GASES

Introduction:

Matter exists in three principal states 1.€., gases, liquids and solids.
Behaviour of gases is more simple and there is uniformity in the properties of
gases. When the external conditions of temperature and pressure are changed, then
the volume of the gases are affected to.same extent. That is why, all the gases more
or less follow the same principles and laws. These laws are given bnetly as

1.1.0 LAWS OF GASES

1.1.1' Boyle’s law:
is inversely

This law states that “the volume of a given mass of a gas
W ‘u—u-n-..u._.._...__..__,_,_

P — W
e pressure provided that the temperate remains constant.”

proportional to L‘Nwm ons
e st it —

1 (when tempefature 'T' and number of moles 'n’ are constant)

follows. _'
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When the 'T’ and 'n' are constant.
r a gas between volume on x-axis and pressure on

btamcd at constant tempcrature Such curves are

urve is 0
y-axis, then parabollg_ C plae :
“Aled isotherms. When the tcmperature of a gas is “decreased, then the 1sotherms

called isotherms.
called 1sothe Flg (1) makes the idea clear.
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Fig. (1) Isotherms of Boyle's law.
1.1.2  Charles’s law: ’

This law states that "the volume of a given mass of a gas increases or

1 ’ﬁm#ﬂﬂ‘fqﬁurﬂ"m_m'lﬂ """-‘_:.___r_,;_r.-""“""l' e

decreases by 273 of its volume at 0°C, for every one degree rise or fall of

Mw"-'\. o, - W

femperature provided that the pressure is constant."
WWW .

| From-this law, we get the idea of absolute zero, which starts from
@€73.16°C. This is the lowest temperature which is never attained. When the graph

Is plotted between temperature on x-axis and volume of gas on y-axis, it gives a

straight line and when extrapolated meets the temperature axis at —273.16°C.
Fig. (2) | |
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| | ' Graphical explanation of absolute zero by Charles'’s law.
1.1.3 Combined gas law: ' _ '
Keeping in view, the Boyle’s law and the Charles’s law, we can prove that

Vocﬂﬁt
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So, _ DRT
¥ P
il PV=pnpRT ... (2)

- I}EE}S a general gas equation in which ‘R’ is general gas constant and ‘n’
+> 71¢ fumber of moles of the gas. This equation has another shape as well. |

.PlVl . szz 3
T, T, )
PM
or d = RT e (4)

In equation (4)_ 'd’ is the density of the gas ‘P’ is pressure and ‘M’ is the
molar mass. The dens_ld'gy!of gas 1s directly proportional to pressure and inversely
proportional to the temperature, — " T T

Gas constant:

‘R’ 1s called universal gas constant. Its significance can be readily
understood, if you examine the nature of the quantities which make its values.

Since PV = nRT

PV
SO R = T
B pressure x volume
or R =

temperature x no. of moles

Since, pressure is force per unit area

force volume
— o M —
area temperature x no. of moles
= 2 -
“"Whore area = @%ﬂl)a
volume = (length)
temperature is in kelvin
e I Py )
_ force y (Iength)®
SO? > & (length)? ~ kelvin x no. of moles

__force x length

| .~ kelvin x no. of moles

AW\ ?Jg’\ R Force X length == Energy or work

Energy (work) -

T & -1 o=l
So, R'= kelvin x no. of mplcs Energy. K™". mol

It means that the ‘R’ will be expressed in terms of energy per kelvin per
mole. When we use the Avogadro’s principle, then the values and units of ‘R’ are

as follows.
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Values and units of 'R":

" According to 'Avogadro’s law for gases, one mole of ar; ideal gas at
standard temperature and pressure occupies the volume of 22.414 dm”.

Since R = % P=1atm, V=22414dm’

Putting values

_ Natm) x 22414 (dw’) _ ) 0 473 a4 K1 mol!
R = 1(mol) x 273(K) '

If the units of pressure and volume are taken in S.I system, then
P = 101325 Nm2(since 1 atm = 101325 Nm™)

V = 0.0224 m3J (Since 1 dm? = 107°m?)

- Putting values '

101325 Nm™2 x 0.0224 m? 1 i
- e K 1
R Lmol x 273 K 8.3143 Nm mo

Since- Nm = ]
So, R = 8.3143 J K ! mol™!

We know that, 1 calorie = 4.18 Joules

The value of R may be expressed in calories

8.3143
OR = f T JK"'mol™! = 1.987 cal K~! mol™!

1.1.4 Avogadro’s law:

Those real gases which obey the Boyle’s law and Charles’s law at low

pressure follow the principle of the Avogadro’s law. This law states that "e

equai
volumes of all the gases at same temperature and pressure contain equal number
of molecules." TS e E

L:W el
S

Actually, this statement is derived from this idea that one mole of an ideal

gas at standard temperature and pressure occupies the volume of 22.414 dm3. We
know that one mole of an ideal gas contains 6.02 x 1023

At 0°C and at a pressure of 1 atm it occupies a volume of

It means this law hel
molecules of a gas and the voly

molecules of an ideal gas.
22.414 dm3.

PS us to have a relationship between number of
me occupied by it. -

1.1.5 Dalton’s law of partial pressures :

This law is for the mixture of pases It :
1801. According to this law, "the fotal Ee o was put forwarded by Dalton

ith each other i e P of the mixture of gases which do_
not react with each other is equal to the sum of the partial pressures of cons ifuent
m
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When all the gases are ideal, then they individually obey the general gas

equation so,

_ _RT
Pl—-nlv
_ RI
_ RT

The total pressure 'P' of the mixture of these three gases 1s sum 0: [a€SC
partial pressures.

P = oL, RT RT
= n1v+n2v +113V

n,+n,+n; = n

RT |

P = N~

Where ‘n’ is the total number of moles of gases. The partial pressure of

F—l-—____'

any gas is related with the mole fraction of the gas and the total pressure as

s s ol vith the e facion oF e
o o
pl — n P pl = x]_
n2 —
_ B e
P3= 4 ¥ P3 3

Where ;. X; and x; are mole fractions of the individual gases.

1.1.6 Graham’s law of diffusion:

Graham in 1829, observed the spreading out or diffusion of gases. He

postulated that the rate of the diffusion “of the gas does not depend upon the

—

0S S Wit s,
sravitv. but it depends upon temperature of gas. This law states that, "rate of

ty, but it | o f
5:;‘1”0," 07' gas is Tnversely proportional to the sq uare root of the degf__;___g; £m€

a
w—‘

gas at a given lem erature.’
| 1
r oc -{/-—-&

If we have two gascs having rates of diﬁ‘psion as 1, r,, with densities d,

and d,, then
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Dividing the two equations,

no %
e d,

We also know that densities are directly proportional to the molar masses,

i

e — o 1\._.—-""-.__"'-—-"-'”‘5-!"‘

SO,

S L
- I, Ml

It means that the rate of diffusion can be calculated from the densities of
gases and molar masses of the gases.
1.1.7 Gay Lussac’s law:

Joseph Gay Lussac in 1802, established the pressure temperature law
which is called Gay Lussac’s law. This law states that,

"The pressure of the fixed mass of the gas is directly proportional to
Kelvin temperature at constant volume”

P o« T (when ‘V’ and ‘n’ are cons'tant)

P = kT
L k
T =
- At more than one pressures and temperatures for the same quantity of the
same gas, *
b
I, T,

Molar Volume:

It follows from Avogadro’s law th '

temperature “T" and pressure ‘P’ has the same fixed volume

It 1s found experimentally
volume of 22.414 dm3
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(1857) to derive the kinetic

able to derive the gas laws.
Boltzmann and Van der W

Postulates of kinetjc molecular

(1)
(11)

(vii)

- (ix)

equation. From his kinetic equation of gases, he was
This theory was elaborated and extended by Maxwell,

theory:

The gases are consisted of tiny particles called molecules. It means
that gases like He, Ne, Ar etc are said to be monoatomic gases.

The molecules of a gas move randomly, collide among

themselves, collide with the walls of the vessel and change their
directions. |

The pressure on the walls of the vessel is due to collisions on the
walls.

The collisions of the molecules among themselves and on the
walls of the vessel are pertectly elastic.

The molecules-of the gases are widely separated from each o er
at ordinary temperature and pressure.

There are no forces of attractions among- the molecules of the
gases. |

The actual volume of the gas molecules is negligible as compared
to the volume of the vessel.

The force of gravity has almost no influence on the molecules of
the gas.

The kinetic energy of the” gas molecules is proportional to the
absolute temperature of gas.

1.2.1 Mathematical derivation of kinetic equation of gases:

Let us consider a certain mass of gas in a cubic vessel of length *I’. The
total number of molecules in the vessel are ‘n’. The mass of each molecule is ‘m’

The - individual

component velocities along x, y, and z-axis are u, v and w

respectively. These motions are shown in the F 1g (3).

/ meters

/s

O

' / meters

| Y<_.._————————————— .

. Fig. (3) Motion of molecules in three d'mensional space.
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of a gas molecule is ‘c’. The relationship of this

The actual velocity of &
velocity with component velocities 1S,

2=u2+V2+W2 ...... (1)
of impact of all the

consider a single

c ’
want to calculate the total eftect

cube. For this purpose, We have to

1 sec”! along x-axis. It moves 10

since the collision 18 elastic, it Wi with |
collision the velocity remains unchanged, but the direction of motion changes.

Momentum of molecule before collision = mu
- Momentum of molecule after collision = —mu
Change in momentum per molecule per single gollision = mu — (-mu)
| — Imu - (2)

to its original position from where it

If the molecule ‘A’ has to come back
_axis. In this way, it has to cover a

started, then it should strike the face 'B' on X
distance of ‘2/’° meters.

‘9 J” meters covered distance makes collisions at face ‘A’ = 1
. . ' 1
1 meter covered distance makes collisions at face A = 57
gL Y B _ "' meters covered distance makes collision at face @ A = Eu_,_

Since the velocity of molecule is “u’ rﬁs'l, SO '22; is the number of

collisions experimented by the molecule at the face ‘A’ in one second.

Number of collisions at face 'A’ per second N = 'ili,' SR E)
Change of momentum at face 'A' due to one colllis'ibn = 2mu - )
, Change in momet ' '
. ge in momentum per second per molecule at face 'A' = Zmu X '2}]7
2
=

same change in moment,

faces 'A B ,

ti |
r:lm:t c;f one s;econd, the same molecule is suffering th
ace ‘B’. So, rate of change of momentum at "

»
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Velocity of same moleculé of mass 'm' is 'v' ms~' on y-axis,

2mv>

". Rate of change of momentum along y-axié = 7 (6)
Velocity of molecule on z-axis is 'w' ms .

| 2mw?

“. Rate of change of momentum along z-axis T (7)

| 'I:otal ra_te of change of momentum, if the molecule is able to strick all the
six faces is obtained from equation (5), (6) and (7), and that 1s

y) 2 2
_ __ra;l_JrZLnLJr?_mw_l _ M 2hvawd) e (8)
4 4 4
Putting the value of (u? + v? + w?) from equation (1)
. 2mc’
Rate of change of momentum per molecule on six faces of cube = / -+ (9)

According to Newton’s laws of motion, the rate of change of momentum is
equal to the force. |

" Force due to the collisions of a gas molecule on the six faces of the cube

N 2 2
: = == Newtons - (10)

Actually, we do not have a single molecule in the vessel. Suppose, we

have ‘n’, molecules with velocities ¢,, ¢,, ¢, ............. C_.
The total force due to ‘n’ molecules on all the six faces of the cube
2m ” . |
= et rel ) -+ (11)

Equation (11) shows that i order to calculate the total force due to all the
molecules, we have to consider millions and millions of the terms. The reasons is
that every molecule has its own velocity and has its own momentum. In order to
cover it, let us develop the idea of mean square velocity

T w . . (12)

According to equation (12) mean square velocity is the mean of the square
of all the velocities.

