Differentials

In many areas of chemistry (e.g. error analysis; thermodynamics) we are
concerned with the consequences of small (and, sometimes, not so small)
changes in a number of variables and their overall effect upon a property
depending on these variables. For example, in thermodynamics, the
temperature dependence of the equilibrium constant, K, is usually
expressed in the form:

K = ¢ AG*/RT

where the change in Gibbs energy, AG® = AH® — TAS”, itself depends
upon temperature, both explicitly through the presence of 7, and
implicitly, as AH® and AS® are, in general, both temperature
dependent. However, if we assume that AH® and AS™ are, to a good
approximation, independent of temperature, then for small changes in
temperature we obtain the explicit formula relating K and T:

K — o~ (AH"~TAS®)/RT _ o—(AH"/T-AS")/R (5.1)

Quite frequently, we are interested in the effect of small changes in the
temperature on the equilibrium constant. We could, of course, use
equation (5.1) to calculate K at two different temperatures for any
reaction which satisfies the requirements given above and determine
the change in K by subtraction. However, in practice, a much more
convenient route makes use of the properties of differentials. This
chapter is concerned with exploring what effect small changes in one
or more independent variables have on the dependent variable in
expressions such as equation (5.1). We shall see that this is particu-
larly useful in determining how errors propagate through expressions
relating one property to another. However, before discussing further
the importance of differentials in a chemical context, we need to
discuss some of the background to the method of differentials.
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By the end of this chapter you should be able to:

* Understand the definition of change defined by the differential
and the concept of infinitesimal change

* Understand the difference between the differential dy represent-
ing an approximate change in the dependent variable resulting
from a small change in the independent variable, and the actual
change in the dependent variable, Ay

e (Calculate the differentials and the errors in approximating the
differential to the actual change in a dependent variable

* Define the differential of a function of more than one variable

* Use differentials to calculate relative and percentage errors in
one property deriving from those in other properties

5.1 The Effects of Incremental Change

We recall from Chapter 4 (Figure 4.1) that if Ay is the change in y that
accompanies an incremental change Ax in x, then:

Ay = f(x + Ax) — fix) (5.2)
For example, if we consider the function y=f{x)= x>, the incremental
change in y that accompanies a change in Ax in x is given as:

Ay = (x+Ax)* —x°
which, on expanding, yields:

Ay = 3x*Ax + 3x(Ax)? + (Ax)?

For sufficiently small values of Ax, the power terms in Ax decrease very
rapidly in magnitude. Thus, for example, if Ax=10"2, then Ax*=10"*
and Ax3>=10"°. This may be expressed algebraically as:

(Ax)} << (Ax)* << Ax

and, if we neglect Ax raised to power 2 or higher, we can approximate the
expression for Ay by:

Ay = 3x*Ax
The appearance of 3x? in this expression is no accident. If we rewrite the
expression for Ay as:

Ay = (ﬂx + AA’?C _ﬂx)) x Ax (5.3)
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then it is clear that, for very small Ax, the term in parentheses is an
approximation for the derivative of f{x), which, for the present choice of

function, is 3x%. We can therefore rewrite the general result in the form
Ay =f'(x)Ax.

5.1.1 The Concept of Infinitesimal Change

An infinitesimal change in x, known as the differentiai dx, gives rise to a
corresponding change in y that is well represented by the differential dy:

dy = f'(x)dx (5.4)

We can see from the defining equation (5.4), and from Figure 5.1, that
J'(x) is the slope of the tangent to the curve y = f{x) at the point P. We can
also see that dy represents the change in the dependent variable y that
results from a change, Ax, in x, as we move along the tangent to the curve
at point P. It is important to stress that, although dy is not the same as Ay,
for small enough changes in x it is reasonable to assume that the two are
equivalent. Consequently, the difference between Ay and dy is simply the
error in approximating Ay to dy. However, the same is not true of the
differential dx, because, at all times, Ax=dx.

