-
able to agrophysical parameters.

Change Detection Procedures

Change detection involves the use of multitemporal data sets to discriminate
areas of land cover change between dates of imaging. The types of changes
that might be of interest can range from short term phenomena such as snow
cover or floodwater to long term phenomena such as urban fringe develop-
ment or desertification. ldeally, change detection procedures should involve
data acquired by the same (or similar) sensor and be recorded using the same
spatial resolution, viewing geometrv, spectral bands, radiometric resolution,
and time of day. Often anniversary dates are used to minimize sun angle and
seasonal differences. Accurate spatial registration of the various dates of im-
agery is also a requirement for effective change detection. Registration to
within § to } pixel is generally required. Clearly, when misregistration is greater
than one pixel, numerous errors will result when comparing the images.

The reliability of the change detection process may also be strongly influ-
enced by various environmental factors that might change between image
dates. In addition to atmospheric effects, such factors as lake level, tidal
stage, wind, or soil moisture condition might also be important. Even with
the use of anniversary dates of imagery, such influences as different planting
dates and season-to-season changes in plant phenology must be considered.

One way of discriminating changes between two dates ol imaging is to
employ postclassification comparison. In this approach, two dates of imagery
are independently classified and registered. Then an algorithm can be em-
ploved to determine those pixels with a change in classification between
dates. In addition, statistics (and change maps) can be compiled to express
the specific nature of the changes between the dates of imagery. Obviously,
the accuracy of such procedures depends upon the accuracy of each of the in-
dependent classifications used in the analysis. The errors present in each of
the initial classifications are compounded in the change detection process.

Another approach to change detection using spectral pattern recognition
is simply the classification of multitemporal data sets. In this alternative, a sin-
gle classification is performed on a combined data set for the two dates of in-
terest. Supervised or unsupervised classification is used to categorize the land
cover classes in the combined image. The success of such efforts depends
upon the extent to which “change classes” are significantly different spectrally
from the “nonchange” classes. Also, the dimensionality and complexity of the
classification can be quite great, and if all bands from each date are used,
there may be substantial redundancy in their information content.

Principal components analysis is sometimes used to analyze multidate
image composites for change detection purposes. In this approach, two (or
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more) images are registered to form a new multiband image containing vari-
ous bands from each date. Several of the uncorrelated principal components
computed from the combined data set can often be related to areas of change.
One disadvantage to this process is that it is often difficult to interpret and
identify the specific nature of the changes involved.

Plate 32 illustrates the application of multidate principal components
analysis to the process of assessing tornado damage from “before” and “after”
images of the tornado’s path of destruction. The “before” image shown in (a),
is a Landsat-7 ETM+ composite of bands, 1, 2, and 5 shown as blue, green,
and red, respectively. The “after” image, shown in (b), was acquired 32 days
later than the image shown in (a), on the day immediately following the tor-
nado. While the damage path from the tornado is fairly discernable in (b), it
is most distinct in the principal component image shown in (¢). This image
depicts the second principal component image computed from the 6-band
composite formed by registering bands, 1, 2, and 5 from both the “before”
and “after” images.

Temporal image differencing is vet another common approach to change
detection. In the image differencing procedure, DNs from one date are simply
subtracted from those of the other. The difference in areas of no change will
be very small (approaching zero), and areas of change will manifest larger
negative or positive values. If 8-bit images are used, the possible range of val-
ues for the difference image is —255 to +255, so normally a constant (e.g.,
255) is added to each difference image value for display purposes.

Temporal image ratioing involves computing the ratio of the data from
two dates of imaging. Ratios for areas of no change tend toward 1 and areas
of change will have higher or lower ratio values. Again, the ratioed data are
normally scaled for display purposes (Section 7.6). One of the advantages to
the ratioing technique is that it tends to normalize the data for changes in
such extraneous factors as sun angle and shadows.

Whether image differencing or ratioing is employed, the analyst must find
a meaningful “change-no change threshold” within the data. This can be
done by compiling a histogram for the differenced or ratioed image data and
noting that the change areas will reside within the tails of the distribution. A
variance from the mean can then be chosen and tested empirically to deter-
mine if it represents a reasonable threshold. The threshold can also be varied
interactively in most image analysis systems so the analyst can obtain imme-
diate visual feedback on the suitability of a given threshold.

