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3.1.2 Limiting Behaviour for Increasingly Large Positive
or Negative Values of the Independent Variable

We now turn to examining the ! g viour of functions as the
independent variable takes on increasingly large positive or negative
values. As an illustration, consider the function shown in Figure 3.2. We
see from the form of f{x) that the value of y approaches zero as x becomes
increasingly large in both positive and negative senses: the line y=01is an

:. In the former case the values of y are increasingly small

Figure 3.2 A plot of the function
Sx)=1/(1-x)

Figure 3.3 A plot of the function
fix)=tan x
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Figure 3.4 A plot of the function
fx) = cos(2x)

negative numbers and in the latter they are increasingly small positive
numbers. The limiting values of f{x) are therefore zero in both cases.

Periodic functions such as sin x or cos x have no asymptotes (no single
limiting value), because their values oscillate between two limits as the
independent variable increases in a positive or negative sense. For
example, the value of the function f{x)=cos(2x) oscillates between + 1
and -1 as x — oo (see Figure 3.4).

y

\AMAS

Find the limiting values for (a) x%¢ ™ and (b) cos(2x)e ™™ as x — co.

3.1.3 Limiting Behaviour for Increasingly Small Values
of the Independent Variabie

Frequently, the context of a particular problem requires us to consider
the limiting behaviour of a function as the value of the independent
variable approaches zero. For example, consider the physical measure-
ment of heat capacity at absolute zero. Since it is impossible to achieve
absolute zero in the laboratory, a natural way to approach the problem
would be to obtain measurements of the property at increasingly lower
temperatures. If, as the temperature is reduced, the corresponding
measurements approach some value m, then it may be assumed that the
measurement of the property (in this case, heat capacity) at absolute zero
is also m, so long as the specific heat function is continuous in the region
of study. We say in this case that the limiting value of the heat capacity,
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as the temperature approaches absolute zero, is m. As we shall see in
Section 3.2, the notation we use to describe this behaviour is:

lim Cy/(T) = m 3.1)

where, in this case, m =0 because the limiting value of the heat capacity as
T — 0 K is zero. It is also important to note that it is only possible to
approach absolute zero from positive values of T thus, in this situation,
the “right” limit, usually written as lim Cy(T) = m, is the only one of
physical significance. =0

Find the limiting values for (a) x?¢ ™ and (b) cos(2x)e™ as x — 0.

3.2 Defining the Limiting Process

For a function of a single variable x, symbolized, as usual, by y = f(x), we
are interested in the value of f{x) as x approaches a particular value, a, but
never takes the value a. Points where the function is not defined, as seen,
for example, at x =1 in Figure 3.2, are excluded from the domain of the
function; at other points, the function is continuous.

Limits play an important role in probing the behaviour of a function
at any point in its domain, and the notation we use to describe this
process is:

lim f(x) =m (3.2)
X—a
Note: in this symbolism, the suffix to the symbol lim indicates that,
although x approaches q, it never actually takes the value a. For the limit
to exist, the same (finite) result must be obtained whether we approach a
from smaller or larger values of x. Furthermore, if m=f{a), then the
function is said to be continuous at x =a.

3.2.1 Finding the Limit Intuitively
Consider the plot of the function:

x*—-9

y = fix), where fix) = p—

(3.3)

shown in Figure 3.1. It is evident that f{x) is continuous (unbroken) for all
values of x except x=3. Since the denominator and numerator of
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the function are both zero at x=3, we see that the function is
indeterminate at this value of x; however, as seen in Table 3.1, the ratio
of the numerator and denominator seems to be approaching the value
y=6as x — 3 from smaller or larger values.

Table 3.1 Values of f(x) = (X*—9)/(x—3) in the vicinity of x=3

X x2-9 x—3 (x* = 9 x-3)
4 7 1 7

35 3.25 05 6.5

3.1 0.61 0.1 6.1

3.01 0.0601 0.01 6.01

3 0 0 indeterminate
299 —0.0599 -0.01 5.99

29 -0.59 -01 59

25 —-2.75 -05 55

2 -5 -1 5

Taking even smaller increments either side of 3, say x=3 4 0.0001, we
find that £{3.0001) = 6.0001 and f{2.9999) = 5.9999. These results suggest
that for smaller and smaller increments in x, either side of x=3, the
values of the function become closer and closer to 6. Thus we say that, in
the limit as x — 3, m takes the value 6:

lim =6 (3.4)

