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positive. The fact that the value of f'(x)=4(1 + x) is zero at x=—1
indicates that the slope of the function is zero at this point. Such a point is
identified as a stationary point, which, in this case, corresponds to a
minimum (as we can see from the plot). We shall see later in Section 4.4
how to prove whether a stationary point is a maximum or minimum
(or point of inflection) without needing to plot the function. Similarly, the
form of the second derivative, f”(x)=12(1 + x)?, gives us the slope, or
rate of change, of the first derivative and by extension the slope of the
slope of the original function f{x). The form of the second derivative
provides us with the means to characterize the nature of any stationary
points in the original function, while that of the first derivative tells us if
and where the stationary points exist (see Section 4.4).

Problem 4.8

Find the second and third derivatives of (a) y=1/x and (b) y=
N sin ax (N, a are constants).

Figure 4.4 Plots of the function
f(x)=(1+x)* and its first two
derivatives
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The key eigenvalue equation in
chemistry is the Schrodinger
equation, Hy = Ey. The solution
of this equation for a particular
system (such as an electron
bound by the field of a nucleus)
yields so called wavefunctions, i,
that completely describe the
system of interest and from which
any property of the system can
be extracted.

4.3.1 Operators Revisited: an Introduction
to the Eigenvalue Problem

In Section 4.2.2 we defined the act of differentiation as an operation
in which the operator D = d/dx acts on some function f{(x). Similarly,

we can express the act of differentiating twice in terms of the operator
D? = d?/dx>.

Worked Problem 4.4

Q For the function f{x) = cos kx, find A(f(x)), where A = d?/dx?.

A For fix) =cos kx, d/dx(f(x)) = —k sinkx and
d?/dx?(f(x)) = —k?* coskx and so A coskx = —k?* coskx.

The Eigenvalue Problem

A problem common to many areas in physical chemistry is the following:
given an operator, /f, find a function ¢(x), and a constant a, such that A
acting on ¢(x) yields a constant multiplied by ¢(x). In other words, the
result of operating on the function ¢(x) by 4 is simply to return ¢(x),
multiplied by a constant factor, a. This type of problem is known as an
eigenvalue problem, and the key features may be described schematically
as follows:

The eigenfunction of the operator A

Ad(x) = ap(x)

The cigenvalue of the operator A

The solution to Worked Problem 4.4 is an example of an eigenvalue
problem.

Worked Problem 4.4 revisited
For f{x) =cos kx and 4 = d? Jdx?:
A coskx = —k*coskx

In this example, we see that by differentiating the function
f(x)=cos kx twice, we regenerate our original function multiplied
by a constant which, in this case, is —k>. Hence, cos kx is an eigen-
function of 4, and its eigenvalue is —>.
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Problem 4.9

Perform the following operations:
(2) For fix)=x>, find, A(f(x)), where A = d?/dx?.
(b) For f{x) =sin kx, find A(f(x)), where 4 = d?/dx*.
() For f{x)=sin kx + cos kx, find A(f(x)), where 4 = d?/dx’.
(d) For fix)=e™, find A(f(x)), where 4 = d/dx.
Which of (a)-(d) would be classified as eigenvalue problems? What
is the eigenfunction and what is the eigenvalue in each case?

Problem 4.10

Show that y=f(x)=¢™ is an eigenfunction of the operator

- 2
A= ad;f - 22%(— — 3, and give its eigenvalue. For what values of m

does A annihilate f{x)?

Annihilation of a function
implies that the null function is
produced after application of an
operator.

Problem 4.11

The lowest energy solution of the Schrodinger equation for a particle
(mass ) moving in a constant potential energy (¥), and in a one-
dimensional box of length L, takes the form:

|//=\/%sin%

If we take V as the zero of energy, then i satisfies the Schrodinger
equation:

n dy .

8n2mdx? v

Find an expression for the total energy E in terms of L and the
constants 7, m and k. Hint: you may have noticed that the expression
above is an example of an eigenvalue problem where the
eigenfunction is { = % sinZ* and the eigenvalue is E. In this case,
the total energy E is determined by operating on the function i using
the operator —8—:;';(—;’;2,

In quantum mechanics, the

operator i 1s called the
. 8rZmdx?

Hamiltonian and is given the

symbol H.
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Figure4.5 The radial probability
density function for the 1s atomic
orbital of the hydrogen atom

4.4 Maxima, Minima and Points of Inflection

We often encounter situations in the physical sciences where we need to
establish at which value(s) of an independent variable a maximum or
minimum value in the function occurs. For example:

The probability of finding the eleciron in the ground state of the
hydrogen atom between radii r and r + dr is given by D(r)dr, where
D(r) is the radial probability density function shown in Figure 4.5.
The most probable distance of the electron from the nucleus is found
by locating the maximum in D(r) (see Problem 4.12 below). It should
come as no surprise to discover that this maximum occurs at the value
r = ay, the Bohr radius.
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When we attempt to fit a theoretical curve to a set of experimental
data points, we typically apply a least-squares fitting technique which
seeks to minimize the deviation of the fit from the experimental data.
In this case, differential calculus is used to find the minimum in the
function that describes the deviation between fit and experiment.

