7.1

7 DIGITAL IMAGE
PROCESSING

INTRODUCTION

Digital image processing involves the manipulation and interpretation of digi-
tal images (Section 1.5) with the aid of a computer. This form of remote sens-
ing actually began in the 1960s with a limited number of researchers
analyzing airborne multispectral scanner data and digitized aerial pho-
tographs. However, it was not until the launch of Landsat-1, in 1972, that dig-
ital image data became widely available for land remote sensing applications.
At that time, not only was the theorv and practice of digital image processing
in its infancy, but also the cost of digital computers was very high and their
computational efficiency was very low by modern standards. Today, access to
low cost, efficient computer hardware and software is commonplace, and the
sources of digital image data are many and varied. These sources range from
commercial and governmental earth resource satellite systems, to the meteo-
rological satellites, to airborne scanner data, to airborne digital camera data,
to image data generated by photogrammetric scanners and other high resolu-
tion digitizing systems. All of these forms of data can be processed and ana-
lyzed using the techniques described in this chapter.

Digital image processing is an extremelyv broad subject, and it often in-
volves procedures that can be mathematically complex. Our objective in this
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chapter is to introduce the basic principles ot digital image processing with-
out delving into the detailed mathematics involved. Also, we avoid extensive
treatment of the rapidly changing hardware associated with digital image
processing. The references at the end of this chapter are provided for those
wishing to pursue such additional detail.

The central idea behind digital image processing is quite simple. The digi-
tal image is ted into a computer one pixel at a time. The computer is pro-
grammed to insert these data into an equation, or series of equations, and
then store the results of the computation for each pixel. These results form a
new digital image that may be displaved or recorded in pictorial format or
mav itself be further manipulated by additional programs. The possible forms
of digital image manipulation are literally infinite. However, virtually all these
procedures mav be categorized into one (or more) of the following seven
broad tvpes ot computer-assisted operations:

1. Image rectification and restoration. These operations aim Lo cor-
rect distorted or degraded image data to create a more taithtul repre-
sentation of the original scene. This typically involves the initial
processing of raw image data to correct for geometric distortions, to
calibrate the data radiometrically, and to eliminate noise present in
the data. Thus, the nature of anv particular image restoration process
is highly dependent upon the characteristics of the sensor used to ac-
quire the image data. Image rectification and restoration procedures
arc often termed preprocessing operations because they normally pre-
cede further manipulation and analysis of the image data to extract
specific information. We brielly discuss these procedures in Section
7.2 with treatment of various gecometric corrections, radiometric cor-
rections, and noise corrections.

2, Image enhancement. These procedures are applied to image data in
order to more effectively display or record the data for subsequent vi-
sual interpretation. Normally, image enhancement involves techniques
for increasing the visual distinctions between features in a scene. The
objective is to create "new” images from the original image data in
order to increase the amount of information that can be visually inter-
preted from the data. The enhanced images can be displaved interac-
tivelv on a monitor or they can be recorded in a hardcopy format, either
in black and white or in color. There are no simple rules for producing
the single “best” image for a particular application. Often several en-
hancements made from the same “raw” image are necessary. We sum-
marize the various broad approaches to enhancement in Section 7.3. In
Scction 7.4, we treat specific procedures that manipulate the contrast of
an image (level slicing and contrast stretching). In Section 7.5, we dis-
cuss spatial feature manipulation (spatial filtering, convolution, edge
enhancement, and Fourier analysis). In Section 7.6, we consider en-
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hancements involving multiple spectral bands of imagery (spectral ra-
tioing, principal and canonical components, vegetation components,
and intensitv-hue—saturation color space transformations).

