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Either form of enhancement can be performed on single-band (monochrome)
images or on the individual components of multi-image composites. The re-
sulting images may also be recorded or displaved in black and white or in
color. Choosing the appropriate enhancement(s) for any particular applica-
tion is an art and often a matter of personal preference.

Enhancement operations are normally applied to image data after the ap-
propriate restoration procedures have been performed. Noise removal, in par-
ticular, is an important precursor to most enhancements. Without it, the
image interpreter is left with the prospect of analyzing enhanced noise!

Below, we discuss the most commonly applied digital enhancement tech-
niques. Three techniques can be categorized as contrast manipulation, spatial
feature manipulation, or multi-image manipulation. Within these broad cate-
gories, we treat the following:

1. Contrast manipulation. Gray-level thresholding, level slicing, and
contrast stretching.

2. Spatial feature manipulation. Spatial filtering, edge enhancement,
and Fourier analysis.

3. Multi-image manipulation. Multispectral band ratioing and dif-
ferencing, principal components, canonical components, vegetation
components, intensity-hue-saturation (IHS) color space transforma-
tions, and decorrelation stretching.

7.4 CONTRAST MANIPULATION
Gray-Level Thresholding

Gray-level thresholding is used to segment an input image into two classes—
one for those pixels having values below an analyst-defined gray level and one
for those above this value. Below, we illustrate the use of thresholding to pre-
pare a binary mask for an image. Such masks are used to segment an image
into two classes so that additional processing can then be applied to each
class independently.

Shown in Figure 7.11a is a TM1 image that displays a broad range of gray
levels over both land and water. Let us assume that we wish to show the
brightness variations in this band in the water areas only. Because many of
the gray levels for land and water overlap in this band, it would be impossible
to separate these two classes using a threshold set in this band. This is not the
case in the TM4 band (Figure 7.110). The histogram of DNs for the TM4
image (Figure 7.11¢) shows that water strongly absorbs the incident energy in
this near-infrared band (low DNs), while the land areas are highly reflective
(high DNs). A threshold set at DN = 40 permits separation of these two
classes in the TM4 data. This binary classification can then be applied to the
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Figure 7.11  Gray-level thresholding for binary image segmentation: (a) original TM1 image containing
continuous distribution of gray tones; (b) TM4 image; (c) TM4 histogram; () TM1 brightness variation in
water areas only.
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TMI1 data to enable display of brightness variations in only the water areas.
This is illustrated in Figure 7.11d. In this image, the TM1 land pixel values
have all been set to 0 (black) based on their classification in the TM4 binary
mask. The TM1 water pixel values have been preserved for display.

Level Slicing

L)

S

Level slicing is an enhancement technique whereby the DNs distributed along
the x axis of an image histogram are divided into a series of analyst-specified
intervals or “slices.” All of the DNs falling within a given interval in the input
image are then displayed at a single DN in the output image. Consequently, if
six different slices are established, the output image contains only six differ-
ent gray levels. The result looks something like a contour map, except that the
areas between boundaries are occupied by pixels displayed at the same DN.
Each level can also be shown as a single color.

Figure 7.12 illustrates the application of level slicing to the “water” por-
tion of the scene illustrated in Figure 7.11. Here, TM1 data have been level
sliced into multiple levels in those areas previously determined to be water
from the TM4 binary mask.
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Figure 7.12 Level slicing operation applied to TM1 data in areas determined to be water in Figure 7.11.
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Level shicing is used extensively in the display ol thermal infrarved images
in order to show discrete temperature ranges coded by grayv level or color.
{See Plate 21 and Figure 6.18.)

Contrast Stretching

Image displav and recording devices often operate over a range of 256 grav
levels (the maximum number represented in 8-bit computer encoding). Sen-
sor data in a single image rarely extend over this entire range. Hence, the in-
tent of contrast stretching is to expand the narrow range of brightness values
tvpicallv present in an input image over a wider range of grav values. The ve-
sult is an output image that is designed to accentuate the contrast between
features of interest to the image analvst.

To illustrate the contrast stretch process, consider a hvpothetical sensing
svstem whose image output levels can vary from 0 to 235, Figure 7.13¢ illus-
trates a histogram of brightness levels recorded in one spectral band over a
scene. Assume that our hvpothetical output device (e.g., computer monitor) is
also capable of displaving 256 grav levels (0 to 255). Note that the histogram
shows scene brightness values occurring only in the limited range ol 60 to
153, I we were to use these image values divectlv in our display device (Fig-
wre 7.130), we would be using onlv a small portion of the tull range of possi-
ble display levels. Display levels 0 to 39 and 159 to 255 would not be utilized.
Conscquently, the tonal information in the scene would be compressed into a
small range of displayv values, reducing the interpreter’s ability 1o discrimi-
nate radiometric detail.

A more expressive display would result if we were to expand the range of
image levels present in the scene (60 to 1538) to il the range of displav values (0
to 255). In Figure 7.13¢, the range of image values has been uniformly expanded
to fill the total range ol the output device. This unilorm expansion is called a lin-
ear strete/r. Subtle variations in input image data values would now be displaved
in output tones that would be more readilv distinguished by the interpreter.
Light tonal arcas would appear lighter and dark areas would appear darker.

In our example, the linear stretch would be applied to cach pixel in the
image using the algorithm

N DNﬂL&)v-
N (MAXM[N =7

(93]

(7.6)

where
DN’ = digital number assigned to pixel in output image
DN = original digital number of pixel in input image
MIN = minimum value of input image, to be assigned a value of 0 in the
outpul image (60 in our example)
MAX = maximum value ot input image, (0 be assigned a value of 255 in
the output image (138 in our example).
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Figure 7.13  Principle of contrast stretch enhancement.
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Figure 7.14 illustrates the above algorithm graphicallv. Note that the val-
ues for DN and DN’ must be discrete whole integers. Since the same function
is used for all pixels in the image, it is usually calculated for all possible val-
ues of DN before processing the image. The resulting values of DN’ are then
stored in a table (arrav). To process the image, no additional calculations are
necessary. Each pixel's DN is simplyv used to index a location in the table to
find the appropriate DN’ to be displaved in the output image. This process is
referred to as a rable lookup procedure and the list of DN's associated with
cach DN is called a lookup rable (LUT). The obvious advantage to the table
lookup process is its computational efficiency. All possible values for DN are
computed onlv once (for a maximum of 256 times) and the indexing of a loca-
tion in the table is then all that is required for each pixel in the image.



