3.1.0 INTRODUCTION

Those substances which are rigid, hard, have definite shape and definite

volunlle are called solids. They can retain their shape without being confined in a
vessel. |

There are two types of solids. |

(1) Amorphous solids (i)  Crystalline solids
(1) Amorphous solids: ' '

"Those solids in which the constituent particles i.e., atoms, ions or
molecules of the substances are not arranged in any regular fashion.” They are not
accepted as true solids.

For example, glass, pitch and the polymers of high molar masses are
amorphous solids. They are also regarded as supercooled liquids of high viscosity.
(i)  Crystalline solids: Y Ban s S Fane

"Those solids in which the constituent particles like atoms, ions or
molecules of the substance are arranged in definite geometric pattern within the
solid are called crystalline solids." The substances like metals and many of the

salts are crystalline in nature.

3.1.1 Space lattice: ,
"The regular arrangement of constituent particles i.e., atoms, ions and
molecules of a crystalline substance in three dimensions is called space lattice."

The following diagram (1) shows the space lattice of a hypothetical crystalline
substance. " |

.

0O A | R v < .
Fig. (1) Space latlice and lattice points Fig. (2) Unit cell and unit cell dimensions
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When we look at the crystal lattice, then we note that

(1)

(11)

Each latticc point has the same environment as that of any other
point in the lattice.

A constitucnt particle 1s to bec represented by lattice point.

irrespective of the fact and whether it contains the single atom or
more than onc atoms.

3.1.2 Unit cell:

When we pictunze a crystal lattice as shown in the above diagram (1), then
it 1s possible to sclect a group of lattice points. This group of lattice points repeated
again and again 1s called the unit cell. The whole latticc can be gencrated by
translation or stacking of thesc unit cells.

S0, unit cell is a three dimensional group of lattice points which gencrate
the whole lattice by translation or stacking. Fig. (2)

3.1.3 Types of unit cells:
Unit cell can be divided into four types.

(1)

(11)

(i)

(1v)

Simple unit cell: This typc of unit cell is produced, when the
particles arc prescnt only at the comners of the unit cell.

Face centred unit cell: When the particles arc located at the
centre of cach face in addition to the comers, then it is called face
centred unit cell,

End face centred unit cell: When the particles arc located at the
centers of the end face in addition to the comers, then it gives end
face centred unit cell.

Body centred unit cell: When the particles arc present at the

centre of the cell in addition to the comers, then it is called body
centred unit cell.

Fig. (3) Types of unit cells.

3.1.4. Crystal Systems:

Each unit cell is a parallelopiped, whose interfacial angles may or may not
bc 90°. The three lcn_gths a, b, ¢ and three interfacial angles are called unit cell
dimensions. The relationship between the values of the angles and between the

lengths of the axes give us seven types of crystal systems as shown in the
following Table (1).
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Table (1): The seven crystal systems and fourteen Bravais lattices

" Systcms Bravais - uriit cell | characteristic
| | lattices characteristics

symmetry
elements
Cubic 3 three axes at right | four 3-fold
simple , |angles: all equal |rotation axes
body-centred, |a=b=c
face-centred ‘

examples

NaCl, ZnS,
FeSZ, KC]:

Diamond, Au,

(along cubic
diagonals)

one 4-fold
rotation axis

three axes at right
anglcs: two are
cqual
la=b#c

Tetragonal 2
| simple,
body-centred

= -

three mutually
orthogonal 2-fold
rotation axes

4
simple,
body-centred,
face-centred,
end-centred.

2
simple,
end-centred

Orthorhombic three axes at right

angles: but all
uncqual
azb#c .
a=p=y=90°
threc axes, all
unequal, two axes

at right angles,
third is inclined to

these at an angle
other than 90° a #
b#c

o= 'y' = 90°,

BaSO 4
rhombic sulphur

one 2-fold

Monoclinic
| rotation axis

O, monoclinic
sulphur

CuSO,.5H,0,
K2Cl‘207,
H,BO,

three axes not at
right angles: All
unequal.
azb#CcC
azpB=zy#90°

two equal axes in
one plane with
included angle

1209 3rd axis at

rt. Zto these;
unequal
a=b#c

o=p=90°
= 120°

three equally one 3-fold
inclined axes, not |rotation axis

at rt. Z; All equal
a=b=c,

(1'_”"—' ?5900

Triclinic

ice, graphite,
HgS, Mg, Zn,
Cd

one 3-fold
rotation axis




Bl
128 . Physical Chemistry

-—*_—__—____.——_——_—_l——*\

3.2.0 BRAVAIS LATTICES ||

Bravais did the detailed study of internal structure of crystals and said that
the points or the particles may be present not only at the corners of the unit cel],

- but at the centres of the faces within the body of the unit cell. This thing gives rise
to different types of lattices corresponding to seven crystallographic systems
There are fourteen types of lattices, which are called Bravais lattices. The above
table (1) shows that four crystal systems have more than onc Bravais lattices while
three crystal systems have only one Bravais lattice. The table (1) given above

‘shows fourteen Bravais lattices. Now look at their diagrams in Fig. (4).