Image classification. The objective of these operations is to ve-
place visual analysis of the image data with quantitative techniques
for automating the identification of features in a scene. This normally
involves the analysis of multispectral image data and the application
of statistically based decision rules for determining the land cover
identity of each pixel in an image. When these decision rules are
based solely on the spectral radiances observed in the data, we refer
to the classification process as spectral pattern recognition. In con-
trast, the decision rules mav be based on the geometric shapes, sizes,
and patterns present in the image data. These procedures tall into the
domain of spatial pattern recognition. In either case, the intent of the
classification process is to categorize all pixels in a digital image into
one of several land cover classes, or “themes.” These categorized data
may then be used to produce thematic maps of the land cover present
in an image and/or produce summary statistics on the areas covered
by each land cover type. Due to their importance, image classification
procedures comprise the subject of more than one-third of the mate-
rial in this chapter (Sections 7.7 to 7.16). We emphasize spectral pat-
tern recognition procedures because the current state-of-the-art for
these procedures is more advanced than for spatial pattern recogni-
tion approaches. (Substantial research is ongoing in the development
of spatial and combined spectral/spatial image classification.) We em-
phasize “supervised,” “unsupervised,” and “hybrid” approaches to
spectrally based image classification. We also describe various proce-
dures for assessing the accuracy of image classification results.

Data merging and GIS integration. These procedures are used to
combine image data for a given geographic area with other geographi-
callv referenced data sets for the same arca. These other data sets
might simply consist of image data generated on other dates by the
same sensor or by other remote sensing syvstems. Frequently, the in-
tent of data merging is to combine remotelv sensed data with other
sources of information in the context of a GIS. For example, image
data are often combined with soil, topographic, ownership, zoning,
and assessment information. We discuss data merging in Section
7.17. In this section, we highlight multitemporal data merging, change
detection procedures, and multisensor image merging. We also illus-
trate the incorporation of GIS data in land cover classification.

Hyperspectral image analysis. Virtuallv all of the image process-
ing principles introduced in this chapter in the context of multispec-
tral image analvsis mav be extended directly to the analysis of
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hvperspectral data. However, the basic nature and sheer volume of
hvperspectral data sets is such that various image processing proce-
dures have been developed to analyze such data specifically. We in-
troduce these procedures in Section 7.18.

6. Biophysical modeling. The objective of biophvsical modeling is to
relate quantitativelv the digital data recorded by a remote sensing sys-
tem to biophysical features and phenomena measured on the ground.
For example, remotely sensed data might be used to estimate such
varied parameters as crop vield, pollution concentration, or water
depth. Likewise, remotely sensed data are often used in concert with
GIS techniques to facilitate environmental modeling. The intent of
these operations is to simulate the functioning of environmental svs-
tems in a spatially explicit manner and to predict their behavior
under altered (“what if”) conditions, such as global climate change.
We discuss the overall concept of biophysical modeling in Section
7.19. In Section 7.20 we highlight the important role spatial resolu-
tion plavs in the incorporation of remotely sensed data in the envi-
ronmental modeling process.

7. Image transmission and compression. Given the increasingly high
volume of data available from remote sensing svstems and the distribu-
tion of image data over the Internet, image compression techniques are
the subject of continuing image processing research. We briefly intro-
duce the usc of wavelet transforms in this context in Section 7.21.

We have made the above subdivisions of the topic of digital image pro-
cessing to provide the reader with a conceptual roadmap for studving this
chapter. Although we treat each of these procedures as distinct operations,
they all interrelate. For example, the restoration process of noise removal can
often be considered an enhancement procedure. Likewise, certain enhance-
ment procedures (such as principal components analysis) can be used not
only to enhance the data but also to improve the efficiency of classification op-
erations. In a similar vein, data merging can be used in image classification in
order to improve classification accuracy. Hence, the boundaries between the
various operations we discuss separately here are not well defined in practice.

7.2 IMAGE RECTIFICATION AND RESTORATION

As previously mentioned, the intent of image rectification and restoration is
to correct image data for distortions or degradations that stem from the
image acquisition process. Obviously, the nature of such procedures varies
considerablv with such factors as the digital image acquisition type (digital
camera, along-track scanner, across-track scanner), platform (airborne versus
satellite), and total field of view. We make no attempt to describe the entire
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range of image rectification and restoration procedures applied to each of
these various types of factors. Rather, we treat these operations under the
generic headings of geometric correction, radiometric correction, and noise
removal.

Geometric Correction

Raw digital images usually contain geometric distortions so significant that
they cannot be used directly as a map base without subsequent processing.
The sources of these distortions range from variations in the altitude, atti-
tude, and velocity of the sensor platform to factors such as panoramic distor-
tion, earth curvature, atmospheric refraction, relief displacement, and
nonlinearities in the sweep of a sensor’s IFOV. The intent of geometric correc-
tion is to compensate for the distortions introduced by these factors so that
the corrected image will have the highest practical geometric integrity.