2
Hence, C€2+C2+C + c? =nc e (13)
Put equation (13) into equation (11)
- ~ 2mng’
Force due to all the molecules = == ... (14)

‘ Equation (14) gives us the force which is being exerted on the walls of the
vessel due to all the collisions of the molecules. We want to convert this force into

pressure.
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| We know that the pressure is the force per unit area.

- force | o (15)
P = area
-2 mnc-
Force = /
Area = 6¢ %(area of each wall in¢?) - ..+ (16)
Putting equations (14) and (16) in the equation of pressure (15).
2 2
2mnC ] mnC
. - = . V=P
P = 62”3 v ! )
PV = %‘mnﬁz - e (17)

Equaﬁon (17) 1s the kinetic equation of the ideal gases. This equation tells

1
us that the product ‘PV’ for any gas is equal to the 3 of the mass of all the

molecules 1.e. 'mn', multiplied by mean square velocity of gas molecules (E:‘z).
12.2 Derivation of gas laws from kinetic equation:
(i) Boyle’s law: | _
In order to derive the Boyle’s law, we take the
theory relating the kinetic
- postulate, kinetic energy is

help of postulates of kinetic
encrgy and absolute temperature. According to that
directly proportional to absolute.temperature.

]
> mnc” o T
]
—2-mn"é'2 = kT ...... (1)
k'is prbponionality constant
Kinetic equation of gas says that,
PV = él"mn'e2
| 21 |
or PV = 3 ("2' mn¢c ) ...... (2)
Putting equation (1) in (2)
| 2
PV = J(kT)
2
Letusput, 3 k = k, (another constant)
PV = k]T
If temperature is constant then RH.S. of equation (2v:e . . "
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In this way, we have proved that at constant temperature the product of
pressure and volume is a constant quantity.

(ii) Charles’s law:

In order to justify the Charles’s law, we take the help of equation (3) from
previous discussion

PV = KT
V k] |
~_c 4
=3 (4)
When the pressure is constant, the R.H.S. of this equation (4) is constant.
q v _
O, T = Con'Stant

This 1s the statement of Charles’s law.

(i)  Avogadro’s law:
In this law, we have to prove that the equal volumes of all the ideal gases

at same temperature and pressure contain equal number of molecules. Let us
consider two gases with masses of molecules 'm ' and 'm,, having the root mean

square velocities "'f', s> Let the number of molecules be n,' and 'n,". If these

gases have the same pressure and volume, then

|
PV = ':,: Ez and PV'—"mznzc
1 2 1 _2
So, ;mn T, = 3111211202
mnc. = mz"zcz ...... (5)

If these two gases are maintained at same temperature, then their kinetic

energies are same.

1 oo gy Lo 22
So, 9 Ty = 2m202
> P it AR
m1°1= m202 ...... (6)

Dividihg equation (5) by (6), we get

n =

So, we have proved that when two gases are mamtamed at same P, V, and

T, then their number of molecules ' n', are same.

(ivy  Graham’s law of diffusion:
This law states that the rate of diffusion of a gas Is inversely proportional

to the square root of the density of the gas.
For this purpose, let us consider that we have one mole of an ideal gas,

SO, n = NA
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Hence, kinetic equation becomes,

]

1 2
PV = 3mNAc (7)

This equation (7) is the kinetic equation for one mole of a gas.
mx N, = M (Molar mass of the gas)

]
So, PV = ‘3:“M = (8)
Equation (8) 1s also kinetic equation for one mole ideal gascs. Rearranging
the above equation (8),
2 3PV 3P . (d“MJ
2 3P
cC = —'c'i— ...... (9)

Taking the square root of equation (9) on both sides

C ', 1s the square root of mean square velocity and it is simply the rate

of diffusion (r) of gas.
So, r = 2
\/ d
< 2 If pres | tant, th
(}Q/« /W% pressure is 001115 t, then

)}WUM ‘ roc'_v—é' ...... (10)

W > This is the Graham’s law of diffusion.
- \}}7 1.2.3 Molecular velocities:

MN%PUO M (a) Root mean square velocity

o (®)  Average velocity




Supposé, that gas is one mole, so
n = N

1
PV — EMNAﬁz ...... (1)

of the gas.

A

-——-"T

Equation (1) is the kinetic equation of gases for one mole

General gas equation for one mole is _ SN
PV = RT 5\/;0 " ¥ ~4 e (2)
Comparing equation (1) and (2) ’C, V= T ;
1 2 - | - \
3 m N AC = RT  mNy, = M ' ﬁq,ﬁ.\ﬂ” 1 /’!/’?
] 2 . wf{{“ﬂ ~ &
3 Me” = RT Y \"' N gl
PSS
| 3RT 6 N ’
or T = ™M ‘ A (3)

According to equation (3) the mean square velocity of gas molecules
depends upon the temperature and the molar mass. If we take the square root of the

equation (3), then we get the root mean square velocity. | ‘,f’{{m

2 3RT A “ Y
=\ M | W _ w .
v s\ Ko o

L]

- According to equation (4), the root mean square velocity ¢ of the gas

molecules is directly progwﬂme square root of absolute temperature and

inversely proportional to the square root of molar mass.

__—___'____,_______-——-" . -+
ft means heavier molecules with greater molar mass move slowly.

me to know that the elevated temperature makes the molecules to

O
|

Moreover, we €O

M% * - - ?\' J
(b) - Average velocity: - | kl.
| This is also called mean velocity and it 1s "the mean of the all the possible ("

velociﬁes."’ It is denoted by €. U\\k\j

cl+cz+c3+ .......... cn £ i 2 \\‘\’\(
_ Y1 2 9
C = n | '

The expression for © can be obtained from Maxwell’s law of distribution

of velocities. ﬁ
N R AV EIE A
¢~ \| M T M | M
c = 139\ |I™M . - d )
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Average velocity also depends upon the temperature and the molar mass of
the gas just like root mean square velocity given by equation (4).

(c)  Most probable velocity:

It 1s defined as, “the velocity possessed by greatest fraction of the
molecules in a gas at any temperature.”

Actually, all the molecules of the gas have not equal velocities. Molecules

B S —

\v! @( are distributed in groups of velocities. These groups may be called as fractions. A|]
/r{"N - mare_ not equal. That fraction which is biggest possesses a certain

Q'Q \1\}!“1 velocity and is called most probable velocity. It is obtained by plotting a graph

w between velocities of molecules on x-axis and fractions of molecules on y-axis. Its
/ \W expression is as follows.

J \'}’er N NN LT
0 mp =\ M = N2\ = 14147\ |3
x\ Crp = 1414 /BMI ...... (6)

| | By usi_ng above formula for three types of velocities, we can calculate their
- values by putting the values of t

r.m.s C . cm_p
RT | RT |
1.7321\ [+ - L5 RT
il 159 1414
It means that root mean square < 1 7, .
most probable is the Jeast duare velocity of a gas is of maximum value and
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. P utting the values in equation fo_r various velocities

. = « [2RT _ _ [3x8314JK" mol” x 298° K
B 0.032 kg mol"l

7432.716 m3%s~? -
T 003 — = [4819ms'| Ans

_ . /8 x 8.3143 JK™' mol™ x 298 K
- 3.143 x 0.032 kg mol ™
- 19821.3 m? 5

- 010048 . 441.13 mS_l Ans.
/2RT ~ 2 x8.314 JK' mol™ x 298 K
M 0.032 kg mol™! -
l_\
4955.144 m*s™
Cmp = \/ 0 032m — - 393.5ms™’ Ans.
- Because the molar mass of H, 1s 16 times less than that of Q,, so the above

calculated velocities for H, will be four times higher than that of O, at 25°C.
EXAMPLE (2)

At what temperature will the C... of S0, be the same as that of O, at
27°C. '

SOLUTION:

Let us suppose that the temperature is 'T,' at which SO, would have the
same root mean square velocity as O, at 27°C.

Since we donot have to put the value of R in any given units in the
numerical, so, the unit of molar mass may be in g mol™ |

/3RT| .
Cms (SO7) = 64 |

Fdr O; the C,s velocity at 27°C (300 K) is "

- [3Rx300
Cms (02) =7 39

Since velocities of both are same, so

3RT, 3R x 300 [ 1/
S0, | —_6_4_ - 32 W\M’

|

Q|

Cmp

Squaring both sides, we get _ " i
3RT, 3R x300 \\J_’) ' -
64 - 32 N\ (Fw/tw
300 x 64 ~ W

|

T —3, = 600K

600-273 = |327°C| Ans

or T]
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1.2.4 Kinetic energy of one mole of a monoatomic ideal gas:

The kinetic equation of gases can help us to derive the formula for kinetic
€nergy possessed b

B

y one mole of an ideal gas irrespective of the nature of the gas.
The basic condition is that the gas should be monoatomic. We know that
PV = :},,"mnE:z
“If the gas is one mole, then
n = N,
PV = =mN.g '
= 3mN,C mN , = M(molar mass)
|
PV = TMc BN S VTR TIY (1)
The general gas equation for one mole of gas 1s
PV=i= RT -2es oo=h o A8 (2)
Comparing the equation (1) and equation (2)
1 2
gMe = RT ¢ 5ol - 202l nohiny o (3)
Multiply and divide L. H

1 2 3
‘i cC = 5 RT
_ 3
Ek - 2 RT ...... (4)
According to '

main lon e LT g ko
monoatomic gas, a té.ln the rotational a.nd vibrational motions of the
EXAMPLE (3)

SOLUTION. . onal kinetic energy for 2 moles of a gas at 27°C
. For 1 mole of g gas, K.E. = 2’2' RT
So, for 2 moles of the gas,

» 3 ..1
KE. = ('2' RT) X 2

Sit;ce' F R = 8314 JK mo[!
an " a— 0
| T = 27C=(27+273)K=300K
~Kinetic energy .2 T

I
’ q -
N
o0
P .
o)
Sl
o
=
P
¢,
A
5
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1.2.5 Kinetic energy of one molecule of an ideal gas:

If we divide the equation (4) with Avogadro’s number Na, then we get the
equation for one molecule of gas i.c. €,.

o » 2

B, 3R R .
K =N, N ﬁi=k(Boltmams constant)
ey = %kT ...... (5)

The value of k = R/N, is, 1.38 x 1072 JK™! molecule™.

This equation (5) gives us the translational energy of a monoatomic gas.

1.3.0 HEAT CAPACITIES OF GASES

Matter exists due to the possession of energy and there is a closc
interaction between energy and matter. Matter has a capability to retain to a greater
or lesser extent certain amournt of energies. In this article, we have to look at the
capabilities of the gases to absorb various amounts of cnergics by the change of

temperature.
Heat capacity of a gas is the amount of heat required to raise the

temperature of the gas by 1°C (1 K). If the quantity of the substance is 1 mole, then
the amount of heat required to raise the temperature is molar heat capacity.

If the weight of the gas is one gram, then it is called specific heat.