In lieu of using raw DNs to prepare temporal difference or ratio images, it
is often desirable to correct for illumination and atmospheric effects and to
transform the image data into physically meaningful quantities such as radi-
ances or reflectances (Section 7.2). Also, the images may be prepared using
spatial filtering or transformations such as principal components or vegeta-
tion components. Likewise, linear regression procedures may be used to com-
pare the two dates of imagery. In this approach a linear regression model is
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applied to predict data values for date 2 based on those of date 1. Again, the
analyst must set a threshold for detecting meaningful change in land cover
between the dates of imaging.

Change vector analysis is a change detection procedure that is a concep-
tual extension of image differencing. Figure 7.55 illustrates the basis for this
approach in two dimensions. Two spectral variables (e.g., data from two
bands, two vegetation components) are plotted at dates 1 and 2 for a given
pixel. The vector connecting these two data sets describes both the magnitude
and direction of spectral change between dates. A threshold on the magnitude
can be established as the basis for determining areas of change, and the direc-
tion of the spectral change vector often relates to the type of change. For ex-
ample, Figure 7.55b illustrates the differing directions of the spectral change
vector for vegetated areas that have been recently cleared versus those that
have experienced regrowth between images.

One of the more efficient approaches to delineating change in multidate
imagery is use of a change-versus-no-change binary mask to guide multidate
classification. This method begins with a traditional classification of one
image as a reference (time 1). Then, one of the spectral bands from this date
is registered to the same band in a second date (time 2). This two-band data
set is then analyzed using one of the earlier described algebraic operations
(e.g., image differencing or ratioing). A threshold is then set to separate
areas that have changed between dates from those that have not. This forms
the basis for creating a binary mask of change-versus-no-change areas. This
mask is then applied to the multiband image acquired at time 2 and only the
areas of change are then classified for time 2. A traditional postclassifica-
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Figure 7.55 Spectral change vector analysis: (a) spectral change vector observed for a single land
cover type; (b) length and direction of spectral change vectors for hypothetical “cleared” and “re-
growth” areas.
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tion comparison is then performed in the areas known to have changed be-
tween dates.

Research continues on the development of software tools to assist in mul-
tidate change detection. Representative of such tools is a technique proposed
by Walkey (1997) that consists of a set of interactive, iterative steps to aid an
analyst in delineating true land cover changes from incidental scene-to-scene
changes. The technique is based on the simple notion that a two-dimensional
scatter plot of a band at time 1 versus the same band at time 2 would result in
an elongated ellipse oriented at 45° in the spectral measurement space (Fig-
ure 7.56b). The ellipse, rather than a straight line (Figure 7.56a), results from
the natural variability of the landscape even in the absence of land cover
change. Also, extraneous effects such as changing atmospheric conditions or
sensor response drift can cause the “stable spectral space ellipse” to depart
from an exact 45° orientation (Figures 7.56¢ and d).

Figure 7.56¢ illustrates a situation where certain features in the two-date
data set have experienced a land cover change. The small ellipse above the sta-
ble spectral space ellipse represents those pixels that have gotten brighter be-
tween the two dates, and the ellipse below the stable spectral space ellipse
corresponds to those areas that have gotten darker between dates. By display-
ing such a scatter plot, it is possible to interactively describe new delta trans-
formation axes with a transformed band 1 aligned in the direction of the stable
spectral space ellipse and a transformed band 2 located at 90° from band 1
(Figure 7.56f). The transformed band 2 axis then defines a change axis that the
analyst can use to set a pair of change-versus-no-change thresholds—one in
the positive (brighter) direction and one in the negative (darker) direction.
Hence, the analyst can then display separately images of the positive-change
component, the negative-change component, and the stable component.

Delta transformations can be established for each spectral band available,
such that the two change images plus the stable component of each band pair
can be generated. The options for display of the images are numerous. For ex-
ample, the various change and stable components can be displayed individu-
ally in black and white or in the blue, green, and red planes of a color monitor
in various combinations.