Face-centred Body-centred

[a=b=c
1. Cubic \, = B=7=90°

: ‘-{:,_. _..'- Sgee

Simple Body- centred

Ja b#c
2. Tetragonal a=p=Y= 90

Face-c entred End-centred Body-centred

3. Orthorhpmbic |

a#b=c
a=B=Y=90°}




Solids
' 129

?-centmd
4. Monoclinic °

azb#c ,
a=y=90°
B #90°

Simple - Simple
9. Triclinic 6. Hexagonal 7. Rhombohedral
Jazb=zc } . [a=b=c fa=b=c ‘
la#p#T1=90° a=[3=90°,7=120°} la=|3=7¢90°}

Fig. (4) Bravais lattices corresponding to seven
crystallinographic systems.

3.2.1 Co-ordination Number:

Whenever we talk about the lattice points in crystal, then we mean that
constituent particles are sitting at these points. These constituent particles may be
represented by spheres which behave like hard spherical balls. This is suggested
only to have the idea of packing of spheres. more clear to human mind. The number
of spheres which are in direct contact with a particular sphere is called co-
ordination number of ionic solid. The co-ordination number of a particular ion is
the number of oppositely charged ions surrounding that particular ion.

(1) In the case of NaCl, the c_o-ofdination number of Na® 1S 6 and that of h
- Cl9isalso 6. .
| (i1) Inthe case'fof CsCl, the cc)j-ordj'ﬁation number of both-ions is 8.
' (iii) In the case of ZnS, CuCl, and HgS, the co-ordination number is 4.
3.2.2 Calculations of number of particles In a unit cell: -

One should obey the following rules in order to calculate the number of
particles in a unit cell. - .
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(1) Each particle at the comer of a unit cell is shared by cight unit
1 . _
cells in the lattice. So, it contributes only Eth to a particular unit

cell. Fig. (3).

o
8

Fig. (5) Simple cubic arrangement and the number
of atoms in unit cell.

(i) A particle at the edge centre is shared by four unit cells 1n the
| ] . .
lattice and contributes th to a particular unit cell. Fig (6).

Fig. (6) o e
(iii) A particle at the centre of the face of the unit cell 1s shared by two
unit cells in the lattice and 1t contributes only half to a particular

unit cell. Fig (7, 8).

"1/2 atom at

6 faces
1/8 atom at ||
8 COMeErs |
.ti" G . . ; '#
Face-centered "Nl -
L . cubic TN RS

—Fig. (7) Face-centred cubic . | ' )
arrangement. Fig. 8 Atoms / unit cell =3 x8)+5x6) = 4

e 7
i
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cell of that substance can’ be’ fnﬁﬂibmatlcally calculated by the followmg R
expression. Actually, ﬂus equatlon relates the densnmof the crystal towagds lts“

- molecular properties. A Ve gt R 2

’
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(1v) A partlclc at the body centre of a umt cell belongs only to the
particular unit cell. Following diagrams (9) makes the ideas clear.

1/8 atom at ] atom
8 comers at center |

Fig. (9) Atoms / unit cell = (';'Xt?) t1=2.,

3.2.3 Calculations of number of atoms m a umt cell:
(i) Simple cubic: - |

. BT 1 .
There are eight comners of the atom and each atom makes 3 contribution to

the unit cell. Hence, a simple or primitive cubic unit cell has only one atom in that,

1 .
8(at comers) X g = latom. -

(i1) Body centred cubic

This unit cell has elght atoms at thc comers and one at the centre of the

L
body; Each' comer atom. makes = contnbutlon and the atom at the body centre

belongs only to the particular unit cell Hence, 2 body centred cubic ccll has L i
1 o
S(at thc comers) x'Q + l (at body centre) X 1 = 2 atoms e

(iii) Face centred cublc PNSEAARER & TR o

It has one atom at each corner and one atom at each face centre Atom at

I
this face centre is being shared by two unit cclls and has the contnbotlon of 5 5 toa

particular unit cell. Hence, a face centred cublc cell has

1 .
8(at thc corners) X'g 'l' + 6(at facc centres) A= 4 atoms |

ql

Calculations of formula umts In a umt cell

The number of formula umts of a 1omé crystalline solid present in the unit

™ ..“"L.

¥y

L ™
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L xM
Pa.= NaxV .
where, p = density of the crystal
' Z = number of formula units per unit cell
V = volume of unitcell '
M = formulamass =

. ‘Na = Avogadro's number
EXAMPLE (1)

Sodium chloride crystallizes in the cubic system with edge length of
cube as 5.65 A°. The density of NaCl crystal is 2.1 x 10° kg m™". Calculate the
number of molecules of NaCl presen'ce in the unit cell.

SOLUTION:
Densityy, = p = 2.1x 103kgm
Molar mass, M = 585 x 10~ kg mol &
 Na.= 0.6023x10%* .. ar
V= (565x10"%’m’ = (5..65)3 x107" m

On substituting the values in the equation, *
_ NA- .V.p
Z = M

6023x1023x 5.65 x103°x21x10+3
7 ( 2

. 535:-<10"3
Z = E Ans.