Heat capacities are denoted by C. The rise of temperature is noted from
14 5°C to 15.5°C. It is measured in calories K™ mol™ in non SI units. In SI units

the molar heat capacity is expressed as JK™' mol™.
1.3.1 Types of heat capacities:

Heat capacities are of two types
(i) Heat capacity at constant volume (C,)

(1) Heat capacity at constant pressure (C,)

(i) - Heat capacity at constant volume (Cy):

"It is the amount of heat which is required to raise the temperature of one
mole of a gas by 1°C, when the volume is kept constant and the pressure is allowed
to increase.” | | -

We are going to discuss | only monoatomic gases at the iﬁoment.
Monoatomic gases have qnly trgnsl'atlonal motion and the kinetic energy possessed
by one mole of monoatomic gas 1s given by

3
._EK e 2RT ...... - (])
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Let us increase the temperature of this monoatomic ideal gas by 1°C.
Temperature change is from T to (T+1), and its kinetic energy K'y at (T+1) C°, 1s

3omany e 9
E\ = > R(T + 1) (2)
Substracting equation (1) from equation (2)
3 3
E'-E = C,= R(T+1)-5RT
q |
Cy = 3R (3)
Since, R = 8.3193 JK™! mol™
So, C, = -2?1(3,.3143 JK-' mol™!) = 12.48 JK~! mol

It means that if we have one mole of a monoatomic gas, then moleccules

. SR . .
will absorb same amount of heat i.e., ER’ when their temperatures are increased by

one Kelvin. ,
Reason: |
It has been observed that, the monoatomic gas like He, Ne, Ar and vapours
of Hg, K and other metals have C,, value of 12.48 J K™! mol™!. The reason is that,

the one mole of all the monoatomic elements have Avogadro’s number of atoms.
In other words 12.48 Joules is the demand of Avogadro’s number of atoms, when

we change their temperature by 1°C (1 °K) say for He, Ne, Ar etc.
(1) Heat capacity at constant pressure (Cp):

"t is the amount of heat required to raise the temperature of one mole of a

gas by 1°C (1 K) keeping the pressure constant and the volume is allowed to
increase.” It 1s denoted by Cpe.

Actually, when we measure C, value of a gas then some energy is

expended in expansion of the gas and pressure. volume work is done. Let us
- calculate the additional pressure volume work.

The general gas equation for one mole of an ideal gas 1s
PV = RT . b maid 0 § 4w (4)

, Suppose that by increasing the temperature by one Kelvm from T to
(T + 1), the volume changes from V to (V+ AV), SO

P(v + AV) — R(T + l) ...... (5)
o e RAY T REAR e 3 6
Substituting equation (4) in equation (6), :
So, PAV = R . SRR
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= - +v due to the
It means that ‘R’ is the contribution to the molar heat capacity duc 1O
external work. It means that the value of the C, should be as follows

3 _ 2 A vana: (8)
p = 2R+R = 2R

Substituting the value of the general gas constant
| -1 -]
C %(3.3143 J K~ mol )= 20.8J K™ mol

It means that for monoatomic ideal gases, the amount of hcat required tc;
raise the temperature by one Kelvin for one mole along with the mcrea‘sc 0
volume 1s 20.8 J. ,.

1.3.2 Important conclusions for C, and C.: |
From the expressions of C, and C,, two important conclusions can be

drawn.

C
‘R’, as 8.3143 JK~" mol ™.

Il

P

. 5 3
@ C-Cy=3R-JR =R

Whatever is the atomicity of the gas, the difference remains the same.

(ii) - For monoatomic gases, the ratio of two heat capacitics (y) 1s same
1.e., 1.666.

1.3.3 Polyatomic gases:

" The gases which contain two or fhc_)re atoms in their molecules have higher
values of C, and C, from those of monoatomic gases. The reason is that,

monoatomic gases only need translatiql_lal energles while polyatomic gases spend
their energies for rotational and vibrational motions as well. So for polyatomic
gases, ‘

|

I
=
+
o

C =3
ook i
C, = JR+X

‘X’ is the contribution of energy for rotational and vibrational motions.
Two important conclusions are,

(S (3 £
(i) -CP"-CV = (ER"TX)_(ER+X)=R

CP ER"‘X
(11) G =Y = 3 <" 1.666
| 2R+x

- The table (1) gives us the C;, C, and,y-values for various pases
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Table (1) Heat capaci

ty of gases at 25°C (J K1 mol™)

Hydrogen sulphide m
Nious oide | 3255 ™
Sulphu_r dioxide

For a monoatomjc gas the translationa] “Nergy associated with one mole of
, A | .

the molecules at any temperature is 5 RT. "According 1o the

/

/ . |
5 RT is expended along x-axis, S RT along_ Y-axis and —

law of equipartition of
energy,

- ! 15.7202. ")
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1.4.1 Degrees of freedom ang atomicity of a gas:

In order to consider the distribution of cnergies for diffcrent modes of

dea of the degree of freedom. "Degree of ﬁ*eedoez IS
co-ordinates required to locate all the atoms in a
atom can be specified by three co-ordinates.

The total degrees of freedom of a molecule = 3N.

Where ‘N is the qumber ol atoms in that molccule. Translational dcgrees
of freedom arc always threc.

Rotational degrees of freedom depend upon the fact
that whether the moleculg is linear or non-lincar.

For a lincar molecule, rotational degrees of frecdom = 2 .
For a non-linear molecule, rotational degrees of freedom = 3 T
After the completion of rotational and translational degrees of frecdom, we

the number of independent
molecule." The location of an

/.r-“'

 should calculate the vibrational degrees of frecdom.

1.4.2 Degrees of freedom of a monoatomic molecule:
Total degrees of freedom = 3x1=3
Iranslational degrees of freedom = 3
Rotational degrees of freedom = 0
Vibrational degrecs of freedom = 0

So, the atoms of He, Ne, Ar, Kr, Hg and Na vapours
only for translational motions along x, y and z-axis, but
vibrational motions

5, - (bR (b (b 2n
1.4.3 ' Degrees of freedom of a diatomic molecule: -
~ Total degrees of freedom =3x2=6
Translational degrees of freedom =3

Rotational degrees of freedom =2 (diat_ernic molecule are always lincar)
Vibrational degreces of freedom

spend their encrgies
not for rotational and

= . -
L]

(=6=3-2=1]
Energy expended for one translational degree of freedom = é‘ RT
Energy expended for one rotational degree of freedom = é— RT
Energy expended for one v1brat10nalk degree of frecdom =3 RT + -;- RT

. ='RT
. ] , | i

Gl' RT‘is kinetic cncrgy end > RT 1s. potcntial cncrgy).

' Now, let us do the calculations for total cnerg

diatomic linear molecule.

y. being cxpended by the
l 0 i l 1 3 | ,
Eq = 3x3RT+2x5RT+RT = > RT-+RT +RT = 3. 5RT
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It means that a diatomic molecule like H,, F, Cl, 0,, N,, HCI etc. need

the energy of 3.5 RT to maintain all their motions _for six degrees of frcedom. This
energy is more than double than those of monoatomicC molecules.

1.4.4 Degrees of freedom of triatomic molecules:

Triatomic linear:

Total degrees of freedom = 3x3 = 9 -
Translational degrees of freedom =3
Rotational degrees of freedom (linear) = 2

Vibrational degrees of freedom (fof linear) = 9-3-2 = 4 -
Triatomic linear molecule likes CO,, CS,, COS, etc. have four vibrational
~ degrees of freedom. The total energy can be calculated as follows.

E, = 3x%RT+2x%RT+4xRT = 6.5 RT

Triatomic non-linear:

For triatomic non-linear molecules like H,O, H,5S, H,Se, SO,, etc. the

translational degrees of freedom are three, rotational are three and vibrational are
also three. So total energy of such a molecule 1s,

E, = 3 x';'RT+3 x%RT-:I-3RT = 6RT

It means that the total energy being expended by water is little bit less than
that of CO.,,. |
1.4.5 Degrees of freedom of a tetra-atomic molecule:

Total degrees of freedom = 3x4=12

Translational degrees of freedom = 3 -

* Rotational degrees of freedom = 3. =
Vibrational degrees of freedom = 12-i3 -3 =6
] 1

EK = 3x2RT+3x2RT+6RT = 12RT

. It méans that energy possession goes an increasing for molecules having
higher atomicities. ' | - -

- omly, collidi
walls of thc vessel. During the cc)llisi.;;.y Ing amo

; ns, the - Bsab ity 355l
and also change their velocities. The ¢y suffer a change in their directio?

. _ time '
contact at the time of collision is called mpr:::io‘:mﬂle two molecules are

-.“'I-FF‘_"HT-"."""-
" e
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Since, we are going to discuss the frequency of the collisions and the frec

path in_b_ctwccn the collisions, so first of all we should know about thc naturc of
the collisions.

The collisions are of three types.
(1) Grazing collision or glancing collision:

"In these collisions, the molecules are moving just parallel to each other,

With !}_Ie average velocity (c) and their outer boundaries touch each other.” Thc
following diagram shows the grazing collisions. Fig. (4) (a)

Fig. (4) (a) Grazing collision (relative velocity c).

N prene—

- () Head on collision:

"When two molecules approach each other on a straight line, then they
collide head to head and the collision is head on.” The approaching molecules
retrace the straight linc path in the reverse direction. The relative speed becomes

2¢. Following diagram 4(b) shows the head on collision.
Al

__@_—

Fig. (4) (b) Head on collision (relative velocity 2c).

(i)  Right angled collision:
When two molecules approach each other and their approaching lines are

* approximately 90° to each other. Then the collision is right angled. The relative

speed 1s ' AJ2¢ '. Following diagrﬁrr_n 4(c) shows this collision

.—""'_H

Fig. (4) (¢) Rigﬁi—angled collision (relative velocity '\E)E)

Elastic collision:_
During the collisions there happens a change in the direction of the motion

but total energy remains the same. The collisions in which there is no net loss or
gain of energy are called elastic collisions.
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1.5.1 Collision diameter: |
In order to do the collision, the molecules approach each other. At the timg

of contact of the outer boundaries, there is a limit beyond which th;.;y s;;:x;ozlgome
close to cach othicr. This is called the distance of closest approach. sest

distance between the centers of two molecules taking place durf'ng collision jg
called collision diameter.” Collision diamcter is represented by o. Fig. (5).

The following diagram shows that the collision diameter 1s equal to the
sum of radii of the two particles.

| Lo J
(’M/ rig. (5) Collision diameter of two colliding molecules
- 1.5.2 Collision frequency (Zy):

G=I‘A+r3

"If we follow a single molecule in one cmi’ of the gas, and want to observe
that, how many collisions are being faced by this molecule in one second. then it

will be collision frequency of that molecule.” It is denoted by Z,. Its value should

depend upon the velocity of gas molecules, sizes of molecules and closeness of the
molecules in the vessel.

1.5.3 Mean free path ()):

When a molecule travels and collides with various molecules, then it
travels free path in the vessel. Anyhow, all the free paths of the molecules are not
cqual. So, if we take the average of all these frec paths, then we get the mean free
path. "Hence, mean free path is average distance covered by a molecule between
Iwo successive collisions.” It is dcnoted by A

Mathematically, '"A' is related to the mean distance travelled by the
molccule in one second and its number of collisions per second. |

1.5.4 Collision number (Z,):

" : B |
It is the number of collisions hapyening in all the molecules in | cm’ of

the gas in one second.” It is denoted by 'Z ' Mathematically, we can say that

'nZ;, 1s divided by 2, so that each collision Mmay not be counted twice
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1.5.5 Derivation for the expression of collision frequency (Z):

: Consider a molecule ‘A’ which is travelling in the center of imaginary
cylinder from Icft to the Tight. Thi

s imaginary cylinder is supposed to bc present in
fhe vc_sscl of a gas. Diameter of this cylinder is '26'. The diameter of the molccule
itself 1s 'c'. It means

_ that two molccules can travel in this imaginary cylinder
simultaneously.