@y
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The concept of an infinitesimal
change is not dly basec
mathematically: we interpret such
cl ges as being very, very s Il
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Figure 5.1 (a) The differential
dy, for a change Axin x, for the
function y= (x). The actual
changeinyisgivenby Ay=dy+e,
where ¢ is the difference between
Ayanddy. (b) As Ax — 0, the error
& gets proportionately smaller and
Ay becomes increasingly well
approximated by dy.
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The Origins of the Infinitesimal

The concept of the infinitesimal first arose in 1630 in Fermat’s “Method
of Finding Maxima & Minima”. This work marks the beginning of
differential calculus. The ideas introduced by Fermat lead to speculation
about how we can evaluate “‘just” before or “just” after. In the 17th
century, the infinitesimal was known as the “disappearing™ and tangents
as “touchings”. Leibniz thought them “useless fictions”, but they were
subsequently recognized as being capable of producing extraordinary
results. The philosopher Berkeley attacked differentials as “*neither finite
quantities, nor quantities infinitely small, not yet nothing. May we not call
them the ghosts of departed quantities”. Today, Borowski and Borwein in
their Dictionary of Mathematics' regard an infinitesimal as “a
paradoxical conception - - - largely abandoned in favour of the epsilon-
delta treatment of limits, - - - but made their reappearance in the formulation
of hyper-real numbers™!

5.1.2 Differentials in Action

The use of the differential is important in the physical sciences because
fundamental theorems are sometimes expressed in differential form. In
chemistry, for example. the laws of thermodynamics are nearly always
expressed in terms of differentials. For example, it is common to work
with the following formula as a means of expressing how the molar
specific heat capacity at constant pressure, C,, of a substance varies with
temperature, T:

C, = g(T) whete g(T) = o+ BT +yT* (5.5)

The optimum values of the parameters o, f, y are found by fitting
measured values of C, over a range of temperatures to equation (35.5).
Thus, if we know the value of C, at one temperature, we can evaluate it at
another temperature, and thereby determine the effect of that incremental
(or decremental) change in temperature, AT, upon C,, given by AC,,.
Alternatively, we can use the properties of differentials given in equation
(5.4) to evaluate the differential of C,, dC,, in terms of the differential
dT as:

dC, = g(T)dT = (B + 2yT) xdT (5.6)

For small enough changes in 7, it is reasonable to make the
approximatijon that the differential dC, is equivalent to the actual change
AC,, and we can use the expression above as a simple one-step route to
evaluating the effect of small changes in T upon C,.
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B Worked Problem 5.1 ‘

Q (a) Find dy and Ay for the function y=f{x), where f{x)=x>,
given that x =4 and Ax=—0.1. (b) Give the approximate and exact
values of y at the point x =3.9. (c) Calculate the percentage error in
your approximate value from (b).

A (a) f'(x)=3x>=f'(4)=48. It follows that dy=f'(d)Ax=
48x —0.1=—4.8. The actual change in y is given by Ay=
£(3.9)—1(4) = —4.681.
(b) The actual and approximate values of y at x=13.9 are 59.319 and
59.2, respectively.
(c) The percentage error is given by

59.319 — 59.2

59319 x 100 = 0.201%.

Sometimes, Ay will be smaller than dy, as in Worked Problem 5.1, but
sometimes it can be larger: examples include functions whose slope
decreases with increasing values of the independent variable, such as y =
fix)=In x and y = {/x where n> 1.

Problem 5.1

For the function y = x'3, find the values of the differential, dy, and
the actual change, Ay, when the value of x is increased (a) from 27 to
30 and (b) from 27 to 27.1. Give the percentage error in each case in
approximating Ay by dy.

Problem 5.22

The variation of the molar heat capacity at constant pressure
for CH4(g) is described by equation (5.5), with a=14.143 J K™
mol ™!, f=75.495x107>J K ?mol ' and y= —179.64x 107’ J K*
mol ™.

(a) Use equation (5.5) to calculate the value of C, at T= 500 K and
at T=650 K.

(b) Use equation (5.6) to evaluate dC, for an incremental change in 7,
dT,of 150K at T= 500K. Hence, estimate the value of C,at T'= 650 K.
(c) Compare the value for C, obtained in (b) with the value
calculated directly from equation (5.5).
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5.2 The Differential of a Function of Two or More
Variables

We have seen in equation (5.4) that the differentials dy and dx are related
through the derivative dy =f’(x)dx, which we can rewrite as:

dy
dx
We can now extend this principle to define differentials for functions of
two or more variables. If z=f{(x, t) is a general function of two
independent variables x and ¢, then there are two contributions to

the differential dz: one from the change in x and the other from the
change in #:

dy =——dx (5.7)

Oz 0z
dZ = adx -+ adt (58)