The geometric correction process is normally implemented as a two-step
procedure. First, those distortions that are systematic, or predictable, are con-
sidered. Second, those distortions that are essentially random, or unpre-
dictable, are considered.

Systematic distortions arc well understood and casily corrected by apply-
ing formulas derived by modeling the sources of the distortions mathemati-
cally. For example, a highly systematic source of distortion involved in
multispectral scanning from satellite altitudes is the eastward rotation of the
earth beneath the satellite during imaging. This causes cach optical sweep of
the scanner to cover an area slightly to the west of the previous sweep. This is
known as skew distortion. The process of deskewing the resulting imagery in-
volves offsetting each successive scan line slightly to the west. The skewed-
parallelogram appearance of satellite multispectral scanner data is a result of
this correction.

Random distortions and residual unknown systematic distortions are cor-
rected by analvzing well-distributed ground control points (GCPs) occurring
in an image. As with their counterparts on aerial photographs, GCPs are fea-
tures of known ground location that can be accurately located on the digital
imagery. Some [eatures that might make good control points are highway in-
tersections and distinct shoreline features. In the correction process numer-
ous GCPs are located both in terms ol their two image coordinates (column,
row numbers) on the distorted image and in terms of their ground coordi-
nates (typically measured from a map, or GPS located in the field, in terms of
UTM coordinates or latitude and longitude). These values are then submitted
to a least squares regression analysis to determine coefficients for two coordi-
nate transformation equations that can be used to interrelate the geometrically
correct (map) coordinates and the distorted-image coordinates. (Appendix C
describes one of the more common forms of coordinate transformation, the
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affine transformation.) Once the coefficients for these equations are deter-
mined, the distorted-image coordinates for any map position can be precisely

(7.1)

x=f(X, V)

estimated. Expressing this in mathematic notation,
v=HXY)

where
(x, v)= distorted-image coordinates (column, row)

(X, Y) = correct {map) coordinates

f1. [, = transformation functions

Intuitively, it might seem as though the above equations are stated back-
ward! That is, they specify how to determine the distorted-image positions
corresponding to correct, or undistorted, map positions. But that is exactly
what is done during the geometric correction process. We first define an
undistorted output matrix of “empty” map cells and then fill in each cell with

the gray level of the corresponding pixel, or pixels, in the distorted image.
This process is illustrated in Figure 7.1. This diagram shows the geometrically
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correct output matrix of cells (solid lines) superimposed over the original, dis-
torted matrix of image pixels (dashed lines). After producing the transforma-
tion function, a process called resampling is used to determine the pixel
values to fill into the output matrix from the original image matrix. This
process is performed using the following operations:

1. The coordinates of cach clement in the undistorted output matrix are
transformed to determine their corresponding location in the original
input (distorted-image) matrix.

2. In general, a cell in the output matrix will not directly overlay a pixel
in the input matrix. Accordingly, the intensity value or digital number
(DN) eventually assigned to a cell in the output matrix is determined
on the basis of the pixel values that surround its transformed position
in the original input matrix.

A number of different resampling schemes can be used to assign the ap-
propriate DN to an output cell or pixel. To illustrate this, consider the shaded
output pixel shown in Figure 7.1. The DN for this pixel could be assigned sim-
plv on the basis of the DN of the closest pixel in the input matrix, disregard-
ing the slight offset. In our example, the DN of the input pixel labeled a would
be transferred to the shaded output pixel. This approach is called nearest
neighbor resampling. It offers the advantage of computational simplicity and
avoids having to alter the original input pixel values. However, features in the
output matrix mayv be offset spatiallv by up to one-half pixel. This can cause a
disjointed appearance in the output image product. Figure 7.2 is an example
of a nearest neighbor resampled Landsat TM image. Figure 7.2a shows the
original, distorted image.