The average velocity of the molecule travelling in the centre of the
cylinder is ' ms™!. If the

. length of the imaginary cylinder is supposed to be 'c'
meters, t_hen 't means that the molecule ‘A’ will apprcach the other end of the
cylinder in one second. Following diagram (6) makes the idea clcar.

tig. (6) Imaginary cylinder has many inolecules and
one molecule (A) is travelling in the centre of the cylinder.
There arc _many molecules

rcsent 1n this imaginary cylinder. The
_ ! ‘C’, ‘D’ and ‘E’. The molecule ‘A’ can collide
with “B* type molccules doing head-on collisions, with ‘C’ type, right-angled
collisions with ‘D’ grazing collisions and there will be no collision with moleculcs

of the type ‘E’. Kecp it in mind, that there are many molecules of each category in
this cylinder. ' | ‘

categories of molecules are ‘B’

Now, the question arises, that how many collisions this molecule ‘A’ will
face while moving from one end of the cylinder to the ather end.

Its answer is that number of collisions depend upon the number of
molecules in this imaginary cylinder.

How to count the number of molccules? It is VCTY €asy. \S\
Let the radius of imaginary cylinder is = o. | m&&b
Base arca of this imaginary cylinder

= 7o? QS( '
Length of the cylinder in meters C _ ‘Wr\ *'Qy‘

~ Volume of the imaginary cylinder

s
\

[l
=
Q
ol
N

. 3
Let the number of molecules in onc cm

Il
=

Number of molecules in imaginary cylinder = 762% n

So, the number of collisions which the molecule ‘A’ will Expcricncc In ong

second should be = moicn

Be carcful, that the number of right-angled collision is much greater than

grazing collisions and hcad-on collisions. So, the exact number oF such co 1S10NS
should be 4/2762¢ n. :
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We have multiplied with '\[2_', because the relative speed of two molecules

- ' ision, 1s 4/2¢’, and not 'c'. It meang
approaching each other to do right-angled collision, 1s ‘\(_ , and r _ _
tl?ai consid%ring the right-angled collisions, the length of the imaginary cylinder is

proposed to be ' \EE g |
Hence, Z, = \ﬁnc_z N3y - -0« L. .- emeees (3)
This is the collision frequency of the molecule.

1.5.6 Formula of mean free path (A):

As we have previously explained that mean free path 1s the ratio of ¢ and Z.

c

— . < % s hemee 4
\\\5\" 1 M (4)
N | /\w\w Putting value of Z, from equation (3) into equation (4)
\ N _
1 - S
Vv \2no?C n
W N *
o A= \1_5;;2—“ cmcollision”™ Ll (5)
A _ n

According to the equation (5), the mean free path of the gas molecule is
“inversely proportional to the square of the collision diameter and inversely
proportional to the number of molecules per unit volume. It means, greater the

number of molecules per unit volume, smaller the distance the molecule has to the
cover between successive collisions. | |

1.5.7 Formula of collision number (Zy):

"Collision number is the number of collisions happening in all the
molecules in one second in 1 cm’ of the gas." '

We know that number of collisions of a single molecule, called the
collision frequency is Z,. If we multiply 'Z;’ with ‘n’ and divided with 2, then we
get the total number of collisions in one second in‘one cm?.

L .
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A

ccording to the equation (6), the collision number depends upon the

collision diameter, number of collisions cm™ and the average velocity 'C'.
The expression for average velocity is

s . /BRT
™

It means that, average velocity depends upon the temperaturc and the
molar mass. Indirectly, we can say that the collision number Z, 1s,

(l) fiirectly proportional to square root of temperature:
(") Inversely proportional to square root of molar mass.
(f") directly proportional to square of collision diameter.

(1v) directly proportional to square of number of molecules per unit
volume.

EXAMPLE (4)

Oxygen. is maintained at 1 atm. pressure and 25°C. Calculate:
(1) Number of collisions s molecule”’, (i) Number of collisions s' m*>. The
collision diameter of oxygen molecule is 3.60 x 107'° m.

SOLUTION:
First of all we calculate average velocity, ©
Data:
Molar mass of O; = 32 x 10~ kgmol™
Temperature = 25C°+273= 298K
R = 8.3143 JK' mol”
_ _ _ [8RT
e Qo ™M
By putting values
' _ _ [8x8314]K " mol x 298 K
© 7+ \/. .3.14%0.032 kg mol™
¢ = 444x10°ms’ |
Number of molecules = Number of moles x Avogadro's number
PV
= nxNa = ﬁ X Na |Since n = %YT"
V = ldm’ '
Putting values R
" (1 atm) (6.022 x 10® mol™") ’s
= = 0.246 x 10

Number molecules = (0.0821 atm K mol™) x 208 K
' = 246x10°m™ = 246 x 10%dm™
iy " O = 246x105m’

The collision frequency is the number of collisions per second. .

3 , 3 _ -3 .3
Since 1dm” = 107" m
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i) Z = 42 no’cn .
' Z, = 1414 x3.14 x (3.60 x 107"° m?)

x (4.44 x 10°ms™") x (2.64 x 10 m™

Z, = [674x10°s|  Ans,

The collision number 1s the number of collision per second per m’

T o’ cn’

";; @ 2 = Fop

!1 | Z: 3.14 x (3.60 x 107"°)* x (4.44 x 10?) x 2.46 x 10%)?

1.414

| 7.73 x 10** collisions s™' m™ i 'AHS'

oy .
—
[ —

L R |

e e

- .

| | In order to understand the
In a pipe from lower to the upper

1s travelling in the torm of layers.

f M e, a"b' :‘ ,

i ' -
a AR I R |~ Vvery slow

f very fast

ke igl. (7) - Motion of gas molecyl

We have considereq ¢

~layer and ‘b’ is the inner lay
molecules of laycr ‘b’, The ¢
tubc. There 1s a frictional for

VISCosity of gases. su

_ Pposc that a pas i '
side as shown in gas 1s flowing

the following diagram (7). Gas




How this frictional force 1s develeped? Actually the molecules of layer ‘a’

migratc to layer ‘b’ and that of ‘b’ migratc to ‘a’. It means that there 1s a transport
of momentum from onc layer to the other

The molecules of the laycr ‘a’ are moving slowly and they have less
momentum. When they enter thc molecules of the layer ‘b’, they decreasc the

momentum of the layer ‘b’ So, the layer ‘b’ feels the retarding force.

n . . . .
This retarding influence of the slower layer of gas on a fast moving one
as a result of transport of momentum is called viscosity of a gas." In other words,

we can say that viscosity of gas is the quantitative mcasurcment of resistance of the
flow of the layers of a gas.

1.6.2 Derivation for the formula of viscosity of gases:

When we shift from onc layer of gas to the other, then there happens a

change 1n the velocity of the layer. The layers towards the centre of the tube are
faster and outcr layers arc slower.

"The ratc of change of velocities of the layers with respect 1O
perpendicular distance between them is called velocity gradient.” Greater the

. . d .
velocity gradient, '(d_i) ' greater the frictional force. Mathcmatically, we can say

that,

du
du
e ... S T P U A 1
f Andx (1)

' du .
In this equation ‘f is the frictional forcc between the layers ' " 1s the

velocity gradient, ‘n’ is the co-cfficicnt of viscosity and 'A' is the arca of contact of
two layers.

Co-efficient of viscosity (1) -
" "t is the force in Newions which must be exerted between two parallel

layers one square meler in crea and one meler apart in order 10 maintain a
e - 1y ’"
' streaming velocity of one meler per second of one layer past the other."

Units of ny: _ .
This can be explaincd froim cquation (1). G ‘
A £ . Aﬂgy' l ] Poisc= 10" kgm™' s
9 | X , o | ;
. i |
So, n = du
/ Ad\(
fdx _ _ Nm . _ N2 ¢
or M= Adu m‘ms”

i
o
_—
u<
=
W
: |
| &
S’
3
v
l
ey
ag<
=
Fg
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1.6.3 Relationship between viscosity and mean free path:

In order to derive the mathematical relationship, let us consider a gas

consisting of several layers. These layers are sep_arated by distance ‘A’ \_vhich 1s the
mean free path of the gas. These layers aré moving parallel to the Y-axis as shown

in the following diagram (8). The line 'oy' shows the wall of the tube.

X-axis
du
Ux+l=a;(x+k)
g =3
1 f

Z-axis

| Fig. (8) Layers of a gas running parallel to Y-axis and distance
* between layers are along X-axis.

Now consider three layers “a’, ‘b’ and °c’. Layer ‘b’ is at a distance 'X'

from the wall of tube. The gas flows with a velocity 'u' meters per second along x-
; s g AW  pe - .o

axis. The velocity gradient is g This means that the flow rate increases by an

amount ‘du’ per each increment of the distance ‘dx’ along the x-axis perpendicular

to the Y-axis. ,
f Velocity of the layer b’ Uy, = %x X e o 3 JERIER (2)
Velocity of the layer ‘2’ U,,, = %i" X (x+ Q) iy . 3)
Velocity of the layer ‘¢’ U,;, = %xll x(x-X) L e (4)

Now, suppose that a molecule of mass ‘m’ present in the layer ‘a’ transports to the
layer “b’. Momentum of the molecule in the layer “a’. |




If
a molecule Interchanges, then the rate of change of momentum in given by
mu(x+.x)‘l' -mu,T = m%(x+ A) — mgxl'l'
| e i .gi_ ...... (7)
Equation (7) shows, the rate of change of momentum due to one molecule.
Now we w

ant to calculate the number of molecules moving up and down

In one second, through one ‘m?’ of the layer which are effective in momentum

- exchange. For this purpose consider the following diagram (9).

c.dt, (in meters)

Fig. (ﬁ) |
Suppose that all the molecules are moving downward with an average

velocity 'c', in a very short time interval dt. Each molecule travels a distance ' dt!
in time interval 'dt.' Volume of the given vessel shown in diagram 1s,

Sdtx1x1= cdtm’ .
* Suppose the number of molecules m™ are ‘n’, then the molecules jumping
from upper to the lower layer in time dt.=ncdt. B i
In time 'dt. fseconds the number of molecule crossing = n ¢ dt

| | ' nc -
In time one second the number of molecules crossing = Y dt = n&a

. T A
S that out of these tota! molec:ules as n ¢, 33% are moving along
X-axis 32.%5 ;]gu:g y-axis and 33% along z-axis. Moreover,-50% of the molecules

~are moving downward and 50% upwards. It means that the mllmber of the

to the lower layer is 50% of 33%. In oﬁler words, i c wiu also

molecules passing

the higher layer. The total number of molecules exchanging

1 1

go from lower 10O 5
etween two layefs will be = 2 X eh C = 30 ¢ - (8)

(

momentum per second b

-
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_——__—_—_\
Let us multiply cquation (7) and (8) to get the momentum transport pe,
second.

