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Many students in the behavioral sciences view the required statistics course as an 
intimidating obstacle that has been placed in the middle of an otherwise interesting cur-
riculum. They want to learn about human behavior—not about math and science. As a
result, they see the statistics course as irrelevant to their education and career goals.
However, as long as the behavioral sciences are founded in science, knowledge of sta-
tistics will be necessary. Statistical procedures provide researchers with objective and
systematic methods for describing and interpreting their research results. Scientific 
research is the system that we use to gather information, and statistics are the tools that
we use to distill the information into sensible and justified conclusions. The goal of this
book is not only to teach the methods of statistics, but also to convey the basic princi-
ples of objectivity and logic that are essential for science and valuable in everyday life.

Those familiar with previous editions of Statistics for the Behavioral Sciences will
notice that some changes have been made. These changes are summarized in the 
section titled “To the Instructor.” In revising this text, our students have been foremost
in our minds. Over the years, they have provided honest and useful feedback. Their
hard work and perseverance has made our writing and teaching most rewarding. We
sincerely thank them. Students who are using this edition should please read the section
of the preface titled “To the Student.”

Ancillaries for this edition include the following:

• Study Guide: Contains chapter summaries, learning objectives, new terms and
concepts with definitions, new formulas, step-by-step procedures for problem
solving, study hints and cautions, self-tests, and review. The Study Guide 
contains answers to the self-test questions. 

• Instructor’s Manual with Test Bank: Contains a detailed table of contents, chap-
ter outlines, annotated learning objectives, lecture suggestions, test items, and
solutions to all end-of-chapter problems in the text. Test items are also available
as a Microsoft Word® download or for ExamView® computerized test bank
software with multiple-choice, true/false, and short-answer questions. An answer
key is provided for all questions, and each question is cross-referenced to a page
in the textbook.  

• PowerLecture with ExamView: The fastest, easiest way to build powerful, cus-
tomized, media-rich lectures, PowerLecture provides a collection of book-
specific Microsoft PowerPoint® lecture and class tools to enhance the educa-
tional experience. ExamView allows you to create, deliver, and customize tests
and study guides (both print and online) in minutes. 

• WebTutorTM on Blackboard and WebCT TM: Jumpstart your course with 
customizable, text-specific content for use within your course-management 
system. Whether you want to Web-enable your class or put an entire course
online, WebTutor delivers. WebTutor offers a wide array of resources including
glossary, flashcards, quizzing, and more.

ANCILLARIES

xv

Preface
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• Psychology CourseMate®: Psychology CourseMate, with Engagement Tracker, a
first-of-its-kind tool that monitors student engagement in the course, includes:

• An interactive eBook

• Interactive teaching and learning tools including:

• Quizzes

• Glossary

• Flashcards

• and more

It takes a lot of good, hard-working people to produce a book. Our friends at
Wadsworth/Cengage have made enormous contributions to this textbook. We thank:
Linda Schreiber-Ganster, Publisher/Executive Editor; Timothy Matray, Acquisitions
Editor; Tangelique Williams, Managing Developmental Editor; Kelly Miller, Assistant
Editor; Lauren K. Moody, Editorial Assistant/Associate; Charlene M. Carpentier,
Content Project Manager; Mary Noel, Media Editor; and Pam Galbreath, Art Director.
Special thanks go to Liana Sarkisian, our Development Editor, and to Mike Ederer who
led us through production at Graphic World.

Reviewers play a very important role in the development of a manuscript.
Accordingly, we offer our appreciation to the following colleagues for their assistance
with the ninth edition: Patricia Case, University of Toledo; Kevin David, Northeastern
State University; Adia Garrett, University of Maryland, Baltimore County; Carrie E. Hall,
Miami University; Deletha Hardin, University of Tampa; Angela Heads, Prairie View
A&M University; Roberto Heredia, Texas A&M International University; Alisha
Janowski, University of Central Florida; Matthew Mulvaney, The College at Brockport
(SUNY); Nicholas Von Glahn, California State Polytechnic University, Pomona; and
Ronald Yockey, Fresno State University.

Those of you familiar with the previous edition of Statistics for the Behavioral Sciences
will notice a number of changes in the ninth edition. Throughout the book, research ex-
amples have been updated, real-world examples have been added, and the end-of-
chapter problems have been extensively revised. The book has been separated into five
sections to emphasize the similarities among groups of statistical methods. Each sec-
tion contains two to four chapters, and begins with an introduction and concludes with
a review, including review exercises.  

Major revisions for this edition include:

1. The former Chapter 12 on Estimation has been eliminated. In its place, sections
on confidence intervals have been added to the three t-statistic chapters.

2. The former Chapter 20 covering hypothesis tests for ordinal data has been 
converted into an appendix.

3. A new final chapter discusses the process of selecting the correct statistics to be
used with different categories of data and replaces the Statistics Organizer,
which appeared as an appendix in earlier editions. 

Other examples of specific and noteworthy revisions include:

Chapter 1 A separate section explains how statistical methods can be classified using
the same categories that are used to group data structures and research methods. A new
heading clarifies the concept that different scales of measurement require different 
statistical methods.

TO THE INSTRUCTOR

ACKNOWLEDGMENTS

xvi PREFACE

30991_fm_ptg01_hr_i-xxii.qxd  9/3/11  12:00 AM  Page xvi



Chapter 2 The discussion of histograms has been modified to differentiate discrete
and continuous variables. The section on stem-and-leaf displays has been heavily 
edited to simplify.

Chapter 3 A modified definition of the median acknowledges that this value is not
algebraically defined, and that determining the median, especially for discrete vari-
ables, can be somewhat subjective. A new Box demonstrates that precisely locating the
median for a continuous variable is equivalent to using interpolation to find the 50th
percentile (as was demonstrated in Chapter 2).

Chapter 4 Alternative definitions of the range have been added, and discussion of the
interquartile range has been deleted. Greater emphasis has been placed on conceptual
definitions of standard deviation and the sum of squared deviations (SS). The section
on variance and inferential statistics has been simplified and the section comparing
measures of variability has been deleted.

Chapter 5 Relatively minor editing for clarity.

Chapter 6 The concepts of random sample and independent random sample are clar-
ified with separate definitions. A new figure helps demonstrate the process of using the
unit normal table to find proportions for negative z-scores. The section on the binomial
distribution has been shortened and simplified.

Chapter 7 Relatively minor editing for clarity.

Chapter 8 The chapter has been shortened by substantial editing that eliminated sev-
eral pages of unnecessary text, particularly in the sections on errors (Type I and II) and
power. The distinction between reporting one-tailed and two-tailed tests was clarified.  

Chapter 9 The section describing how sample size and sample variance influence the
outcome of a hypothesis test has been moved so that it appears immediately after the
hypothesis test example. A new section introduces confidence intervals in the context
of describing effect size, describes how confidence intervals are reported in the litera-
ture, and discusses factors affecting the width of a confidence interval.  

Chapter 10 An expanded section discusses how sample variance and sample size in-
fluence the outcome of an independent-measures hypothesis test and measures of effect
size. A new section introduces confidence intervals as an alternative for describing ef-
fect size. The relationship between a confidence interval and a hypothesis test is also
discussed. We also note that the Mann-Whitney test (presented in Appendix E) can be
used as an alternative to the independent-measures t test if high variance causes prob-
lems or if an assumption is violated.

Chapter 11 The description of repeated-measures and matched-subjects designs was
clarified and we increased emphasis on the concept that all calculations for the related-
samples test are done with the difference scores. A new section introduces confidence
intervals as an alternative for describing effect size and discusses the relationship be-
tween a confidence interval and a hypothesis test. We also note that the Wilcoxon test
(presented in Appendix E) can be used as an alternative to the repeated-measures t test
if high variance causes problems or if an assumption is violated.

The former Chapter 12 has been deleted. The content from this chapter covering
confidence intervals has been added to Chapters 9, 10, and 11.

PREFACE xvii
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Chapter 12 (former Chapter 13, introducing ANOVA) The discussion of testwise
alpha levels versus experimentwise alpha levels was moved from a Box into the text,
and definitions of the two terms were added. To emphasize the concepts of ANOVA
rather than the formulas, SSbetween treatments is routinely found by subtraction instead of
being computed directly. Two alternative equations for SSbetween treatments were moved
from the text into a Box. We also note that the Kruskal-Wallis test (presented in
Appendix E) can be used as an alternative to the independent-measures ANOVA if high
variance causes problems or if an assumption is violated.

Chapter 13 (former Chapter 14, introducing repeated-measures ANOVA) A new
section demonstrates the relationship between ANOVA and the t test when a repeated-
measures study is comparing only two treatments. Major editing shortened the chapter
and simplified the presentation. We also note that the Friedman test (presented in
Appendix E) can be used as an alternative to the repeated-measures ANOVA if high
variance causes problems or if an assumption is violated.

Chapter 14 (formerly Chapter 15, introducing two-factor ANOVA) A new section
demonstrates how using a participant characteristic as a second factor can reduce the
variance caused by individual differences. Major editing shortened the chapter and 
simplified the presentation.

Chapter 15 (formerly Chapter 16, introducing correlations) The introduction to par-
tial correlations was simplified and moved from the regression chapter into the section
discussing the Pearson correlation. 

Chapter 16 (formerly Chapter 17, introducing regression) Major editing shortened
and simplified the section on multiple regression. A printout showing the results of
multiple regression from SPSS was added as a figure to illustrate the different elements
of the process.

Chapter 17 (formerly Chapter 18, introducing chi-square tests) Relatively minor 
editing to shorten and clarify.  

Chapter 18 (formerly Chapter 19, introducing the binomial test) Relatively minor 
editing for clarity.

Chapter 19 A completely new chapter outlining the process of selecting the correct
statistical procedures to use with different sets of data.

The former Chapter 20 covering hypothesis tests for ordinal data has been substan-
tially shortened and converted into an Appendix.

Matching the Text to Your Syllabus The book chapters are organized in the se-
quence that we use for our own statistics courses. However, different instructors may
prefer different organizations and probably will choose to omit or deemphasize specific
topics. We have tried to make separate chapters, and even sections of chapters, com-
pletely self-contained, so they can be deleted or reorganized to fit the syllabus for
nearly any instructor. Some common examples are as follows:

• It is common for instructors to choose between emphasizing analysis of variance
(Chapters 12, 13, and 14) or emphasizing correlation/regression (Chapters 15
and 16). It is rare for a one-semester course to complete coverage of both topics.   

xviii PREFACE
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• Although we choose to complete all the hypothesis tests for means and mean
differences before introducing correlation (Chapter 15), many instructors prefer to
place correlation much earlier in the sequence of course topics. To accommodate
this, sections 15.1, 15.2, and 15.3 present the calculation and interpretation of the
Pearson correlation and can be introduced immediately following Chapter 4 (vari-
ability). Other sections of Chapter 15 refer to hypothesis testing and should be
delayed until the process of hypothesis testing (Chapter 8) has been introduced.

• It is also possible for instructors to present the chi-square tests (Chapter 17)
much earlier in the sequence of course topics. Chapter 17, which presents 
hypothesis tests for proportions, can be presented immediately after Chapter 8,
which introduces the process of hypothesis testing. If this is done, we also 
recommend that the Pearson correlation (Sections 15.1, 15.2, and 15.3) be pre-
sented early to provide a foundation for the chi-square test for independence.   

A primary goal of this book is to make the task of learning statistics as easy and pain-
less as possible. Among other things, you will notice that the book provides you with a
number of opportunities to practice the techniques you will be learning in the form of
Learning Checks, Examples, Demonstrations, and end-of-chapter problems. We en-
courage you to take advantage of these opportunities. Read the text rather than just
memorizing the formulas. We have taken care to present each statistical procedure in a
conceptual context that explains why the procedure was developed and when it should
be used. If you read this material and gain an understanding of the basic concepts un-
derlying a statistical formula, you will find that learning the formula and how to use it
will be much easier. In the “Study Hints,” that follow, we provide advice that we give
our own students. Ask your instructor for advice as well; we are sure that other 
instructors will have ideas of their own. 

Over the years, the students in our classes and other students using our book have
given us valuable feedback. If you have any suggestions or comments about this book,
you can write to either Professor Emeritus Frederick Gravetter or Professor Emeritus
Larry Wallnau at the Department of Psychology, SUNY College at Brockport, 350
New Campus Drive, Brockport, New York 14420. You can also contact Professor
Emeritus Gravetter directly at fgravett@brockport.edu.

Study Hints You may find some of these tips helpful, as our own students have 
reported.

• The key to success in a statistics course is to keep up with the material. Each new
topic builds on previous topics. If you have learned the previous material, then
the new topic is just one small step forward. Without the proper background,
however, the new topic can be a complete mystery. If you find that you are
falling behind, get help immediately.

• You will learn (and remember) much more if you study for short periods several
times per week rather than try to condense all of your studying into one long
session. For example, it is far more effective to study half an hour every night
than to have a single 3�

1
2�-hour study session once a week. We cannot even work

on writing this book without frequent rest breaks.

• Do some work before class. Keep a little ahead of the instructor by reading the
appropriate sections before they are presented in class. Although you may not
fully understand what you read, you will have a general idea of the topic, which
will make the lecture easier to follow. Also, you can identify material that is
particularly confusing and then be sure the topic is clarified in class.

TO THE STUDENT

PREFACE xix
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• Pay attention and think during class. Although this advice seems obvious, often
it is not practiced. Many students spend so much time trying to write down every
example presented or every word spoken by the instructor that they do not actu-
ally understand and process what is being said. Check with your instructor—
there may not be a need to copy every example presented in class, especially if
there are many examples like it in the text. Sometimes, we tell our students to
put their pens and pencils down for a moment and just listen.

• Test yourself regularly. Do not wait until the end of the chapter or the end of the
week to check your knowledge. After each lecture, work some of the end-of-
chapter problems and do the Learning Checks. Review the Demonstration
Problems, and be sure you can define the Key Terms. If you are having trouble,
get your questions answered immediately—reread the section, go to your instruc-
tor, or ask questions in class. By doing so, you will be able to move ahead to
new material.

• Do not kid yourself! Avoid denial. Many students observe their instructor solve
problems in class and think to themselves, “This looks easy, I understand it.” Do
you really understand it? Can you really do the problem on your own without
having to leaf through the pages of a chapter? Although there is nothing wrong
with using examples in the text as models for solving problems, you should try
working a problem with your book closed to test your level of mastery.

• We realize that many students are embarrassed to ask for help. It is our biggest
challenge as instructors. You must find a way to overcome this aversion.
Perhaps contacting the instructor directly would be a good starting point, if ask-
ing questions in class is too anxiety-provoking. You could be pleasantly sur-
prised to find that your instructor does not yell, scold, or bite! Also, your
instructor might know of another student who can offer assistance. Peer tutoring
can be very helpful.

Frederick J Gravetter
Larry B. Wallnau

xx PREFACE
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P A R T

I
Chapter 1 Introduction to Statistics 3

Chapter 2 Frequency Distributions 37

Chapter 3 Central Tendency 71

Chapter 4 Variability 103

We have divided this book into five sections, each cover-
ing a general topic area of statistics. The first section,
consisting of Chapters 1 to 4, provides a broad overview

of statistical methods and a more focused presentation of those
methods that are classified as descriptive statistics.

By the time you finish the four chapters in this part, you
should have a good understanding of the general goals of statistics
and you should be familiar with the basic terminology and notation
used in statistics. In addition, you should be familiar with the tech-
niques of descriptive statistics that help researchers organize and
summarize the results they obtain from their research. Specifically,
you should be able to take a set of scores and present them in a
table or in a graph that provides an overall picture of the complete
set. Also, you should be able to summarize a set of scores by cal-
culating one or two values (such as the average) that describe the
entire set.

At the end of this section there is a brief summary and a set of
review problems that should help integrate the elements from the
separate chapters.

Introduction 
and Descriptive
Statistics

1
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Tools You Will Need
The following items are considered essen-
tial background material for this chapter. If
you doubt your knowledge of any of these
items, you should review the appropriate
chapter or section before proceeding.

• Proportions (math review, Appendix
A)

• Fractions
• Decimals
• Percentages

• Basic algebra (math review, Appendix A)
• z-Scores (Chapter 5)

C H A P T E R

1
Introduction 
to Statistics

Preview

1.1 Statistics, Science, and
Observations

1.2 Populations and Samples

1.3 Data Structures, Research
Methods, and Statistics

1.4 Variables and Measurement

1.5 Statistical Notation

Summary

Focus on Problem Solving

Demonstration 1.1

Problems
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Preview
Before we begin our discussion of statistics, we ask you to
read the following paragraph taken from the philosophy of
Wrong Shui (Candappa, 2000).

The Journey to Enlightenment
In Wrong Shui, life is seen as a cosmic journey, a 
struggle to overcome unseen and unexpected obstacles
at the end of which the traveler will find illumination
and enlightenment. Replicate this quest in your home
by moving light switches away from doors and over to
the far side of each room.*

Why did we begin a statistics book with a bit of twisted
philosophy? Actually, the paragraph is an excellent (and
humorous) counterexample for the purpose of this book.
Specifically, our goal is to help you avoid stumbling
around in the dark by providing lots of easily available
light switches and plenty of illumination as you journey
through the world of statistics. To accomplish this, we try
to present sufficient background and a clear statement of
purpose as we introduce each new statistical procedure.
Remember that all statistical procedures were developed to
serve a purpose. If you understand why a new procedure is
needed, you will find it much easier to learn.

The objectives for this first chapter are to provide an
introduction to the topic of statistics and to give you some
background for the rest of the book. We discuss the role of
statistics within the general field of scientific inquiry, and
we introduce some of the vocabulary and notation that are
necessary for the statistical methods that follow.

As you read through the following chapters, keep in
mind that the general topic of statistics follows a well-
organized, logically developed progression that leads from
basic concepts and definitions to increasingly sophisticated
techniques. Thus, the material presented in the early chap-
ters of this book serves as a foundation for the material that
follows. The content of the first nine chapters, for example,
provides an essential background and context for the statis-
tical methods presented in Chapter 10. If you turn directly
to Chapter 10 without reading the first nine chapters, you
will find the material confusing and incomprehensible.
However, if you learn and use the background material, you
will have a good frame of reference for understanding and
incorporating new concepts as they are presented.

*Candappa, R. (2000). The little book of wrong shui. Kansas City:
Andrews McMeel Publishing. Reprinted by permission.

4

1.1 STATISTICS, SCIENCE, AND OBSERVATIONS

By one definition, statistics consist of facts and figures such as average income, crime
rate, birth rate, baseball batting averages, and so on. These statistics are usually in-
formative and time saving because they condense large quantities of information into a
few simple figures. Later in this chapter we return to the notion of calculating statistics
(facts and figures) but, for now, we concentrate on a much broader definition of statis-
tics. Specifically, we use the term statistics to refer to a set of mathematical procedures.
In this case, we are using the term statistics as a shortened version of statistical proce-
dures. For example, you are probably using this book for a statistics course in which
you will learn about the statistical techniques that are used for research in the behav-
ioral sciences.

Research in psychology (and other fields) involves gathering information. To de-
termine, for example, whether violence on TV has any effect on children’s behavior,
you would need to gather information about children’s behaviors and the TV programs
they watch. When researchers finish the task of gathering information, they typically
find themselves with pages and pages of measurements such as IQ scores, personality
scores, reaction time scores, and so on. In this book, we present the statistics that 

DEFINITIONS OF STATISTICS
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researchers use to analyze and interpret the information that they gather. Specifically,
statistics serve two general purposes:

1. Statistics are used to organize and summarize the information so that the 
researcher can see what happened in the research study and can communicate
the results to others.

2. Statistics help the researcher to answer the questions that initiated the research
by determining exactly what general conclusions are justified based on the
specific results that were obtained.

The term statistics refers to a set of mathematical procedures for organizing,
summarizing, and interpreting information.

Statistical procedures help to ensure that the information or observations are 
presented and interpreted in an accurate and informative way. In somewhat grandiose
terms, statistics help researchers bring order out of chaos. In addition, statistics provide
researchers with a set of standardized techniques that are recognized and understood
throughout the scientific community. Thus, the statistical methods used by one researcher
are familiar to other researchers, who can accurately interpret the statistical analyses with
a full understanding of how the analysis was done and what the results signify.

1.2 POPULATIONS AND SAMPLES

Research in the behavioral sciences typically begins with a general question about a
specific group (or groups) of individuals. For example, a researcher may be interested
in the effect of divorce on the self-esteem of preteen children. Or a researcher may want
to examine the amount of time spent in the bathroom for men compared to women. In
the first example, the researcher is interested in the group of preteen children. In the
second example, the researcher wants to compare the group of men with the group of
women. In statistical terminology, the entire group that a researcher wishes to study is
called a population.

A population is the set of all the individuals of interest in a particular study.

As you can well imagine, a population can be quite large—for example, the entire
set of women on the planet Earth. A researcher might be more specific, limiting the
population for study to women who are registered voters in the United States. Perhaps
the investigator would like to study the population consisting of women who are heads
of state. Populations can obviously vary in size from extremely large to very small, de-
pending on how the researcher defines the population. The population being studied
should always be identified by the researcher. In addition, the population need not con-
sist of people—it could be a population of rats, corporations, parts produced in a fac-
tory, or anything else a researcher wants to study. In practice, populations are typically
very large, such as the population of college sophomores in the United States or the
population of small businesses.

Because populations tend to be very large, it usually is impossible for a researcher 
to examine every individual in the population of interest. Therefore, researchers typically

D E F I N I T I O N

WHAT ARE THEY?

D E F I N I T I O N

SECTION 1.2 / POPULATIONS AND SAMPLES 5
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select a smaller, more manageable group from the population and limit their studies to
the individuals in the selected group. In statistical terms, a set of individuals selected
from a population is called a sample. A sample is intended to be representative of its pop-
ulation, and a sample should always be identified in terms of the population from which
it was selected.

A sample is a set of individuals selected from a population, usually intended to
represent the population in a research study.

Just as we saw with populations, samples can vary in size. For example, one study
might examine a sample of only 10 students in a graduate program, and another study
might use a sample of more than 1,000 registered voters representing the population of
a major city.

So far we have talked about a sample being selected from a population. However,
this is actually only half of the full relationship between a sample and its population.
Specifically, when a researcher finishes examining the sample, the goal is to generalize
the results back to the entire population. Remember that the research started with a gen-
eral question about the population. To answer the question, a researcher studies a sam-
ple and then generalizes the results from the sample to the population. The full
relationship between a sample and a population is shown in Figure 1.1.

Typically, researchers are interested in specific characteristics of the individuals in the
population (or in the sample), or they are interested in outside factors that may influ-
ence the individuals. For example, a researcher may be interested in the influence of the
weather on people’s moods. As the weather changes, do people’s moods also change?
Something that can change or have different values is called a variable.

A variable is a characteristic or condition that changes or has different values
for different individuals.

D E F I N I T I O N

VARIABLES AND DATA

D E F I N I T I O N

6 CHAPTER 1 INTRODUCTION TO STATISTICS

THE POPULATION
All of the individuals of interest

THE SAMPLE
The individuals selected to

participate in the research study

The results
from the sample
are generalized

to the population

The sample
is selected from
the population

FIGURE 1.1

The relationship between a
population and a sample.
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Once again, variables can be characteristics that differ from one individual to 
another, such as height, weight, gender, or personality. Also, variables can be environ-
mental conditions that change, such as temperature, time of day, or the size of the room
in which the research is being conducted.

To demonstrate changes in variables, it is necessary to make measurements of the
variables being examined. The measurement obtained for each individual is called a
datum or, more commonly, a score or raw score. The complete set of scores is called
the data set or simply the data.

Data (plural) are measurements or observations. A data set is a collection of
measurements or observations. A datum (singular) is a single measurement or
observation and is commonly called a score or raw score.

Before we move on, we should make one more point about samples, populations, and
data. Earlier, we defined populations and samples in terms of individuals. For example,
we discussed a population of college sophomores and a sample of preschool children. Be
forewarned, however, that we will also refer to populations or samples of scores. Because
research typically involves measuring each individual to obtain a score, every sample (or
population) of individuals produces a corresponding sample (or population) of scores.

When describing data, it is necessary to distinguish whether the data come from a popu-
lation or a sample. A characteristic that describes a population—for example, the average
score for the population—is called a parameter. A characteristic that describes a sample
is called a statistic. Thus, the average score for a sample is an example of a statistic.
Typically, the research process begins with a question about a population parameter.
However, the actual data come from a sample and are used to compute sample statistics.

A parameter is a value, usually a numerical value, that describes a population.
A parameter is usually derived from measurements of the individuals in the
population.

A statistic is a value, usually a numerical value, that describes a sample. A
statistic is usually derived from measurements of the individuals in the sample.

Every population parameter has a corresponding sample statistic, and most research
studies involve using statistics from samples as the basis for answering questions about
population parameters. As a result, much of this book is concerned with the relation-
ship between sample statistics and the corresponding population parameters. In Chapter
7, for example, we examine the relationship between the mean obtained for a sample
and the mean for the population from which the sample was obtained.

Although researchers have developed a variety of different statistical procedures to or-
ganize and interpret data, these different procedures can be classified into two general
categories. The first category, descriptive statistics, consists of statistical procedures
that are used to simplify and summarize data.

Descriptive statistics are statistical procedures used to summarize, organize,
and simplify data.

D E F I N I T I O N

DESCRIPTIVE 
AND INFERENTIAL

STATISTICAL METHODS

D E F I N I T I O N S

PARAMETERS AND
STATISTICS

D E F I N I T I O N S
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Descriptive statistics are techniques that take raw scores and organize or summarize
them in a form that is more manageable. Often the scores are organized in a table or a
graph so that it is possible to see the entire set of scores. Another common technique is
to summarize a set of scores by computing an average. Note that even if the data set has
hundreds of scores, the average provides a single descriptive value for the entire set.

The second general category of statistical techniques is called inferential statistics.
Inferential statistics are methods that use sample data to make general statements about
a population.

Inferential statistics consist of techniques that allow us to study samples and
then make generalizations about the populations from which they were selected.

Because populations are typically very large, it usually is not possible to measure
everyone in the population. Therefore, a sample is selected to represent the population.
By analyzing the results from the sample, we hope to make general statements about
the population. Typically, researchers use sample statistics as the basis for drawing con-
clusions about population parameters.

One problem with using samples, however, is that a sample provides only limited 
information about the population. Although samples are generally representative of their
populations, a sample is not expected to give a perfectly accurate picture of the whole
population. There usually is some discrepancy between a sample statistic and the corre-
sponding population parameter. This discrepancy is called sampling error, and it creates
the fundamental problem that inferential statistics must always address (Box 1.1).

Sampling error is the naturally occurring discrepancy, or error, that exists
between a sample statistic and the corresponding population parameter.

The concept of sampling error is illustrated in Figure 1.2. The figure shows a pop-
ulation of 1,000 college students and two samples, each with 5 students, that have been
selected from the population. Notice that each sample contains different individuals
who have different characteristics. Because the characteristics of each sample depend
on the specific people in the sample, statistics vary from one sample to another. For 
example, the five students in sample 1 have an average age of 19.8 years and the 
students in sample 2 have an average age of 20.4 years.

D E F I N I T I O N

D E F I N I T I O N

8 CHAPTER 1 INTRODUCTION TO STATISTICS

B O X
1.1 THE MARGIN OF ERROR BETWEEN STATISTICS AND PARAMETERS

The margin of error is the sampling error. In this
case, the percentages that are reported were obtained
from a sample and are being generalized to the whole
population. As always, you do not expect the statistics
from a sample to be perfect. There is always some mar-
gin of error when sample statistics are used to represent
population parameters.

One common example of sampling error is the error
associated with a sample proportion. For example, in
newspaper articles reporting results from political polls,
you frequently find statements such as this:

Candidate Brown leads the poll with 51% of the
vote. Candidate Jones has 42% approval, and the
remaining 7% are undecided. This poll was taken
from a sample of registered voters and has a margin
of error of plus-or-minus 4 percentage points.
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It is also very unlikely that the statistics obtained for a sample are identical to the 
parameters for the entire population. In Figure 1.2, for example, neither sample has sta-
tistics that are exactly the same as the population parameters. You should also realize
that Figure 1.2 shows only two of the hundreds of possible samples. Each sample would
contain different individuals and would produce different statistics. This is the basic
concept of sampling error: sample statistics vary from one sample to another and typi-
cally are different from the corresponding population parameters.

As a further demonstration of sampling error, imagine that your statistics class is
separated into two groups by drawing a line from front to back through the middle of
the room. Now imagine that you compute the average age (or height, or IQ) for each
group. Will the two groups have exactly the same average? Almost certainly they will
not. No matter what you chose to measure, you will probably find some difference 
between the two groups.

However, the difference you obtain does not necessarily mean that there is a sys-
tematic difference between the two groups. For example, if the average age for students
on the right-hand side of the room is higher than the average for students on the left, it
is unlikely that some mysterious force has caused the older people to gravitate to the
right side of the room. Instead, the difference is probably the result of random factors
such as chance. The unpredictable, unsystematic differences that exist from one sample
to another are an example of sampling error.

SECTION 1.2 / POPULATIONS AND SAMPLES 9

Population
of 1000 college students

Population Parameters
Average Age � 21.3 years

Average IQ � 112.5
65% Female, 35% Male

Sample #1

Eric
Jessica
Laura
Karen
Brian

Sample Statistics
Average Age � 19.8
Average IQ � 104.6

60% Female, 40% Male

Sample #2

Tom
Kristen
Sara

Andrew
John

Sample Statistics
Average Age � 20.4
Average IQ � 114.2

40% Female, 60% Male

FIGURE 1.2

A demonstration of sampling
error. Two samples are 
selected from the same 
population. Notice that the
sample statistics are different
from one sample to another,
and all of the sample statis-
tics are different from the
corresponding population
parameters. The natural
differences that exist, by
chance, between a sample
statistic and a population
parameter are called sam-
pling error.
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The following example shows the general stages of a research study and demonstrates
how descriptive statistics and inferential statistics are used to organize and interpret the
data. At the end of the example, note how sampling error can affect the interpretation
of experimental results, and consider why inferential statistical methods are needed to
deal with this problem.

Figure 1.3 shows an overview of a general research situation and demonstrates the
roles that descriptive and inferential statistics play. The purpose of the research study

E X A M P L E  1 . 1

STATISTICS IN THE 
CONTEXT OF RESEARCH

10 CHAPTER 1 INTRODUCTION TO STATISTICS

Step 1

Step 2

Step 3

Experiment:

Descriptive
 statistics:

Inferential
 statistics:

Compare two
teaching methods

Test scores for the
students in each
sample

Organize and simplify

Interpret results

Sample A
Taught by Method A

73
76
72
80
73
77

75
77
75
74
77
77

72
75
76
76
74

79
77
78
78
81

68
67
75
72
76
69

70
72
68
74
73

73
70
70
69
70

71
71
71
72
70

Sample B
Taught by Method B

Sample A Sample B

Data

Average
score = 76

Average
score = 71

The sample data show a 5-point difference
between the two teaching methods. However,
there are two ways to interpret the results:
1.   There actually is no difference between
      the two teaching methods, and the sample
      difference is due to chance (sampling error).
2.   There really is a difference between
      the two methods, and the sample data
      accurately reflect this difference.
The goal of inferential statistics is to help
researchers decide between the two interpretations.

Population of
first-grade
children

70 80 85 65 75 80 85

FIGURE 1.3

The role of statistics in experimental research.
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is to evaluate the difference between two methods for teaching reading to first-grade
children. Two samples are selected from the population of first-grade children. The
children in sample A are assigned to teaching method A and the children in sample B
are assigned to method B. After 6 months, all of the students are given a standardized
reading test. At this point, the researcher has two sets of data: the scores for sample A
and the scores for sample B (see Figure 1.3). Now is the time to begin using statistics.

First, descriptive statistics are used to simplify the pages of data. For example, the
researcher could draw a graph showing the scores for each sample or compute the average
score for each sample. Note that descriptive methods provide a simplified, organized
description of the scores. In this example, the students taught by method A averaged 76
on the standardized test, and the students taught by method B averaged only 71.

Once the researcher has described the results, the next step is to interpret the
outcome. This is the role of inferential statistics. In this example, the researcher has
found a difference of 5 points between the two samples (sample A averaged 76 and
sample B averaged 71). The problem for inferential statistics is to differentiate 
between the following two interpretations:

1. There is no real difference between the two teaching methods, and the 5-point
difference between the samples is just an example of sampling error (like the
samples in Figure 1.2).

2. There really is a difference between the two teaching methods, and the 5-point
difference between the samples was caused by the different methods of teaching.

In simple English, does the 5-point difference between samples provide convincing
evidence of a difference between the two teaching methods, or is the 5-point
difference just chance? The purpose of inferential statistics is to answer this question.

SECTION 1.2 / POPULATIONS AND SAMPLES 11

L E A R N I N G  C H E C K 1. A researcher is interested in the texting habits of high school students in the
United States. If the researcher measures the number of text messages that 
each individual sends each day and calculates the average number for the 
entire group of high school students, the average number would be an example 
of a ___________.

2. A researcher is interested in how watching a reality television show featuring
fashion models influences the eating behavior of 13-year-old girls. 

a. A group of 30 13-year-old girls is selected to participate in a research study.
The group of 30 13-year-old girls is an example of a ___________.

b. In the same study, the amount of food eaten in one day is measured for each
girl and the researcher computes the average score for the 30 13-year-old girls.
The average score is an example of a __________.

3. Statistical techniques are classified into two general categories. What are the two
categories called, and what is the general purpose for the techniques in each category?

4. Briefly define the concept of sampling error.

1. parameter

2. a. sample

b. statistic

ANSWERS
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1.3 DATA STRUCTURES, RESEARCH METHODS, 
AND STATISTICS

Some research studies are conducted simply to describe individual variables as they
exist naturally. For example, a college official may conduct a survey to describe the eat-
ing, sleeping, and study habits of a group of college students. When the results consist
of numerical scores, such as the number of hours spent studying each day, they are typ-
ically described by the statistical techniques that are presented in Chapters 3 and 4.
Non-numerical scores are typically described by computing the proportion or percent-
age in each category. For example, a recent newspaper article reported that 61% of the
adults in the United States currently drink alcohol.

Most research, however, is intended to examine relationships between two or more
variables. For example, is there a relationship between the amount of violence that chil-
dren see on television and the amount of aggressive behavior they display? Is there a
relationship between the quality of breakfast and level of academic performance for 
elementary school children? Is there a relationship between the number of hours of
sleep and grade point average for college students? To establish the existence of a 
relationship, researchers must make observations—that is, measurements of the two
variables. The resulting measurements can be classified into two distinct data structures
that also help to classify different research methods and different statistical techniques.
In the following section we identify and discuss these two data structures.

I. Measuring Two Variables for Each Individual: The Correlational Method
One method for examining the relationship between variables is to observe the two
variables as they exist naturally for a set of individuals. That is, simply measure the two
variables for each individual. For example, research has demonstrated a relationship 
between sleep habits, especially wake-up time, and academic performance for college 
students (Trockel, Barnes, and Egget, 2000). The researchers used a survey to measure
wake-up time and school records to measure academic performance for each student.
Figure 1.4 shows an example of the kind of data obtained in the study. The researchers
then look for consistent patterns in the data to provide evidence for a relationship 
between variables. For example, as wake-up time changes from one student to another,
is there also a tendency for academic performance to change?

Consistent patterns in the data are often easier to see if the scores are presented in 
a graph. Figure 1.4 also shows the scores for the eight students in a graph called a 
scatter plot. In the scatter plot, each individual is represented by a point so that the 
horizontal position corresponds to the student’s wake-up time and the vertical position
corresponds to the student’s academic performance score. The scatter plot shows a 
clear relationship between wake-up time and academic performance: as wake-up time 
increases, academic performance decreases.

RELATIONSHIPS BETWEEN
VARIABLES

INDIVIDUAL VARIABLES

12 CHAPTER 1 INTRODUCTION TO STATISTICS

3. The two categories are descriptive statistics and inferential statistics. Descriptive techniques
are intended to organize, simplify, and summarize data. Inferential techniques use sample
data to reach general conclusions about populations.

4. Sampling error is the error, or discrepancy, between the value obtained for a sample statistic
and the value for the corresponding population parameter.
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A
B
C
D
E
F
G
H

11
9
9

12
7

10
10
8

Student
Wake-up

Time

2.4
3.6
3.2
2.2
3.8
2.2
3.0
3.0

Academic
Performance

A research study that simply measures two different variables for each individual
and produces the kind of data shown in Figure 1.4 is an example of the correlational
method, or the correlational research strategy.

In the correlational method, two different variables are observed to determine
whether there is a relationship between them.

Limitations of the Correlational Method The results from a correlational study can
demonstrate the existence of a relationship between two variables, but they do not pro-
vide an explanation for the relationship. In particular, a correlational study cannot
demonstrate a cause-and-effect relationship. For example, the data in Figure 1.4 show
a systematic relationship between wake-up time and academic performance for a group
of college students; those who sleep late tend to have lower performance scores than
those who wake early. However, there are many possible explanations for the relation-
ship and we do not know exactly what factor (or factors) is responsible for late 
sleepers having lower grades. In particular, we cannot conclude that waking students up
earlier would cause their academic performance to improve, or that studying more
would cause students to wake up earlier. To demonstrate a cause-and-effect relation-
ship between two variables, researchers must use the experimental method, which is
discussed next.

II. Comparing Two (or More) Groups of Scores: Experimental and
Nonexperimental Methods The second method for examining the relationship 
between two variables involves the comparison of two or more groups of scores. In this
situation, the relationship between variables is examined by using one of the variables
to define the groups, and then measuring the second variable to obtain scores for each
group. For example, one group of elementary school children is shown a 30-minute 
action/adventure television program involving numerous instances of violence, and a
second group is shown a 30-minute comedy that includes no violence. Both groups are
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FIGURE 1.4

One of two data structures for studies evaluating the
relationship between variables. Note that there are two
separate measurements for each individual (wake-up
time and academic performance). The same scores are
shown in a table (a) and in a graph (b).
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then observed on the playground and a researcher records the number of aggressive 
acts committed by each child. An example of the resulting data is shown in Figure 1.5.
The researcher compares the scores for the violence group with the scores for the 
no-violence group. A systematic difference between the two groups provides evidence
for a relationship between viewing television violence and aggressive behavior for 
elementary school children.

One specific research method that involves comparing groups of scores is known as the
experimental method or the experimental research strategy. The goal of an experimen-
tal study is to demonstrate a cause-and-effect relationship between two variables.
Specifically, an experiment attempts to show that changing the value of one variable
causes changes to occur in the second variable. To accomplish this goal, the experi-
mental method has two characteristics that differentiate experiments from other types
of research studies:

1. Manipulation The researcher manipulates one variable by changing its value
from one level to another. A second variable is observed (measured) to deter-
mine whether the manipulation causes changes to occur.

2. Control The researcher must exercise control over the research situation to
ensure that other, extraneous variables do not influence the relationship being
examined.

To demonstrate these two characteristics, consider an experiment in which 
researchers demonstrate the pain-killing effects of handling money (Zhou & Vohs,
2009). In the experiment, a group of college students was told that they were partici-
pating in a manual dexterity study. The researcher then manipulated the treatment con-
ditions by giving half of the students a stack of money to count and the other half a
stack of blank pieces of paper. After the counting task, the participants were asked to
dip their hands into bowls of painfully hot water (122� F) and rate how uncomfortable
it was. Participants who had counted money rated the pain significantly lower than
those who had counted paper. The structure of the experiment is shown in Figure 1.6.

To be able to say that the difference in pain is caused by the money, the researcher
must rule out any other possible explanation for the difference. That is, any other 
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One variable (violence/no violence)
is used to define groups

A second variable (aggressive behavior)
is measured to obtain scores within each group
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Compare groups
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FIGURE 1.5

The second data structure
for studies evaluating the
relationship between vari-
ables. Note that one variable
is used to define the groups
and the second variable is
measured to obtain scores
within each group.

In more complex experiments, a
researcher may systematically
manipulate more than one 
variable and may observe more
than one variable. Here we are
considering the simplest case, 
in which only one variable is
manipulated and only one 
variable is observed.
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variables that might affect pain tolerance must be controlled. There are two general cat-
egories of variables that researchers must consider:

1. Participant Variables These are characteristics such as age, gender, and
intelligence that vary from one individual to another. Whenever an experiment
compares different groups of participants (one group in treatment A and a 
different group in treatment B), researchers must ensure that participant vari-
ables do not differ from one group to another. For the experiment shown in 
Figure 1.6, for example, the researchers would like to conclude that handling
money instead of plain paper causes a change in the participants’ perceptions 
of pain. Suppose, however, that the participants in the money condition were
primarily females and those in the paper condition were primarily males. In 
this case, there is an alternative explanation for any difference in the pain 
ratings that exists between the two groups. Specifically, it is possible that the
difference in pain was caused by the money, but it also is possible that the
difference was caused by the participants’ gender (females can tolerate 
more pain than males can). Whenever a research study allows more than one
explanation for the results, the study is said to be confounded because it is 
impossible to reach an unambiguous conclusion.

2. Environmental Variables These are characteristics of the environment such
as lighting, time of day, and weather conditions. A researcher must ensure that
the individuals in treatment A are tested in the same environment as the indi-
viduals in treatment B. Using the money-counting experiment (see Figure 1.6)
as an example, suppose that the individuals in the money condition were all
tested in the morning and the individuals in the paper condition were all tested
in the evening. Again, this would produce a confounded experiment because the
researcher could not determine whether the differences in the pain ratings were
caused by the money or caused by the time of day.

Researchers typically use three basic techniques to control other variables. First,
the researcher could use random assignment, which means that each participant has an
equal chance of being assigned to each of the treatment conditions. The goal of random
assignment is to distribute the participant characteristics evenly between the two groups
so that neither group is noticeably smarter (or older, or faster) than the other. Random
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FIGURE 1.6

The structure of an experi-
ment. Participants are ran-
domly assigned to one of
two treatment conditions:
counting money or counting
blank pieces of paper. Later,
each participant is tested by
placing one hand in a bowl
of hot (122� F) water and
rating the level of pain. A
difference between the
ratings for the two groups is
attributed to the treatment
(paper versus money).

Variable #1: Counting money or 
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two treatment conditions.
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treatment conditions.
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assignment can also be used to control environmental variables. For example, partici-
pants could be assigned randomly for testing either in the morning or in the afternoon.
Second, the researcher can use matching to ensure equivalent groups or equivalent 
environments. For example, the researcher could match groups by ensuring that every
group has exactly 60% females and 40% males. Finally, the researcher can control 
variables by holding them constant. For example, if an experiment uses only 10-year-
old children as participants (holding age constant), then the researcher can be certain
that one group is not noticeably older than another.

In the experimental method, one variable is manipulated while another vari-
able is observed and measured. To establish a cause-and-effect relationship
between the two variables, an experiment attempts to control all other variables
to prevent them from influencing the results.

Terminology in the Experimental Method Specific names are used for the two
variables that are studied by the experimental method. The variable that is manipulated
by the experimenter is called the independent variable. It can be identified as the treat-
ment conditions to which participants are assigned. For the example in Figure 1.6,
money versus paper is the independent variable. The variable that is observed and
measured to obtain scores within each condition is the dependent variable. For the 
example in Figure 1.6, the level of pain is the dependent variable.

The independent variable is the variable that is manipulated by the researcher.
In behavioral research, the independent variable usually consists of the two (or
more) treatment conditions to which subjects are exposed. The independent
variable consists of the antecedent conditions that were manipulated prior to
observing the dependent variable.

The dependent variable is the variable that is observed to assess the effect of
the treatment.

Control conditions in an experiment An experimental study evaluates the relation-
ship between two variables by manipulating one variable (the independent variable)
and measuring one variable (the dependent variable). Note that in an experiment only
one variable is actually measured. You should realize that this is different from a cor-
relational study, in which both variables are measured and the data consist of two sep-
arate scores for each individual.

Often an experiment will include a condition in which the participants do not 
receive any treatment. The scores from these individuals are then compared with scores
from participants who do receive the treatment. The goal of this type of study is to
demonstrate that the treatment has an effect by showing that the scores in the treatment
condition are substantially different from the scores in the no-treatment condition. In
this kind of research, the no-treatment condition is called the control condition, and the
treatment condition is called the experimental condition.

Individuals in a control condition do not receive the experimental treatment.
Instead, they either receive no treatment or they receive a neutral, placebo treat-
ment. The purpose of a control condition is to provide a baseline for compari-
son with the experimental condition.

Individuals in the experimental condition do receive the experimental treatment.

D E F I N I T I O N S
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Note that the independent variable always consists of at least two values.
(Something must have at least two different values before you can say that it is “vari-
able.”) For the money-counting experiment (see Figure 1.6), the independent variable is
money versus plain paper. For an experiment with an experimental group and a control
group, the independent variable is treatment versus no treatment.

In informal conversation, there is a tendency for people to use the term experiment to
refer to any kind of research study. You should realize, however, that the term only ap-
plies to studies that satisfy the specific requirements outlined earlier. In particular, a
real experiment must include manipulation of an independent variable and rigorous
control of other, extraneous variables. As a result, there are a number of other research
designs that are not true experiments but still examine the relationship between vari-
ables by comparing groups of scores. Two examples are shown in Figure 1.7 and are
discussed in the following paragraphs. This type of research study is classified as non-
experimental.

The top part of Figure 1.7 shows an example of a nonequivalent groups study 
comparing boys and girls. Notice that this study involves comparing two groups of
scores (like an experiment). However, the researcher has no ability to control which

NONEXPERIMENTAL
METHODS: NONEQUIVALENT

GROUPS AND PRE–POST
STUDIES
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FIGURE 1.7

Two examples of nonexperi-
mental studies that involve
comparing two groups of
scores. In (a) the study uses
two preexisting groups
(boys/girls) and measures a
dependent variable (verbal
scores) in each group. In 
(b) the study uses time 
(before/after) to define the
two groups and measures 
a dependent variable (depres-
sion) in each group.
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participants go into which group—all the males must be in the boy group and all the 
females must be in the girl group. Because this type of research compares preexisting
groups, the researcher cannot control the assignment of participants to groups and can-
not ensure equivalent groups. Other examples of nonequivalent group studies include
comparing 8-year-old children and 10-year-old children, people with an eating disorder
and those with no disorder, and comparing children from a single-parent home and
those from a two-parent home. Because it is impossible to use techniques like random
assignment to control participant variables and ensure equivalent groups, this type of
research is not a true experiment.

The bottom part of Figure 1.7 shows an example of a pre–post study comparing 
depression scores before therapy and after therapy. The two groups of scores are 
obtained by measuring the same variable (depression) twice for each participant; once
before therapy and again after therapy. In a pre–post study, however, the researcher has
no control over the passage of time. The “before” scores are always measured earlier
than the “after” scores. Although a difference between the two groups of scores may be
caused by the treatment, it is always possible that the scores simply change as time goes
by. For example, the depression scores may decrease over time in the same way that the
symptoms of a cold disappear over time. In a pre–post study, the researcher also has no
control over other variables that change with time. For example, the weather could
change from dark and gloomy before therapy to bright and sunny after therapy. In this
case, the depression scores could improve because of the weather and not because of
the therapy. Because the researcher cannot control the passage of time or other vari-
ables related to time, this study is not a true experiment.

Terminology in nonexperimental research Although the two research studies
shown in Figure 1.7 are not true experiments, you should notice that they produce the
same kind of data that are found in an experiment (see Figure 1.6). In each case, one
variable is used to create groups, and a second variable is measured to obtain scores
within each group. In an experiment, the groups are created by manipulation of the 
independent variable, and the participants’ scores are the dependent variable. The same
terminology is often used to identify the two variables in nonexperimental studies. That
is, the variable that is used to create groups is the independent variable and the scores
are the dependent variable. For example, the top part of Figure 1.7, gender (boy/girl),
is the independent variable and the verbal test scores are the dependent variable.
However, you should realize that gender (boy/girl) is not a true independent variable
because it is not manipulated. For this reason, the “independent variable” in a non-
experimental study is often called a quasi-independent variable.

In a nonexperimental study, the “independent variable” that is used to create the
different groups of scores is often called the quasi-independent variable.

The two general data structures that we used to classify research methods can also be
used to classify statistical methods. 

I. One Group with Two Variables Measured for each Individual Recall that the
data from a correlational study consist of two scores, representing two different vari-
ables, for each individual. The scores can be listed in a table or displayed in a scatter
plot as in Figure 1.5. The relationship between the two variables is usually measured
and described using a statistic called a correlation. Correlations and the correlational
method are discussed in detail in Chapters15 and 16.

DATA STRUCTURES AND
STATISTICAL METHODS
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Correlational studies are also
examples of nonexperimental
research. In this section, 
however, we are discussing 
non-experimental studies that 
compare two or more groups 
of scores.
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Occasionally, the measurement process used for a correlational study simply classi-
fies individuals into categories that do not correspond to numerical values. For example,
a researcher could classify a group of college students by gender (male or female) and
by cell-phone preference (talk or text). Note that the researcher has two scores for each
individual but neither of the scores is a numerical value. This type of data is typically
summarized in a table showing how many individuals are classified into each of the pos-
sible categories. Table 1.1 shows an example of this kind of summary table. The table
shows, for example, that 30 of the males in the sample preferred texting to talking. This
type of data can be coded with numbers (for example, male � 0 and female � 1) so that
it is possible to compute a correlation. However, the relationship between variables for
non-numerical data, such as the data in Table 1.1, is usually evaluated using a statistical
technique known as a chi-square test. Chi-square tests are presented in Chapter 17.

II. Comparing Two or More Groups of Scores Most of the statistical procedures
presented in this book are designed for research studies that compare groups of scores,
like the experimental study in Figure 1.6 and the nonexperimental studies in Figure 1.7.
Specifically, we examine descriptive statistics that summarize and describe the scores
in each group, and we examine inferential statistics that allow us to use the groups, or
samples, to generalize to the entire population.

When the measurement procedure produces numerical scores, the statistical evalu-
ation typically involves computing the average score for each group and then comparing
the averages. The process of computing averages is presented in Chapter 3, and a vari-
ety of statistical techniques for comparing averages are presented in Chapters 8–14. 
If the measurement process simply classifies individuals into non-numerical categories,
the statistical evaluation usually consists of computing proportions for each group and
then comparing proportions. In Table 1.1 we present an example of non-numerical data
examining the relationship between gender and cell-phone preference. The same data
can be used to compare the proportions for males with the proportions for females. For
example, using text is preferred by 60% of the males compared to 50% of the 
females. As mentioned before, these data are evaluated using a chi-square test, which is
presented in Chapter 17.
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1. Researchers have observed that high school students who watched educational
television programs as young children tend to have higher grades than their peers
who did not watch educational television. Is this study an example of an experi-
ment? Explain why or why not.

2. What two elements are necessary for a research study to be an experiment?

3. Loftus and Palmer (1974) conducted an experiment in which participants were
shown a video of an automobile accident. After the video, some participants were

L E A R N I N G  C H E C K

TABLE 1.1

Correlational data consisting of
non-numerical scores. Note that
there are two measurements for
each individual: gender and cell
phone preference. The numbers
indicate how many people are in
each category. For example, out
of the 50 males, 30 prefer text
over talk.

Cell Phone Preference

Text Talk

Males 30 20 50

Females 25 25 50
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1.4 VARIABLES AND MEASUREMENT

The scores that make up the data from a research study are the result of observing and
measuring variables. For example, a researcher may finish a study with a set of IQ
scores, personality scores, or reaction-time scores. In this section, we take a closer look
at the variables that are being measured and the process of measurement.