3.2.2 An Algebraic Method for Evaluating Limits

In practice, it is often easiest when evaluating limits to write x=a + 9,
and consider what happens as 6 — 0, but never takes the value zero. This
procedure allows us to let x become as close as we like to the value a,
without it taking the value x =a.

xX—9
x—3
A By substituting x=3+6 in the expression for f(x), and
expanding the square term in the numerator, we obtain:
-9 (3+6)2-9

e B REFYsp

Q Evaluate lirr§ [fix), where f{x) =
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Sl s =
65 |
_T_G

9+65+62—9 66 + &° 1

where, in the last step, é can be cancelled in every term of the
numerator and denominator as its value is never zero. Thus we
obtain the expected result that f{x) approaches the limiting value
of 6 as x tends to the value 3, irrespective of the sign of §. In this
situation, » in the definition of the limit has the value 6.

For each of the following functions, f{x), identify any points of
discontinuity (those values of x where the function is of indetermi-
nate value) and use the method described in Worked Problem 3.1,
where appropriate, to find the limiting values of the following
functions at your suggested points of discontinuity.
2 -4 —
@ 0 =255 B0 =2y (@10 = 2

X

X

2
(d)f(x)=3x2—;—1.

3.2.3 Evaluating Limits for Functions whose Values
become Indeterminate

Whenever the value of a function becomes indeterminate for particular
limiting values in the independent variable (for example, division by zero
or expressions such as cofoo or co — c0), we need to adopt alternative
strategies in determining the limiting behaviour. Such situations arise
quite commonly in chemistry, especially when we are interested in
evaluating some quantity as the independent variable takes on increas-
ingly large or small values. Good examples occur in dealing with
mathematical expressions arising in:

* Manipulating the solutions of rate equations in kinetics.
¢ Determining high- or low-temperature limits of thermodynamic
properties.



84

Maths for Chemists

Worked Problem 3.2

Q Find lim 2 +4_

xmo 2 x4 ]
A Both the numerator and denominator tend to infinity as x — oo,
but their ratio remains finite. There are two ways of handling this
situation;

First, we note that as x becomes very large, 2% +4is increasingly
well approximated by 2x%, and x>—x+1 by x? as, in both
expressions, the highest power of x dominates as x becomes
indefinitely large. Thus, as x increases without limit, we find:

2 2
m 24 im 2 m2=2
xooxt —x+1 xoo x X—200
Second, we could divide the numerator and denominator by the
highest power of x, before taking the limit:

g 2EHA e 244/¢
x—eox2 — x4 1 xowl—1/x+1/x2 "

and, again, we see that as x increases without limit, the ratio of
numerator to denominator tends to 2.

Problem 3.4

Evaluate the following limits:

3 5 . 3x ) X .
(@) im =3 ®Olm—2 ©lm—7 @l
[

The limiting behaviour of functions for increasingly small values of the
independent variable can be found in a similar way by applying exactly
the same principles, except that, now, the lowest power of x provides the
largest term in both numerator and denominator.

Worked Problem 3.3

Q Find lim 2%,

=0 x3 — ]
A This time, for increasingly small values of x, the numerator and
denominator are dominated by x and —1, respectively. Conse-
quently, the ratio of the numerator to denominator tends to %,

which leads to a limiting value of zero: lin?) %5 =0.
p




Limits

85

Problem 3.5

Evalunate the limit llm(ln x — In2x).
Hint: remember that Ina — Inb = ln% (see Chapter 2).

Problem 3.6

The Einstein model for the molar heat capacity of a solid at constant
volume, Cy, yields the formula:

eax/2
Cy = 3R(ax) { 1}

where a =2 and x = 1. Find the limiting value of Cpas T — 0 K,

remembering that x =1

Note: we shall revisit this problem in Chapter 1 of Volume 2,
where we explore the limiting behaviour for high values of T
(Problem 1.10, Volume 2).

Problem 3.7

The radial function for the 3s atomic orbital of the hydrogen atom

has the form:
2
Ry = (L) e/
ap

where N is a constant. Find the values of R as: (a) r — 0; (b) r — oo,
Hint: see your answers to Problems 3.1(a) and 3.2(a).

3.2.4 The Limiting Form of Functions of More Than
One Variable

Sometimes, we are interested in how the form of a function might change
for limiting values in one or more variables. For example, consider the
catalytic conversion of sucrose to fructose and glucose by the enzyme
invertase (S-fructofuranidase). The rate of formation of product P for this
reaction varies in a rather complicated way with the sucrose concen-
tration [S]. At low [S], the reaction is first order in [S], and at high [S] it is
zero order. The behaviour observed in Figure 3.5 is established by
investigating the form of the function describing the rate of reaction for
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the two limiting cases where [S] approaches either very large or very small
values, rather than the absolute value of the function as in the examples
discussed above. This is a consequence in this case of the rate equation
being a function of more than one variable.