74 CONTRAST MANIPULATION 515

255

DN’

0 60 158

DN

Figure 7.14  Lincar stretch algorithm. Fach point represents several dis-
crete digital numbers.

One drawback of the linear stretch is that it assigns as many display levels
to the rarely occurring image values as it does to the Irequently occurring val-
ues, For example, as shown in Figure 7.13¢, half ol the dvnamic range of the
output device (0 to 127) would be reserved for the small number of pixels hav-
ing image values in the range 60 to 108. The bulk of the image data (values
109 o 158) are confined to half the output displav levels (128 to 255). Al-
though better than the divect display in (b), the linear stretch would still not
provide the most expressive display of the data.

To improve on the above situation, a /iistogram-equialized stretel can be ap-
plied. In this approach, image values arve assigned to the displav levels on the
basis of their frequency of occurrence. As shown in Figure 7.13d, more display
values (and hence more radiometric detail) are assigned to the frequently oc-
curring portion of the histogram. The image value range of 109 to 138 is now
stretched over a large portion of the displav levels (39 to 255). A smaller portion
(0 to 38) is reserved for the infrequently occurring image values of 60 to 108.

For special analvses, specific features may be analyzed in greater radiomet-
ric detail by assigning the display range exclusivelv to a particular range of
image values. For example, if water features were represented by a narrow range
ol values in a scene, characteristics in the water features could be enhanced by
stretching this small range to the full display range. As shown in Figure 7.13e,
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(a)

Figure 7.15 Effect of contrast stretching Landsat MSS data acquired over the Nile Delta; (a) original
image; (b) stretch that enhances contrast in bright image areas; (c) stretch that enhances contrast in dark
image areas. (Courtesy |IBM Corp.)
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the output range is devoted entirelv to the small range of image values between
60 and 92. On the stretched display, minute tonal variations in the water range
would be greatly exaggerated. The brighter land features, on the other hand,
would be “washed out” by being displaved at a single, bright white level (235).

The visual effect of applving a contrast stretch algorithm is illustrated in
Figure 7.15. An original Landsat MSS image covering the Nile Delta in Egypt
is shown in (a). The city of Cairo lies close to the apex of the delta near the
lower-right edge of the scene. Because of the wide range of image values pre-
sent in this scene, the original image shows little radiometric detail. That is,
features of similar brightness are virtually indistinguishable.

In Figure 7.15b, the brightness range of the desert area has been linearly
stretched to fill the dvnamic range of the output display. Patterns that were
indistinguishable in the low contrast original are now readily apparent in this
product. An interpreter wishing to analvze features in the desert region would
be able to extract far more information from this displav.

Because it reserves all display levels for the bright areas, the desert en-
hancement shows no radiometric detail in the darker irrigated delta region,
which is displaved as black. If an interpreter were interested in analvzing a
feature in this area, a different stretch could be applied, resulting in a display
as shown in Figure 7.15¢. Here, the display levels are devoted solely to the
range of values present in the delta region. This rendering of the original
image enhances brightness differences in the heavily populated and inten-
sively cultivated delta, at the expense of all information in the bright desert
area. Population centers stand out vividly in this displav, and brightness dif-
ferences between crop types are accentuated.

The contrast stretching examples we have illustrated represent only a
small subset of the range of possible transformations that can be applied to
image data. For example, nonlinear stretches such as sinusoidal transforma-
tions can be applied to image data to enhance subtle differences within “ho-
mogeneous” features such as forest stands or volcanic flows. Also, we have
illustrated only monochromatic stretching procedures. Enhanced color im-
ages can be prepared by applving these procedures to separate bands of image
data independently and then combining the results into a composite displav.

7.5 SPATIAL FEATURE MANIPULATION
Spatial Filtering

In contrast to spectral filters, which serve to block or pass energy over various
spectral ranges, spatial filters emphasize or deemphasize image data of various
spatial frequencies. Spatial frequency refers to the “roughness” of the tonal
variations occurring in an image. Image areas of high spatial {requency are
tonally “rough.” That is, the grayv levels in these areas change abruptly over a
relatively small number of pixels (e.g., across roads or field borders). “Smooth”



Figure 7.16 Effect of spatial filtering Landsat TM data: (a) original image; (b) low frequency component image;
(c) high frequency component image.
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Figure 7.16
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(Continued )

image areas are those of low spatial frequency, where gray levels vary only
gradually over a relatively large number of pixels (e.g., large agricultural fields
or water bodies). Low pass filters are designed to emphasize low frequency fea-
tures (large-area changes in brightness) and deemphasize the high frequency
components of an image (local detail). High pass filters do just the reverse.
They emphasize the detailed high frequency components of an image and
deemphasize the more general low frequency information.

Spatial filtering is a “local” operation in that pixel values in an original
image are modified on the basis of the gray levels of neighboring pixels. For ex-
ample, a simple low pass filter may be implemented by passing a moving win-
dow throughout an original image and creating a second image whose DN at
each pixel corresponds to the local average within the moving window at each
of its positions in the original image. Assuming a 3 X 3-pixel window is used,
the center pixel’s DN in the new (filtered) image would be the average value of
the 9 pixels in the original image contained in the window at that point. This
process is very similar to that described previously under the topic of noise sup-
pression. (In fact, low pass filters are very useful for reducing random noise.)

A simple high pass filter may be implemented by subtracting a low pass fil-
tered image (pixel by pixel) from the original, unprocessed image. Figure 7.16
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illustrates the visual effect of applyving this process to an image. The original
image is shown in Figure 7.16a. Figure 7.16b shows the low frequency com-
ponent image and Figure 7.16¢ illustrates the high frequency component
image. Note that the low frequency component image (&) reduces deviations
from the local average, which smooths or blurs the detail in the original
image, reduces the gray-level range, but emphasizes the large-area brightness
regimes of the original image. The high frequency component image (¢) en-
hances the spatial detail in the image at the expense of the large-area bright-
ness information. Both images have been contrast stretched. (Such stretching
is typically required because spatial filtering reduces the gray-level range pre-
sent in an image.)

Convolution

Spatial filtering is but one special application of the generic image process-
ing operation called convolution. Convolving an image involves the following
procedures:

1. A moving window is established that contains an array of coefficients
or weighting factors. Such arrays are referred to as operators or kernels,
and they are normally an odd number of pixels in size (e.g., 3 X 3,
5X5,7%X7).

2. The kernel is moved throughout the original image, and the DN at the
center of the kernel in a second (convoluted) output image is obtained
by multiplying each coefficient in the kernel by the corresponding DN
in the original image and adding all the resulting products. This oper-
ation is performed for each pixel in the original image.