Calculation of Avogadro s number from crystal structure |
. Let us sclve the following numencal problem to’ understand calculations of
~ Avogdaro's number. T AL ,
- EXAMPLE (2) |
. % Ceslum chloride has a density.of 3.97 x 10° kg m":l It has body centred
-~ cubic lattice with 4.12 A° as one edge, and having one CsCl molecule per umt
_cell. Calculate the value of Avogadro's number from this data. £
SOLUTION : - brie rriog

o p='397x103kgm -
;"-’f M ="1585 gmol’ 158 5% 10'3 kg mol"l
S f V= (412 x 10 m
J_};;’,:Z=l o
| Ny= 2 ¥ v | .
*On substxtutmg the values mto followmg equatlon we get,
NI ZM - .
a A | | -3 ;‘*. : r | | 5
Na = 1 x 158.5 x 107°.

397 x10° x (4.12)* x 1072 -

= [ 6.023 x 10® molecules mol'| Ans.

N
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3.2.4 Structure of Na(C):

It has face centred cubic lattice and each ion is surrounded Ey SIX

opPOSitelY charged ion. The co-ordination number of Na&) and Cle each 1s 6.

. ® ' s 3 e .
;?‘er? l?);e fove uiits of Na and Cle 1ons 1n a unit cell. The structure is shown 1n
18. - Y ,

Fig. (10) Structure of unit cell of sodium chloride and
contribution of each ion into the unit cell. |

The other ionic ccmpouhds like NaBr, Nal, AgCl, MgO also have sodium

by CI®© ions and centre is occupied by Cs® ion. When the lattice is completed,
then we will observe that Cs® occupy the comer of a cube and C1® is at the
centre. Its co-ordination number is eight and the m unit

| cell is 1. One Cs®is surrounded by 8 CI° ions and total contribution of 8C1° is

} | one C1°. It is clear from the following diagram Fig."‘r(hl 1)./CsBr and ThCl also have

~ chloride type structure. ]
i : . - e ) ‘ | :- | . ‘ .
i 325 StructureofCsCl:- -~ . .~ :
i | It has body centred cubic structure. Eight comners of the cube are occupied ' r

the body centred cubic structures.
) _

-
. ']
- e v p—— . D T el o TN R i s i Py g
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3.2.6 Structure of zinc blend:
structure. The co-ordination number of Zn@

It has also face centred' cubic @
four S 10nS and vice Versa as

and S@ is four. Every Zn@ on is surrounded by
shown in the following diagram. CuCland H

*J-'

.[

-
'l
[ ]
- &
[ ]
- -
L 1 L]

\!

s | 1

T\

N

N B

Fxg (12) Structure af zinc blend |

In the dlagram (12), 7n® ions are present at the corners and the centre of

 each face of the cube. S 2, 10NS occupy a.ltemate tetrahedral sites.

i-'-u 0" @
i
il e
T
-iﬁ

4

i‘

| E:‘g.. (1 3) Structure of CaF 2_‘

F© ions are iJresent at all the corners and at the centre of each face of the
cube and the Ca@ ions occupy all the tetrahedral sites.

3.2.8  Effect of temperature ‘and pressure on crystal lattice:

It has been observed that the subsi tances' undergo changes in their
‘structures, when temperature and pressu.e arc changed. When the pressure Is
increased, then it will favour greatcr co-ordination number. High temperature
favours lower co-ordination number! For example, in:case of NaCl high pressure
converts. it into body centred cubic structure like-that of CsCl and co-ordination

number increzses from 6 to 8. On the other hand, if CsCl is heated to 760K, then 1t
1S converted to Nall structure whose co-ordmatlon number 1S 6 '
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3.3.0 FUNDAMENTAL LAWS OF CRYSTALLOGRAPHY

"That branch of science which deals with the study of geometric properties
and structures of crystals of crystalline substance is called crystallography." There
are three fundamental laws of crystallography. .

(1) The law of constancy of interfacial angies.

i)  Thel | 1y
() ¢ law of symmetry. _ . ﬁ(\\) M/'
(u)  The law of rationality of indices. | \
(i) The law of constancy of interfacial angles: ./

The crystals are prepared by cooling a solution of the substance or by
cooling the molten electrolyte. The size of the crystal depends upon the rate of the
cooling.  The size also depends upon the conditions under which the crystallization
takes place. However, in spite of different sizes and shapes of crystal of the same
substance, it is observed that the angle between the corresponding faces which are
called interfacial angles of the crystal of a particular substance are always the

*0

called a goniometer.

(i) The law of symmetry: b 2 4 Rlodissim-s ' M _ M}( )(

The informations about the crystal structure is present in the unit cell.
Anyhow, there exists some symmetry in the unit cell which helps us in reaching M
the necessary information about the crystal structure. So, we should have a /
knowledge of symmetry operations| which will throw 'some light on the

arrangement of atoms in the unit cell and so give us the complete picture of crystal.