High [S]: zero order

= d[P)/dt
T

Rate

Figure 3.5 The variation in rate
of enzymolysis for low and high
sucrose concentration, [S], | ) | . | ) | ) | . |
where the reaction is first and [S]

zero order, respectively

Low [S]; first order

Q The rate of formation of the product P in the catalytic
conversion of sucrose to fructose and glucose by the enzyme
invertase is given by:

d[P] _ ky[Eo[S]

where k, is a rate constant, Ky, is known as the Michaelis constant, |
[Elp is the initial enzyme concentration and [S] is the sucrose |
concentration. Find the order of reaction with respect to [S] when
(a) [S] >> Kym and (b) [S] << K.
A (a) For [S}] > Ky. Kpm+[S] = [S] and so %1:]:;_2[15%%
k[ ElofS] =

[S]
(b) For [S] << Ky, Km + [S]1= Kym and
first order in [S].

= k,|E]y: zero order in [S]. ‘
d[P] _ k[Elo(S] _ k2[Elo[S].
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Probiem 3.8

A rate law derived from a steady-state analysis of a reaction
mechanism proposed for the reaction of H, with NO is given by:
d[Ng] _ kyko[H,)[NOJ?
dr k_, + ky[Hy]

Find the limiting form of the rate law when (a) k_; >> ky[H,] and
(b) k. << ka[Hp).

Summary of Key Points

This chapter introduces the concept of the limit, with a view not only
to probing limiting behaviour of functions but also as a foundation
to the development of differential and integral calculus in the
following chapters. The key points discussed include:

1. The principles involved and notation used in defining a limit.

2. Point discontinuities, infinite discontinuities and asymptotic
behaviour.

3. Finding a limit intuitively and algebraically.

4. Investigating the limiting value of functions for increasingly
large and small values of the independent variable.

5. Finding the limiting forms of functions of more than one
variable.







A great deal of chemistry is concerned with processes in which properties
change as a function of some variable. Good examples are found in the
field of chemical kinetics, which is concerned with measuring and
interpreting changes in concentrations of reactants or products with time,
and in quantum mechanics, where we are interested in the rate of change
in the electronic wavefunction of a diatomic molecule as a function of

Diﬂerentiation

bond length.

Calculus is of fundamental importance in chemistry because it
underpins so many key chemical concepts. In this chapter, we
discuss the foundations and applications of d ' Iculus; by
the end of the chapter you should be able to:

Describe processes involving change in one independent variable
Define the average rate of change of the dependent variable
Use the concepts of limits to define the instantaneous rate of
change

Differentiate most of the standard mathematical functions by
rule

Differentiate a sum, product or quotient of functions

Apply the chain rule to non-standard functions

Understand the significance of higher-order derivatives and
identify maxima, minima and points of inflection

Understand the concept of the differential operator
Understand the basis of the eigenvalue problem and identify
eigenfunctions, eigenvalues and operators

Differentiate functions of more than one variable

89
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4.1 The Average Rate of Change

Consider the plot of the function y = f{(x), in which x is the independent
variable, shown in Figure 4.1. The average rate of changeof f{x) over the
increment Ax in x is given by:

QR _ flxo+Ax) —flxp) _ Ay
PR Ax T Ax

where f{xp) and f{x, + Ax) are the values of f{x) at the points x; and
x¢+Ax, and Ay is the change in y that results in the change Ax in x.

(4.1)

Figure 4.1 Defining the aver-

age rate of change of f(x) as xis

/y = flx)

incremented from xg to X+Ax

A
Ay
Jlxg + Ax)
Sfixo)
J\.fo Xg ¥ Ax x
This average rate of change corresponds to the slope of the PQ; that
is, the slope of the straight line (sometimes termed the secan!) joining P

and Q. In chemical kinetics, we can draw a direct analogy by equating the
concentration of a species A at time ¢, often designated by [A], to the
dependent variable (designated as y in Figure 4.1), and the time after
initiation of the reaction, ¢, to the independent variable (designated by x
in Figure 4.1). Consequently, if we measure the concentration of a
reaction product at two intervals of time, say one minute apart, we might
conclude that over that interval the concentration of the product had
changed by 1.00 mol dm™>. In this case, we could state that the average
rate of reaction in this interval is 1.00 mol dm™ per minute. The problem
here is that we know nothing about how the reaction rate changes in
detail during that interval of one minute, and it is this detail that is so
crucial to our understanding of the kinetics of the reaction. Consequently,
what we need, in general, is to be able to quantify the rate of change of the
dependent variable at a particular value of the independent variable
rather than simply the average rate of change over some increment in
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the independent variable. This equates, in our chemical analogy, to being
able to measure the instantaneous reaction rate at a given instant in time
(and consequently for a given concentration of reactant or product),
rather than the average rate of reaction over some extended period of
time. However, before we can determine these instantaneous chemical
rates, we must first establish some mathematical principles.