Figure 7.17 illustrates a 3 X 3-pixel kernel with all of its coefficients equal
to 1/9. Convolving an image with this kernel would result in simplv averaging
the values in the moving window. This is the procedure that was used to pre-
pare the low frequency enhancement shown in Figure 7.16b. However, im-
ages emphasizing other spatial frequencies mayv be prepared by simply
altering the kernel coefficients used to perform the convolution. Figure 7.18
shows three successively lower frequency enhancements (b, ¢, and d) that
have been derived from the same original data set (a).

The influence convolution may have on an image depends directly upon
the size of the kernel used and the values of the coefficients contained within
the kernel. The range of kernel sizes and weighting schemes is limitless. For
example, by selecting the appropriate coefficients, one can center-weight ker-
nels, make them of uniform weight, or shape them in accordance with a par-
ticular statistical model (such as a Gaussian distribution). In short,
convolution is a generic image processing operation that has numerous appli-
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19 1/9 1/9 67 67 72
19 179 19 | (@) Kernel 70 68 71 (b) Original image DNs
1/9 1/9 1/9 72 71 72

70 {¢) Convolved image DN

Convolution:  1/9(67) + 1/9(67) + 1/9(72) + 1/9(70) + 1/9(68) + 1/9(71) +
1/9(72) + 1/9(71) + 1/9(72) = 630/9 = 70

Figure 7.17 Concept of convolution. Shown is a 3 X 3-pixel kernel with all coefficients equal to 5. The
central pixel in the convolved image (in this case) contains the average of the DNs within the kernel.

cations in addition to spatial filtering. (Recall the use of “cubic convolution”
as a resampling procedure.)

Edge Enhancement

We have seen that high frequency component images emphasize the spatial
detail in digital images. That is, these images exaggerate local contrast and
are superior to unenhanced original images for portraying linear features or
edges in the image data. However, high frequency component images do not
preserve the low frequency brightness information contained in original im-
ages. Edge-enhanced images attempt to preserve both local contrast and low
frequency brightness information. They are produced by “adding back” all or
a portion of the gray values in an original image to a high frequency compo-
nent image of the same scene. Thus, edge enhancement is typically imple-
mented in three steps:

1. A high frequency component image is produced containing the edge
information. The kernel size used to produce this image is chosen
based on the roughness of the image. “Rough” images suggest small
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Figure 7.18 Frequency components of an image resulting from varying the kernel used for
convolution: (a) original image; (b-d) successively lower frequency enhancements.
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Figure 7.18 (Continued)
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filter sizes (c.g., 3 X 3 pixels), whereas large sizes (e.g., 9 X 9 pixels)
are used with “smooth” images.

2. All or a fraction of the gray level in each pixel of the original scene is
added back to the high frequency component image. (The proportion
of the original grav levels to be added back mayv be chosen by the
image analyst.)

3. The composite image is contrast stretched. This results in an image
containing local contrast enhancement of high frequency features
that also preserves the low frequency brightness information con-
tained in the scene.

Directional first differencing is another enhancement technique aimed at
emphasizing edges in image data. It is a procedure that svstematicallv com-
pares cach pixel in an image to one of its immediately adjacent neighbors and
displavs the difference in terms of the grav levels of an output image. This
process is mathematically akin to determining the first derivative of gray lev-
els with respect to a given direction. The direction used can be horizontal,
vertical, or diagonal. In Figure 7.19, a horizontal first difference at pixel A
would result from subtracting the DN in pixel H from that in pixel A. A verti-
cal first difference would result from subtracting the DN at pixel V from that
in pixel A; a diagonal first difference would result from subtracting the DN at
pixel D from that in pixel A.

Tt should be noted that first differences can be either positive or negative,
so a constant such as the display value median (127 for 8-bit data) is normally
added to the difference for display purposes. Furthermore, because pixel-to-
pixel difterences are often verv small, the data in the enhanced image often
span a verv narrow range about the display value median and a contrast
stretch must be applied to the output image.

Horizontal first difference = DN, — DN
Vertical first difference = DN, -- DN,

Diagonal first difference = DN, — DNy

Figure 7.19 Primary pixel (A} and
reference pixels (H, V, and ) used
in horizontal, vertical, and diagonal
first differencing, respectively.
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First-difference images emphasize those edges normal to the direction
of differencing and deemphasize those parallel to the direction of differenc-
ing. For example, in a horizontal first-difference image, vertical edges will
result in large pixel-to pixel changes in gray level. On the other hand, the
vertical first differences for these same edges would be relativelv small (per-
haps zero). This effect is illustrated in Figure 7.20 where vertical features in
the original image (@) are emphasized in the horizontal first-difference image
(b). Horizontal features in the original image are highlighted in the vertical
first-difference image (¢). Features emphasized by the diagonal first differ-
ence are shown in (d).

Figure 7.21 illustrates vet another form of edge enhancement involving
diagonal first differencing. This image was produced by adding the absolute
value of the upper-left-to-lower-right diagonal first difference to that of the
upper-right-to-lower-left diagonal. This enhancement tends to highlight all
edges in the scene.

Fourier Analysis

The spatial feature manipulations we have discussed thus far are imple-
mented in the spatial domain—the (x, v) coordinate space of images. An alter-
native coordinate space that can be used for image analysis is the freguency
domain. In this approach, an image is separated into its various spatial fre-
quency components through application of a mathematical operation known
as the Fourier transform. A quantitative description of how Fourier trans-
forms are computed is bevond the scope of this discussion. Conceptually, this
operation amounts to fitting a continuous function through the discrete DN
values if thev were plotted along each row and column in an image. The
“peaks and valleys” along anvy given row or column can be described mathe-
matically by a combination of sine and cosine waves with various amplitudes,
frequencies, and phases. A Fourier transform results from the calculation of
the amplitude and phase for each possible spatial frequency in an image.

After an image is separated into its component spatial frequencies, it is
possible to displav these values in a two-dimensional scatter plot known as a
Fourier spectrim. Figure 7.22 illustrates a digital image in (a) and its Fourier
spectrum in (b). The lower frequencies in the scene are plotted at the center
of the spectrum and progressively higher frequencies are plotted outward.
Features trending horizontallv in the original image result in vertical compo-
nents in the Fourier spectrum; features aligned vertically in the original
image result in horizontal components in the Fourier spectrum.