Symmetry Operatio‘n:r

Symmetry opemﬁbh is that operation which brz‘ngs- the crystal into L\/
v

identical position and is indistinguishable from some other positions. There are
various types of symmetry operations. R -
(@) Centre of symmetry °
(b) Plane of symmetry ~ i
(c) Rotation axis of symmetry
() Axisofrotation |

r

(g =
‘\-l"

(e) Inversionaxis . = e 4 7\: ' /,

Centre of symmetry is an imaginary point within the crystal such that any
line passing through this point intersects the opposite face of the crystal at equal
distance. Centre of symmetry is denoted by (T). e ). .

- When we carry out this symmetry opergﬁiqn then a_"mol__epu!c having such a
centre is transformed into itself. In other words, we can say that if a line is drawn

-~ 'from one atom through the centre and continued then it will meet a similar atom at

¢ equal distance ‘from the" centre _on'oppos_itc; side. In order to understand ‘1t,
consider the following diagram (14). - oealinh- ol o i

g},«'t

_same. The mstrument which is used for the measurement of jnterf_acial angles is/fn
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(x, ¥, 2)

It of symmelry.

Fig. (14) Centre of symmelry as an elemen
with respect to the centre of

The atom ‘A’ has the co-ordinates X, Y and z,
—y, and —z. It means

* symmetry O, then. the other atom ‘A’ has its co-ordinates —X, z. It mean:
om, then the co-ordinates of similar atom

that if we know the co-ordinates of onc at - S| _
in the molecule can be wn Sther words, we can say that t!‘le mforr_natlon
which is required to describe the position of half of the molecule is sufficient to

assign the position to the other half of the molecule by center of symmetry

operation.
(b) Plane of symmetry: .? 1

"Plane of symmetry is an imaginary plane which divides the body of the
crystal into two halves in such a way that each half is exactly the mirror image of
other half:" Those crystals which have this plane of syimmetry have all the atoms
in pairs except those atoms which are on the plane: of symmetry. Following
diagram makes the idea clear. Fig (15). ' AR

m, .~

A - o)

| s Fig. (15) P{anes of g/r;ﬁmehy :'J.rzacub.e.
(c) = Rotation axis of symmetry: . b

"The mf‘a:‘:‘rm axis of symmetry is an in nginary line ab-out which the
wystcﬁ may be i'qf;ﬂt e, SO that it shows exactly t he.same appearance more than
once.” It shown in the following diagram (16). ' Once ih-the course of complete
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rotation the axis may be 3 three-fold rotation. It means that in a complete

revolution by 360° the same type of the face is repcated threc times that is after

eaCh 120%. .Th“"e are no 3-fold, 7-fold or 8-fold axis of rotation./The rcason is tha
it is impossible to fill all the space with figures of 5, 7, and 8-fold symmetry,
N = - — & ‘

2fold  3fold . 4-fold 6-fold
| Fig. (16) Axis of rotation as one of the symmeltry element.
(d) Axis of rotation:

When the rotation of a molecule or q ¢ '
i . rystal about n-fold axis of proper
rotation is followed by reflection through a plane perpendicular to the axis, -shen

this axis is called n-fold rotation reflection axis. The new configuration obtained is
not congruent but 1s enartiomorphous, ﬁ_

(¢)  Inversion axis;
~ Inversion axis involves an n-fold rotation followed by inversion through a
center of symmetry, wheren=1,2, 3,4, ... etc. A molecule is said to possess 2

axis, 1f a rotation of 180° is followed by inversion through a center of symmetry.
Let us consider a point 'A' in the following diagram (17). It is transformed by

. symmetry operation 2 to 'A". The point 'A' is related to 'A” as its mirror image, in a

plane perpendicular to the axis and passing through the origin of inversion. In other

“words the affect of 2 axis is the same as that mirror plane and we may represent 2

axes by m, (mirror plane).

"o &

Fig. (17) Equivalence of 2 axis and mirrer plane m.




7. Hexagonal

_ 3. Orthorhombic o= ﬁ = Y= 90° Planes = 3 KNO;, KzSO.q,,
‘or Rhombic a#zb#C Axes =3 BaSOg4, PbCO;
' | 'Rhombic sulphur

et Physical Chemistry

3.3.1 Laws of symmetry in a crystal: -
. The crystal of a p_articuier substance always posscsses the same elements
of symmetry. A cubic crystal always possesses 23 different clements of symmetry.

| The following set of six diagrams (18) for a cubic crystal show that th
are 23 elements of symmetry c:)veralﬁth e

(d) e (e)
Fig. (18) Elements of symmeltry of a cube.
The calculations are as follows. |
(a) Rectangular planes of symmetry = 3}= i
(b) Diagonal plane of symmetry =6 Y
(c) Four-fold axes of symmetry = 3
(d) Three-fold axes of symmetry = 4} =13

(e) Two-fold axes of symmetry = 6 | -
(f) Centre of symmetry (located at the centre of grgwty of cube) = 1

Total elements of symmetry of a cube = 2358 -
" In the similar way, the maximum clements of symmetry

graphic systems are shown.in the following table (2).
Table (2) Related information regarding crystallographic systems

characteristics . symmetr -
- - a=b= Axes =13 | Alums, Diamond
il e i
a=b#c . Axes =5 '

for seven crystal

4. Monoclinic a=y=90°2p Planes = 1
azb#c Axes = 1 '
: ' i - | h
5.  Triclinic a#B=y=90° | Planes=Nil CuS0, . 5H;0
lazb=#c Axes = Nil K
" orTrgomsl
or Trigonal a=b=c

‘Hgs, Ice,
|"Graphite, Mg, Zn,
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+0 be located in crystal. For this purpose, three suitable axes ar
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3.3.2 Crystallographic axis and axial ratio:
Now at this stage, the relative positions of the atoms, ions or molecules are

e chosen which meet

at a point O. These axes can be selected in a number of ways depending upon the

- symmetry of the crystal. One of the best choice is the edges between those lines

which are parallel to the edges between the principle faces. Look at the following
diagram of a cubic crystal Fig. (19) and Fig. (20). We have chosen three lines
mutually at right angles to each other. These three lines are called crystallographic

axcs.