Some variables, such as height, weight, and eye color are well-defined, concrete enti-
ties that can be observed and measured directly. On the other hand, many variables
studied by behavioral scientists are internal characteristics that people use to help 
describe and explain behavior. For example, we say that a student does well in school
because he or she is intelligent. Or we say that someone is anxious in social situations,
or that someone seems to be hungry. Variables like intelligence, anxiety, and hunger
are called constructs, and because they are intangible and cannot be directly observed,
they are often called hypothetical constructs.

Although constructs such as intelligence are internal characteristics that cannot be
directly observed, it is possible to observe and measure behaviors that are representa-
tive of the construct. For example, we cannot “see” intelligence but we can see exam-
ples of intelligent behavior. The external behaviors can then be used to create an
operational definition for the construct. An operational definition defines a construct in
terms of external behaviors that can be observed and measured. For example, your in-
telligence is measured and defined by your performance on an IQ test, or hunger can be
measured and defined by the number of hours since last eating.

Constructs are internal attributes or characteristics that cannot be directly 
observed but are useful for describing and explaining behavior.

An operational definition identifies a measurement procedure (a set of opera-
tions) for measuring an external behavior and uses the resulting measurements
as a definition and a measurement of a hypothetical construct. Note that an
operational definition has two components: First, it describes a set of operations
for measuring a construct. Second, it defines the construct in terms of the result-
ing measurements.

D E F I N I T I O N S

CONSTRUCTS AND
OPERATIONAL DEFINITIONS
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asked to estimate the speed of the cars when they “smashed into” each other.
Others were asked to estimate the speed when the cars “hit” each other. The
“smashed into” group produced significantly higher estimates than the “hit” group.
Identify the independent and dependent variables for this study.

1. This study could be correlational or nonexperimental, but it is definitely not an example of a
true experiment. The researcher is simply observing, not manipulating, the amount of educa-
tional television.

2. First, the researcher must manipulate one of the two variables being studied. Second, all
other variables that might influence the results must be controlled.

3. The independent variable is the phrasing of the question and the dependent variable is the
speed estimated by each participant.

ANSWERS
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The variables in a study can be characterized by the type of values that can be assigned
to them. A discrete variable consists of separate, indivisible categories. For this type of
variable, there are no intermediate values between two adjacent categories. Consider
the values displayed when dice are rolled. Between neighboring values—for example,
five dots and six dots—no other values can ever be observed.

A discrete variable consists of separate, indivisible categories. No values can
exist between two neighboring categories.

Discrete variables are commonly restricted to whole, countable numbers—for 
example, the number of children in a family or the number of students attending class.
If you observe class attendance from day to day, you may count 18 students one day
and 19 students the next day. However, it is impossible ever to observe a value between
18 and 19. A discrete variable may also consist of observations that differ qualitatively.
For example, people can be classified by gender (male or female), by occupation
(nurse, teacher, lawyer, etc.), and college students can be classified by academic major
(art, biology, chemistry, etc.). In each case, the variable is discrete because it consists
of separate, indivisible categories.

On the other hand, many variables are not discrete. Variables such as time, height,
and weight are not limited to a fixed set of separate, indivisible categories. You can
measure time, for example, in hours, minutes, seconds, or fractions of seconds. These
variables are called continuous because they can be divided into an infinite number of
fractional parts.

For a continuous variable, there are an infinite number of possible values that
fall between any two observed values. A continuous variable is divisible into an
infinite number of fractional parts.

Suppose, for example, that a researcher is measuring weights for a group of indi-
viduals participating in a diet study. Because weight is a continuous variable, it can be
pictured as a continuous line (Figure 1.8). Note that there are an infinite number of pos-
sible points on the line without any gaps or separations between neighboring points. For
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DISCRETE AND CONTINUOUS
VARIABLES
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When measuring weight to
the nearest whole pound,
149.6 and 150.3 are assigned
the value of 150 (top). Any
value in the interval between
149.5 and 150.5 is given the
value of 150.
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any two different points on the line, it is always possible to find a third value that is 
between the two points.

Two other factors apply to continuous variables:

1. When measuring a continuous variable, it should be very rare to obtain identi-
cal measurements for two different individuals. Because a continuous variable
has an infinite number of possible values, it should be almost impossible for
two people to have exactly the same score. If the data show a substantial num-
ber of tied scores, then you should suspect that the measurement procedure is
very crude or that the variable is not really continuous.

2. When measuring a continuous variable, each measurement category is actually
an interval that must be defined by boundaries. For example, two people who
both claim to weigh 150 pounds are probably not exactly the same weight.
However, they are both around 150 pounds. One person may actually weigh
149.6 and the other 150.3. Thus, a score of 150 is not a specific point on the
scale but instead is an interval (see Figure 1.8). To differentiate a score of 
150 from a score of 149 or 151, we must set up boundaries on the scale of
measurement. These boundaries are called real limits and are positioned exactly
halfway between adjacent scores. Thus, a score of X � 150 pounds is actually
an interval bounded by a lower real limit of 149.5 at the bottom and an upper
real limit of 150.5 at the top. Any individual whose weight falls between these
real limits will be assigned a score of X � 150.

Real limits are the boundaries of intervals for scores that are represented on a
continuous number line. The real limit separating two adjacent scores is located
exactly halfway between the scores. Each score has two real limits. The upper
real limit is at the top of the interval, and the lower real limit is at the bottom.

The concept of real limits applies to any measurement of a continuous variable, even
when the score categories are not whole numbers. For example, if you were measuring
time to the nearest tenth of a second, the measurement categories would be 31.0, 31.1, 31.2,
and so on. Each of these categories represents an interval on the scale that is bounded by
real limits. For example, a score of X � 31.1 seconds indicates that the actual measurement
is in an interval bounded by a lower real limit of 31.05 and an upper real limit of 31.15.
Remember that the real limits are always halfway between adjacent categories.

Later in this book, real limits are used for constructing graphs and for various cal-
culations with continuous scales. For now, however, you should realize that real limits
are a necessity whenever you make measurements of a continuous variable.

Finally, we should warn you that the terms continuous and discrete apply to the
variables that are being measured and not to the scores that are obtained from the meas-
urement. For example, measuring people’s heights to the nearest inch produces scores
of 60, 61, 62, and so on. Although the scores may appear to be discrete numbers, the
underlying variable is continuous. One key to determining whether a variable is con-
tinuous or discrete is that a continuous variable can be divided into any number of frac-
tional parts. Height can be measured to the nearest inch, the nearest 0.5 inch, or the
nearest 0.1 inch. Similarly, a professor evaluating students’ knowledge could use a
pass/fail system that classifies students into two broad categories. However, the pro-
fessor could choose to use a 10-point quiz that divides student knowledge into 11 cat-
egories corresponding to quiz scores from 0 to 10. Or the professor could use a
100-point exam that potentially divides student knowledge into 101 categories from 
0 to 100. Whenever you are free to choose the degree of precision or the number of 
categories for measuring a variable, the variable must be continuous.
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Technical Note: Students often
ask whether a value of exactly
150.5 should be assigned to the
X � 150 interval or the X � 151
interval. The answer is that
150.5 is the boundary between
the two intervals and is not
necessarily in one or the other.
Instead, the placement of 150.5
depends on the rule that you are
using for rounding numbers. If
you are rounding up, then 150.5
goes in the higher interval 
(X � 151) but if you are 
rounding down, then it goes in
the lower interval (X � 150).
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It should be obvious by now that data collection requires that we make measurements of
our observations. Measurement involves assigning individuals or events to categories. The
categories can simply be names such as male/female or employed/unemployed, or they can
be numerical values such as 68 inches or 175 pounds. The categories used to measure a
variable make up a scale of measurement, and the relationships between the categories de-
termine different types of scales. The distinctions among the scales are important because
they identify the limitations of certain types of measurements and because certain statisti-
cal procedures are appropriate for scores that have been measured on some scales but not
on others. If you were interested in people’s heights, for example, you could measure a
group of individuals by simply classifying them into three categories: tall, medium, and
short. However, this simple classification would not tell you much about the actual heights
of the individuals, and these measurements would not give you enough information to cal-
culate an average height for the group. Although the simple classification would be ade-
quate for some purposes, you would need more sophisticated measurements before you
could answer more detailed questions. In this section, we examine four different scales of
measurement, beginning with the simplest and moving to the most sophisticated.

The word nominal means “having to do with names.” Measurement on a nominal scale
involves classifying individuals into categories that have different names but are not 
related to each other in any systematic way. For example, if you were measuring the 
academic majors for a group of college students, the categories would be art, biology,
business, chemistry, and so on. Each student would be classified in one category accord-
ing to his or her major. The measurements from a nominal scale allow us to determine
whether two individuals are different, but they do not identify either the direction or the
size of the difference. If one student is an art major and another is a biology major we can
say that they are different, but we cannot say that art is “more than” or “less than” biol-
ogy and we cannot specify how much difference there is between art and biology. Other
examples of nominal scales include classifying people by race, gender, or occupation.

A nominal scale consists of a set of categories that have different names.
Measurements on a nominal scale label and categorize observations, but do not
make any quantitative distinctions between observations.

Although the categories on a nominal scale are not quantitative values, they are 
occasionally represented by numbers. For example, the rooms or offices in a building may
be identified by numbers. You should realize that the room numbers are simply names
and do not reflect any quantitative information. Room 109 is not necessarily bigger than
Room 100 and certainly not 9 points bigger. It also is fairly common to use numerical val-
ues as a code for nominal categories when data are entered into computer programs. For
example, the data from a survey may code males with a 0 and females with a 1. Again,
the numerical values are simply names and do not represent any quantitative difference.
The scales that follow do reflect an attempt to make quantitative distinctions.

The categories that make up an ordinal scale not only have different names (as in a
nominal scale) but also are organized in a fixed order corresponding to differences of
magnitude.

An ordinal scale consists of a set of categories that are organized in an ordered
sequence. Measurements on an ordinal scale rank observations in terms of size
or magnitude.

D E F I N I T I O N

THE ORDINAL SCALE

D E F I N I T I O N

THE NOMINAL SCALE

SCALES OF MEASUREMENT
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Often, an ordinal scale consists of a series of ranks (first, second, third, and so on)
like the order of finish in a horse race. Occasionally, the categories are identified by
verbal labels like small, medium, and large drink sizes at a fast-food restaurant. In 
either case, the fact that the categories form an ordered sequence means that there is a
directional relationship between categories. With measurements from an ordinal scale,
you can determine whether two individuals are different and you can determine the 
direction of difference. However, ordinal measurements do not allow you to determine
the size of the difference between two individuals. For example, if Billy is placed in
the low-reading group and Tim is placed in the high-reading group, you know that Tim
is a better reader, but you do not know how much better. Other examples of ordinal
scales include socioeconomic class (upper, middle, lower) and T-shirt sizes (small,
medium, large). In addition, ordinal scales are often used to measure variables for
which it is difficult to assign numerical scores. For example, people can rank their
food preferences but might have trouble explaining “how much” they prefer chocolate
ice cream to steak.

Both an interval scale and a ratio scale consist of a series of ordered categories (like an
ordinal scale) with the additional requirement that the categories form a series of inter-
vals that are all exactly the same size. Thus, the scale of measurement consists of a 
series of equal intervals, such as inches on a ruler. Other examples of interval and ratio
scales are the measurement of time in seconds, weight in pounds, and temperature in
degrees Fahrenheit. Note that, in each case, one interval (1 inch, 1 second, 1 pound, 
1 degree) is the same size, no matter where it is located on the scale. The fact that the
intervals are all the same size makes it possible to determine both the size and the 
direction of the difference between two measurements. For example, you know that a
measurement of 80° Fahrenheit is higher than a measure of 60°, and you know that it
is exactly 20° higher.

The factor that differentiates an interval scale from a ratio scale is the nature of
the zero point. An interval scale has an arbitrary zero point. That is, the value 0 is 
assigned to a particular location on the scale simply as a matter of convenience or ref-
erence. In particular, a value of zero does not indicate a total absence of the variable
being measured. For example a temperature of 0° Fahrenheit does not mean that there
is no temperature, and it does not prohibit the temperature from going even lower.
Interval scales with an arbitrary zero point are relatively rare. The two most common
examples are the Fahrenheit and Celsius temperature scales. Other examples include
golf scores (above and below par) and relative measures such as above and below 
average rainfall.

A ratio scale is anchored by a zero point that is not arbitrary but rather is a mean-
ingful value representing none (a complete absence) of the variable being measured.
The existence of an absolute, nonarbitrary zero point means that we can measure the
absolute amount of the variable; that is, we can measure the distance from 0. This
makes it possible to compare measurements in terms of ratios. For example, an indi-
vidual who requires 10 seconds to solve a problem (10 more than 0) has taken twice
as much time as an individual who finishes in only 5 seconds (5 more than 0). With
a ratio scale, we can measure the direction and the size of the difference between two
measurements and we can describe the difference in terms of a ratio. Ratio scales are
quite common and include physical measures such as height and weight, as well as
variables such as reaction time or the number of errors on a test. The distinction 
between an interval scale and a ratio scale is demonstrated in Example 1.2.

THE INTERVAL AND 
RATIO SCALES

24 CHAPTER 1 INTRODUCTION TO STATISTICS
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An interval scale consists of ordered categories that are all intervals of exactly
the same size. Equal differences between numbers on a scale reflect equal 
differences in magnitude. However, the zero point on an interval scale is 
arbitrary and does not indicate a zero amount of the variable being measured.

A ratio scale is an interval scale with the additional feature of an absolute zero
point. With a ratio scale, ratios of numbers do reflect ratios of magnitude.

A researcher obtains measurements of height for a group of 8-year-old boys. 
Initially, the researcher simply records each child’s height in inches, obtaining values
such as 44, 51, 49, and so on. These initial measurements constitute a ratio scale. A
value of zero represents no height (absolute zero). Also, it is possible to use these
measurements to form ratios. For example, a child who is 60 inches tall is one-and-
a-half times taller than a child who is 40 inches tall.

Now suppose that the researcher converts the initial measurement into a new
scale by calculating the difference between each child’s actual height and the average
height for this age group. A child who is 1 inch taller than average now gets a score
of �1; a child 4 inches taller than average gets a score of �4. Similarly, a child who
is 2 inches shorter than average gets a score of �2. On this scale, a score of zero
corresponds to average height. Because zero no longer indicates a complete absence
of height, the new scores constitute an interval scale of measurement. 

Notice that original scores and the converted scores both involve measurement in
inches, and you can compute differences, or distances, on either scale. For example,
there is a 6-inch difference in height between two boys who measure 57 and 51
inches tall on the first scale. Likewise, there is a 6-inch difference between two boys
who measure �9 and �3 on the second scale. However, you should also notice that
ratio comparisons are not possible on the second scale. For example, a boy who
measures �9 is not three times taller than a boy who measures �3.

For our purposes, scales of measurement are important because they influence the
kind of statistics that can and cannot be used. For example, if you measure IQ scores
for a group of students, it is possible to add the scores together and calculate a mean
score for the group. On the other hand, if you measure the academic major for each
student, you cannot compute the mean. (What is the mean of three psychology ma-
jors, an English major, and two chemistry majors?) The vast majority of the statisti-
cal techniques presented in this book are designed for numerical scores from an
interval or a ratio scale. For most statistical applications, the distinction between an
interval scale and a ratio scale is not important because both scales produce numeri-
cal values that permit us to compute differences between scores, to add scores, and to
calculate mean scores. On the other hand, measurements from nominal or ordinal
scales are typically not numerical values and are not compatible with many basic
arithmetic operations. Therefore, alternative statistical techniques are necessary for
data from nominal or ordinal scales of measurement (for example, the median and the
mode in Chapter 3, the Spearman correlation in Chapter 15, and the chi-square tests
in Chapter 17). Additional statistical methods for measurements from ordinal scales
are presented in Appendix E.

STATISTICS AND SCALES 
OF MEASUREMENT

E X A M P L E  1 . 2
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1.5 STATISTICAL NOTATION

The measurements obtained in research studies provide the data for statistical analysis.
Most of the statistical analyses use the same general mathematical operations, notation,
and basic arithmetic that you have learned during previous years of school. In case you
are unsure of your mathematical skills, there is a mathematics review section in
Appendix A at the back of this book. The appendix also includes a skills-assessment
exam (p. 678) to help you determine whether you need the basic mathematics review.
In this section, we introduce some of the specialized notation that is used for statistical
calculations. In later chapters, additional statistical notation is introduced as it is
needed.

Measuring a variable in a research study typically yields a value or a score for each
individual. Raw scores are the original, unchanged scores obtained in the study. Scores
for a particular variable are represented by the letter X. For example, if performance in
your statistics course is measured by tests and you obtain a 35 on the first test, then we
could state that X � 35. A set of scores can be presented in a column that is headed by
X. For example, a list of quiz scores from your class might be presented as shown in the
margin (the single column on the left).

26 CHAPTER 1 INTRODUCTION TO STATISTICS

L E A R N I N G  C H E C K 1. A survey asks people to identify their age, annual income, and marital status 
(single, married, divorced, etc.). For each of these three variables, identify the
scale of measurement that probably is used and identify whether the variable is
continuous or discrete.

2. An English professor uses letter grades (A, B, C, D, and F) to evaluate a set of
student essays. What kind of scale is being used to measure the quality of the
essays?

3. The teacher in a communications class asks students to identify their favorite real-
ity television show. The different television shows make up a ______ scale of
measurement.

4. A researcher studies the factors that determine the number of children that couples
decide to have. The variable, number of children, is a ______________
(discrete/continuous) variable.

5. a. When measuring height to the nearest inch, what are the real limits for a score
of 68 inches?

b. When measuring height to the nearest half inch, what are the real limits for a
score of 68 inches?

1. Age and annual income are measured on ratio scales and are both continuous variables.
Marital status is measured on a nominal scale and is a discrete variable.

2. ordinal

3. nominal

4. discrete

5. a. 67.5 and 68.5

b. 67.75 and 68.25

ANSWERS
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When observations are made for two variables, there will be two scores for each
individual. The data can be presented as two lists labeled X and Y for the two variables.
For example, observations for people’s height in inches (variable X) and weight in
pounds (variable Y) can be presented as shown in the double column in the margin.
Each pair X, Y represents the observations made of a single participant.

The letter N is used to specify how many scores are in a set. An uppercase letter
N identifies the number of scores in a population and a lowercase letter n identifies
the number of scores in a sample. Throughout the remainder of the book you will 
notice that we often use notational differences to distinguish between samples and
populations. For the height and weight data in the preceding table, n � 7 for both
variables. Note that by using a lowercase letter n, we are implying that these data are
a sample.

Many of the computations required in statistics involve adding a set of scores. Because
this procedure is used so frequently, a special notation is used to refer to the sum of a
set of scores. The Greek letter sigma, or �, is used to stand for summation. The 
expression �X means to add all the scores for variable X. The summation sign, �, can
be read as “the sum of.” Thus, �X is read “the sum of the scores.” For the following set
of quiz scores,

10, 6, 7, 4

�X � 27 and N � 4.

To use summation notation correctly, keep in mind the following two points:

1. The summation sign, �, is always followed by a symbol or mathematical 
expression. The symbol or expression identifies exactly which values are to be
added. To compute �X, for example, the symbol following the summation sign
is X, and the task is to find the sum of the X values. On the other hand, to 
compute �(X � 1)2, the summation sign is followed by a relatively complex
mathematical expression, so your first task is to calculate all of the (X � 1)2

values and then add the results.

2. The summation process is often included with several other mathematical 
operations, such as multiplication or squaring. To obtain the correct answer, it is 
essential that the different operations be done in the correct sequence. Following
is a list showing the correct order of operations for performing mathematical
operations. Most of this list should be familiar, but you should note that we have
inserted the summation process as the fourth operation in the list.

Order of Mathematical Operations

1. Any calculation contained within parentheses is done first.

2. Squaring (or raising to other exponents) is done second.

3. Multiplying and/or dividing is done third. A series of multiplication and/or
division operations should be done in order from left to right.

4. Summation using the � notation is done next.

5. Finally, any other addition and/or subtraction is done.

The following examples demonstrate how summation notation is used in most of
the calculations and formulas we present in this book.

SUMMATION NOTATION

SECTION 1.5 / STATISTICAL NOTATION 27

Scores

X X Y

37 72 165
35 68 151
35 67 160
30 67 160
25 68 146
17 70 160
16 66 133

More information on the order
of operations for mathematics is
available in the Math Review
appendix, page 679.
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A set of four scores consists of values 3, 1, 7, and 4. We will compute �X, �X2, and
(�X)2 for these scores. To help demonstrate the calculations, we will use a
computational table showing the original scores (the X values) in the first column.
Additional columns can then be added to show additional steps in the series of
operations. You should notice that the first three operations in the list (parentheses,
squaring, and multiplying) all create a new column of values. The last two operations,
however, produce a single value corresponding to the sum.

The table to the left shows the original scores (the X values) and the squared
scores (the X2 values) that are needed to compute �X2.

The first calculation, �X, does not include any parentheses, squaring, or
multiplication, so we go directly to the summation operation. The X values are listed
in the first column of the table, and we simply add the values in this column:

�X � 3 � 1 � 7 � 4 � 15

To compute �X2, the correct order of operations is to square each score and then
find the sum of the squared values. The computational table shows the original scores
and the results obtained from squaring (the first step in the calculation). The second
step is to find the sum of the squared values, so we simply add the numbers in the X2

column.

�X2 � 9 � 1 � 49 � 16 � 75

The final calculation, (�X)2, includes parentheses, so the first step is to perform
the calculation inside the parentheses. Thus, we first find �X and then square this
sum. Earlier, we computed �X � 15, so

(�X)2 � (15)2 � 225

Use the same set of four scores from Example 1.3 and compute �(X � 1) and 
�(X � 1)2. The following computational table will help demonstrate the calculations.

E X A M P L E  1 . 4

E X A M P L E  1 . 3

28 CHAPTER 1 INTRODUCTION TO STATISTICS

X X2

3 9
1 1
7 49
4 16

X (X � 1) (X � 1)2

3 2 4
1 0 0
7 6 36
4 3 9

The first column lists the
original scores. A second
column lists the (X � 1)
values, and a third column
shows the (X � 1)2 values.

To compute �(X � 1), the first step is to perform the operation inside the parentheses.
Thus, we begin by subtracting one point from each of the X values. The resulting
values are listed in the middle column of the table. The next step is to add the (X � 1)
values.

�(X � 1) � 2 � 0 � 6 � 3 � � 11

The calculation of �(X � 1)2 requires three steps. The first step (inside parentheses)
is to subtract 1 point from each X value. The results from this step are shown in the
middle column of the computational table. The second step is to square each of the 
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(X � 1) values. The results from this step are shown in the third column of the table.
The final step is to add the (X � 1)2 values to obtain

�(X � 1)2 � 4 � 0 � 36 � 9 � 49

Notice that this calculation requires squaring before adding. A common mistake
is to add the (X � 1) values and then square the total. Be careful!

In both of the preceding examples, and in many other situations, the summation 
operation is the last step in the calculation. According to the order of operations,
parentheses, exponents, and multiplication all come before summation. However,
there are situations in which extra addition and subtraction are completed after the
summation. For this example, use the same scores that appeared in the previous two
examples, and compute �X � 1.

With no parentheses, exponents, or multiplication, the first step is the summation.
Thus, we begin by computing �X. Earlier we found �X � 15. The next step is to
subtract one point from the total. For these data,

�X � 1 � 15 � 1 � 14

For this example, each individual has two scores. The first score is identified as X,
and the second score is Y. With the help of the following computational table, 
compute �X, �Y, and �XY.

E X A M P L E  1 . 6

E X A M P L E  1 . 5

SECTION 1.5 / STATISTICAL NOTATION 29

Person X Y XY

A 3 5 15
B 1 3 3
C 7 4 28
D 4 2 8

To find �X, simply add the values in the X column.

�X � 3 � 1 � 7 � 4 � 15

Similarly, �Y is the sum of the Y values.

�Y � 5 � 3 � 4 � 2 � 14

To compute �XY, the first step is to multiply X times Y for each individual. The 
resulting products (XY values) are listed in the third column of the table. Finally, 
we add the products to obtain

�XY � 15 � 3 � 28 � 8 � 54
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L E A R N I N G  C H E C K 1. Calculate each value requested for the following scores: 6, 2, 4, 2.

a. �X

b. �X2

c. (�X)2

d. �(X � 2)

e. �(X � 2)2

2. Identify the first step in each of the following calculations.

a. �X2 b. (�X)2 c. �(X � 2)2

3. Use summation notation to express each of the following.

a. Add 4 points to each score and then add the resulting values.

b. Add the scores and then square the total.

c. Square each score, then add the squared values.

1. a. 14

b. 60

c. 196

d. 6

e. 20

2. a. Square each score.

b. Add the scores.

c. Subtract 2 points from each score.

3. a. �(X � 4)

b. (�X)2

c. �X2

ANSWERS

1. The term statistics is used to refer to methods for
organizing, summarizing, and interpreting data.

2. Scientific questions usually concern a population,
which is the entire set of individuals one wishes to
study. Usually, populations are so large that it is
impossible to examine every individual, so most
research is conducted with samples. A sample is a
group selected from a population, usually for purposes
of a research study.

3. A characteristic that describes a sample is called a
statistic, and a characteristic that describes a population
is called a parameter. Although sample statistics are
usually representative of corresponding population
parameters, there is typically some discrepancy between
a statistic and a parameter. The naturally occurring
difference between a statistic and a parameter is called
sampling error.

4. Statistical methods can be classified into two broad
categories: descriptive statistics, which organize and
summarize data, and inferential statistics, which use
sample data to draw inferences about populations.

5. The correlational method examines relationships
between variables by measuring two different variables
for each individual. This method allows researchers to
measure and describe relationships, but cannot produce
a cause-and-effect explanation for the relationship.

6. The experimental method examines relationships
between variables by manipulating an independent
variable to create different treatment conditions and
then measuring a dependent variable to obtain a group
of scores in each condition. The groups of scores are
then compared. A systematic difference between
groups provides evidence that changing the
independent variable from one condition to another

SUMMARY
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also caused a change in the dependent variable. All
other variables are controlled to prevent them from
influencing the relationship. The intent of the
experimental method is to demonstrate a cause-and-
effect relationship between variables.

7. Nonexperimental studies also examine relationships
between variables by comparing groups of scores, but
they do not have the rigor of true experiments and
cannot produce cause-and-effect explanations. Instead
of manipulating a variable to create different groups, a
nonexperimental study uses a preexisting participant
characteristic (such as male/female) or the passage of
time (before/after) to create the groups being compared.

8. A measurement scale consists of a set of categories
that are used to classify individuals. A nominal scale
consists of categories that differ only in name and are
not differentiated in terms of magnitude or direction. 
In an ordinal scale, the categories are differentiated 
in terms of direction, forming an ordered series. An
interval scale consists of an ordered series of
categories that are all equal-sized intervals. With an
interval scale, it is possible to differentiate direction
and magnitude (or distance) between categories.

Finally, a ratio scale is an interval scale for which the
zero point indicates none of the variable being
measured. With a ratio scale, ratios of measurements
reflect ratios of magnitude.

9. A discrete variable consists of indivisible categories,
often whole numbers that vary in countable steps. A
continuous variable consists of categories that are
infinitely divisible and each score corresponds to an
interval on the scale. The boundaries that separate
intervals are called real limits and are located exactly
halfway between adjacent scores.

10. The letter X is used to represent scores for a variable.
If a second variable is used, Y represents its scores.
The letter N is used as the symbol for the number of
scores in a population; n is the symbol for a number 
of scores in a sample.

11. The Greek letter sigma (�) is used to stand for
summation. Therefore, the expression �X is read “the
sum of the scores.” Summation is a mathematical
operation (like addition or multiplication) and must be
performed in its proper place in the order of operations;
summation occurs after parentheses, exponents, and
multiplying/dividing have been completed.

KEY TERMS

RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You can find practice quizzes and other learning aids for every chapter in this book

on the book companion website, as well as a series of workshops and other resources
corresponding to the main topic areas. In the left-hand column are a variety of learning
exercises for Chapter 1, including a tutorial quiz. Also in the left-hand column, under

statistics (5)

population (5)

sample (6)

variable (6)

data (7)

data set (7)

datum (7)

raw score (7)

parameter (7)

statistic (7)

descriptive statistics (7)

inferential statistics (8)

sampling error (8)

correlational method (13)

experimental method (14)

independent variable (16)

dependent variable (16)

control condition (16)

experimental condition (16)

nonequivalent groups study (17)

pre–post study (18)

quasi-independent variable (18)

construct (20)

operational definition (20)

discrete variable (21)

continuous variable (21)

real limits (22)

upper real limit (22)

lower real limit (22)

nominal scale (23)

ordinal scale (23)

interval scale (25)

ratio scale (25)
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Book Resources, is a link to the workshops. For Chapter 1, there is a workshop that
reviews the scales of measurement. To get there, click on the Workshop link, then click
on Scales of Measurement. To find materials for other chapters, begin by selecting the
desired chapter at the top of the page. Note that the workshops were not developed
specifically for this book but are used by several different books written by different
authors. As a result, you may find that some of the notation or terminology is different
from that which you learned in this text.

At the end of each chapter we remind you about the Web resources. Again, there is
a tutorial quiz for every chapter, and we notify you whenever there is a workshop that is
related to the chapter content.

Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.

Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific web-
site, Psychology CourseMate includes an integrated interactive eBook and other interac-
tive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

The Statistical Package for the Social Sciences, known as SPSS, is a computer program
that performs most of the statistical calculations that are presented in this book, and is
commonly available on college and university computer systems. Appendix D contains a
general introduction to SPSS. In the Resource section at the end of each chapter for
which SPSS is applicable, there are step-by-step instructions for using SPSS to perform
the statistical operations presented in the chapter.

FOCUS ON PROBLEM SOLVING

It may help to simplify summation notation if you observe that the summation sign is
always followed by a symbol or symbolic expression—for example, �X or �(X � 3). This
symbol specifies which values you are to add. If you use the symbol as a column heading
and list all the appropriate values in the column, your task is simply to add up the 
numbers in the column. To find �(X � 3) for example, start a column headed with (X � 3)
next to the column of Xs. List all the (X � 3) values; then find the total for the column.

32 CHAPTER 1 INTRODUCTION TO STATISTICS
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Often, summation notation is part of a relatively complex mathematical expression that
requires several steps of calculation. The series of steps must be performed according to
the order of mathematical operations (see page 27). The best procedure is to use a compu-
tational table that begins with the original X values listed in the first column. Except for
summation, each step in the calculation creates a new column of values. For example,
computing �(X � 1)2 involves three steps and produces a computational table with three
columns. The final step is to add the values in the third column (see Example 1.4).

DEMONSTRATION 1.1

SUMMATION NOTATION

A set of scores consists of the following values:

7    3     9     5     4

For these scores, compute each of the following:

�X
(�X)2

�X2

�X � 5
�(X � 2)

Compute �X To compute �X, we simply add all of the scores in the group.

�X � 7 � 3 � 9 � 5 � 4 � 28

Compute (�X)2 The first step, inside the parentheses, is to compute �X. The second
step is to square the value for �X.

�X � 28 and (�X)2 � (28)2 � 784

Compute �X2 The first step is to square each score. The second step is to add the
squared scores. The computational table shows the scores and squared scores. To compute
�X2 we add the values in the X2 column.

�X2 � 49 � 9 � 81 � 25 � 16 � 180

Compute �X � 5 The first step is to compute �X. The second step is to add 5 points
to the total.

�X � 28 and �X � 5 � 28 � 5 � 33

Compute �(X � 2) The first step, inside parentheses, is to subtract 2 points from 
each score. The second step is to add the resulting values. The computational table shows
the scores and the (X � 2) values. To compute �(X � 2), add the values in the (X � 2)
column

�(X � 2) � 5  � 1 � 7 � 3 � 2 � 18

DEMONSTRATION 1.1 33

X X2

7 49
3 9
9 81
5 25
4 16

X X � 2

7 5
3 1
9 7
5 3
4 2
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PROBLEMS
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*1. A researcher is investigating the effectiveness of a
treatment for adolescent boys who are taking
medication for depression. A group of 30 boys is
selected and half receive the new treatment in addition
to their medication and the other half continue to take
their medication without any treatment. For this study,
a. Identify the population.
b. Identify the sample.

2. Define the terms parameter and statistic. Be sure that
the concepts of population and sample are included in
your definitions.

3. Statistical methods are classified into two major categories:
descriptive and inferential. Describe the general purpose
for the statistical methods in each category.

4. A researcher plans to compare two treatment
conditions by measuring one sample in treatment 1
and a second sample in treatment 2. The researcher
then compares the scores for the two treatments and
finds a difference between the two groups.
a. Briefly explain how the difference may have been

caused by the treatments.
b. Briefly explain how the difference simply may be

sampling error.

5. Describe the data for a correlational research study.
Explain how these data are different from the data
obtained in experimental and nonexperimental studies,
which also evaluate relationships between two variables.

6. Describe how the goal of an experimental research
study is different from the goal for nonexperimental or
correlational research. Identify the two elements that
are necessary for an experiment to achieve its goal.

7. Strack, Martin, and Stepper (1988) found that people
rated cartoons as funnier when holding a pen in their
teeth (which forced them to smile) than when holding
a pen in their lips (which forced them to frown). For
this study, identify the independent variable and the
dependent variable.

8. Judge and Cable (2010) found that thin women had
higher incomes than heavier women. Is this an example
of an experimental or a nonexperimental study?

9. Two researchers are both interested in the relationship
between caffeine consumption and activity level for
elementary school children. Each obtains a sample of
n � 20 children.
a. The first researcher interviews each child to

determine the level of caffeine consumption. The

researcher then records the level of activity for each
child during a 30-minute session on the playground.
Is this an experimental or a nonexperimental study?
Explain your answer.

b. The second researcher separates the children into
two roughly equivalent groups. The children in one
group are given a drink containing 300 mg of
caffeine and the other group gets a drink with no
caffeine. The researcher then records the level of
activity for each child during a 30-minute session
on the playground. Is this an experimental or a
nonexperimental study? Explain your answer.

10. A researcher would like to evaluate the claim that
large doses of vitamin C can help prevent the common
cold. One group of participants is given a large dose of
the vitamin (500 mg per day), and a second group is
given a placebo (sugar pill). The researcher records the
number of colds each individual experiences during
the 3-month winter season.
a. Identify the dependent variable for this study.
b. Is the dependent variable discrete or continuous?
c. What scale of measurement (nominal, ordinal,

interval, or ratio) is used to measure the dependent
variable?

11. A research study comparing alcohol use for college
students in the United States and Canada reports that
more Canadian students drink but American students
drink more (Kuo, Adlaf, Lee, Gliksman, Demers, and
Wechsler, 2002). Is this study an example of an
experiment? Explain why or why not.

12. Oxytocin is a naturally occurring brain chemical that is
nicknamed the “love hormone” because it seems to
play a role in the formation of social relationships such
as mating pairs and parent-child bonding. A recent
study demonstrated that oxytocin appears to increase
people’s tendency to trust others (Kosfeld, Heinrichs,
Zak, Fischbacher, and Fehr, 2005). Using an
investment game, the study demonstrated that people
who inhaled oxytocin were more likely to give their
money to a trustee compared to people who inhaled an
inactive placebo. For this experimental study, identify
the independent variable and the dependent variable.

13. For each of the following, determine whether the
variable being measured is discrete or continuous 
and explain your answer.
a. Social networking (number of daily minutes on

Facebook)
b. Family size (number of siblings)

*Solutions for odd-numbered problems are provided in Appendix C.
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c. Preference between digital or analog watch
d. Number of correct answers on a statistics quiz

14. Four scales of measurement were introduced in this
chapter: nominal, ordinal, interval, and ratio.
a. What additional information is obtained from

measurements on an ordinal scale compared to
measurements on a nominal scale?

b. What additional information is obtained from
measurements on an interval scale compared to
measurements on an ordinal scale?

c. What additional information is obtained from
measurements on a ratio scale compared to
measurements on an interval scale?

15. In an experiment examining the effects of humor on
memory, Schmidt (1994) showed participants a list of
sentences, half of which were humorous and half were
nonhumorous. The participants consistently recalled
more of the humorous sentences than the
nonhumorous sentences.
a. Identify the independent variable for this study.
b. What scale of measurement is used for the

independent variable?
c. Identify the dependent variable for this study.
d. What scale of measurement is used for the

dependent variable?

16. Explain why shyness is a hypothetical construct instead
of a concrete variable. Describe how shyness might be
measured and defined using an operational definition. 

17. Ford and Torok (2008) found that motivational signs
were effective in increasing physical activity on a
college campus. Signs such as “Step up to a healthier
lifestyle” and “An average person burns 10 calories a
minute walking up the stairs” were posted by the
elevators and stairs in a college building. Students and
faculty increased their use of the stairs during times
that the signs were posted compared to times when
there were no signs.
a. Identify the independent and dependent variables

for this study.
b. What scale of measurement is used for the

independent variable?

18. For the following scores, find the value of each
expression:
a. �X
b. �X2

c. (�X)2

d. �(X � 1)

X

4
2
1
5

19. For the following set of scores, find the value of each
expression:
a. �X
b. �X2

c. �(X � 1)
d. �(X � 1)2

20. For the following set of scores, find the value of each
expression:
a. �X
b. �X2

c. �(X � 4)

21. Two scores, X and Y, are recorded for each of n � 4
subjects. For these scores, find the value of each
expression.
a. �X
b. �Y
c. �XY

22. Use summation notation to express each of the
following calculations:
a. Add 1 point to each score, then add the resulting

values.
b. Add 1 point to each score and square the result,

then add the squared values.
c. Add the scores and square the sum, then subtract 

3 points from the squared value.

23. For the following set of scores, find the value of each
expression:
a. �X2

b. (�X)2

c. �(X � 2)
d. �(X � 2)2

X

1
0
5
2

Subject X Y

A 6 4
B 0 10
C 3 8
D 2 3

X

�4
�2

0
�1
�1

X

4
6
0
3
2
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C H A P T E R

2
Frequency
Distributions

Preview

2.1 Introduction to Frequency
Distributions

2.2 Frequency Distribution Tables

2.3 Frequency Distribution Graphs

2.4 The Shape of a Frequency
Distribution

2.5 Percentiles, Percentile Ranks, and
Interpolation

2.6 Stem and Leaf Displays

Summary

Focus on Problem Solving

Demonstrations 2.1 and 2.2

Problems

Tools You Will Need
The following items are considered essential
background material for this chapter. If you
doubt your knowledge of any of these 
items, you should review the appropriate
chapter or section before proceeding.

• Proportions (math review, Appendix A)
• Fractions
• Decimals
• Percentages

• Scales of measurement (Chapter 1):
Nominal, ordinal, interval, and ratio

• Continuous and discrete variables
(Chapter 1)

• Real limits (Chapter 1)

30991_ch02_ptg01_hr_037-070.qxd  9/2/11  11:25 PM  Page 37



Preview
If at first you don’t succeed, you are probably not 
related to the boss.

Did we make you chuckle or, at least, smile a little?
The use of humor is a common technique to capture 
attention and to communicate ideas. Advertisers, for 
example, often try to make a commercial funny so that
people notice it and, perhaps, remember the product. 
After-dinner speakers always put a few jokes into the
speech in an effort to maintain the audience’s interest.
Although humor seems to capture our attention, does it
actually affect our memory?

In an attempt to answer this question, Stephen
Schmidt (1994) conducted a series of experiments 
examining the effects of humor on memory for sentences.
Humorous sentences were collected from a variety of
sources and then a nonhumorous version was constructed
for each sentence. For example, the nonhumorous version
of our opening sentence was:

People who are related to the boss often succeed the
very first time.

Participants were then presented with a list containing
half humorous and half nonhumorous sentences. Later, each
person was asked to recall as many sentences as possible.
The researcher measured the number of humorous sentences
and the number of nonhumorous sentences recalled by each
participant. Data similar to the results obtained by Schmidt
are shown in Table 2.1.

TABLE 2.1

Memory scores for a sample of 16 participants. The scores
represent the number of sentences recalled from each category.

Humorous Nonhumorous 
Sentences Sentences

4 5 2 4 5 2 4 2
6 7 6 6 2 3 1 6
2 5 4 3 3 2 3 3
1 3 5 5 4 1 5 3

The Problem: It is difficult to see any clear pattern
simply by looking at the list of numbers. Can you tell
whether the memory scores for one type of sentence are
generally higher than those for the other type?

The Solution: A frequency distribution provides an
overview of the entire group of scores making it easy to
see the general level of performance for each type of
sentence. For example, the same memory scores that are
shown in Table 2.1 have been organized in a frequency
distribution graph in Figure 2.1. In the figure, each indi-
vidual is represented by a block that is placed above that
individual’s score. The resulting pile of blocks shows a
picture of how the individual scores are distributed. For
this example, it is now easy to see that the scores for the
humorous sentences are generally higher than the scores
for the nonhumorous sentences; on average, participants
recalled around 5 humorous sentences but only about 3 
of the nonhumorous sentences.

In this chapter we present techniques for organizing
data into tables and graphs so that an entire set of scores
can be presented in a relatively simple display or illus-
tration.

38

0 1 2 3 4 5 6 7 8
Number of sentences recalled

Humorous 
sentences

0 1 2 3 4 5 6 7 8
Number of sentences recalled

Nonhumorous 
sentences

FIGURE 2.1

Hypothetical data showing the number of humorous 
sentences and the number of nonhumorous sentences
recalled by participants in a memory experiment.
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2.1 INTRODUCTION TO FREQUENCY DISTRIBUTIONS

The results from a research study usually consist of pages of numbers corresponding to
the measurements, or scores, collected during the study. The immediate problem for the
researcher is to organize the scores into some comprehensible form so that any patterns
in the data can be seen easily and communicated to others. This is the job of descriptive
statistics: to simplify the organization and presentation of data. One of the most common
procedures for organizing a set of data is to place the scores in a frequency distribution.

A frequency distribution is an organized tabulation of the number of individu-
als located in each category on the scale of measurement.

A frequency distribution takes a disorganized set of scores and places them in order
from highest to lowest, grouping together individuals who all have the same score. If
the highest score is X � 10, for example, the frequency distribution groups together all
the 10s, then all the 9s, then the 8s, and so on. Thus, a frequency distribution allows the
researcher to see “at a glance” the entire set of scores. It shows whether the scores are
generally high or low, whether they are concentrated in one area or spread out across
the entire scale, and generally provides an organized picture of the data. In addition to
providing a picture of the entire set of scores, a frequency distribution allows you to see
the location of any individual score relative to all of the other scores in the set.

A frequency distribution can be structured either as a table or as a graph, but in 
either case, the distribution presents the same two elements:

1. The set of categories that make up the original measurement scale.

2. A record of the frequency, or number of individuals in each category.

Thus, a frequency distribution presents a picture of how the individual scores are
distributed on the measurement scale—hence the name frequency distribution.

2.2 FREQUENCY DISTRIBUTION TABLES

The simplest frequency distribution table presents the measurement scale by listing the
different measurement categories (X values) in a column from highest to lowest. Beside
each X value, we indicate the frequency, or the number of times that particular meas-
urement occurred in the data. It is customary to use an X as the column heading for the
scores and an f as the column heading for the frequencies. An example of a frequency
distribution table follows.

The following set of N � 20 scores was obtained from a 10-point statistics quiz. We
organize these scores by constructing a frequency distribution table. Scores:

8, 9, 8, 7, 10, 9, 6, 4, 9, 8,

7, 8, 10, 9, 8, 6, 9, 7, 8, 8

1. The highest score is X � 10, and the lowest score is X � 4. Therefore, the first
column of the table lists the categories that make up the scale of measurement 

E X A M P L E  2 . 1

D E F I N I T I O N

SECTION 2.2 / FREQUENCY DISTRIBUTION TABLES 39

It is customary to list 
categories from highest to
lowest, but this is an arbitrary
arrangement. Many computer
programs list categories from
lowest to highest.
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(X values) from 10 down to 4. Notice that all of the possible values are listed in
the table. For example, no one had a score of X � 5, but this value is included.
With an ordinal, interval, or ratio scale, the categories are listed in order (usually
highest to lowest). For a nominal scale, the categories can be listed in any order.

2. The frequency associated with each score is recorded in the second column. For
example, two people had scores of X � 10, so there is a 2 in the f column 
beside X � 10.

Because the table organizes the scores, it is possible to see the general quiz
results very quickly. For example, there were only two perfect scores, but most of the
class had high grades (8s and 9s). With one exception (the score of X � 4), it appears
that the class has learned the material fairly well.

Notice that the X values in a frequency distribution table represent the scale of
measurement, not the actual set of scores. For example, the X column lists the value
10 only one time, but the frequency column indicates that there are actually two
values of X � 10. Also, the X column lists a value of X � 5, but the frequency
column indicates that no one actually had a score of X � 5.

You also should notice that the frequencies can be used to find the total number
of scores in the distribution. By adding up the frequencies, you obtain the total
number of individuals:

�f � N

There may be times when you need to compute the sum of the scores, �X, or perform
other computations for a set of scores that has been organized into a frequency distri-
bution table. To complete these calculations correctly, you must use all the information
presented in the table. That is, it is essential to use the information in the f column as
well as the X column to obtain the full set of scores.

When it is necessary to perform calculations for scores that have been organized
into a frequency distribution table, the safest procedure is to take the individual scores
out of the table before you begin any computations. This process is demonstrated in the 
following example.

Consider the frequency distribution table shown in the margin. The table shows 
that the distribution has one 5, two 4s, three 3s, three 2s, and one 1, for a total of 
10 scores. If you simply list all 10 scores, you can safely proceed with calculations
such as finding �X or �X2. For example, to compute �X you must add all 10 scores:

�X � 5 � 4 � 4 � 3 � 3 � 3 � 2 � 2 � 2 � 1

For the distribution in this table, you should obtain �X � 29. Try it yourself. Similarly,
to compute �X2 you square each of the 10 scores and then add the squared values.

�X2 � 52 � 42 � 42 � 32 � 32 � 32 � 22 � 22 � 22 � 12

This time you should obtain �X2 � 97.

An alternative way to get �X from a frequency distribution table is to multi-
ply each X value by its frequency and then add these products. This sum may be

E X A M P L E  2 . 2

OBTAINING �X FROM 
A FREQUENCY 

DISTRIBUTION TABLE

40 CHAPTER 2 FREQUENCY DISTRIBUTIONS

X f

10 2
9 5
8 7
7 3
6 2
5 0
4 1

X f

5 1
4 2
3 3
2 3
1 1
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expressed in symbols as �fX. The computation is summarized as follows for the data
in Example 2.2:

X f fX

5 1 5 (the one 5 totals 5)
4 2 8 (the two 4s total 8)
3 3 9 (the three 3s total 9)
2 3 6 (the three 2s total 6)
1 1 1 (the one 1 totals 1)

�X � 29

No matter which method you use to find �X, the important point is that you must use
the information given in the frequency column in addition to the information in the X
column.

In addition to the two basic columns of a frequency distribution, there are other meas-
ures that describe the distribution of scores and can be incorporated into the table. The
two most common are proportion and percentage.

Proportion measures the fraction of the total group that is associated with 
each score. In Example 2.2, there were two individuals with X � 4. Thus, 2 out of 
10 people had X � 4, so the proportion would be � 0.20. In general, the proportion
associated with each score is

proportion 

Because proportions describe the frequency (f) in relation to the total number (N),
they often are called relative frequencies. Although proportions can be expressed as
fractions (for example, ), they more commonly appear as decimals. A column of pro-
portions, headed with a p, can be added to the basic frequency distribution table (see
Example 2.3).

In addition to using frequencies (f) and proportions (p), researchers often describe
a distribution of scores with percentages. For example, an instructor might describe the
results of an exam by saying that 15% of the class earned As, 23% earned Bs, and so
on. To compute the percentage associated with each score, you first find the proportion
(p) and then multiply by 100:

percentage 

Percentages can be included in a frequency distribution table by adding a column
headed with % (see Example 2.3).

The frequency distribution table from Example 2.2 is repeated here. This time we
have added columns showing the proportion (p) and the percentage (%) associated
with each score.

X f p � f/N % � p(100)

5 1 1/10 � 0.10 10%
4 2 2/10 � 0.20 20%
3 3 3/10 � 0.30 30%
2 3 3/10 � 0.30 30%
1 1 1/10 � 0.10 10%

E X A M P L E  2 . 3

= =p
f

N
( ) ( )100 100

2––
10

= =p
f

N

2––
10

PROPORTIONS 
AND PERCENTAGES
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Caution: Doing calculations
within the table works well for
�X but can lead to errors for
more complex formulas.
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When a set of data covers a wide range of values, it is unreasonable to list all the indi-
vidual scores in a frequency distribution table. Consider, for example, a set of exam
scores that range from a low of X � 41 to a high of X � 96. These scores cover a range
of more than 50 points.

If we were to list all of the individual scores from X � 96 down to X � 41, it would
take 56 rows to complete the frequency distribution table. Although this would organ-
ize the data, the table would be long and cumbersome. Remember: The purpose for con-
structing a table is to obtain a relatively simple, organized picture of the data. This can
be accomplished by grouping the scores into intervals and then listing the intervals in
the table instead of listing each individual score. For example, we could construct a
table showing the number of students who had scores in the 90s, the number with scores
in the 80s, and so on. The result is called a grouped frequency distribution table because
we are presenting groups of scores rather than individual values. The groups, or inter-
vals, are called class intervals.

There are several guidelines that help guide you in the construction of a grouped 
frequency distribution table. Note that these are simply guidelines, rather than absolute
requirements, but they do help produce a simple, well-organized, and easily understood
table.

The grouped frequency distribution table should have about 10 class intervals. If a table
has many more than 10 intervals, it becomes cumbersome and defeats the purpose of a
frequency distribution table. On the other hand, if you have too few intervals, you begin
to lose information about the distribution of the scores. At the extreme, with only one
interval, the table would not tell you anything about how the scores are distributed.
Remember that the purpose of a frequency distribution is to help a researcher see the
data. With too few or too many intervals, the table will not provide a clear picture. You

G U I D E L I N E  1

GROUPED FREQUENCY
DISTRIBUTION TABLES

42 CHAPTER 2 FREQUENCY DISTRIBUTIONS

L E A R N I N G  C H E C K 1. Construct a frequency distribution table for the following set of scores.

Scores: 3, 2, 3, 2, 4, 1, 3, 3, 5

2. Find each of the following values for the sample in the following frequency 
distribution table.

a. n

b. �X

c. �X2

1.

2. a. n � 10 b. �X � 28 c. �X2 � 92 (square then add all 10 scores)

ANSWERS

X f

5 1
4 2
3 2
2 4
1 1

X f

5 1
4 1
3 4
2 2
1 1

When the scores are whole
numbers, the total number of
rows for a regular table can 
be obtained by finding the 
difference between the highest
and the lowest scores and 
adding 1:

rows � highest – lowest + 1
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should note that 10 intervals is a general guide. If you are constructing a table on a
blackboard, for example, you probably want only 5 or 6 intervals. If the table is to be
printed in a scientific report, you may want 12 or 15 intervals. In each case, your goal is
to present a table that is relatively easy to see and understand.

The width of each interval should be a relatively simple number. For example, 2, 5,
10, or 20 would be a good choice for the interval width. Notice that it is easy to count
by 5s or 10s. These numbers are easy to understand and make it possible for someone
to see quickly how you have divided the range of scores.

The bottom score in each class interval should be a multiple of the width. If you are
using a width of 10 points, for example, the intervals should start with 10, 20, 30, 40,
and so on. Again, this makes it easier for someone to understand how the table has
been constructed.