~du 1 _
Momentum transport per sccond = m A qx X3DC

1 _ . du
— -é-mncldx “-o® 5 ae (9)

This equation (9) is just equivalent to the frictional force. It should pe
compared with equation (1). Hence,

du _ 1 du
n&' = 3mnc7\.dx
: _ .
n = "3“mn'(':'7\. | e e (10)

‘mn = density of gas 'd’

'm' is the mass of onc molecule and 'n' is the number of molecules m=3
Hence 'ma' is mass of molecules in 1 m>, and that is the density of gas.

1 .
‘rl'= Ed-c-l Y kmanee (11)

Since c = St
’ ¢ - ™

Putting this value of T in equation (11),

1 8RT |
n = 3dl M . T e (]2)

| ‘According to cquation (12) the co-cthicient of viscosity depends upon the
- density of the gas, mean free path, temperature and molar mass of gas.
- Let us rearrange cquation (12) to get the value of A.

A= —_

T ) SRT _ : W N P (13)
™ el abs TR 7 _

| S0, mean free _path 1s directly proportional to the. co-efficient of viscosity
and 1nverscly proportional to the density and temperature of the: gas. If we

substitutg the average velocity in equation (13) by root mcan square velocity, then

_x=\3rl___

— YN i sl (14)
0.921 d\ /—1\-&— .- qui

EXAMPLE (5) | - .
~The viscosity of hydrogen at 0°C is 8.41 -6 1o m~! <! late the

‘mean free path of H, at S.T.P, | x 10° kg m™' s7'. Calcula

SOIL.UTION: ' - % S

Data: A ! o

-] -1
N = 8.41x 105 kgm! o 8.3143 J K™ mol .

First of all we calculate the dénsity of Hz .
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Smcg : m_OIE? of H, at SLT-P = 22.414dm* = 0.024414 m’
Mol_armass of H,= 7 x'IO‘j kg L 1 wigi |
d = -—-rl_‘.a_s.i__'_ 2>< 10‘31<“ | e
Volume ~ m% s 44 10° kgm:"_ - ““

The ‘expression for dverage velocity is, ‘
(8 x 8314 JK ' mol™' x273 K

g L _\/—STT -
. 1) XA 3 c =
5 N ™™ 3,14x2x 107 kg mol™

. . = 170x10°ms”
. The foqnqla for mean free path A)is '
| . m T Y
ard od
2 By put_tir_lg ’ghe values |
B s | 3 P UL

x: L X 8.41 x 10 " ke m S _'_+ 7
~ L70x10” ms™ x8.93 x 107 kgm™ LTy 10 m Ans.

TP | means that one molecule is at a distance of 1.67 x 107 m from the other in
- this vessel. o

. 1.6.4 Effec't of ‘p'res;s'ure and teiﬁpgrature on viscosity of a gas:

Rty for the co-cfficient of viscosity of a gas, density of the gas,
- mean free path and the average velocity is as follows. a3

. m=3dAr Dl et (11)
L S oy (S emminasd)

77 A2mefn

i
" - . - ¥ ' J )
--!' " s i --._ . = .' I
J e
e A— e —

. — . ’ 5 -
and - C. ="\ 4
- . r " ;S

- i L] " L . . -nM c

. 5 :

Putting these parameter in cquation (1), we get the following cxpression

. _ 1 Mn __-___1_;_‘__4"/_3_1_1_[“ ,
- M7= 3 N, {2no?n \ M

- ‘Il

A8 M __RT 2 | MRT
n = 3,\/5 NA-OJTE ™ 3 NAncz o
o T . IMRT Y
n = E'NATU QJ' B RS PR LU R LT AL (15)
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1.6.S Reason for the effect of temperature on viscosity of a gas:

According to the kinetic molecular theory of fgat;cs, the goiﬁzu:)cti ;f laa pas
’ o layer of the gas yer.
domly and they migrate from one
n\;)h\;(;x rtzllmlclz ?;?ngcraturc 1s 1ncreased, then the rate of transport of the momentum

between the streaming and stationary layers increases. This thing increases the
viscosity of the gas.

This behavior is in contradiction to thc etfect
0. liquids. In the cause of liquids, the viscosities decr
of attraction among the molecules of a liquid.

of temperature on viscosities
casc due to decreasing forces

1.6.6 Effect of temperature and pressure on mean free path:

The molecules of the gases arc very small and the sizes

of the collision
diameters vary in the range 2 x 1071° m to 4 x 10-10 m. It means that the mean free

. The reason is that, at normal

In the. above consid : IS |} Inator of right hand
sidc are constants. So, ‘n)\’ is 'c0'nstant_

Hence, we can say that
1 . “ - iR

. T Rt - Tar 1 ”““(.2).
So, substituting by ‘T .
A s

T = constant” ' (jf 'pi-es'sure-in 6onstant).
1If the Iemperature s ch-angcd_ fr()Jm,.Tl to Tz= then, the mcan frec path
should change from A’ to AT ‘ Dat gl |

Moh

= T = constant. ',
T,” T, .

Number of molccules PCr unit volume 1S dircctly prcjportional to pressure.

...... (4)

n'« P
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W

utting this in €quation (1)

PA = constant (When the temperature is constant)

Similarly, WC can say that, | |
| F‘lkl g Pz)‘z

It gas is maintained at ordipa
A for most of the gascs is, 10~7

7
107"m xP = constant

If we want to make
pressure should be- 107

ry temperature and pressure, then the valuc of
m. It means that

the mean free p::ith of a gas as onc mcter, then the

S . atm. In other words, we can say that the pressurc of
107 atm. 1s required to have a mean free path of 1 cm.

These calculations are helping us to have an idca that thc farness or
- ncarness of gas molecules can be imagined at various conditions of pressurc.

1.6.7 Measurement of a viscosity of a gas:
Principle:
- The viscosity of a gas can be determincd by measuring the rate of flow of
the gas through a Cylindrical tube of known internal diameter.
Poiseuille equation is used |

| TC!P] — Pz! rt
A N T

wherce

t = time taken for the volume v to pass through the capillary tube
| =length of capillary tube @~ =~ =~ |

?

r =radius of capillary.tub'é e
- Py and P, = pressures at two ends of the tube

 All the terms except ‘0’ and ‘t’ can be kept constant. So, following equation
- can be used by taking a reference in addmon to that gas, which is under study. The
cquation is as follows: = ¥ ' E

n_h

m b S on
i : n(gaslf "=‘ E(;i'ﬂ
Tl(rcf) .t([CD

~ Apparatus: , --- .
- This apparatus was invented by Rankine in 1910 and is shown in the
following diagram (10). - ' ' |
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It 1s consisted of a closed circ_uit
formed by a bent capillary tube having

diamcter 0.2 mm on the left side. The

diameter of the right tube is 3 mm.

A small pellet of Hg 1s entrappe_d
I a wider tube. The apparatus  1s
cleaned and filled with a gas at'l atm.
presure. Ine tube is inverted in ofder

to bring the pellet above the mark ‘A’
The apparatus is placed in a constant
temperature bath and the time is noted

EB'.!.

Actually, this is the time which is

taken by the pas to travel through the
capillary tube under definite pressure
gradient provided by the Hg pellet.
Under the similar conditions, the time
of flow for the reference gas 1s
determined. Applying - the

above
equation, the Nas) 18 calculated |

Hydrogen chloride
Hydrogen bromige
Hydrogen iodide

for the Hg pellet to travel from ‘A’ to

N

Physical Chemistry

rig. (10) Rankine apparatus fc
~ the viscosity of a

or measuring
gas.



- These gases which obey the Boyle’s law, Charles’s law or general gas
equation are said to ?)if deal. In order to check the idcality of a gas, we can plot a
graph between "n = RT = £, and the pressure of thc.' gas for onc mole of gas. In

the case, of ideal gas, a straight line is expected parallel to the pressurc axis
showing that for one mole of a gas the compressibility factor (Z) should be onc.

Anyhow, it has been observed that the most common gases like H,, N,
He, CO, etc. do not follow the straight line as shown in the diagram (11). It mcans
rﬂlatthe'prpd}lhct of Pland V does not remain constant, at constant temperaturc.

(Xazeiy 2t s i Y
pv S| NS bt
n= c==7 w CO, PV -..E.-
- % NHz D= BT, & 8
fia 2 «d
s T He -
:-i:' -~ cinniderietsecsenciurancancil, Ideal gas __..E"
%‘ - Graphs at 17 °C =
Bt &
El ~ E
S A LB b5 oA 3
1 0 ; o - ' ] X 11% X 1 0 ' ; _
. —>P e adend ——
Y L by " ‘ Yl : . r‘
Fig. (11) Graphical explanation of effect of pressure and \ \Q\
w et - aaa . i PV (A
W eilg Sl - temperature on compressibility factor Z = BT \3(\

The graphs of the gaseé at 17°C, show more deviations from idcal
behaviour than at 100°C. Moreover, the extent of deviation of thesc gascs arc more

prominent at high pressures. We draw the important conclusion' from the above
i) . L"rhe | pases arc complarativclly. 1dcal at high ’;cmpcré.turc and low_
_ ‘pressures. = g 2 ol prie el i
(1) The gases become non—idc?l at low temperaturc  and "high
pressures. - .

1.7.1 Causes for deviation from ideglify‘:‘
Kinetic theory is the foundation stone of all the gas laws and the general

two faulty assumptions in the kinetic theory of pascs.

' gas equation. There are two faulty asSumprions in the &
[et us recall these faulty assumptions and then try to find the remedy for

»

them.

(1) Actual volume of gas molecules s negligible as comparcd to the
volume of the vessel. & D
There are no forces of attractions among the molccules of 2ascs.

(ii 1
these postulatcs arc corrcct, at low pressures and

become wrong at low temperatures and high Pressures.

and these postulatcs
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Actually, low temperature and high pressure become responsible fgr
Creation of forces of attractions and moreover, actual volume does not remain

ncgligible. - T

It is nccessary to account for the actual volume and mutual attractions of

,d,\M’ molecules. This job was done by Van der Waal.
- M ,;-)( 1.7.2  Van der Waal’s equation:

\ .

| Van der Waal modified the general gas equation and performed the
> X’f a corrcctions i1.¢., volume correction and pressure corrcction.
=

" Volume correction:

A0 _ Van der Waal thought that some of the volume of the vessel is occupicd by
W the molecules of the gas and that volume is not available for the frec movement of

the molecules. Actually, we need the free volume of the gas and that i1s obtained
when we subtract the volume of molecules from the volume of the vessel

vﬁ'ee - Vvesscl ~ Vmolecule
Let'V'. is'V'and V' ecule 18 D' for one mole of a real gas.
SO, V = val -b (1)

This ‘b’ is called effective volume of gas molecules. Keep it in 'nind that

‘b’ 1s not the actual volume of gas molecules, but is roughly cqual to 4 times their
molar volumes. If we have one mole of a gas, then

= 4V

\ y’ | b _
Q:\H/{/ ' M - V_ = actual volume of gas molecules for one molc of the gas.

Pressure correction:

The pressure which is exerted on the walls of the vessel js

collisions. Since there are forces of attraction, so the molecules can not hit the
walls of the vessel with th ch force, with which thW

. ave been in the
absence of attractive forces. | i
—— |
‘\< | | It mcans that the pressurc being observed on the walls of the vessel 1s a
Iittle bit Icss than the ideal pressure. '
| C Pobsewcd = Pideal - Plcssencd
M | T_he pressure which is being lessened is denoted by P’
/ | Let us say that P icerved = P and P/ esseneq 1S denoted by P’
B P =. Pi - P’
P.l = P+ P!
- The value of p’ given by Van der Waal is '\%. '
PJ’ - ._?'__ |

Vo
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In order to estimat
as follows.