Fzg (19) Sets of planes Fig. (20) Crystallographic
drawn in the crystal. | axes and axial ratio.

a, b, c, are the intercepts and the respective angles in front of them are a,
B ) and 7 |
Axial ratio:

=

‘Keeping in view the above diagram, consider the umt plane ‘A B C'. Three :

axis are represented by 'OX', 'OY' and 'OZ'". The unit plane 'A B C' cuts these axis
at'A". 'B', 'C' respectively in such a way that | |
' OA='_a,OB=b,OC=c- sal ,
This ratio of 'a", 'b', 'c' is called axial ratio. So, the axial ratio is the ratio of
the intercepts made by the unit plane on the crystallographic axes. '

3.3.3 Law of rational indices: . _

The intercepts which are made by any face of the crystal on the
crystallographic axes, are ~ * GO HGTY |

(i) Same as those of unit plane.

(i) Simple whole number multiple of unit plane.

(iii) One or two intercepts may be infinity.
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In other order to understand it, consider thc diagram (20) and take ing,

account the intercepts made by the face, ‘A’ B’ C". These lengths are 2a’, 2b', 'y
These are simple whole number multiples of unit planc a', ', 'c’.

cubic structure as in Fig. (2])
centre of the symmetry. The

OX, cuts the face ABCp

. In order to explain it take into account the
The origin 'O’ of the crystallogfaphic axes lies at the
axes OX, OY and OZ are parallel to the edges. The axcs
at the point 'L'. Other cutting points are ‘M' and 'N'.

Fig. (21) Intercepts made by the faces of a cube on the axes.

(£ T M N is taken as the unit plane, then the intercept made by the unit
OL' 'OM' and 'ON". The face 'ABCD' in Fig. (21) cuts

plane on the three axes are
the x-axis at 'L', but it does not cut the y-axis and z-axis at all, because they are

parallel to '"ABCD'. We can say that the intercepts made by the face 'ABCD" on'y
and z-axis are infinity. " - .

" In order to define other planes 'A’B‘C'D" with respect to the unit plane
'ABCD", the intercepts OA’, OB’ and OC’ are multiples of these intercepts of the

plancs in the crystal and are given by ma : nb: pc. The 'm', 'n', 'p' are either integral

"ma:nb:pc=d:e:f
This conclusion was made by Hauy and known as law of rational
intercepts. The co-efficients of a, b, ¢, which are m, n, p are called Weiss indices.

| 334 Miller Indices: -

Weilss indices were used by scientists to index the crystal faces, but Weiss
indices are no longer used in crystallography. They have been replaced by Miller
indices 1.€., h, k, /. These are reciprocals of Weiss indices and they are in the ratio
of whole number. They can be reduced to whole number by multiplication with 2

lea:st cfamfnon denominator. In order to have a relationship between Weiss and
IMlllcr indices following table (3) will help us. I
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- Table (3). Weiss indices and corresponding Miller indices.

Reciprocal of Weiss Miller Indices
Indices

N |
Ny
Bl
BN | —
B —
—
o |
[S——
=N

The above table (3) shows that some of the values of Miller indices are
‘having a bar upon them. In order to understand it, look at the following diagram
(22) for positive and negative values of Miller indices. There are three axes as

AA’, BB’ and CC'.

C

Fig. (22) Positive and negative values of Miller indices.

They are intersecting at the point O. The Intercept on these axes towards
the front, right and upwards are regarded are positive. The mtercepts towards the
back, left and downward arc taken as negatlve These necgative intercepts are

Indicated by a bar over the number.
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of Miller indices of a cubic system:
in is taken at the lower left
axis of each cube are taken

3.3.5 Diagrammatic representation

In the following set of diagrams (23), the orig
front corner of each cubic crystal. The direction of the

along the edges. .