All intervals should be the same width. They should cover the range of scores
completely with no gaps and no overlaps, so that any particular score belongs in
exactly one interval.

The application of these rules is demonstrated in Example 2.4.

An instructor has obtained the set of N � 25 exam scores shown here. To help organize
these scores, we will place them in a frequency distribution table. The scores are:

82, 75, 88, 93, 53, 84, 87, 58, 72, 94, 69, 84, 61,
91, 64, 87, 84, 70, 76, 89, 75, 80, 73, 78, 60

The first step is to determine the range of scores. For these data, the smallest
score is X � 53 and the largest score is X � 94, so a total of 42 rows would be
needed for a table that lists each individual score. Because 42 rows would not provide
a simple table, we have to group the scores into class intervals.

The best method for finding a good interval width is a systematic trial-and-error
approach that uses guidelines 1 and 2 simultaneously. Specifically, we want about 
10 intervals and we want the interval width to be a simple number. For this example,
the scores cover a range of 42 points, so we will try several different interval widths
to see how many intervals are needed to cover this range. For example, if each
interval is 2 points wide, it would take 21 intervals to cover a range of 42 points. This
is too many, so we move on to an interval width of 5 or 10 points. The following
table shows how many intervals would be needed for these possible widths:

Number of Intervals 
Needed to Cover a 

Width Range of 42 Points

2 21 (too many)
5 9 (OK)

10 5 (too few)

Notice that an interval width of 5 will result in about 10 intervals, which is
exactly what we want.

The next step is to actually identify the intervals. The lowest score for these data
is X � 53, so the lowest interval should contain this value. Because the interval
should have a multiple of 5 as its bottom score, the interval should begin at 50. The

E X A M P L E  2 . 4

G U I D E L I N E  4

G U I D E L I N E  3

G U I D E L I N E  2
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Remember, when the scores are
whole numbers, the number of
rows is determined by

highest – lowest + 1

Because the bottom interval
usually extends below the lowest
score and the top interval extends
beyond the highest score, you
often need slightly more than the
computed number of intervals.
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interval has a width of 5, so it should contain 5 values: 50, 51, 52, 53, and 54. Thus,
the bottom interval is 50–54. The next interval would start at 55 and go to 59. Note
that this interval also has a bottom score that is a multiple of 5, and contains exactly 
5 scores (55, 56, 57, 58, and 59). The complete frequency distribution table showing
all of the class intervals is presented in Table 2.2.

Once the class intervals are listed, you complete the table by adding a column of
frequencies. The values in the frequency column indicate the number of individuals
who have scores located in that class interval. For this example, there were three
students with scores in the 60–64 interval, so the frequency for this class interval is 
f � 3 (see Table 2.2). The basic table can be extended by adding columns showing
the proportion and percentage associated with each class interval.

Finally, you should note that after the scores have been placed in a grouped table,
you lose information about the specific value for any individual score. For example,
Table 2.2 shows that one person had a score between 65 and 69, but the table does
not identify the exact value for the score. In general, the wider the class intervals are,
the more information is lost. In Table 2.2 the interval width is 5 points, and the table
shows that there are three people with scores in the lower 60s and one person with a
score in the upper 60s. This information would be lost if the interval width were
increased to 10 points. With an interval width of 10, all of the 60s would be grouped
together into one interval labeled 60–69. The table would show a frequency of four
people in the 60–69 interval, but it would not tell whether the scores were in the
upper 60s or the lower 60s.

Recall from Chapter 1 that a continuous variable has an infinite number of possible val-
ues and can be represented by a number line that is continuous and contains an infinite
number of points. However, when a continuous variable is measured, the resulting
measurements correspond to intervals on the number line rather than single points. If
you are measuring time in seconds, for example, a score of X � 8 seconds actually 
represents an interval bounded by the real limits 7.5 seconds and 8.5 seconds. Thus, a
frequency distribution table showing a frequency of f � 3 individuals all assigned a
score of X � 8 does not mean that all three individuals had exactly the same measure-
ment. Instead, you should realize that the three measurements are simply located in the
same interval between 7.5 and 8.5.

The concept of real limits also applies to the class intervals of a grouped frequency
distribution table. For example, a class interval of 40–49 contains scores from X � 40
to X � 49. These values are called the apparent limits of the interval because it appears

REAL LIMITS AND 
FREQUENCY DISTRIBUTIONS

44 CHAPTER 2 FREQUENCY DISTRIBUTIONS

TABLE 2.2

This grouped frequency 
distribution table shows the data
from Example 2.4. The original
scores range from a high of 
X � 94 to a low of X � 53. This
range has been divided into 
9 intervals with each interval
exactly 5 points wide. The 
frequency column (f) lists the
number of individuals with scores
in each of the class intervals.

X f

90–94 3
85–89 4
80–84 5
75–79 4
70–74 3
65–69 1
60–64 3
55–59 1
50–54 1
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that they form the upper and lower boundaries for the class interval. If you are meas-
uring a continuous variable, however, a score of X � 40 is actually an interval from
39.5 to 40.5. Similarly, X � 49 is an interval from 48.5 to 49.5. Therefore, the real 
limits of the interval are 39.5 (the lower real limit) and 49.5 (the upper real limit). Notice
that the next higher class interval is 50–59, which has a lower real limit of 49.5. Thus,
the two intervals meet at the real limit 49.5, so there are no gaps in the scale. You also
should notice that the width of each class interval becomes easier to understand when
you consider the real limits of an interval. For example, the interval 50–59 has real 
limits of 49.5 and 59.5. The distance between these two real limits (10 points) is the
width of the interval.
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L E A R N I N G  C H E C K 1. For each of the following situations, determine what interval width is most 
appropriate for a grouped frequency distribution and identify the apparent limits 
of the bottom interval.

a. Scores range from X � 7 to X � 21.

b. Scores range from X � 52 to X � 98.

c. Scores range from X � 16 to X � 93.

2. Using only the frequency distribution table presented in Table 2.2, how many
individuals had a score of X � 73?

1. a. A width of 2 points would require 8 intervals. Bottom interval is 6�7.

b. A width of 5 points would require 10 intervals. Bottom interval is 50�54.

c. A width of 10 points would require 9 intervals. Bottom interval is 10�19.

3. After a set of scores has been summarized in a grouped table, you cannot determine the
frequency for any specific score. There is no way to determine how many individuals had 
X � 73 from the table alone. (You can say that at most three people had X � 73.)

ANSWERS

2.3 FREQUENCY DISTRIBUTION GRAPHS

A frequency distribution graph is basically a picture of the information available in a
frequency distribution table. We consider several different types of graphs, but all start
with two perpendicular lines called axes. The horizontal line is the X-axis, or the 
abscissa (ab-SIS-uh). The vertical line is the Y-axis, or the ordinate. The measurement
scale (set of X values) is listed along the X-axis with values increasing from left to right.
The frequencies are listed on the Y-axis with values increasing from bottom to top. As
a general rule, the point where the two axes intersect should have a value of zero for
both the scores and the frequencies. A final general rule is that the graph should be 
constructed so that its height (Y-axis) is approximately two-thirds to three-quarters of
its length (X-axis). Violating these guidelines can result in graphs that give a mislead-
ing picture of the data (see Box 2.1).

When the data consist of numerical scores that have been measured on an interval or
ratio scale, there are two options for constructing a frequency distribution graph. The
two types of graphs are called histograms and polygons.

GRAPHS FOR INTERVAL 
OR RATIO DATA
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Histograms To construct a histogram, you first list the numerical scores (the categories
of measurement) along the X-axis. Then you draw a bar above each X value so that

a. The height of the bar corresponds to the frequency for that category.

b. For continuous variables, the width of the bar extends to the real limits of the
category. For discrete variables, each bar extends exactly half the distance to
the adjacent category on each side.  

For both continuous and discrete variables, each bar in a histogram extends to the
midpoint between adjacent categories. As a result, adjacent bars touch and there are no
spaces or gaps between bars. An example of a histogram is shown in Figure 2.2.

When data have been grouped into class intervals, you can construct a frequency 
distribution histogram by drawing a bar above each interval so that the width of the bar
extends exactly half the distance to the adjacent category on each side. This process is
demonstrated in Figure 2.3.

For the two histograms shown in Figures 2.2 and 2.3, notice that the values on both
the vertical and horizontal axes are clearly marked and that both axes are labeled. Also
note that, whenever possible, the units of measurement are specified; for example,
Figure 2.3 shows a distribution of heights measured in inches. Finally, notice that the
horizontal axis in Figure 2.3 does not list all of the possible heights starting from zero
and going up to 48 inches. Instead, the graph clearly shows a break between zero and
30, indicating that some scores have been omitted.

A modified histogram A slight modification to the traditional histogram produces a
very easy to draw and simple to understand sketch of a frequency distribution. Instead
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FIGURE 2.2

An example of a frequency
distribution histogram. The
same set of quiz scores is
presented in a frequency
distribution table and in a
histogram.

FIGURE 2.3

An example of a frequency
distribution histogram for
grouped data. The same set
of children’s heights is 
presented in a frequency
distribution table and in a
histogram.
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of drawing a bar above each score, the modification consists of drawing a stack of
blocks. Each block represents one individual, so the number of blocks above each score
corresponds to the frequency for that score. An example is shown in Figure 2.4.

Note that the number of blocks in each stack makes it very easy to see the absolute
frequency for each category. In addition, it is easy to see the exact difference in fre-
quency from one category to another. In Figure 2.4, for example, there are exactly two
more people with scores of X � 2 than with scores of X � 1. Because the frequencies
are clearly displayed by the number of blocks, this type of display eliminates the need
for a vertical line (the Y-axis) showing frequencies. In general, this kind of graph pro-
vides a simple and concrete picture of the distribution for a sample of scores. Note that
we often use this kind of graph to show sample data throughout the rest of the book. You
should also note, however, that this kind of display simply provides a sketch of the dis-
tribution and is not a substitute for an accurately drawn histogram with two labeled axes.

Polygons The second option for graphing a distribution of numerical scores from an
interval or ratio scale of measurement is called a polygon. To construct a polygon, you
begin by listing the numerical scores (the categories of measurement) along the X-axis.
Then,

a. A dot is centered above each score so that the vertical position of the dot 
corresponds to the frequency for the category.

b. A continuous line is drawn from dot to dot to connect the series of dots.

c. The graph is completed by drawing a line down to the X-axis (zero frequency)
at each end of the range of scores. The final lines are usually drawn so that they
reach the X-axis at a point that is one category below the lowest score on the
left side and one category above the highest score on the right side. An example
of a polygon is shown in Figure 2.5.

A polygon also can be used with data that have been grouped into class intervals.
For a grouped distribution, you position each dot directly above the midpoint of the
class interval. The midpoint can be found by averaging the highest and the lowest
scores in the interval. For example, a class interval that is listed as 20–29 would have a
midpoint of 24.5.

midpoint 

An example of a frequency distribution polygon with grouped data is shown in
Figure 2.6.

When the scores are measured on a nominal or ordinal scale (usually non-numerical
values), the frequency distribution can be displayed in a bar graph.

GRAPHS FOR NOMINAL 
OR ORDINAL DATA

= + = = .
20 29

2

49

2
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FIGURE 2.4

A frequency distribution in
which each individual is
represented by a block 
placed directly above the
individual’s score. For 
example, three people had
scores of X � 2.

1 2 3 4 5 6 7
x
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Bar graphs A bar graph is essentially the same as a histogram, except that spaces are
left between adjacent bars. For a nominal scale, the space between bars emphasizes that
the scale consists of separate, distinct categories. For ordinal scales, separate bars are
used because you cannot assume that the categories are all the same size.

To construct a bar graph, list the categories of measurement along the X-axis and
then draw a bar above each category so that the height of the bar equals the frequency
for the category. An example of a bar graph is shown in Figure 2.7.

When you can obtain an exact frequency for each score in a population, you can con-
struct frequency distribution graphs that are exactly the same as the histograms, poly-
gons, and bar graphs that are typically used for samples. For example, if a population
is defined as a specific group of N � 50 people, we could easily determine how many
have IQs of X � 110. However, if we are interested in the entire population of adults

GRAPHS FOR POPULATION
DISTRIBUTIONS
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An example of a frequency
distribution polygon. The
same set of data is presented
in a frequency distribution
table and in a polygon.

FIGURE 2.6

An example of a frequency
distribution polygon for
grouped data. The same 
set of data is presented in 
a grouped frequency 
distribution table and in 
a polygon.
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in the United States, it would be impossible to obtain an exact count of the number of
people with an IQ of 110. Although it is still possible to construct graphs showing fre-
quency distributions for extremely large populations, the graphs usually involve two
special features: relative frequencies and smooth curves.

Relative frequencies Although you usually cannot find the absolute frequency for
each score in a population, you very often can obtain relative frequencies. For exam-
ple, you may not know exactly how many fish are in the lake, but after years of fishing
you do know that there are twice as many bluegill as there are bass. You can represent
these relative frequencies in a bar graph by making the bar above bluegill two times
taller than the bar above bass (Figure 2.8). Notice that the graph does not show the 
absolute number of fish. Instead, it shows the relative number of bluegill and bass.

Smooth curves When a population consists of numerical scores from an interval or a
ratio scale, it is customary to draw the distribution with a smooth curve instead of the
jagged, step-wise shapes that occur with histograms and polygons. The smooth curve 
indicates that you are not connecting a series of dots (real frequencies) but instead are
showing the relative changes that occur from one score to the next. One commonly 
occurring population distribution is the normal curve. The word normal refers to a spe-
cific shape that can be precisely defined by an equation. Less precisely, we can describe
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FIGURE 2.7

A bar graph showing the
distribution of personality
types in a sample of college
students. Because personality
type is a discrete variable
measured on a nominal scale,
the graph is drawn with
space between the bars.
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FIGURE 2.8

A frequency distribution
showing the relative 
frequency for two types 
of fish. Notice that the 
exact number of fish is not
reported; the graph simply
says that there are twice as
many bluegill as there are
bass.
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a normal distribution as being symmetrical, with the greatest frequency in the middle and
relatively smaller frequencies as you move toward either extreme. A good example of a nor-
mal distribution is the population distribution for IQ scores shown in Figure 2.9. Because
normal-shaped distributions occur commonly and because this shape is mathematically
guaranteed in certain situations, we give it extensive attention throughout this book.

In the future, we will be referring to distributions of scores. Whenever the term 
distribution appears, you should conjure up an image of a frequency distribution graph.
The graph provides a picture showing exactly where the individual scores are located.
To make this concept more concrete, you might find it useful to think of the graph as
showing a pile of individuals just like we showed a pile of blocks in Figure 2.4. For the
population of IQ scores shown in Figure 2.9, the pile is highest at an IQ score around
100 because most people have average IQs. There are only a few individuals piled up
at an IQ of 130; it must be lonely at the top.

2.4 THE SHAPE OF A FREQUENCY DISTRIBUTION

Rather than drawing a complete frequency distribution graph, researchers often simply
describe a distribution by listing its characteristics. There are three characteristics that
completely describe any distribution: shape, central tendency, and variability. In sim-
ple terms, central tendency measures where the center of the distribution is located.
Variability tells whether the scores are spread over a wide range or are clustered 
together. Central tendency and variability will be covered in detail in Chapters 3 and 4.
Technically, the shape of a distribution is defined by an equation that prescribes the
exact relationship between each X and Y value on the graph. However, we rely on a few
less-precise terms that serve to describe the shape of most distributions.

Nearly all distributions can be classified as being either symmetrical or skewed.

In a symmetrical distribution, it is possible to draw a vertical line through the 
middle so that one side of the distribution is a mirror image of the other (Figure 2.11).

In a skewed distribution, the scores tend to pile up toward one end of the scale
and taper off gradually at the other end (see Figure 2.11).

D E F I N I T I O N S
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The population distribution
of IQ scores: an example of a
normal distribution.
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The section where the scores taper off toward one end of a distribution is called
the tail of the distribution.

A skewed distribution with the tail on the right-hand side is positively skewed
because the tail points toward the positive (above-zero) end of the X-axis. If the
tail points to the left, the distribution is negatively skewed (see Figure 2.11).
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B O X
2.1 THE USE AND MISUSE OF GRAPHS

Although graphs are intended to provide an accurate
picture of a set of data, they can be used to exaggerate or
misrepresent a set of scores. These misrepresentations
generally result from failing to follow the basic rules for
graph construction. The following example demonstrates
how the same set of data can be presented in two entirely
different ways by manipulating the structure of a graph.

For the past several years, the city has kept records
of the number of homicides. The data are summarized
as follows:

Year Number of Homicides

2007 42
2008 44
2009 47
2010 49

These data are shown in two different graphs in
Figure 2.10. In the first graph, we have exaggerated the
height and started numbering the Y-axis at 40 rather
than at zero. As a result, the graph seems to indicate a
rapid rise in the number of homicides over the 4-year
period. In the second graph, we have stretched out the
X-axis and used zero as the starting point for the Y-axis.
The result is a graph that shows little change in the
homicide rate over the 4-year period.

Which graph is correct? The answer is that neither
one is very good. Remember that the purpose of a graph
is to provide an accurate display of the data. The first
graph in Figure 2.10 exaggerates the differences 
between years, and the second graph conceals the 
differences. Some compromise is needed. Also note 
that in some cases a graph may not be the best way 
to display information. For these data, for example,
showing the numbers in a table would be better than
either graph.

FIGURE 2.10

Two graphs showing the number of homicides in a city
over a 4-year period. Both graphs show exactly the same
data. However, the first graph gives the appearance that
the homicide rate is high and rising rapidly. The second
graph gives the impression that homicides rate is low
and has not changed over the 4-year period.
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For a very difficult exam, most scores tend to be low, with only a few individuals
earning high scores. This produces a positively skewed distribution. Similarly, a very
easy exam tends to produce a negatively skewed distribution, with most of the students
earning high scores and only a few with low values.
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Symmetrical distributions

Skewed distributions

Positive skew Negative skew

FIGURE 2.11

Examples of different shapes
for distributions.

L E A R N I N G  C H E C K 1. Sketch a frequency distribution histogram and a frequency distribution polygon for
the data in the following table:

X f

5 4
4 6
3 3
2 1
1 1

2. Describe the shape of the distribution in Exercise 1.

3. A researcher records the gender and academic major for each student at a college
basketball game. If the distribution of majors is shown in a frequency distribution
graph, what type of graph should be used?

4. If the results from a research study are presented in a frequency distribution 
histogram, would it also be appropriate to show the same results in a polygon?
Explain your answer.

5. A college reports that the youngest registered student is 17 years old, and 20% of
the registered students are older than 25. What is the shape of the distribution of
ages for registered students?
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2.5 PERCENTILES, PERCENTILE RANKS, 
AND INTERPOLATION

Although the primary purpose of a frequency distribution is to provide a description of
an entire set of scores, it also can be used to describe the position of an individual within
the set. Individual scores, or X values, are called raw scores. By themselves, raw scores
do not provide much information. For example, if you are told that your score on an
exam is X � 43, you cannot tell how well you did relative to other students in the class.
To evaluate your score, you need more information, such as the average score or the
number of people who had scores above and below you. With this additional informa-
tion, you would be able to determine your relative position in the class. Because 
raw scores do not provide much information, it is desirable to transform them into a
more meaningful form. One transformation that we consider changes raw scores into
percentiles.

The rank or percentile rank of a particular score is defined as the percentage
of individuals in the distribution with scores equal to or less than the particular
value.

When a score is identified by its percentile rank, the score is called a
percentile.

Suppose, for example, that you have a score of X � 43 on an exam and that you
know that exactly 60% of the class had scores of 43 or lower. Then your score 
X � 43 has a percentile rank of 60%, and your score would be called the 60th 
percentile. Notice that percentile rank refers to a percentage and that percentile
refers to a score. Also notice that your rank or percentile describes your exact posi-
tion within the distribution.

D E F I N I T I O N S
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FIGURE 2.12

Answer to the Learning
Check Exercise 1.

1. The graphs are shown in Figure 2.12.

2. The distribution is negatively skewed.

3. A bar graph is used for nominal data.

4. Yes.  Histograms and polygons are both used for data from interval or ratio scales.

5. It is positively skewed with most of the distribution around 17–21 and a few scores 
scattered at 25 and higher.

ANSWERS

Exercise 1: histogram Exercise 1: polygon
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To determine percentiles or percentile ranks, the first step is to find the number of 
individuals who are located at or below each point in the distribution. This can be done
most easily with a frequency distribution table by simply counting the number who are
in or below each category on the scale. The resulting values are called cumulative 
frequencies because they represent the accumulation of individuals as you move up the
scale.

In the following frequency distribution table, we have included a cumulative
frequency column headed by cf. For each row, the cumulative frequency value is
obtained by adding up the frequencies in and below that category. For example, the
score X � 3 has a cumulative frequency of 14 because exactly 14 individuals had
scores of X � 3 or less.

X f cf

5 1 20
4 5 19
3 8 14
2 4 6
1 2 2

The cumulative frequencies show the number of individuals located at or below
each score. To find percentiles, we must convert these frequencies into percentages.
The resulting values are called cumulative percentages because they show the percent-
age of individuals who are accumulated as you move up the scale.

This time we have added a cumulative percentage column (c%) to the frequency
distribution table from Example 2.5. The values in this column represent the percentage
of individuals who are located in and below each category. For example, 70% of the
individuals (14 out of 20) had scores of X � 3 or lower. Cumulative percentages can
be computed by

X f cf c%

5 1 20 100%
4 5 19 95%
3 8 14 70%
2 4 6 30%
1 2 2 10%

The cumulative percentages in a frequency distribution table give the percentage
of individuals with scores at or below each X value. However, you must remember that
the X values in the table are usually measurements of a continuous variable and, there-
fore, represent intervals on the scale of measurement (see page 22). A score of X � 2,

c
cf

N
% ( %)� 100

E X A M P L E  2 . 6

E X A M P L E  2 . 5

CUMULATIVE FREQUENCY
AND CUMULATIVE

PERCENTAGE
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for example, means that the measurement was somewhere between the real limits of 1.5
and 2.5. Thus, when a table shows that a score of X � 2 has a cumulative percentage
of 30%, you should interpret this as meaning that 30% of the individuals have been 
accumulated by the time you reach the top of the interval for X � 2. Notice that each
cumulative percentage value is associated with the upper real limit of its interval. This
point is demonstrated in Figure 2.13, which shows the same data that were used in
Example 2.6. Figure 2.13 shows that two people, or 10%, had scores of X � 1; that is,
two people had scores between 0.5 and 1.5. You cannot be sure that both individuals
have been accumulated until you reach 1.5, the upper real limit of the interval.
Similarly, a cumulative percentage of 30% is reached at 2.5 on the scale, a percentage
of 70% is reached at 3.5, and so on.

It is possible to determine some percentiles and percentile ranks directly from a 
frequency distribution table, provided that the percentiles are upper real limits and 
the ranks are percentages that appear in the table. Using the table in Example 2.6, for
example, you should be able to answer the following questions:

1. What is the 95th percentile? (Answer: X � 4.5.)

2. What is the percentile rank for X � 3.5? (Answer: 70%.)

However, there are many values that do not appear directly in the table, and it is 
impossible to determine these values precisely. Referring to the table in Example 2.6
again,

1. What is the 50th percentile?

2. What is the percentile rank for X � 4?

Because these values are not specifically reported in the table, you cannot answer
the questions. However, it is possible to estimate these intermediate values by using a
standard procedure known as interpolation.

Before we apply the process of interpolation to percentiles and percentile ranks, we
use a simple, commonsense example to introduce this method. Suppose that Bob walks

INTERPOLATION
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cf = 2
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FIGURE 2.13

The relationship between
cumulative frequencies 
(cf values) and upper real
limits. Notice that two people
have scores of X � 1. These
two individuals are located 
between the real limits of 
0.5 and 1.5. Although their
exact locations are not
known, you can be certain
that both had scores below
the upper limit of 1.
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to work each day. The total distance is 2 miles and the trip takes Bob 40 minutes. What
is your estimate of how far Bob has walked after 20 minutes? To help, we have created
a table showing the time and distance for the start and finish of Bob’s trip.

Time Distance

Start 0 0
Finish 40 2

If you estimated that Bob walked 1 mile in 20 minutes, you have done interpola-
tion. You probably went through the following logical steps:

1. The total time is 40 minutes.

2. 20 minutes represents half of the total time.

3. Assuming that Bob walks at a steady pace, he should walk half of the total
distance in half of the total time.

4. The total distance is 2 miles and half of the total distance is 1.

The process of interpolation is pictured in Figure 2.14. In the figure, the top line
shows the time for Bob’s walk, from 0 to 40 minutes, and the bottom line shows the
time, from 0 to 2 miles. The middle line shows different fractions along the way. Using
the figure, try answering the following questions about time and distance.
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0 1 2 Distance (in miles)

Time (in minutes)

FinishStart
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values

Known
values

Known
values
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FIGURE 2.14

A graphic representation of the process of interpolation. The
same interval is shown on two separate scales, time and 
distance. Only the endpoints of the scales are known—
Bob starts at 0 for both time and distance, and he ends at 
40 minutes and 2 miles. Interpolation is used to estimate
values within the interval by assuming that fractional portions
of one scale correspond to the same fractional portions of the
other. For example, it is assumed that halfway through the
time scale corresponds to halfway through the distance scale.
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1. How much time does it take for Bob to walk 1.5 miles?

2. How far has Bob walked after 10 minutes?

If you got answers of 30 minutes and �2
1
� mile, you have mastered the process of 

interpolation. 
Notice that interpolation provides a method for finding intermediate values—that

is, values that are located between two specified numbers. This is exactly the problem
we faced with percentiles and percentile ranks. Some values are given in the table, but
others are not. Also notice that interpolation only estimates the intermediate values. The
basic assumption underlying interpolation is that there is a constant rate of change from
one end of the interval to the other. In Bob’s walking example, we assume that he is
walking at a constant rate for the entire trip. Because interpolation is based on this 
assumption, the values that we calculate are only estimates. The general process of 
interpolation can be summarized as follows:

1. A single interval is measured on two separate scales (for example, time and
distance). The endpoints of the interval are known for each scale.

2. You are given an intermediate value on one of the scales. The problem is to
find the corresponding intermediate value on the other scale.

3. The interpolation process requires four steps:

a. Find the width of the interval on both scales.

b. Locate the position of the intermediate value in the interval. This position
corresponds to a fraction of the whole interval:

c. Use the same fraction to determine the corresponding position on the other
scale. First, determine the distance from the top of the interval:

distance � (fraction) � (width)

d. Use the distance from the top to determine the position on the other scale.

The following examples demonstrate the process of interpolation as it is applied to
percentiles and percentile ranks. The key to success in solving these problems is that
each cumulative percentage in the table is associated with the upper real limit of its
score interval.

Using the following distribution of scores, we will find the percentile rank 
corresponding to X � 7.0:

X f cf c%

10 2 25 100%
9 8 23 92%
8 4 15 60%
7 6 11 44%
6 4 5 20%
5 1 1 4%

E X A M P L E  2 . 7

fraction �
distance from the top of the interval

interval width
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You may notice that in each 
of these problems we use 
interpolation working from the
top of the interval. However,
this choice is arbitrary, and you
should realize that interpolation
can be done just as easily 
working from the bottom of 
the interval.
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Notice that X � 7.0 is located in the interval bounded by the real limits of 6.5 and
7.5. The cumulative percentages corresponding to these real limits are 20% and 44%,
respectively. These values are shown in the following table:

Scores (X) Percentages

Top 7.5 44%
Intermediate value 7.0 ?
Bottom 6.5 20%

For interpolation problems, it is always helpful to create a table showing the range
on both scales.

For the scores, the width of the interval is 1 point (from 6.5 to 7.5). For the
percentages, the width is 24 points (from 20% to 44%).

Our particular score is located 0.5 point from the top of the interval. This is exactly
halfway down in the interval.

On the percentage scale, halfway down is

(24 points) � 12 points

For the percentages, the top of the interval is 44%, so 12 points down would be

44% – 12% � 32%

This is the answer. A score of X � 7.0 corresponds to a percentile rank of 32%

This same interpolation procedure can be used with data that have been grouped
into class intervals. Once again, you must remember that the cumulative percentage
values are associated with the upper real limits of each interval. The following exam-
ple demonstrates the calculation of percentiles and percentile ranks using data in a
grouped frequency distribution.

Using the following distribution of scores, we can use interpolation to find the 50th
percentile:

X f cf c%

20–24 2 20 100%
15–19 3 18 90%
10–14 3 15 75%
5–9 10 12 60%
0–4 2 2 10%

A percentage value of 50% is not given in the table; however, it is located between
10% and 60%, which are given. These two percentage values are associated with the

E X A M P L E  2 . 8

S T E P  4

1

2

S T E P  3

S T E P  2

S T E P  1
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upper real limits of 4.5 and 9.5, respectively. These values are shown in the following
table:

Scores (X) Percentages

Top 9.5 60%
? 50% Intermediate value

Bottom 4.5 10%

For the scores, the width of the interval is 5 points. For the percentages, the width is
50 points.

The value of 50% is located 10 points from the top of the percentage interval. As a
fraction of the whole interval, this is 10 out of 50, or �

1
5� of the total interval.

Using this same fraction for the scores, we obtain a distance of

(5 points) � 1 point

The location we want is 1 point down from the top of the score interval.

Because the top of the interval is 9.5, the position we want is

9.5 – 1 � 8.5

This is the answer. The 50th percentile is X � 8.5.

S T E P  4

1

5

S T E P  3

S T E P  2

S T E P  1
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L E A R N I N G  C H E C K 1. On a statistics exam, would you rather score at the 80th percentile or at the 20th
percentile?

2. For the distribution of scores presented in the following table,

a. Find the 70th percentile.

b. Find the percentile rank for X � 9.5.

X f cf c%

20–24 1 20 100%
15–19 5 19 95%
10–14 8 14 70%
5–9 4 6 20%
0–4 2 2 10%

3. Using the distribution of scores from Exercise 2 and interpolation,

a. Find the 15th percentile.

b. Find the percentile rank for X � 13.

1. The 80th percentile is the higher score.

2. a. X � 14.5 is the 70th percentile. b. X � 9.5 has a rank of 20%.

3. a. Because 15% is between the values of 10% and 20% in the table, you must use 
interpolation. The score corresponding to a rank of 15% is X � 7.

b. Because X � 13 is between the real limits of 9.5 and 14.5, you must use interpolation. 
The percentile rank for X � 13 is 55%.

ANSWERS
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2.6 STEM AND LEAF DISPLAYS

In 1977, J.W. Tukey presented a technique for organizing data that provides a simple
alternative to a grouped frequency distribution table or graph (Tukey, 1977). This tech-
nique, called a stem and leaf display, requires that each score be separated into two
parts: The first digit (or digits) is called the stem, and the last digit is called the leaf. For
example, X � 85 would be separated into a stem of 8 and a leaf of 5. Similarly, X � 42
would have a stem of 4 and a leaf of 2. To construct a stem and leaf display for a set of
data, the first step is to list all the stems in a column. For the data in Table 2.3, for 
example, the lowest scores are in the 30s and the highest scores are in the 90s, so the
list of stems would be

Stems

3
4
5
6
7
8
9

The next step is to go through the data, one score at a time, and write the leaf for
each score beside its stem. For the data in Table 2.3, the first score is X � 83, so you
would write 3 in the leaf column beside the 8 in the column of stems. This process is
continued for the entire set of scores. The complete stem and leaf display is shown with
the original data in Table 2.3.

Notice that the stem and leaf display is very similar to a grouped frequency distribution.
Each of the stem values corresponds to a class interval. For example, the stem 3 repre-
sents all scores in the 30s—that is, all scores in the interval 30–39. The number of
leaves in the display shows the frequency associated with each stem. It also should be
clear that the stem and leaf display has one important advantage over a traditional
grouped frequency distribution. Specifically, the stem and leaf display allows you to
identify every individual score in the data. In the display shown in Table 2.3, for 
example, you know that there were three scores in the 60s and that the specific values
were 62, 68, and 63. A frequency distribution would tell you only the frequency, not

COMPARING STEM AND 
LEAF DISPLAYS WITH

FREQUENCY DISTRIBUTIONS
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TABLE 2.3

A set of N � 24 scores 
presented as raw data and 
organized in a stem and leaf
display.

Data Stem and Leaf Display

83 82 63 3 23
62 93 78 4 26
71 68 33 5 6279
76 52 97 6 283
85 42 46 7 1643846
32 57 59 8 3521
56 73 74 9 37
74 81 76
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the specific values. This advantage can be very valuable, especially if you need to do
any calculations with the original scores. For example, if you need to add all the scores,
you can recover the actual values from the stem and leaf display and compute the total.
With a grouped frequency distribution, however, the individual scores are not available. 

SECTION 2.6 / STEM AND LEAF DISPLAYS 61

L E A R N I N G  C H E C K 1. Use a stem and leaf display to organize the following set of scores:

74, 103, 95, 98, 81, 117, 105, 99, 63, 86, 94, 107

96, 100, 98, 118, 107, 82, 84, 71, 91, 107, 84, 77

2. Explain how a stem and leaf display contains more information than a grouped
frequency distribution.

1. The stem and leaf display for these data is as follows:
6 3
7 417
8 16244
9 5894681

10 357077
11 78

2. A grouped frequency distribution table tells only the number of scores in each interval; it
does not identify the exact value for each score. The stem and leaf display identifies the
individual scores as well as the number of scores in each interval.

ANSWERS

1. The goal of descriptive statistics is to simplify the
organization and presentation of data. One descriptive
technique is to place the data in a frequency distribution
table or graph that shows exactly how many individuals
(or scores) are located in each category on the scale of
measurement.

2. A frequency distribution table lists the categories that
make up the scale of measurement (the X values) in one
column. Beside each X value, in a second column, is the
frequency or number of individuals in that category.
The table may include a proportion column showing the
relative frequency for each category:

proportion � p � �
n
f
�

The table may include a percentage column showing
the percentage associated with each X value:

percentage � p(100) � �
n
f
� (100)

3. It is recommended that a frequency distribution table
have a maximum of 10 to 15 rows to keep it simple. 
If the scores cover a range that is wider than this
suggested maximum, it is customary to divide the range
into sections called class intervals. These intervals are
then listed in the frequency distribution table along with
the frequency or number of individuals with scores in
each interval. The result is called a grouped frequency
distribution. The guidelines for constructing a grouped
frequency distribution table are as follows:
a. There should be about 10 intervals.
b. The width of each interval should be a simple

number (e.g., 2, 5, or 10).
c. The bottom score in each interval should be a

multiple of the width.
d. All intervals should be the same width, and they

should cover the range of scores with no gaps.

SUMMARY
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4. A frequency distribution graph lists scores on the
horizontal axis and frequencies on the vertical axis. The
type of graph used to display a distribution depends on the
scale of measurement used. For interval or ratio scales,
you should use a histogram or a polygon. For a histogram,
a bar is drawn above each score so that the height of the
bar corresponds to the frequency. Each bar extends to the
real limits of the score, so that adjacent bars touch. For a
polygon, a dot is placed above the midpoint of each score
or class interval so that the height of the dot corresponds to
the frequency; then lines are drawn to connect the dots.
Bar graphs are used with nominal or ordinal scales. Bar
graphs are similar to histograms except that gaps are left
between adjacent bars.

5. Shape is one of the basic characteristics used to
describe a distribution of scores. Most distributions can
be classified as either symmetrical or skewed. A
skewed distribution with the tail on the right is said to
be positively skewed. If it has the tail on the left, it is
negatively skewed.

6. The cumulative percentage is the percentage of
individuals with scores at or below a particular point in

the distribution. The cumulative percentage values are
associated with the upper real limits of the
corresponding scores or intervals.

7. Percentiles and percentile ranks are used to describe the
position of individual scores within a distribution.
Percentile rank gives the cumulative percentage
associated with a particular score. A score that is
identified by its rank is called a percentile.

8. When a desired percentile or percentile rank is located
between two known values, it is possible to estimate the
desired value using the process of interpolation.
Interpolation assumes a regular linear change between
the two known values.

9. A stem and leaf display is an alternative procedure for
organizing data. Each score is separated into a stem (the
first digit or digits) and a leaf (the last digit or digits).
The display consists of the stems listed in a column
with the leaf for each score written beside its stem. A
stem and leaf display combines the characteristics of a
table and a graph and produces a concise, well-
organized picture of the data.

KEY TERMS

frequency distribution (39)

range (42)

grouped frequency distribution (42)

class interval (42)

apparent limits (44)

histogram (46)

polygon (47)

bar graph (48)

relative frequency (49)

symmetrical distribution (50)

tail(s) of a distribution (51)

positively skewed distribution (51)

negatively skewed distribution (51)

percentile rank (53)

percentile (53)

cumulative frequency (cf) (54)

cumulative percentage (c%) (54)

interpolation (55)

stem and leaf display (60)

RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter 
You can find a tutorial quiz and other learning exercises for Chapter 2 on the book

companion website.

Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.
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Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific web-
site, Psychology CourseMate includes an integrated interactive eBook and other interac-
tive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to produce Frequency Distribution Tables or Graphs.

Frequency Distribution Tables

Data Entry

1. Enter all the scores in one column of the data editor, probably VAR00001.

Data Analysis

1. Click Analyze on the tool bar, select Descriptive Statistics, and click on
Frequencies.

2. Highlight the column label for the set of scores (VAR00001) in the left box and
click the arrow to move it into the Variable box.

3. Be sure that the option to Display Frequency Table is selected.
4. Click OK.

SPSS Output

The frequency distribution table lists the score values in a column from smallest to
largest, with the percentage and cumulative percentage also listed for each score. Score
values that do not occur (zero frequencies) are not included in the table, and the program
does not group scores into class intervals (all values are listed).

Frequency Distribution Histograms or Bar Graphs

Data Entry

1. Enter all the scores in one column of the data editor, probably VAR00001.

Data Analysis

1. Click Analyze on the tool bar, select Descriptive Statistics, and click on
Frequencies.

2. Highlight the column label for the set of scores (VAR00001) in the left box and
click the arrow to move it into the Variable box.

3. Click Charts.
4. Select either Bar Graphs or Histogram.
5. Click Continue.
6. Click OK.

SPSS Output

After a brief delay, SPSS displays a frequency distribution table and a graph. Note that
SPSS often produces a histogram that groups the scores in unpredictable intervals. A bar
graph usually produces a clearer picture of the actual frequency associated with each score.

RESOURCES 63
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FOCUS ON PROBLEM SOLVING

1. The reason for constructing frequency distributions is to put a disorganized set 
of raw data into a comprehensible, organized format. Because several different
types of frequency distribution tables and graphs are available, one problem 
is deciding which type to use. Tables have the advantage of being easier to
construct, but graphs generally give a better picture of the data and are easier 
to understand.

To help you decide which type of frequency distribution is best, consider the
following points:
a. What is the range of scores? With a wide range, you need to group the scores

into class intervals.
b. What is the scale of measurement? With an interval or a ratio scale, you can use

a polygon or a histogram. With a nominal or an ordinal scale, you must use a bar
graph.

2. When using a grouped frequency distribution table, a common mistake is to
calculate the interval width by using the highest and lowest values that define each
interval. For example, some students are tricked into thinking that an interval
identified as 20–24 is only 4 points wide. To determine the correct interval width,
you can:
a. Count the individual scores in the interval. For this example, the scores are 20,

21, 22, 23, and 24, for a total of 5 values. Thus, the interval width is 5 points.
b. Use the real limits to determine the real width of the interval. For example, an

interval identified as 20–24 has a lower real limit of 19.5 and an upper real limit
of 24.5 (halfway to the next score). Using the real limits, the interval width is

24.5 – 19.5 � 5 points

3. Percentiles and percentile ranks are intended to identify specific locations within a
distribution of scores. When solving percentile problems, especially with
interpolation, it is helpful to sketch a frequency distribution graph. Use the graph to
make a preliminary estimate of the answer before you begin any calculations. For
example, to find the 60th percentile, draw a vertical line through the graph so that
slightly more than half (60%) of the distribution is on the left-hand side of the line.
Locating this position in your sketch gives you a rough estimate of what the final
answer should be. When doing interpolation problems, you should keep several
points in mind:
a. Remember that the cumulative percentage values correspond to the upper real

limits of each score or interval.
b. You should always identify the interval with which you are working. The easiest

way to do this is to create a table showing the endpoints on both scales (scores
and cumulative percentages). This is illustrated in Example 2.7 on pages 57–58.

c. The word interpolation means between two poles. Remember: Your goal is to
find an intermediate value between the two ends of the interval. Check your
answer to be sure that it is located between the two endpoints. If it is not, then
check your calculations.

64 CHAPTER 2 FREQUENCY DISTRIBUTIONS
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DEMONSTRATION 2.1

A GROUPED FREQUENCY DISTRIBUTION TABLE

For the following set of N � 20 scores, construct a grouped frequency distribution table
using an interval width of 5 points. The scores are:

14, 8, 27, 16, 10, 22, 9, 13, 16, 12,
10, 9, 15, 17, 6, 14, 11, 18, 14, 11

Set up the class intervals.
The largest score in this distribution is X � 27, and the lowest is X � 6. Therefore, a

frequency distribution table for these data would have 22 rows and would be too large. A
grouped frequency distribution table would be better. We have asked specifically for an
interval width of 5 points, and the resulting table has five rows.

X

25–29
20–24
15–19
10–14
5–9

Remember that the interval width is determined by the real limits of the interval. For
example, the class interval 25–29 has an upper real limit of 29.5 and a lower real limit of
24.5. The difference between these two values is the width of the interval—namely, 5.

Determine the frequencies for each interval.
Examine the scores, and count how many fall into the class interval of 25–29. Cross

out each score that you have already counted. Record the frequency for this class interval.
Now repeat this process for the remaining intervals. The result is the following table:

X f

25–29 1 (the score X � 27)
20–24 1 (X � 22)
15–19 5 (the scores X � 16, 16, 15, 17, and 18)
10–14 9 (X � 14, 10, 13, 12, 10, 14, 11, 14, and 11)
5–9 4 (X � 8, 9, 9, and 6)

DEMONSTRATION 2.2

USING INTERPOLATION TO FIND PERCENTILES AND PERCENTILE RANKS

Find the 50th percentile for the set of scores in the grouped frequency distribution table
that was constructed in Demonstration 2.1.

Find the cumulative frequency (cf) and cumulative percentage values, and add these 
values to the basic frequency distribution table.

S T E P  1

S T E P  2

S T E P  1

DEMONSTRATION 2.2 65

30991_ch02_ptg01_hr_037-070.qxd  9/2/11  11:26 PM  Page 65



Cumulative frequencies indicate the number of individuals located in or below each
category (class interval). To find these frequencies, begin with the bottom interval, and
then accumulate the frequencies as you move up the scale. 

Cumulative percentages are determined from the cumulative frequencies by the 
relationship

For example, the cf column shows that 4 individuals (out of the total set of N � 20) have
scores in or below the 5–9 interval. The corresponding cumulative percentage is

The complete set of cumulative frequencies and cumulative percentages is shown in the
following table:

X f cf c%

25–29 1 20 100%
20–24 1 19 95%
15–19 5 18 90%
10–14 9 13 65%
5–9 4 4 20%

Locate the interval that contains the value that you want to calculate.
We are looking for the 50th percentile, which is located between the values of 20% and

65% in the table. The scores (upper real limits) corresponding to these two percentages
are 9.5 and 14.5, respectively. The interval, measured in terms of scores and percentages,
is shown in the following table:

X c%

14.5 65%
?? 50%
9.5 20%

Locate the intermediate value as a fraction of the total interval.
Our intermediate value is 50%, which is located in the interval between 65% and 20%.

The total width of the interval is 45 points (65 – 20 � 45), and the value of 50% is located
15 points down from the top of the interval. As a fraction, the 50th percentile is located 
�
1
4
5
5� � �

1
3� down from the top of the interval.

Use the fraction to determine the corresponding location on the other scale.
Our intermediate value, 50%, is located �

1
3� of the way down from the top of the 

interval. Our goal is to find the score, the X value, that also is located �
1
3� of the way 

down from the top of the interval.
On the score (X) side of the interval, the top value is 14.5, and the bottom value is 9.5,

so the total interval width is 5 points (14.5 – 9.5 � 5). The position we are seeking is �
1
3� of

the way from the top of the interval. One-third of the total interval is

1

3
5

5

3
1 67

⎛
⎝⎜

⎞
⎠⎟

� � . points

S T E P  4

S T E P  3

S T E P  2

c% % % %� � �
4

20
100

1

5
100 20

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

c
cf

N
% %�

⎛
⎝⎜

⎞
⎠⎟

100
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To find this location, begin at the top of the interval, and come down 1.67 points:

14.5 – 1.67 � 12.83

This is our answer. The 50th percentile is X � 12.83.

PROBLEMS 67

PROBLEMS

1. Place the following sample of n � 20 scores in a
frequency distribution table.

6, 9, 9, 10, 8, 9, 4, 7, 10, 9
5, 8, 10, 6, 9, 6, 8, 8, 7, 9

2. Construct a frequency distribution table for the
following set of scores. Include columns for proportion
and percentage in your table.

Scores: 5, 7, 8, 4, 7, 9, 6, 6, 5, 3
9, 6, 4, 7, 7, 8, 6, 7, 8, 5

3. Find each value requested for the distribution of scores
in the following table.
a. n
b. �X
c. �X2

X f

5 2
4 3
3 5
2 1
1 1

4. Find each value requested for the distribution of scores
in the following table.
a. n
b. �X
c. �X2

X f

5 1
4 2
3 3
2 5
1 3

5. For the following scores, the smallest value is X � 8
and the largest value is X � 29. Place the scores in a
grouped frequency distribution table
a. using an interval width of 2 points.
b. using an interval width of 5 points.

24, 19, 23, 10, 25, 27, 22, 26
25, 20, 8, 24, 29, 21, 24, 13
23, 27, 24, 16, 22, 18, 26, 25

6. The following scores are the ages for a random sample
of n � 30 drivers who were issued speeding tickets in
New York during 2008. Determine the best interval
width and place the scores in a grouped frequency
distribution table. From looking at your table, does it
appear that tickets are issued equally across age
groups?

17, 30, 45, 20, 39, 53, 28, 19,
24, 21, 34, 38, 22, 29, 64,
22, 44, 36, 16, 56, 20, 23, 58,
32, 25, 28, 22, 51, 26, 43

7. For each of the following samples, determine the
interval width that is most appropriate for a grouped
frequency distribution and identify the approximate
number of intervals needed to cover the range of
scores.
a. Sample scores range from X � 24 to X � 41
b. Sample scores range from X � 46 to X � 103
c. Sample scores range from X � 46 to X � 133

8. What information can you obtain about the scores in a
regular frequency distribution table that is not
available from a grouped table?

9. Describe the difference in appearance between a bar
graph and a histogram and describe the circumstances
in which each type of graph is used.

10. For the following set of quiz scores:

3, 5, 4, 6, 2, 3, 4, 1, 4, 3
7, 7, 3, 4, 5, 8, 2, 4, 7, 10
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a. Construct a frequency distribution table to organize
the scores.

b. Draw a frequency distribution histogram for these
data.

11. Sketch a histogram and a polygon showing the
distribution of scores presented in the following table:

X f

7 1
6 1
5 3
4 6
3 4
2 1

12. A survey given to a sample of 200 college students
contained questions about the following variables. For
each variable, identify the kind of graph that should be
used to display the distribution of scores (histogram,
polygon, or bar graph).
a. number of pizzas consumed during the previous

week
b. size of T-shirt worn (S, M, L, XL)
c. gender (male/female)
d. grade point average for the previous semester
e. college class (freshman, sophomore, junior, senior)

13. Each year the college gives away T-shirts to new
students during freshman orientation. The students are
allowed to pick the shirt sizes that they want. To
determine how many of each size shirt they should
order, college officials look at the distribution from
last year. The following table shows the distribution of
shirt sizes selected last year.

Size f

S 27
M 48
L 136

XL 120
XXL 39

a. What kind of graph would be appropriate for
showing this distribution?

b. Sketch the frequency distribution graph.

14. A report from the college dean indicates that for the
previous semester, the grade distribution for the
Department of Psychology included 135 As, 158 Bs,
140 Cs, 94 Ds, and 53 Fs. Determine what kind of
graph would be appropriate for showing this

distribution and sketch the frequency distribution
graph.

15. For the following set of scores

Scores: 5, 8, 5, 7, 6, 6, 5, 7, 4, 6
6, 9, 5, 5, 4, 6, 7, 5, 7, 5

a. Place the scores in a frequency distribution table.
b. Identify the shape of the distribution.

16. Place the following scores in a frequency distribution
table. Based on the frequencies, what is the shape of
the distribution?

5, 6, 4, 7, 7, 6, 8, 2, 5, 6
3, 1, 7, 4, 6, 8, 2, 6, 5, 7

17. For the following set of scores:

3, 7, 6, 5, 5, 9, 6, 4, 6, 8
10, 2, 7, 4, 9, 5, 6, 3, 8

a. Construct a frequency distribution table.
b. Sketch a polygon showing the distribution.
c. Describe the distribution using the following

characteristics:
(1) What is the shape of the distribution?
(2) What score best identifies the center (average)

for the distribution?
(3) Are the scores clustered together, or are they

spread out across the scale?

18. Fowler and Christakis (2008) report that personal
happiness tends to be associated with having a social
network including many other happy friends. To test
this claim, a researcher obtains a sample of n � 16
adults who claim to be happy people and a similar
sample of n � 16 adults who describe themselves as
neutral or unhappy. Each individual is then asked to
identify the number of their close friends whom they
consider to be happy people. The scores are as
follows:

Happy:
8, 7, 4, 10, 6, 6, 8, 9, 8, 8,
7, 5, 6, 9, 8, 9

Unhappy:
5, 8, 4, 6, 6, 7, 9, 6, 2, 8,
5, 6, 4, 7, 5, 6

Sketch a polygon showing the frequency distribution
for the happy people. In the same graph, sketch a
polygon for the unhappy people. (Use two different
colors, or use a solid line for one polygon and a
dashed line for the other.) Does one group seem to
have more happy friends?
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19. Complete the final two columns in the following
frequency distribution table and then find the
percentiles and percentile ranks requested.

X f cf c%

7 2
6 3
5 6
4 9
3 4
2 1

a. What is the percentile rank for X � 2.5?
b. What is the percentile rank for X � 6.5?
c. What is the 20th percentile?
d. What is the 80th percentile?

20. Complete the final two columns in the following
frequency distribution table and then find the
percentiles and percentile ranks requested.

X f cf c%

50–59 1
40–49 3
30–39 6
20–29 5
10–19 3

0–9 2

a. What is the percentile rank for X � 9.5?
b. What is the percentile rank for X � 39.5?
c. What is the 25th percentile?
d. What is the 50th percentile?

21. Complete the final two columns in the following
frequency distribution table and then use interpolation
to find the percentiles and percentile ranks requested.

X f cf c%

10 2
9 5
8 8
7 15
6 10
5 6
4 4

a. What is the percentile rank for X � 6?
b. What is the percentile rank for X � 9?
c. What is the 25th percentile?
d. What is the 90th percentile?

22. Find the requested percentiles and percentile ranks for
the following distribution of quiz scores for a class of
N � 40 students.  

X f cf c%

20 2 40 100.0
19 4 38 95.0
18 6 34 85.0
17 13 28 70.0
16 6 15 37.5
15 4 9 22.5
14 3 5 12.5
13 2 2 5.0

a. What is the percentile rank for X � 15?
b. What is the percentile rank for X � 18?
c. What is the 15th percentile?
d. What is the 90th percentile?