This result extends readily to functions of # independent variables x,, x5,
X35y X Thus, if z=f(x1, X2, xa,..., %), the differential of z is built up
from contributions associated with each independent variable, as a
straightforward generalization of the result for two independent
variables:
0z Oz 0z ”. Oz
dz=_—dx;+—dxy + ...+ —dx, = » —dx; 5.9
0x, l+6x2 2+ ox, gl:ﬁx,- ! (59)
Examples of functions of two or more variables expressed in differential
form are common in thermodynamics. For example, the equation:

dG =dH - TdS

relates the consequence of very small changes in the enthalpy, H, and
entropy, S, on the Gibbs energy, G (here, G is the dependent variable, and
H and S are the independent variables). As we shall see below, the use of
differentials helps us to study such effects, if the changes are small.
However, for large changes in the defining variables we have to evaluate
the overall change in the property with the aid of integral calculus, which
we meet in Chapters 6 and 7.

Q Given the function z=x?y + y?x—2x + 3, express dz in terms
of dx and dy.
Oz 0

Z 2
A d —_dx+_d = (2xy + -2 dx+ + 2x dy.
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If z=xy/2, express dz in terms of the differentials of the three
independent variables.

(a) For a non-reacting system, the internal energy, U = f{(V, T),is a
function of both ¥ and T. By analogy with equation (5.8), write
down an expression for the differential dU in terms of the
differentials dV and dT.

(b) In thermodynamics, the expression derived in part (a) is
commonly written as:>

dU = nzdV + CydT

where nand Cy are the internal pressure and specific heat capacity
at constant volume. (i) Use your answer to part (a) to find
expressions for the internal pressure, 77, and Cy. (ii) Assuming that
AU = dU, calculate the change in U that results when a sample of
ammonia is heated from 300 K to 302 K and compressed through
100 cm?, given that Cyy=27.32 JK ' and 77 = 840 Jm > at 300 K.
Comment on the relative magnitudes of the two contributions to dU.

5.3 The Propagation of Errors

In many chemical situations we deduce a value for a property of interest
by placing experimentally measured values in the right-hand side of an
appropriate formula. For example, if we use the ideal gas equation:

RT
to calculate the pressure, p, from a knowledge of volume, temperature,
amount of substance and the gas constant, R, we might wish to know how
the errors in the measured property values (n, T, V) propagate through to
errors in the calculation of the pressure, p. If, for simplicity, we assume
that n and R are fixed (given) constants, how can we estimate the error,
dp, in p that results from errors, d7 and dV, in the measurement of T and
V, respectively? The answer lies in using equation (5.8) to obtain dp in
terms of d¥ and dT:
oP oP

dP =dT + —dV (5.11)
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If dV and AT are the estimated errors in the measured values of V and T,
then we need to know the two partial derivatives, so that we can estimate
the error dp in P. However, in this and other instances the differentials
themselves do not provide realistic measure of the errors. For example, an
absolute error of 10 cm in a measured length is insignificant if we are
talking about the shortest distance from Berlin to Moscow, but highly
significant if a furniture van driver has enough clearance to pass under a
low bridge in a country lane. For this reason, the re ‘ -, or the
closely related pe e error, give much more useful measures of error
than absolute errors. Thus, in the context of the ideal gas example, the
two kinds of error are defined as follows:

. d
e The relative error in p is given by L

. d
o The percentage error in p is given by b 9 100.

Q For a right-angled triangle with adjacent sides a, » and
hypotenuse ¢, we have the relation ¢ = (a® + bz)l/ 2. Find the relative
and percentage errors in c whena=3 cm, b=4 cm, da=0.1 cm and
db=0.1 cm.

A Using the chain rule, with the substitution u = a®+ b%, we
initially define the partial derivatives of u with respect to a and b,
respectively:

Ou Ou

Differentiating ¢ with respect to the single variable, u, gives:

de 1 p

du 2

Finally, we use the chain rule to obtain the partial derivatives of ¢
with respect to a and b:

ac_au dC_ | -1/2 _ 1 2N—1/2 _ 2 2\—1/2
5= 305 q, = 4% 5u _2ax5(a2+b) = a(d® + b°)

Oc Ou_dc 1 i 12 ov-12 102, 12v-1/2
ab—-abxdu—.2bx2u —2bx2(a +b°)"° = b(a” + b%)
The differential dc is then given by:

Oc Oc

_— Cap — 2y —1/2 2v—1/2
de = =—da+=-db a(@ + b*)"?da + b(d® + b*)"/*db
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and so:
de =3(9+16) /2% 0.1 +4(9 + 16)™Y2 x 0.1 = 0.06 + 0.08
=0.14 cm

Thus the relative error
d .
de 014 _ o008
c 5

and the percentage error
d
fx 100 = 2.8%.