If the Fourier spectrum of an image is known, it is possible to regenerate
the original image through the application of an inverse Fourier transform.
This operation is simply the mathematical reversal of the Fourier transform.
Hence, the Fourier spectrum of an image can be used to assist in a number of
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Figure 7.20 Effect of directional first differencing: (a) original image; (b) horizontal first differ-
ence; (¢) vertical first difference; (d) diagonal first difference.
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Figure 7.20 (Continued )
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Figure 7.21 Edge enhancement through cross-diagonal first differencing.

Figure 7.22  Applicaiton of Fourier transiorm: (a) original scene; (b) Fourier spectrum of (a).
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image processing operations. For example, spatial filtering can be accom-
plished by applying a filter directly on the Fourier spectrum and then per-
forming an inverse transform. This is illustrated in Figure 7.23. In Figure
7.23a, a circular high frequency blocking filter has been applied to the Fourier
spectrum shown previously in Figure 7.22b. Note that this image is a low pass

Figure 7.23 Spatial filtering in the frequency domain: (a) high frequency blocking filter; (b) inverse transform of (a);
(¢) low frequency blocking filter; () inverse transform of (c).
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filtered version of the original scene. Figures 7.23¢ and d illustrate the appli-
cation of a circular low frequency blocking filter (¢) to produce a high pass fil-
tered enhancement (d).

Figure 7.24 illustrates another common application of Fourier analysis—
the elimination of image noise. Shown in Figure 7.24a is an airborne multi-
spectral scanner image containing substantial noise. The Fourier spectrum

Figure 7.24 Noise elimination in the frequency domain. (a) Airborne multispectral scanner image containing noise.
(Courtesy NASA.) (b) Fourier spectrum of (a). (¢) Wedge block filter. (e Inverse transform of (¢).



7.6 MULTI-IMAGE MANIPULATION 531

for the image is shown in Figure 7.24b. Note that the noise pattern, which oc-
curs in a horizontal direction in the original scene, appears as a band of fre-
quencies trending in the vertical direction in the Fourier spectrum. In Figure
7.24¢ a vertical wedge block filter has been applied to the spectrum. This filter
passes the lower frequency components of the image but blocks the high fre-
quency components of the original image trending in the horizontal direc-
tion. Figure 7.24d shows the inverse transform of (¢). Note how effectively
this operation eliminates the noise inherent in the original image.

Fourier analysis is useful in a host of image processing operations in ad-
dition to the spatial filtering and image restoration applications we have illus-
trated in this discussion. However, most image processing is currently
implemented in the spatial domain because of the number and complexity of
computations required in the frequency domain. (This situation is likely to
change with improvements in computer hardware and advances in research
on the spatial attributes of digital image data.)

Before leaving the topic of spatial feature manipulation, it should be
reemphasized that we have illustrated only a representative subset of the
range of possible processing techniques available. Several of the references
included at the end of this chapter describe and illustrate numerous other
procedures that may be of interest to the reader.

7.6  MULTI-IMAGE MANIPULATION
Spectral Ratioing

Ratio images are enhancements resulting from the division of DN values in
one spectral band by the corresponding values in another band. A major ad-
vantage of ratio images is that they convey the spectral or color characteris-
tics of image features, regardless of variations in scene illumination
conditions. This concept is illustrated in Figure 7.25, which depicts two dif-
ferent land cover types (deciduous and coniferous trees) occurring on both
the sunlit and shadowed sides of a ridge line. The DNs observed for each
cover type are substantially lower in the shadowed area than in the sunlit
area. However, the ratio values for each cover type are nearly identical, irre-
spective of the illumination condition. Hence, a ratioed image of the scene ef-
fectively compensates for the brightness variation caused by the varying
topography and emphasizes the color content of the data.

Ratioed images are often useful for discriminating subtle spectral varia-
tions in a scene that are masked by the brightness variations in images from
individual spectral bands or in standard color composites. This enhanced dis-
crimination is due to the fact that ratioed images clearly portray the varia-
tions in the slopes of the spectral reflectance curves between the two bands
involved, regardless of the absolute reflectance values observed in the bands.
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Digital Number

Land Cover/ Band Band Ratio
Hlumination A B (Band A/Band B)
Deciduous
Sunlit 48 50 0.96
. Shadow 18 19 0.95
Sunlight .
Coniferous
Sunlit 31 45 0.69

Shadow 11 16 0.69

Figure 7.25 Reduction of scene illumination effects thorugh spectral ratioing. (Adapted from Sabins, 1997.)

These slopes are typically quite different for various material types in certain
bands of sensing. For example, the near-infrared-to-red ratio for healthy vege-
tation is normally very high. That for stressed vegetation is typically lower (as
near-infrared reflectance decreases and the red reflectance increases). Thus a
near-infrared-to-red (or red-to-near-infrared) ratioed image might be very
useful for differentiating between areas of the stressed and nonstressed vege-
tation. This type of ratio has also been emploved extensively in vegetation in-
dices aimed at quantifying relative vegetation greenness and biomass.

Obviously, the utility of any given spectral ratio depends upon the partic-
ular reflectance characteristics of the features involved and the application at
hand. The form and number of ratioc combinations available to the image an-
alyst also varies depending upon the source of the digital data. The number of
possible ratios that can be developed from » bands of data is n(;7 — 1). Thus,
for Landsat MSS data, 4(4 — 1), or 12, ditferent ratio combinations are possi-
ble (six original and six reciprocal). For the six nonthermal bands of Landsat
TM or ETM + data there are 6(6 — 1), or 30, possible combinations.

Figure 7.26 illustrates four representative ratio images generated from
TM data. These images depict higher ratio values in brighter tones. Shown in
(a) is the ratio TM1/TM2. Because these two bands are highly correlated for
this scene, the ratio image has low contrast. In (b) the ratio TM3/TM4 is de-
picted so that features such as water and roads, which reflect highly in the red
band (TM3) and little in the near-infrared band (TM4), are shown in lighter
tones. Features such as vegetation appear in darker tones because of their rel-
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Figure 7.26 Ratioed images derived from midsummer Landsat TM data, near Sturgeon Bay, WI
(higher ratio values are displayed in brighter image tones): (a) TM1/TM2; (b) TM3/TM4; (c) TM5/TM2;
() TM3/TM7.
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atively low reflectance in the red band {TM3) and high reflectance in the near
infrared (TM4). In (¢) the ratio TM5/TM2 is shown. Here, vegetation generally
appears in light tones because of its relatively high reflectance in the mid-
infrared band (TMS5) and its comparatively lower reflectance in the green
band (TM2). However, note that certain vegetation types do not follow this
trend due to their particular reflectance characteristics. They are depicted in
very dark tones in this particular ratio image and can therefore be discrimi-
nated from the other vegetation types in the scene. Part (d) shows the ratio
TM3/TM7. Roads and other cultural features appear in lighter tone in this
image due to their relatively high reflectance in the red band (TM3) and low
reflectance in the mid-infrared band (TM7). Similarly, differences in water
turbidity are readily observable in this ratio image.