23. Use interpolation to find the requested percentiles and
percentile ranks requested for the following
distribution of scores.

X f cf c%

14–15 3 50 100
12–13 6 47 94
10–11 8 41 82
8–9 18 33 66
6–7 10 15 30
4–5 4 5 10
2–3 1 1 2

a. What is the percentile rank for X � 5?
b. What is the percentile rank for X � 12?
c. What is the 25th percentile?
d. What is the 70th percentile?

24. The following frequency distribution presents a set of
exam scores for a class of N � 20 students.

X f cf c%

90–99 4 20 100
80–89 7 16 80
70–79 4 9 45
60–69 3 5 25
50–59 2 2 10

a. Find the 30th percentile.
b. Find the 88th percentile.
c. What is the percentile rank for X � 77?
d. What is the percentile rank for X � 90?
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70 CHAPTER 2 FREQUENCY DISTRIBUTIONS

25. Construct a stem and leaf display for the data in
problem 6 using one stem for the scores in the 60s,
one for scores in the 50s, and so on.

26. A set of scores has been organized into the following
stem and leaf display. For this set of scores:
a. How many scores are in the 70s?
b. Identify the individual scores in the 70s.
c. How many scores are in the 40s?
d. Identify the individual scores in the 40s.

3 8
4 60
5 734
6 81469
7 2184
8 247

27. Use a stem and leaf display to organize the following
distribution of scores. Use seven stems with each stem
corresponding to a 10-point interval.

Scores:
28, 54, 65, 53, 81
45, 44, 51, 72, 34
43, 59, 65, 39, 20
53, 74, 24, 30, 49
36, 58, 60, 27, 47
22, 52, 46, 39, 65

Improve your statistical skills with 

ample practice exercises and detailed 

explanations on every question. Purchase

www.aplia.com/statistics
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C H A P T E R

3
Central
Tendency

Preview

3.1 Overview

3.2 The Mean

3.3 The Median

3.4 The Mode

3.5 Selecting a Measure of Central
Tendency

3.6 Central Tendency and the Shape
of the Distribution

Summary

Focus on Problem Solving

Demonstration 3.1

Problems

Tools You Will Need
The following items are considered essential
background material for this chapter. If you
doubt your knowledge of any of these 
items, you should review the appropriate
chapter or section before proceeding.

• Summation notation (Chapter 1)
• Frequency distributions (Chapter 2)
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Preview
Research has now confirmed what you already 
suspected to be true—alcohol consumption increases 
the attractiveness of opposite-sex individuals (Jones, 
Jones, Thomas, & Piper, 2003). In the study, college-age
participants were recruited from bars and restaurants near
campus and asked to participate in a “market research”
study. During the introductory conversation, they were
asked to report their alcohol consumption for the day and
were told that moderate consumption would not prevent
them from taking part in the study. Participants were then
shown a series of photographs of male and female faces
and asked to rate the attractiveness of each face on a scale
from 1 to 7. Figure 3.1 shows the general pattern of results
obtained in the study. The two polygons in the figure show
the distributions of attractiveness ratings for one female
photograph obtained from two groups of males: those 
who had no alcohol and those with moderate alcohol 
consumption. Note that the attractiveness ratings from the
alcohol group are noticeably higher than the ratings from
the no-alcohol group. Incidentally, the same pattern of
results was obtained for the female’s ratings of male 
photographs.

The Problem: Although it seems obvious that the
moderate-alcohol ratings are noticeably higher than the
no-alcohol ratings, this conclusion is based on a general
impression, or a subjective interpretation, of the figure.
In fact, this conclusion is not always true. For example,
there is overlap between the two groups so that some of
the no-alcohol males actually rate the photograph as
more attractive than some of the moderate-alcohol
males. What we need is a method to summarize each
group as a whole so that we can objectively describe
how much difference exists between the two groups.

The Solution: A measure of central tendency
identifies the average, or typical, score to serve as a
representative value for each group. Then we can use
the two averages to describe the two groups and to
measure the difference between them. The results
should show that average attractiveness rating from
males consuming alcohol really is higher than the 
average rating from males who have not consumed
alcohol.

72

3.1 OVERVIEW

The general purpose of descriptive statistical methods is to organize and summarize a
set of scores. Perhaps the most common method for summarizing and describing a dis-
tribution is to find a single value that defines the average score and can serve as a 
representative for the entire distribution. In statistics, the concept of an average, or rep-
resentative, score is called central tendency. The goal in measuring central tendency is
to describe a distribution of scores by determining a single value that identifies the 
center of the distribution. Ideally, this central value is the score that is the best repre-
sentative value for all of the individuals in the distribution.

No alcohol

Fr
e

q
u

e
n

c
y

5

4

3

2

1

Attractiveness rating

1 2 3 4 5 6 7

Moderate alcohol

X

FIGURE 3.1

Frequency distributions for ratings of attractiveness of a
female face shown in a photograph for two groups of
male participants: those who had consumed no alcohol
and those who had consumed moderate amounts of 
alcohol.
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Central tendency is a statistical measure to determine a single score that 
defines the center of a distribution. The goal of central tendency is to find the
single score that is most typical or most representative of the entire group.

In everyday language, central tendency attempts to identify the “average” or “typ-
ical” individual. This average value can then be used to provide a simple description of
an entire population or a sample. In addition to describing an entire distribution, meas-
ures of central tendency are also useful for making comparisons between groups of 
individuals or between sets of figures. For example, weather data indicate that for
Seattle, Washington, the average yearly temperature is 53° and the average annual pre-
cipitation is 34 inches. By comparison, the average temperature in Phoenix, Arizona, is
71° and the average precipitation is 7.4 inches. The point of these examples is to
demonstrate the great advantage of being able to describe a large set of data with a 
single, representative number. Central tendency characterizes what is typical for a large
population and, in doing so, makes large amounts of data more digestible. Statisticians
sometimes use the expression number crunching to illustrate this aspect of data 
description. That is, we take a distribution consisting of many scores and “crunch” them
down to a single value that describes them all.

Unfortunately, there is no single, standard procedure for determining central ten-
dency. The problem is that no single measure produces a central, representative value
in every situation. The three distributions shown in Figure 3.2 should help demonstrate
this fact. Before we discuss the three distributions, take a moment to look at the figure
and try to identify the center or the most representative score for each distribution.

1. The first distribution [Figure 3.2(a)] is symmetrical, with the scores forming a
distinct pile centered around X � 5. For this type of distribution, it is easy to
identify the center, and most people would agree that the value X � 5 is an
appropriate measure of central tendency.

2. In the second distribution [Figure 3.2(b)], however, problems begin to appear.
Now the scores form a negatively skewed distribution, piling up at the high 
end of the scale around X � 8, but tapering off to the left all the way down to 
X � 1. Where is the center in this case? Some people might select X � 8 as 
the center because more individuals had this score than any other single value.
However, X � 8 is clearly not in the middle of the distribution. In fact, the
majority of the scores (10 out of 16) have values less than 8, so it seems rea-
sonable that the center should be defined by a value that is less than 8.

3. Now consider the third distribution [Figure 3.2(c)]. Again, the distribution is
symmetrical, but now there are two distinct piles of scores. Because the distri-
bution is symmetrical with X � 5 as the midpoint, you may choose X � 5 as
the center. However, none of the scores is located at X � 5 (or even close), so
this value is not particularly good as a representative score. On the other hand,
because there are two separate piles of scores with one group centered at X � 2
and the other centered at X � 8, it is tempting to say that this distribution has
two centers. But can one distribution have two centers?

Clearly, there can be problems defining the center of a distribution. Occasionally,
you will find a nice, neat distribution like the one shown in Figure 3.2(a), for which
everyone agrees on the center. But you should realize that other distributions are pos-
sible and that there may be different opinions concerning the definition of the center.
To deal with these problems, statisticians have developed three different methods for
measuring central tendency: the mean, the median, and the mode. They are computed
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differently and have different characteristics. To decide which of the three measures is
best for any particular distribution, you should keep in mind that the general purpose of
central tendency is to find the single most representative score. Each of the three meas-
ures we present has been developed to work best in a specific situation. We examine
this issue in more detail after we introduce the three measures.

3.2 THE MEAN

The mean, also known as the arithmetic average, is computed by adding all the scores
in the distribution and dividing by the number of scores. The mean for a population is
identified by the Greek letter mu, � (pronounced “mew”), and the mean for a sample is
identified by M or X� (read “x-bar”).

The convention in many statistics textbooks is to use X� to represent the mean for 
a sample. However, in manuscripts and in published research reports the letter M is the
standard notation for a sample mean. Because you will encounter the letter M when
reading research reports and because you should use the letter M when writing research
reports, we have decided to use the same notation in this text. Keep in mind that the X�
notation is still appropriate for identifying a sample mean, and you may find it used on
occasion, especially in textbooks.

The mean for a distribution is the sum of the scores divided by the number of
scores.

D E F I N I T I O N
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1 2 3 4 5 6 7 8 9 X

f

1 2 3 4 5 6 7 8 9 X

f

1 2 3 4 5 6 7 8 9 X

f

(a) (b)

(c)

FIGURE 3.2

Three distributions demonstrating the difficulty of
defining central tendency. In each case, try to locate
the “center” of the distribution.
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The formula for the population mean is

(3.1)

First, add all the scores in the population, and then divide by N. For a sample, the
computation is exactly the same, but the formula for the sample mean uses symbols that
signify sample values:

sample mean (3.2)

In general, we use Greek letters to identify characteristics of a population (param-
eters) and letters of our own alphabet to stand for sample values (statistics). If a mean
is identified with the symbol M, you should realize that we are dealing with a sample.
Also note that the equation for the sample mean uses a lowercase n as the symbol for
the number of scores in the sample.

For a population of N � 4 scores,

3, 7, 4, 6

the mean is

Although the procedure of adding the scores and dividing by the number of scores pro-
vides a useful definition of the mean, there are two alternative definitions that may give
you a better understanding of this important measure of central tendency.

Dividing the total equally The first alternative is to think of the mean as the amount
each individual receives when the total (�X) is divided equally among all of the indi-
viduals (N) in the distribution. This somewhat socialistic viewpoint is particularly use-
ful in problems for which you know the mean and must find the total. Consider the
following example.

A group of n � 6 boys buys a box of baseball cards at a garage sale and discovers
that the box contains a total of 180 cards. If the boys divide the cards equally 
among themselves, how many cards will each boy get? You should recognize that
this problem represents the standard procedure for computing the mean. Specifically,
the total (�X) is divided by the number (n) to produce the mean, �

18
6

0
� � 30 cards for

each boy.

The previous example demonstrates that it is possible to define the mean as 
the amount that each individual gets when the total is distributed equally. This new 
definition can be useful for some problems involving the mean. Consider the following
example.

E X A M P L E  3 . 2

ALTERNATIVE DEFINITIONS
FOR THE MEAN

μ� � �
ΣX

N

20

4
5

E X A M P L E  3 . 1

= = ∑M
X

n

��
X

N
∑
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Now suppose that the 6 boys from Example 3.2 decide to sell their baseball cards on
eBay. If they make an average of M � $5 per boy, what is the total amount of money
for the whole group? Although you do not know exactly how much money each boy
has, the new definition of the mean tells you that if they pool their money together and
then distribute the total equally, each boy will get $5. For each of n � 6 boys to get
$5, the total must be 6($5) � $30. To check this answer, use the formula for the mean:

The mean as a balance point The second alternative definition of the mean 
describes the mean as a balance point for the distribution. Consider a population con-
sisting of N � 5 scores (1, 2, 6, 6, 10). For this population, �X � 25 and � � �

25
5��� � 5.

Figure 3.3 shows this population drawn as a histogram, with each score represented as
a box that is sitting on a seesaw. If the seesaw is positioned so that it pivots at a point
equal to the mean, then it will be balanced and will rest level.

The reason that the seesaw is balanced over the mean becomes clear when we
measures the distance of each box (score) from the mean:

Score Distance from the Mean

X � 1 4 points below the mean
X � 2 3 points below the mean
X � 6 1 point above the mean
X � 6 1 point above the mean
X � 10 5 points above the mean

Notice that the mean balances the distances. That is, the total distance below the
mean is the same as the total distance above the mean:

below the mean: 4 � 3 � 7 points

above the mean: 1 � 1 � 5 � 7 points

Because the mean serves as a balance point, the value of the mean is always 
located somewhere between the highest score and the lowest score; that is, the mean
can never be outside the range of scores. If the lowest score in a distribution is X � 8
and the highest is X � 15, then the mean must be between 8 and 15. If you calculate a
value that is outside this range, then you have made an error.

M
X

n
� � �

Σ $
$

30

6
5
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1 32 4 65 7 98 10

�

FIGURE 3.3

The frequency distribution
shown as a seesaw balanced
at the mean. 

(Based on G. H. Weinberg, 
J. A. Schumaker, & D. Oltman
(1981). Statistics: An Intuitive
Approach (p. 14). Belmont,
Calif.: Wadsworth.
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The image of a seesaw with the mean at the balance point is also useful for deter-
mining how a distribution is affected if a new score is added or if an existing score is
removed. For the distribution in Figure 3.3, for example, what would happen to the
mean (balance point) if a new score were added at X � 10?

Often it is necessary to combine two sets of scores and then find the overall mean for
the combined group. Suppose that we begin with two separate samples. The first sam-
ple has n � 12 scores and a mean of M � 6. The second sample has n � 8 and M � 7.
If the two samples are combined, what is the mean for the total group?

To calculate the overall mean, we need two values:

1. the overall sum of the scores for the combined group (�X), and

2. the total number of scores in the combined group (n).

The total number of scores in the combined group can be found easily by adding
the number of scores in the first sample (n1) and the number in the second sample (n2).
In this case, there are 12 � 8 � 20 scores in the combined group. Similarly, the over-
all sum for the combined group can be found by adding the sum for the first sample
(�X1) and the sum for the second sample (�X2). With these two values, we can com-
pute the mean using the basic equation

overall mean � M �

To find the sum of the scores for each sample, remember that the mean can be 
defined as the amount each person receives when the total (�X) is distributed equally.
The first sample has n � 12 and M � 6. (Expressed in dollars instead of scores, this
sample has n � 12 people and each person gets $6 when the total is divided equally.)
For each of 12 people to get M � 6, the total must be �X � 12 � 6 � 72. In the same
way, the second sample has n � 8 and M � 7 so the total must be �X � 8 � 7 � 56.
Using these values, we obtain an overall mean of

overall mean � M �

The following table summarizes the calculations.

First Sample Second Sample Combined Sample

n � 12 n � 8 n � 20 (12 � 8)
�X � 72 �X � 56 �X � 128 (72 � 56)
M � 6 M � 7 M � 6.4

Note that the overall mean is not halfway between the original two sample means.
Because the samples are not the same size, one makes a larger contribution to the total
group and, therefore, carries more weight in determining the overall mean. For this rea-
son, the overall mean we have calculated is called the weighted mean. In this example,
the overall mean of M � 6.4 is closer to the value of M � 6 (the larger sample) than it
is to M � 7 (the smaller sample). An alternative method for finding the weighted mean
is presented in Box 3.1.

� � �X X

n n
1 1

1 2

72 56

12 8

128

20
6 4

�
�

�

�
� � .

�
�

� � �X X

n n
1 2

1 2

�X

n

( )

(

overall sum for the combined group

total numbber in the combined group)

THE WEIGHTED MEAN
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When a set of scores has been organized in a frequency distribution table, the calcula-
tion of the mean is usually easier if you first remove the individual scores from the table.
Table 3.1 shows a distribution of scores organized in a frequency distribution table. To
compute the mean for this distribution you must be careful to use both the X values in
the first column and the frequencies in the second column. The values in the table show
that the distribution consists of one 10, two 9s, four 8s, and one 6, for a total of n � 8
scores. Remember that you can determine the number of scores by adding the frequen-
cies, n � �f. To find the sum of the scores, you must be careful to add all eight scores:

�X � 10 � 9 � 9 � 8 � 8 � 8 � 8 � 6 � 66

Note that you can also find the sum of the scores by computing �fX as we demon-
strated in Chapter 2 (pp. 40–41). Once you have found �X and n, you compute the
mean as usual. For these data,

M
X

n
� � �

∑ 66

8
8 25.

COMPUTING THE MEAN 
FROM A FREQUENCY
DISTRIBUTION TABLE
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B O X
3.1 AN ALTERNATIVE PROCEDURE FOR FINDING THE WEIGHTED MEAN

to the combined group. When the two samples are 
combined, the resulting group will have a total of 
20 scores (n � 12 from the first sample and n � 8 from
the second). The first sample contributes 12 out of 
20 scores and, therefore, is assigned a weight of �

1
2

2
0�. The

second sample contributes 8 out of 20 scores, and its
weight is �2

8
0�. Each sample mean is then multiplied by its

weight, and the results are added to find the weighted
mean for the combined sample. For this example,

Note that this is the same result obtained using the
method described in the text.

weighted mean�

�
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20
6

8

20
7
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⎛
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⎝⎜

⎞
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3 6 2 8
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+

+�
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In the text, the weighted mean was obtained by first
determining the total number of scores (n) for the two
combined samples and then determining the overall sum
(�X) for the two combined samples. The following
example demonstrates how the same result can be 
obtained using a slightly different conceptual approach.

We begin with the same two samples that were
used in the text: One sample has M � 6 for n � 12
students, and the second sample has M � 7 for n � 8
students. The goal is to determine the mean for the
overall group when the two samples are combined.

Logically, when these two samples are combined,
the larger sample (with n � 12 scores) will make a
greater contribution to the combined group than the
smaller sample (with n � 8 scores). Thus, the larger
sample will carry more weight in determining the mean
for the combined group. We accommodate this fact by
assigning a weight to each sample mean so that the
weight is determined by the size of the sample. To deter-
mine how much weight should be assigned to each sam-
ple mean, you simply consider the sample’s contribution

TABLE 3.1

Statistics quiz scores for a 
sample of n � 8 students.

Quiz Score (X) f fX

10 1 10
9 2 18
8 4 32
7 0 0
6 1 6
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The mean has many characteristics that will be important in future discussions. In 
general, these characteristics result from the fact that every score in the distribution
contributes to the value of the mean. Specifically, every score adds to the total (�X) 
and every score contributes one point to the number of scores (n). These two values 
(�X and n) determine the value of the mean. We now discuss four of the more impor-
tant characteristics of the mean.

Changing a score Changing the value of any score changes the mean. For example,
a sample of quiz scores for a psychology lab section consists of 9, 8, 7, 5, and 1. Note
that the sample consists of n � 5 scores with �X � 30. The mean for this sample is

Now suppose that the score of X � 1 is changed to X � 8. Note that we have added
7 points to this individual’s score, which also adds 7 points to the total (�X). After
changing the score, the new distribution consists of

9, 8, 7, 5, 8

M
X

n
� � �

∑ 30

5
6 00.

CHARACTERISTICS 
OF THE MEAN

L E A R N I N G  C H E C K 1. Find the mean for the following sample of n � 5 scores: 1, 8, 7, 5, 9

2. A sample of n � 6 scores has a mean of M � 8. What is the value of �X for this
sample?

3. One sample has n � 5 scores with a mean of M � 4. A second sample has n � 3
scores with a mean of M � 10. If the two samples are combined, what is the mean
for the combined sample?

4. A sample of n � 6 scores has a mean of M � 40. One new score is added to the
sample and the new mean is found to be M � 35. What can you conclude about
the value of the new score?

a. It must be greater 40.

b. It must be less than 40.

5. Find the values for n, �X, and M for the sample that is summarized in the follow-
ing frequency distribution table.

X f

5 1
4 2
3 3
2 5
1 1

1. �X � 30 and M � 6

2. �X � 48

3. The combined sample has n � 8 scores that total �X � 50. The mean is M � 6.25.

4. b

5. For this sample, n � 12, �X � 33, and M � �
33
12� � 2.75.

ANSWERS
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There are still n � 5 scores, but now the total is �X � 37. Thus, the new mean is

Notice that changing a single score in the sample has produced a new mean. You
should recognize that changing any score also changes the value of �X (the sum of the
scores), and, thus, always changes the value of the mean.

Introducing a new score or removing a score Adding a new score to a distribu-
tion, or removing an existing score, usually changes the mean. The exception is when
the new score (or the removed score) is exactly equal to the mean. It is easy to visual-
ize the effect of adding or removing a score if you remember that the mean is defined
as the balance point for the distribution. Figure 3.4 shows a distribution of scores rep-
resented as boxes on a seesaw that is balanced at the mean, � � 7. Imagine what
would happen if we added a new score (a new box) at X � 10. Clearly, the seesaw
would tip to the right and we would need to move the pivot point (the mean) to the
right to restore balance.

Now imagine what would happen if we removed the score (the box) at X � 9. This
time the seesaw would tip to the left and, once again, we would need to change the
mean to restore balance.

Finally, consider what would happen if we added a new score of X � 7, exactly
equal to the mean. It should be clear that the seesaw would not tilt in either direction,
so the mean would stay in exactly the same place. Also note that if we removed the new
score at X � 7, the seesaw would remain balanced and the mean would not change. In
general, adding a new score or removing an existing score causes the mean to change
unless the that score is located exactly at the mean.

The following example demonstrates exactly how the new mean is computed when
a new score is added to an existing sample.

Adding a score (or removing a score) has the same effect on the mean whether the
original set of scores is a sample or a population. To demonstrate the calculation of
the new mean, we will use the set of scores that is shown in Figure 3.4. This time,
however, we will treat the scores as a sample with n � 5 and M � 7. Note that this
sample must have �X � 35. What happens to the mean if a new score of X � 13 is
added to the sample?

To find the new sample mean, we must determine how the values for n and �X are
be changed by a new score. We begin with the original sample and then consider the
effect of adding the new score. The original sample had n � 5 scores, so adding one 
new score produces n � 6. Similarly, the original sample had �X � 35. Adding a score
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M
X

n
� � �

Σ 37

5
7 40.
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21 3 54 6 7 8 9 10 11 12 13

FIGURE 3.4

A distribution of N � 5
scores that is balanced with a
mean of � � 7.
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of X � 13 increases the sum by 13 points, producing a new sum of �X � 35 � 13 � 48.
Finally, the new mean is computed using the new values for n and �X.

The entire process can be summarized as follows:

Original New Sample, 
Sample Adding X � 13

n � 5 n � 6
�X � 35 �X � 48
M � 35/5 � 7 M � 48/6 � 8

Adding or subtracting a constant from each score If a constant value is added to
every score in a distribution, the same constant is added to the mean. Similarly, if you
subtract a constant from every score, the same constant is subtracted from the mean.

As mentioned in Chapter 2 (p. 38), Schmidt (1994) conducted a set of experi-
ments examining how humor influences memory. In one study, participants were
shown lists of sentences, of which half were humorous (I got a bill for my surgery—
now I know why those doctors were wearing masks.) and half were nonhumorous 
(I got a bill for my surgery—those doctors were like robbers with the prices they
charged.). The results showed that people consistently recalled more of the humor-
ous sentences.

Table 3.2 shows the results for a sample of n � 6 participants. The first column
shows their memory scores for nonhumorous sentences. Note that the total number of
sentences recalled is �X � 17 for a sample of n � 6 participants, so the mean is 
M � �

17
6 � 2.83. Now suppose that the effect of humor is to add a constant amount 

(2 points) to each individual’s memory score. The resulting scores for humorous sen-
tences are shown in the second column of the table. For these scores, the 6 participants
recalled a total of �X � 29 sentences, so the mean is M � �

2
6
9

� � 4.83. Adding 2 points
to each score has also added 2 points to the mean, from M � 2.83 to M � 4.83. (It is
important to note that experimental effects are usually not as simple as adding or sub-
tracting a constant amount. Nonetheless, the concept of adding a constant to every score
is important and will be addressed in later chapters when we are using statistics to eval-
uate the effects of experimental manipulations.)

M
X

n
�

�
� �

48

6
8
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TABLE 3.2

Number of sentences recalled
for humorous and nonhumorous
sentences.

Nonhumorous Humorous 
Participant Sentences Sentences

A 4 6
B 2 4
C 3 5
D 3 5
E 2 4
F 3 5

�X � 17 �X � 29
M � 2.83 M � 4.83
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Multiplying or dividing each score by a constant If every score in a distribution is
multiplied by (or divided by) a constant value, the mean changes in the same way.

Multiplying (or dividing) each score by a constant value is a common method for
changing the unit of measurement. To change a set of measurements from minutes to
seconds, for example, you multiply by 60; to change from inches to feet, you divide by
12. One common task for researchers is converting measurements into metric units to
conform to international standards. For example, publication guidelines of the
American Psychological Association call for metric equivalents to be reported in paren-
theses when most nonmetric units are used. Table 3.3 shows how a sample of n � 5
scores measured in inches would be transformed to a set of scores measured in cen-
timeters. (Note that 1 inch equals 2.54 centimeters.) The first column shows the origi-
nal scores that total �X � 50 with M � 10 inches. In the second column, each of the
original scores has been multiplied by 2.54 (to convert from inches to centimeters) and
the resulting values total �X � 127, with M � 25.4. Multiplying each score by 2.54 
has also caused the mean to be multiplied by 2.54. You should realize, however, that
although the numerical values for the individual scores and the sample mean have
changed, the actual measurements have not changed.
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TABLE 3.3

Measurements converted from
inches to centimeters.

Conversion to 
Original Measurement Centimeters 

in Inches (Multiply by 2.54)

10 25.40
9 22.86

12 30.48
8 20.32

11 27.94

�X � 50 �X � 127.00
M � 10 M � 25.40

L E A R N I N G  C H E C K 1. Adding a new score to a distribution always changes the mean. (True or false?)

2. Changing the value of a score in a distribution always changes the mean. (True or
false?)

3. A population has a mean of � � 40.

a. If 5 points were added to every score, what would be the value for the new mean?

b. If every score were multiplied by 3, what would be the value for the new mean?

4. A sample of n � 4 scores has a mean of 9. If one person with a score of X � 3 is
removed from the sample, what is the value for the new sample mean?

1. False. If the score is equal to the mean, it does not change the mean.

2. True.

3. a. The new mean would be 45. b. The new mean would be 120.

4. The original sample has n � 4 and �X � 36. The new sample has n � 3 scores that total
�X � 33. The new mean is M � 11.

ANSWERS
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3.3 THE MEDIAN

The second measure of central tendency we consider is called the median. The goal of
the median is to locate the midpoint of the distribution. Unlike the mean, there are no
specific symbols or notation to identify the median. Instead, the median is simply iden-
tified by the word median. In addition, the definition and the computations for the 
median are identical for a sample and for a population.

If the scores in a distribution are listed in order from smallest to largest, the
median is the midpoint of the list. More specifically, the median is the point on
the measurement scale below which 50% of the scores in the distribution are
located.

Defining the median as the midpoint of a distribution means that the scores are divided
into two equal-sized groups. We are not locating the midpoint between the highest and
lowest X values. To find the median, list the scores in order from smallest to largest.
Begin with the smallest score and count the scores as you move up the list. The median
is the first point you reach that is greater than 50% of the scores in the distribution. The
median can be equal to a score in the list or it can be a point between two scores.  Notice
that the median is not algebraically defined (there is no equation for computing the 
median), which means that there is a degree of subjectivity in determining the exact
value. However, the following two examples demonstrate the process of finding the
median for most distributions.

This example demonstrates the calculation of the median when n is an odd number.
With an odd number of scores, you list the scores in order (lowest to highest), and the
median is the middle score in the list. Consider the following set of N � 5 scores,
which have been listed in order:

3, 5, 8, 10, 11

The middle score is X � 8, so the median is equal to 8. Using the counting
method, with N � 5 scores, the 50% point would be 2�

1
2� scores. Starting with the

smallest scores, we must count the 3, the 5, and the 8 before we reach the target of 
at least 50%. Again, for this distribution, the median is the middle score, X � 8.

This example demonstrates the calculation of the median when n is an even number.
With an even number of scores in the distribution, you list the scores in order (lowest
to highest) and then locate the median by finding the average of the middle two
scores. Consider the following population:

1, 1, 4, 5, 7, 8

Now we select the middle pair of scores (4 and 5), add them together, and divide
by 2:

median � �
4 �

2
5

� � �
9
2

� � 4.5

E X A M P L E  3 . 6

E X A M P L E  3 . 5

FINDING THE MEDIAN 
FOR MOST DISTRIBUTIONS
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Using the counting procedure, with N � 6 scores, the 50% point is 3 scores.
Starting with the smallest scores, we must count the first 1, the second 1, and the 
4 before we reach the target of at least 50%. Again, the median for this distribution is
4.5, which is the first point on the scale beyond X � 4. For this distribution, exactly 
3 scores (50%) are located below 4.5. Note: If there is a gap between the middle 
two scores, the convention is to define the median as the midpoint between the two
scores. For example, if the middle two scores are X � 4 and X � 6, the median would
be defined as 5.

The simple technique of listing and counting scores is sufficient to determine the
median for most distributions and is always appropriate for discrete variables. Notice
that this technique always produces a median that is either a whole number or is
halfway between two whole numbers. With a continuous variable, however, it is possi-
ble to divide a distribution precisely in half so that exactly 50% of the distribution is 
located below (and above) a specific point. The procedure for locating the precise 
median is discussed in the following section.

Recall from Chapter 1 that a continuous variable consists of categories that can be split
into an infinite number of fractional parts. For example, time can be measured in 
seconds, tenths of a second, hundredths of a second, and so on. When the scores in a
distribution are measurements of a continuous variable, it is possible to split one of the
categories into fractional parts and find the median by locating the precise point that
separates the bottom 50% of the distribution from the top 50%. The following example
demonstrates this process.

For this example, we will find the precise median for the following sample of n � 8
scores: 1, 2, 3, 4, 4, 4, 4, 6

The frequency distribution for this sample is shown in Figure 3.5(a). With an even
number of scores, you normally would compute the average of the middle two scores 
to find the median. This process produces a median of X � 4. For a discrete variable, 

E X A M P L E  3 . 7

FINDING THE PRECISE
MEDIAN FOR 

A CONTINUOUS VARIABLE
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FIGURE 3.5

A distribution with several
scores clustered at the 
median. The median for this
distribution is positioned so
that each of the four boxes
above X � 4 is divided into
two sections, with �

1
4 of each

box below the median (to the
left) and �

3
4 of each box above

the median (to the right). 
As a result, there are exactly
four boxes, 50% of the 
distribution, on each side 
of the median.
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X � 4 is the correct value for the median. Recall from Chapter 1 that a discrete variable
consists of indivisible categories, such as the number of children in a family. Some
families have 4 children and some have 5, but none have 4.31 children. For a discrete
variable, the category X � 4 cannot be divided and the whole number 4 is the median.

However, if you look at the distribution histogram, the value X � 4 does not
appear to be the exact midpoint. The problem comes from the tendency to interpret a
score of X � 4 as meaning exactly 4.00. However, if the scores are measurements of
a continuous variable, then the score X � 4 actually corresponds to an interval from
3.5 to 4.5, and the median corresponds to a point within this interval.

To find the precise median, we first observe that the distribution contains n � 8
scores represented by 8 boxes in the graph. The median is the point that has exactly 
4 boxes (50%) on each side. Starting at the left-hand side and moving up the scale of
measurement, we accumulate a total of 3 boxes when we reach a value of 3.5 on the
X-axis [see Figure 3.5(a)]. What is needed is 1 more box to reach the goal of 4 boxes
(50%). The problem is that the next interval contains four boxes. The solution is to
take a fraction of each box so that the fractions combine to give you one box. For this
example, if we take �

1
4 of each box, the four quarters will combine to make one whole

box. This solution is shown in Figure 3.5(b). The fraction is determined by the
number of boxes needed to reach 50% and the number that exists in the interval.

number needed to reach 50%
fraction � –––––––––––––––––––––––––

number in the interval

For this example, we needed 1 out of the 4 boxes in the interval, so the fraction 
is �

1
4 . To obtain one-fourth of each box, the median is the point that is located exactly

one-fourth of the way into the interval. The interval for X � 4 extends from 3.5 to
4.5. The interval width is 1 point, so one-fourth of the interval corresponds to 0.25
points. Starting at the bottom of the interval and moving up 0.25 points produces a
value of 3.50 � 0.25 � 3.75. This is the median, with exactly 50% of the distribution
(4 boxes) on each side.

You may recognize that the process used to find the precise median in Example 3.7
is equivalent to the process of interpolation that was introduced in Chapter 2
(pp. 55–59). Specifically, the precise median is identical to the 50th percentile for a dis-
tribution, and interpolation can be used to locate the 50th percentile. The process of
using interpolation is demonstrated in Box 3.2 using the same scores that were used in
Example 3.7.

Remember, finding the precise midpoint by dividing scores into fractional parts is
sensible for a continuous variable, however, it is not appropriate for a discrete variable.
For example, a median time of 3.75 seconds is reasonable, but a median family size of
3.75 children is not.

Earlier, we defined the mean as the “balance point” for a distribution because the dis-
tances above the mean must have the same total as the distances below the mean. One
consequence of this definition is that the mean is always located inside the group of
scores, somewhere between the smallest score and the largest score. You should notice,
however, that the concept of a balance point focuses on distances rather than scores. In
particular, it is possible to have a distribution in which the vast majority of the scores

THE MEDIAN, THE MEAN, 
AND THE MIDDLE
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are located on one side of the mean. Figure 3.6 shows a distribution of N � 6 scores in
which 5 out of 6 scores have values less than the mean. In this figure, the total of the
distances above the mean is 8 points and the total of the distances below the mean is 
8 points. Thus, the mean is located in the middle of the distribution if you use the 
concept of distance to define the middle. However, you should realize that the mean is
not necessarily located at the exact center of the group of scores.

The median, on the other hand, defines the middle of the distribution in terms of
scores. In particular, the median is located so that half of the scores are on one side and
half are on the other side. For the distribution in Figure 3.6, for example, the median is
located at X � 2.5, with exactly 3 scores above this value and exactly 3 scores below.
Thus, it is possible to claim that the median is located in the middle of the distribution,
provided that the term middle is defined by the number of scores.

86 CHAPTER 3 CENTRAL TENDENCY

B O X
3.2 USING INTERPOLATION TO LOCATE THE 50TH PERCENTILE (THE MEDIAN)

We will find the 50th percentile (the median) using
the 4-step interpolation process that was introduced in
Chapter 2.

1. For the scores, the width of the interval is 1 point.
For the percentages, the width is 50 points.

2. The value of 50% is located 37.5 points down 
from the top of the percentage interval. As a fraction
of the whole interval, this is 37.5 out of 50, or 0.75
of the total interval. 

3. For the scores, the interval width is 1 point and 
0.75 of the interval corresponds to a distance of
0.75(1) � 0.75 points.

4. Because the top of the interval is 4.5, the position we
want is 4.5 – 0.75 � 3.75

For this distribution, the 50% point (the 50th 
percentile) corresponds to a score of X � 3.75. Note
that this is exactly the same value that we obtained for
the median in Example 3.7.

The precise median and the 50th percentile are both
defined as the point that separates the top 50% of a
distribution from the bottom 50%. In Chapter 2, we
introduced interpolation as a technique for finding 
specific percentiles. We now use that same process to
find the 50th percentile for the scores in Example 3.7.

Looking at the distribution of scores shown in
Figure 3.5, exactly 3 of the n � 8 scores, or 37.5%, are
located below the real limit of 3.5. Also, 7 of the n � 8
scores (87.5%) are located below the real limit of 4.5.
This interval of scores and percentages is shown in the
following table. Note that the median, the 50th per-
centile, is located within this interval.

Scores (X) Percentages

Top 4.5 87.5%
? 50% ← Intermediate value

Bottom 3.5 37.5%
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X

FIGURE 3.6

A population of N � 6 scores
with a mean of � � 4.
Notice that the mean does
not necessarily divide the
scores into two equal groups.
In this example, 5 out of the
6 scores have values less
than the mean.
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In summary, the mean and the median are both methods for defining and measur-
ing central tendency. Although they both define the middle of the distribution, they use
different definitions of the term middle.

3.4 THE MODE

The final measure of central tendency that we consider is called the mode. In its com-
mon usage, the word mode means “the customary fashion” or “a popular style.” The
statistical definition is similar in that the mode is the most common observation among
a group of scores.

In a frequency distribution, the mode is the score or category that has the great-
est frequency.

As with the median, there are no symbols or special notation used to identify the
mode or to differentiate between a sample mode and a population mode. In addition,
the definition of the mode is the same for a population and for a sample distribution.

The mode is a useful measure of central tendency because it can be used to deter-
mine the typical or average value for any scale of measurement, including a nominal
scale (see Chapter 1). Consider, for example, the data shown in Table 3.4. These data
were obtained by asking a sample of 100 students to name their favorite restaurants in

D E F I N I T I O N
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L E A R N I N G  C H E C K 1. Find the median for each distribution of scores:

a. 3, 4, 6, 7, 9, 10, 11

b. 8, 10, 11, 12, 14, 15

2. If you have a score of 52 on an 80-point exam, then you definitely scored above
the median. (True or false?)

3. The following is a distribution of measurements for a continuous variable. Find the
precise median that divides the distribution exactly in half.

Scores: 1, 2, 2, 3, 4, 4, 4, 4, 4, 5

1. a. The median is X � 7. b. The median is X � 11.5.

2. False. The value of the median would depend on where all of the scores are located.

3. The median is 3.70 (one-fifth of the way into the interval from 3.5 to 4.5).

ANSWERS

TABLE 3.4

Favorite restaurants named by 
a sample of n � 100 students.
Caution: The mode is a score or
category, not a frequency. For
this example, the mode is
Luigi’s, not f � 42.

Restaurant f

College Grill 5
George & Harry’s 16
Luigi’s 42
Oasis Diner 18
Roxbury Inn 7
Sutter’s Mill 12

30991_ch03_ptg01_hr_071-102.qxd  9/2/11  11:26 PM  Page 87



town. The result is a sample of n � 100 scores with each score corresponding to the
restaurant that the student named.

For these data, the mode is Luigi’s, the restaurant (score) that was named most fre-
quently as a favorite place. Although we can identify a modal response for these data,
you should notice that it would be impossible to compute a mean or a median. For 
example, you cannot add the scores to determine a mean (How much is 5 College Grills
plus 42 Luigi’s?). Also, it is impossible to list the scores in order because the restau-
rants do not form any natural order. For example, the College Grill is not “more than”
or “less than” the Oasis Diner, they are simply two different restaurants. Thus, it is 
impossible to obtain the median by finding the midpoint of the list. In general, the mode
is the only measure of central tendency that can be used with data from a nominal scale
of measurement.

The mode also can be useful because it is the only measure of central tendency that
corresponds to an actual score in the data; by definition, the mode is the most frequently
occurring score. The mean and the median, on the other hand, are both calculated 
values and often produce an answer that does not equal any score in the distribution. 
For example, in Figure 3.6 (p. 86) we presented a distribution with a mean of 4 and a
median of 2.5. Note that none of the scores is equal to 4 and none of the scores is equal
to 2.5. However, the mode for this distribution is X � 2; there are three individuals who
actually have scores of X � 2.

In a frequency distribution graph, the greatest frequency appears as the tallest part
of the figure. To find the mode, you simply identify the score located directly beneath
the highest point in the distribution.

Although a distribution has only one mean and only one median, it is possible to
have more than one mode. Specifically, it is possible to have two or more scores that
have the same highest frequency. In a frequency distribution graph, the different modes
correspond to distinct, equally high peaks. A distribution with two modes is said to be
bimodal, and a distribution with more than two modes is called multimodal.
Occasionally, a distribution with several equally high points is said to have no mode.

Incidentally, a bimodal distribution is often an indication that two separate and dis-
tinct groups of individuals exist within the same population (or sample). For example,
if you measured height for each person in a set of 100 college students, the resulting
distribution would probably have two modes, one corresponding primarily to the males
in the group and one corresponding primarily to the females.

Technically, the mode is the score with the absolute highest frequency. However,
the term mode is often used more casually to refer to scores with relatively high 
frequencies—that is, scores that correspond to peaks in a distribution even though the
peaks are not the absolute highest points. For example, Athos, et al. (2007) asked peo-
ple to identify the pitch for both pure tones and piano tones. Participants were presented
with a series of tones and had to name the note corresponding to each tone. Nearly half
the participants (44%) had extraordinary pitch-naming ability (absolute pitch), and
were able to identify most of the tones correctly. Most of the other participants per-
formed around chance level, apparently guessing the pitch names randomly. Figure 3.7
shows a distribution of scores that is consistent with the results of the study. There are
two distinct peaks in the distribution, one located at X � 2 (chance performance) and
the other located at X � 10 (perfect performance). Each of these values is a mode in the
distribution. Note, however, that the two modes do not have identical frequencies. Eight
people scored at X � 2 and only seven had scores of X � 10. Nonetheless, both of these
points are called modes. When two modes have unequal frequencies, researchers occa-
sionally differentiate the two values by calling the taller peak the major mode, and the
shorter one the minor mode.
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3.5 SELECTING A MEASURE OF CENTRAL TENDENCY

How do you decide which measure of central tendency to use? The answer to this ques-
tion depends on several factors. Before we discuss these factors, however, note that you
usually can compute two or even three measures of central tendency for the same set of
data. Although the three measures often produce similar results, there are situations in
which they are very different (see Section 3.6). Also note that the mean is usually the
preferred measure of central tendency. Because the mean uses every score in the dis-
tribution, it typically produces a good representative value. Remember that the goal of
central tendency is to find the single value that best represents the entire distribution.
Besides being a good representative, the mean has the added advantage of being closely
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FIGURE 3.7

A frequency distribution 
for tone identification scores.
An example of bimodal
distributions.

L E A R N I N G  C H E C K 1. During the month of October, an instructor recorded the number of absences for
each student in a class of n � 20 and obtained the following distribution.

Number of
Absences f

5 1
4 2
3 7
2 5
1 3
0 2

a. Using the mean, what is the average number of absences for the class?

b. Using the median, what is the average number of absences for the class?

c. Using the mode, what is the average number of absences for the class?

1.

a. The mean is 47/20 � 2.35.

b. The median is 2.5.

c. The mode is 3.

ANSWERS
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related to variance and standard deviation, the most common measures of variability
(Chapter 4). This relationship makes the mean a valuable measure for purposes of 
inferential statistics. For these reasons, and others, the mean generally is considered to
be the best of the three measures of central tendency. But there are specific situations
in which it is impossible to compute a mean or in which the mean is not particularly
representative. It is in these situations that the mode and the median are used.

We consider four situations in which the median serves as a valuable alternative to the
mean. In the first three cases, the data consist of numerical values (interval or ratio
scales) for which you would normally compute the mean. However, each case also 
involves a special problem so that it is either impossible to compute the mean, or the
calculation of the mean produces a value that is not central or not representative of the
distribution. The fourth situation involves measuring central tendency for ordinal data.

Extreme scores or skewed distributions When a distribution has a few extreme
scores, scores that are very different in value from most of the others, then the mean
may not be a good representative of the majority of the distribution. The problem comes
from the fact that one or two extreme values can have a large influence and cause the
mean to be displaced. In this situation, the fact that the mean uses all of the scores
equally can be a disadvantage. Consider, for example, the distribution of n � 10 scores
in Figure 3.8. For this sample, the mean is

Notice that the mean is not very representative of any score in this distribution.
Although most of the scores are clustered between 10 and 13, the extreme score of 
X � 100 inflates the value of �X and distorts the mean.

M
X

n
�

�
� �

203

10
20 3.

WHEN TO USE THE MEDIAN

90 CHAPTER 3 CENTRAL TENDENCY

Fr
e

q
u

e
n

c
y

Number of errors

1

10 1001514131211

2

3

5

4

FIGURE 3.8

Frequency distribution of
errors committed before
reaching learning criterion.
Notice that the graph shows
two breaks in the X-axis.
Rather than listing all the
scores from 0 to 100, the
graph jumps directly to the
first score, which is X � 10,
and then jumps directly from
X � 15 to X � 100. The
breaks shown in the X-axis
are the conventional way of
notifying the reader that
some values have been 
omitted.
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The median, on the other hand, is not easily affected by extreme scores. For this
sample, n � 10, so there should be five scores on either side of the median. The 
median is 11.50. Notice that this is a very representative value. Also note that the 
median would be unchanged even if the extreme score were 1000 instead of only 100.
Because it is relatively unaffected by extreme scores, the median commonly is used
when reporting the average value for a skewed distribution. For example, the distribu-
tion of personal incomes is very skewed, with a small segment of the population earn-
ing incomes that are astronomical. These extreme values distort the mean, so that it is
not very representative of the salaries that most of us earn. The median is the preferred
measure of central tendency when extreme scores exist.

Undetermined values Occasionally, you encounter a situation in which an individ-
ual has an unknown or undetermined score. In psychology, this often occurs in learn-
ing experiments in which you are measuring the number of errors (or amount of time)
required for an individual to solve a particular problem. For example, suppose that 
participants are asked to assemble a wooden puzzle as quickly as possible. The exper-
imenter records how long (in minutes) it takes each individual to arrange all of the
pieces to complete the puzzle. Table 3.5 presents results for a sample of n � 6 people.
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TABLE 3.5

Number of minutes needed to
assemble a wooden puzzle.

Person Time (Min.)

1 8
2 11
3 12
4 13
5 17
6 Never finished

Notice that person 6 never completed the puzzle. After an hour, this person still
showed no sign of solving the puzzle, so the experimenter stopped him or her. This per-
son has an undetermined score. (There are two important points to be noted. First, the
experimenter should not throw out this individual’s score. The whole purpose for using
a sample is to gain a picture of the population, and this individual tells us that part of
the population cannot solve the puzzle. Second, this person should not be given a score
of X � 60 minutes. Even though the experimenter stopped the individual after 1 hour,
the person did not finish the puzzle. The score that is recorded is the amount of time
needed to finish. For this individual, we do not know how long this is.)

It is impossible to compute the mean for these data because of the undetermined
value. We cannot calculate the �X part of the formula for the mean. However, it is pos-
sible to determine the median. For these data, the median is 12.5. Three scores are below
the median, and three scores (including the undetermined value) are above the median.

Open-ended distributions A distribution is said to be open-ended when there is no
upper limit (or lower limit) for one of the categories. The table in the margin provides
an example of an open-ended distribution, showing the number of pizzas eaten during
a 1 month period for a sample of n � 20 high school students. The top category in this
distribution shows that three of the students consumed “5 or more” pizzas. This is an
open-ended category. Notice that it is impossible to compute a mean for these data 
because you cannot find �X (the total number of pizzas for all 20 students). However,
you can find the median. Listing the 20 scores in order produces X � 1 and X � 2 as
the middle two scores. For these data, the median is 1.5.

Number of 
Pizzas (X) f

5 or more 3
4 2
3 2
2 3
1 6
0 4
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Ordinal scale Many researchers believe that it is not appropriate to use the mean to 
describe central tendency for ordinal data. When scores are measured on an ordinal scale,
the median is always appropriate and is usually the preferred measure of central tendency.

You should recall that ordinal measurements allow you to determine direction
(greater than or less than) but do not allow you to determine distance. The median is
compatible with this type of measurement because it is defined by direction: half of the
scores are above the median and half are below the median. The mean, on the other
hand, defines central tendency in terms of distance. Remember that the mean is the 
balance point for the distribution, so that the distances above the mean are exactly 
balanced by the distances below the mean. Because the mean is defined in terms of 
distances, and because ordinal scales do not measure distance, it is not appropriate to
compute a mean for scores from an ordinal scale.

We consider three situations in which the mode is commonly used as an alternative to
the mean, or is used in conjunction with the mean to describe central tendency.

Nominal scales The primary advantage of the mode is that it can be used to measure
and describe central tendency for data that are measured on a nominal scale. Recall that
the categories that make up a nominal scale are differentiated only by name. Because
nominal scales do not measure quantity (distance or direction), it is impossible to com-
pute a mean or a median for data from a nominal scale. Therefore, the mode is the only
option for describing central tendency for nominal data.

Discrete variables Recall that discrete variables are those that exist only in whole,
indivisible categories. Often, discrete variables are numerical values, such as the num-
ber of children in a family or the number of rooms in a house. When these variables
produce numerical scores, it is possible to calculate means. In this situation, the calcu-
lated means are usually fractional values that cannot actually exist. For example, com-
puting means generates results such as “the average family has 2.4 children and a house
with 5.33 rooms.” On the other hand, the mode always identifies the most typical case
and, therefore, it produces more sensible measures of central tendency. Using the mode,
our conclusion would be “the typical, or modal, family has 2 children and a house with
5 rooms.” In many situations, especially with discrete variables, people are more com-
fortable using the realistic, whole-number values produced by the mode.

Describing shape Because the mode requires little or no calculation, it is often 
included as a supplementary measure along with the mean or median as a no-cost extra.
The value of the mode (or modes) in this situation is that it gives an indication of the
shape of the distribution as well as a measure of central tendency. Remember that the
mode identifies the location of the peak (or peaks) in the frequency distribution graph.
For example, if you are told that a set of exam scores has a mean of 72 and a mode of
80, you should have a better picture of the distribution than would be available from the
mean alone (see Section 3.6).

IN THE LITERATURE
REPORTING MEASURES OF CENTRAL TENDENCY

Measures of central tendency are commonly used in the behavioral sciences to
summarize and describe the results of a research study. For example, a researcher
may report the sample means from two different treatments or the median score for a

WHEN TO USE THE MODE
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large sample. These values may be reported in verbal descriptions of the results, in
tables, or in graphs.

In reporting results, many behavioral science journals use guidelines adopted by
the American Psychological Association (APA), as outlined in the Publication
Manual of the American Psychological Association (2010). We refer to the APA
manual from time to time in describing how data and research results are reported in
the scientific literature. The APA style uses the letter M as the symbol for the sample
mean. Thus, a study might state:

The treatment group showed fewer errors (M � 2.56) on the task than the control
group (M � 11.76).

When there are many means to report, tables with headings provide an organized
and more easily understood presentation. Table 3.6 illustrates this point.

The median can be reported using the abbreviation Mdn, as in “Mdn � 8.5
errors,” or it can simply be reported in narrative text, as follows:

The median number of errors for the treatment group was 8.5, compared to a median
of 13 for the control group.

There is no special symbol or convention for reporting the mode. If mentioned at
all, the mode is usually just reported in narrative text.

PRESENTING MEANS AND MEDIANS IN GRAPHS

Graphs also can be used to report and compare measures of central tendency. Usually,
graphs are used to display values obtained for sample means, but occasionally sample
medians are reported in graphs (modes are rarely, if ever, shown in a graph). The
value of a graph is that it allows several means (or medians) to be shown
simultaneously, so it is possible to make quick comparisons between groups or
treatment conditions. When preparing a graph, it is customary to list the different
groups or treatment conditions on the horizontal axis. Typically, these are the
different values that make up the independent variable or the quasi-independent
variable. Values for the dependent variable (the scores) are listed on the vertical axis.
The means (or medians) are then displayed using a line graph, a histogram, or a bar
graph, depending on the scale of measurement used for the independent variable.

Figure 3.9 shows an example of a line graph displaying the relationship between
drug dose (the independent variable) and food consumption (the dependent variable).
In this study, there were five different drug doses (treatment conditions) and they are
listed along the horizontal axis. The five means appear as points in the graph. To
construct this graph, a point was placed above each treatment condition so that the
vertical position of the point corresponds to the mean score for the treatment
condition. The points are then connected with straight lines. A line graph is used
when the values on the horizontal axis are measured on an interval or a ratio scale.
An alternative to the line graph is a histogram. For this example, the histogram would
show a bar above each drug dose so that the height of each bar corresponds to the
mean food consumption for that group, with no space between adjacent bars.
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TABLE 3.6

The mean number of errors
made on the task for treatment
and control groups, divided by
gender.