More sophisticated methods of resampling evaluate the values of several
pixels swrrounding a given pixel in the input image to establish a “svnthetic”
DN to be assigned to its corresponding pixel in the output image. The bilinear
interpolation technique takes a distance-weighted average of the DNs of the
four nearest pixels (labeled ¢ and b in the distorted-image matrix in Figure
7.1). This process is simply the two-dimensional equivalent to linear interpo-
lation. As shown in Figure 7.2¢, this technique generates a smoother appear-
ing resampled image. However, because the process alters the grav levels of
the original image, problems may be encountered in subsequent spectral pat-
tern recognition analvses of the data. (Because of this, resampling is often
performed after, rather than prior to, image classification procedures.)

An improved restoration of the image is provided by the bicubic interpola-
tion or cutbic convolution method of resampling. In this approach, the trans-
terred svnthetic pixel values are determined by evaluating the block of 16
pixels in the input matrix that surrounds cach output pixel (labeled a, b, and ¢
in Figurc 7.1). Cubic convolution resampling (Figure 7.2d) avoids the dis-
jointed appearance of the nearest neighbor method and provides a slightly
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Figure 7.2 Resampling results: (a) original Landsat TM data; (b) nearest neighbor assignment; (¢) bilinear
interpolation; (d) cubic convolution. Scale 1:100,000.
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sharper image than the bilinear interpolation method. (Again, this method al-
ters the original image grav levels to some extent and other tvpes of resam-
pling can be emploved to minimize this cffect.)

As we discuss later, vesampling techniques are important in several digi-
tal processing operations besides the geometric correction of raw images. For
example, resampling is used to overlay or register multiple dates of imagery.
It is also used to register images of differing resolution. Also, resampling pro-
cedures are used extensively to register image data and other sources of data
in GISs. (Recall that resampling was discussed as an important part of digital
orthophoto production in Section 3.9.) Appendix C contains additional details
about the implementation of the various resampling procedures discussed in
this section.

Radiometric Correction

As with geometric correction, the tvpe of radiometric correction applied to
any given digital image data set varies widelv among sensors. Other things
being equal, the radiance measured by any given svstem over a given object is
influenced by such factors as changes in scene illumination, atmospheric con-
ditions, viewing geometry, and instrument response characteristics. Some of
these effects, such as viewing geometry variations, arc greater in the case of
airborne data collection than in satellite image acquisition. Also, the need to
perform correction for any or all of these influences depends directly upon
the particular application at hand.

In the case of satellite sensing in the visible and near-intrared portion of
the spectrum, it is often desirable to generate mosaics of images taken at dif-
ferent times or to study the changes in the reflectance of ground features at
different times or locations. In such applications, it is usually necessary to
applv a s elevation correction and an earth-sun distance correction. The sun
clevation correction accounts for the seasonal position of the sun relative to
the carth (Figure 7.3). Through this process, image data acquired under dif-
ferent solar illumination angles are normalized by calculating pixel bright-
ness values assuming the sun was at the zenith on each date of sensing. The
correction is usuallv applied by dividing each pixel value in a scene by the
sine of the solar elevation angle for the particular time and location of imag-
ing. Alternatively, the correction is applied in terms of the sun’s angle from
the zenith, which is simplv 90° minus the solar clevation angle. (In this case
cach pixel value is divided bv the cosine of the sun’s angle from the zenith, re-
sulting in the identical correction.) In either case, the correction ignores topo-
eraphic and atmospheric effects.

The earth—sun distance correction is applied to normalize for the seasonal
changes in the distance between the carth and the sun. The earth—sun distance
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Figure 7.3  Efiects of seasonal change on solar elevation angle. (The solar zenith angle is equal to 90° minus the solar
elevation angle.)

is usually expressed in astronomical units. (An astronomical unit is equivalent
to the mean distance between the earth and the sun, approximately 149.6 X
10° km.) The irradiance from the sun decreases as the square of the earth-sun
distance.

Ignoring atmospheric effects, the combined influence of solar zenith
angle and earth-sun distance on the irradiance incident on the earth’s surface
can be expressed as

_ Eqcos 8, (7.2)
d?
where
E = normalized solar irradiance
E, = solar irradiance at mean earth-sun distance
6, = sun’s angle from the zenith
d = earth—sun distance, in astronomical units
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(Information on the solar elevation angle and earth-sun distance for a given
scene is normally part of the ancillary data supplied with the digital data.)