Ratio images can also be used to generate false color composites by com-
bining three monochromatic ratioc data sets. Such composites have the
twofold advantage of combining data from more than two bands and present-
ing the data in color, which further facilitates the interpretation of subtle
spectral reflectance differences. Choosing which ratios to include in a color
composite and selecting colors in which to portray them can sometimes be
difficult. For example, excluding reciprocals, 20 color combinations are possi-
ble when the 6 original ratios of Landsat MSS data are displayed 3 at a time.
The 15 original ratios of nonthermal TM data result in 455 different possible
combinations.

Various quantitative criteria have been developed to assist in selecting
which ratio combinations to include in color composites. The Optinmum Index
Factor (OIF) is one such criterion (Chavez, Berlin, and Sowers, 1982). It ranks
all possible three-ratio combinations based on the total variance present in
each ratio and the degree of correlation between ratios. That combination
containing the most variance and least correlation is assumed to convey the
greatest amount of information throughout a scene. A limitation of this pro-
cedure is that the best combination for conveying the overall information in a
scene may not be the best combination for conveying the specific information
desired by the image analyst. Hence, some trial and error is often necessary in
selecting ratio combinations.

Certain caution should be taken when generating and interpreting ratio
images. First, it should be noted that such images are “intensity blind.” That
is, dissimilar materials with different absolute radiances but having similar
slopes of their spectral reflectance curves may appear identical. This problem
is particularly troublesome when these materials are contiguous and of simi-
lar image texture. One way of minimizing this problem is by using a /ivbrid
color ratio composite. This product is prepared by displaying two ratio images
in two of the primary colors but using the third primary color to display an
individual band of data. This restores a portion of the lost absolute radiance
information and some of the topographic detail that may be needed to dis-
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criminate between certain features. (As we illustrate later, THS color space
transformations can also be used for this purpose.)

Noise removal is an important prelude to the preparation of ratio images
since ratioing enhances noise patterns that are uncorrelated in the compo-
nent images. Furthermore, ratios onlv compensate for multiplicative illumi-
nation effects. That is, division of DNs or radiances for two bands cancels
only those factors that arc operative equally in the bands and not those that
are additive. For example, atmospheric haze is an additive factor that might
have to be removed prior to ratioing to vield acceptable results. Alternatively,
ratios of between-band differences and/or sums mayv be used to improve
image interpretability in some applications.

The manner in which ratios are computed and displaved will also greatly
influence the information content of a ratio image. For example, the ratio be-
tween two raw DNs for a pixel will normally be quite different from that be-
tween two radiance values computed for the same pixel. The reason for this is
that the detector response curves for the two channels will normally have dif-
ferent offsets, which are additive effects on the data. (This situation is akin to
the differences one would obtain by ratioing two temperatures using the
Fahrenheit scale versus the Celsius scale.) Some trial and error may be neces-
sary before the analyst can determine which {orm ol ratio works best for a
particular application.

It should also be noted that ratios can “blow up” mathematically (become
equal to infinity) in that divisions by zero are possible. At the same time, ra-
tios less than 1 arec common and rounding to integer values will compress
much of the ratio data into grav level 0 or 1. Hence, it is important to scale
the results of ratio computations somehow and relate them to the display de-
vice used. One means of doing this is to employv an algorithm of the form

DN’ = R arcte 'DNX)
N’ =Rai Clan<3N: (7.7)
where
DN’ = digital number in ratio image
R = scaling factor to place ratio data in appropriate
integer range
arctan {DNy/DN,) = angle (in radians) whose tangent is the ratio ot the
digital numbers in bands X and Y; if DN, equals 0,
this angle is set to 90°

In the above equation the angle whose 1angent is equal to the ratio of
the two bands can range from 0° to 90°, or from 0 to approximately 1.571
rad. Therefore, DN’ can range from 0 to approximately 1.571R, If an 8-bit
display is used, R is typically chosen to be 162.3, and DN’ can then range
from 0 to 255.
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Principal and Canonical Components

Extensive interband correlation is a problem frequently encountered in the
analysis of multispectral image data (later illustrated in Figure 7.49). That is,
images generated by digital data from various wavelength bands often appear
similar and convey essentially the same information. Principal and canonical
component transformations are two techniques designed to reduce such redun-
dancy in multispectral data. These transformations may be applied either as an
enhancement operation prior to visual interpretation of the data or as a prepro-
cessing procedure prior to automated classification of the data. If emploved in
the latter context, the transformations generally increase the computational ef-
ficiency of the classification process because both principal and canonical com-
ponent analyses may result in a reduction in the dimensionality of the original
data set. Stated differently, the purpose of these procedures is to compress all
of the information contained in an original n-band data set into fewer than n
“new bands.” The new bands are then used in lieu of the original data.

A detailed description of the statistical procedures used to derive princi-
pal and canonical component transformations is bevond the scope of this dis-
cussion. However, the concepts involved may be expressed graphically by
considering a two-band image data set such as that shown in Figure 7.27. In
(@), a random sample of pixels has been plotted on a scatter diagram accord-
ing to their gray levels as originally recorded in bands A and B. Superimposed
on the band A-band B axis system are two new axes (axes 1 and II) that are
rotated with respect to the original measurement axes and that have their ori-
gin at the mean ol the data distribution. Axis I defines the direction of the first
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Figure 7.27 Rotated coordinate axes used in (a) principal component and (b} canonical component
transformations.
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principal component and axis 1l defines the direction of the second principal
component. The form of the relationship necessary to transform a data value
in the original band A-band B coordinate system into its value in the new axis
T-axis II system is

DNI = CIHDNA + a]zDNB DN” = aleNA + azzDNB (78)

where
DN,, DN,; = digital numbers in new (principal component image)
coordinate system
DN,, DNj = digital numbers in old (original) coordinate system
ayy, Ay, Ay, Gy, = coefficients for the transformation

In short, the principal component image data values are simply linear combi-
nations of the original data values multiplied by the appropriate transforma-
tion coefficients. These coefficients are statistical quantities known as
eigenvectors or principal components. They are derived from the variance/
covariance matrix for the original image data.

Hence, a principal component image results from the linear combination
of the original data and the eigenvectors on a pixel-by-pixel basis throughout
the image. Often, the resulting principal component image is loosely referred
to as simply a principal component. This is theoretically incorrect in that the
eigenvalues themselves are the principal components, but we will sometimes
not make this distinction elsewhere in this book.