Treatment Control

Females 1.45 8.36
Males 3.83 14.77
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Figure 3.10 shows a bar graph displaying the median selling price for single-
family homes in different regions of the United States. Bar graphs are used to present
means (or medians) when the groups or treatments shown on the horizontal axis are
measured on a nominal or an ordinal scale. To construct a bar graph, you simply draw
a bar directly above each group or treatment so that the height of the bar corresponds
to the mean (or median) for that group or treatment. For a bar graph, a space is left
between adjacent bars to indicate that the scale of measurement is nominal or ordinal.

When constructing graphs of any type, you should recall the basic rules that we
introduced in Chapter 2:

1. The height of a graph should be approximately two-thirds to three-quarters of
its length.

2. Normally, you start numbering both the X-axis and the Y-axis with zero at the
point where the two axes intersect. However, when a value of zero is part of the
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The relationship between an
independent variable (drug
dose) and a dependent vari-
able (food consumption).
Because drug dose is a 
continuous variable, a 
continuous line is used 
to connect the different 
dose levels.

FIGURE 3.10
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family home by region.
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data, it is common to move the zero point away from the intersection so that the
graph does not overlap the axes (see Figure 3.9).

Following these rules helps to produce a graph that provides an accurate
presentation of the information in a set of data. Although it is possible to construct
graphs that distort the results of a study (see Box 2.1), researchers have an ethical
responsibility to present an honest and accurate report of their research results. ❏

3.6 CENTRAL TENDENCY AND THE SHAPE 
OF THE DISTRIBUTION

We have identified three different measures of central tendency, and often a researcher
calculates all three for a single set of data. Because the mean, the median, and the mode
are all trying to measure the same thing, it is reasonable to expect that these three 
values should be related. In fact, there are some consistent and predictable relationships
among the three measures of central tendency. Specifically, there are situations in
which all three measures have exactly the same value. On the other hand, there are 
situations in which the three measures are guaranteed to be different. In part, the 
relationships among the mean, median, and mode are determined by the shape of the
distribution. We consider two general types of distributions.

For a symmetrical distribution, the right-hand side of the graph is a mirror image of
the left-hand side. If a distribution is perfectly symmetrical, the median is exactly 
at the center because exactly half of the area in the graph is on either side of the 
center. The mean also is exactly at the center of a perfectly symmetrical distribution
because each score on the left side of the distribution is balanced by a corresponding
score (the mirror image) on the right side. As a result, the mean (the balance point)
is located at the center of the distribution. Thus, for a perfectly symmetrical distribu-
tion, the mean and the median are the same (Figure 3.11). If a distribution is roughly
symmetrical, but not perfect, the mean and median are close together in the center of
the distribution.

If a symmetrical distribution has only one mode, it is also in the center of the dis-
tribution. Thus, for a perfectly symmetrical distribution with one mode, all three meas-
ures of central tendency, the mean, the median, and the mode, have the same value. For
a roughly symmetrical distribution, the three measures are clustered together in the 
center of the distribution. On the other hand, a bimodal distribution that is symmetrical
[see Figure 3.11(b)] has the mean and median together in the center with the modes on
each side. A rectangular distribution [see Figure 3.11(c)] has no mode because all X val-
ues occur with the same frequency. Still, the mean and the median are in the center of
the distribution.

In skewed distributions, especially distributions for continuous variables, there is a
strong tendency for the mean, median, and mode to be located in predictably differ-
ent positions. Figure 3.12(a), for example, shows a positively skewed distribution
with the peak (highest frequency) on the left-hand side. This is the position of the
mode. However, it should be clear that the vertical line drawn at the mode does not
divide the distribution into two equal parts. To have exactly 50% of the distribution

SKEWED DISTRIBUTIONS

SYMMETRICAL
DISTRIBUTIONS
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The positions of the mean, 
median, and mode are not as
consistently predictable in 
distributions of discrete variables
(see Von Hippel, 2005).
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on each side, the median must be located to the right of the mode. Finally, the mean
is located to the right of the median because it is the measure influenced most by the
extreme scores in the tail and is displaced farthest to the right toward the tail of 
the distribution. Therefore, in a positively skewed distribution, the order of the three
measures of central tendency from smallest to largest (left to right) is the mode, the
median, and the mean.

Negatively skewed distributions are lopsided in the opposite direction, with the
scores piling up on the right-hand side and the tail tapering off to the left. The grades
on an easy exam, for example, tend to form a negatively skewed distribution [see
Figure 3.12(b)]. For a distribution with negative skew, the mode is on the right-hand
side (with the peak), whereas the mean is displaced toward the left by the extreme
scores in the tail. As before, the median is located between the mean and the mode.
In order from smallest value to largest value (left to right), the three measures of 
central tendency for a negatively skewed distribution are the mean, the median, and
the mode.
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SUMMARY 97

L E A R N I N G  C H E C K 1. Which measure of central tendency is most affected if one extremely large score is
added to a distribution? (mean, median, mode)

2. Why is it usually considered inappropriate to compute a mean for scores measured
on an ordinal scale?

3. In a perfectly symmetrical distribution, the mean, the median, and the mode will
all have the same value. (True or false?)

4. A distribution with a mean of 70 and a median of 75 is probably positively
skewed. (True or false?)

1. mean

2. The definition of the mean is based on distances (the mean balances the distances) and
ordinal scales do not measure distance.

3. False, if the distribution is bimodal.

4. False. The mean is displaced toward the tail on the left-hand side.

ANSWERS

1. The purpose of central tendency is to determine the
single value that identifies the center of the distribution
and best represents the entire set of scores. The three
standard measures of central tendency are the mode, the
median, and the mean.

2. The mean is the arithmetic average. It is computed by
adding all of the scores and then dividing by the
number of scores. Conceptually, the mean is obtained
by dividing the total (�X) equally among the number of
individuals (N or n). The mean can also be defined as
the balance point for the distribution. The distances
above the mean are exactly balanced by the distances
below the mean. Although the calculation is the same
for a population or a sample mean, a population mean 
is identified by the symbol �, and a sample mean is
identified by M. In most situations with numerical
scores from an interval or a ratio scale, the mean is 
the preferred measure of central tendency.

3. Changing any score in the distribution causes the mean
to be changed. When a constant value is added to (or
subtracted from) every score in a distribution, the same
constant value is added to (or subtracted from) the
mean. If every score is multiplied by a constant, the
mean is multiplied by the same constant.

4. The median is the midpoint of a distribution of scores.
The median is the preferred measure of central
tendency when a distribution has a few extreme scores
that displace the value of the mean. The median also 
is used for open-ended distributions and when there
are undetermined (infinite) scores that make it
impossible to compute a mean. Finally, the median 
is the preferred measure of central tendency for 
data from an ordinal scale.

5. The mode is the most frequently occurring score in a
distribution. It is easily located by finding the peak in a
frequency distribution graph. For data measured on a
nominal scale, the mode is the appropriate measure of
central tendency. It is possible for a distribution to have
more than one mode.

6. For symmetrical distributions, the mean is equal to the
median. If there is only one mode, then it has the same
value, too.

7. For skewed distributions, the mode is located toward
the side where the scores pile up, and the mean is
pulled toward the extreme scores in the tail. The median
is usually located between these two values.

SUMMARY
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KEY TERMS

central tendency (73)

population mean (�) (75)

sample mean (M) (75)

weighted mean (77)

median (83)

mode (87)

bimodal (88)

multimodal (88)

major mode (88)

minor mode (88)

line graph (93)

symmetrical distribution (95)

skewed distribution (95)

positive skew (95)

negative skew (96)

RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 3 on the book

companion website. The website also includes a workshop entitled Central Tendency
and Variability that reviews the basic concept of the mean and introduces the concept 
of variability that is presented in Chapter 4.

Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.

Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific web-
site, Psychology CourseMate includes an integrated interactive eBook and other interac-
tive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to compute the Mean and �X for a set of scores.

Data Entry

1. Enter all of the scores in one column of the data editor, probably VAR00001.
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Data Analysis

1. Click Analyze on the tool bar, select Descriptive Statistics, and click on
Descriptives.

2. Highlight the column label for the set of scores (VAR00001) in the left box and
click the arrow to move it into the Variable box.

3. If you want �X as well as the mean, click on the Options box, select Sum, then
click Continue.

4. Click OK.

SPSS Output

SPSS produces a summary table listing the number of scores (N), the maximum and
minimum scores, the sum of the scores (if you selected this option), the mean, and the
standard deviation. Note: The standard deviation is a measure of variability that is 
presented in Chapter 4.

FOCUS ON PROBLEM SOLVING

1. Although the three measures of central tendency appear to be very simple to
calculate, there is always a chance for errors. The most common sources of error 
are listed next.
a. Many students find it very difficult to compute the mean for data presented in 

a frequency distribution table. They tend to ignore the frequencies in the table
and simply average the score values listed in the X column. You must use the
frequencies and the scores! Remember that the number of scores is found by 
N � �f, and the sum of all N scores is found by �fX. For the distribution shown
in the margin, the mean is �

2
1
4
0
� � 2.40.

b. The median is the midpoint of the distribution of scores, not the midpoint of 
the scale of measurement. For a 100-point test, for example, many students
incorrectly assume that the median must be X � 50. To find the median, you
must have the complete set of individual scores. The median separates the
individuals into two equal-sized groups.

c. The most common error with the mode is for students to report the highest
frequency in a distribution rather than the score with the highest frequency.
Remember that the purpose of central tendency is to find the most representative
score. For the distribution in the margin, the mode is X � 3, not f � 4.

DEMONSTRATION 3.1

COMPUTING MEASURES OF CENTRAL TENDENCY

For the following sample, find the mean, the median, and the mode. The scores are:

5, 6, 9, 11, 5, 11, 8, 14, 2, 11

DEMONSTRATION 3.1 99

X f

4 1
3 4
2 3
1 2
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Compute the mean The calculation of the mean requires two pieces of information:
the sum of the scores, �X; and the number of scores, n. For this sample, n � 10 and

�X � 5 � 6 � 9 � 11� 5 � 11 � 8 � 14 � 2 � 11 � 82

Therefore, the sample mean is

Find the median To find the median, first list the scores in order from smallest to
largest. With an even number of scores, the median is the average of the middle two
scores in the list. Listed in order, the scores are:

2, 5, 5, 6, 8, 9, 11, 11, 11, 14

The middle two scores are 8 and 9, and the median is 8.5.

Find the mode For this sample, X � 11 is the score that occurs most frequently. 
The mode is X � 11.

M
X

n
.�

�
� �

82

10
8 2
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PROBLEMS

1. What general purpose is served by a good measure of
central tendency?

2. Why is it necessary to have more than one method for
measuring central tendency?

3. Find the mean, median, and mode for the following
sample of scores:

6, 2, 4, 1, 2, 2, 3, 4, 3, 2

4. Find the mean, median, and mode for the following
sample of scores:

8, 7, 8, 8, 4, 9, 10, 7, 8, 8, 9, 8

5. Find the mean, median, and mode for the scores in the
following frequency distribution table:

X f

8 1
7 4
6 2
5 2
4 2
3 1

6. Find the mean, median, and mode for the scores in the
following frequency distribution table:

X f

10 1
9 2
8 3
7 3
6 4
5 2

7. For the following sample
a. Assume that the scores are measurements of a

continuous variable and find the median by locating
the precise midpoint of the distribution.

b. Assume that the scores are measurements of a
discrete variable and find the median.

Scores: 1, 2, 3, 3, 3, 4

8. A sample of n � 7 scores has a mean of M � 9. What
is the value of �X for this sample?

9. A population with a mean of � � 10 has �X � 250.
How many scores are in the population?

30991_ch03_ptg01_hr_071-102.qxd  9/2/11  11:26 PM  Page 100



PROBLEMS 101

10. A sample of n � 8 scores has a mean of M � 10. If
one new person with a score of X � 1 is added to the
sample, what is the value for the new mean?

11. A sample of n � 5 scores has a mean of M � 12. If
one person with a score of X � 8 is removed from the
sample, what is the value for the new mean?

12. A sample of n � 11 scores has a mean of M � 4. One
person with a score of X � 16 is added to the sample.
What is the value for the new sample mean?

13. A sample of n � 9 scores has a mean of M � 10. One
person with a score of X � 2 is removed from the
sample. What is the value for the new sample mean?

14. A population of N � 20 scores has a mean of � � 15.
One score in the population is changed from X � 8 to 
X � 28. What is the value for the new population mean?

15. A sample of n � 7 scores has a mean of M � 9. One
score in the sample is changed from X � 19 to X � 5.
What is the value for the new sample mean?

16. A sample of n � 7 scores has a mean of M � 5. After
one new score is added to the sample, the new mean is
found to be M � 6. What is the value of the new
score? (Hint: Compare the values for �X before and
after the score was added.)

17. A population of N � 16 scores has a mean of � � 20.
After one score is removed from the population, the
new mean is found to be � � 19. What is the value 
of the score that was removed? (Hint: Compare the
values for �X before and after the score was removed.)

18. One sample has a mean of M � 4 and a second sample
has a mean of M � 8. The two samples are combined
into a single set of scores.
a. What is the mean for the combined set if both of

the original samples have n � 7 scores?
b. What is the mean for the combined set if the 

first sample has n � 3 and the second sample has 
n � 7?

c. What is the mean for the combined set if the 
first sample has n � 7 and the second sample has 
n � 3?

19. One sample has a mean of M � 5 and a second sample
has a mean of M � 10. The two samples are combined
into a single set of scores.
a. What is the mean for the combined set if both of

the original samples have n � 5 scores?

b. What is the mean for the combined set if the first
sample has n � 4 scores and the second sample has 
n � 6?

c. What is the mean for the combined set if the first
sample has n � 6 scores and the second sample has 
n � 4?

20. Explain why the mean is often not a good measure of
central tendency for a skewed distribution.

21. Identify the circumstances in which the median rather
than the mean is the preferred measure of central
tendency.

22. For each of the following situations, identify the
measure of central tendency (mean, median, or mode)
that would provide the best description of the average
score:
a. A news reporter interviewed people shopping in a

local mall and asked how much they spent on
summer vacations. Most people traveled locally and
reported modest amounts but one couple had flown
to Paris for a month and paid a small fortune.

b. A marketing researcher asked consumers to select
their favorite from a set of four designs for a new
product logo.

c. A driving instructor recorded the number of orange
cones that each student ran over during the first
attempt at parallel parking.

23. One question on a student survey asks: In a typical
week, how many times do you eat at a fast-food
restaurant? The following frequency distribution 
table summarizes the results for a sample of n � 20
students.

Number of 
times per week f

5 or more 2
4 2
3 3
2 6
1 4
0 3

a. Find the mode for this distribution.
b. Find the median for the distribution.
c. Explain why you cannot compute the mean using

the data in the table.
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24. A nutritionist studying weight gain for college
freshmen obtains a sample of n � 20 first-year
students at the state college. Each student is weighed
on the first day of school and again on the last day of
the semester. The following scores measure the change
in weight, in pounds, for each student. A positive
score indicates a weight gain during the semester.

�5, �6, �3, �1, �8, �5, �4, �4, �3, –1
�2, �7, �1, �5, �8,  0, �4, �6, �5, �3

a. Sketch a histogram showing the distribution of
weight-change scores.

b. Calculate the mean weight-change score for this
sample.

c. Does there appear to be a consistent trend in weight
change during the semester?

25. Does it ever seem to you that the weather is nice
during the work week, but lousy on the weekend?
Cerveny and Balling (1998) have confirmed that this is
not your imagination—pollution accumulating during
the work week most likely spoils the weekend weather
for people on the Atlantic coast. Consider the
following hypothetical data showing the daily amount
of rainfall for 10 weeks during the summer.

Average Daily Average Daily
Rainfall on Rainfall on 
Weekdays Weekends 

Week (Mon.–Fri.) (Sat.–Sun.)

1 1.2 1.5
2 0.6 2.0
3 0.0 1.8
4 1.6 1.5
5 0.8 2.2
6 2.1 2.4
7 0.2 0.8
8 0.9 1.6
9 1.1 1.2

10 1.4 1.7

a. Calculate the average daily rainfall (the mean)
during the week, and the average daily rainfall for
weekends.

b. Based on the two means, does there appear to be a
pattern in the data?

Improve your statistical skills with 

ample practice exercises and detailed 

explanations on every question. Purchase

www.aplia.com/statistics
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C H A P T E R

4
Variability

Preview

4.1 Overview

4.2 The Range

4.3 Standard Deviation and Variance
for a Population

4.4 Standard Deviation and Variance
for Samples

4.5 More about Variance and
Standard Deviation

Summary

Focus on Problem Solving

Demonstration 4.1

Problems

Tools You Will Need
The following items are considered essential
background material for this chapter. If you
doubt your knowledge of any of these 
items, you should review the appropriate
chapter or section before proceeding.

• Summation notation (Chapter 1)
• Central tendency (Chapter 3)

• Mean
• Median
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Preview
Although measures of central tendency, such as the mean
and median, are handy ways to summarize large sets of
data, these measures do not tell the whole story.
Specifically, not everyone is average. Many people may
perform near average, but others demonstrate performance
that is far above (or below) average. In simple terms, 
people are different.

The differences that exist from one person to another 
are often called diversity. Researchers comparing cognitive
skills for younger adults and older adults typically find that
differences between people tend to increase as people age.
For example, Morse (1993) reviewed hundreds of research
studies published in Psychology and Aging and in the
Journal of Gerontology from 1986 to 1990, and found 
increased diversity in older adults on measures of reaction
time, memory, and some measures of intelligence. One 
possible explanation for the increased diversity is that 
different people respond differently to the aging process; some
are essentially unchanged and others show a rapid decline. As
a result, the differences from one person to another are larger
for older people than for those who are younger.

It also is possible to measure differences in performance
for the same person. These differences provide a measure of

consistency. Often, large differences from trial to trial for 
the same person are viewed as evidence of poor performance.
For example, the ability to consistently hit a target is 
an indication of skilled performance in many sports, 
whereas inconsistent performance indicates a lack of skill.
Researchers in the field of aging have also found that older
participants tend to have larger differences from trial to trial
than younger participants. That is, older people seem to 
lose the ability to perform consistently on many tasks. For
example, in a study comparing older and younger women,
Wegesin and Stern (2004) found lower consistency for older
women on a recognition memory task.

The Problem: To study phenomena such as diversity
and consistency, it is necessary to devise a method to
measure and objectively describe the differences that
exist from one score to another within a distribution.

The Solution: A measure of variability provides an
objective description of the differences between the
scores in a distribution by measuring the degree to which
the scores are spread out or are clustered together.

104

4.1 OVERVIEW

The term variability has much the same meaning in statistics as it has in everyday
language; to say that things are variable means that they are not all the same. In sta-
tistics, our goal is to measure the amount of variability for a particular set of scores,
a distribution. In simple terms, if the scores in a distribution are all the same, then
there is no variability. If there are small differences between scores, then the vari-
ability is small, and if there are large differences between scores, then the variability
is large.

Variability provides a quantitative measure of the differences between scores
in a distribution and describes the degree to which the scores are spread out or
clustered together.

Figure 4.1 shows two distributions of familiar values for the population of adult
males: Part (a) shows the distribution of men’s heights (in inches), and part (b) shows
the distribution of men’s weights (in pounds). Notice that the two distributions differ in
terms of central tendency. The mean height is 70 inches (5 feet, 10 inches) and the mean
weight is 170 pounds. In addition, notice that the distributions differ in terms of vari-
ability. For example, most heights are clustered close together, within 5 or 6 inches of

D E F I N I T I O N
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the mean. On the other hand, weights are spread over a much wider range. In the weight
distribution it is not unusual to find individuals who are located more than 30 pounds
away from the mean, and it would not be surprising to find two individuals whose
weights differ by more than 30 or 40 pounds. The purpose for measuring variability is
to obtain an objective measure of how the scores are spread out in a distribution. In gen-
eral, a good measure of variability serves two purposes:

1. Variability describes the distribution. Specifically, it tells whether the scores 
are clustered close together or are spread out over a large distance. Usually,
variability is defined in terms of distance. It tells how much distance to expect
between one score and another, or how much distance to expect between an
individual score and the mean. For example, we know that the heights for most
adult males are clustered close together, within 5 or 6 inches of the average.
Although more extreme heights exist, they are relatively rare.

2. Variability measures how well an individual score (or group of scores) repre-
sents the entire distribution. This aspect of variability is very important for
inferential statistics, in which relatively small samples are used to answer 
questions about populations. For example, suppose that you selected a sample
of one person to represent the entire population. Because most adult males 
have heights that are within a few inches of the population average (the dis-
tances are small), there is a very good chance that you would select someone
whose height is within 6 inches of the population mean. On the other hand, the
scores are much more spread out (greater distances) in the distribution of
weights. In this case, you probably would not obtain someone whose weight
was within 6 pounds of the population mean. Thus, variability provides infor-
mation about how much error to expect if you are using a sample to represent 
a population.

In this chapter, we consider three different measures of variability: the range, stan-
dard deviation, and the variance. Of these three, the standard deviation and the related
measure of variance are by far the most important.

SECTION 4.1 / OVERVIEW 105
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FIGURE 4.1

Population distributions of adult heights and adult weights.
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4.2 THE RANGE

The range is the distance covered by the scores in a distribution, from the smallest score
to the largest score. When the scores are measurements of a continuous variable, the
range can be defined as the difference between the upper real limit (URL) for the largest
score (Xmax) and the lower real limit (LRL) for the smallest score (Xmin).

range � URL for Xmax – LRL for Xmin

If the scores have values from 1 to 5, for example, the range is 5.5 – 0.5 � 5 points.
When the scores are whole numbers, the range is also a measure of the number of meas-
urement categories. If every individual is classified as either 1, 2, 3, 4, or 5, then there
are five measurement categories and the range is 5 points.

Defining the range as the number of measurement categories also works for dis-
crete variables that are measured with numerical scores. For example, if you are meas-
uring the number of children in a family and the data produce values from 0 to 4, then
there are five measurement categories (0, 1, 2, 3, and 4) and the range is 5 points. By
this definition, when the scores are all whole numbers, the range can be obtained by

Xmax – Xmin � 1.

A commonly used alternative definition of the range simply measures the differ-
ence between the largest score (Xmax) and the smallest score (Xmin), without any refer-
ence to real limits.

range � Xmax – Xmax

By this definition, scores having values from 1 to 5 cover a range of only 4 points. Many
computer programs, such as SPSS, use this definition. For discrete variables, which do not
have real limits, this definition is often considered more appropriate. Also, this definition
works well for variables with precisely defined upper and lower boundaries. For example, if
you are measuring proportions of an object, like pieces of a pizza, you can obtain values such
as 1�

8, 
1�
4, 

1�
2, 

3�
4, and so on. Expressed as decimal values, the proportions range from 0 to 1. You

can never have a value less than 0 (none of the pizza) and you can never have a value greater
than 1 (all of the pizza). Thus, the complete set of proportions is bounded by 0 at one end and
by 1 at the other. As a result, the proportions cover a range of 1 point.

Using either definition, the range is probably the most obvious way to describe
how spread out the scores are—simply find the distance between the maximum and the
minimum scores. The problem with using the range as a measure of variability is that
it is completely determined by the two extreme values and ignores the other scores in
the distribution. Thus, a distribution with one unusually large (or small) score has a
large range even if the other scores are all clustered close together.

Because the range does not consider all of the scores in the distribution, it often does
not give an accurate description of the variability for the entire distribution. For this rea-
son, the range is considered to be a crude and unreliable measure of variability. Therefore,
in most situations, it does not matter which definition you use to determine the range.

4.3 STANDARD DEVIATION AND VARIANCE 
FOR A POPULATION

The standard deviation is the most commonly used and the most important measure of
variability. Standard deviation uses the mean of the distribution as a reference point and
measures variability by considering the distance between each score and the mean.

106 CHAPTER 4 VARIABILITY

Continuous and discrete 
variables were discussed in
Chapter 1 on pages 21–22.
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In simple terms, the standard deviation provides a measure of the standard, or 
average, distance from the mean, and describes whether the scores are clustered closely
around the mean or are widely scattered. The fundamental definition of the standard 
deviation is the same for both samples and populations, but the calculations differ
slightly. We look first at the standard deviation as it is computed for a population, and
then turn our attention to samples in Section 4.4.

Although the concept of standard deviation is straightforward, the actual equations
appear complex. Therefore, we begin by looking at the logic that leads to these equa-
tions. If you remember that our goal is to measure the standard, or typical, distance from
the mean, then this logic and the equations that follow should be easier to remember.

The first step in finding the standard distance from the mean is to determine the devia-
tion, or distance from the mean, for each individual score. By definition, the deviation
for each score is the difference between the score and the mean.

Deviation is distance from the mean:

deviation score � X – �

For a distribution of scores with � � 50, if your score is X � 53, then your 
deviation score is

X – � � 53 – 50 � 3

If your score is X � 45, then your deviation score is

X – � � 45 – 50 � –5

Notice that there are two parts to a deviation score: the sign (� or –) and the num-
ber. The sign tells the direction from the mean—that is, whether the score is located
above (�) or below (–) the mean. The number gives the actual distance from the mean.
For example, a deviation score of –6 corresponds to a score that is below the mean by
a distance of 6 points.

Because our goal is to compute a measure of the standard distance from the mean, the
obvious next step is to calculate the mean of the deviation scores. To compute this
mean, you first add up the deviation scores and then divide by N. This process is
demonstrated in the following example.

We start with the following set of N � 4 scores. These scores add up to �X � 12, so
the mean is � � �

1
4
2
� � 3. For each score, we have computed the deviation. 

X X – �

8 �5
1 –2
3 0
0 –3

0 � �(X – �)

Note that the deviation scores add up to zero. This should not be surprising if you
remember that the mean serves as a balance point for the distribution. The total of the

E X A M P L E  4 . 1

S T E P  2
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S T E P  1
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A deviation score is often 
represented by a lowercase 
letter x.
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distances above the mean is exactly equal to the total of the distances below the mean
(see page 76). Thus, the total for the positive deviations is exactly equal to the total for
the negative deviations, and the complete set of deviations always adds up to zero.

Because the sum of the deviations is always zero, the mean of the deviations is also
zero and is of no value as a measure of variability. The mean of the deviations is zero
if the scores are closely clustered and it is zero if the scores are widely scattered. (You
should note, however, that the constant value of zero can be useful in other ways.
Whenever you are working with deviation scores, you can check your calculations by
making sure that the deviation scores add up to zero.)

The average of the deviation scores does not work as a measure of variability because
it is always zero. Clearly, this problem results from the positive and negative values
canceling each other out. The solution is to get rid of the signs (� and –). The standard
procedure for accomplishing this is to square each deviation score. Using the squared
values, you then compute the mean squared deviation, which is called variance.

Population variance equals the mean squared deviation. Variance is the aver-
age squared distance from the mean.

Note that the process of squaring deviation scores does more than simply get rid of plus
and minus signs. It results in a measure of variability based on squared distances. Although
variance is valuable for some of the inferential statistical methods covered later, the concept
of squared distance is not an intuitive or easy to understand descriptive measure. For exam-
ple, it is not particularly useful to know that the squared distance from New York City to
Boston is 26,244 miles squared. The squared value becomes meaningful, however, if you
take the square root. Therefore, we continue the process with one more step.

Remember that our goal is to compute a measure of the standard distance from the
mean. Variance, which measures the average squared distance from the mean, is not 
exactly what we want. The final step simply takes the square root of the variance to 
obtain the standard deviation, which measures the standard distance from the mean. 

Standard deviation is the square root of the variance and provides a measure
of the standard, or average, distance from the mean.

Figure 4.2 shows the overall process of computing variance and standard deviation.
Remember that our goal is to measure variability by finding the standard distance from
the mean. However, we cannot simply calculate the average of the distances because
this value will always be zero. Therefore, we begin by squaring each distance, then we
find the average of the squared distances, and finally we take the square root to obtain
a measure of the standard distance. Technically, the standard deviation is the square
root of the average squared deviation. Conceptually, however, the standard deviation
provides a measure of the average distance from the mean.

Because the standard deviation and variance are defined in terms of distance from the
mean, these measures of variability are used only with numerical scores that are obtained
from measurements on an interval or a ratio scale. Recall from Chapter 1 (p. 24) that these
two scales are the only ones that provide information about distance; nominal and 
ordinal scales do not. Also, recall from Chapter 3 (p. 92) that it is inappropriate to 
compute a mean for ordinal data and impossible to compute a mean for nominal 
data. Because the mean is a critical component in the calculation of standard deviation

Standard deviation variance=

D E F I N I T I O N
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and variance, the same restrictions that apply to the mean also apply to these two meas-
ures of variability. Specifically, the mean, the standard deviation, and the variance should
be used only with numerical scores from interval or ordinal scales of measurement.

Although we still have not presented any formulas for variance or standard devia-
tion, you should be able to compute these two statistical values from their definitions.
The following example demonstrates this process.

We will calculate the variance and standard deviation for the following population of
N � 5 scores:

1, 9, 5, 8, 7

Remember that the purpose of standard deviation is to measure the standard
distance from the mean, so we begin by computing the population mean. These five
scores add up to �X � 30 so the mean is � � �

3
5
0
� � 6. Next, we find the deviation,

(distance from the mean) for each score and then square the deviations. Using the
population mean � � 6, these calculations are shown in the following table.

Squared 
Score Deviation Deviation 

X X – � (X – �)2

1 –5 25
9 3 9
5 –1 1
8 2 4
7 1 1

40 � the sum of the squared deviations

E X A M P L E  4 . 2
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Square each
deviation

The standard deviation
or standard distance

from the mean

DEAD END
This value is always 0

Take the square
root of the variance

Find the average of 
the squared deviations

(called "variance")

Find the deviation
(distance from the mean)

for each score

Add the deviations and 
compute the average

FIGURE 4.2

The calculation of variance
and standard deviation.
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For this set of N � 5 scores, the squared deviations add up to 40. The mean of the
squared deviations, the variance, is �

4
5
0
� � 8, and the standard deviation is �8�� 2.83.

You should note that a standard deviation of 2.83 is a sensible answer for this dis-
tribution. The five scores in the population are shown in a histogram in Figure 4.3 so
that you can see the distances more clearly. Note that the scores closest to the mean are
only 1 point away. Also, the score farthest from the mean is 5 points away. For this dis-
tribution, the largest distance from the mean is 5 points and the smallest distance is 
1 point. Thus, the standard distance should be somewhere between 1 and 5. By looking
at a distribution in this way, you should be able to make a rough estimate of the stan-
dard deviation. In this case, the standard deviation should be between 1 and 5, proba-
bly around 3 points. The value we calculated for the standard deviation is in excellent
agreement with this estimate.

Making a quick estimate of the standard deviation can help you avoid errors in 
calculation. For example, if you calculated the standard deviation for the scores in
Figure 4.3 and obtained a value of 12, you should realize immediately that you have
made an error. (If the biggest deviation is only 5 points, then it is impossible for the
standard deviation to be 12.)

The concepts of standard deviation and variance are the same for both samples and 
populations. However, the details of the calculations differ slightly, depending on
whether you have data from a sample or from a complete population. We first consider
the formulas for populations and then look at samples in Section 4.4.

FORMULAS FOR POPULATION
VARIANCE AND STANDARD

DEVIATION

110 CHAPTER 4 VARIABILITY

L E A R N I N G  C H E C K 1. Briefly explain what is measured by the standard deviation and what is measured
by the variance.

2. The deviation scores are calculated for each individual in a population of N � 4.
The first three individuals have deviations of �2, �4, and –1. What is the devia-
tion for the fourth individual?

3. What is the standard deviation for the following set of N � 5 scores: 10, 10, 10,
10, and 10? (Note: You should be able to answer this question directly from the
definition of standard deviation, without doing any calculations.)

4. Calculate the variance for the following population of N � 5 scores: 4, 0, 7, 1, 3.

1. Standard deviation measures the standard distance from the mean and variance measures the
average squared distance from the mean.

2. The deviation scores for the entire set must add up to zero. The first four deviations add to
�5 so the fifth deviation must be –5.

3. Because there is no variability (the scores are all the same), the standard deviation is zero.

4. For these scores, the sum of the squared deviations is 30 and the variance is 30/5 � 6.

ANSWERS
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The sum of squared deviations (SS) Recall that variance is defined as the mean of
the squared deviations. This mean is computed in exactly the same way you compute
any mean: First find the sum, and then divide by the number of scores.

variance � mean squared deviation �

The value in the numerator of this equation, the sum of the squared deviations, is
a basic component of variability, and we focus on it. To simplify things, it is identified
by the notation SS (for sum of squared deviations), and it generally is referred to as the
sum of squares.

SS, or sum of squares, is the sum of the squared deviation scores.

You need to know two formulas to compute SS. These formulas are algebraically
equivalent (they always produce the same answer), but they look different and are used
in different situations.

The first of these formulas is called the definitional formula because the symbols
in the formula literally define the process of adding up the squared deviations:

Definitional formula: SS � �(X � �)2 (4.1)

To find the sum of the squared deviations, the formula instructs you to perform the
following sequence of calculations:

1. Find each deviation score (X – �). 

2. Square each deviation score (X – �)2.

3. Add the squared deviations.

The result is SS, the sum of the squared deviations. The following example demon-
strates using this formula.

We compute SS for the following set of N � 4 scores. These scores have a sum of 
�X � 8, so the mean is � � �

8
4� � 2. The following table shows the deviation and the

squared deviation for each score. The sum of the squared deviation is SS � 22.

E X A M P L E  4 . 3
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sum of squared deviations
���

number of scores

SECTION 4.3 / STANDARD DEVIATION AND VARIANCE FOR A POPULATION 111

81 2 4 53 6 9 107
X

μ = 6

Fr
e

q
u

e
n

c
y

5 1

1

2

3

FIGURE 4.3

A frequency distribution
histogram for a population of
N � 5 scores. The mean for
this population is μ � 6. The
smallest distance from the
mean is 1 point, and the
largest distance is 5 points.
The standard distance (or
standard deviation) should be
between 1 and 5 points.
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Squared 
Score Deviation Deviation

X X – � (X – �)2

1 –1 1 �X � 8
0 –2 4 � � 2
6 �4 16
1 –1 1

22 � �(X – �)2

Although the definitional formula is the most direct method for computing SS, 
it can be awkward to use. In particular, when the mean is not a whole number, the 
deviations all contain decimals or fractions, and the calculations become difficult. In
addition, calculations with decimal values introduce the opportunity for rounding error,
which can make the result less accurate. For these reasons, an alternative formula has
been developed for computing SS. The alternative, known as the computational 
formula, performs calculations with the scores (not the deviations) and therefore 
minimizes the complications of decimals and fractions.

computational formula: SS � �X2 � �
(�

N
X )2

� (4.2)

The first part of this formula directs you to square each score and then add the
squared values, �X2. In the second part of the formula, you find the sum of the scores,
�X, then square this total and divide the result by N. Finally, subtract the second part
from the first. The use of this formula is shown in Example 4.4 with the same scores
that we used to demonstrate the definitional formula.

The computational formula can be used to calculate SS for the same set of N � 4
scores we used in Example 4.3. Note that the formula requires the calculation of 
two sums: first, compute �X, and then square each score and compute �X2. These
calculations are shown in the following table. The two sums are used in the formula
to compute SS.

X X2

1 1
0 0
6 36
1 1

�X � 8 �X2 � 38

Note that the two formulas produce exactly the same value for SS. Although the
formulas look different, they are in fact equivalent. The definitional formula provides
the most direct representation of the concept of SS; however, this formula can be awk-
ward to use, especially if the mean includes a fraction or decimal value. If you have a
small group of scores and the mean is a whole number, then the definitional formula is
fine; otherwise the computational formula is usually easier to use.

E X A M P L E  4 . 4
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SS � �X2 � �
(�

N
X )2

�

� 38 � �
(8

4
)2

�

� 38 � �
6
4
4
�

� 38 � 16

� 22
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With the definition and calculation of SS behind you, the equations for variance and
standard deviation become relatively simple. Remember that variance is defined as the
mean squared deviation. The mean is the sum of the squared deviations divided by N,
so the equation for the population variance is

variance � �
S
N
S
�

Standard deviation is the square root of variance, so the equation for the popula-
tion standard deviation is

standard deviation � ��
S
N
S
��

There is one final bit of notation before we work completely through an example
computing SS, variance, and standard deviation. Like the mean (�), variance and stan-
dard deviation are parameters of a population and are identified by Greek letters. To
identify the standard deviation, we use the Greek letter sigma (the Greek letter s, stand-
ing for standard deviation). The capital letter sigma (�) has been used already, so we
now use the lowercase sigma, �, as the symbol for the population standard deviation.
To emphasize the relationship between standard deviation and variance, we use �2 as
the symbol for population variance (standard deviation is the square root of the vari-
ance). Thus,

population standard deviation � � � ���2� � ��
S
N
S
�� (4.3)

population variance � �2 � �
S
N

S
� (4.4)

FINAL FORMULAS 
AND NOTATION

SECTION 4.3 / STANDARD DEVIATION AND VARIANCE FOR A POPULATION 113

In the same way that sum of
squares, or SS, is used to refer to
the sum of squared deviations,
the term mean square, or MS, is
often used to refer to variance,
which is the mean squared
deviation.

L E A R N I N G  C H E C K 1. Find the sum of the squared deviations, SS, for each of the following populations.
Note that the definitional formula works well for one population but the computa-
tional formula is better for the other.

Population 1: 3, 1, 5, 1
Population 2: 6, 4, 2, 0, 9, 3

2. a. Sketch a histogram showing the frequency distribution for the following popu-
lation of N � 6 scores: 12, 0, 1, 7, 4, 6. Locate the mean in your sketch, and
estimate the value of the standard deviation.

b. Calculate SS, variance, and the standard deviation for these scores. How well
does your estimate compare with the actual standard deviation?

Earlier, in Examples 4.3 and 4.4, we computed the sum of squared deviations for
a simple population of N � 4 scores (1, 0, 6, 1) and obtained SS � 22. For this popu-
lation, the variance is

and the standard deviation is �� �5 50 2 345. .

� � � �2 22

4
5 50

SS

N
.
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4.4 STANDARD DEVIATION AND VARIANCE FOR SAMPLES

The goal of inferential statistics is to use the limited information from samples to draw
general conclusions about populations. The basic assumption of this process is that 
samples should be representative of the populations from which they come. This 
assumption poses a special problem for variability because samples consistently tend to
be less variable than their populations. An example of this general tendency is shown in
Figure 4.4. Notice that a few extreme scores in the population tend to make the popula-
tion variability relatively large. However, these extreme values are unlikely to be 
obtained when you are selecting a sample, which means that the sample variability is 
relatively small. The fact that a sample tends to be less variable than its population
means that sample variability gives a biased estimate of population variability. This bias
is in the direction of underestimating the population value rather than being right on the
mark. (The concept of a biased statistic is discussed in more detail in Section 4.5.)

Fortunately, the bias in sample variability is consistent and predictable, which
means it can be corrected. For example, if the speedometer in your car consistently
shows speeds that are 5 mph slower than you are actually going, it does not mean that

114 CHAPTER 4 VARIABILITY

1. For population 1, the mean is not a whole number (M � 2.5) and the computational formula
is better and produces SS � 11. The mean is a whole number (M � 4) and definitional
formula works well for population 2, which has SS � 50.

2. a. Your sketch should show a mean of � � 5. The scores closest to the mean are X � 4 and
X � 6, both of which are only 1 point away. The score farthest from the mean is X � 12,
which is 7 points away. The standard deviation should have a value between 1 and 7,
probably around 4 points.

b. For these scores, SS � 96, the variance is 96/6 � 16, and the standard deviation is � � 4.

ANSWERS

Population
variability

Population
distribution

SampleX X X X XX XX

Sample
variability

X X

FIGURE 4.4

The population of adult
heights forms a normal 
distribution. If you select a
sample from this population,
you are most likely to obtain
individuals who are near
average in height. As a 
result, the scores in the 
sample are less variable
(spread out) than the 
scores in the population.

A sample statistic is said to 
be biased if, on average, it
consistently overestimates 
or underestimates the 
corresponding population 
parameter.

30991_ch04_ptg01_hr_103-134.qxd  9/2/11  11:28 PM  Page 114



the speedometer is useless. It simply means that you must make an adjustment to the
speedometer reading to get an accurate speed. In the same way, we make an adjustment
in the calculation of sample variance. The purpose of the adjustment is to make the 
resulting value for sample variance an accurate and unbiased representative of the pop-
ulation variance.

The calculations of variance and standard deviation for a sample follow the same
steps that were used to find population variance and standard deviation. Except for
minor changes in notation, the first three steps in this process are exactly the same for
a sample as they were for a population. That is, calculating the sum of the squared 
deviations, SS, is the same for a sample as it is for a population. The changes in nota-
tion involve using M for the sample mean instead of �, and using n (instead of N) for
the number of scores. Thus, to find the SS for a sample

1. Find the deviation from the mean for each score: deviation � X – M

2. Square each deviation: squared deviation � (X – M)2

3. Add the squared deviations: SS � �(X – M)2

These three steps can be summarized in a definitional formula for SS:

Definitional formula: SS � �(X � M )2 (4.5)

The value of SS also can be obtained using a computational formula. Except for one
minor difference in notation (using n in place of N), the computational formula for SS
is the same for a sample as it was for a population (see Equation 4.2). Using sample 
notation, this formula is:

Computational formula: SS � �X2 � �
(�

n
X )2

� (4.6)

Again, calculating SS for a sample is exactly the same as for a population, except
for minor changes in notation. After you compute SS, however, it becomes critical to
differentiate between samples and populations. To correct for the bias in sample vari-
ability, it is necessary to make an adjustment in the formulas for sample variance and
standard deviation. With this in mind, sample variance (identified by the symbol s2) is
defined as

sample variance � s2 � �
n

S
�

S
1

� (4.7)

Sample standard deviation (identified by the symbol s) is simply the square root of
the variance.

sample standard deviation � s � �s2� � ��
n

S
�

S
1

�� (4.8)

Notice that the sample formulas divide by n – 1, unlike the population formulas,
which divide by N (see Equations 4.3 and 4.4). This is the adjustment that is necessary
to correct for the bias in sample variability. The effect of the adjustment is to increase
the value that you obtain. Dividing by a smaller number (n – 1 instead of n) produces
a larger result and makes sample variance an accurate and unbiased estimator of popu-
lation variance. The following example demonstrates the calculation of variance and
standard deviation for a sample.
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Remember, sample variability
tends to underestimate 
population variability unless
some correction is made.

30991_ch04_ptg01_hr_103-134.qxd  9/2/11  11:28 PM  Page 115



We have selected a sample of n � 7 scores from a population. The scores are 1, 6, 4,
3, 8, 7, 6. The frequency distribution histogram for this sample is shown in Figure 4.5.
Before we begin any calculations, you should be able to look at the sample distribution
and make a preliminary estimate of the outcome. Remember that standard deviation
measures the standard distance from the mean. For this sample, the mean is M � �

3
7
5
� � 5.

The scores closest to the mean are X � 4 and X � 6, both of which are exactly 1 point
away. The score farthest from the mean is X � 1, which is 4 points away. With the
smallest distance from the mean equal to 1 and the largest distance equal to 4, we
should obtain a standard distance somewhere between 1 and 4, probably around 2.5.

We begin the calculations by finding the value of SS for this sample. Because
there are only a few scores and the mean is a whole number (M � 5), the definitional
formula is easy to use. The scores, the deviations, and the squared deviations are
shown in the following table.

Squared Deviation Deviation 
Score X X – M (X – M)2

1 –4 16
6 1 1
4 –1 1
3 –2 4
8 3 9
7 2 4
6 1 1

36 � SS � �(X – M)2

The sum of squared deviations for this sample is SS � 36. Continuing the
calculations,

sample variance 

Finally, the standard deviation is

Note that the value we obtained is in excellent agreement with our preliminary
prediction (see Figure 4.5).

s s� � �2 6 2 45.

� � � �s
SS

n
2

1

36

7 1
6

− −
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FIGURE 4.5

The frequency distribution
histogram for a sample of 
n � 7 scores. The sample
mean is M � 5. The smallest 
distance from the mean is 
1 point, and the largest 
distance from the mean is 
4 points. The standard 
distance (standard deviation)
should be between 1 and 4
points, or about 2.5.
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Remember that the formulas for sample variance and standard deviation were con-
structed so that the sample variability would provide a good estimate of population
variability. For this reason, the sample variance is often called estimated population
variance, and the sample standard deviation is called estimated population standard 
deviation. When you have only a sample to work with, the variance and standard devi-
ation for the sample provide the best possible estimates of the population variability.

Although the concept of a deviation score and the calculation of SS are almost exactly
the same for samples and populations, the minor differences in notation are really very
important. Specifically, with a population, you find the deviation for each score by
measuring its distance from the population mean, �. With a sample, on the other hand,
the value of � is unknown and you must measure distances from the sample mean.
Because the value of the sample mean varies from one sample to another, you must first
compute the sample mean before you can begin to compute deviations. However, 
calculating the value of M places a restriction on the variability of the scores in the 
sample. This restriction is demonstrated in the following example.

Suppose we select a sample of n � 3 scores and compute a mean of M � 5. The first
two scores in the sample have no restrictions; they are independent of each other and
they can have any values. For this demonstration, we assume that we obtained X � 2
for the first score and X � 9 for the second. At this point, however, the third score in
the sample is restricted.

X A sample of n � 3 scores with a mean of M � 5.

2
9

— ← What is the third score?

For this example, the third score must be X � 4. The reason that the third score is
restricted to X � 4 is that the entire sample of n � 3 scores has a mean of M � 5. For
3 scores to have a mean of 5, the scores must have a total of �X � 15. Because the
first two scores add up to 11 (9 � 2), the third score must be X � 4.

In Example 4.6, the first two out of three scores were free to have any values, but
the final score was dependent on the values chosen for the first two. In general, with a
sample of n scores, the first n – 1 scores are free to vary, but the final score is restricted.
As a result, the sample is said to have n – 1 degrees of freedom.

For a sample of n scores, the degrees of freedom, or df, for the sample vari-
ance are defined as df � n – 1. The degrees of freedom determine the number
of scores in the sample that are independent and free to vary.

The n – 1 degrees of freedom for a sample is the same n – 1 that is used in the for-
mulas for sample variance and standard deviation. Remember that variance is defined
as the mean squared deviation. As always, this mean is computed by finding the sum
and dividing by the number of scores:

mean � �
nu

s
m
um

ber
�

D E F I N I T I O N
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SAMPLE VARIABILITY AND
DEGREES OF FREEDOM
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To calculate sample variance (mean squared deviation), we find the sum of the
squared deviations (SS) and divide by the number of scores that are free to vary. This
number is n – 1 � df. Thus, the formula for sample variance is

s2 � � �
S
d
S
f
� � �

n
S
�

S
1

�

Later in this book, we use the concept of degrees of freedom in other situations.
For now, remember that knowing the sample mean places a restriction on sample vari-
ability. Only n – 1 of the scores are free to vary; df � n – 1.

sum of squared deviations
���
number of scores free to vary

4.5 MORE ABOUT VARIANCE AND STANDARD DEVIATION

In frequency distribution graphs, we identify the position of the mean by drawing a ver-
tical line and labeling it with � or M. Because the standard deviation measures distance
from the mean, it is represented by a line or an arrow drawn from the mean outward for
a distance equal to the standard deviation and labeled with a � or an s. Figure 4.6(a)
shows an example of a population distribution with a mean of � � 80 and a standard

PRESENTING THE MEAN 
AND STANDARD DEVIATION

IN A FREQUENCY
DISTRIBUTION GRAPH

118 CHAPTER 4 VARIABILITY

L E A R N I N G  C H E C K 1. a. Sketch a histogram showing the frequency distribution for the following sample
of n � 5 scores: 3, 1, 9, 4, 3. Locate the mean in your sketch, and estimate the
value of the sample standard deviation.

b. Calculate SS, variance, and standard deviation for this sample. How well does
your estimate from part a compare with the real standard deviation?

2. For the following set of scores: 1, 5, 7, 3, 4

a. Assume that this is a population of N � 5 scores and compute SS and variance
for the population.

b. Assume that this is a sample of n � 5 scores and compute SS and variance for
the sample.

3. Explain why the formula for sample variance divides SS by n – 1 instead of 
dividing by n.

1. a. Your graph should show a sample mean of M � 4. The score farthest from the mean is 
X � 9 (which is 5 points away), and the closest score is X � 4 (which is 0 points away).
You should estimate the standard deviation to be between 1 and 5 points, probably
around 3 points.

b. For this sample, SS � 36; the sample variance is 36/4 � 9; the sample standard devia-
tion is �9� � 3.

2. a. SS � 20 and the population variance is 20/5 � 4.

b. SS � 20 and the sample variance is 20/4 � 5.

3. Without some correction, sample variability consistently underestimates the population
variability. Dividing by a smaller number (n – 1 instead of n) increases the value of the
sample variance and makes it an unbiased estimate of the population variance.

ANSWERS
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deviation of � � 8, and Figure 4.6(b) shows the frequency distribution for a sample
with a mean of M � 16 and a standard deviation of s � 2. For rough sketches, you can
identify the mean with a vertical line in the middle of the distribution. The standard 
deviation line should extend approximately halfway from the mean to the most extreme
score. [Note: In Figure 4.6(a) we show the standard deviation as a line to the right of
the mean. You should realize that we could have drawn the line pointing to the left, or
we could have drawn two lines (or arrows), with one pointing to the right and one point-
ing to the left, as in Figure 4.6(b). In each case, the goal is to show the standard 
distance from the mean.]

Earlier we noted that sample variability tends to underestimate the variability in the cor-
responding population. To correct for this problem we adjusted the formula for sample
variance by dividing by n – 1 instead of dividing by n. The result of the adjustment is
that sample variance provides a much more accurate representation of the population
variance. Specifically, dividing by n – 1 produces a sample variance that provides an
unbiased estimate of the corresponding population variance. This does not mean that
each individual sample variance is exactly equal to its population variance. In fact,
some sample variances overestimate the population value and some underestimate it.
However, the average of all the sample variances produces an accurate estimate of the
population variance. This is the idea behind the concept of an unbiased statistic.

A sample statistic is unbiased if the average value of the statistic is equal to the
population parameter. (The average value of the statistic is obtained from all the
possible samples for a specific sample size, n.)

A sample statistic is biased if the average value of the statistic either underesti-
mates or overestimates the corresponding population parameter.

The following example demonstrates the concept of biased and unbiased statistics.

D E F I N I T I O N S

SAMPLE VARIANCE AS AN
UNBIASED STATISTIC
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M � 16
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x

FIGURE 4.6

Showing means and standard deviations in frequency
distribution graphs. (a) A population distribution with a
mean of μ � 80 and a standard deviation of � � 8. (b) A
sample with a mean of M � 16 and a standard deviation 
of s � 2.
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We begin with a population that consists of exactly N � 6 scores: 0, 0, 3, 3, 9, 9.
With a few calculations you should be able to verify that this population has a mean
of � � 4 and a variance of �2 � 14.

Next, we select samples of n � 2 scores from this population. In fact, we obtain
every single possible sample with n � 2. The complete set of samples is listed in
Table 4.1. Notice that the samples are listed systematically to ensure that every
possible sample is included. We begin by listing all the samples that have X � 0 as
the first score, then all the samples with X � 3 as the first score, and so on. Notice
that the table shows a total of 9 samples.