4.2 The Instantaneous Rate of Change

4.2.1 Differentiation from First Principles

If we now reconsider the general situation shown in Figure 4.1, we can
determine the i rate of change by examining the limiting
behaviour of the ratio, QR/PR, the change in y divided by the change in x,
as Ax tends to zero:

lim {%} = fim {ﬂ} = lim {ﬂ’% +4x) A (x")} 4.2)

Ax—0{ PR Ax—0{Ax Ax—0 Ax

The limiting value defined in equation (4.2) exists if:

e The function does not undergo any abrupt changes at xg (it is
continuous at the point xg).
* Itisindependent of the direction in which the point x; is approached.

If the limit in equation (4.2) exists, it is called the of the function
y =f{(x) at the point x,. The value of the derivative varies with the choice
of xg, and we define it in gencral terms as:

(@) Jim {020 2 20 00} (43)

where (%) " is the name given to the value of the derivative at the point
X=.

xg- The derivative of the function y=f{x) at x=xp in Figure 4.1
corresponds geometrically to the slope of the tangent to the curve y = f(x)

at the point P (known as the gradient).
The basic formula (4.3) for the derivative is often given in the form:
y o fflx+Ax) —fKX)}
—= = 4
dx Al)lcrilo{ Ax (44)
for an arbitrary value of x.
We should also note that:
. b is the name of the derivative function, commonly also represented
dx ,
as f(x).

e The domain of the derivative function is not necessarily the same as
that of y=f(x) (see Table 4.1).
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Figure 4.2 (a) The modulus
function y=f{x)=|x}; (b) the
derivative of the modulus
function

The requirement that, for the limit in equation (4.2) to exist, the
function does not undergo any abrupt changes is sometimes overlooked,
yet it is an important one. An example of a function falling into this
category is the modulus function, y = |x), defined by:

. . i if x=0
y‘ﬂx)_lxl‘{—x if x<0

This function is continuous for all values of x (Figure 4.2a), but there is
no unique slope at the point x =0 as the derivative is undefined at this
point (Figure 4.2b).

@ fx)
0 x

(b) (€]
0 X

Chemical examples showing this type of behaviour include processes
associated with sudden changes in concentration, phase, crystal structure,
temperature, efc. For example, Figure 2.9 shows how the equilibrium
concentration of a chemical species changes suddenly when a temperature
jump is applied at time fp. Although there are no discontinuities in this
function, its derivative is undefined at time ;.
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Worked Problem 4.1

Q Differentiate y = f{x) = x” using the definition of the derivative
given in equation (4.4).

e Lo B (SR

dx Axso0 Ax Ax—0 Ax

. +2xAx + (Ax)? — X2 . [2xAx + (Ax)?
= lim = lim{——~—
Ax—0 Ax Ax— Ax

Since Ax tends to zero, but never takes the value zero, cancellation
of Ax from all terms in the numerator and denominator yields:

P

o Al)lcr_l}o{2x + Ax} =2x

Problem 4.1

Differentiate the function y=f{x), where f{x)=3, using the
definition of the derivative given in equation (4.4). Hint: the
function y=f{x) =3 requires that y =3 for all values of x; thus if
S(x)=3, then f{x+ Ax) must also equal 3.