It should be noted in Figure 7.27a that the data along the direction of the
first principal component (axis I) have a greater variance or dynamic range
than the data plotted against either of the original axes (bands A and B). The
data along the second principal component direction have far less variance.
This is characteristic of all principal component images. In general, the first
principal component image (PC1) includes the largest percentage of the total
scene variance and succeeding component images (PC2, PC3, ..., PCn) each
contain a decreasing percentage of the scene variance. Furthermore, because
successive components are chosen to be orthogonal to all previous ones, the
data they contain are uncorrelated.

Principal component enhancements are generated by displaying contrast-
stretched images of the transformed pixel values. We illustrate the nature of
these displays by considering the Landsat MSS images shown in Figure 7.28.
This figure depicts the four MSS bands of a scene covering the Sahl al Matran
area, Saudi Arabia. Figure 7.29 shows the principal component images for
this scene. Some areas of geologic interest labeled in Figure 7.28 are (A) allu-
vial material in a dry stream valley, (B) flat-lying quaternary and tertiary
basalis, and (C) granite and granodiorite intrusion.

Note that in Figure 7.29, PC1 expresses the majority (97.6 percent) of
the variance in the original data set. Furthermore, PC1 and PC2 explain vir-
tually all of the variance in the scene (99.4 percent). This compression of
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MSS 4 MSS 5

MSS 6 MSS 7

Figure 7.28 Four MSS bands covering the Sahl al Matran area of Saudi Arabia.
Note the redundancy of information in these original image displays. (Courtesy
NASA.)
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AXIS 3 AXIS 4
0.4% 0.2%

Figure 7.29 Transformed data resulting from principal component analysis
of the MSS data shown in Figure 7.28. The percentage of scene variance
contained in each axis is indicated. (Courtesy NASA.)
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image information in the first two principal component images of Landsat
MSS data is typical. Because of this, we refer to the intrinsic dimensionality
of Landsat MSS data as being effectively 2. Also frequently encountered
with Landsat MSS data, the PC4 image for this scene contains virtually no
information and tends to depict little more than system noise. However,
note that both PC2 and PC3 illustrate certain features that were obscured by
the more dominant patterns shown in PC1. For example, a semicircular fea-
ture (labeled C in Figure 7.28) is clearly defined in the upper right portion of
the PC2 and PC3 images (appearing bright and dark, respectively). This fea-
ture was masked by more dominant patterns both in the PC1 image and in
all bands of the original data. Also, its tonal reversal in PC2 and PC3 illus-
trates the lack of correlation between these images.

As in the case of ratio images, principal component images can be ana-
lvzed as separate black and white images (as illustrated here), or anv three
component images may be combined to form a color composite. If used in an
image classification process, principal component data are normally treated
in the classification algorithm simply as if they were original data. However,
the number of components used is normally reduced to the intrinsic dimen-
sionality of the data, thereby making the image classification process much
more efficient by reducing the amount of computation required. (For exam-
ple, Landsat TM or ETM+ data can often be reduced to just three principal
component images for classification purposes.)

Principal component enhancement techniques are particularly appropri-
ate where little prior information concerning a scene is available. Canonical
component analvsis, also referred to as multiple discriminant analysis, may be
more appropriate when information about particular features of interest is
known. Recall that the principal component axes shown in Figure 7.27a were
located on the basis of a random, undifferentiated sample of image pixel val-
ues. In Figure 7.27b, the pixel values shown are derived from image areas
containing three different analyst-defined feature types (the feature types are
represented by the symbols A, 0O, and +). The canonical component axes in
this figure (axes I and II) have been located to maximize the separability of
these classes while minimizing the variance within each class. For example,
the axes have been positioned in this figure such that the three feature types
can be discriminated solely on the basis of the first canonical component im-
ages (CC1) values located along axis I.

In Figure 7.30, canonical component images are shown for the Landsat
MSS scene that was shown in Figure 7.28. Once again, CC1 expresses the
highest percentage variation in the data with subsequent component images
representing lesser amounts of uncorrelated additional information. These
displays, as in cases such as feature C, may enhance subtle features not evi-
dent in the original image data. Like principal component data, canonical
component data can also be used in image classification. Canonical compo-
nent images not only improve classification efficiency but also can improve
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Figure 7.30 Transformed data resulting from canonical component analysis of the
MSS data shown in Figure 7.28. The percentage of scene variance contained in
each axis is indicated. (Courtesy NASA.)
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classification accuracy for the identified features due to the increased spectral
separability of classes.

Vegetation Components

Previously (Section 6.16), we introduced the concept of vegetation indices and
the use of between-band differences and ratios to produce vegetation index im-
ages from AVHRR data. Here we wish to point out that numerous other forms
of linear data transformations have been developed for vegetation monitoring,
with differing sensors and vegetation conditions dictating different transforma-
tions. For example, Kauth and Thomas (1976) derived a linear transformation
of the four Landsat MSS bands that established four new axes in the spectral
data that can be interpreted as vegetation components useful for agricultural
crop monitoring. This “tasseled cap” transformation rotates the MSS data such
that the majority of information is contained in two components or features
that are directly related to physical scene characteristics. Brightness, the first
feature, is a weighted sum of all bands and is defined in the direction of the
principal variation in soil reflectance. The second feature, greenness, is approx-
imately orthogonal to brightness and is a contrast between the near-infrared
and visible bands. Greenness is strongly related to the amount of green vegeta-
tion present in the scene. Brightness and greenness together typically express
95 percent or more of the total variability in MSS data and have the character-
istic of being readily interpretable features generally applicable from scene to
scene (once illumination and atmospheric effects are normalized).

Crist and Cicone (1984) extended the tasseled cap concept to Landsat TM
data and found that the six bands of reflected data effectively occupy three di-
mensions, defining planes of soils, vegetation, and a transition zone between
them. The third feature, called wetness, relates to canopy and soil moisture.

Figure 7.31 illustrates the application of the tasseled cap transformation
to TM data acquired over north central Nebraska. The northern half of the
area is dominated by circular corn fields that have been watered throughout
the summer by center-pivot irrigators. The southern half of the area is at the
edge of the Nebraska Sand Hills, which are covered by grasslands. Lighter
tones in these images correspond to larger values of each component.