1:0:0 &
Hence, 1ts Mille{ indices are (1 0: 0)_ or (100) G oo
"~ In the diagram (b) a plane 1s cutting the Y-axis and is parall
z-plane. So, its Miller indices are (0:1:00=(010) . s . |
~ Similarly, Miller indices of the various planes are calculated along with the

el to x and

diagram.
Diagram (c)
As, m:n:.p
. i1
So, h:k:!
1 11
oo'oo:,l' -
0:0:1 = (001)
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wavelengths, so that a-lines may be used in x-rays crystallography
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| Diagram (d) -
- m:n:p
l:00:1
So, h:k:/
111
l o0 1
1:0:1 (101)

3.4.1 What are X-rays?

X-rays are hlgh frequency electromagnetlc radiations and they are

produced when fast moving electrons are allowed to hit the surface of a metal. The
inner electrons of the metal atom especrally from n =1 are disturbed. The photons
of light are emitted, due to the jumping -of electrons. ‘The wavelengths and the
energles of the x-rays depend upon the nature of the metal. Actually, 'a,' and 'a.)’

are the lines of the x-rays, due to the jumping of electrons from L (n = 2) to

" K(n = 1) level, and P-lines are emitted when the ] jumping of electrons takes place
fromM(@n=3)to K (n = 1) level In order to separate the B-lines from the a-line,

'B' filters are used. ', " and ' o, are so close to each other in wavelengths that they

are thought to be monochromatic. Their resolutron is difficult and they can be used

for the crystal study jointly. _
Following table (4) helps to understand the x-rays from various. meta]s

their wavelengths and the B-filters. B-filters can separate the wavelengths of lower

L
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Table (4) Wavelength of x-rays of the various metals and filters.

Metal Target | Line Wave length in A° m
\Y

3.4.2 Diffraction of x-rays:

X-ray tube provides electromagnetic radiations with wavelengths of ‘about
atomic dimensions. In most of the cases we can think that a typical atom might
behave like a hard sphere of about 2A° diameter. The characteristic x-rays which

‘are obtained from copper may be used for x-ray crystallography. The wavelength
of such rays are 1.5418A°. When these x-rays are passed through a crystal, they are
diffracted. They form an interference pattern like that of visible hight, which is
diffracted by grating. The spacing in the gratings are comparable to its wavelength.

x-rays are electromagnetic radiations. Electric and magnetic fields are
propagating perpendicular io each other. They arc also perpendicular to the
direction of propagation. The scattering of x-rays is due to the reason that the
interaction between the electrical field of x-rays takes place with the negatively
charged electrons in the crystal structure. This scattering power of an atom is
proportional to the atomic number or the number of the electrons of the atom. The
crystal acts as three dimensional diffraction grating towards x-rays. So, a
diffraction pattern is obtained when x-rays pass through the crystal. |

3.4.3 Bragg’s equation:

Bragg has given a simple account of diffraction from a three dimensional
crystal structure. The complex phenomenon of x-ray diffraction is reduced
theoretically to simple geometrical problems looking as if we are studying the
reflection of x-rays from crystal planes. o

Let us consider a crystal having three planes ‘11" ‘22’ and °33"". Thes¢
planes are successive. A beam of X-rays of wavelength ‘A’ is incident on thesc
planes at an angle '0". A part of the beam 'BC' is reflected from the peint 'B'. On the
other hands, some rays like 'A'B'C" penetrate into crystal and are reflected by the
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BB’ 1s hypotenuse.
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atoms ,J)rt,scnt In the lower plancs ‘22"’ and ¢33'’. The diagram 1s as follows.
Fig. (24 |

A | C
| .A' . | CI
B 0 1'

‘V

F ig. (24) The condition of reflection by a crystal lattice.
The ray A' B’ C' has to travel a longer distancc in ordcr to emerge out of

crystal. 'BL' and 'BM' are the perpendiculars on A’B’C’ ray. The reflected beams

BC'.and B'C" undergo interference with cach other. If these reflected rays arc in
phase then they reinforce cach other and the intensity of the reflected ray is
maximum. When wc say that rays are in phase with each other, then 1t mcans that

the crest falls over the crest and trough over the trough.

If the reflected rays are out of phasc, then the intensity of reflected beam IS’
very low. When a photographlc plate 1s placed to rcccwc the rcﬂectcd rays, then
the diffraction pattern is obtained.

It 1s clear that, the reflected rays 'BC' and .'B'C" can .do thc constructive

interference, 1f the path difference (LB’ + MB’) is the integral multiplc of
wavelength of X-rays.

From the night angled triangle, 'LBB" thc length 'LB“ is perpcndlcular and
'BB" 1s hypotecnuse

LB’ |
So, BR sin 6
LB = BB'sin0

From the rlght anglcd tnangle MBB’ the length MB' is pcrpcndlcular and

- MB' . o L
chcc i MB’ = BB’%sin®
3 BB' = d (inter planar distancc)
# MB' = dsin6
Path diffcrence,

_ IB'+B'M = dsin6+dsinf
Path diffcrcncc =2 d sin ©
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The path difference is integral multiple of wavelength. Let that igtegral
multiple 1s ‘n’. So, |

A = 2dsn® 000U (1)

By gradually increasing the value of angle '0', a number of positions are
.. etc. At these positions, the reflected

observed corresponding ton = 1, 2, 3, 4, - _
beam will has maximum intensity. For other values of '0' lying 1n bgtween, those
values of n, ihe intensity of reflected beam will be less than maxmlum So, a
diffraction pattern maxima corresponding ton = 1, 2,3, - ctc. are obtained.
. When the maxima is obtained for n = 1, then it 1s called ﬁrs?t order
reflection. When maxima is obtained for n= 2, then it is second order reflection.