Problem 4.2

Use equation (4.4) to find the derivative of the function y=f(x),

where (a) f{x)=23x> and (b) f(x)=1/x2. Hint: in your answer to (b),

you will need to remember how to subtract fractions, i.e. 1 —1=bz¢

4.2.2 Differentiation by Rule

Some Standard Derivatives

The derivatives of all functions can be found using the limit method
described in Section 4.2.1. Some of the more common functions, and their
derivatives, are listed in Table 4.1. Unless otherwise indicated, the
respective domains (Dom) are “all values of x”:
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Table 4.1 Derivatives of some common functions, and their respective domains

(%) (%) Dom(f(x)) Dom(f'(x)) Notes
c 0 - - 1

x" nx™ (n#0) x#0 for n<0 x# 0 for n<—1 2

sin ax acos ax - - 3

Ccos ax —-a sin ax - - 4

tan ax a sec’ax x#(2n+1)n/2 x# (2n+1)m/2 5

sec ax a sec axtanax X#(2n+1)n/2 x#£(2n+1)z/2 6

In ax ajx x>0 x#0 7

e ae® _ _

The constant function, ¢

?n=0 corresponds to the constant function
3a+#0; for a 1:1 function, Dom(f(x)) = [-n/2,7/2]
“a+0; for a 1:1 function, Dom(f{x)) =[0,x]
5'6'73%0

However, as we have seen above, and in Table 4.1, we do meet
functions for which the derivative f'(x) does not exist at selected
values of x. The functions y =f{x)=1In x at x=0 and y=f{x) =tan x at
x=(2n+ 1)7/2, both listed in Table 4.1, fall into this category. Naturally,
since the derivative does not exist in these cases at selective values of x, the
domain of the derivatives of these functions will not be the same as the
original functions. The restrictions on the respective domains are best
seen in sample plots of these functions shown in Figure 4.3.

An Introduction to the Concept of the Operator

The notation % (or sometimes dy/dx) for the derivative is just one of a
number of different notations in widespread use, all of which are
equivalent:

& dfdx ), ), D

The more commonly lised notations are % and f'(x), but expressing the
derivative in the form Df{x) provides a useful reminder that the derivative
function is obtained from the function y=f(x) by the operation
“differentiate with respect to x”’. Thus, we express this instruction in
symbols as:

A d d dy
Df(x) Eaf(x) =47 T dx

It is worth emphasizing that the symbol % does not mean dy divided by
dx in this context, but represents the limiting value of the quotient Ay/Ax
as Ax — 0.

(4.5)
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@  fx:
v=flxy=1Inx

® 1o

y=flx)=tanx

rt)2

In general, an operator, A, is represented by a symbol with a caret
(“hat”) denoting an instruction to undertake an appropriate action on
the object to its right (here f{x)). In equation (4.5), we consider g{—; to be the
differentiation operator dix acting on the function f{x), which we have
labelled y, to give a new function, say g(x):

Af(x) = g(x) (4.6)

Worked Problem 4.2
Q For the function f{x) = x?, find A(f(x)) where 4 = d/dx.
A For flx)=x", & (f(x)) = 2.

Problem 4.3

For each of the follkoing functions,A f{x), use the information
in Table 4.1 to find A(f(x)), where 4 = d/dx: (a) x’'% (b) e™*;
() 1/x; (d) a cos ax.

Figure 4.3 The functions

(a) y=fx)=In x and

(b) y=f(x)=tan x are both
examples of functions for which
the derivative does not exist at
certain values in the independent
variable (see Table 4.1)
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Use the information in Table 4.1 to demonstrate that, when the
operator A = & + 2 acts on fix)=e"2*, the function is annihilated
(i.e. the nul wction, g(x) =0, results).

We will come to appreciate the full significance of the concept of the
operator in Section 4.3.1, when we consider the eigenvalue problem.

4.2.3 Basic Rules for Differentiation

Although all functions can be differentiated from first principles, using
equation (4.4), this can be a rather long-winded process in practice. In this
chapter, we deal with the differentiation of more complicated functions
with the aid of a set of rules, all of which may be derived from the defining
relation (4.4). In many cases, however, we simply need to learn what the
derivative of a particular function is, or how to go about differentiating a
certain class of function. For example, we learn that the derivative of
y=f(x) =sin x1s cos x, but that the derivative of y = f{x) =cos x is —sin x.
Similarly, we can differentiate any function of the type y=f{(x)=x" by
remembering the rule that we reduce the index of x by 1, and multiply the
result by #; that is:

;—xx" = nx"! (n#£0)
For functions involving a combination of other elementary functions, we
follow another set of rules: if ¥ and v represent functions f{x) and g(x),
respectively, then the rules for differentiating a sum, product or quotient
can be expressed as:

(4.7)

S =5t (4.8)
d du dv
a (uv) Vd_x +u d (49)
) du y dv
d fu dx  Cdx
—(Z)=-9x_ _ dx 4.10
dx (v) V2 (4.10)
Differentiate the following, using the appropriate rules: |

(a) (x-1) (7 +4); (b) 23 (©) sin’x; (d) x In x; (e) e”sin x.