As initially discussed in Section 1.4, the influence of solar illumination
variation is compounded by atmospheric effects. The atmosphere affects the
radiance measured at anv point in the scene in two contradictory wavs. First,
it attenuates (reduces) the energy illuminating a ground object. Second, it
acts as a reflector itself, adding a scattered, extraneous “path radiance” to the
signal detected by a sensor. Thus, the composite signal observed at any given
pixel location can be expressed by

pET
Ly=—F+1L, (7.3)
where

L. = total spectral radiance measured by sensor

p = retlectance of object

E = irradiance on object

T = transmission of atmosphere

L, = path radiance

(All of the above quantitics depend on wavelength.)

Onlv the first term in the above equation contains valid information
about ground reflectance. The second term represents the scattered path ra-
diance, which introduces “haze” in the imagery and reduces image contrast.
(Recall that scattering is wavelength dependent, with shorter wavelengths
normallv manifesting greater scattering effects.) Haze compensation proce-
dures are designed to minimize the influence of path radiance effects. One
means of haze compensation in multispectral data is to observe the radi-
ance recorded over target areas of essentially zero reflectance. For example,
the reflectance of deep clear water is essentially zero in the near-infrared re-
gion of the spectrum. Therefore, anv signal observed over such an area rep-
resents the path radiance, and this value can be subtracted from all pixels in
that band.

For convenience, haze correction routines are often applied uniformly
throughout a scene. This may or mav not be valid, depending on the unifor-
mitv of the atmosphere over a scene. When extreme viewing angles are in-
volved in image acquisition, it is often necessary to compensate for the
influence of varving the atmospheric path length through which the scene is
recording. In such cases, off-nadir pixel values are usually normalized to
their nadir equivalents.

Another radiometric data processing activity involved in many quantita-
tive applications of digital image data is conversion of DNs to absolute ra-
diance values. This operation accounts for the exact form of the A-to-D
response functions for a given sensor and is essential in applications where
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measurement of absolute radiances is required. For example, such conver-
sions are necessary when changes in the absolute reflectance of objects are to
be measured over time using different sensors (e.g., the multispectral scanner
on Landsat-3 versus that on Landsat-5). Likewise, such conversions are im-
portant in the development of mathematical models that physically relate
image data to quantitative ground measurements (e.g., water quality data).

Normally, detectors and data systems are designed to produce a linear
response to incident spectral radiance. For example, Figure 7.4 shows the
linear radiometric response function typical of an individual TM channel.
Each spectral band of the sensor has its own response function, and its
characteristics are monitored using onboard calibration lamps (and temper-
ature references for the thermal channel). The absolute spectral radiance
output of the calibration sources is known from prelaunch calibration and
is assumed to be stable over the life of the sensor. Thus, the onboard cali-
bration sources form the basis for constructing the radiometric response
function by relating known radiance values incident on the detectors to the
resulting DNs.
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Figure 7.4 Radiometric response function for an individual TM channel.
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It can be seen from Figure 7.4 that a linear fit to the calibration data re-
sults in the following relationship between radiance and DN values for any
given channel:

DN = GL + B (7.4)
where
DN = digital number value recorded
G = slope of response function (channel gain)
L = spectral radiance measured (over the spectral bandwidth of the
channel)
B = intercept of response function (channel offset)

Note that the slope and intercept of the above function are referred to as
the gain and offset of the response function, respectively. In Figure 7.4 LMIN
is the spectral radiance corresponding to a DN response of 0 and LMAX is the
minimum radiance required to generate the maximum DN (here 255). That
is, LMAX represents the radiance at which the channel saturates. The range
from LMIN to LMAX is the dynamic range for the channel.

Figure 7.5 is a plot of the inverse of the radiometric response. Here we
have simply interchanged the axes from Figure 7.4. The equation for this
line is

I = LMAX — LMIN
255

)DN + LMIN (7.5)

Equation 7.5 can be used to convert any DN in a particular band to absolute
units of spectral radiance in that band if LMAX and LMIN are known from
the sensor calibration.