Suppose we have two types of molecules A and B. Let the concentrations of

A and B type molecules are C . .
! and d Bis
proportional to C, and Cj. SO,A - Ce. The force of attraction between A an

P! o CaCr

n Now suppose that "n" is the number of moleé of A and B scparately. Hencee

Vv 1s the humbcr of moles dm

¢ the value of P’ which is lessened pressurc, we procecd

of A and B separately. "V" is the volume of the

vessel containing the gas. So, M

LU ]
V'V ¢
: .
. |
P' o« V2 U‘JJ5 Q-gﬂ
2
) o SO
P' = V2 / \(/‘ N
where a = constant of proportionality M

a
P' = V2
.. Pressurc of the idcal gas P; = P + P’

_ 4
If the number of moles of gas is unity, then n = 1 @}N\ S
o -
1 _

So, P. = p+—\% ...... (2)

_ ‘a’ is the co-efficient of attraction. In other words, it is attraction per unit
~ volume and is a constant for a particular real gas.

Introducing these corrections, the general gas équation 1s modified. \
— - _
(P+-\—,5)(V—b) = RT - 3)
For ‘n’ moles of a gas, _
an’y o b = nRT T e 4)

‘a’ and ‘b’ are called Van der Waal’s constants.

1.7.3 Nature of Van der Waal’s constants:

‘These constants arc the quantitative measurcment of non-ideality of the
" gases. They are usually determined cxperimentally by measuring the deviation
from the real gas cquation, under suitable conditions of temperature and pressures
i.e.. those conditions when the cffects of molccular volume and mutual attractions

predominate. - | _
. The values of ‘a’ and ‘b’, depend upon the naturc of the gas and the units

_ é’f_volumc and temperaturc. Tablc (3)

N
L
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Units of ‘a’ and ‘b’: o ;
The units of Van der Waal’s constant are derived as follows. 1

oV am - G

a = nz = . l'I'lO]2
In S.I. units
PVZ  Nm?2x(m’)> Nm® _ RN -2
n mol mol

‘b> has the units of volumc mol™! so, it may be expressed as
dm? mol™! or m® mol™’.

Table (3). Van der Waal's constants alongwnth thelr units

Gases

X
N e T e
S IE TPl I T
IS B EEYEe I P

Interconversion of umts - |
dm’ mol? = 10‘3m3mol1 e

-« dm®atmmol? =+10"mS x 101325 Nm nnol-2

=] 01325 x 107! Nm* mol2 -
1.7.4 Van der Waal’s constants for some nnportant gases

- Since H, and He are non-polar gases so, their ‘a’ factors are sufﬁcmntly

smallcr than many other gases. CO and NH are big sized molecules and so thetr

" factors are sufficiently high. b factor is the measurement of volume of gas
molcculcs in closest possible p031t10ns of m

; olecules. This fact ficant
for C0,, NH, and CH,. actor 1S alsn .51gn1

When we say that, the value of the ‘b> factor for H, 1s 0. 02661 dm’

mole™!, then it means that it is 26.6] cm3 mol™!. In other words, we can say that,



Gases 41
- e e
onc mole of H,, i.e.,-2.016 grams will occupy a volume of 26.61 cm® when the

_ molecule are very very close to each other in the gaseous state. It mcans that,
calculated volume of H, gas is 26.6] ¢m?

1.7.5 Prove that b = 4V

*Agcording to kinetic molccular theory of gases an individual molecule in a
gas occupics no volume. But actually molccules of real gascs have finitc sizes. So

the available frec space for their motion may be lcss than the total volume of the
container. The space which is occupicd by a moleculc at an instant will not be

available to other molccules at the same instant for its motion. It means that cvery
molecule excludes the certain volume for all other molecules.

Ir.1 order. to 1llustrate it, suppose that a molecule of a gas 1S non-
compressible. It is a spherical particle of radius ‘R’. When two molecules are at

FIOSCSI approach to each other, then their centres are separated by 2R’, as shown
in the following diagram (12). '

‘Molccular Volume =V

hh—_"’

Fig. (12) Concept of é;cg[uded volume.

The molecule ‘A’ excludes the centre of the molccule ‘B’ to be present in
a spacc equal to the volumc of dotted sphere. The volume of this sphere with
dotted lines 1s | | s '

4 4. 5 |
3 RERY=BXFER o gy
3 In the same manner, the molecule B also excludes centre of the molecule
“A’ from a space equal to 8§ x 3 W R’. When the two molecules are closest

4
— 3
approach, then they mutually exclude a volgme 8 x 3 R3.

- The volurﬁe excluded by one molecule 1s half of this volume and that is
4 x % ki R3 ."
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Since, the volume of onec molecule is = 3 - ©.R”, 50 volume cxcluded by

Onc¢ molccule = four times the above volume. Now, 1f we have onc molc of gas
which has Avogadro’s number of molccules, then

4
b = 4N, (38R L e st

4 | moﬂ-,(_
Now NA(E R3) = Vm o ITh=e

Hence b = 4Vm.

This ‘b’ is called excluded volume, effective volume or vibratory volume
EXAMPLE (6)

Two moles of NH, were found to ocCupy a volume of S dm’ at 27°C.
Calculate the pressure, |

(1) If gas behaves ideally

(1)  Gas is real and follows Van der Waal's equation.

(a =4.17 atm dm® mol™, b = 0.0371 dm’ mol )
SOLUTION: -~

Volume =5 dm’, T = 27°C +273 = 300K n = 2 moles
(1) The ideal gas obeys general gas equation

Since, _
PV = pRT
nRT
P =T =
where R = (082 dm® atm _K“' rhol“
Putting values ' ' x ) |
P - 2 moles x 0.0821 dm’ atm K mol™' x 300 K
Y 5dm®
| = 9.852 atm_ |
(i1) IS’JFing Van der Waal's equation by considering that the gas 1s real
Ince | -

2

1 o o
[P+ '{ﬁ] (V-nb) = nRT
Rearranging the equation

- 4.1'} xSZf
d -2 x 0.0371 (5)

= 9.98-0.67 =  Ans,
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Ideal pressyre IS greater than pressure of the gas when it is non-ideal.

In non-i
i e deal gases the molecules have forces of attractions and the pressurc

1.7.6 x%l'ildity of Van der Waal’s equation:
lle we have discussed the non-polar behaviour of gascs by graphical

o] : . . . V
cxplanation, it was noticed that some of the gascs have lower valucs of ‘E‘-—r = 4,
than expectations at low pressurcs. At high pressures the values of % = £

Increéases too much. We have to Justify these trends of gases.

For this purpose, we change the shape of Van der Waal’s cquation.

(P+37) (V=b) = RT

p‘_ hed ab
V Pb+v via RT

_ a _ab
PV RT+Pb-y+37 ceeeee (5)

(1) At low pressure:

Whl;:n the pressure is smaller then, volume will be larger. Hence, the term
o _
. a

Pb’ and ‘{,‘5’ In equation (5) may be neglected in composition to ‘%’. Actually ‘V‘
represents the effect of attractions between the molecules |
Hence, equation (5) becomes,

a
PV = RT——V

Divide this equation by ‘RT” on both sides
BV KT ()

RT = RT \RTV
PV a_YL o ot
g EY (8 TS A W bE
PV, - A . .
‘R is also called gompreSSlblllty factor and is denoted by Z.

. It means, at low pressures the compressibility factor is less than unity. It
explains that, the graphs of N, gnd CO, liec below the ideal curve. thrtly .the\

pressure is increased, ‘V” decreases and the value of 2 Increases. It means that
__the curve should show the upward trend. |

(1) At high pressure: .
When the pressure is high then "V"is small. In this casc both the terms “2*

V
and ‘%%’ can be ignored,

k
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Equation (5) is reduced to the following equation.

PV = RT+Pb |
Dividing this equation with ‘RT’ on both sides,
Pb
PV _RT Pb_  Pb
RT RT RIT RT
~Pb
Z = l+ﬁ ...... (8)

It means that at high pressure ‘Z’ is greater than 1 and so the graph

between ‘Z’ and ‘P’ lies above the 1deal gas curve. When the pressure 1s increased

the factor _RP% increases further and ‘Z’ becomes greater and greater.

(1) At extremely low pressure:

At very low pressure, we say that the pressure approaches to zero. In this

. a ab
way, "V becomes very large. Under therc circumstances, the term Pb, v and V2
would become negligible and can be ignored relative to ‘RT’. Thus equation (5) is
converted to,

PV = RT

It means that at very very low pressures, the real gases behave ideally.
(iv) At high temperature:

When the temperature of the real gas is very high, then volume would be

very large. In other words, ‘P’ will be small. The terms like ‘Pb’ % and %bj can be
1ignored. Equation (5) reduces to, '
PV = RT

It means that at high temperature, the real gases behave ideally.
(v) Exceptional behaviour of H, and He:

H, and He are very small sized molecules and they are non-polar in nature.

They have least attractive forces. Their ‘a’ factor is very small, so % and %% In
equation (5) can be ignored. Hence equation (5) can be written as
PV = RT+Pb .
Dividing by ‘RT*
PV _ .o
"RT - '*RT
Pb
Z = —
1 + RT
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1.8.0 CRITICAL PHENOMENON OF GASES

c ,Boylc’s law is for idcal gascs. The graphs which are plotted between ‘lj""
and V" at constant lemperature are called isotherms. Isotherms are the parabolic

curves and these curves go away from the axis, when they are plotted at higher
tempcerature for a gas.
The idea of the study

of critical phenomenon of gascs was stated by
Andrew (1869). He studied the

1sotherms of CO, at different temperaturcs. The

1sotherms are shown in the diagram (13) and they arc drawn at 50°C, 40°C, 31.1°C,

21.5°C and 13._1°C. The graphs at 50°C ang 40°C show that gas is ncver liquefied
even at a very high pressurcs. -. .

Y
oD G
=
T
5 50°C
| ' 40°c
B .
h AE31.1c
_ N215°c
v Vo‘lume-

- Fig. (13) Isotherms of one mole of CO 2 at various temperatyres and

idea of critical temperature of gases.

Anyhow, when temperature is 31.1°C, then the isotherm EFG
and the CO, gas becomes liquid at the point F. If the

maintained above this tempcerature, then liquefaction ncver happens for CO
1 _ 2

Hence 31.1°C is called critical temperature of CO,. It is that temperature for a gas

above which the gas can never be liquefied, how much the pressure is applied. It is
denoted by g P | | |

J 1S obtained
temperature of CO2 1S

. The minimum pressurc required Eo.}iq“ify a gas at its critjca] tcmpe-raturc
IS called critical pressure. It is denoted by P S 4 ¢ v |
The volume occupied by one mole. of a gas at its crit:

Critical pressure is called gritical volume. It is denoted by V'

'Pc': lvc|’ and 'Tc', Of a gas arb CallCd .the Critical Ccon
Called critical point of CO, and the isotherm EFG is calleq critica] ;

.*’I "
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' lusions which can be drawn from the above diagram are 34
The main conc

tollows. When the temperaturc of CO, is reasonably above the critica
v Cn Y .
(1) temperature, the smooth hyperbolic curves arc obtained, as we get
CImpx >
for other idcal gascs.

(i1) The isothcrm in the rangc of 32.5——35.5“(.3, do not obey the
Boylc’s law and smooth 1sotherms arc not obtained.