Figure 7.32 illustrates another vegetation transformation, namely, the
transformed vegetation index (TVI), applied to the same data set shown in Fig-
ure 5.8 and Plate 14. The TVI is computed as

DN (near IR) — DN (red)
DN (near IR) + DN (red)

12
TVI = [ + O.S] X 100 (7.9)

where
DN (near IR) = digital number in the near-IR band
DN (red) = digital number in the red band
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Figure 7.31 Tasseled cap transformation for a late-summer TM image of north central
Nebraska. The three components shown here illustrate (a) relative greenness, (b) bright-
ness, and (c) wetness. (Courtesy Institute of Agriculture and Natural Resources, Univer-
sity of Nebraska.)

Using ground reference data, it is frequently possible to “calibrate” TVI
values to the green biomass present on a pixel-by-pixel basis. Usually, sepa-
rate calibration relationships must be established for each cover type present
in an image. These relationships may then be used in such applications as
“precision crop management” or precision farming to guide the application of
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Figure 7.32 Transformed vegetation index (TVI) image derived from mid-August multispectral scanner data, Yakima
River valley, WA: (a) red band; (b) near-IR band; (¢) TVI image. Same image area as shown in Figure 5.8 and Plate 14.
(Courtesy Sensys Technologies, Inc.)
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irrigation water, fertilizers, herbicides, and so on (Section 4.6). Similarly, TVI
values have been used to aid in making ranch management decision when the
TVI data correlate with the estimated level of forage present in pastures con-
tained in an image (Miller et al., 1985).

Indices such as the TVI and NDVI, which are based on the near-
infrared and red spectral bands, have been shown to be well correlated not
only with crop biomass accumulation, but also with leaf chlorophvll levels,
leaf area index values, and the photosynthetically active radiation absorbed
by a crop canopy. However, when such biophysical parameters reach mod-
erate to high levels, the green normalized difference vegetation index
(GNDVI) may be a more reliable indicator of crop conditions. The GNDVI
is identical in form to the NDVI except that the green band is substituted
for the red band.

With the availability of MODIS data on a global basis, several new vegeta-
tion indices have been proposed. For example, the enhanced vegetation index
(EVI) has been developed as a modified NDVI with an adjustment factor to
minimize soil background influences and a blue band correction of red band
data to lessen atmospheric scattering. Additional treatment of this and the
scores of other vegetation indices in use is bevond the scope of this discus-
sion. Readers interested in additional information on this subject are encour-
aged to consult any of the numerous summaries of vegetation indices
available in the literature (e.g., Richardson and Everitt, 1992; Running et al.,
1994; Lvon et al., 1998; and Jensen, 2000).

Intensity—-Hue-Saturation Color Space Transformation

Digital images are typically displaved as additive color composites using
the three primary colors: red, green, and blue (RGB). Figure 7.33 illustrates
the interrelation among the RGB components of a typical color display de-
vice (such as a color monitor). Shown in this figure is the RGB color cube,
which is defined by the brightness levels of each of the three primary col-
ors. For a display with 8-bit-per-pixel data encoding, the range of possible
DNs for each color component is 0 to 255. Hence, there are 256" (or
16,777,216) possible combinations of red, green, and blue DNs that can be
displaved by such a device. Everyv pixel in a composited display may be rep-
resented by a three-dimensional coordinate position somewhere within the
color cube. The line from the origin of the cube to the opposite corner is
known as the gray line since DNs that lie on this line have equal compo-
nents of red, green, and blue.

The RGB displays are used extensively in digital processing to display
normal color, false color infrared, and arbitrary color composites. For ex-
ample, a normal color composite may be displaved by assigning TM or
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Figure 7.33  The RGB color cube. (Adapted from Schowengerdt, 1997

ETM+ bands 1, 2, and 3 to the blue, green, and red components, respec-
tivelv. A false color infrared composite results when bands 2, 3, and 4 are
assigned (o these respective components. Arbitrary color composites result
when other bands or color assignments are used. Color composites mayv be
contrast stretched on a RGB display by manipulating the contrast in each
ol the three display channels (using a separate lookup table for each ol the
three color components).

An alternative to describing colors by their RGB components is the use of
the intensitv—hue—saturation (IHS) system. “Intensity” relates to the total
brightness of a color. “Hue” refers to the dominant or average wavelength of
light contributing to a color. “Saturation” specilies the purity of color relative
to gray. For example, pastel colors such as pink have low saturation com-
pared to such high saturation colors as crimson. Transforming RGB compo-
nents into IHS components before processing mav provide more control over
color enhancements.

Figure 7.34 shows one (of several) means ol transforming RGB compo-
nents into THS components. This particular approach is called the hexcone
model, and it involves the projection of the RGB color cube onto a plane that
is perpendicular to the gray line and tangent to the cube at the corner farthest
from the origin. The resulting projection is a hexagon. 1I the plane of projec-
tion is moved from white to black along the gray line, successivelv smaller
color subcubes are projected and a series ol hexagons ol decreasing size re-
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Plane of projection

Figure 7.34 Planar projection of the RGB color cube. A series of such projections results
when progressively smaller subcubes are considered between white and black.

sult. The hexagon at white is the largest and the hexagon at black degenerates
to a point. The series of hexagons developed in this manner define a solid
called the hexcone (Figure 7.35a).

In the hexcone model intensity is defined by the distance along the gray
line from black to any given hexagonal projection. Hue and saturation are de-
fined at a given intensity, within the appropriate hexagon (Figure 7.35b). Hue
is expressed by the angle around the hexagon, and saturation is defined by the
distance from the gray point at the center of the hexagon. The farther a point
lies away from the gray point, the more saturated the color. (In Figure 7.355b,
linear distances are used to define hue and saturation, thereby avoiding com-
putations involving trigonometric functions.)

At this point we have established the basis upon which any pixel in the
RGB color space can be transformed into its IHS counterpart. Such transfor-
mations are often useful as an intermediate step in image enhancement. This
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Figure 7.35 Hexcone color model. (a) Generation of the hexcone. The size of any given

hexagon is determined by pixel intensity. (b) Definition of hue and saturation components for a
pixel value, P, having a typical, nonzero intensity. (Adapted from Schowengerdt, 1997.)

is illustrated in Figure 7.36. In this figure the original RGB components are
shown transformed first into their corresponding IHS components. The ITHS
components are then manipulated to enhance the desired characteristics of
the image. Finally, these modified IHS components are transformed back to
the RGB system for final display.