It should also be emphasized that the scatter plots shown in Figure 7.56
have been greatly simplified in order to describe the delta transformation
process. The scatter plots for actual image data can be more complex and the
analyst must be very careful in delineating the direction of “stable spectral
space.” Again, this can be done interactively and iteratively until an accept-
able change-versus-no-change axis is determined.

Figure 7.57 illustrates the application of the delta transformation process
to images acquired over a portion of the Nicolet National Forest in north-
eastern Wisconsin. Shown in (a) is a Landsat TM band 5 (mid-IR) image ac-
quired in 1984, and its counterpart acquired in 1993 is shown in (b). Note
that between dates several areas of the forest have become brighter due to
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Figure 7.56 Conceptual basis for the delta transtormation: (a) plot of a band vs. itsell with
no spectral change whatsoever; (h) stable spectral space ellipse showing natural variability in
the landscape between dates; () effect of uniform atmospheric haze differences between
dates; () effect of sensor drift between dates; () pixels that appear hrighter tabove) or darker
(below) than the stable spectral space ellipse due to land cover change; (1) delta transforma-
tion with transformed band 2 defining the image change axis. (After Walkey, 1997.)
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Landsat TM Band 5, 1993
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Figure 7.57 Application of delta transformation techniques to Landsat TM band 5 (mid-IR) images of the
Nicolet National Forest: (a) 1984 image; (b) 1993 image; (c) two-date scatter plot, including “no-change”
and “change” axes; (d) areas of forest cutting between image dates and forest regeneration between image
dates shown as light and dark areas, respectively.
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forest cutting activity between the dates, and several areas appear darker due
to forest regeneration over the same time period.

Figure 7.57¢ depicts the two-date scatter plot for the images shown in (a)
and (b). The direction of the stable spectral space and the land cover change
axis are also shown. Figure 7.57d illustrates those areas that have changed be-
tween dates due to forest cutting and regeneration as lighter and darker
areas, respectively.

Multisensor Image Merging

Plate 33 illustrates yet another form of data merging, namely, the combina-
tion of image data from more than one type of sensor. This image depicts an
agricultural area in southcentral Wisconsin. The following sources of image
data comprise this IHS-enhanced composite image:

. SPOT HRYV band 2 (red), shown in blue.

SPOT HRV band 3 (near IR), shown in green.

Landsat TM band 5 (mid IR), shown in red.

Digital orthophotograph, used in the intensity component of the IHS
transformation.

e

5. GIS overlay of the boundaries of selected farm fields.

This image demonstrates how multisensor image merging often results in
a composite image product that offers greater interpretability than an image
from any one sensor alone. For example, Plate 33 affords the spatial informa-
tion content of the digital orthophoto data (2 m) and the red and near-in-
frared spectral data from the SPOT HRV, as well as the mid-infrared
information content of the Landsat TM (band 5). The composite image is
aimed at exploiting the advantages of each of the data sources used in the
merger process.

In addition to the merger of digital photographic and multispectral scan-
ner data, multisensor image merging has been extensively used to combine
multispectral scanner and radar image data. Such combinations take advan-
tage of the spectral resolution of the multispectral scanner data in the optical
wavelengths and the radiometric and “sidelighting” characteristics of the
radar data.

Merging of Image Data with Ancillary Data
Probably one of the most important forms of data merger employed in digital

image processing is the registration of image data with “nonimage,” or ancil-
lary, data sets. This latter type of data set can vary, ranging from soil type to
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elevation data to assessed property valuation. The only requirement is that
the ancillary data be amenable to accurate geocoding so that they can be reg-
istered with the image data to a common geographic base. Usually, although
not a necessity, the merger is made in a GIS environment.