Finally, we have computed the mean and the variance for each sample. Note that
the sample variance has been computed two different ways. First, we examine what
happens if there is no correction for bias and the sample variance is computed by
simply dividing SS by n. Second, we examine the correct sample variances for which
SS is divided by n – 1 to produce an unbiased measure of variance. You should verify
our calculations by computing one or two of the values for yourself. The complete set
of sample means and sample variances is presented in Table 4.1.

First, consider the column of biased sample variances, which were calculated by
dividing by n. These 9 sample variances add up to a total of 63, which produces an
average value of �

6
9
3
� � 7. The original population variance, however, is �2 � 14. Note

that the average of the sample variances is not equal to the population variance. If the
sample variance is computed by dividing by n, the resulting values do not produce an
accurate estimate of the population variance. On average, these sample variances
underestimate the population variance and, therefore, are biased statistics.

Next, consider the column of sample variances that are computed using n – 1.
Although the population has a variance of �2 � 14, you should notice that none of
the samples has a variance exactly equal to 14. However, if you consider the
complete set of sample variances, you will find that the 9 values add up to a total of
126, which produces an average value of �

12
9

6
� � 14. Thus, the average of the sample

variances is exactly equal to the original population variance. On average, the sample
variance (computed using n – 1) produces an accurate, unbiased estimate of the
population variance.

Finally, direct your attention to the column of sample means. For this example,
the original population has a mean of � � 4. Although none of the samples has a

E X A M P L E  4 . 7
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We have structured this 
example to mimic “sampling
with replacement,” which is
covered in Chapter 6.

TABLE 4.1

The set of all the possible 
samples for n � 2 selected from
the population described in
Example 4.7. The mean is 
computed for each sample, and
the variance is computed two
different ways: (1) dividing 
by n, which is incorrect and
produces a biased statistic; and
(2) dividing by n – 1, which 
is correct and produces an 
unbiased statistic.

Sample Statistics
Biased Unbiased 

First Second Mean Variance Variance 
Sample Score Score M (Using n) (Using n – 1)

1 0 0 0.00 0.00 0.00
2 0 3 1.50 2.25 4.50
3 0 9 4.50 20.25 40.50
4 3 0 1.50 2.25 4.50
5 3 3 3.00 0.00 0.00
6 3 9 6.00 9.00 18.00
7 9 0 4.50 20.25 40.50
8 9 3 6.00 9.00 18.00
9 9 9 9.00 0.00 0.00

Totals 36.00 63.00 126.00
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mean exactly equal to 4, if you consider the complete set of sample means, you will
find that the 9 sample means add up to a total of 36, so the average of the sample
means is �

3
9
6
� � 4. Note that the average of the sample means is exactly equal to the

population mean. Again, this is what is meant by the concept of an unbiased statistic.
On average, the sample values provide an accurate representation of the population.
In this example, the average of the 9 sample means is exactly equal to the population
mean.

In summary, both the sample mean and the sample variance (using n – 1) are
examples of unbiased statistics. This fact makes the sample mean and sample
variance extremely valuable for use as inferential statistics. Although no individual
sample is likely to have a mean and variance exactly equal to the population values,
both the sample mean and the sample variance, on average, do provide accurate
estimates of the corresponding population values.

Because standard deviation requires extensive calculations, there is a tendency to get
lost in the arithmetic and forget what standard deviation is and why it is important.
Standard deviation is primarily a descriptive measure; it describes how variable, or how
spread out, the scores are in a distribution. Behavioral scientists must deal with the vari-
ability that comes from studying people and animals. People are not all the same; they
have different attitudes, opinions, talents, IQs, and personalities. Although we can cal-
culate the average value for any of these variables, it is equally important to describe
the variability. Standard deviation describes variability by measuring distance from the
mean. In any distribution, some individuals are close to the mean, and others are rela-
tively far from the mean. Standard deviation provides a measure of the typical, or stan-
dard, distance from the mean.

Describing an entire distribution Rather than listing all of the individual scores in
a distribution, research reports typically summarize the data by reporting only the mean
and the standard deviation. When you are given these two descriptive statistics, how-
ever, you should be able to visualize the entire set of data. For example, consider a sam-
ple with a mean of M � 36 and a standard deviation of s � 4. Although there are several
different ways to picture the data, one simple technique is to imagine (or sketch) a his-
togram in which each score is represented by a box in the graph. For this sample, the
data can be pictured as a pile of boxes (scores) with the center of the pile located at a
value of M � 36. The individual scores, or boxes, are scattered on both sides of the
mean with some of the boxes relatively close to the mean and some farther away. As a
rule of thumb, roughly 70% of the scores in a distribution are located within a distance
of one standard deviation from the mean, and almost all of the scores (roughly 95%)
are within two standard deviations of the mean. In this example, the standard distance
from the mean is s � 4 points, so your image should have most of the boxes within 4
points of the mean, and nearly all of the boxes within 8 points. One possibility for the
resulting image is shown in Figure 4.7.

Describing the location of individual scores Notice that Figure 4.7 not only shows
the mean and the standard deviation, but also uses these two values to reconstruct the
underlying scale of measurement (the X values along the horizontal line). The scale of
measurement helps to complete the picture of the entire distribution and relate each 
individual score to the rest of the group. In this example, you should realize that a score
of X � 34 is located near the center of the distribution, only slightly below the mean.

STANDARD DEVIATION AND
DESCRIPTIVE STATISTICS
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On the other hand, a score of X � 45 is an extremely high score, located far out in the
right-hand tail of the distribution.

Notice that the relative position of a score depends in part on the size of the stan-
dard deviation. In Figure 4.6 (p. 119), for example, we show a population distribution
with a mean of � � 80 and a standard deviation of � � 8, and a sample distribution
with a mean of M � 16 and a standard deviation of s � 2. In the population distribu-
tion, a score that is 4 points above the mean is slightly above average but is certainly
not an extreme value. In the sample distribution, however, a score that is 4 points above
the mean is an extremely high score. In each case, the relative position of the score 
depends on the size of the standard deviation. For the population, a deviation of 4 points
from the mean is relatively small, corresponding to only half of the standard deviation.
For the sample, on the other hand, a 4-point deviation is very large, twice the size of
the standard deviation.

The general point of this discussion is that the mean and standard deviation are not
simply abstract concepts or mathematical equations. Instead, these two values should
be concrete and meaningful, especially in the context of a set of scores. The mean and
standard deviation are central concepts for most of the statistics that are presented in the
following chapters. A good understanding of these two statistics will help you with the
more complex procedures that follow. (Box 4.1.)

Occasionally a set of scores is transformed by adding a constant to each score or by mul-
tiplying each score by a constant value. This happens, for example, when exposure to a
treatment adds a fixed amount to each participant’s score or when you want to change the
unit of measurement (to convert from minutes to seconds, multiply each score by 60).
What happens to the standard deviation when the scores are transformed in this manner?

The easiest way to determine the effect of a transformation is to remember that the
standard deviation is a measure of distance. If you select any two scores and see what
happens to the distance between them, you also find out what happens to the standard
deviation.

1. Adding a constant to each score does not change the standard deviation If you
begin with a distribution that has � � 40 and � � 10, what happens to � if you add 
5 points to every score? Consider any two scores in this distribution: Suppose, for 

TRANSFORMATIONS 
OF SCALE
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28 30 32 34 36 38 40 42 44 46

s � 4 s � 4

M � 36

FIGURE 4.7

A sample of n � 20 scores with a mean of M � 36 and a standard deviation of s � 4.
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example, that these are exam scores and that you had a score of X � 41 and your friend
had X � 43. The distance between these two scores is 43 – 41 � 2 points. After adding
the constant, 5 points, to each score, your score would be X � 46, and your friend
would have X � 48. The distance between scores is still 2 points. Adding a constant to
every score does not affect any of the distances and, therefore, does not change the stan-
dard deviation. This fact can be seen clearly if you imagine a frequency distribution
graph. If, for example, you add 10 points to each score, then every score in the graph is
moved 10 points to the right. The result is that the entire distribution is shifted to a new
position 10 points up the scale. Note that the mean moves along with the scores and is
increased by 10 points. However, the variability does not change because each of the
deviation scores (X – �) does not change.

2. Multiplying each score by a constant causes the standard deviation to be multi-
plied by the same constant Consider the same distribution of exam scores we looked
at earlier. If � � 40 and � � 10, what would happen to � if each score were multiplied
by 2? Again, we look at two scores, X � 41 and X � 43, with a distance between them
equal to 2 points. After all of the scores have been multiplied by 2, these scores become
X � 82 and X � 86. Now the distance between scores is 4 points, twice the original 
distance. Multiplying each score causes each distance to be multiplied, so the standard
deviation also is multiplied by the same amount.

IN THE LITERATURE
REPORTING THE STANDARD DEVIATION

In reporting the results of a study, the researcher often provides descriptive
information for both central tendency and variability. The dependent variables in
psychology research are often numerical values obtained from measurements on
interval or ratio scales. With numerical scores, the most common descriptive statistics
are the mean (central tendency) and the standard deviation (variability), which are
usually reported together. In many journals, especially those following APA style, 
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B O X
4.1 AN ANALOGY FOR THE MEAN AND THE STANDARD DEVIATION

community, the mean is located in the center of the
distribution of scores.

For each student in the community, it is possible to
measure the distance between home and the new high
school. Some students live only a few blocks from the
new school and others live as much as 3 miles away.
The average distance that a student must travel to
school was calculated to be 0.80 miles. The average
distance from the school is analogous to the concept of
the standard deviation; that is, the standard deviation
measures the standard distance from an individual score
to the mean.

Although the basic concepts of the mean and the
standard deviation are not overly complex, the following
analogy often helps students gain a more complete
understanding of these two statistical measures.

In our local community, the site for a new high
school was selected because it provides a central
location. An alternative site on the western edge of the
community was considered, but this site was rejected
because it would require extensive busing for students
living on the east side. In this example, the location of
the high school is analogous to the concept of the mean;
just as the high school is located in the center of the
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the symbol SD is used for the sample standard deviation. For example, the results
might state:

Children who viewed the violent cartoon displayed more aggressive responses 
(M � 12.45, SD � 3.7) than those who viewed the control cartoon (M � 4.22, 
SD � 1.04).

When reporting the descriptive measures for several groups, the findings may be
summarized in a table. Table 4.2 illustrates the results of hypothetical data.

Sometimes the table also indicates the sample size, n, for each group. You should
remember that the purpose of the table is to present the data in an organized, concise,
and accurate manner. ❏

In very general terms, the goal of inferential statistics is to detect meaningful and sig-
nificant patterns in research results. The basic question is whether the patterns observed
in the sample data reflect corresponding patterns that exist in the population, or are sim-
ply random fluctuations that occur by chance. Variability plays an important role in the
inferential process because the variability in the data influences how easy it is to see
patterns. In general, low variability means that existing patterns can be seen clearly,
whereas high variability tends to obscure any patterns that might exist. The following
example provides a simple demonstration of how variance can influence the perception
of patterns.

In most research studies the goal is to compare means for two (or more) sets of data.
For example:

Is the mean level of depression lower after therapy than it was before therapy?

Is the mean attitude score for men different from the mean score for women?

Is the mean reading achievement score higher for students in a special program
than for students in regular classrooms?

In each of these situations, the goal is to find a clear difference between two means
that would demonstrate a significant, meaningful pattern in the results. Variability plays
an important role in determining whether a clear pattern exists. Consider the following
data representing hypothetical results from two experiments, each comparing two 
treatment conditions. For both experiments, your task is to determine whether there 
appears to be any consistent difference between the scores in treatment 1 and the scores
in treatment 2.

E X A M P L E  4 . 8

VARIANCE AND 
INFERENTIAL STATISTICS

124 CHAPTER 4 VARIABILITY

TABLE 4.2

The number of aggressive 
responses in male and female
children after viewing cartoons.

Type of Cartoon

Violent Control

Males M � 15.72 M � 6.94
SD � 4.43 SD � 2.26

Females M � 3.47 M � 2.61
SD � 1.12 SD � 0.98
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For each experiment, the data have been constructed so that there is a 5-point mean
difference between the two treatments: On average, the scores in treatment 2 are 
5 points higher than the scores in treatment 1. The 5-point difference is relatively
easy to see in experiment A, where the variability is low, but the same 5-point
difference is difficult to see in experiment B, where the variability is large. Again,
high variability tends to obscure any patterns in the data. This general fact is perhaps
even more convincing when the data are presented in a graph. Figure 4.8 shows the
two sets of data from experiments A and B. Notice that the results from experiment 
A clearly show the 5-point difference between treatments. One group of scores piles
up around 35 and the second group piles up around 40. On the other hand, the scores
from experiment B [Figure 4.8(b)] seem to be mixed together randomly with no clear
difference between the two treatments.

In the context of inferential statistics, the variance that exists in a set of sample data
is often classified as error variance. This term is used to indicate that the sample vari-
ance represents unexplained and uncontrolled differences between scores. As the error
variance increases, it becomes more difficult to see any systematic differences or 
patterns that might exist in the data. An analogy is to think of variance as the static that
appears on a radio station or a cell phone when you enter an area of poor reception. In
general, variance makes it difficult to get a clear signal from the data. High variance
can make it difficult or impossible to see a mean difference between two sets of scores,
or to see any other meaningful patterns in the results from a research study.

SECTION 4.5 / MORE ABOUT VARIANCE AND STANDARD DEVIATION 125

Experiment A

Treatment 1 Treatment 2

35 39
34 40
36 41
35 40

Experiment B

Treatment 1 Treatment 2

31 46
15 21
57 61
37 32

Treatment 1 

Data from Experiment A

34 35 36

f

1

2

3

33 37 39 40 4138 42
X

Treatment 2 

Treatment 1 

Data from Experiment B

f

1

2

3

10 20
X

Treatment 2 

30 40 50 60

M � 35 M � 35

M � 40M � 40

FIGURE 4.8

Graphs showing the results from two experiments. In experiment A, the variability is small and it
is easy to see the 5-point mean difference between the two treatments. In experiment B, however,
the 5-point mean difference between treatments is obscured by the large variability.

30991_ch04_ptg01_hr_103-134.qxd  9/2/11  11:28 PM  Page 125



126 CHAPTER 4 VARIABILITY

L E A R N I N G  C H E C K 1. Explain the difference between a biased and an unbiased statistic.

2. In a population with a mean of � � 50 and a standard deviation of � � 10, would
a score of X � 58 be considered an extreme value (far out in the tail of the distri-
bution)? What if the standard deviation were � � 3?

3. A population has a mean of � � 70 and a standard deviation of � � 5.

a. If 10 points were added to every score in the population, what would be the
new values for the population mean and standard deviation?

b. If every score in the population were multiplied by 2, what would be the new
values for the population mean and standard deviation?

1. If a statistic is biased, it means that the average value of the statistic does not accurately
represent the corresponding population parameter. Instead, the average value of the statistic
either overestimates or underestimates the parameter. If a statistic is unbiased, it means that
the average value of the statistic is an accurate representation of the corresponding popula-
tion parameter.

2. With � � 10, a score of X � 58 would be located in the central section of the distribution
(within one standard deviation). With � � 3, a score of X � 58 would be an extreme value,
located more than two standard deviations above the mean.

3. a. The new mean would be � � 80 but the standard deviation would still be � � 5.

b. The new mean would be � � 140 and the new standard deviation would be � � 10.

ANSWERS

1. The purpose of variability is to measure and describe
the degree to which the scores in a distribution are
spread out or clustered together. There are three basic
measures of variability: the range, the variance, and the
standard deviation.

The range is the distance covered by the set of
scores, from the smallest score to the largest score. The
range is completely determined by the two extreme
scores and is considered to be a relatively crude
measure of variability.

Standard deviation and variance are the most
commonly used measures of variability. Both of these
measures are based on the idea that each score can be
described in terms of its deviation, or distance, from the
mean. The variance is the mean of the squared
deviations. The standard deviation is the square root of
the variance and provides a measure of the standard
distance from the mean.

2. To calculate variance or standard deviation, you first
need to find the sum of the squared deviations, SS.
Except for minor changes in notation, the calculation of
SS is identical for samples and populations. There are
two methods for calculating SS:
I. By definition, you can find SS using the following

steps:
a. Find the deviation (X – �) for each score.
b. Square each deviation.
c. Add the squared deviations.
This process can be summarized in a formula as
follows:

Definitional formula: SS � �(X � �)2

II. The sum of the squared deviations can also be found
using a computational formula, which is especially
useful when the mean is not a whole number:

Computational formula: SS � �X2 � �
(�

N
X )2

�

SUMMARY
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3. Variance is the mean squared deviation and is obtained
by finding the sum of the squared deviations and then
dividing by the number of scores. For a population,
variance is

For a sample, only n – 1 of the scores are free to 
vary (degrees of freedom or df � n – 1), so sample
variance is

Using n – 1 in the sample formula makes the sample
variance an accurate and unbiased estimate of the
population variance.

s
SS

n

SS

df
2

1
� �

−

σ2 �
SS

N

4. Standard deviation is the square root of the variance.
For a population, this is

Sample standard deviation is

5. Adding a constant value to every score in a distribution
does not change the standard deviation. Multiplying
every score by a constant, however, causes the standard
deviation to be multiplied by the same constant.

s
SS

n

SS

df
� �

−1

σ�
SS

N

KEY TERMS

variability (104)

range (106)

deviation score (107)

sum of squares (SS) (111)

population variance (�2) (113)

population standard deviation (�) (113)

sample variance (s2) (115)

sample standard deviation (s) (115)

degrees of freedom (df) (117)

unbiased statistic (119)

biased statistic (119)

RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 4 on the book

companion website. The website also includes a workshop entitled Central Tendency
and Variability, which examines the basic concepts of variability and the standard 
deviation, and reviews the concept of central tendency, which was covered in Chapter 3.

Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.

Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific web-
site, Psychology CourseMate includes an integrated interactive eBook and other interac-
tive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.
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General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to compute the Range, Standard Deviation, and Variance
for a sample of scores.

Data Entry

1. Enter all of the scores in one column of the data editor, probably VAR00001.

Data Analysis

1. Click Analyze on the tool bar, select Descriptive Statistics, and click on
Descriptives.

2. Highlight the column label for the set of scores (VAR00001) in the left box and
click the arrow to move it into the Variable box.

3. If you want the variance and/or the range reported along with the standard devia-
tion, click on the Options box, select Variance and/or Range, then click Continue.

4. Click OK.

SPSS Output

The SPSS output is shown in Figure 4.9. The summary table lists the number of scores,
the maximum and minimum scores, the mean, the range, the standard deviation, and 
the variance. Note that the range and variance are included because these values were
selected using the Options box during data analysis. Caution: SPSS computes the sample
standard deviation and sample variance using n – 1. If your scores are intended to be 
a population, you can multiply the sample standard deviation by the square root of 
(n – 1)/n to obtain the population standard deviation.

Note: You can also obtain the mean and standard deviation for a sample if you use
SPSS to display the scores in a frequency distribution histogram (see the SPSS section at
the end of Chapter 2). The mean and standard deviation are displayed beside the graph.

FOCUS ON PROBLEM SOLVING

1. The purpose of variability is to provide a measure of how spread out the scores in 
a distribution are. Usually this is described by the standard deviation. Because the
calculations are relatively complicated, it is wise to make a preliminary estimate of

128 CHAPTER 4 VARIABILITY

Descriptive Statistics

VAR00001
Valid N (listwise)

 7 7.00 1.00 8.00 5.0000 2.44949 6.000
 7

 N Range Minimum Maximum Mean Std. Deviation Variance

FIGURE 4.9

The SPSS summary table showing descriptive statistics for a sample of n �7 scores.
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the standard deviation before you begin. Remember that standard deviation provides
a measure of the typical, or standard, distance from the mean. Therefore, the
standard deviation must have a value somewhere between the largest and the
smallest deviation scores. As a rule of thumb, the standard deviation should be
about one-fourth of the range.

2. Rather than trying to memorize all of the formulas for SS, variance, and standard
deviation, you should focus on the definitions of these values and the logic that
relates them to each other:

SS is the sum of squared deviations.

Variance is the mean squared deviation.

Standard deviation is the square root of variance.

The only formula you should need to memorize is the computational formula for SS.

3. A common error is to use n – 1 in the computational formula for SS when you have
scores from a sample. Remember that the SS formula always uses n (or N). After
you compute SS for a sample, you must correct for the sample bias by using n – 1
in the formulas for variance and standard deviation.

DEMONSTRATION 4.1

COMPUTING MEASURES OF VARIABILITY

For the following sample data, compute the variance and standard deviation. The scores are:

10, 7, 6, 10, 6, 15

Compute SS, the sum of squared deviations We use the computational formula. For
this sample, n � 6 and

�X � 10 � 7 � 6 � 10 � 6 � 15 � 54

�X2 � 102 � 72 � 62 � 102 � 62 � 152 � 546

SS � �X2 � �
(�

N
X )2

� � 546 � ���
(54

6
)2

�

�546 – 486

�60

Compute the sample variance For sample variance, SS is divided by the degrees of
freedom, df � n � 1

Compute the sample standard deviation Standard deviation is simply the square
root of the variance.

S T E P  3

s
SS

n
2

1

60

5
12� � �

−

S T E P  2

S T E P  1

DEMONSTRATION 4.1 129
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PROBLEMS

1. In words, explain what is measured by each of the
following:
a. SS
b. Variance
c. Standard deviation

2. Can SS ever have a value less than zero? Explain your
answer.

3. Is it possible to obtain a negative value for the
variance or the standard deviation?

4. What does it mean for a sample to have a standard
deviation of zero? Describe the scores in such a
sample.

5. Explain why the formulas for sample variance and
population variance are different.

6. A population has a mean of � � 80 and a standard
deviation of � � 20.
a. Would a score of X � 70 be considered an extreme

value (out in the tail) in this sample?
b. If the standard deviation were � � 5, would a score

of X � 70 be considered an extreme value?

7. On an exam with a mean of M � 78, you obtain a
score of X � 84.
a. Would you prefer a standard deviation of s � 2 or

s � 10? (Hint: Sketch each distribution and find the
location of your score.)

b. If your score were X � 72, would you prefer s � 2
or s � 10? Explain your answer.

8. A population has a mean of � � 30 and a standard
deviation of � � 5.
a. If 5 points were added to every score in the

population, what would be the new values for the
mean and standard deviation?

b. If every score in the population were multiplied by
3 what would be the new values for the mean and
standard deviation?

9. a. After 3 points have been added to every score in a
sample, the mean is found to be M � 83 and the
standard deviation is s � 8. What were the values
for the mean and standard deviation for the original
sample?

b. After every score in a sample has been multiplied
by 4, the mean is found to be M � 48 and the
standard deviation is s � 12. What were the values
for the mean and standard deviation for the original
sample?

10. A student was asked to compute the mean and
standard deviation for the following sample of n � 5
scores: 81, 87, 89, 86, and 87. To simplify the
arithmetic, the student first subtracted 80 points from
each score to obtain a new sample consisting of 1, 7,
9, 6, and 7. The mean and standard deviation for the
new sample were then calculated to be M � 6 and
s � 3. What are the values of the mean and standard
deviation for the original sample?

11. For the following population of N � 6 scores:

11, 0, 2, 9, 9, 5

a. Calculate the range and the standard deviation. 
(Use either definition for the range.)

b. Add 2 points to each score and compute the range
and standard deviation again. Describe how adding
a constant to each score influences measures of
variability.

12. There are two different formulas or methods that can
be used to calculate SS.
a. Under what circumstances is the definitional

formula easy to use?
b. Under what circumstances is the computational

formula preferred?

13. Calculate the mean and SS (sum of squared deviations)
for each of the following samples. Based on the value
for the mean, you should be able to decide which SS
formula is better to use. 

Sample A: 1, 4, 8, 5
Sample B: 3, 0, 9, 4

14. The range is completely determined by the two
extreme scores in a distribution. The standard
deviation, on the other hand, uses every score.
a. Compute the range (choose either definition) and

the standard deviation for the following sample of
n � 5 scores. Note that there are three scores
clustered around the mean in the center of the
distribution, and two extreme values.

Scores: 0, 6, 7, 8, 14.

b. Now we break up the cluster in the center of the
distribution by moving two of the central scores out
to the extremes. Once again compute the range and
the standard deviation.

New scores: 0, 0, 7, 14, 14.

c. According to the range, how do the two
distributions compare in variability? How do they
compare according to the standard deviation?
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15. For the data in the following sample:

8, 1, 5, 1, 5

a. Find the mean and the standard deviation.
b. Now change the score of X � 8 to X � 18, and find

the new mean and standard deviation.
c. Describe how one extreme score influences the

mean and standard deviation.

16. Calculate SS, variance, and standard deviation for the
following sample of n � 4 scores: 7, 4, 2, 1. (Note:
The computational formula works well with these
scores.)

17. Calculate SS, variance, and standard deviation for the
following population of N � 8 scores: 0, 0, 5, 0, 3, 0,
0, 4. (Note: The computational formula works well
with these scores.)

18. Calculate SS, variance, and standard deviation for the
following population of N � 7 scores: 8, 1, 4, 3, 5, 
3, 4. (Note: The definitional formula works well with
these scores.)

19. Calculate SS, variance, and standard deviation for the
following sample of n � 5 scores: 9, 6, 2, 2, 6. (Note:
The definitional formula works well with these
scores.)

20. For the following population of N � 6 scores:

3, 1, 4, 3, 3, 4

a. Sketch a histogram showing the population
distribution.

b. Locate the value of the population mean in your
sketch, and make an estimate of the standard
deviation (as done in Example 4.2).

c. Compute SS, variance, and standard deviation for
the population. (How well does your estimate
compare with the actual value of �?)

21. For the following sample of n � 7 scores:

8, 6, 5, 2, 6, 3, 5

a. Sketch a histogram showing the sample
distribution.

b. Locate the value of the sample mean in your sketch,
and make an estimate of the standard deviation (as
done in Example 4.5).

c. Compute SS, variance, and standard deviation for
the sample. (How well does your estimate compare
with the actual value of s?)

22. In an extensive study involving thousands of British
children, Arden and Plomin (2006) found significantly
higher variance in the intelligence scores for males
than for females. Following are hypothetical data,
similar to the results obtained in the study. Note that
the scores are not regular IQ scores but have been
standardized so that the entire sample has a mean of 
M � 10 and a standard deviation of s � 2.
a. Calculate the mean and the standard deviation for

the sample of n � 8 females and for the sample of
n � 8 males.

b. Based on the means and the standard deviations,
describe the differences in intelligence scores for
males and females.

Female Male

9 8
11 10
10 11
13 12
8 6
9 10

11 14
9 9

23. In the Preview section at the beginning of this chapter
we reported a study by Wegesin and Stern (2004) that
found greater consistency (less variability) in the
memory performance scores for younger women than
for older women. The following data represent
memory scores obtained for two women, one older
and one younger, over a series of memory trials.
a. Calculate the variance of the scores for each

woman.
b. Are the scores for the younger woman more

consistent (less variable)?

Younger Older

8 7
6 5
6 8
7 5
8 7
7 6
8 8
8 5
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By completing this part, you should understand and be 
able to perform basic descriptive statistical procedures.
These include:

1. Familiarity with statistical terminology and notation
(Chapter 1).

2. The ability to organize a set of scores in a frequency
distribution table or a frequency distribution graph
(Chapter 2).

3. The ability to summarize and describe a distribution of
scores by computing a measure of central tendency
(Chapter 3).

4. The ability to summarize and describe a distribution 
of scores by computing a measure of variability
(Chapter 4).

The general goal of descriptive statistics is to simplify a set
of data by organizing or summarizing a large set of scores.
A frequency distribution table or graph organizes the entire
set of scores so that it is possible to see the complete distri-
bution all at once. Measures of central tendency describe
the distribution by identifying its center. They also summa-
rize the distribution by condensing all of the individual
scores into one value that represents the entire group.
Measures of variability describe whether the scores in a dis-
tribution are widely scattered or closely clustered.
Variability also provides an indication of how accurately a
measure of central tendency represents the entire group.

Of the basic skills presented in this part, the most com-
monly used are calculating the mean and standard deviation
for a sample of numerical scores. The following exercises
should provide an opportunity to use and reinforce these
statistical skills.

REVIEW EXERCISES

1. a. What is the general goal for descriptive statistics?
b. How is the goal served by putting scores in a fre-

quency distribution?
c. How is the goal served by computing a measure of

central tendency?
d. How is the goal served by computing a measure of

variability?

2. In a classic study examining the relationship between
heredity and intelligence, Robert Tryon (1940) used a
selective breeding program to develop separate strains
of “smart rats” and “dumb rats.” Tryon started with a
large sample of laboratory rats and tested each animal
on a maze-learning problem. Based on their error scores
for the maze, Tryon selected the brightest rats and the
dullest rats from the sample. The brightest males were
mated with the brightest females. Similarly, the dullest
rats were interbred. This process of testing and selective
breeding was continued for several generations until
Tryon had established a line of maze-bright rats and a
separate line of maze-dull rats. The following data rep-
resent results similar to those obtained by Tryon. The
data consist of maze-learning error scores for the origi-
nal sample of laboratory rats and the seventh generation
of the maze-bright rats.

Errors Before Solving Maze

Original Rats Seventh Generation 
Maze-Bright Rats

10 14 7 5 8 7
17 13 12 8 8 6
11 9 20 6 10 4
13 6 15 6 9 8
4 18 10 5 7 9

13 21 6 10 8 6
17 11 14 9 7 8

a. Sketch a polygon showing the distribution of error
scores for the sample of original rats. On the same
graph, sketch a polygon for the sample of maze-
bright rats. (Use two different colors or use a
dashed line for one group and a solid line for the
other.) Based on the appearance of your graph, 
describe the differences between the two samples.

b. Calculate the mean error score for each sample.
Does the mean difference support your descrip-
tion from part a?

c. Calculate the variance and standard deviation for
each sample. Based on the measures of variability,
is one group more diverse than the other? Is one
group more homogeneous than the other?
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Samples: The Distribution 
of Sample Means 199

Chapter 8 Introduction to 
Hypothesis Testing 231

You should recall from Chapter 1 that statistical methods are
classified into two general categories: descriptive statistics,
which attempt to organize and summarize data, and infer-

ential statistics, which use the limited information from samples to
answer general questions about populations. In most research situ-
ations, both kinds of statistics are used to gain a complete under-
standing of the research results. In Part I of this book we
introduced the techniques of descriptive statistics. We now are
ready to turn our attention to inferential statistics.

Before we proceed with inferential statistics, however, it is
necessary to present some additional information about samples.
We know that it is possible to obtain hundreds or even thousands
of different samples from the same population. We need to deter-
mine how all the different samples are related to each other and
how individual samples are related to the population from which
they were obtained. Finally, we need a system for designating
which samples are representative of their populations and which
are not.

In the next four chapters we develop the concepts and skills
that form the foundation for inferential statistics. In general, these
chapters establish formal, quantitative relationships between sam-
ples and populations and introduce a standardized procedure for
determining whether the data from a sample justify a conclusion
about the population. After we have developed this foundation, we
will be prepared to begin inferential statistics. That is, we can
begin to look at statistical techniques that use the sample data 
obtained in research studies as the basis for answering questions
about populations.

Foundations 
of Inferential
Statistics

135

30991_ch05_ptg01_hr_135-162.qxd  9/2/11  11:29 PM  Page 135



This page intentionally left blank 



C H A P T E R

5
z-Scores:
Location of
Scores and
Standardized
Distributions
Preview

5.1 Introduction to z-Scores

5.2 z-Scores and Location in a
Distribution

5.3 Using z-Scores to Standardize a
Distribution

5.4 Other Standardized Distributions
Based on z-Scores

5.5 Computing z-Scores for a Sample

5.6 Looking Ahead to Inferential
Statistics

Summary

Focus on Problem Solving

Demonstrations 5.1 and 5.2

Problems

Tools You Will Need
The following items are considered essential
background material for this chapter. If you
doubt your knowledge of any of these 
items, you should review the appropriate
chapter and section before proceeding.

• The mean (Chapter 3)
• The standard deviation (Chapter 4)
• Basic algebra (math review, Appendix A)
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Preview
A common test of cognitive ability requires participants to
search through a visual display and respond to specific
targets as quickly as possible. This kind of test is called a
perceptual-speed test. Measures of perceptual speed are
commonly used for predicting performance on jobs that
demand a high level of speed and accuracy. Although
many different tests are used, a typical example is shown
in Figure 5.1. This task requires the participant to search
through the display of digit pairs as quickly as possible and
circle each pair that adds up 10. Your score is determined
by the amount of time required to complete the task with a
correction for the number of errors that you make. One
complaint about this kind of paper-and-pencil test is that it
is tedious and time consuming to score because a
researcher must also search through the entire display to

identify errors to determine the participant’s level of 
accuracy. An alternative, proposed by Ackerman and 
Beier (2007), is a computerized version of the task. The
computer version presents a series of digit pairs and 
participants respond on a touch-sensitive monitor. The
computerized test is very reliable and the scores are 
equivalent to the paper-and-pencil tests in terms of 
assessing cognitive skill. The advantage of the 
computerized test is that the computer produces a test
score immediately when a participant finishes the test.

Suppose that you took Ackerman and Beier’s test and
your combined time and errors produced a score of 92.
How did you do? Are you faster than average, fairly 
normal in perceptual speed, or does your score indicate 
a serious deficit in cognitive skill?

The Problem: Without any frame of reference, a
simple raw score provides relatively little information.
Specifically, you have no idea how your test score of 
92 compares with others who took the same test. 

The Solution: Transforming your test score into a 
z-score will identify exactly where you are located in
the distribution of scores. In this case, the distribution

of scores has a mean of 86.75 and a standard deviation
of 10.50. With this additional information, you should
realize that your score (X � 92) is somewhat higher
than average but not extreme. The z-score combines 
all of this information (your score, the mean, and the
standard deviation) into a single number that precisely
describes your location relative to the other scores in the
distribution.
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Circle every pair of adjacent numbers that add up to 10.FIGURE 5.1

An example of a perceptual
speed task. The participant is
asked to search through the
display as quickly as possible
and circle each pair of digits
that add up to 10.
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5.1 INTRODUCTION TO z-SCORES

In the previous two chapters, we introduced the concepts of the mean and the standard
deviation as methods for describing an entire distribution of scores. Now we shift 
attention to the individual scores within a distribution. In this chapter, we introduce a
statistical technique that uses the mean and the standard deviation to transform each
score (X value) into a z-score, or a standard score. The purpose of z-scores, or standard
scores, is to identify and describe the exact location of each score in a distribution.

The following example demonstrates why z-scores are useful and introduces the
general concept of transforming X values into z-scores.

Suppose you received a score of X � 76 on a statistics exam. How did you do? It
should be clear that you need more information to predict your grade. Your score of
X � 76 could be one of the best scores in the class, or it might be the lowest score in
the distribution. To find the location of your score, you must have information about
the other scores in the distribution. It would be useful, for example, to know the mean
for the class. If the mean were � � 70, you would be in a much better position than if
the mean were � � 85. Obviously, your position relative to the rest of the class
depends on the mean. However, the mean by itself is not sufficient to tell you the
exact location of your score. Suppose you know that the mean for the statistics exam
is � � 70 and your score is X � 76. At this point, you know that your score is 
6 points above the mean, but you still do not know exactly where it is located. 
Six points may be a relatively big distance and you may have one of the highest
scores in the class, or 6 points may be a relatively small distance and you may be
only slightly above the average. Figure 5.2 shows two possible distributions of exam
scores. Both distributions have a mean of � � 70, but for one distribution, the
standard deviation is � � 3, and for the other, � � 12. The location of X � 76 is
highlighted in each of the two distributions. When the standard deviation is � � 3,
your score of X � 76 is in the extreme right-hand tail, the highest score in the
distribution. However, in the other distribution, where � � 12, your score is only
slightly above average. Thus, the relative location of your score within the
distribution depends on the standard deviation as well as the mean.

The purpose of the preceding example is to demonstrate that a score by itself does
not necessarily provide much information about its position within a distribution. These
original, unchanged scores that are the direct result of measurement are called raw
scores. To make raw scores more meaningful, they are often transformed into new 
values that contain more information. This transformation is one purpose for z-scores.
In particular, we transform X values into z-scores so that the resulting z-scores tell 
exactly where the original scores are located.

A second purpose for z-scores is to standardize an entire distribution. A common
example of a standardized distribution is the distribution of IQ scores. Although there
are several different tests for measuring IQ, the tests usually are standardized so that
they have a mean of 100 and a standard deviation of 15. Because all the different tests
are standardized, it is possible to understand and compare IQ scores even though they
come from different tests. For example, we all understand that an IQ score of 95 is a
little below average, no matter which IQ test was used. Similarly, an IQ of 145 is 
extremely high, no matter which IQ test was used. In general terms, the process of 
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standardizing takes different distributions and makes them equivalent. The advantage
of this process is that it is possible to compare distributions even though they may have
been quite different before standardization.

In summary, the process of transforming X values into z-scores serves two useful
purposes:

1. Each z-score tells the exact location of the original X value within the 
distribution.

140 CHAPTER 5 z-SCORES: LOCATION OF SCORES AND STANDARDIZED DISTRIBUTIONS

Exam scores
X = 76

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98

µ = 70

σ = 3

44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92 94 96 98
Exam scores

X = 76

µ = 70

σ = 12

(a)

(b)

FIGURE 5.2

Two distributions of exam scores. For both distributions, � � 70, but for one distribution, � � 3,
and for the other, � � 12. The relative position of X � 76 is very different for the two 
distributions.
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2. The z-scores form a standardized distribution that can be directly compared to
other distributions that also have been transformed into z-scores.

Each of these purposes is discussed in the following sections.

5.2 z-SCORES AND LOCATION IN A DISTRIBUTION

One of the primary purposes of a z-score is to describe the exact location of a score
within a distribution. The z-score accomplishes this goal by transforming each X value
into a signed number (� or –) so that

1. The sign tells whether the score is located above (�) or below (–) the 
mean, and

2. The number tells the distance between the score and the mean in terms of the
number of standard deviations.

Thus, in a distribution of IQ scores with � � 100 and � � 15, a score of X � 130
would be transformed into z � �2.00. The z value indicates that the score is located
above the mean (�) by a distance of 2 standard deviations (30 points).

A z-score specifies the precise location of each X value within a distribution.
The sign of the z-score (� or –) signifies whether the score is above the mean
(positive) or below the mean (negative). The numerical value of the z-score
specifies the distance from the mean by counting the number of standard 
deviations between X and �.

Notice that a z-score always consists of two parts: a sign (� or –) and a magnitude.
Both parts are necessary to describe completely where a raw score is located within a
distribution.

Figure 5.3 shows a population distribution with various positions identified by
their z-score values. Notice that all z-scores above the mean are positive and all z-scores
below the mean are negative. The sign of a z-score tells you immediately whether the
score is located above or below the mean. Also, note that a z-score of z � �1.00 
corresponds to a position exactly 1 standard deviation above the mean. A z-score of 

D E F I N I T I O N
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Whenever you are working with
z-scores, you should imagine 
or draw a picture similar to
Figure 5.3. Although you 
should realize that not all 
distributions are normal, 
we use the normal shape as 
an example when showing 
z-scores for populations.

z
+1 +2

μ

–1–2

X

σ

0

FIGURE 5.3

The relationship between 
z-score values and locations
in a population distribution.

30991_ch05_ptg01_hr_135-162.qxd  9/2/11  11:29 PM  Page 141



z � �2.00 is always located exactly 2 standard deviations above the mean. The 
numerical value of the z-score tells you the number of standard deviations it is from 
the mean. Finally, you should notice that Figure 5.3 does not give any specific values
for the population mean or the standard deviation. The locations identified by z-scores
are the same for all distributions, no matter what mean or standard deviation the 
distributions may have.

Now we can return to the two distributions shown in Figure 5.2 and use a z-score
to describe the position of X � 76 within each distribution as follows:

In Figure 5.2(a), with a standard deviation of � � 3, the score X � 76 corresponds
to a z-score of z � �2.00. That is, the score is located above the mean by exactly
2 standard deviations.

In Figure 5.2(b), with � � 12, the score X � 76 corresponds to a z-score of 
z � �0.50. In this distribution, the score is located above the mean by exactly �

1
2�

standard deviation.

The z-score definition is adequate for transforming back and forth from X values to 
z-scores as long as the arithmetic is easy to do in your head. For more complicated 
values, it is best to have an equation to help structure the calculations. Fortunately, the 
relationship between X values and z-scores is easily expressed in a formula. The 
formula for transforming scores into z-scores is

(5.1)z
X

�
− μ
σ

THE z-SCORE FORMULA

142 CHAPTER 5 z-SCORES: LOCATION OF SCORES AND STANDARDIZED DISTRIBUTIONS

L E A R N I N G  C H E C K 1. Identify the z-score value corresponding to each of the following locations in a
distribution.

a. Below the mean by 2 standard deviations.

b. Above the mean by �
1
2� standard deviation.

c. Below the mean by 1.50 standard deviations.

2. Describe the location in the distribution for each of the following z-scores. (For
example, z � �1.00 is located above the mean by 1 standard deviation.)

a. z � �1.50 b. z � 0.25 c. z � �2.50 d. z � 0.50

3. For a population with � � 30 and � � 8, find the z-score for each of the following
scores:

a. X � 32 b. X � 26 c. X � 42

4. For a population with � � 50 and � � 12, find the X value corresponding to each
of the following z-scores:

a. z � –0.25 b. z � 2.00 c. z � 0.50

1. a. z � –2.00 b. z � �0.50 c. z � –1.50

2. a. Below the mean by 1�
1
2� standard deviations.

b. Above the mean by �
1
4� standard deviation.

c. Below the mean by 2�
1
2� standard deviations.

d. Above the mean by �
1
2� standard deviation.

3. a. z � �0.25 b. z � –0.50 c. z � �1.50

4. a. X � 47 b. X � 74 c. X � 56

ANSWERS
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The numerator of the equation, X – �, is a deviation score (Chapter 4, page 107);
it measures the distance in points between X and � and indicates whether X is located
above or below the mean. The deviation score is then divided by � because we want
the z-score to measure distance in terms of standard deviation units. The formula 
performs exactly the same arithmetic that is used with the z-score definition, and it 
provides a structured equation to organize the calculations when the numbers are more
difficult. The following examples demonstrate the use of the z-score formula.

A distribution of scores has a mean of � � 100 and a standard deviation of � � 10.
What z-score corresponds to a score of X � 130 in this distribution?
According to the definition, the z-score has a value of �3 because the score is

located above the mean by exactly 3 standard deviations. Using the z-score formula,
we obtain

The formula produces exactly the same result that is obtained using the z-score
definition.

A distribution of scores has a mean of � � 86 and a standard deviation of � � 7.
What z-score corresponds to a score of X � 95 in this distribution?

Note that this problem is not particularly easy, especially if you try to use the 
z-score definition and perform the calculations in your head. However, the z-score
formula organizes the numbers and allows you to finish the final arithmetic with 
your calculator. Using the formula, we obtain

According to the formula, a score of X � 95 corresponds to z � 1.29. The 
z-score indicates a location that is above the mean (positive) by slightly more than 
1 standard deviation.

When you use the z-score formula, it can be useful to pay attention to the defini-
tion of a z-score as well. For example, we used the formula in Example 5.3 to calculate
the z-score corresponding to X � 95, and obtained z � 1.29. Using the z-score defini-
tion, we note that X � 95 is located above the mean by 9 points, which is slightly more
than one standard deviation (� � 7). Therefore, the z-score should be positive and have
a value slightly greater than 1.00. In this case, the answer predicted by the definition is
in perfect agreement with the calculation. However, if the calculations produce a dif-
ferent value, for example z � 0.78, you should realize that this answer is not consistent
with the definition of a z-score. In this case, an error has been made and you should
double check the calculations.

Although the z-score equation (Formula 5.1) works well for transforming X values into
z-scores, it can be awkward when you are trying to work in the opposite direction and
change z-scores back into X values. In general it is easier to use the definition of a 
z-score, rather than a formula, when you are changing z-scores into X values. Remember,
the z-score describes exactly where the score is located by identifying the direction and

DETERMINING A RAW SCORE
(X) FROM A z-SCORE

z
X

� � � �
− −μ
σ

95 86

7

9

7
1 29.
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z
X

� � � �
− −μ
σ

130 100

10

30

10
3 00.
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distance from the mean. It is possible, however, to express this definition as a formula,
and we use a sample problem to demonstrate how the formula can be created.

For a distribution with a mean of � � 60 and � � 5, what X value corresponds to
a z-score of z � –3.00?

To solve this problem, we use the z-score definition and carefully monitor the step-
by-step process. The value of the z-score indicates that X is located below the mean by
a distance equal to 3 standard deviations. Thus, the first step in the calculation is to 
determine the distance corresponding to 3 standard deviations. For this problem, the
standard deviation is � � 5 points, so 3 standard deviations is 3(5) � 15 points. The
next step is to find the value of X that is located below the mean by 15 points. With a
mean of � � 60, the score is

X � � – 15 � 60 – 15 � 45

The two steps can be combined to form a single formula:

X � � � z� (5.2)

In the formula, the value of z� is the deviation of X and determines both the direc-
tion and the size of the distance from the mean. In this problem, z� � (–3)(5) � –15,
or 15 points below the mean. Formula 5.2 simply combines the mean and the deviation
from the mean to determine the exact value of X.

Finally, you should realize that Formula 5.1 and Formula 5.2 are actually two dif-
ferent versions of the same equation. If you begin with either formula and use algebra
to shuffle the terms around, you soon end up with the other formula. We leave this as
an exercise for those who want to try it.

In most cases, we simply transform scores (X values) into z-scores, or change 
z-scores back into X values. However, you should realize that a z-score establishes
a relationship between the score, the mean, and the standard deviation. This rela-
tionship can be used to answer a variety of different questions about scores and the
distributions in which they are located. The following two examples demonstrate
some possibilities.

In a population with a mean of � � 65, a score of X � 59 corresponds to z � –2.00.
What is the standard deviation for the population?

To answer the question, we begin with the z-score value. A z-score of –2.00
indicates that the corresponding score is located below the mean by a distance of 
2 standard deviations. You also can determine that the score (X � 59) is located
below the mean (� � 65) by a distance of 6 points. Thus, 2 standard deviations
correspond to a distance of 6 points, which means that 1 standard deviation must 
be � � 3 points.

In a population with a standard deviation of � � 4, a score of X � 33 corresponds to
z � �1.50. What is the mean for the population?

Again, we begin with the z-score value. In this case, a z-score of �1.50 indicates
that the score is located above the mean by a distance corresponding to 1.50 standard
deviations. With a standard deviation of � � 4, this distance is (1.50)(4) � 6 points.

E X A M P L E  5 . 5
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OTHER RELATIONSHIPS
BETWEEN z, X, �, AND �
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Thus, the score is located 6 points above the mean. The score is X � 33, so the mean
must be � � 27.

Many students find problems like those in Examples 5.4 and 5.5 easier to under-
stand if they draw a picture showing all of the information presented in the problem.
For the problem in Example 5.4, the picture would begin with a distribution that has a
mean of � � 65 (we use a normal distribution, which is shown in Figure 5.4). The value
of the standard deviation is unknown, but you can add arrows to the sketch pointing
outward from the mean for a distance corresponding to 1 standard deviation. Finally,
use standard deviation arrows to identify the location of z � –2.00 (2 standard devia-
tions below the mean) and add X � 59 at that location. All of these factors are shown
in Figure 5.4. In the figure, it is easy to see that X � 59 is located 6 points below the
mean, and that the 6-point distance corresponds to exactly 2 standard deviations. Again,
if 2 standard deviations equal 6 points, then 1 standard deviation must be � � 3 points.
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σ

59

σ

65

6 points

FIGURE 5.4

A visual presentation of the
question in Example 5.4. 
If 2 standard deviations
correspond to a 6-point
distance, then 1 standard
deviation must equal 
3 points.

L E A R N I N G  C H E C K 1. For a distribution with � � 40 and � � 12, find the z-score for each of the follow-
ing scores.

a. X � 36 b. X � 46 c. X � 56

2. For a distribution with � � 40 and � � 12, find the X value corresponding to each
of the following z-scores.

a. z � 1.50 b. z � –1.25 c. z � �
1
3�

3. In a distribution with � � 50, a score of X � 42 corresponds to z � –2.00. What
is the standard deviation for this distribution?

4. In a distribution with � � 12, a score of X � 56 corresponds to z � –0.25. What
is the mean for this distribution?

1. a. z � – 0.33 (or – �
1
3�) b. z � 0.50 c. z � 1.33 ( �1�

1
3�)

2. a. X � 58 b. X � 25 c. X � 44

3. � � 4

4. � � 59

ANSWERS
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5.3 USING z-SCORES TO STANDARDIZE A DISTRIBUTION

It is possible to transform every X value in a distribution into a corresponding z-score.
The result of this process is that the entire distribution of X values is transformed into
a distribution of z-scores (Figure 5.5). The new distribution of z-scores has characteris-
tics that make the z-score transformation a very useful tool. Specifically, if every 
X value is transformed into a z-score, then the distribution of z-scores will have the 
following properties:

1. Shape. The distribution of z-scores will have exactly the same shape as the origi-
nal distribution of scores. If the original distribution is negatively skewed, for example,
then the z-score distribution will also be negatively skewed. If the original distribution
is normal, the distribution of z-scores will also be normal. Transforming raw scores into
z-scores does not change anyone’s position in the distribution. For example, any raw
score that is above the mean by 1 standard deviation will be transformed to a z-score of
�1.00, which is still above the mean by 1 standard deviation. Transforming a distribu-
tion from X values to z values does not move scores from one position to another; the
procedure simply relabels each score (see Figure 5.5). Because each individual score
stays in its same position within the distribution, the overall shape of the distribution
does not change.

2. The mean. The z-score distribution will always have a mean of zero. In Figure 5.5,
the original distribution of X values has a mean of � � 100. When this value, X � 100,
is transformed into a z-score, the result is

Thus, the original population mean is transformed into a value of zero in the 
z-score distribution. The fact that the z-score distribution has a mean of zero makes 
the mean a convenient reference point. Recall from the definition of z-scores that all

z
X

� � �
− −μ
σ

100 100

10
0
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X

Transform X to z

Population of scores
(X values)

110 1201009080
μ

σ � 10

z

Population of z-scores
(z values)

+1 +20−1−2
μ

σ � 1

FIGURE 5.5

An entire population of scores is transformed into z-scores. The transformation does not change
the shape of the population, but the mean is transformed into a value of 0 and the standard 
deviation is transformed to a value of 1.
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positive z-scores are above the mean and all negative z-scores are below the mean. In
other words, for z-scores, � � 0.

3. The standard deviation. The distribution of z-scores will always have a standard
deviation of 1. In Figure 5.5, the original distribution of X values has � � 100 and 
� � 10. In this distribution, a value of X � 110 is above the mean by exactly 10 points
or 1 standard deviation. When X � 110 is transformed, it becomes z � �1.00, which
is above the mean by exactly 1 point in the z-score distribution. Thus, the standard de-
viation corresponds to a 10-point distance in the X distribution and is transformed into
a 1-point distance in the z-score distribution. The advantage of having a standard devi-
ation of 1 is that the numerical value of a z-score is exactly the same as the number of
standard deviations from the mean. For example, a z-score of z � 1.50 is exactly 1.50
standard deviations from the mean.

In Figure 5.5, we showed the z-score transformation as a process that changed a dis-
tribution of X values into a new distribution of z-scores. In fact, there is no need to create
a whole new distribution. Instead, you can think of the z-score transformation as simply 
relabeling the values along the X-axis. That is, after a z-score transformation, you still have
the same distribution, but now each individual is labeled with a z-score instead of an 
X value. Figure 5.6 demonstrates this concept with a single distribution that has two sets of
labels: the X values along one line and the corresponding z-scores along another line.
Notice that the mean for the distribution of z-scores is zero and the standard deviation is 1.