Often the LMAX and LMIN values published for a given sensor are ex-
pressed in units of MW cm ™2 sr™! win ' That is, the values are often specified
in terms of radiance per unit wavelength. To estimate the total within-band
radiance in such cases, the value obtained from Eqg. 7.5 must be multiplied by
the width of the spectral band under consideration. Hence, a precise estimate
of within-band radiance requires detailed knowledge of the spectral response
curves for each band.

Noise Removal

Image noise is any unwanted disturbance in image data that is due to limita-
tions in the sensing, signal digitization, or data recording process. The poten-
tial sources of noise range from periodic drift or malfunction of a detector, to
electronic interference between sensor components, to intermittent “hiccups”
in the data transmission and recording sequence. Noise can either degrade or
totally mask the true radiometric information content of a digital image.



504 CHAPTER 7 DIGITAL IMAGE PROCESSING

LMAX |- == o o o e

Stope — LMAX = LMIN
P 255

Spectral radiance —3=

L=

LMIN

0 255
DN = Digital number — 5=

Figure 7.5 Inverse of radiometric response function for an individual TM channel.

Hence, noise removal usually precedes anv subsequent enhancement or clas-
sification of the image data. The objective is to restore an image to as close an
approximation of the original scene as possible.

As with geometric restoration procedures, the nature of noise correction
required in any given situation depends upon whether the noise is svstematic
(periodic), random, or some combination of the two. For example, multispec-
tral scanners that sweep multiple scan lines simultaneously often produce
data containing systematic striping or banding. This stems from variations in
the response of the individual detectors used within each band. Such prob-
lems were particularly prevalent in the collection of earlv Landsat MSS data.
While the six detectors used for each band were carefully calibrated and
matched prior to launch, the radiometric response of one or more tended to
drift over time, resulting in relativelv higher or lower values along everv sixth
line in the image data. In this case valid data are present in the defective lines,
but they must be normalized with respect to their neighboring observations.

Several destriping procedures have been developed to deal with the tvpe of
problem described above. One method is to compile a set of histograms for
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a

Figure 7.6 Destriping algorithm illustration: (a) original image manifesting striping with a six-line frequency;
(b) restored image resulting from applying histogram algorithm.

the image—one for each detector involved in a given band. For MSS data this
means that for a given band one histogram is generated for scan lines 1, 7, 13,
and so on; a second is generated for lines 2, 8, 14, and so on; and so forth.
These histograms are then compared in terms of their mean and median val-
ues to identify the problem detector(s). A gray-scale adjustment factor(s) can
then be determined to adjust the histogram(s) for the problem lines to resem-
ble those for the normal data lines. This adjustment factor is applied to each
pixel in the problem lines and the others are not altered (Figure 7.6).

Another line-oriented noise problem sometimes encountered in digital
data is line drop. In this situation, a number of adjacent pixels along a line (or
an entire line) may contain spurious DNs. This problem is normally ad-
dressed by replacing the defective DNs with the average of the values for the
pixels occurring in the lines just above and below (Figure 7.7). Alternatively,
the DNs from the preceding line can simply be inserted in the defective pixels.
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Figure 7.7 Line drop correction: (a) original image containing two line drops; (b) restored image resulting from av-
eraging pixel values above and below defective line.

Random noise problems in digital data are handled quite differently than
those we have discussed to this point. This tyvpe of noise is characterized by
nonsystematic variations in gray levels from pixel to pixel called bit errors.
Such noise is often referred to as being “spikey” in character, and it causes
images to have a “salt and pepper” or “snowy” appearance.

Bit errors are handled by recognizing that noise values normally change
much more abruptly than true image values. Thus, noise can be identified by
comparing each pixel in an image with its neighbors. If the difference between
a given pixel value and its surrounding values exceeds an analyst-specified
threshold, the pixel is assumed to contain noise. The noisy pixel value can then
be replaced by the average of its neighboring values. Moving neighborhoods
or windows of 3 X 3 or 5 X 5 pixels are typically used in such procedures.
Figure 7.8 illustrates the concept of a moving window comprising a 3 X 3-pixel
neighborhood, and Figure 7.9 illustrates just one of many noise suppression
algorithms using such a neighborhood. Finally, Figure 7.10 illustrates the re-
sults of applying the algorithm included in Figure 7.9 to an actual image.
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Figure 7.8 The moving window concept: (a) projection of 3 X 3-pixel win-

dow in image being processed; (b) movement of window along a line from
pixel to pixel; (¢) movement of window from line to line.