Digital elevation models (DEMs) have been combined with image data for
a number of different purposes. Figure 7.58 illustrates the merger of DEM
and image data to produce synthetic stereoscopic images. Shown in this figure
is a synthetic stereopair generated by introducing simulated parallax into a
Landsat MSS image. Whereas standard Landsat images exhibit only a fixed,
weak stereoscopic effect in the relatively small areas of overlap between orbit
passes, the synthetic image can be viewed in stereo over its entirety and with

= - ", # S 5 s i

Figure 7.58 Synthetic stereopair generated from a single Landsat MSS image and a digital el-
evation model, Black Canyon of the Gunnison, CO. Maximum canyon depth is 850 m. Scale
1:400,000. (Courtesy USGS.)
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an analyst-specified degree of vertical exaggeration. These images are pro-
duced in a manner similar to the process used to produce stereomates for or-
thophotographs (Section 3.9). That is, the elevation at each pixel position is
used to offset the pixel according to its relative elevation. When this distorted
image is viewed stereoscopically with the original scene, a three-dimensional
effect is perceived. Such images are particularly valuable in applications
where landform analysis is central to the interpretation process. The tech-
nique is also useful for restoring the topographic information lost in the
preparation of spectral ratio images.

Another common use of DEM data is in the production of perspective-
view images, such as Figure 7.59, a merger of Landsat TM and DEM data,
which shows Mount Fuji, the highest peak in Japan.

Merging topographic information and image data is often useful in image
classification. For example, topographic information is often important in
forest-type mapping in mountainous regions. In such situations, species that
have verv similar spectral characteristics might occupy quite different eleva-
tion ranges, slopes, or aspects. Thus, the topographic information might serve
as another “channel” of data in the classification directly or as a postclassifi-
cation basis upon which to discriminate between only the spectrally similar
classes in an image. In either case, the key to improving the classification is
being able to define and model the various associations between the cover
types present in a scene and their habitats.

Incorporating GIS Data in Automated Land Cover Classification

Obviously, topographic information is not the only type of ancillary data that
might be resident in a GIS and useful as an aid in image classification. For ex-
ample, data as varied as soil types, census statistics, ownership boundaries,
and zoning districts have been used extensively in the classification process.
The basic premise of any such operation is that the accuracy and/or the cate-
gorical detail of a classification based on image and ancillary data will be an
improvement over a classification based on either data source alone.

Ancillary data are often used to perform geographic stratification of an
image prior to classification. As with the use of topographic data, the aim of
this process is to subdivide an image into a series of relatively homogeneous
geographic areas (strata) that are then classified separately. The basis of strat-
ification need not be a single variable (e.g., upland versus wetland, urban ver-
sus rural) but can also be such factors as landscape units or ecoregions that
combine several interrelated variables (e.g., local climate, soil type, vegeta-
tion, landform).

There are an unlimited number of data sources and ways of combining
them in the classification process. Similarly, the ancillary data can be used ei-
ther prior to, during, or after the image classification process (or even some
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Figure 7.59 Perspective-view image of Mount Fuji, Japan, produced by combining Landsat
TM data (bands 2, 3, and 4, shown in black and white) and digital elevation model (DEM)
data. (Copyright © RESTEC/NIHON University, 1991.) (Figure 8.45 shows a radar image of
this area as well.)
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combination of these choices might be employed in a given application). The
particular sources of data used and how and when they are employed are nor-
mally determined through the formulation of multisource image classification
decision rules developed by the image analyst. These rules are most often for-
mulated on a case-by-case basis through careful consideration of the form,
quality, and logical interrelationship among the data sources available. For
example, the “roads” in a land cover classification might be extracted from
current digital line graph (DLG) data rather than from an image source. Simi-
larly, a particular spectral class might be labeled “alfalfa” or “grass” in differ-
ent locations of a classification depending upon whether it occurs within an
area zoned as agricultural or residential.

Space limits us from providing numerous examples of how user-defined
classification decision rules are designed and implemented. In lieu of such a
discussion, Plate 34 is presented to illustrate the general principles involved.
Shown in Plate 34 is a “composite” (lower right) land cover classification per-
formed in the vicinity of Fox Lake, Wisconsin, which is located in the east
central portion of the state. The composite classification was produced from
five separate data sources:

1. A supervised classification of the scene using a TM image acquired in
early May (upper left).

2. A supervised classification of the scene using a TM image acquired in
late June (upper right).

3. A supervised classification of both dates combined using a principal
components analysis (not shown).

4. A wetlands GIS layer prepared by the Wisconsin Department of Nat-
ural Resources (DNR) (lower left).

5. A DNR-supplied road DLG (lower left).

Used alone, none of the above data sources provided the classification ac-
curacy or detail needed for the purpose of monitoring the wildlife habitat
characteristics of the area depicted in the plate. However, when all of the data
were integrated in a GIS, the data analyst was able to develop a series of post-
classification decision rules utilizing the various data sources in combination.
Simply put, these decision rules were based on the premise that certain cover
types were better classified in one classification than the others. In such cases,
the optimal classification for that category was used for assigning that cover
type to the composite classification. For example, the water class was classi-
fied with nearly 100 percent accuracy in the May classification. Therefore, all
pixels having a classification of water in the May scene were assigned to that
category in the composite classification.

Other categories in the above example were assigned to the composite
classification using other decision rules. For example, early attempts to auto-
matically discriminate roads in any of the TM classifications suggested that
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this class would be very poorly represented on the basis of the satellite data.
Accordinglv, the road class was dropped from the training process and the
roads were simply included as a DLG overlay to the composite classification.

The wetland GIS laver was used in vet another way, namely to aid in the
discrimination between deciduous upland and deciduous wetland vegetation.
None of TM classifications could adequately distinguish between these two
classes. Accordingly, any pixel categorized as deciduous in the May TM data
was assigned either to the upland or wetland class in the composite classifica-
tion based on whether that pixel was outside or within a wetland according to
the wetland GIS layer. A similar procedure was used to discriminate between
the grazed upland and grazed wetland classes in the principal components
classification.

Several of the land cover categories in this example were discriminated
using rules that involved comparison among the various classifications for a
given pixel in each of the three preliminary classifications. For example, hay
was classified well in the Mayv scene and the principal components image but
with some errors of commission into the grazed upland, cool season grass,
and old field categories. Accordingly, a pixel was classified as hay if it was hay
in the May or principal components classification but at the same time was
not classified as grazed upland or cool season grass in the principal compo-
nents classification or as old field in the June classification. Similarly, pixels
were assigned to the oats class in the composite classification if they were
originally classified as oats, corn, peas, or beans in the May scene but oats in
the June scene.

Table 7.5 lists a representative sample of the various decision rules used
in the composite classification depicted in Plate 34. They are presented to il-
lustrate the basic manner in which GIS data and spatial analysis techniques
can be combined with digital image processing to improve the accuracy and
categorical detail of land cover classifications. The integration of remote sens-
ing, GIS, and “expert system” techniques for such purposes is an active area
of current research. Indeed, these combined technologies are resulting in the
development of increasingly “intelligent” information systems.

Another area of current research is the use of artificial neural networks in
image classification. Such svstems are “self-training” in that they adaptively
construct linkages between a given pattern of input data and particular out-
puts. Neural networks can be used to perform traditional image classification
tasks (Foody et al., 1995) and are also increasingly used for more complex op-
erations such as spectral mixture analysis (Moody et al., 1996). For image
classification, neural networks do not require that the training class data have
a Gaussian statistical distribution, a requirement that is held by maximum
likelihood algorithms. This allows neural networks to be used with a much
wider range of tvpes of input data than could be used in a traditional maxi-
mum likelihood classification process. In addition, once thev have been fully
trained, neural networks can perform image classification relatively rapidly,
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TABLE 7.5 Basis for Sample Decision Rules Used for Composite Classification

Shown in Plate 34

Sample Class

: ; Classification
in Composite GIS Data
Classification May June PC Wetlands Roads
Water Yes
Roads Yes
Deciduous upland ~ Yes Outside
Deciduous wetland ~ Yes Inside
Grazed upland Yes Outside
Grazed wetland Yes Inside
Hay Yes Yes
Old field—no Grazed upland—no
Cool season grass—no

Oats—ves Oats—yves

Corn—ves

Peas—ves

Beans—ves

Oats—ves Peas—uves

Corn—ves

Peas—yes

Beans—ves

Oats—ves Beans—ves

Corn—ves

Peas—ves

Beans—ves
Reed canary grass Yes
Warm season grass  Yes
Cool season grass Yes

although the training process itself can be quite time consuming. In the fol-
lowing discussion we will focus on back-propagation neural networks, the
type most widely used in remote sensing applications, although other types of
neural networks have been described.