(i) ~ When the temperature 1s maintained at 31.1°C for one mole of
CO,, then a very small horizontal portion is developed near the

pomnt F. After that, it becomes parallel to the pressure axis.
(iv)  The 1sotherm at 31.1°C, shows that CO, has become liquid at the

point “F” and if the tempcerature is more than 31.1°C, then there is
no chancc for such types of a curve.

(v) - Isotherm at 21.5°C, shows a horizontal portion. For this horizontal
portion, vapours and liquid CO, exists in equilibrium. After the

point “C’ the curve becomes parallel to the pressure axis. It means

that at this temperature, low pressure than the critical pressure is
required to liquify CO,.

(vi)  The isotherm at 13.1°C has horizontal portion even longer than
that at 25.5°C. It means that, even low pressurc
liquify the gas at 13.1°C.

(vit)  Closer the tcmpceraturc to the
horizontal portion of the curve
31.1°C. then horizontal portion

(vii1)  The isotherm below critical tc
right portion is for gaseous CO

1S rcquired to

critical tempcerature, shorter the
and when the temperature reaches
becomes a single point ‘F’.
mperature have three portions, the
»» middle is for both phases and lcft

aal’s equation can explain the
1Isothcrm of CO.. or not, we should convert the Van der Waal’s cquation to a cubic
equation in V .
a
(P+'\7§')(V—b) =VRTLAE Y+ 50 nry sevens (1)
- Open fthc brackets on LH.S
a ab
PV"Pb"“V—'\'}i = RT
Multiplying by V2 anq dividing by ‘P’ ang rearranging we get
2
v —BII;V‘-—bVM?‘—Y-_Et—’- -
-~ P p
RT
or V?-(F-+b)v24+2Y_ab _
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| Equ?tl?n (2) is another form of Van der Waal’s equation (1). This is cubic
cquatlor; In V‘_ If we put the values of 'R’ 'P', 'T", 'a' and 'b, then we should get
three va lfCS of “V’ or three roots of “V’. There are two possibilitics.
(1) All the threc roots are real. 5

(11) One root s real and two are imaginary.

When we are above the critical temperature, then only onc of thesc three

roots 1s real, because there is only one volume for each pressure at constant
tcmperature.

When we apply this cquation (2) on the isotherm below critical
temperature, then only two roots are real and third is missing.

Anyway, when theorctical graphs are plotted, then the horizontal portion
of the curve develops the wavy shapc and we can get three real roots Fig. (14). For

vajlue at given tcmperature and pressurc, the threc volumes of V at 13.1°C are
widely separated, while three values of V at 25.5°C are closer to each other.

When we plot the theoretical isotherm of CO,, at temperatures lower than

31.1°C, then following diagram (14) is obtained.
Y : .

opY
o
3
0
a®
[P“ h
I )
X— o v
.y,
Y

Fig. (14) Comparison of isotherms of CO; above and below critical temperature.

It means that when the temperaturc Is increased in the equation (2), then
the three real roots start coming close to each other and merge into a single point at
F. The volume so obtained 1s a critical volume, denoted by V.

V=V
| V=V =0
Taking the cube of above equation, |
. (V = Vc)3 = 0
2v V3
or v3 - 3VC . vz + 3VLV VC — 0 ------ (3)
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It means that thc cquation (2) and (3) should bc identical. When cquation

(2) is applicd at point F, then all the three roots beccome real for same value of
volume. Now fit equation (2) at critical stage, then

RTe ,,av a o
VJ_(—T—C'+b)V + P. P, 0 (4)

Comparing equation (3) and (4), and equating the co-cfficicnts of like
powers of 'V', we get the following three expressions.

RTe

3V, = 5 b e (5)
2 — i "= uw

Vo, T Pe .. (6)
3 = -?._b_ ' b e v e easise

v c Pc (7)

_ In order to get the values of 'Pc', 'V¢' and 'Tc', we have to solve equation
(5), (6) and (7) simultancously. | |

Divide equation (7) by equation (6)
Vv

c3 B ab/Pc
3V?:  alPc
V
—
3 = b
V. = 3b Jori T ik (8)
Put the value of V for equation (8) into cquation (6)
RY S
3(3b) P
| . » _
Pc = Eb—z' | R TIIT (9)
Putting equation (8) and (9) in equation (5)
' RT
3(3b) = ——+b
27b% ;50
RTc ”
Goly = s . g S
-a o a
2t 27b?
_ 2 o _ 8
Rle = omp28b-= o5
Te = 8a

27Rb _' | veesan (10)




 (Gases | 49
Now, determine the valves of 'a' and b,
Since, \A 3b

So, b = 3 L Buuesss (11)
. a ,
Since Pc ~ V. JERRRITLL (6)

o om0 e i

We know that for one mole of an ideal gas
PV = RT

PV
R=TT ;
PV, )

T

Now find the value of . For that, put the values from equations (3),

(9) and (10).
a
P.V. 3 TH2 3b
Y S 8a
27Rb -

P.V. ~a_ 27Rb
T. = 276 °°* 8a

PV. _ 3,1 L 13

EXAMPLE (7)

You are provid
temperature and the critical pres

constants for CO, are, a = 3.61 atm dm°® mo
SOLUTION: T
- DATA: B
o = 3.61 dm®atmmol”
b = 427x107dm’ mol ™
CalculratiOn of critical volume
Since V.= 3b

Putting value of '0’ : N
V. = 3x427x10'dmm01

V.= 12.81X 10"2dm mor

|

ed with CO;. Calculate the critical volume, critical
sure for this gas. The value of critical

rz and b =4.27 x 1072 dm® mol ™.

A\ ||
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500 e - cupies a volume of 0.128)
CO, at critical stage occup
eans that one mole of C{
o
Calculation of critical pressure

a
Since  Pc = 572

Putting the values ofa,b . .
3.61 atm dm® mol

27(4.27 x 107 dm’ mol™)*
3.61 atm dm° mol

= —————— 5 = .33 atm.
Pe = 70,0492 dm® mol™ fhaise

Calculation of critical temperature (To)

P_

da
Since, T¢ = 77 Rb _
Putting the values of a, b and R, _
' 0T 8 x3.61 atm dm® mol™
o=

27x0.0821 dm” atm K™ mol™ x 4.27 x 10~ dm® . mol™*
TC = 3051 K| AnS.
EXAMPLE (8) |

The values of critical temperature (T¢) and pressure (Pc) of chlorine are

419 K and 9.474 x 10° Nm™ . Calculate the values of Van der Waal's constants
'a' and 'b'. (R =8.314 JK! mor")

SOLUTION: . B T L
~ DATA: - . '
Tc= 419K
Pc= 9.74 x 10° Nm™
R = 8314 JK mol”
LSince., s iy 27 R*T 2

64P.-

Putting values,

e 4 =

|

d

Since, b = RTc
Putting values,

b = M
8x9.474 x 10° Nm

. I b = 4.59 x 1073 m’ mol"" ] Ahs.

Since, |1] = Nm = 0.0459 dm? mol~!




1.8.2 EXperrmental determmatron of critical temperatlﬂ'e-

Crtical temperature 1S
determined with the help of Cagniard de

la tour’s dpparatus. It is consisted of ey
hard glass U-tube blown into 2 bulb at
the lower end. The bulb 1S surrounded o8
by Jjacket. The liquid whose critical
temperature and pressure is required is
_ | Thermostat
placed 1n the bulb and the rest of tube is o

filled with mercury. The upper end of
the U-tube is sealed leaving a little air

in it. This arrangement will help to act it — 5 Water out

as a manometer. The temperature of the
bulb containing the liquid is raised I Vapour
slowly by the heating jacket. A point is 2 Liquid

reached when the meniscus of the liquid X
becomes faint. Then it disappears. It [l
‘shows that the distinction between
liquid and vapour is not possible.

«—— Water in

Following diagram makes the idea Fig. (15) Determination ofcritiéal
, . temperature by cagniard de la Tour's
clear. Fig. (15). | apparatus.

That temperature 1s reccorded at which the meniscus disappears. The bulb is
allowed to cool again. First of all a mist is formed in the gas which quickly settlcs
with the appearance of the meniscus. That temperature at which the meniscus

reappearsis noted. Then the mean of these two temperatures 1S calculated which is
the critical temperature of the liquid.

Critical pressure:
The pressure which 1s rccorded on the manometer at the critical
temperature, is called critical pressure. -

1. 8 3 Determmatron of critical volume:.

The dcterrmnatlon of critical volumc 1s based upon the rule of Carllctet and

Mathlas “This rule says that, the mean value of the densities of liquid and saturated
vapours for any stable substance is linear function of temperature -

The densitics of a liquid and 1ts vapours at a number of tcmpcratures near
the critical point arc noted. These densities are plotted against the temperature.
Graph shown in the ﬁg (16) 1s obtained. The portion X, 'Y", of the graph is for

e n 'YZ' s for liquid. The
saturatcd vapours and thc portion Y ' q ‘ curves- mcct at ttlc pomt{

IYT .




_ Cntical density
The dCl’lSity corresponding to Densities of

the point “Y* is called critical saturated Density of liquid
density. The mean densities of vapours

the vapours and liquid at a

Number of different 'l‘
lCmpcratures are calculated by Temp. T Temp.

the following equation and Mean
thcy givg a strajgh‘[ line ‘DY". ‘ densities

The value of the critical X D 7
volume is calculated from -the ~ —> Density

Critical density. o .
Fig. (16) Determination of critical volume.
Table for critical parameters:
Experimental values of critical iemperature, pressure and volume are

shown in the following table (4). As it is clear from the table, that the critical
temperatures of H, and He are very small and they are close to absolute zero. It

means that these gases can be liquefied by increasing pressures by bringing them
o very low temperatures. The gases like HCI, NH,, Cl, and S0, have the critical

lemperatures above room temperature. It means that their liquefaction is easier.
g Table (4) Critical constants of gases

Gases | Critical Critical Critical Volume
temperature _pressure V. (cm®)
T. (°K) - P.(atm.)

60.68
12.28
Nitrogen (N;)
Carbon monoxide (CO)
Argon (Ar) .
Oxygen (O,) |
Methane (CH,) = 1902
Carbon dioxide (CO,)
Nitrous oxide (N,O) -~
Hydrochloric acid (HCIl)  _

78.43
- 74.42
 98.76
95.65
96.91
8990
89.0 . 126.86
a0 72.03

123.91]
124,75

72 pt -
=3 | < <
ge! a. £
= = O
= Q|8 0’
— - 02 g
et o
o, o | B :
~ | n
% Z| € =
LA |IF|E |
8 _ o | |
P :
< e» |
7p ' .
p— _



Gases - ' - -
N A - |
4 Law of corresponding states: '

When we plot the isotherm of CO,, then we know that isotherm above the

an]cal temperature are parabolic curves. If we have different gases thcn_ .thﬂ
}sotherms close to tl_lelr critical temperatures are of same type, but these critical
Isotherms do not coincide with each other. The reason is that, the values of the

Van der Waal’s constants ‘a’ and ‘b’ are different for different gases.