DN, DN, DN, AVE, = (DN, + DN, + DN, + DNg)/4

AVE, = (DN, + DN, + DNg + DNg) /4

DIFF = JAVE, — AVEg]

DN, | DNy | DNg | THRESH =DIFF X WEIGHT

IF: IDNg — AVE, | or IDNg — AVEg| > THRESH
THEN: DN} = AVE, OTHERWISE DN = DNy

DN, DN, DNg

Figure 7.9 Typical noise correction algorithm employing a 3 X 3-pixel
neighborhood. Note: “WEICHT” is an analyst-specified weighting factor. The
lower the weight, the greater the number of pixels considered to be noise in
an image.

507



508 CHAPTER 7 DIGITAL IMAGE PROCESSING

Figure 7.10 Result of applying noise reduction algorithm: (a) original image data with noise-induced “salt-and-pepper”
appearance; (b) image resulting from application of algorithm shown in Figure 7.9.

7.3 IMAGE ENHANCEMENT

As previously mentioned, the goal of image enhancement is to improve the vi-
sual interpretability of an image by increasing the apparent distinction between
the features in the scene. The process of visually interpreting digitally enhanced
imagery attempts to optimize the complementary abilities of the human mind
and the computer. The mind is excellent at interpreting spatial attributes on an
image and is capable of selectively identifying obscure or subtle features. How-
ever, the eye is poor at discriminating the slight radiometric or spectral differ-
ences that may characterize such features. Computer enhancement aims to
visually amplify these slight differences to make them readily observable.

The range of possible image enhancement and display options available
to the image analyst is virtually limitless. Most enhancement techniques may
be categorized as either point or local operations. Point operations modify the
brightness value of each pixel in an image data set independently. Local oper-
ations modify the value of each pixel based on neighboring brightness values.
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Either form of enhancement can be performed on single-band (monochrome)
images or on the individual components of multi-image composites. The re-
sulting images may also be recorded or displaved in black and white or in
color. Choosing the appropriate enhancement(s) for any particular applica-
tion is an art and often a matter of personal preference.

Enhancement operations are normally applied to image data after the ap-
propriate restoration procedures have been performed. Noise removal, in par-
ticular, is an important precursor to most enhancements. Without it, the
image interpreter is left with the prospect of analyzing enhanced noise!

Below, we discuss the most commonly applied digital enhancement tech-
niques. Three techniques can be categorized as contrast manipulation, spatial
feature manipulation, or multi-image manipulation. Within these broad cate-
gories, we treat the following:

1. Contrast manipulation. Gray-level thresholding, level slicing, and
contrast stretching.

2. Spatial feature manipulation. Spatial filtering, edge enhancement,
and Fourier analysis.

3. Multi-image manipulation. Multispectral band ratioing and dif-
ferencing, principal components, canonical components, vegetation
components, intensity-hue-saturation (IHS) color space transforma-
tions, and decorrelation stretching.

7.4 CONTRAST MANIPULATION
Gray-Level Thresholding

Gray-level thresholding is used to segment an input image into two classes—
one for those pixels having values below an analyst-defined gray level and one
for those above this value. Below, we illustrate the use of thresholding to pre-
pare a binary mask for an image. Such masks are used to segment an image
into two classes so that additional processing can then be applied to each
class independently.

Shown in Figure 7.11a is a TM1 image that displays a broad range of gray
levels over both land and water. Let us assume that we wish to show the
brightness variations in this band in the water areas only. Because many of
the gray levels for land and water overlap in this band, it would be impossible
to separate these two classes using a threshold set in this band. This is not the
case in the TM4 band (Figure 7.110). The histogram of DNs for the TM4
image (Figure 7.11¢) shows that water strongly absorbs the incident energy in
this near-infrared band (low DNs), while the land areas are highly reflective
(high DNs). A threshold set at DN = 40 permits separation of these two
classes in the TM4 data. This binary classification can then be applied to the