If v measure the angle '0' at which first maxima occurs, so that n = 1,

then if we know the value of ‘A’ of the x-rays and ‘d’ can be calculated.
If the crystal is of known dimensions, then wavelength of unknown X-rays

can be calculated.

E£XAMPLE (3) | i J¥1, = _
The x-rays of wavelength 2.29 X 10" m are diffracted from a c.ryst_al.
“ae first order reflection happens at 27° 8'. Calculate the'mt_crplanfr d_lstan;e

¥ crystal. - d
SOLUTION: . - | o '
Data: RIURY | 3 T - . I
A = 229%x107"m
.0 = 27°%
. According to Bragg's equation
nA = 2dsin0
nA
e 2sin© )
Putting values
© 1x229x%10°m
~ 2sin(27° 8')
.. 229x10"m
. B0 T 0466, o i el bl
d = 245x10m = Ans, o .oonoo
EXAMPLE (4) | o

A crystal has a interplaner distance of 2.04 A° and wavelength of X-rays
used is 1.54 x 107"° m. Calculate the angle of reflection. TS S

SOCLUTION:
Data: ;
d = 204x10""m
n = | °
A = 1.54x10""m
0 = 7 2
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2 d sin 0 = naA |
. ,

Sin@ = —&

s
By putting the valyes
sin@ = 1x1.54x107
. : 2 X 204 x 10710 1
Sin 9 i|=: 0.3774 ’ 1,

O = sin™ (0.3774)

0 = Ans,

3.4.4 Bragg’s method of x-;ray analysis:

X-Rays . f o e i

r o F:g (?5) X-ray &pectroz}rete}'.'l | _ - °

X-ray spectrometer is consisted of an X-ray tube 'T'. The X-Tays are |
converted to monochromatic x-rays by passing through a screcn. Monochromatic |
x-rays-are passed through a slit (s) to get a fine beam. This fine beam is allowed to |
fall on the face of a crystal ‘C’, which is mounted on a turn table. The turn table N
can be moved over a circular scale 'S'. The beam is reflected from the surface of = ’
crystal ‘C’ and is sent to the ionization chamber I.. This 1onization chamber can ‘
also be moved on acircular scale independent of the turn table. The chamber ]
contains - easily ionizable gas’ as:.SO,. The ionization of this gas is directly
propo;{ionél to the intensity of the reflected beam of x-rays. When the crystal faces
are rotated by rotating the turn table, the direction of the reflected beam changes.
For this purpose the ionization chamber is also to be rotated through double the
angle '0', through which the crystal faces are rotated. This practice  will help us to
measure the values of an angle '0', corresponding to first, second and third maxima.
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3.4.5 Structure of NaCl:

For the face of NaCl crvstal h.viae 2" dices (100) The value of g IS
5.9°, for n = 1 Sin (5.9)° = 0.103, so when v.. bstitutc this valuc in Bragg’s
equation. |

2dsin©® = nA
ni. 1 x A

d = - ———— = 485\

2sin B 2 x0.103.

If we know the wavelengths X-1ays used then 'd' can be determineq
.yhow, if ‘d’ of NaCl is known to us then wavc]ength of unknown X-rays can be
alculatza. '

= 2 S 4.6 Powder method
This method finds 1its name because the crystallme substance whose

§ nalysis is ) be done is taken in thé form of powder. This method was advanceg

by Debye : 1d Sherrer in 1916. A source of monochromatic x-rays is managed A
fine crystaiiinc powder is taken in thin walled capillary tube Fig. (26). Each
sarticle of the powder acts as a tiny crystal. These crystals are randomly oriented

and so the angle 6 changes. Due to random orientation of particles, X-rays are
o scattcred from all sets of plancs. The scattered X-ra: s are detected by using X-ray
film Fig. (26). The different X-rays form the concentric concs and the originate
from the powder. There 1s a narrow strip‘ of film, on which the arcs appear on
cither side of the bright spots. Each pair of the arcs which is equidistance from the
central bright spot gives the position of reflection. The value of the glancing angle

1s calculated, by -considering the distance of thc arc and its dlstance from the
capillary, which 1s the radius of the arc. & .- -

Since, glancing angle 20 = g i H.
S - radius of the powder ring from the central spot
R = radius of camera | '
- -- S
| ' So‘ 0 = = _

1

2R
' § 0’ Wthh Is obtained 1n radians and can be convcrted Into degrces
- 180
. 9(m radlan) 0 x T dcgrces =0 x 57 296 _
J a7 By using the Bragg S equation as 2d SIn: 9 = nA, and knowmg the value of
.ﬂ\ 'A'and '6' 'd' can be calculated. AR niogn 2 o B
- : | Cylmdncal IR LTV VL A
| - Camera | ' Tiath 1

‘Black-stop Powder
. (To Absorb .  Sp>cimen
. Direct Beam) *

&

] ¥ i,
ey . ..

X-rays in

Collimato‘r

-ra; ' (p) Film
Leam | T W

Fig. (26) The poWde-'*“}iggthéd of crystal structure.




i
!