If the individual gases arc studied under the conditions of such
temperatures and pressures which are same fractions of critical temperature and

pressure, then these values of pressure, volume and temperature are the ratios of
these values,

| P
Pr='P—-'
V
Vr—-vc
-
Tr%':l:-
C

P,V and T are called reduced pressure, reduced volume and reduced

~ temperature respectively. It means that the critical isotherms of various gases will

- coincide with each other, if they are maintained at same reduced parameters. In

- order to explain the reduced parameters for different gases, we have to manage

them at such 'P', 'V' and 'T' values, that when these values are divided by their
critical parameters then the ratios should be same for all the gases: |

Since P; = P. - so, P.=PP:
AS . vr = i,: I ¥ 50, .__ Ver _____ (1)
a_nd Tr = ',i_,T" | - | SO T = TrTc
' Vaﬁ'der Wéal’s eqﬁatioh for one mole ofigas- is
. (P +-\'/'5)(V—b) = RT Jioty _ S A (2)

" Let us put the values of 'P, -"V' and T" from the sct of equations (1) in
equation (2)

(Pr o vz,.vzc) Ve oo s g, T W ikees (8)
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We know that the critical parameter have been expressed in terms of
¢ know
Van der Waal’s constant as follows.

S_a_
Pe = 272
vc - 3b ...... (4)
sa
T. = 27Rb

Putting these values of 'Pc'l, 'V, and 'T] in equation (3), we get the

following relationship, ~ *

a_ a2\ | 8a
(Pr Y + szrbz) QVr .b-Db)= RT Rh (5)

Taking some factors as common

a 3 a
> Th2 (Pr + Vrz) .b(BV,-1) = 827b : Tr

The simplified equation will be as follows:

3 - ‘ .
. (Pr 4 v 2)(3\/1. =4 1) — 8Tr e - | cescse (6)

[ .2 This equation ,(6) 1s called Van der Waal’s reduced equation of statc.
‘When we compare this equation with Van der Waal’s equation (2), then we sce
that the factors like ‘a’, 'b', P and 'T' are climinated. These factors are
characteristic” parameters of different . gases. When they are not present in the

cquation (6) then it is applicable to all substances in the liquid and gascous state
irrespective of their specific nature. | o L nom

According to equation (6), if any two or more
reduced pressure P, and they are maintained at same reduced temperature T , then
they will have same reduced volume

_ 'V'. Those substances which are under these
conditions are said to be in the corresponding states. This statement is called law of
corresponding states. | |

substances have the same

1.8.5 Applications of law of corresponding states:
An important application of law of corresponding states is that wec
construct a single diagram and this diagram gives 'P', 'V' ‘T’ relationship for all
gases. In order to construct the diagram, we plot a graph between reduced pressure
, oA = PV Eay |

! Pr' on x-axis and compressibility factor ' RT- Z' on y-axis, ...
For an idcal gas ‘Z’ is unity. The rcal gases

unity. The compressibility falter ‘Z’ gives us the
deviation of a gas from ideal bchaviour. It is obse
maintained at suck temperatures, that the ’Tr' value

show the deviation from this
quantitative measu rement of
rved that, if various gases are
s of all the gases is 2, and then




(Gases

¢ h | ! YA . . .
bbta?ned Itgm . Setpveen L ancil‘ Z', a graph very close to the straight line 1s
Wh eans that all these gases are very close to the ideal behaviour

en the iCmperature of thes
1.2, and 1.1 s

unity, then it .
ty means that temperatures of these gases are equal to the critical

maxirpum non-ideal and they are liquefied. It appears
” 8ases with same values of reduced variables will show
deality. Following graph (17) makes the idea clear.

from.the curves, that the
similar departure from

1.0k
0.9
0.8
T
‘I”f 0.7
> | =
&l 06
-
.E
& 0.5
[
fn
— 04
.
o’
S (.3 - @ Ni ' '
o : itrogen O n-Butan
= n-Butane
= * Methane 4 Isopentane
S 09 & Ethane © n-Heptane
o Y O Ethylene A Carbon Dioxide
@ Propane m Water
0.1 !
0 . : . .
0 1 g) 3 4 S 6. 7 8
Reduced Pressure (pr) .
PV

Fig (17). Compressibility factor pr as a funct{on of reduced variables.

1.9.

. According to kinetic theory of gases, molecules of a gas move randomly, -
collide among themselves, collide with the walls of the vessel and change their
directions. During the collisions, they exchange the energies and change the
velocities. If we keep an eye on one of the mOIeCUI§S of a gas, then its velocity and
energy changes million of times per second. I*:Of this reason, we have to talk about
the root mean square velocity or average velocity of gas molecules.

If the temperaturc is constant for the gas, then we can calculate that
s ty of the molecules have the velocitics close to the average velocity. A fewer
l'rlojléculcs have velocities very high or very low than the average velocity.

\
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0 ' lecule and come to know aboyt its

It is not possiblc that we follow each mo

locity. It is rcasonablc to choosc the molccules having velocities In a certy;,
velocity.

velocity rangc. Ardar 9
Supposc we have a gas consisting of ‘N’ moleculcs. These molecules 5,

moving with a constant root mcan square velocity, ‘c’-. When .thc temperature j
constant then a fraction of molecules will have a definite vcloc1_ty rz.ngc. Suppogse
we have ‘dN’ molecules out of total ‘N’, which have a vclocity between ¢ apg

¢ + dc, where ‘dc’ is a very small change of velocity:

Keeping in view the probability considerations, Maxwellngavc 2

h

mathematical relationship which gives us the fraction of molecules N Whose

velocities lie between 'c' and 'c + dc'.
The equation is as follows:

dNc A 4n( M )3/2 ~Mc?/2RT .2 dc

N 2T£RT e ‘vl ¢ (VI R L T LY (1)
- dNc = A small nmﬁber of molecules having velocity between ¢
and ¢ + dc

N = Total number of molecules

M = Molar mass of the gas

T = Absolute température

¢ = Root mean square velocity.
dc = Very small change of velocity

In the equation (1), we can calculate the fraction 'QE—C' ' if we know the
molar mass of the gas and temperature. For example, if we take H, gas at 27°C

and want to calcul RN . ities 1i (e
ulate "~ for those molecules whose velocities lie between

= 1000m sec™! and 1001 m scc"l,*, then

M= 2018 gmol™’=2.018 x 103 kg mol™! L
T = 27+273=300K |
¢ = 1000 msec!

dc = 1 msec!

Putting these values, we can come to know that what is the part of the tota

molccules which have velocities in this range.
Equation (1) can be written as follows:

2 dNe M W2 a
N

Thie LH.S of this equation (2) i.e. "= L'I:]'c ', represents the probabilit
finding the molecules with the velocity ‘c’ and ‘¢ + 4o’

y 0
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1.9.1 Graphical representation of Maxwell’s law: | ' CHLS

If we plot a graph between velocities of molecules an X-axis and the L.H.
of equation (2) on y-axis, then a curve is obtained showing the maxima.

L]

Fqllowmg diagram (18) shows that the Maxwell’s curve at 0°C starts frlfm
zero velocity and its fraction is very close to zero. The curve shows a peak then

falls and goes along the velocity axis. It means that at this temperature, there are
certain molecules with very high velocities, but their fraction become very low.

The velocity vorresponding to the peak of the curve is possessed by the greatest
fraction of the molecules. Remember that, this velocity is not possessed by greatest

number of molecules. This velocity is called most probable velocity.
The area below the curve, give us the total number of molecules ‘N’.

1.9.2 Effect of temperature on distribution of velocities:
It the H, gas is maintained at 25°C (298 K) rather than 0°C, then the

- Maxwell curve lowers its peak and shifts to the higher velocities. Those molecules

which have low velocities than most ‘probable, reduce their fractions
X-axIs

200

273K

150

x 10’

100

1dn
n dc

373K

M

"Reinp1000 12000 3000

C =-Velocities of gas
molecules

Fig. (18) Maxwell’s curves for distribution of velocities of
_ different temperatures. |

and the molecules having velocities greater than the most probable Increase the
variety of fractions. Simply, we can say that, there happens a wider distribution of
velocities at higher temperature.

y-axis

curves at 373 K (100 C°) shows even greater diStlfibutioh of velocities, .
If the temperature is decreased say ‘upto 0°C, then the maximum on the

distribution curvc" is shifted towards the y-axis,
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Distributi selocities and the react_ion rates:
e O i bove. the Increase of temperature creates grecater

distribution of velocities. The fraction of molccule:s haying greater_velqcities and
energies ﬁlcrease So. the number of fruitful collisions Increase. This thing makes

the reactions faster. _
1.9.3 Derivation of most probable velocity:
Most probable velocity can be obtained for any gas by two ways.

(1) By doing the calculations theoretically, plotting a graph and looking at the
most probable velocity in front of the peak.

(i1) The equation (2) 1S differentiated with respect to ‘c’ and put it equal to
sero. Actually at the peak of the curve, the slope of point is zero and
whenever the slope is zero, then it means that rate of change of dependent
variable with respect to independent variable 1s zero.

"1.9.4 Experimental determination of molecular speeds:

Mostly there are two methods which are generally employed for the
measurement of molecular speed.
1. = Stern method:

This method was given by stern in 1920. A metallic frame work contains
two pairs of slits ‘S,” and ‘S;’. A platinum filament which is coated with Ag 1s
maintained in the centre. The apparatus is enclosed in a evacuated vessel and the
filament is heated. The frame work which is shown in the diagram (19) 1s rotated
about a vertically axis passing through the point “F’. The atoms of Ag are
evaporated from the surface of the filament. Some of the atoms of Ag become
successful in passing through the slits and strike the plate ‘P’ at point “B” but not at
‘A’. If the frame work could have been stationary, then the atoms of Ag would
have struck the point ‘A’. If we know the speed of the rotation, and the distance
between ‘A’ and ‘B’, then the time which is taken by the Ag atom to travel from
filament to the plate ‘P’ can be determined. In this way, the velocity of the Ag
atom can be calculated. Since all the atoms of Ag donot have the same speed, O
the Ag atoms are spread over narrow band. They donot give the sharp line.

That portion of the Ag atoms having the maximum density will correspond
to most probable speed.

Fig. (19) A two dimensional view of the apparatus employed by
Stern for measuring the molecular speeds.
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2. Lammert’s speed filter method:

Tttis method was evolved in 1927 and it was direct experimental proof of
Maxwell’s law. The apparatus is shown as the following diagram (20):

| S, '
R e 1
@L | : BT

I'ig. (20) The apparatus used in Lammert's speed filter method.

There are two discs which are slotted. They are mounted on a common axis

‘A’. 'The discs can rotate at the speed of 500 — 600 rotation per minute. During
rotation the slots in “D,” and ‘D,’ are exactly in line.

A sensitive radiometer is placed, which can measure the angular diffraction
and hence the itensity of the molecular beam. This apparatus is kept in an
evacuated chamber. When the discs are stationary, then the molecule of the gas

passing through ‘D,’ can also pass through. ‘D,’ and recorded by radiometer. Now,
the slotted discs are rotated at high speed. A molecule which passes through a gap
in ‘D,” will pass through a gap in ‘D;’ only if the time required by the molecule to
cover the distance between the discs is equal to an integral multiple of time. This
time is required for the discs to rotate from one slot to the next.

Following equation is used to measure the velocity of the molecule

ado
nu= "~ _
2T

.Where, = small integer |

n

a = number of slots in each disc

d = distance between the discs

» = angular velocity of the disc .

u = speed of the molecule a3

& The number of moleculcs passing through are given by the deﬂection' of

radiometer vanes.

In this way, a graph 1S
particular temperature, and most
the curve.

plotted from lower to the higher velocities at a
probable velocity 1s calculated from the peak of
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