When any distribution (with any mean or standard deviation) is transformed into 
z-scores, the resulting distribution will always have a mean of � � 0 and a standard 
deviation of � � 1. Because all z-score distributions have the same mean and the same
standard deviation, the z-score distribution is called a standardized distribution.

A standardized distribution is composed of scores that have been transformed
to create predetermined values for � and �. Standardized distributions are used
to make dissimilar distributions comparable.

D E F I N I T I O N
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σ

FIGURE 5.6

Following a z-score 
transformation, the X-axis 
is relabeled in z-score 
units. The distance that is
equivalent to 1 standard
deviation on the X-axis 
(� �10 points in this 
example) corresponds to 
1 point on the z-score scale.

30991_ch05_ptg01_hr_135-162.qxd  9/2/11  11:29 PM  Page 147



A z-score distribution is an example of a standardized distribution with � � 0 and
� � 1. That is, when any distribution (with any mean or standard deviation) is trans-
formed into z-scores, the transformed distribution will always have � � 0 and � � 1.

Although the basic characteristics of a z-score distribution have been explained logi-
cally, the following example provides a concrete demonstration that a z-score transfor-
mation creates a new distribution with a mean of zero, a standard deviation of 1, and
the same shape as the original population.

We begin with a population of N � 6 scores consisting of the following values: 0, 6,
5, 2, 3, 2. This population has a mean of � � �

1
6
8
� � 3 and a standard deviation of 

� � 2 (check the calculations for yourself).
Each of the X values in the original population is then transformed into a z-score

as summarized in the following table.

X � 0 Below the mean by 1�1
2

� standard deviations z � –1.50
X � 6 Above the mean by 1�1

2
� standard deviations z � �1.50

X � 5 Above the mean by 1 standard deviation z � �1.00
X � 2 Below the mean by �

1
2� standard deviation z � –0.50

X � 3 Exactly equal to the mean—zero deviation z � 0
X � 2 Below the mean by �

1
2� standard deviation z � –0.50

The frequency distribution for the original population of X values is shown 
in Figure 5.7(a) and the corresponding distribution for the z-scores is shown in 
Figure 5.7(b). A simple comparison of the two distributions demonstrates the results
of a z-score transformation.
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DEMONSTRATION OF A 
z-SCORE TRANSFORMATION
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FIGURE 5.7

Transforming a distribution
of raw scores (a) into 
z-scores (b) will not change
the shape of the distribution.
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1. The two distributions have exactly the same shape. Each individual has exactly
the same relative position in the X distribution and in the z-score distribution.

2. After the transformation to z-scores, the mean of the distribution becomes 
� � 0. For these z-scores values, N � 6 and �z � –1.50 � 1.50 � 1.00 � –0.50
� 0 � –0.50 � 0. Thus, the mean for the z-scores is � � �z/N � 0/6 � 0.

Note that the individual with a score of X � 3 is located exactly at the mean in
the X distribution and this individual is transformed into z � 0, exactly at the
mean in the z-distribution.

3. After the transformation, the standard deviation becomes � � 1. For these 
z-scores, �z � 0 and

�z2 � (–1.50)2 � (1.50)2 � (1.00)2 � (–0.50)2 � (0)2 � (–0.50)2

� 2.25 � 2.25 � 1.00 � 0.25 � 0 � 0.25

� 6.00

Using the computational formula for SS, substituting z in place of X, we obtain

SS � �z2 – �(
��

z�)
2

� 6 – ��
(0)

�
2

� 6.00 
N 6

For these z-scores, the variance is and the standard deviation is

Note that the individual with X � 5 is located above the mean by 2 points, which
is exactly one standard deviation in the X distribution. After transformation, this
individual has a z-score that is located above the mean by 1 point, which is exactly
one standard deviation in the z-score distribution.

One advantage of standardizing distributions is that it makes it possible to compare dif-
ferent scores or different individuals even though they come from completely different
distributions. Normally, if two scores come from different distributions, it is impossi-
ble to make any direct comparison between them. Suppose, for example, Dave received
a score of X � 60 on a psychology exam and a score of X � 56 on a biology test. For
which course should Dave expect the better grade?

Because the scores come from two different distributions, you cannot make any 
direct comparison. Without additional information, it is even impossible to determine
whether Dave is above or below the mean in either distribution. Before you can begin
to make comparisons, you must know the values for the mean and standard deviation
for each distribution. Suppose the biology scores had � � 48 and � � 4, and the psy-
chology scores had � � 50 and � � 10. With this new information, you could sketch
the two distributions, locate Dave’s score in each distribution, and compare the two 
locations.

Instead of drawing the two distributions to determine where Dave’s two scores 
are located, we simply can compute the two z-scores to find the two locations. For 
psychology, Dave’s z-score is

z
X

� � � �
− − +μ
σ

60 50

10

10

10
1 0.

USING z-SCORES TO MAKE
COMPARISONS

σ� �1 00 1 00. .

σ2 6

6
1 00� � �

SS

N
.
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For biology, Dave’s z-score is

Note that Dave’s z-score for biology is �2.0, which means that his test score is 2
standard deviations above the class mean. On the other hand, his z-score is �1.0 for
psychology, or 1 standard deviation above the mean. In terms of relative class standing,
Dave is doing much better in the biology class.

Notice that we cannot compare Dave’s two exam scores (X � 60 and X � 56) 
because the scores come from different distributions with different means and standard
deviations. However, we can compare the two z-scores because all distributions of 
z-scores have the same mean (� � 0) and the same standard deviation (� � 1).

z� � �
56 48

4

8

4
2 0

− + .

5.4 OTHER STANDARDIZED DISTRIBUTIONS 
BASED ON z-SCORES

Although z-score distributions have distinct advantages, many people find them cum-
bersome because they contain negative values and decimals. For this reason, it is com-
mon to standardize a distribution by transforming the scores into a new distribution
with a predetermined mean and standard deviation that are whole round numbers. The
goal is to create a new (standardized) distribution that has “simple” values for the mean
and standard deviation but does not change any individual’s location within the distri-
bution. Standardized scores of this type are frequently used in psychological or educa-
tional testing. For example, raw scores of the Scholastic Aptitude Test (SAT) are

TRANSFORMING z-SCORES TO
A DISTRIBUTION WITH A

PREDETERMINED � AND �

150 CHAPTER 5 z-SCORES: LOCATION OF SCORES AND STANDARDIZED DISTRIBUTIONS

Be sure to use the � and 
� values for the distribution 
to which X belongs.

L E A R N I N G  C H E C K 1. A normal-shaped distribution with � � 40 and � � 8 is transformed into z-scores.
Describe the shape, the mean, and the standard deviation for the resulting distribu-
tion of z-scores.

2. What is the advantage of having a mean of � � 0 for a distribution of z-scores?

3. A distribution of English exam scores has � � 70 and � � 4. A distribution of
history exam scores has � � 60 and � � 20. For which exam would a score of 
X � 78 have a higher standing? Explain your answer.

4. A distribution of English exam scores has � � 50 and � � 12. A distribution of
history exam scores has � � 58 and � � 4. For which exam would a score of 
X � 62 have a higher standing? Explain your answer.

1. The z-score distribution would be normal with a mean of 0 and a standard deviation of 1.

2. With a mean of zero, all positive scores are above the mean and all negative scores are
below the mean.

3. For the English exam, X � 78 corresponds to z � 2.00, which is a higher standing than 
z � 0.90 for the history exam.

4. The score X � 62 corresponds to z � �1.00 in both distributions. The score has exactly the
same standing for both exams. 

ANSWERS
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transformed to a standardized distribution that has � � 500 and � � 100. For intelli-
gence tests, raw scores are frequently converted to standard scores that have a mean of
100 and a standard deviation of 15. Because most IQ tests are standardized so that they
have the same mean and standard deviation, it is possible to compare IQ scores even
though they may come from different tests.

The procedure for standardizing a distribution to create new values for � and �
involves two-steps:

1. The original raw scores are transformed into z-scores.

2. The z-scores are then transformed into new X values so that the specific � and
� are attained.

This procedure ensures that each individual has exactly the same z-score location
in the new distribution as in the original distribution. The following example demon-
strates the standardization procedure.

An instructor gives an exam to a psychology class. For this exam, the distribution of
raw scores has a mean of � � 57 with � � 14. The instructor would like to simplify
the distribution by transforming all scores into a new, standardized distribution with
� � 50 and � � 10. To demonstrate this process, we consider what happens to two
specific students: Maria, who has a raw score of X � 64 in the original distribution;
and Joe, whose original raw score is X � 43.

Transform each of the original raw scores into z-scores. For Maria, X � 64, so her 
z-score is

For Joe, X � 43, and his z-score is

Remember: The values of � and � are for the distribution from which X was taken.

Change each z-score into an X value in the new standardized distribution that has a
mean of � � 50 and a standard deviation of � � 10.

Maria’s z-score, z � �0.50, indicates that she is located above the mean by �
1
2�

standard deviation. In the new, standardized distribution, this location corresponds to
X � 55 (above the mean by 5 points).

Joe’s z-score, z � –1.00, indicates that he is located below the mean by exactly 
1 standard deviation. In the new distribution, this location corresponds to X � 40
(below the mean by 10 points).

The results of this two-step transformation process are summarized in Table 5.1.
Note that Joe, for example, has exactly the same z-score (z � –1.00) in both the
original distribution and the new standardized distribution. This means that Joe’s
position relative to the other students in the class has not changed.

Figure 5.8 provides another demonstration of the concept that standardizing a 
distribution does not change the individual positions within the distribution. The figure
shows the original exam scores from Example 5.7, with a mean of � � 57 and a 

S T E P  2

z
X

� � �
− − −μ
σ

43 57

14
1 0.

z
X

� � �
− − +μ
σ

64 57

14
0 5.

S T E P  1
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standard deviation of � � 14. In the original distribution, Joe is located at a score of 
X � 43. In addition to the original scores, we have included a second scale showing the
z-score value for each location in the distribution. In terms of z-scores, Joe is located at
a value of z � –1.00. Finally, we have added a third scale showing the standardized
scores, for which the mean is � � 50 and the standard deviation is � � 10. For the stan-
dardized scores, Joe is located at X � 40. Note that Joe is always in the same place in
the distribution. The only thing that changes is the number that is assigned to Joe: For
the original scores, Joe is at 43; for the z-scores, Joe is at –1.00; and for the standard-
ized scores, Joe is at 40.

152 CHAPTER 5 z-SCORES: LOCATION OF SCORES AND STANDARDIZED DISTRIBUTIONS

TABLE 5.1

A demonstration of how 
two individual scores are
changed when a distribution is
standardized. See Example 5.7.

Original Scores z-Score Standardized Scores 
� � 57 and � � 14 Location � � 50 and � � 10

Maria X � 64 —→ z � �0.50 —→ X � 55
Joe X � 43 —→ z � –1.00 —→ X � 40

29

�2

30

43

�1 �1 �2

40

Joe

X

z

X

57

0

50

71

60

85

70

	� Original scores (� � 57 and � � 14)

	� z-Scores (� � 0 and � � 1)

	� Standardized scores (� � 50 and � � 10)

FIGURE 5.8

The distribution of exam scores from Example 5.7. The original distribution was standardized to
produce a new distribution with � � 50 or � � 10. Note that each individual is identified by an
original score, a z-score, and a new, standardized score. For example, Joe has an original score of
43, a z-score of –1.00, and a standardized score of 40.

L E A R N I N G  C H E C K 1. A population of scores has � � 73 and � � 8. If the distribution is standardized to
create a new distribution with � � 100 and � � 20, what are the new values for
each of the following scores from the original distribution?

a. X � 65 b. X � 71 c. X � 81 d. X � 83

2. A population with a mean of � � 44 and a standard deviation of � � 6 is stan-
dardized to create a new distribution with � � 50 and � � 10.
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5.5 COMPUTING z-SCORES FOR A SAMPLE

Although z-scores are most commonly used in the context of a population, the same
principles can be used to identify individual locations within a sample. The definition
of a z-score is the same for a sample as for a population, provided that you use the 
sample mean and the sample standard deviation to specify each z-score location. Thus,
for a sample, each X value is transformed into a z-score so that

1. The sign of the z-score indicates whether the X value is above (�) or below (–)
the sample mean, and

2. The numerical value of the z-score identifies the distance from the sample mean
by measuring the number of sample standard deviations between the score (X)
and the sample mean (M).

Expressed as a formula, each X value in a sample can be transformed into a z-score
as follows:

(5.3)

Similarly, each z-score can be transformed back into an X value, as follows:

X � M � zs (5.4)

In a sample with a mean of M � 40 and a standard deviation of s � 10, what is the 
z-score corresponding to X � 35 and what is the X value corresponding to z � �2.00?

The score, X � 35, is located below the mean by 5 points, which is exactly half
of the standard deviation. Therefore, the corresponding z-score is z � –0.50. The 
z-score, z � �2.00, corresponds to a location above the mean by 2 standard
deviations. With a standard deviation of s � 10, this is distance of 20 points. 
The score that is located 20 points above the mean is X � 60. Note that it is 
possible to find these answers using either the z-score definition or one of the
equations (5.3 or 5.4).

E X A M P L E  5 . 8

z
X M

s
�

−
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a. What is the new standardized value for a score of X � 47 from the original
distribution?

b. One individual has a new standardized score of X � 65. What was this person’s
score in the original distribution?

1. a. z � –1.00, X � 80 b. z � –0.25, X � 95

c. z � 1.00, X � 120 d. z � 1.25, X � 125

2. a. X � 47 corresponds to z � �0.50 in the original distribution. In the new distribution, the
corresponding score is X � 55.

b. In the new distribution, X � 65 corresponds to z � �1.50. The corresponding score in
the original distribution is X � 53.

ANSWERS

See the population equations
(5.1 and 5.2) on pages 142 
and 144 for comparison.
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If all the scores in a sample are transformed into z-scores, the result is a sample of 
z-scores. The transformed distribution of z-scores will have the same properties that
exist when a population of X values is transformed into z-scores. Specifically,

1. The sample of z-scores will have the same shape as the original sample of
scores.

2. The sample of z-scores will have a mean of Mz � 0.

3. The sample of z-scores will have a standard deviation of sz � 1.

Note that the set of z-scores is still considered to be a sample (just like the set of 
X values) and the sample formulas must be used to compute variance and standard 
deviation. The following example demonstrates the process of transforming the scores
from a sample into z-scores.

We begin with a sample of n � 5 scores: 0, 2, 4, 4, 5. With a few simple calculations,
you should be able to verify that the sample mean is M � 3, the sample variance is 
s2 � 4, and the sample standard deviation is s � 2. Using the sample mean and
sample standard deviation, we can convert each X value into a z-score. For example,
X � 5 is located above the mean by 2 points. Thus, X � 5 is above the mean by
exactly 1 standard deviation and has a z-score of z � �1.00. The z-scores for the
entire sample are shown in the following table.

X z

0 �1.50
2 �0.50
4 �0.50
4 �0.50
5 �1.00

Again, a few simple calculations demonstrate that the sum of the z-score values
is �z � 0, so the mean is Mz � 0.

Because the mean is zero, each z-score value is its own deviation from the 
mean. Therefore, the sum of the squared deviations is simply the sum of the 
squared z-scores. For this sample of z-scores,

SS � �z2 � (–1.50)2 � (–0.50)2 � (�0.50)2 � (0.50)2 � (�1.00)2

� 2.25 � 0.25 � 0.25 � 0.25 � 1.00

� 4.00

The variance for the sample of z-scores is

Finally, the standard deviation for the sample of z-scores is. .
As always, the distribution of z-scores has a mean of 0 and a standard deviation of 1.

s
z
2 1 00 1 00� �. .

s
SS

nz
2

1

4

4
1 00� � �

−
.
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STANDARDIZING A SAMPLE
DISTRIBUTION
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Notice that the set of z-scores 
is considered to be a sample 
and the variance is computed
using the sample formula with 
df � n – 1.
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5.6 LOOKING AHEAD TO INFERENTIAL STATISTICS

Recall that inferential statistics are techniques that use the information from samples to
answer questions about populations. In later chapters, we use inferential statistics to help
interpret the results from research studies. A typical research study begins with a question
about how a treatment will affect the individuals in a population. Because it is usually 
impossible to study an entire population, the researcher selects a sample and administers
the treatment to the individuals in the sample. This general research situation is shown in
Figure 5.9. To evaluate the effect of the treatment, the researcher simply compares the
treated sample with the original population. If the individuals in the sample are noticeably
different from the individuals in the original population, the researcher has evidence that
the treatment has had an effect. On the other hand, if the sample is not noticeably differ-
ent from the original population, it would appear that the treatment has had no effect.

Notice that the interpretation of the research results depends on whether the sample
is noticeably different from the population. One technique for deciding whether a sam-
ple is noticeably different is to use z-scores. For example, an individual with a z-score
near 0 is located in the center of the population and would be considered to be a fairly
typical or representative individual. However, an individual with an extreme z-score, 
beyond �2.00 or –2.00 for example, would be considered noticeably different from most
of the individuals in the population. Thus, we can use z-scores to help decide whether the
treatment has caused a change. Specifically, if the individuals who receive the treatment
in a research study tend to have extreme z-scores, we can conclude that the treatment does
appear to have an effect. The following example demonstrates this process.

A researcher is evaluating the effect of a new growth hormone. It is known 
that regular adult rats weigh an average of � � 400 grams. The weights vary 
from rat to rat, and the distribution of weights is normal with a standard deviation 

E X A M P L E  5 . 1 0
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Original
population

(Without treatment)

Sample
Treated
sample
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a
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FIGURE 5.9

A diagram of a research
study. The goal of the 
study is to evaluate the 
effect of a treatment. A
sample is selected from the
population and the treatment
is administered to the 
sample. If, after treatment,
the individuals in the sample
are noticeably different from
the individuals in the original
population, then we have
evidence that the treatment
does have an effect.
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of � � 20 grams. The population distribution is shown in Figure 5.10. The researcher
selects one newborn rat and injects the rat with the growth hormone. When the rat
reaches maturity, it is weighed to determine whether there is any evidence that the
hormone has an effect.

First, assume that the hormone-injected rat weighs X � 418 grams. Although this
is more than the average nontreated rat (� � 400 grams), is it convincing evidence
that the hormone has an effect? If you look at the distribution in Figure 5.10, you
should realize that a rat weighing 418 grams is not noticeably different from the
regular rats that did not receive any hormone injection. Specifically, our injected rat
would be located near the center of the distribution for regular rats with a z-score of

Because the injected rat still looks the same as a regular, nontreated rat, the
conclusion is that the hormone does not appear to have an effect.

Now, assume that our injected rat weighs X � 450 grams. In the distribution 
of regular rats (see Figure 5.10), this animal would have a z-score of

In this case, the hormone-injected rat is substantially bigger than most ordinary
rats, and it would be reasonable to conclude that the hormone does have an effect on
weight.

In the preceding example, we used z-scores to help interpret the results obtained
from a sample. Specifically, if the individuals who receive the treatment in a research

z
X

� � � �
− −μ
σ

450 400
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X

X � 450

� � 400 440420380360

z
0

Population
of

nontreated rats

Representative
individuals
(z near 0)

Extreme
individuals

(z beyond �2.00)

Extreme
individuals

(z beyond �2.00)

1.00 2.00�1.00�2.00

X � 418

FIGURE 5.10

The distribution of weights
for the population of adult
rats. Note that individuals
with z-scores near 0 are
typical or representative.
However, individuals with 
z-scores beyond �2.00 
or �2.00 are extreme and
noticeably different from
most of the others in the
distribution.
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study have extreme z-scores compared to those who do not receive the treatment, we
can conclude that the treatment does appear to have an effect. The example, however,
used an arbitrary definition to determine which z-score values are noticeably different.
Although it is reasonable to describe individuals with z-scores near 0 as “highly 
representative” of the population, and individuals with z-scores beyond ±2.00 as 
“extreme,” you should realize that these z-score boundaries were not determined by any
mathematical rule. In the following chapter we introduce probability, which gives us a 
rationale for deciding exactly where to set the boundaries.
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L E A R N I N G  C H E C K 1. For a sample with a mean of M � 40 and a standard deviation of s � 12, find the
z-score corresponding to each of the following X values.

X � 43 X � 58 X � 49

X � 34 X � 28 X � 16

2. For a sample with a mean of M � 80 and a standard deviation of s � 20, find the
X value corresponding to each of the following z-scores.

z � –1.00 z � –0.50 z � –0.20

z � 1.50 z � 0.80 z � 1.40

3. For a sample with a mean of M � 85, a score of X � 80 corresponds to 
z � �0.50. What is the standard deviation for the sample?

4. For a sample with a standard deviation of s � 12, a score of X � 83 corresponds
to z � 0.50. What is the mean for the sample?

5. A sample has a mean of M � 30 and a standard deviation of s � 8.

a. Would a score of X � 36 be considered a central score or an extreme score in
the sample?

b. If the standard deviation were s � 2, would X � 36 be central or extreme?

1. z � 0.25 z � 1.50 z � 0.75

z � �0.50 z � �1.00 z � �2.00

2. X � 60 X � 70 X � 76

X � 110 X � 96 X � 108

3. s � 10

4. M � 77

5. a. X � 36 is a central score corresponding to z � 0.75.

b. X � 36 would be an extreme score corresponding to z � 3.00.

ANSWERS
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1. Each X value can be transformed into a z-score that
specifies the exact location of X within the distribution.
The sign of the z-score indicates whether the location is
above (positive) or below (negative) the mean. The
numerical value of the z-score specifies the number of
standard deviations between X and �.

2. The z-score formula is used to transform X values into
z-scores. For a population:

For a sample:

3. To transform z-scores back into X values, it usually 
is easier to use the z-score definition rather than a
formula. However, the z-score formula can be
transformed into a new equation. For a population:

X � � � z�

For a sample: X � M � zs

4. When an entire distribution of X values is transformed
into z-scores, the result is a distribution of z-scores. The

z
X M

s
�

−

z
X

�
− μ
σ

z-score distribution will have the same shape as the
distribution of raw scores, and it always will have a
mean of 0 and a standard deviation of 1.

5. When comparing raw scores from different
distributions, it is necessary to standardize 
the distributions with a z-score transformation. The
distributions will then be comparable because they will
have the same parameters (� � 0, � � 1). In practice,
it is necessary to transform only those raw scores that
are being compared.

6. In certain situations, such as psychological testing, a
distribution may be standardized by converting the
original X values into z-scores and then converting the
z-scores into a new distribution of scores with
predetermined values for the mean and the standard
deviation.

7. In inferential statistics, z-scores provide an objective
method for determining how well a specific score
represents its population. A z-score near 0 indicates that
the score is close to the population mean and, therefore,
is representative. A z-score beyond �2.00 (or –2.00)
indicates that the score is extreme and is noticeably
different from the other scores in the distribution.

SUMMARY

KEY TERMS

raw score (139)

z-score (139)

deviation score (143)

z-score transformation (146)

standardized distribution (147)

standardized score (152)

RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 5 on the 

book companion website. The website also includes a workshop entitled z-Scores
that examines the basic concepts and calculations underlying z-scores.

Improve your understanding of statistics with Aplia’s auto-graded problem sets and immedi-
ate, detailed explanations for every question. To learn more, visit www.aplia.com/statistics.
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Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific web-
site, Psychology CourseMate includes an integrated interactive eBook and other interac-
tive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to Transform X Values into z-Scores for a Sample.

Data Entry

1. Enter all of the scores in one column of the data editor, probably VAR00001.

Data Analysis

1. Click Analyze on the tool bar, select Descriptive Statistics, and click on
Descriptives.

2. Highlight the column label for the set of scores (VAR0001) in the left box and click
the arrow to move it into the Variable box.

3. Click the box to Save standardized values as variables at the bottom of the
Descriptives screen.

4. Click OK.

SPSS Output

The program produces the usual output display listing the number of scores (N), the
maximum and minimum scores, the mean, and the standard deviation. However, if you
go back to the Data Editor (use the tool bar at the bottom of the screen), you can see that
SPSS has produced a new column showing the z-score corresponding to each of the
original X values.

Caution: The SPSS program computes the z-scores using the sample standard 
deviation instead of the population standard deviation. If your set of scores is intended 
to be a population, SPSS does not produce the correct z-score values. You can convert
the SPSS values into population z-scores by multiplying each z-score value by the square
root of n/(n – 1).

FOCUS ON PROBLEM SOLVING

1. When you are converting an X value to a z-score (or vice versa), do not rely entirely
on the formula. You can avoid careless mistakes if you use the definition of a 
z-score (sign and numerical value) to make a preliminary estimate of the answer
before you begin computations. For example, a z-score of z � –0.85 identifies a
score located below the mean by almost 1 standard deviation. When computing the
X value for this z-score, be sure that your answer is smaller than the mean, and
check that the distance between X and � is slightly less than the standard deviation.
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2. When comparing scores from distributions that have different standard deviations, it
is important to be sure that you use the correct value for � in the z-score formula.
Use the � value for the distribution from which the raw score in question was taken.

3. Remember that a z-score specifies a relative position within the context of a specific
distribution. A z-score is a relative value, not an absolute value. For example, a 
z-score of z � –2.0 does not necessarily suggest a very low raw score—it simply
means that the raw score is among the lowest within that specific group.

DEMONSTRATION 5.1

TRANSFORMING X VALUES INTO z-SCORES

A distribution of scores has a mean of � � 60 with � � 12. Find the z-score for X � 75.

Determine the sign of the z-score. First, determine whether X is above or below the
mean. This determines the sign of the z-score. For this demonstration, X is larger than
(above) �, so the z-score is positive.

Convert the distance between X and � into standard deviation units. For X � 75
and � � 60, the distance between X and � is 15 points. With � � 12 points, this distance
corresponds to �

1
1
5
2
� � 1.25 standard deviations.

Combine the sign from step 1 with the numerical value from step 2. The score is
above the mean (�) by a distance of 1.25 standard deviations. Thus, z � �1.25.

Confirm the answer using the z-score formula. For this example, X � 75, � � 60,
and � � 12.

DEMONSTRATION 5.2

CONVERTING z-SCORES TO X VALUES

For a population with � � 60 and � � 12, what is the X value corresponding to 
z � –0.50?

Locate X in relation to the mean. A z-score of –0.50 indicates a location below the
mean by half of a standard deviation.

Convert the distance from standard deviation units to points. With � � 12, half
of a standard deviation is 6 points.

Identify the X value. The value we want is located below the mean by 6 points. The
mean is � � 60, so the score must be X � 54.

S T E P  3

S T E P  2

S T E P  1

z
X

� � � �
− − + +μ
σ

75 60

12

15

12
1 25.

S T E P  4

S T E P  3

S T E P  2

S T E P  1
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PROBLEMS 161

PROBLEMS

1. What information is provided by the sign (�/–) of a 
z-score? What information is provided by the
numerical value of the z-score?

2. A distribution has a standard deviation of � � 12.
Find the z-score for each of the following locations 
in the distribution.
a. Above the mean by 3 points.
b. Above the mean by 12 points.
c. Below the mean by 24 points.
d. Below the mean by 18 points.

3. A distribution has a standard deviation of � � 6.
Describe the location of each of the following z-scores
in terms of position relative to the mean. For example,
z � �1.00 is a location that is 6 points above the
mean.
a. z � �2.00
b. z � �0.50
c. z � –2.00
d. z � –0.50

4. For a population with � � 50 and � � 8,
a. Find the z-score for each of the following X values.

(Note: You should be able to find these values
using the definition of a z-score. You should not
need to use a formula or do any serious
calculations.)

X � 54 X � 62 X � 52
X � 42 X � 48 X � 34

b. Find the score (X value) that corresponds to each of
the following z-scores. (Again, you should be able
to find these values without any formula or serious
calculations.)

z � 1.00 z � 0.75 z � 1.50
z � –0.50 z � –0.25 z � –1.50

5. For a population with � � 40 and � � 7, find the 
z-score for each of the following X values. (Note: You
probably will need to use a formula and a calculator to
find these values.)

X � 45 X � 51 X � 41
X � 30 X � 25 X � 38

6. For a population with a mean of � � 100 and a
standard deviation of � � 12,
a. Find the z-score for each of the following X values.

X � 106 X � 115 X � 130
X � 91 X � 88 X � 64

b. Find the score (X value) that corresponds to each of
the following z-scores.

z � –1.00 z � –0.50 z � 2.00
z � 0.75 z � 1.50 z � –1.25

7. A population has a mean of � � 40 and a standard
deviation of � � 8.
a. For this population, find the z-score for each of the

following X values.

X � 44 X � 50 X � 52
X � 34 X � 28 X � 64

b. For the same population, find the score (X value)
that corresponds to each of the following z-scores.

z � 0.75 z � 1.50 z � –2.00
z � –0.25 z � –0.50 z � 1.25

8. A sample has a mean of M � 40 and a standard
deviation of s � 6. Find the z-score for each of the
following X values from this sample.

X � 44 X � 42 X � 46
X � 28 X � 50 X � 37

9. A sample has a mean of M � 80 and a standard
deviation of s � 10. For this sample, find the X value
corresponding to each of the following z-scores.

z � 0.80 z � 1.20 z � 2.00
z � –0.40 z � –0.60 z � –1.80

10. Find the z-score corresponding to a score of X � 60
for each of the following distributions.
a. � � 50 and � � 20
b. � � 50 and � � 10
c. � � 50 and � � 5
d. � � 50 and � � 2

11. Find the X value corresponding to z � 0.25 for each of
the following distributions.
a. � � 40 and � � 4
b. � � 40 and � � 8
c. � � 40 and � � 12
d. � � 40 and � � 20

12. A score that is 6 points below the mean corresponds to
a z-score of z � –0.50. What is the population
standard deviation?

13. A score that is 12 points above the mean corresponds
to a z-score of z � 3.00. What is the population
standard deviation?
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162 CHAPTER 5 z-SCORES: LOCATION OF SCORES AND STANDARDIZED DISTRIBUTIONS

14. For a population with a standard deviation of � � 8, a
score of X � 44 corresponds to z � –0.50. What is the
population mean?

15. For a sample with a standard deviation of s � 10, a
score of X � 65 corresponds to z � 1.50. What is the
sample mean?

16. For a sample with a mean of � � 45, a score of 
X � 59 corresponds to z � 2.00. What is the sample
standard deviation?

17. For a population with a mean of � � 70, a score of 
X � 62 corresponds to z � –2.00. What is the
population standard deviation?

18. In a population of exam scores, a score of X � 48
corresponds to z � �1.00 and a score of X � 36
corresponds to z � –0.50. Find the mean and standard
deviation for the population. (Hint: Sketch the
distribution and locate the two scores on your sketch.)

19. In a distribution of scores, X � 64 corresponds to 
z � 1.00, and X � 67 corresponds to z � 2.00. Find
the mean and standard deviation for the distribution.

20. For each of the following populations, would a score
of X � 50 be considered a central score (near the
middle of the distribution) or an extreme score (far out
in the tail of the distribution)?
a. � � 45 and � � 10
b. � � 45 and � � 2
c. � � 90 and � � 20
d. � � 60 and � � 20

21. A distribution of exam scores has a mean of � � 80.
a. If your score is X � 86, which standard deviation

would give you a better grade: � � 4 � � 8?
b. If your score is X � 74, which standard deviation

would give you a better grade: � � 4 or � � 8?

22. For each of the following, identify the exam score that
should lead to the better grade. In each case, explain
your answer.
a. A score of X � 56, on an exam with � � 50 and 

� � 4; or a score of X � 60 on an exam with 
� � 50 and � � 20.

b. A score of X � 40, on an exam with � � 45 and 
� � 2; or a score of X � 60 on an exam with 
� � 70 and � � 20.

c. A score of X � 62, on an exam with � � 50 and 
� � 8; or a score of X � 23 on an exam with 
� � 20 and � � 2.

23. A distribution with a mean of � � 62 and a standard
deviation of � � 8 is transformed into a standardized
distribution with � � 100 and � � 20. Find the new,
standardized score for each of the following values
from the original population.
a. X � 60
b. X � 54
c. X � 72
d. X � 66

24. A distribution with a mean of � � 56 and a standard
deviation of � � 20 is transformed into a standardized
distribution with � � 50 and � � 10. Find the new,
standardized score for each of the following values
from the original population.
a. X � 46
b. X � 76
c. X � 40
d. X � 80

25. A population consists of the following N � 5 scores:
0, 6, 4, 3, and 12.
a. Compute � and � for the population.
b. Find the z-score for each score in the population.
c. Transform the original population into a new

population of N � 5 scores with a mean of 
� � 100 and a standard deviation of � � 20.

26. A sample consists of the following n � 6 scores: 2, 7,
4, 6, 4, and 7.
a. Compute the mean and standard deviation for the

sample.
b. Find the z-score for each score in the sample.
c. Transform the original sample into a new sample

with a mean of M � 50 and s � 10.
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C H A P T E R

6
Probability

Preview

6.1 Introduction to Probability

6.2 Probability and the Normal
Distribution

6.3 Probabilities and Proportions for
Scores from a Normal Distribution

6.4 Probability and the Binomial
Distribution

6.5 Looking Ahead to Inferential
Statistics

Summary

Focus on Problem Solving

Demonstrations 6.1 and 6.2

Problems

Tools You Will Need
The following items are considered essential
background material for this chapter. If you
doubt your knowledge of any of these items,
you should review the appropriate chapter or
section before proceeding.

• Proportions (math review, Appendix A)
• Fractions
• Decimals
• Percentages

• Basic algebra (math review, Appendix A)
• z-Scores (Chapter 5)
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Preview
Background: If you open a dictionary and randomly
pick one word, which are you more likely to select:

1. A word beginning with the letter K?
2. A word with a K as its third letter?

If you think about this question and answer honestly, you
probably will decide that words beginning with a K are
more probable.

A similar question was asked a group of participants in
an experiment reported by Tversky and Kahneman (1973).
Their participants estimated that words beginning with K
are twice as likely as words with a K as the third letter. In
truth, the relationship is just the opposite. There are more
than twice as many words with a K in the third position as
there are words beginning with a K. How can people be so
wrong? Do they completely misunderstand probability?

When you were deciding which type of K words are
more likely, you probably searched your memory and tried
to estimate which words are more common. How many
words can you think of that start with the letter K? How
many words can you think of that have a K as the third
letter? Because you have had years of practice alphabetiz-
ing words according to their first letter, you should find it
much easier to search your memory for words beginning
with a K than to search for words with a K in the third

position. Consequently, you are likely to conclude that
first-letter K words are more common.

If you had searched for words in a dictionary (instead
of those in your memory), you would have found more
third-letter K words, and you would have concluded (cor-
rectly) that these words are more common.

The Problem: If you open a dictionary and randomly
pick one word, it is impossible to predict exactly which
word you will get. In the same way, when researchers
recruit people to participate in research studies, it is
impossible to predict exactly which individuals will be
obtained.

The Solution: Although it is impossible to predict
exactly which word will be picked from a dictionary, or
which person will participate in a research study, you
can use probability to demonstrate that some outcomes
are more likely than others. For example, it is more
likely that you will pick a third-letter K word than a
first-letter K word. Similarly, it is more likely that you
will obtain a person with an IQ around 100 than a
person with an IQ around 150.

6.1 INTRODUCTION TO PROBABILITY

In Chapter 1, we introduced the idea that research studies begin with a general question
about an entire population, but the actual research is conducted using a sample. In this
situation, the role of inferential statistics is to use the sample data as the basis for 
answering questions about the population. To accomplish this goal, inferential proce-
dures are typically built around the concept of probability. Specifically, the relation-
ships between samples and populations are usually defined in terms of probability.

Suppose, for example, that you are selecting a single marble from a jar that con-
tains 50 black and 50 white marbles. (In this example, the jar of marbles is the popula-
tion and the single marble to be selected is the sample.) Although you cannot guarantee
the exact outcome of your sample, it is possible to talk about the potential outcomes in
terms of probabilities. In this case, you have a 50-50 chance of getting either color.
Now consider another jar (population) that has 90 black and only 10 white marbles.
Again, you cannot predict the exact outcome of a sample, but now you know that the
sample probably will be a black marble. By knowing the makeup of a population, we
can determine the probability of obtaining specific samples. In this way, probability
gives us a connection between populations and samples, and this connection is the
foundation for the inferential statistics that are presented in the chapters that follow.

You may have noticed that the preceding examples begin with a population and
then use probability to describe the samples that could be obtained. This is exactly
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backward from what we want to do with inferential statistics. Remember that the goal
of inferential statistics is to begin with a sample and then answer a general question
about the population. We reach this goal in a two-stage process. In the first stage, we
develop probability as a bridge from populations to samples. This stage involves iden-
tifying the types of samples that probably would be obtained from a specific popula-
tion. Once this bridge is established, we simply reverse the probability rules to allow us
to move from samples to populations (Figure 6.1). The process of reversing the proba-
bility relationship can be demonstrated by considering again the two jars of marbles we
looked at earlier. (Jar 1 has 50 black and 50 white marbles; jar 2 has 90 black and only
10 white marbles.) This time, suppose you are blindfolded when the sample is selected,
so you do not know which jar is being used. Your task is to look at the sample that you
obtain and then decide which jar is most likely. If you select a sample of n � 4 marbles
and all are black, which jar would you choose? It should be clear that it would be rela-
tively unlikely (low probability) to obtain this sample from jar 1; in four draws, you 
almost certainly would get at least 1 white marble. On the other hand, this sample
would have a high probability of coming from jar 2, where nearly all of the marbles are
black. Your decision, therefore, is that the sample probably came from jar 2. Note that
you now are using the sample to make an inference about the population.

Probability is a huge topic that extends far beyond the limits of introductory statistics,
and we do not attempt to examine it all here. Instead, we concentrate on the few con-
cepts and definitions that are needed for an introduction to inferential statistics. We
begin with a relatively simple definition of probability.

For a situation in which several different outcomes are possible, the probability
for any specific outcome is defined as a fraction or a proportion of all the possible
outcomes. If the possible outcomes are identified as A, B, C, D, and so on, then

probability of A �
number of outcomes classified as A
����
total number of possible outcomes

D E F I N I T I O N

DEFINING PROBABILITY

SECTION 6.1 / INTRODUCTION TO PROBABILITY 165

SamplePopulation

INFERENTIAL STATISTICS

PROBABILITY

FIGURE 6.1

The role of probability in
inferential statistics. Probability
is used to predict what kind 
of samples are likely to be
obtained from a population.
Thus, probability establishes 
a connection between samples
and populations. Inferential
statistics rely on this 
connection when they use
sample data as the basis for
making conclusions about
populations.
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For example, if you are selecting a card from a complete deck, there are 52 possi-
ble outcomes. The probability of selecting the king of hearts is p � �5

1
2�. The probability

of selecting an ace is p � �5
4
2� because there are 4 aces in the deck.

To simplify the discussion of probability, we use a notation system that eliminates
a lot of the words. The probability of a specific outcome is expressed with a p (for prob-
ability) followed by the specific outcome in parentheses. For example, the probability of
selecting a king from a deck of cards is written as p(king). The probability of obtaining
heads for a coin toss is written as p(heads).

Note that probability is defined as a proportion, or a part of the whole. This definition
makes it possible to restate any probability problem as a proportion problem. For example,
the probability problem “What is the probability of selecting a king from a deck of cards?”
can be restated as “What proportion of the whole deck consists of kings?” In each case, the
answer is �5

4
2�, or “4 out of 52.” This translation from probability to proportion may seem

trivial now, but it is a great aid when the probability problems become more complex. In
most situations, we are concerned with the probability of obtaining a particular sample
from a population. The terminology of sample and population do change the basic defini-
tion of probability. For example, the whole deck of cards can be considered as a popula-
tion, and the single card we select is the sample.

Probability values The definition we are using identifies probability as a fraction or a
proportion. If you work directly from this definition, the probability values you obtain
are expressed as fractions. For example, if you are selecting a card at random,

p(spade) � �
1
5

3
2
� � �

1
4

�

Of if you are tossing a coin,

p(heads) � �
1
2

�

You should be aware that these fractions can be expressed equally well as either
decimals or percentages:

By convention, probability values most often are expressed as decimal values. But you
should realize that any of these three forms is acceptable.

You also should note that all of the possible probability values are contained in a
limited range. At one extreme, when an event never occurs, the probability is zero, or
0% (Box 6.1). At the other extreme, when an event always occurs, the probability is 1,
or 100%. Thus, all probability values are contained in a range from 0 to 1. For example,
suppose that you have a jar containing 10 white marbles. The probability of randomly
selecting a black marble is

p(black) � �
1
0
0
� � 0

The probability of selecting a white marble is

p(white) � �
1
1

0
0
� � 1

p

p

� � �
1

4
0 25 25

1

2
0 50 50

. %

. %= = =
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If you are unsure how to convert
from fractions to decimals or
percentages, you should review
the section on proportions in the
math review, Appendix A.
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For the preceding definition of probability to be accurate, it is necessary that the outcomes
be obtained by a process called random sampling.

A random sample requires that each individual in the population has an equal
chance of being selected. 

A second requirement, necessary for many statistical formulas, states that if more than
one individual is being selected, the probabilities must stay constant from one selection to
the next. Adding this second requirement produces what is called independent random
sampling. The term independent refers to the fact that the probability of selecting any par-
ticular individual is independent of those individuals who have already been selected for
the sample. For example, the probability that you will be selected is constant and does not
change even when other individuals are selected before you are.

An independent random sample requires that each individual has an equal chance
of being selected and that the probability of being selected stays constant from one
selection to the next if more than one individual is selected.

Because independent random sample is a required component for most statistical
applications, we always assume that this is the sampling method being used. To sim-
plify discussion, we typically omit the word “independent” and simply refer to this
sampling technique as random sampling. However, you should always assume that
both requirements (equal chance and constant probability) are part of the process.

Each of the two requirements for random sampling has some interesting conse-
quences. The first assures that there is no bias in the selection process. For a population
with N individuals, each individual must have the same probability, p � �N

1�, of being 
selected. This means, for example, that you would not get a random sample of people in
your city by selecting names from a yacht-club membership list. Similarly, you would not
get a random sample of college students by selecting individuals from your psychology
classes. You also should note that the first requirement of random sampling prohibits you
from applying the definition of probability to situations in which the possible outcomes
are not equally likely. Consider, for example, the question of whether you will win a mil-
lion dollars in the lottery tomorrow. There are only two possible alternatives.

1. You will win.

2. You will not win.

According to our simple definition, the probability of winning would be one out of
two, or p � �

1
2�. However, the two alternatives are not equally likely, so the simple defi-

nition of probability does not apply.
The second requirement also is more interesting than may be apparent at first glance.

Consider, for example, the selection of n � 2 cards from a complete deck. For the first
draw, the probability of obtaining the jack of diamonds is

p( jack of diamonds) � �
5
1
2
�

After selecting one card for the sample, you are ready to draw the second card.
What is the probability of obtaining the jack of diamonds this time? Assuming that you
still are holding the first card, there are two possibilities:

D E F I N I T I O N

D E F I N I T I O N

RANDOM SAMPLING
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p( jack of diamonds) � �
5
1
1
� if the first card was not the jack of diamonds

or

p( jack of diamonds) � 0 if the first card was the jack of diamonds

In either case, the probability is different from its value for the first draw. This con-
tradicts the requirement for random sampling, which says that the probability must stay
constant. To keep the probabilities from changing from one selection to the next, it is
necessary to return each individual to the population before you make the next selection.
This process is called sampling with replacement. The second requirement for random
samples (constant probability) demands that you sample with replacement.

(Note: We are using a definition of random sampling that requires equal chance 
of selection and constant probabilities. This kind of sampling is also known as inde-
pendent random sampling, and often is called random sampling with replacement.
Many of the statistics we encounter later are founded on this kind of sampling.
However, you should realize that other definitions exist for the concept of random sam-
pling. In particular, it is very common to define random sampling without the require-
ment of constant probabilities—that is, random sampling without replacement. In
addition, there are many different sampling techniques that are used when researchers
are selecting individuals to participate in research studies.)

The situations in which we are concerned with probability usually involve a population
of scores that can be displayed in a frequency distribution graph. If you think of the
graph as representing the entire population, then different proportions of the graph rep-
resent different proportions of the population. Because probabilities and proportions are
equivalent, a particular proportion of the graph corresponds to a particular probability
in the population. Thus, whenever a population is presented in a frequency distribution
graph, it is possible to represent probabilities as proportions of the graph. The relation-
ship between graphs and probabilities is demonstrated in the following example.

We use a very simple population that contains only N � 10 scores with values 1, 1, 
2, 3, 3, 4, 4, 4, 5, 6. This population is shown in the frequency distribution graph in
Figure 6.2. If you are taking a random sample of n � 1 score from this population,

E X A M P L E  6 . 1

PROBABILITY AND
FREQUENCY DISTRIBUTIONS
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FIGURE 6.2

A frequency distribution
histogram for a population
that consists of N � 10
scores. The shaded part of
the figure indicates the 
portion of the whole 
population that corresponds
to scores greater than X � 4.
The shaded portion is 
two-tenths (p � �

1
2
0
�) of 

the whole distribution.
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L E A R N I N G  C H E C K 1. A survey of the students in a psychology class revealed that there were 19 females
and 8 males. Of the 19 females, only 4 had no brothers or sisters, and 3 of the
males were also the only child in the household. If a student is randomly selected
from this class,

a. What is the probability of obtaining a male?

b. What is the probability of selecting a student who has at least one brother or
sister?

c. What is the probability of selecting a female who has no siblings?

2. A jar contains 10 red marbles and 30 blue marbles.

a. If you randomly select 1 marble from the jar, what is the probability of obtain-
ing a red marble?

b. If you take a random sample of n � 3 marbles from the jar and the first two
marbles are both blue, what is the probability that the third marble will be red?

3. Suppose that you are going to select a random sample of n � 1 score from the
distribution in Figure 6.2. Find the following probabilities:

a. p(X � 2)

b. p(X � 5)

c. p(X � 3)

1. a. p � 8
��
27

b. p � 20��
27 

c. p � 4
��27

ANSWERS

what is the probability of obtaining an individual with a score greater than 4? In
probability notation,

p(X � 4) � ?

Using the definition of probability, there are 2 scores that meet this criterion out of
the total group of N � 10 scores, so the answer would be p � �1

2
0�. This answer can be

obtained directly from the frequency distribution graph if you recall that probability
and proportion measure the same thing. Looking at the graph (see Figure 6.2), what
proportion of the population consists of scores greater than 4? The answer is the
shaded part of the distribution—that is, 2 squares out of the total of 10 squares in the
distribution. Notice that we now are defining probability as a proportion of area in the
frequency distribution graph. This provides a very concrete and graphic way of
representing probability.

Using the same population once again, what is the probability of selecting an
individual with a score less than 5? In symbols,

p(X � 5) � ?

Going directly to the distribution in Figure 6.2, we now want to know what part
of the graph is not shaded. The unshaded portion consists of 8 out of the 10 blocks
(eight-tenths of the area of the graph), so the answer is p � �1

8
0�.
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6.2 PROBABILITY AND THE NORMAL DISTRIBUTION

The normal distribution was first introduced in Chapter 2 as an example of a commonly
occurring shape for population distributions. An example of a normal distribution is
shown in Figure 6.3.

Note that the normal distribution is symmetrical, with the highest frequency in the
middle and frequencies tapering off as you move toward either extreme. Although the
exact shape for the normal distribution is defined by an equation (see Figure 6.3), the nor-
mal shape can also be described by the proportions of area contained in each section of
the distribution. Statisticians often identify sections of a normal distribution by using 
z-scores. Figure 6.4 shows a normal distribution with several sections marked in z-score
units. You should recall that z-scores measure positions in a distribution in terms of stan-
dard deviations from the mean. (Thus, z � �1 is 1 standard deviation above the mean, 
z � �2 is 2 standard deviations above the mean, and so on.) The graph shows the per-
centage of scores that fall in each of these sections. For example, the section between the
mean (z � 0) and the point that is 1 standard deviation above the mean (z � 1) contains
34.13% of the scores. Similarly, 13.59% of the scores are located in the section between
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2. a. p � �
1
4
0
0� � 0.25

b. p � �
1
4
0
0� � 0.25. Remember that random sampling requires sampling with replacement.

3. a. p � �1
7
0� � 0.70

b. p � �1
1
0� � 0.10

c. p � �1
3
0� � 0.30

μ
X

σ

FIGURE 6.3

The normal distribution. The
exact shape of the normal
distribution is specified by 
an equation relating each 
X value (score) with each 
Y value (frequency). The 
equation is

Y � �
� 2��2�

�1 e	(X	
)2/2�
2

(� and e are mathematical
constants). In simpler terms,
the normal distribution is
symmetrical with a single
mode in the middle. The
frequency tapers off as 
you move farther from the
middle in either direction.
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1 and 2 standard deviations above the mean. In this way it is possible to define a normal
distribution in terms of its proportions; that is, a distribution is normal if and only if it has
all the right proportions.

There are two additional points to be made about the distribution shown in
Figure 6.4. First, you should realize that the sections on the left side of the distribu-
tion have exactly the same areas as the corresponding sections on the right side 
because the normal distribution is symmetrical. Second, because the locations in the
distribution are identified by z-scores, the percentages shown in the figure apply 
to any normal distribution regardless of the values for the mean and the standard 
deviation. Remember: When any distribution is transformed into z-scores, the mean 
becomes zero and the standard deviation becomes one.

Because the normal distribution is a good model for many naturally occurring dis-
tributions and because this shape is guaranteed in some circumstances (as we see in
Chapter 7), we devote considerable attention to this particular distribution. The process
of answering probability questions about a normal distribution is introduced in the fol-
lowing example.

The population distribution of SAT scores is normal with a mean of μ � 500 and a
standard deviation of � � 100. Given this information about the population and the
known proportions for a normal distribution (see Figure 6.4), we can determine the
probabilities associated with specific samples. For example, what is the probability of
randomly selecting an individual from this population who has an SAT score greater
than 700?

Restating this question in probability notation, we get

p(X � 700) � ?

We follow a step-by-step process to find the answer to this question.

1. First, the probability question is translated into a proportion question: Out of all
possible SAT scores, what proportion is greater than 700?

E X A M P L E  6 . 2
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–2 –1 0

μ

+1 +2

z

34.13%

13.59%

2.28%

FIGURE 6.4

The normal distribution
following a z-score 
transformation.
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2. The set of “all possible SAT scores” is simply the population distribution. This
population is shown in Figure 6.5. The mean is μ � 500, so the score X � 700
is to the right of the mean. Because we are interested in all scores greater than
700, we shade in the area to the right of 700. This area represents the propor-
tion we are trying to determine.

3. Identify the exact position of X � 700 by computing a z-score. For this 
example,

That is, an SAT score of X � 700 is exactly 2 standard deviations above the
mean and corresponds to a z-score of z � �2.00. We have also located this 
z-score in Figure 6.5.

4. The proportion we are trying to determine may now be expressed in terms of its
z-score:

p(z � 2.00) � ?

According to the proportions shown in Figure 6.4, all normal distributions,
regardless of the values for μ and �, have 2.28% of the scores in the tail beyond
z � �2.00. Thus, for the population of SAT scores,

p(X � 700) � p(z � �2.00) � 2.28%

Before we attempt any more probability questions, we must introduce a more useful
tool than the graph of the normal distribution shown in Figure 6.4. The graph shows
proportions for only a few selected z-score values. A more complete listing of z-scores
and proportions is provided in the unit normal table. This table lists proportions of the
normal distribution for a full range of possible z-score values.