Reasons:

Solids

Laue’s method:
The x-rays from x-

having a hole in it. The cry
the plane scatters the X-ra
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crystals photographic
adjustable plate
mount I ¢

Fig. (27) The Laue's method of c:ysial analysis by x-rays.
The spots which are produced on the photographic plate represent the

scattering part o_f the original beam through various characteristic angles. The
arrangement of this part depends upon the nature of the crystal.

3.5.0 HEAT CAPACITIES OF SOLIDS

In 1819 Dulong and Petit, who discovered that the heat capacities of the
solid elements particularly the metals measured at room temperature have the

constant values of 26 J K™ mol™!. It means that one mole of metal absorbs 26
Joules of energy, when the temperature is increased by . 1K, in the range of room
temperature. The heat capacity of'solid should be measured at constant volume. So
it 1s 'C,,' of the metal which will be discussed, but not 'C,,' because the change in
volume of solid is negligible. — i

In 1907, G.N. Lewis showed that 'Cy,’ values of ‘solid elements arc very

close to 24.9 J K™! mol™! around 25°C. Some of the 'élcmclrits at 25°C have the

following values of heat capacities. Table (5). |
~ Table (5). C, Vall:le of metals at 25°C \

Law of equipartition of energy can explain the constant heat capacity of

solid elements. ‘Each': degree’ of freedom: qontmbutesl 2 RT" kinetic energy' to

ray Fube are collimated into a beam by a lead shield
stal is placed in path of the x-ray bcam. Each atom in

ys and its impression is obtaincd on the photographic
plate. The values of '9' is f |

xed and the wavelength of x-ray Is changm_:l. The
ed. The spots of different sizes and intensities are
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ii'“mole of monoatomic substance. In solids, there are vibrational motiens In three
mdipendent directions.

On the average, for a v1brat10nal motlon there is ‘an equal amount of

3 3

petentlal energy as well. So, total energy 18 5 D) RT 5 7 RT = 3RT e '(1)

Accordmg to the fundamental definition of ‘C,/ itis the rate of cha.nge of
- mtemal energy with respect to temperature at constant volume.

Physical Chemistry

ﬁ

| OE - o
y y 2 1475 | pff ¢ N e ees 2
In order to get this expression, we differentiate equation (1)
| E = 3RT | |
OE)
(51') gLy E e
. So, Cv = 3R . | | (3)

Puttmg the value of ‘R’ as 3. 3143 ) I('°1 mol" | LT
Cy = 3x83143) K= mol-l =25] K"‘ mol”!

L

3.5.1 Heat capacltles and temperature:.

In order to understand the effect of temperature on heat capaeltles of solid,
look at the follomng graph in Fig (28). -- -

35
30 <1 4 pb
3oal " Ag
= 25 =5 Cu
2: =

-
& i P+ g . + i
* i g «° F . N ™
20 . ; : _;. .'|I v

e 1000 200 "“300_’
i f —> Temperature (K) 3
Fig. (28). Variation of heat capacity with-temperature.

The graph shows that heat capacities are zero at zero kelvin. The heat
capacitics increase for Cu, Ag and Pb'very rapidly’ with ‘the’ increase Off
temperathr'- ‘Wiien the temperat ure is close to the room temperaturc then values 0
- heat capae;t s Decome 25 J K mel'
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heat capacities very slowly. show the exceptional behaviour. They increase their

attains this value aboye 1300""8?1‘3 e alotropic forms of carbon i.c., diamond

3.3.2 Einstein’s explanation of heat capacities:

According to Emst e ) ; |
they vibrate about their equeiilill:; ﬂle ate1s which make a crystal are not at rest, but

absorbs the gy :lbrat_ional frequency. He says that the 'Vibrating system

contin lv. Fincte; 1 the absorption does not take place
uously. Einstein has relateg the value of 'C.' of solid elements -with the

follows, fational frequency 'v' of wie bond. The equation 1s as

| hv AT
C = hvye ¢
v = 3R (kT (VAT _ )2

- According to this equation the - -
- : . ation the value of 'C,,' approaches to zero at very low
temperature 1.€., OK, When the temperature is higill, then the term hv/kT is small in

gt;glganson with unity. The value of C,, will approach asymptotically to the value
- | T -

.~ For the elements like Cu, A : : m
: - , Ag, and Pb, hv/kT is sufficiently small at
ordinary temperature and heat capacities can become 25 J K-} mol™.. |

The vibrational frequency of the diamond is very high due to its very

strong_PondE  and very high temperature is required to attain the value of
25 J K™ mol™. |

3.5.3 Modification of Einstein’s the_ory:

In 1912, Debye’s modified Einstein’s theory. He says that all the particles
of a crystal do not vibrate with same frequency. They vibrate with any frequency

- between the limits of zero and maximum possible frequency called y_. So, we use

the term 'hy_/KT'. Following diagram'(29) shows the Debye’s plot"Por aluminum

metal. The glotted_ line is according to Einstein’s theory which is away from the
actual results. " |

0 100 200 . ..,300- . °
—> Temperature (K) |

| sssnsssesemans Cy = Einstein's plot |
- Cy = Decbye's plot

Fig. (29). Comparasion of plots of Einstein and Debye between C %
and temperature in K.
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