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Q Use a graphical method to find the number of roots of the
polynomial equations: (a) x* - 7x + 6 =0; (b) x’ —4x* —2x—3=0.

A (a) 3; (b) | (see Figure 2.24).
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2.4.1 An Aigebraic Method for Finding Roots
of Polynomial Equations

For a given polynomial function y=f{x), one (or more) roots of the
polynomial equation f{x) = 0 can often be found by an algebraic method.
Suppose the polynomial f{x) is of degree n. If x=2 is a root of the
polynomial equation, then f{1)=0, and (x — 1) is a factor of the
polynomial:

fx)=(x=D(ex" "+ e 2+ ...+ ¢cp) (2.46)

The truth of the previous statement follows by substituting x = 4 into the
above equation, where we see that, irrespective of the value of the second
expression in parentheses, which is a polynomial of degree n—1, the first
term in parentheses is zero, thus implying that f{1) = 0. If there is a root
with integer value, then it can sometimes be found by trial and error,
using A= 41, +2, ... the polynomial of degree n—1 can then be treated
in the same way. If no further roots can be found algebraically, at any
stage in the iterative procedure, then the current polynomial can be
plotted to exhibit the existence, or otherwise, of remaining roots.
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The key requirement is that, at each step, the coefficients ¢; are found, in
order to facilitate the recovery of another root. Once the polynomial of
degree two is reached, it is easiest to use the formula given in equation
(2.45) to test for the existence of a further two or zero roots.

Q (a) Use the algebraic method to find the roots of the polynomial
equation f{x) =0, where f{x)=2x3+11x*+17x+6=0; (b) give the
factored form of f{(x); (c) sketch a graph of the function y = f{x).

A (a) Simple trial and error shows that x= -2 is a root of f(x),

since f{-2) =0. The polynomial equation may now be written in the
form:

(x+2)(c1X* + cx+¢3) =0
On multiplying out the brackets, and collecting terms, we have:
X + (e + 2¢)x%° + (c3 +2¢)x +2¢; =0

Comparing coefficients of the powers of x with the given polynomial
equation, we find:

=2 (2.47)
c+2c =11 (2.48)
c;+2c; =17 (2.49)

2c3=6 (2.50)

Equations (2.47) and (2.50) give the values ¢;=2 and ¢3=3,
respectively. It then follows, by substituting the value of ¢; in
equation (2.48), that ¢, =7, and we then have:

(x+2)(2* +7x+3)=0

(b) The solutions of (2x*+7x+3) =0 are then found using
equation (2.45):
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Thus,

V153 = [t 2)(x+ %)(x+ 3).

(c) From (b) we know that the curve crosses the x-axis at x = -2, -3,
—1/2; in addition, for x > —1/2, all three brackets are positive and
increase in value as x increases. Likewise, for x <—3, all brackets
have increasing negative values, and therefore f{x) is negative for
these values. For —3 <x<-2, (x + 3) is positive and (x+2) and
(x + 1/2) are both negative, and hence f{x) > 0. A similar argument
shows that f{x) < 0for—2 < x < —1/2, and it is then an easy matter
to sketch the form of the cubic polynomial function (Figure 2.25).
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2.4.2 Solving Polynomial Equations in a Chemical Context

In practice, the solution of polynomial equations is problematic if no
simple roots are found by trial and error. In such circumstances the
graphical method may be used or, in the cases of a quadratic or
cubic equation, there exist algebraic formulae for determining the
roots. Alternatively, computer algebra software (such as Maple or
Mathematica, for example) can be used to solve such equations

Figure 2.25 Plot of the function
f)=23+ 112 +17x+6=0
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explicitly. In Worked Problem 2.7 we show how the calculation of the
pH of 107® mol dm > HCl(aq) requires the solution of a quadratic
equation.

Q Calculate the pH of 10~° mol dm 3 HCl(aq), taking into account
the hydronium (H30 ") ions from: (a) HCI alone; (b) HCI and the
dissociation of water (equilibrium constant, K,, = 10714).

A (a) The simple formula pH = —log([H;0 *]/mol dm ) leads to a
value for the pH of 6, since [H;0*]=10"° mol dm™3. (b) As the
concentration of HCl is so small, it is appropriate to take account of
the dissociation of water in our calculation of the pH, and so we
need to consider the concentration of hydronium ions produced
from two sources, described by the following processes:

HCl + H,0 — H;0" + CI-
Kw
2H,0 —=H;0" + OH"

Thus, if [H;0* }/mol dm~ = A, [C1"}/mol dm~> = ¢ and [OH )/mol
dm~3=b, then charge conservation requires:

h=c+b=>b=h-c

where ¢=107°. The equilibrium constant for the dissociation of
water is given by K, = kb, which we can now rewrite as:

. i Ky=hb=hh—c)=hH —ch=>hH —ch-K,=0  (2.51)

Equation (2.51) is a quadratic equation in 4, and the two roots may
be found using equation (2.45). Thus:

>+ 4K,

C
= = b
L 2 2

and, on substituting for ¢ and K,, we find h=1.099x10"% or
h=-9.902x10°. The first solution yields pH = 5.996; the second
solution, although mathematically required, does not correspond
to a acceptable physical result, as the logarithm of a negative
number is not defined as a real number and thus has no physical
significance.




Functions and Equations: Their Form and Use

71

The radial function of the 3s atomic orbital for the hydrogen atom
has the form given in equation (2.44).

(a) Calculate the value of R3; at =0 and as r tends to infinity.
Note that the exponential term will always dominate the term in
parentheses (see Section 2.3.4) and so its limiting behaviour alone
will determine the behaviour of the function as r tends to infinity
(see also Chapter 3 for a more detailed discussion of limits).

(b) Calculate the values of r/ag, and hence of r, for which R;, =0, by
solving the quadratic polynomial equation {27 — 18(% )+ A )2} 0.

(c) Sketch the form of Ry, for 0 <L < 12, and then compare your
result with that displayed in Figure 2 22.

Polynomial Equations of Higher Degree in Chemistry

Polynomial equations of degree three (cubic equations) arise in a number
of areas of classical physical chemistry; however, such equations also
arise in the modelling of:

* Electronic structures, through the determination of molecular
orbitals, constructed as linear combinations of atomic orbitals
(LCAOQ); thus, for example, the determination of the simplest
o-type molecular orbitals for HCN, in its linear configuration (as in
the ground state), involves the use of the seven ¢ atomic orbitals 1sy,
Isc, Isn, 25c, 28N, 2poc and 2pon, and leads to the solution of a
polynomial equation of degree seven for the molecular orbital
energies.

¢ Characteristic frequencies of molecular vibrations. In the case of
HCN, for example, there are four vibrational frequencies that may be
calculated from a polynomial equation of degree four, by making
appropriate assumptions about the stiffness of bond stretching and
bond angle deformation.

Give the degree of the polynomial equation that arises in calculating
the molecular orbitals for the following species in their ground
states (o or = bonding, as indicated): (a) carbon dioxide (o only);
(b) benzene (7 bonds only).