Among the advantages of IHS enhancement operations is the ability to vary
each THS component independently, without affecting the others. For example,



7.6 MULTI-IMAGE MANIPULATION 549

R | I R
G b—| H »| H o G
B S s' B

Encode Manipulate Decode

Figure 7.36 IHS/RGB encoding and decoding for interactive image manip-
ulation. (Adapted from Schowengerdt, 1997.)

a contrast stretch can be applied to the intensity component of an image, and
the hue and saturation of the pixels in the enhanced image will not be changed
(as theyv typically are in RGB contrast stretches). The IHS approach may also be
used to display spatially registered data of varying spatial resolution. For exam-
ple, high resolution data from one source may be displayed as the intensity com-
ponent, and low resolution data from another source may be displaved as the
hue and saturation components. Such an approach was used to produce Plate
19 (Section 6.15). This plate is a merger of IKONOS 1-m-resolution panchro-
matic data (used in the intensity component) and 4-m-resolution multispectral
data (hue and saturation components). The result is a composite image having
the spatial resolution of the 1-m panchromatic data and the color characteristics
of the original 4-m multispectral data. Similar procedures are used to merge
other sources of same-sensor, multiresolution data sets (e.g., 10-m panchro-
matic and 20-m multispectral SPOT data, 15-m panchromatic and 30-m ETM+
data). Likewise, IHS techniques are often used to merge data from different
sensing systems (e.g., digital orthophotos with satellite data).

One caution to be noted in using IHS transformations to merge multires-
olution data is that direct substitution of the panchromatic data for the inten-
sitv component may not always produce the best final product in terms of
color balance. In such situations, weighted combinations of the panchro-
matic and multispectral data might be used. The approach used in the pro-
duction of Plate 19 was to employ a histogram matching operation to match
the histogram of the new panchromatic data to that of the intensity compo-
nent derived from the multispectral RGB data. The modified panchromatic
data resulting from this operation were then used in the intensity component
of the THS image prior to transforming the data back to RGB format.

The development and application of various IHS encoding and enhance-
ment schemes are the subject of continuing research. An interesting project
in this regard has been the use of IHS transformations to display two bands
(bands 1 and 2) of raw AVHRR data in a three-color composite. In such
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composites, the sum of bands 1 and 2 is used to represent intensity. The
band 2/1 ratio is used to define hue, and the difference between bands 1 and
2 is used to define saturation. The resulting image looks very similar to a
standard color infrared composite.

Decorrelation Stretching

Decorrelation stretching is a form of multi-image manipulation that is partic-
ularly useful when displaying multispectral data that are highly correlated.
Data from the NASA Thermal Infrared Multispectral Scanner (TIMS) and
other hyperspectral data collected in the same region of the spectrum often
fall into this category. Traditional contrast stretching of highly correlated data
as R, G, and B displays normally only expands the range of intensities; it does
little to expand the range of colors displayed, and the stretched image still con-
tains only pastel hues. For example, no areas in a highly correlated image are
likely to have high DNs in the red display channel but low values in the green
and blue (which would produce a pure red). Instead, the reddest areas are
merely a reddish-gray. To circumvent this problem, decorrelation stretching
involves exaggeration of the least correlated information in an image primar-
ily in terms of saturation, with minimal change in image intensity and hue.

As with THS transformations, decorrelation stretching is applied in a
transformed image space, and the results are then transformed back to the
RGB system for final display. The major difference in decorrelation stretching
is that the transformed image space used is that of the original image’s princi-
pal components. The successive principal components of the original image
are stretched independently along the respective principal component axes
(Figure 7.27a). By definition, these axes are statistically independent of one
another so the net effect of the stretch is to emphasize the poorly correlated
components of the original data. When the stretched data are then trans-
formed back to the RGB system, a display having increased color saturation
results. There is usually little difference in the perceived hues and intensities
due to enhancement. This makes interpretation of the enhanced image
straightforward, with the decorrelated information exaggerated primarily in
terms of saturation. Previously pastel hues become much more saturated.

Because decorrelation stretching is based on principal component analy-
sis, it is readily extended to any number of image channels. Recall that the
IHS procedure is applied to only three channels at a time.

7.7 IMAGE CLASSIFICATION

The overall objective of image classification procedures is to automatically cat-
egorize all pixels in an image into land cover classes or themes. Normally, mul-
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tispectral data are used to perform the classification and, indeed, the spectral
pattern present within the data for each pixel is used as the numerical basis for
categorization. That is, different feature tvpes manifest different combinations
of DNs based on their inherent spectral reflectance and emittance properties.
In this light, a spectral “pattern” is not at all geometric in character. Rather,
the term pattern refers to the set of radiance measurements obtained in the
various wavelength bands for each pixel. Spectral pattern recognition refers to
the family of classification procedures that utilizes this pixel-by-pixel spectral
information as the basis for automated land cover classification.

Spatial pattern recognition involves the categorization of image pixels on
the basis of their spatial relationship with pixels surrounding them. Spatial
classifiers might consider such aspects as image texture, pixel proximity, fea-
ture size, shape, directionality, repetition, and context. These tvpes of classi-
fiers attempt to replicate the kind of spatial svnthesis done by the human
analyst during the visual interpretation process. Accordingly, they tend to be
much more complex and computationally intensive than spectral pattern
recognition procedures.

Temporal pattern recognition uses time as an aid in feature identification.
In agricultural crop surveys, for example, distinct spectral and spatial
changes during a growing season can permit discrimination on multidate im-
agery that would be impossible given any single date. For example, a field of
winter wheat might be indistinguishable from bare soil when freshly seeded
in the fall and spectrally similar to an alfalfa field in the spring. An interpreta-
tion of imagery from either date alone would be unsuccessful, regardless of
the number of spectral bands. If data were analvzed from both dates, how-
ever, the winter wheat fields could be readily identified, since no other field
cover would be bare in late fall and green in late spring.

As with the image restoration and enhancement techniques we have de-
scribed, image classifiers may be used in combination in a hybrid mode. Also,
there is no single “right” manner in which to approach an image classification
problem. The particular approach one might take depends upon the nature of
the data being analvzed, the computational resources available, and the in-
tended application of the classified data.

In the remaining discussion we emphasize spectrally oriented classifica-
tion procedures for land cover mapping. (As stated earlier, this emphasis is
based on the relative state of the art of these procedures. They currently form
the backbone of most multispectral classification activities.) First, we describe
supervised classification. In this type of classification the image analyst “super-
vises” the pixel categorization process by specifying, to the computer algo-
rithm, numerical descriptors of the various land cover types present in a
scene. To do this, representative sample sites of known cover tvpe, called train-
ing areas, are used to compile a numerical “interpretation key” that describes
the spectral attributes for each feature type of interest. Each pixel in the data
set is then compared numerically to each category in the interpretation key