Problem 5.5

The volume, V, of an orthorhombic unit cell with edges of length a, b
and ¢ and all internal angles between vertices of 90° is given by
V=abc.

(a) Find the approximate change in volume, dV, when a, b and ¢
change by da, db and dc, respectively.

(b) Give an expression for the percentage error in V, in terms of the
percentage errors in a, b and c.

Problem 5.6

Calcium carbonate crystallizes in several different forms. In
aragonite? there are four formula units in an orthorhombic primitive
unit cell with dimensions a =4.94x10"%m, 5=7.94%x10""m
and ¢ = 5.72x 107" m.

(a) Calculate the mass, M, of a unit cell in kg, using molar atomic
masses as follows:

Ca=40.08 g mol™!; C=12.01 g mol™!; 0=16.00 g mol™! (Na=
6.022 x 102 mol™).

(b) Calculate the volume, ¥, of the unit cell, using the values of a, b
and c above, and hence determine the density, p, of aragonite, using
the formula p= M/V.

(c) Since the values of the unit cell parameters have been given to two
decimal places, the error in their values is +0.005x 107°m
Ignoring the effects of the analogous errors associated with the
masses of the atoms, give the relative and percentage errors in the
volume of the unit cell.
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(d) Find the greatest and smallest estimated unit cell volumes, and
give the corresponding greatest and smallest estimates of the density
(again ignoring errors associated with the relative atomic masses).
Using the value of the density calculated in part (b), find the
percentage errors and compare your answers to part (c).

Differentials provide a means to quantify the effect of small changes
in one or more variables upon a property that depends on those
variables. The key points discussed include:

1. An illustration of the use of differentials in the mathematical
and chemical context: in particular, many of the fundamental laws
of thermodynamics are expressed in terms of differentials.

2. A review of the concept of infinitesimal change, and its relevance
in chemistry, in view of the links to the concept of reversability in
thermodynamics.

3. The distinction between approximate and exact changes in the
dependent variable, resulting from changes in one or more
independent variables.

4. The use of differentials in assessing how errors in one or more
properties of a system propagate through to errors in a property that
is related to those properties.

5. How differentials associated with each variable in a function of
two or more variables contribute to the differential associated with
the dependent variable.

1. E.J. Borowski and J. M. Borwein, Collins Dictionary of Mathematics,
Harper Collins, New York, 1989, p. 294.

2. The data for Problem 5.2 were taken from R. A. Alberty and R. J.
Silbey, Physical Chemistry, Wiley, New York, 1992, p. 52.

3. See, for example, P. W. Atkins, Physical Chemistry,5th edn., Oxford
University Press, Oxford, 1994, p. 98.

4. See H. D. Megaw, Crystal Structures: A Working Approach, Saunders,
Philadelphia, 1973, p. 247.



Integration

In the earlier chapters on arithmetic, algebra and functions, we saw
examples of actions for which there was another action available to
reverse the first action: such a reversing action is called an inverse. Some
examples of mathematical actions and their inverses are listed below:

Start — Action —+ Result — Inverse action — Result

2 Add 3 5 Subtract 3 2

> Subtract 2x ¥ - 2x Add 2x x2

(x=1) Multiply by x> (x — 1)x*  Divide by x® (x—1)

X Logarithm In x Exponential exp(In x) X

x> — x2+1  Differentiate 3x? - 2x  Integrate x® - x2%1C

The final example listed above proposes that the inverse to the
operation of differentiation is known as { . The field of
mathematics which deals with integration is known as integral calculus
and, in common with differential calculus, plays a vital role in
underpinning many key areas of chemistry.