A neural network consists of a set of three or more layers, each made up
of multiple nodes. These nodes are somewhat analogous to the neurons in a
biological neural network and thus are sometimes referred to as neurons. The
network'’s lavers include an input layer, an output layer, and one or more hid-
den layers. The nodes in the input layer represent variables used as input to
the neural network. Typically, these might include spectral bands from a re-
motely sensed image, textural features or other intermediate products derived
from such images, or ancillary data describing the region to be analyzed. The
nodes in the output layer represent the range of possible output categories to
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be produced by the network. If the network is being used for image classifica-
tion, there will be one output node for each class in the classification system.

Between the input and output layers are one or more hidden layers. These
consist of multiple nodes, each linked to many nodes in the preceding laver
and to many nodes in the following layer. These linkages between nodes are
represented by weights, which guide the flow of information through the net-
work. The number of hidden layers used in a neural network is arbitrary.
Generally speaking, an increase in the number of hidden layers permits the
network to be used for more complex problems but reduces the network’s
ability to generalize and increases the time required for training.

Figure 7.60 shows an example of a neural network that is used to classify
land cover based on a combination of spectral, textural, and topographic in-
formation. There are seven nodes in the input layer, as follows: nodes 1 to 4
correspond to the four spectral bands of a multispectral scanner image, node
5 corresponds to a textural feature that is calculated from a radar image, and
nodes 6 and 7 correspond to terrain slope and aspect, calculated from a digi-
tal elevation model. After the input layer, there are two hidden layers, each
with nine nodes. Finally, the output layer consists of six nodes, each corre-
sponding to a land cover class (water, sand, forest, urban, corn, and hay).
When given any combination of input data, the network will produce the out-
put class that is most likely to result from that set of inputs, based on the net-
work’s analysis of previously supplied training data.

If multiple sources of input data are used, the range of values in each data
set may differ. In the example shown in Figure 7.60, the four multispectral
bands might have digital number values ranging from 0 to 255, while the ter-
rain slope might be expressed as a percentage and the terrain aspect might be
in degrees. Before these various data sets can be provided to the neural net-
work, they each must be rescaled to fit within the same range. Generally, all
input data are scaled to fit within the range from 0 to 1.

Applying a neural network to image classification makes use of an itera-
tive training procedure in which the network is provided with matching sets
of input and output data. Each set of input data represents an example of a
pattern to be learned, and each corresponding set of output data represents
the desired output that should be produced in response to the input. During
the training process, the network autonomously modifies the weights on the
linkages between each pair of nodes in such a way as to reduce the discrep-
ancy between the desired output and the actual output.

It should be noted that a back-propagation neural network is not guaran-
teed to find the ideal solution to any particular problem. During the training
process the network may develop in such a way that it becomes caught in a
“local minimum” in the output error field, rather than reaching the absolute
minimum error. Alternatively, the network may begin to oscillate between two
slightly different states, each of which results in approximately equal error
(Paola and Schowengerdt, 1995). A variety of strategies have been proposed to
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Figure 7.60 Example of an artificial neural network with one input layer, two hidden layers, and one out-
put layer,
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help push neural networks out of these pitfalls and enable them to continue
development toward the absolute minimum error. Again, the use of artificial
neural networks in image classification is the subject of continuing research.

7.18 HYPERSPECTRAL IMAGE ANALYSIS

The hvperspectral sensors discussed in Sections 5.14 and 6.15 differ from
other optical sensors in that they typically produce contiguous, high resolu-
tion radiance spectra rather than discrete measurements of average radiance
over isolated, wide spectral bands. As a result, these sensors can potentially
provide vast amounts of information about the physical and chemical compo-
sition of the surface under observation as well as insight into the characteris-
tics of the atmosphere between the sensor and the surface. While most
multispectral sensors merely discriminate among various earth surface fea-
tures, hvperspectral sensors afford the opportunity to identifv and determine
many characteristics about such features. However, these sensors have their
disadvantages as well, including an increase in the volume of data to be