4.4.1 Finding and Defining Stationary Points

Consider the function y =f{x) in Figure 4.6. As we saw in our discussion
of Worked Problem 4.3, values of x for which f/'(x)=0 are called
stationary points. A stationary point may be:

A maximum (point E, a turning point) or a minimum (point C,
a turning point). The value of dy/dx changes sign on passing through
these points.
A point of inflection: the tangent cuts the curve at this point (points
A, B and D).
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Turning Points (Maxima and Minima)

Points E and C are called ing |  because in passing through E and
C the value of dy/dx changes sign. The existence and nature of stationary
points, which are also turning points, may be identified through the first
and second derivatives of the function. If we consider point C, we see that
as we pass through this point the gradient becomes less negative as we
approach C, passes through zero at point C, and then becomes positive.
Clearly the rate of change of the gradient is positive at point C (because
the gradient changes from negative to positive), which suggests that the
function has a minimum at this point:

A m exists if f'(x) = 0 and 1@ (x) > 0.

Similarly, on passing through point E, the gradient becomes less positive,
passes through zero at E and then becomes negative. In this case, the rate
of change in the gradient is negative and we can identify point E as a
maximum:

A um exists if f'(x) = 0 and @ (x) < 0.

In general, y=f{x) will display a number of turning points within the
domain of the function.

Turning points corresponding to maxima and minima may be classified
as either:

e Ag or minimum which has a value greater or smaller
than all other points within the domain of the function.
e A local or minimum which has a value greater or smaller

than all neighbouring points.

Figure 4.6 A plot of the function
y=Ff(x). Points A, C and E are

all stationary points, for which
f/(x) = 0. while points C and E are
also turning points (minimum

and maximum, respectively).
Points A, B and D are all points of
inflection, but B and D are
neither stationary points nor turn-
ing points. Note that at the points
of inflection, the tangents (dashed
lines) cut the curve
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Points of Inflection

Ata (A, B, D), which may or may not be a stationary
point:

* The tangent cuts the curve.
¢ The slope of the tangent does not change sign.

Note that A is both a point of inflection and a stationary point, but while
B and D are both points of inflection, they are not stationary points
because f'(x) # 0.

Points of inflection occur when the gradient is a maximum or
minimum. This requires that £®(x) =0, but this in itself is not sufficient
to characterize a point of inflection. We achieve this through the first non-
zero higher derivative.

If £'(x)=0, fP(x)=0 but fP(x) # 0, then we have a point of
inflection which is also a stationary point (such as point A). However, if
F'(x) # 0, fP(x)=0and f®(x) # 0, then we have a point of inflection
which is not a stationary point (B, D). The rules for identifying the
location and nature of stationary points, turning points and points of
inflection are summarized in Table 4.2.

Table 4.2 The location and nature of turning points, stationary points and points of
inflection are given by the first, second and, where appropriate, third and fourth
derivatives

£1(%) Sy O F90%)

Minimum 0 >0 - -
Maximum 0 <0 - -
Inflection point (stationary) 0 0 #0 -
Inflection point (not stationary) #0 0 #0 -
Turning points where f@(x)=0 0 0 0 £0

Interestingly, in the last row of Table 4.2 we see that a turning point may
exist for which £ ®(x) = 0. In such cases, f®(x) =0, and the nature of the
turning point is determined by the sign of the fourth derivative.
An example of a function for which this latter condition applies is
y=flx)=(x~ 1)*. If there is any doubt over the nature of a stationary
point, especially if the second derivative vanishes, it is always helpful to
sketch the function!



Differentiation 105

Q Consider the function y =f{x), where f{x) = x* — x*/9.

(a) Plot the function for selected values of x in the interval
—-3.5= x=<10.

(b) Identify possible values of x corresponding to turning points
and points of inflection.

(c) Derive expressions for the first and second derivatives of the
function.

(d) Identify the nature of the turning points (e.g. maximum,
minimum, global, local).

(e) Verify that there is a point of inflection where f'(x)#0,
FP(x)=0 and f®(x) £0.

A (a) See Figure 4.7.
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(b) By inspection, we can identify turning points at x=0 and in
the vicinity of x=6; there is no turning point corresponding to a
point of inflection.

© F'(x)=2x - x}3; fP(x) =2 — 2x/3.

(d) f'(x) = x(2 — x) 0 at x=0 (local minimum; f@(x) > 0)
and x=6 (local max1mum (%) < 0).

€) F'(¥)=2x—x*3 # 0 when x=3; f@(x) =2 — 2x/3 =0 when
x=3; f®(x)=-2/3 # 0 when x=3, corresponding to a point of
inflection.

Figure 4.7 A plot of the function
y=Ff(x)=x-x*f9for —35 =x=10