In this chapter we define and discuss integration from two perspec-
tives: one in which integration acts as the inverse, or reverse, of
differentiation and the other in which integration provides a means
to finding the area under a curve. By the end of the chapter you
should be able to:

e Understand the concept of integration as the reverse of
differentiation

* Find the indefinite integral of a number of simple functions from
first principles
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* Integrate standard functions by rule

* Understand why the results of integration are not unique, unless
constraints are placed on the integrated function

* Apply the integration by parts and substitution methods to
integrate more complicated functions

* Understand the concept of the definite integral and be able
evaluate a wide range of definite integrals using the methods
discussed above

6.1 Reversing the Effects of Differentiation

Integration is used frequently in kinetics, thermodynamics, quantum
mechanics and other areas of chemistry, where we build models based on
changing quantities. Thus, if we know the rate of change of a property,
y (the dependent variable), with respect to x (the independent variable),
in the form of dy/dx, then integral calculus provides us with the tools
for obtaining the form of y as a function of x. We see that integration
reverses the effects of differentiation.

Consider, for example, a car undergoing a journey with an initial speed
u and moving with a constant acceleration a. The speed, v, and distance, s,
travelled after time ¢ are given by:

1
v=u+al‘ands=ut—|—§at2 (6.1)

The rate of change of distance with time yields the speed, v at time, ¢

ds

—=utat=v 6.2

g=ut (6.2)
However, the reverse process, in going from speed to distance, involves
integration of the rate equation (6.2). In chemistry, the concept of rate is

central to an understanding of chemical kinetics, in which we have to deal
with analogous rate equations which typically involve the rate of change of
concentration, rather than the rate of change of distance. For example,ina
first-order chemical reaction, where the rate of loss of the reactant is
proportional to the concentration of the reactant, the rate equation takes

the form:
d[A] B
BT k[A] (6.3)

where k, the constant of proportionality, is defined as the rate constant.
The concentration of the reactant at a given time is found by integrating
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the rate equation (6.3), and the relationship between the differentiated
and integrated forms of the rate equation is given schematically by:

dia] _
~Tar Al
differentiate | | integrate
[A] = [Ale™

where [A]y is the initial concentration of reactant A. We will discuss the
integration methods required for obtaining the solution of this type
of problem in some detail when we discuss differential equations in
Chapter 7.

6.2 The Definite Integral

6.2.1 Finding the Area Under a Curve: The Origin
of Integral Calculus

The concept of integration emerges when we attempt to determine the
area bounded by a plot of a function flx) (where f{x)>0) and the
x axis, within an interval x=a to x =5 (written alternatively as [a,}]).
Clearly, if the plot gives a straight line, such as for the functions y =4
or y=2x+3, shown in Figure 6.1, then measuring the area is straight-
forward, as the two areas are rectangular and trapezoidal in shape,
respectively. However, for areas bounded by a curve and three straight
lines, the problem is more difficult. The three situations are shown in
Figure 6.1.

The solution to the general problem of determining the area under a
curve arises directly from differential calculus, the concept of limits, and
the infinitesimal. Seventeenth century mathematicians began to think of
the area, not as a whole, but as made up of a series of rectangles, of width
Ax, placed side by side, and which, together, cover the interval [a,b] (see
Figure 6.2).

With this construction, there are two ways of estimating the area under
the curve. First, the interval [a,b] is divided into n subintervals of width
Ax=(b — a)/n. The area of each rectangle is obtained by multiplying its
width, Ax, by its height on the left vertical side, as shown in Figure 6.3a.

In this case, the total area is given by:

Ai(n) = fla)Ax + fla+ Ax)Ax + fla + 2Ax)Ax + ...

vee+ fla+ [n— 1JAx)AX = Ef(a + kAx)Ax (6.4)
k=0

v I

iaes, multi o)
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Figure 6.1 Plots of the three
functions(a) y = 4, (b)y =2x+ 3
and (c) y = 16xe2¥3, Evaluat-
ing the area bound by the straight
line functions and the x-axis in the
interval x = ato x = bin (a) and
(b) is straightforward but, in (c),
where the plot is a curve, we
need to make use of the definite
integral

Figure 6.2 Approximating the
area under a curve by a contig-
uous sequence of rectangles
of width Ax

(@ Y o9
8
U y=fx)=4
6
5
4
3
2
1
0
a b X
(b) yg
8
7
6
5
4
3
2
1
0
a b x
© ¥yo ¥ =flx) = 16xe 23
8 o
7 \
6
5
4
3
2
I
0
a b x
A
y=£x)
. - __7/-—
/7/ \<<<=?77//
a Ax b ”