The complete unit normal table is provided in Appendix B Table B.1, and part of
the table is reproduced in Figure 6.6. Notice that the table is structured in a four-column

THE UNIT NORMAL TABLE

z
X

�
	


�
�

	
� �

700 500

100

200

100
2 00.
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X
μ = 500 X = 700

σ =100

0
z

2.00

FIGURE 6.5

The distribution of SAT
scores described in 
Example 6.2.
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format. The first column (A) lists z-score values corresponding to different positions in
a normal distribution. If you imagine a vertical line drawn through a normal distribution,
then the exact location of the line can be described by one of the z-score values listed 
in column A. You should also realize that a vertical line separates the distribution into
two sections: a larger section called the body and a smaller section called the tail.
Columns B and C in the table identify the proportion of the distribution in each of the
two sections. Column B presents the proportion in the body (the larger portion), and 
column C presents the proportion in the tail. Finally, we have added a fourth column,
column D, that identifies the proportion of the distribution that is located between the
mean and the z-score. 

We use the distribution in Figure 6.7(a) to help introduce the unit normal table. The
figure shows a normal distribution with a vertical line drawn at z � �0.25.  Using the
portion of the table shown in Figure 6.6, find the row in the table that contains z � 0.25
in column A. Reading across the row, you should find that the line drawn z � � 0.25
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FIGURE 6.6

A portion of the unit normal table. This table lists proportions of the normal distribution
corresponding to each z-score value. Column A of the table lists z-scores. Column B
lists the proportion in the body of the normal distribution up to the z-score value.
Column C lists the proportion of the normal distribution that is located in the tail of the
distribution beyond the z-score value. Column D lists the proportion between the mean
and the z-score value.
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separates the distribution into two sections with the larger section containing 0.5987
(59.87%) of the distribution and the smaller section containing 0.4013 (40.13%) of the
distribution. Also, there is exactly 0.0987 (9.87%) of the distribution between the mean
and z � �0.25.

To make full use of the unit normal table, there are a few facts to keep in mind:

1. The body always corresponds to the larger part of the distribution whether it is
on the right-hand side or the left-hand side. Similarly, the tail is always the
smaller section whether it is on the right or the left.

2. Because the normal distribution is symmetrical, the proportions on the right-
hand side are exactly the same as the corresponding proportions on the left-
hand side. Earlier, for example, we used the unit normal table to obtain
proportions for z � �0.25. Figure 6.7(b) shows the same proportions for 
z � 	0.25. For a negative z-score, however, notice that the tail of the distribu-
tion is on the left side and the body is on the right. For a positive z-score
[Figure 6.7(a)], the positions are reversed. However, the proportions in each
section are exactly the same, with 0.55987 in the body and 0.4013 in the tail.
Once again, the table does not list negative z-score values. To find proportions
for negative z-scores, you must look up the corresponding proportions for the
positive value of z.

3. Although the z-score values change signs (� and –) from one side to the other,
the proportions are always positive. Thus, column C in the table always lists the
proportion in the tail whether it is the right-hand tail or the left-hand tail.

The unit normal table lists relationships between z-score locations and proportions in a
normal distribution. For any z-score location, you can use the table to look up the cor-
responding proportions. Similarly, if you know the proportions, you can use the table
to find the specific z-score location. Because we have defined probability as equivalent
to proportion, you can also use the unit normal table to look up probabilities for normal
distributions. The following examples demonstrate a variety of different ways that the
unit normal table can be used.

PROBABILITIES,
PROPORTIONS, AND 

Z-SCORES
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0 	0.25

Tail
0.4013

Body
0.5987

z

0	0.25

Tail
0.4013

Body
0.5987

z

FIGURE 6.7

Proportions of a normal distribution corresponding to z � �0.25 (a) and –0.25 (b).

(a) (b)
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Finding proportions or probabilities for specific z-score values For each of the
following examples, we begin with a specific z-score value and then use the unit nor-
mal table to find probabilities or proportions associated with the z-score.

What proportion of the normal distribution corresponds to z-score values greater than
z � 1.00? First, you should sketch the distribution and shade in the area you are
trying to determine. This is shown in Figure 6.8(a). In this case, the shaded portion is
the tail of the distribution beyond z � 1.00. To find this shaded area, you simply look
for z � 1.00 in column A to find the appropriate row in the unit normal table. Then
scan across the row to column C (tail) to find the proportion. Using the table in
Appendix B, you should find that the answer is 0.1587.

You also should notice that this same problem could have been phrased as a
probability question. Specifically, we could have asked, “For a normal distribution,
what is the probability of selecting a z-score value greater than z � �1.00?” Again,
the answer is p(z � 1.00) � 0.1587 (or 15.87%).

For a normal distribution, what is the probability of selecting a z-score less than 
z � 1.50? In symbols, p(z � 1.50) � ? Our goal is to determine what proportion of
the normal distribution corresponds to z-scores less than 1.50. A normal distribution
is shown in Figure 6.8(b) and z � 1.50 is marked in the distribution. Notice that we
have shaded all the values to the left of (less than) z � 1.50. This is the portion we
are trying to find. Clearly the shaded portion is more than 50%, so it corresponds to
the body of the distribution. Therefore, find z � 1.50 in column A of the unit normal
table and read across the row to obtain the proportion from column B. The answer is
p(z � 1.50) � 0.9332 (or 93.32%).

Many problems require that you find proportions for negative z-scores. For example, 
what proportion of the normal distribution is contained in the tail beyond z � –0.50? 
That is, p(z � –0.50). This portion has been shaded in Figure 6.8(c). To answer questions
with negative z-scores, simply remember that the normal distribution is symmetrical 
with a z-score of zero at the mean, positive values to the right, and negative values to 
the left. The proportion in the left tail beyond z � –0.50 is identical to the proportion 

E X A M P L E  6 . 3 C

E X A M P L E  6 . 3 B

E X A M P L E  6 . 3 A

FIGURE 6.8

The distribution for Examples 6.3A to 6.3C.

0 1.00
μ

0 1.50
μ

0−0.5
μ

Moving to the left on the X-axis
results in smaller X values and
smaller z-scores. Thus, a z-score
of –3.00 reflects a smaller value
than a z-score of –1.

(a) (b) (c)
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in the right tail beyond z � �0.50. To find this proportion, look up z � 0.50 in column A,
and read across the row to find the proportion in column C (tail). You should get an
answer of 0.3085 (30.85%).

Finding the z-score location that corresponds to specific proportions The preced-
ing examples all involved using a z-score value in column A to look up proportions in
column B or C. You should realize, however, that the table also allows you to begin
with a known proportion and then look up the corresponding z-score. The following 
examples demonstrate this process.

For a normal distribution, what z-score separates the top 10% from the remainder 
of the distribution? To answer this question, we have sketched a normal distribution
[Figure 6.9(a)] and drawn a vertical line that separates the highest 10% (approxi-
mately) from the rest. The problem is to locate the exact position of this line. For 
this distribution, we know that the tail contains 0.1000 (10%) and the body contains
0.9000 (90%). To find the z-score value, you simply locate the row in the unit normal
table that has 0.1000 in column C or 0.9000 in column B. For example, you can scan
down the values in column C (tail) until you find a proportion of 0.1000. Note that
you probably will not find the exact proportion, but you can use the closest value
listed in the table. For this example, a proportion of 0.1000 is not listed in column C
but you can use 0.1003, which is listed. Once you have found the correct proportion
in the table, simply read across the row to find the corresponding z-score value in
column A.

For this example, the z-score that separates the extreme 10% in the tail is z � 1.28.
At this point you must be careful because the table does not differentiate between the
right-hand tail and the left-hand tail of the distribution. Specifically, the final answer
could be either z � �1.28, which separates 10% in the right-hand tail, or z � –1.28,
which separates 10% in the left-hand tail. For this problem we want the right-hand tail
(the highest 10%), so the z-score value is z � �1.28.

For a normal distribution, what z-score values form the boundaries that separate the
middle 60% of the distribution from the rest of the scores?

Again, we have sketched a normal distribution [Figure 6.9(b)] and drawn vertical
lines so that roughly 60% of the distribution in the central section, with the remainder

E X A M P L E  6 . 4 B
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z � ? z � ?z � ?
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(.1000)
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(.6000)

FIGURE 6.9

The distribution for
Examples 6.4A and 6.4B.
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split equally between the two tails. The problem is to find the z-score values that
define the exact locations for the lines. To find the z-score values, we begin with
the known proportions: 0.6000 in the center and 0.4000 divided equally between
the two tails. Although these proportions can be used in several different ways, 
this example provides an opportunity to demonstrate how column D in the table 
can be used to solve problems. For this problem, the 0.6000 in the center can be
divided in half with exactly 0.3000 to the right of the mean and exactly 0.3000 to
the left. Each of these sections corresponds to the proportion listed in column D.
Begin by scanning down column D, looking for a value of 0.3000. Again, this exact
proportion is not in the table, but the closest value is 0.2995. Reading across the
row to column A, you should find a z-score value of z � 0.84. Looking again at the
sketch [Figure 6.9(b)], the right-hand line is located at z � �0.84 and the left-hand
line is located at z �	0.84.

You may have noticed that we have sketched distributions for each of the preced-
ing problems. As a general rule, you should always sketch a distribution, locate the
mean with a vertical line, and shade in the portion that you are trying to determine.
Look at your sketch. It will help you to determine which columns to use in the unit nor-
mal table. If you make a habit of drawing sketches, you will avoid careless errors when
using the table.
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L E A R N I N G  C H E C K 1. Find the proportion of a normal distribution that corresponds to each of the follow-
ing sections:

a. z � 0.25

b. z � 0.80

c. z � –1.50

d. z � –0.75

2. For a normal distribution, find the z-score location that divides the distribution as
follows:

a. Separate the top 20% from the rest.

b. Separate the top 60% from the rest.

c. Separate the middle 70% from the rest.

3. The tail will be on the right-hand side of a normal distribution for any positive 
z-score. (True or false?)

1. a. p � 0.5987

b. p � 0.2119

c. p � 0.0668

d. p � 0.7734

2. a. z � 0.84

b. z � 	0.25

c. z � 	1.04 and � 1.04

3. True

ANSWERS
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6.3 PROBABILITIES AND PROPORTIONS FOR SCORES FROM
A NORMAL DISTRIBUTION

In the preceding section, we used the unit normal table to find probabilities and pro-
portions corresponding to specific z-score values. In most situations, however, it is nec-
essary to find probabilities for specific X values. Consider the following example:

It is known that IQ scores form a normal distribution with μ � 100 and � � 15. Given this
information, what is the probability of randomly selecting an individual with an IQ score less
than 120?

This problem is asking for a specific probability or proportion of a normal distri-
bution. However, before we can look up the answer in the unit normal table, we must
first transform the IQ scores (X values) into z-scores. Thus, to solve this new kind of
probability problem, we must add one new step to the process. Specifically, to answer
probability questions about scores (X values) from a normal distribution, you must use
the following two-step procedure:

1. Transform the X values into z-scores.

2. Use the unit normal table to look up the proportions corresponding to the 
z-score values.

This process is demonstrated in the following examples. Once again, we suggest
that you sketch the distribution and shade the portion you are trying to find to avoid
careless mistakes.

We now answer the probability question about IQ scores that we presented earlier.
Specifically, what is the probability of randomly selecting an individual with an IQ
score less than 120? Restated in terms of proportions, we want to find the proportion
of the IQ distribution that corresponds to scores less than 120. The distribution is
drawn in Figure 6.10, and the portion we want has been shaded.

The first step is to change the X values into z-scores. In particular, the score of
X � 120 is changed to

z
X

�
	


�
�

	
� �

120 100

15

20

15
1 33.
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Caution: The unit normal 
table can be used only with
normal-shaped distributions. 
If a distribution is not normal,
transforming to z-scores does
not make it normal.


 � 100

� � 15

z

120

1.330

FIGURE 6.10

The distribution of IQ 
scores. The problem is 
to find the probability or
proportion of the distribution
corresponding to scores less
than 120.
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Thus, an IQ score of X � 120 corresponds to a z-score of z � 1.33, and IQ scores
less than 120 correspond to z-scores less than 1.33.

Next, look up the z-score value in the unit normal table. Because we want the
proportion of the distribution in the body to the left of X � 120 (see Figure 6.10), the
answer is in column B. Consulting the table, we see that a z-score of 1.33 corresponds
to a proportion of 0.9082. The probability of randomly selecting an individual with an
IQ less than 120 is p � 0.9082. In symbols,

p(X � 120) � p(z � 1.33) � 0.9082 (or 90.82%)

Finally, notice that we phrased this question in terms of a probability. Specifi-
cally, we asked, “What is the probability of selecting an individual with an IQ less
than 120?” However, the same question can be phrased in terms of a proportion:
“What proportion of all of the individuals in the population have IQ scores less
than 120?” Both versions ask exactly the same question and produce exactly the
same answer. A third alternative for presenting the same question is introduced in
Box 6.1.

Finding proportions/probabilities located between two scores The next example
demonstrates the process of finding the probability of selecting a score that is located
between two specific values. Although these problems can be solved using the propor-
tions of columns B and C (body and tail), they are often easier to solve with the pro-
portions listed in column D.

The highway department conducted a study measuring driving speeds on a local
section of interstate highway. They found an average speed of μ � 58 miles per hour
with a standard deviation of � � 10. The distribution was approximately normal.

E X A M P L E  6 . 6
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B O X
6.1 PROBABILITIES, PROPORTIONS, AND PERCENTILE RANKS

working. In Example 6.5, the problem is presented 
as “What is the probability of randomly selecting an
individual with an IQ of less than 120?” Exactly the
same question could be phrased as “What is the per-
centile rank for an IQ score of 120?” In each case, 
we are drawing a line at X � 120 and looking for the
proportion of the distribution on the left-hand side of
the line. Similarly, Example 6.8 asks “How much time
do you have to spend commuting each day to be in the
highest 10% nationwide?” Because this score separates
the top 10% from the bottom 90%, the same question
could be rephrased as “What is the 90th percentile for
the distribution of commuting times?”

Thus far we have discussed parts of distributions in 
terms of proportions and probabilities. However, there is
another set of terminology that deals with many of the
same concepts. Specifically, in Chapter 2 we defined the
percentile rank for a specific score as the percentage of
the individuals in the distribution who have scores that
are less than or equal to the specific score. For example,
if 70% of the individuals have scores of X � 45 or lower,
then X � 45 has a percentile rank of 70%. When a score
is referred to by its percentile rank, the score is called a
percentile. For example, a score with a percentile rank of
70% is called the 70th percentile.

Using this terminology, it is possible to rephrase
some of the probability problems that we have been
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Given this information, what proportion of the cars are traveling between 55 and 
65 miles per hour? Using probability notation, we can express the problem as

p(55 � X � 65) � ?

The distribution of driving speeds is shown in Figure 6.11 with the appropriate
area shaded. The first step is to determine the z-score corresponding to the X value at
each end of the interval.

Looking again at Figure 6.11, we see that the proportion we are seeking can 
be divided into two sections: (1) the area left of the mean, and (2) the area right of 
the mean. The first area is the proportion between the mean and z � –0.30, and the
second is the proportion between the mean and z � �0.70. Using column D of the
unit normal table, these two proportions are 0.1179 and 0.2580. The total proportion
is obtained by adding these two sections:

p(55 � X � 65) � p(–0.30 � z � �0.70) � 0.1179 � 0.2580 � 0.3759

Using the same distribution of driving speeds from the previous example, what
proportion of cars are traveling between 65 and 75 miles per hour?

p(65 � X � 75) � ?

The distribution is shown in Figure 6.12 with the appropriate area shaded. Again,
we start by determining the z-score corresponding to each end of the interval.

For X � 75: z � �
X 	

�



� � �

75
1
	

0
58

� � �
1
1
7
0
� � 1.70

For X � 65: z � �
X 	

�



� � �

65
1
	

0
58

� � �
1
7
0
� � 0.70
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FIGURE 6.11

The distribution for 
Example 6.6.
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There are several different ways to use the unit normal table to find the proportion
between these two z-scores. For this example, we use the proportions in the tail of the
distribution (column C). According to column C in the unit normal table, the proportion
in the tail beyond z � 0.70 is p � 0.2420. Note that this proportion includes the section
that we want, but it also includes an extra, unwanted section located in the tail beyond 
z � 1.70. Locating z � 1.70 in the table, and reading across the row to column C, we
see that the unwanted section is p � 0.0446. To obtain the correct answer, we subtract
the unwanted portion from the total proportion in the tail beyond z � 0.70.

p(65 � X � 75) � p(0.70 � z � 1.70) � 0.2420 	 0.0446 � 0.1974

Finding scores corresponding to specific proportions or probabilities In the previ-
ous three examples, the problem was to find the proportion or probability corresponding
to specific X values. The two-step process for finding these proportions is shown in
Figure 6.13. Thus far, we have only considered examples that move in a clockwise 
direction around the triangle shown in the figure; that is, we start with an X value that 
is transformed into a z-score, and then we use the unit normal table to look up the 
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� � 10

65 75

0 .70 1.70

FIGURE 6.12

The distribution for 
Example 6.7.

X
z-score formula

z-score

Unit
normal
table

Proportions
or

probabilities

FIGURE 6.13

Determining probabilities 
or proportions for a normal
distribution is shown as a
two-step process with 
z-scores as an intermediate
stop along the way. Note that
you cannot move directly
along the dashed line between
X values and probabilities and
proportions. Instead, you must
follow the solid lines around
the corner.
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appropriate proportion. You should realize, however, that it is possible to reverse this
two-step process so that we move backward, or counterclockwise, around the triangle.
This reverse process allows us to find the score (X value) corresponding to a specific pro-
portion in the distribution. Following the lines in Figure 6.13, we begin with a specific
proportion, use the unit normal table to look up the corresponding z-score, and then
transform the z-score into an X value. The following example demonstrates this process.

The U.S. Census Bureau (2005) reports that Americans spend an average of 
μ � 24.3 minutes commuting to work each day. Assuming that the distribution of
commuting times is normal with a standard deviation of � � 10 minutes, how much
time do you have to spend commuting each day to be in the highest 10% nationwide?
(An alternative form of the same question is presented in Box 6.1.) The distribution is
shown in Figure 6.14 with a portion representing approximately 10% shaded in the
right-hand tail.

In this problem, we begin with a proportion (10% or 0.10), and we are looking
for a score. According to the map in Figure 6.13, we can move from p (proportion) to
X (score) via z-scores. The first step is to use the unit normal table to find the z-score
that corresponds to a proportion of 0.10 in the tail. First, scan the values in column C
to locate the row that has a proportion of 0.10 in the tail of the distribution. Note that
you will not find 0.1000 exactly, but locate the closest value possible. In this case, the
closest value is 0.1003. Reading across the row, we find z � 1.28 in column A.

The next step is to determine whether the z-score is positive or negative. Remember
that the table does not specify the sign of the z-score. Looking at the distribution in
Figure 6.14, you should realize that the score we want is above the mean, so the z-score
is positive, z � �1.28.

The final step is to transform the z-score into an X value. By definition, a z-score
of �1.28 corresponds to a score that is located above the mean by 1.28 standard
deviations. One standard deviation is equal to 10 points (� � 10), so 1.28 standard
deviations is

1.28� � 1.28(10) � 12.8 points

E X A M P L E  6 . 8
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μ = 24.3

0 1.28

37.1

σ = 10

Highest 10%

FIGURE 6.14

The distribution of commuting
times for American workers.
The problem is to find the
score that separates the 
highest 10% of commuting
times from the rest.
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Thus, our score is located above the mean (μ � 24.3) by a distance of 12.8 points.
Therefore,

X � 24.3 � 12.8 � 37.1

The answer for our original question is that you must commute at least 37.1 minutes
a day to be in the top 10% of American commuters.

Again, the distribution of commuting time for American workers is normal with a
mean of μ � 24.3 minutes and a standard deviation of � � 10 minutes. For this
example, we find the range of values that defines the middle 90% of the distribution.
The entire distribution is shown in Figure 6.15 with the middle portion shaded.

The 90% (0.9000) in the middle of the distribution can be split in half with 45%
(0.4500) on each side of the mean. Looking up 0.4500, in column D of the unit normal
table, you will find that the exact proportion is not listed. However, you will find 0.4495
and 0.4505, which are equally close. Technically, either value is acceptable, but we use
0.4505 so that the total area in the middle is at least 90%. Reading across the row, you
should find a z-score of z � 1.65 in column A. Thus, the z-score at the right boundary is
z � �1.65 and the z-score at the left boundary is z � –1.65. In either case, a z-score of
1.65 indicates a location that is 1.65 standard deviations away from the mean. For the
distribution of commuting times, one standard deviation is � � 10, so 1.65 standard
deviations is a distance of

1.65� � 1.65(10) � 16.5 points

Therefore, the score at the right-hand boundary is located above the mean by
16.5 points and corresponds to X � 24.3 � 16.5 � 40.8. Similarly, the score at the
left-hand boundary is below the mean by 16.5 points and corresponds to X � 24.3 – 
16.5 � 7.8. The middle 90% of the distribution corresponds to values between 7.8 and
40.8. Thus, 90% of American commuters spend between 7.8 and 40.8 minutes commu-
ting to work each day. Only 10% of commuters spend either more time or less time.

E X A M P L E  6 . 9
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 � 24.3

Middle 90%
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7.8 40.8

	1.65 1.650

FIGURE 6.15

The distribution of commuting
times for American workers.
The problem is to find the
middle 90% of the 
distribution.
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L E A R N I N G  C H E C K 1. For a normal distribution with a mean of μ � 60 and a standard deviation of 
� � 12, find each probability value requested.

a. p(X � 66)

b. p(X � 75)

c. p(X � 57)

d. p(48 � X � 72)

2. Scores on the Mathematics section of the SAT Reasoning Test form a normal
distribution with a mean of μ � 500 and a standard deviation of � � 100.

a. If the state college only accepts students who score in the top 60% on this test,
what is the minimum score needed for admission?

b. What is the minimum score necessary to be in the top 10% of the distribution?

c. What scores form the boundaries for the middle 50% of the distribution?

3. What is the probability of selecting a score greater than 45 from a positively
skewed distribution with μ � 40 and � � 10? (Be careful.)

1. a. p � 0.3085

b. p � 0.8944

c. p � 0.4013

d. p � 0.6826

2. a. z � –0.25; X � 475

b. z � 1.28; X � 628

c. z � �0.67; X �433 and X �567

3. You cannot obtain the answer. The unit normal table cannot be used to answer this question
because the distribution is not normal.

ANSWERS

6.4 PROBABILITY AND THE BINOMIAL DISTRIBUTION

When a variable is measured on a scale consisting of exactly two categories, the resulting
data are called binomial. The term binomial can be loosely translated as “two names,” 
referring to the two categories on the measurement scale.

Binomial data can occur when a variable naturally exists with only two categories.
For example, people can be classified as male or female, and a coin toss results in 
either heads or tails. It also is common for a researcher to simplify data by collapsing
the scores into two categories. For example, a psychologist may use personality scores
to classify people as either high or low in aggression.

In binomial situations, the researcher often knows the probabilities associated with
each of the two categories. With a balanced coin, for example, p(heads) � p(tails) � �

1
2�.

The question of interest is the number of times each category occurs in a series of tri-
als or in a sample of individuals. For example:

What is the probability of obtaining 15 heads in 20 tosses of a balanced coin?
What is the probability of obtaining more than 40 introverts in a sampling of 
50 college freshmen?
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As we shall see, the normal distribution serves as an excellent model for comput-
ing probabilities with binomial data.

To answer probability questions about binomial data, we must examine the binomial
distribution. To define and describe this distribution, we first introduce some notation.

1. The two categories are identified as A and B.

2. The probabilities (or proportions) associated with each category are identified as

p � p(A) � the probability of A

q � p(B) � the probability of B

Notice that p � q � 1.00 because A and B are the only two possible outcomes.

3. The number of individuals or observations in the sample is identified by n.

4. The variable X refers to the number of times category A occurs in the sample.

Notice that X can have any value from 0 (none of the sample is in category A) to n
(all of the sample is in category A).

Using the notation presented here, the binomial distribution shows the proba-
bility associated with each value of X from X � 0 to X � n.

A simple example of a binomial distribution is presented next.

Figure 6.16 shows the binomial distribution for the number of heads obtained in 
2 tosses of a balanced coin. This distribution shows that it is possible to obtain as
many as 2 heads or as few as 0 heads in 2 tosses. The most likely outcome (highest
probability) is to obtain exactly 1 head in 2 tosses. The construction of this
binomial distribution is discussed in detail next.

For this example, the event we are considering is a coin toss. There are two
possible outcomes, heads and tails. We assume the coin is balanced, so

p p� �heads( ) 1

2

E X A M P L E  6 . 1 0
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FIGURE 6.16

The binomial distribution
showing the probability 
for the number of heads in 
2 tosses of a balanced coin.
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We are looking at a sample of n � 2 tosses, and the variable of interest is

X � the number of heads

To construct the binomial distribution, we look at all of the possible outcomes
from tossing a coin 2 times. The complete set of 4 outcomes is listed in the following
table.

1st Toss 2nd Toss

Heads Heads (Both heads)
Heads Tails (Each sequence has exactly 1 head)
Tails Heads
Tails Tails (No heads)

Notice that there are 4 possible outcomes when you toss a coin 2 times. Only 
1 of the 4 outcomes has 2 heads, so the probability of obtaining 2 heads is p � �

1
4�.

Similarly, 2 of the 4 outcomes have exactly 1 head, so the probability of 1 head is 
p � �

2
4� � �

1
2�. Finally, the probability of no heads (X � 0) is p � �

1
4�. These are the

probabilities shown in Figure 6.16.
Note that this binomial distribution can be used to answer probability questions.

For example, what is the probability of obtaining at least 1 head in 2 tosses?
According to the distribution shown in Figure 6.16, the answer is �

3
4�.

Similar binomial distributions have been constructed for the number of heads in
4 tosses of a balanced coin and in 6 tosses of a coin (Figure 6.17). It should be obvi-
ous from the binomial distributions shown in Figures 6.16 and 6.17 that the binomial

q p� �tails( ) 1

2
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FIGURE 6.17

Binomial distributions showing probabilities for the number of heads (a) in 4 tosses of a balanced
coin and (b) in 6 tosses of a balanced coin.

(a) (b)
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distribution tends toward a normal shape, especially when the sample size (n) is rela-
tively large.

It should not be surprising that the binomial distribution tends to be normal. With
n � 10 coin tosses, for example, the most likely outcome would be to obtain around 
X � 5 heads. On the other hand, values far from 5 would be very unlikely—you would
not expect to get all 10 heads or all 10 tails (0 heads) in 10 tosses. Notice that we have
described a normal-shaped distribution: The probabilities are highest in the middle
(around X � 5), and they taper off as you move toward either extreme.

We have stated that the binomial distribution tends to approximate a normal distribu-
tion, particularly when n is large. To be more specific, the binomial distribution is a
nearly perfect normal distribution when pn and qn are both equal to or greater than 10.
Under these circumstances, the binomial distribution approximates a normal distribu-
tion with the following parameters:

Mean: μ � pn (6.1)

standard deviation: (6.2)

Within this normal distribution, each value of X has a corresponding z-score,

(6.3)

The fact that the binomial distribution tends to be normal in shape means that we
can compute probability values directly from z-scores and the unit normal table.

It is important to remember that the normal distribution is only an approximation
of a true binomial distribution. Binomial values, such as the number of heads in a 
series of coin tosses, are discrete. The normal distribution is continuous. However, the
normal approximation provides an extremely accurate model for computing binomial
probabilities in many situations. Figure 6.18 shows the difference between the true 
binomial distribution, the discrete histogram, and the normal curve that approximates
the binomial distribution. Although the two distributions are slightly different, the area
under the distributions is nearly equivalent. Remember, it is the area under the distri-
bution that is used to find probabilities.

z
X X pn

npq
�

	


�
�

	

�� npq

THE NORMAL
APPROXIMATION TO THE
BINOMIAL DISTRIBUTION
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The value of 10 for pn or qn is 
a general guide, not an absolute
cutoff. Values slightly less than
10 still provide a good approxi-
mation. However, with smaller
values the normal approximation
becomes less accurate as a
substitute for the binomial 
distribution.

Coin tosses produce discrete
events. In a series of coin tosses,
you may observe 1 head, 2 heads,
3 heads, and so on, but no values
between them are possible 
(p. 21).

0 1 2 3 4 5 6 7 8 9 10
X

FIGURE 6.18

The relationship between 
the binomial distribution 
and the normal distribution.
The binomial distribution is
always a discrete histogram,
and the normal distribution
is a continuous, smooth
curve. Each X value is
represented by a bar in the
histogram or a section of 
the normal distribution.
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To gain maximum accuracy when using the normal approximation, you must 
remember that each X value in the binomial distribution actually corresponds to a bar
in the histogram. In the histogram in Figure 6.18, for example, the score X � 6 is rep-
resented by a bar that is bounded by real limits of 5.5 and 6.5. The actual probability of
X � 6 is determined by the area contained in this bar. To approximate this probability
using the normal distribution, you should find the area that is contained between the
two real limits. Similarly, if you are using the normal approximation to find the proba-
bility of obtaining a score greater than X � 6, you should use the area beyond the real
limit boundary of 6.5. The following example demonstrates how the normal approxi-
mation to the binomial distribution is used to compute probability values.

Suppose that you plan to test for ESP (extra-sensory perception) by asking people to
predict the suit of a card that is randomly selected from a complete deck. Before you
begin your test, however, you need to know what kind of performance is expected from
people who do not have ESP and are simply guessing. For these people, there are two
possible outcomes, correct or incorrect, on each trial. Because there are four different
suits, the probability of a correct prediction (assuming that there is no ESP) is p � �

1
4�

and the probability of an incorrect prediction is q � �
3
4�. With a series of n � 48 trials,

this situation meets the criteria for the normal approximation to the binomial
distribution:

pn � �
1
4� (48) � 12 qn � �

3
4� (48) � 36 Both are greater than 10.

Thus, the distribution of correct predictions forms a normal-shaped distribution
with a mean of μ � pn � 12 and a standard deviation of � � �npq

——
� �

–
9 � 3. We

can use this distribution to determine probabilities for different levels of performance.
For example, we can calculate the probability that a person without ESP would guess
correctly more than 15 times in a series of 48 trials.

Figure 6.19 shows the binomial distribution that we are considering. Because we
want the probability of obtaining more than 15 correct predictions, we must find the

E X A M P L E  6 . 1 1

X
μ � 12

X �15
(14.5–15.5)

σ �3

0
z

1.17

15.5

FIGURE 6.19

The normal approximation
of the binomial distribution
discussed in Example 6.11.
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shaded area in the tail of the distribution beyond X � 15.5. (Remember that a score of
15 corresponds to an interval from 14.5 to 15.5. We want scores beyond this interval.)
The first step is to find the z-score corresponding to X � 15.5.

Next, look up the probability in the unit normal table. In this case, we want the
proportion in the tail beyond z � 1.17. The value from the table is p � 0.1210. This is
the answer we want. The probability of correctly predicting the suit of a card more than
15 times in a series of 48 trials is only p � 0.1210 or 12.10%. Thus, it is very unlikely
for an individual without ESP to guess correctly more than 15 out of 48 trials.

z
X

�
	


�
�

	
�

15 5 12

3
1 17

.
.

L E A R N I N G  C H E C K 1. Under what circumstances is the normal distribution an accurate approximation of
the binomial distribution?

2. In the game Rock-Paper-Scissors, the probability that both players will select the
same response and tie is p � �

1
3�, and the probability that they will pick different

responses is p � �
2
3�. If two people play 72 rounds of the game and choose their

responses randomly, what is the probability that they will choose the same
response (tie) more than 28 times?

3. If you toss a balanced coin 36 times, you would expect, on the average, to get 
18 heads and 18 tails. What is the probability of obtaining exactly 18 heads in 
36 tosses?

1. When pn and qn are both greater than 10

2. With p � �
1
3� and q � �

2
3�, the binomial distribution is normal with μ � 24 and � � 4; 

p(X � 28.5) � p(z � 1.13) � 0.1292.

3. X � 18 is an interval with real limits of 17.5 and 18.5. The real limits correspond to z � �0.17,
and a probability of p � 0.1350.

ANSWERS

6.5 LOOKING AHEAD TO INFERENTIAL STATISTICS

Probability forms a direct link between samples and the populations from which they
come. As we noted at the beginning of this chapter, this link is the foundation for the
inferential statistics in future chapters. The following example provides a brief preview
of how probability is used in the context of inferential statistics.

We ended Chapter 5 with a demonstration of how inferential statistics are used to
help interpret the results of a research study. A general research situation was shown in
Figure 5.9 and is repeated here in Figure 6.20. The research begins with a population
that forms a normal distribution with a mean of μ � 400 and a standard deviation of 
� � 20. A sample is selected from the population and a treatment is administered to the
sample. The goal for the study is to evaluate the effect of the treatment.

Caution: If the question had
asked for the probability of 
15 or more correct predictions,
we would find the area beyond
X � 14.5. Read the question
carefully.
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To determine whether the treatment has an effect, the researcher simply compares
the treated sample with the original population. If the individuals in the sample have
scores around 400 (the original population mean), then we must conclude that the treat-
ment appears to have no effect. On the other hand, if the treated individuals have scores
that are noticeably different from 400, then the researcher has evidence that the treatment
does have an effect. Notice that the study is using a sample to help answer a question
about a population; this is the essence of inferential statistics.

The problem for the researcher is determining exactly what is meant by “notice-
ably different” from 400. If a treated individual has a score of X � 415, is that enough
to say that the treatment has an effect? What about X � 420 or X � 450? In Chapter 5,
we suggested that z-scores provide one method for solving this problem. Specifically,
we suggested that a z-score value beyond z � 2.00 (or –2.00) was an extreme value and,
therefore, noticeably different. However, the choice of z � �2.00 was purely arbitrary.
Now we have another tool, probability, to help us decide exactly where to set the
boundaries.

Figure 6.21 shows the original population from our hypothetical research study.
Note that most of the scores are located close to μ � 400. Also note that we have added
boundaries separating the middle 95% of the distribution from the extreme 5%, or
0.0500, in the two tails. Dividing the 0.0500 in half produces  proportions of 0.0250 in
the right-hand tail and 0.0250 in the left-hand tail. Using column C of the unit normal
table, the z-score boundaries for the right and left tails are z � �1.96 and z � –1.96,
respectively.

The boundaries set at z � �1.96 provide objective criteria for deciding whether
our sample provides evidence that the treatment has an effect. Specifically, we use the
sample data to help decide between the following two alternatives:

1. The treatment has no effect. After treatment, the scores still average μ � 400.

2. The treatment does have an effect. The treatment changes the scores so that,
after treatment, they no longer average μ � 400.

As a starting point, we assume that the first alternative is true and the treatment has
no effect. In this case, treated individuals should be no different from the individuals in
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FIGURE 6.20

A diagram of a research
study. A sample is selected
from the population and
receives a treatment. The
goal is to determine whether
the treatment has an effect.
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the original population, which is shown in Figure 6.21. Notice that, if our assumption
is correct, it is extremely unlikely (probability less than 5%) for a treated individual to
be outside the �1.96 boundaries. Therefore, if we obtain a treated individual who is
outside the boundaries, we must conclude that the assumption is probably not correct.
In this case, we are left with the second alternative (the treatment does have an effect)
as the more likely explanation.

Notice that we are comparing the treated sample with the original population to see
if the sample is noticeably different. If it is different, we can conclude that the treatment
seems to have an effect. Now we are defining “noticeably different” as meaning “very
unlikely.” Specifically, if the sample is very unlikely to have come from a population
of untreated individuals, then we must conclude that the treatment has an effect and has
caused the sample to be different.

We are using the sample data and the �1.96 boundaries, which were determined
by probabilities, to make a general decision about the treatment. If the sample falls out-
side the boundaries we make the following logical conclusion:

a. This kind of sample is very unlikely to occur if the treatment has no effect.

b. Therefore, the treatment must have an effect that changed the sample.

On the other hand, if the sample falls between the �1.96 boundaries, we conclude:

a. This is the kind of sample that is likely to occur if the treatment has no effect.

b. Therefore, the treatment does not appear to have had an effect. 


 � 400
z � 	1.96 z � �1.96

Middle 95%

High probability values
(scores near 
 � 400)

indicating that the treatment
has no effect

Extreme 5%

Scores that are very unlikely
to be obtained from the original population

and therefore provide evidence of a treatment effect

FIGURE 6.21

Using probability to evalu-
ate a treatment effect.
Values that are extremely
unlikely to be obtained from
the original population are
viewed as evidence of a
treatment effect.
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1. The probability of a particular event A is defined as a
fraction or proportion:

p(A) �

2. Our definition of probability is accurate only for
random samples. There are two requirements that must
be satisfied for a random sample:
a. Every individual in the population has an equal

chance of being selected.
b. When more than one individual is being selected, the

probabilities must stay constant. This means that
there must be sampling with replacement.

3. All probability problems can be restated as proportion
problems. The “probability of selecting a king from a
deck of cards” is equivalent to the “proportion of the
deck that consists of kings.” For frequency distributions,
probability questions can be answered by determining
proportions of area. The “probability of selecting an
individual with an IQ greater than 108” is equivalent to
the “proportion of the whole population that consists of
IQs greater than 108.”

4. For normal distributions, probabilities (proportions) can
be found in the unit normal table. The table provides a
listing of the proportions of a normal distribution that
correspond to each z-score value. With the table, it is
possible to move between X values and probabilities
using a two-step procedure:
a. The z-score formula (Chapter 5) allows you to

transform X to z or to change z back to X.
b. The unit normal table allows you to look up the

probability (proportion) corresponding to each 
z-score or the z-score corresponding to each
probability.

number of outcomes classified as A
����
total number of possible outcomes

5. Percentiles and percentile ranks measure the relative
standing of a score within a distribution (see Box 6.1).
Percentile rank is the percentage of individuals with
scores at or below a particular X value. A percentile is
an X value that is identified by its rank. The percentile
rank always corresponds to the proportion to the left of
the score in question.

6. The binomial distribution is used whenever the
measurement procedure classifies individuals into
exactly two categories. The two categories are
identified as A and B, with probabilities of

p(A) � p and p(B) � q

7. The binomial distribution gives the probability for each
value of X, where X equals the number of occurrences
of category A in a series of n events. For example, X
equals the number of heads in n � 10 tosses of a coin.

When pn and qn are both at least 10, the binomial
distribution is closely approximated by a normal
distribution with

μ � pn

8. In the normal approximation to the binomial distribution,
each value of X has a corresponding z-score:

With the z-score and the unit normal table, you can find
probability values associated with any value of X. For
maximum accuracy, you should use the appropriate real
limits for X when computing z-scores and probabilities.

z
X X pn

npq
�

	
�

	


�

�� npq

SUMMARY

KEY TERMS

probability (165)

random sample (167)

independent random sample (167)
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unit normal table (172)
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RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 6 on the book

companion website.

Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.

Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific website,
Psychology CourseMate includes an integrated interactive eBook and other interactive
learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

The statistics computer package SPSS is not structured to compute probabilities.
However, the program does report probability values as part of the inferential statistics
that we examine later in this book. In the context of inferential statistics, the probabili-
ties are called significance levels, and they warn researchers about the probability of
misinterpreting their research results.

FOCUS ON PROBLEM SOLVING

1. We have defined probability as being equivalent to a proportion, which means that
you can restate every probability problem as a proportion problem. This definition is
particularly useful when you are working with frequency distribution graphs in which
the population is represented by the whole graph and probabilities (proportions) are
represented by portions of the graph. When working problems with the normal
distribution, you always should start with a sketch of the distribution. You should
shade the portion of the graph that reflects the proportion you are looking for.

2. Remember that the unit normal table shows only positive z-scores in column A.
However, because the normal distribution is symmetrical, the proportions in the
table apply to both positive and negative z-score values.
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3. A common error for students is to use negative values for proportions on the left-
hand side of the normal distribution. Proportions (or probabilities) are always
positive: 10% is 10% whether it is in the left or right tail of the distribution.

4. The proportions in the unit normal table are accurate only for normal distributions.
If a distribution is not normal, you cannot use the table.

5. For maximum accuracy when using the normal approximation to the binomial
distribution, you must remember that each X value is an interval bounded by real
limits. For example, a score of X � 10 is actually an interval from 9.5 to 10.5. To
find the probability of obtaining an X value greater than 10, you should use the real
limit 10.5 in the z-score formula. Similarly, to find the probability of obtaining an 
X value less than 10, you should use the real limit 9.5.

DEMONSTRATION 6.1

FINDING PROBABILITY FROM THE UNIT NORMAL TABLE

A population is normally distributed with a mean of μ � 45 and a standard deviation 
of � � 4. What is the probability of randomly selecting a score that is greater than 43? 
In other words, what proportion of the distribution consists of scores greater than 43?

Sketch the distribution. For this demonstration, the distribution is normal with 
μ � 45 and � � 4. The score of X � 43 is lower than the mean and therefore is placed 
to the left of the mean. The question asks for the proportion corresponding to scores
greater than 43, so shade in the area to the right of this score. Figure 6.22 shows the
sketch.

Transform the X value to a z-score.

Find the appropriate proportion in the unit normal table. Ignoring the negative
size, locate z � –0.50 in column A. In this case, the proportion we want corresponds to
the body of the distribution and the value is found in column B. For this example,

p(X � 43) � p(z � –0.50) � 0.6915
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σ = 4

μ
45

43

FIGURE 6.22

A sketch of the distribution
for Demonstration 6.1.
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DEMONSTRATION 6.2

PROBABILITY AND THE BINOMIAL DISTRIBUTION

Suppose that you completely forgot to study for a quiz and now must guess on every
question. It is a true/false quiz with n � 40 questions. What is the probability that you
will get at least 26 questions correct just by chance? Stated in symbols,

p(X � 26) � ?

Identify p and q. This problem is a binomial situation, in which

p � probability of guessing correctly � 0.50

q � probability of guessing incorrectly � 0.50

With n � 40 quiz items, both pn and qn are greater than 10. Thus, the criteria for the
normal approximation to the binomial distribution are satisfied:

pn � 0.50(40) � 20

qn � 0.50(40) � 20

Identify the parameters, and sketch the binomial distribution. For a true/false
quiz, correct and incorrect guesses are equally likely, p � q � �

1
2�. With pn and qn both

greater than 10, the normal approximation is appropriate and has a mean and a standard
deviation as follows: 

Figure 6.23 shows the distribution. We are looking for the probability of getting X � 26
or more questions correct, so we use the lower real limit for 26, which is 25.5. 
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X
μ
20

σ = 3.16

25.5

FIGURE 6.23

The normal approximation
of a binomial distribution
with μ � 20 and � � 3.16.
The proportion of all scores
equal to or greater than 26 is
shaded. Notice that the real
lower limit (25.5) for X �
26 is used.

30991_ch06_ptg01_hr_163-198.qxd  9/2/11  11:29 PM  Page 195



The z-score for X � 25.5 is calculated as follows:

According to the unit normal table, the proportion we want is 0.0409. Thus, the proba-
bility of getting at least 26 questions right just by guessing is

p(X � 26) � 0.0409 (or 4.09%)

z
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PROBLEMS

1. A local hardware store has a “Savings Wheel” at 
the checkout. Customers get to spin the wheel and,
when the wheel stops, a pointer indicates how much
they will save. The wheel can stop in any one of 
50 sections. Of the sections, 10 produce 0% off, 
20 sections are for 10% off, 10 sections for 20%, 
5 for 30%, 3 for 40%, 1 for 50%, and 1 for 100% 
off. Assuming that all 50 sections are equally likely,
a. What is the probability that a customer’s purchase

will be free (100% off)?
b. What is the probability that a customer will get no

savings from the wheel (0% off)?
c. What is the probability that a customer will get at

least 20% off?

2. A psychology class consists of 14 males and 36 females.
If the professor selects names from the class list using
random sampling,
a. What is the probability that the first student

selected will be a female?
b. If a random sample of n � 3 students is selected

and the first two are both females, what is the
probability that the third student selected will be 
a male?

3. What are the two requirements that must be satisfied
for a random sample?

4. What is sampling with replacement, and why is it used?

5. Draw a vertical line through a normal distribution for
each of the following z-score locations. Determine
whether the tail is on the right or left side of the line
and find the proportion in the tail.
a. z � 2.00
b. z � 0.60
c. z � –1.30
d. z � –0.30

6. Draw a vertical line through a normal distribution for
each of the following z-score locations. Determine

whether the body is on the right or left side of the line
and find the proportion in the body.
a. z � 2.20
b. z � 1.60
c. z � –1.50
d. z � –0.70

7. Find each of the following probabilities for a normal
distribution.
a. p(z � 0.25)
b. p(z � –0.75)
c. p(z � 1.20)
d. p(z � –1.20)

8. What proportion of a normal distribution is located
between each of the following z-score boundaries?
a. z � –0.50 and z � �0.50
b. z � –0.90 and z � �0.90
c. z � –1.50 and z � �1.50

9. Find each of the following probabilities for a normal
distribution.
a. p(–0.25 � z � 0.25)
b. p(–2.00 � z � 2.00)
c. p(–0.30 � z � 1.00)
d. p(–1.25 � z � 0.25)

10. Find the z-score location of a vertical line that
separates a normal distribution as described in 
each of the following.
a. 20% in the tail on the left
b. 40% in the tail on the right
c. 75% in the body on the left
d. 99% in the body on the right

11. Find the z-score boundaries that separate a normal
distribution as described in each of the following.
a. The middle 20% from the 80% in the tails.
b. The middle 50% from the 50% in the tails.
c. The middle 95% from the 5% in the tails.
d. The middle 99% from the 1% in the tails.
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12. For a normal distribution with a mean of μ � 80 and 
a standard deviation of � � 20, find the proportion of
the population corresponding to each of the following
scores.
a. Scores greater than 85.
b. Scores less than 100.
c. Scores between 70 and 90.

13. A normal distribution has a mean of μ � 50 and 
a standard deviation of � � 12. For each of the
following scores, indicate whether the tail is to the
right or left of the score and find the proportion of 
the distribution located in the tail.
a. X � 53
b. X � 44
c. X � 68
d. X � 38

14. IQ test scores are standardized to produce a normal
distribution with a mean of μ � 100 and a standard
deviation of � �15. Find the proportion of the
population in each of the following IQ categories.
a. Genius or near genius: IQ greater than 140
b. Very superior intelligence: IQ between 120 

and 140
c. Average or normal intelligence: IQ between 90 

and 109

15. The distribution of scores on the SAT is approximately
normal with a mean of μ � 500 and a standard
deviation of � � 100. For the population of students
who have taken the SAT,
a. What proportion have SAT scores greater than 700?
b. What proportion have SAT scores greater than 550?
c. What is the minimum SAT score needed to be in

the highest 10% of the population?
d. If the state college only accepts students from the

top 60% of the SAT distribution, what is the
minimum SAT score needed to be accepted?

16. The distribution of SAT scores is normal with μ � 500
and � � 100.
a. What SAT score, X value, separates the top 15% of

the distribution from the rest?
b. What SAT score, X value, separates the top 10% of

the distribution from the rest?
c. What SAT score, X value, separates the top 2% of

the distribution from the rest?

17. A recent newspaper article reported the results 
of a survey of well-educated suburban parents. 
The responses to one question indicated that by 
age 2, children were watching an average of 
μ � 60 minutes of television each day. Assuming
that the distribution of television-watching times is

normal with a standard deviation of � � 20 minutes,
find each of the following proportions.
a. What proportion of 2-year-old children watch more

than 90 minutes of television each day?
b. What proportion of 2-year-old children watch less

than 20 minutes a day?

18. Information from the Department of Motor Vehicles
indicates that the average age of licensed drivers is 
μ � 45.7 years with a standard deviation of � � 12.5
years. Assuming that the distribution of drivers’ ages
is approximately normal,
a. What proportion of licensed drivers are older than

50 years old?
b. What proportion of licensed drivers are younger

than 30 years old?

19. A consumer survey indicates that the average
household spends μ � $185 on groceries each 
week. The distribution of spending amounts is
approximately normal with a standard deviation 
of � � $25. Based on this distribution,
a. What proportion of the population spends more

than $200 per week on groceries?
b. What is the probability of randomly selecting a

family that spends less than $150 per week on
groceries?

c. How much money do you need to spend on
groceries each week to be in the top 20% of 
the distribution?

20. Over the past 10 years, the local school district has
measured physical fitness for all high school freshmen.
During that time, the average score on a treadmill
endurance task has been μ � 19.8 minutes with a
standard deviation of � � 7.2 minutes. Assuming that
the distribution is approximately normal, find each of
the following probabilities.
a. What is the probability of randomly selecting 

a student with a treadmill time greater than 
25 minutes? In symbols, p(X � 25) � ?

b. What is the probability of randomly selecting a
student with a time greater than 30 minutes? In
symbols, p(X � 30) � ?

c. If the school required a minimum time of 10 minutes
for students to pass the physical education course,
what proportion of the freshmen would fail?

21. Rochester, New York, averages μ � 21.9 inches of
snow for the month of December. The distribution 
of snowfall amounts is approximately normal with 
a standard deviation of � � 6.5 inches. This year, a
local jewelry store is advertising a refund of 50% 
off of all purchases made in December, if Rochester
finishes the month with more than 3 feet (36 inches) 
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of total snowfall. What is the probability that the
jewelry store will have to pay off on its promise?

22. A multiple-choice test has 48 questions, each with four
response choices. If a student is simply guessing at the
answers,
a. What is the probability of guessing correctly for

any question?
b. On average, how many questions would a student

get correct for the entire test?
c. What is the probability that a student would get

more than 15 answers correct simply by guessing?
d. What is the probability that a student would get 15

or more answers correct simply by guessing?

23. A true/false test has 40 questions. If a students is
simply guessing at the answers,
a. What is the probability of guessing correctly for

any one question?
b. On average, how many questions would the student

get correct for the entire test?
c. What is the probability that the student would get

more than 25 answers correct simply by guessing?
d. What is the probability that the student would get

25 or more answers correct simply by guessing?

24. A roulette wheel has alternating red and black
numbered slots into one of which the ball finally 
stops to determine the winner. If a gambler always
bets on black to win, what is the probability of
winning at least 24 times in a series of 36 spins? 
(Note that at least 24 wins means 24 or more.) 

25. One test for ESP involves using Zener cards. Each
card shows one of five different symbols (square,
circle, star, cross, wavy lines), and the person being
tested has to predict the shape on each card before it 

is selected. Find each of the probabilities requested 
for a person who has no ESP and is just guessing.
a. What is the probability of correctly predicting 

20 cards in a series of 100 trials?
b. What is the probability of correctly predicting more

than 30 cards in a series of 100 trials?
c. What is the probability of correctly predicting 50 or

more cards in a series of 200 trials?

26. A trick coin has been weighted so that heads occurs
with a probability of p � �23�, and p(tails) � �13�. If you
toss this coin 72 times,
a. How many heads would you expect to get on

average?
b. What is the probability of getting more than 50

heads?
c. What is the probability of getting exactly 50 heads?

27. For a balanced coin:
a. What is the probability of getting more than 

30 heads in 50 tosses?
b. What is the probability of getting more than 

60 heads in 100 tosses?
c. Parts a and b both asked for the probability of

getting more than 60% heads in a series of coin
tosses (�

3
5

0
0� � �1

6
0
0
0� � 60%). Why do you think the two

probabilities are different?

28. A national health organization predicts that 20% of
American adults will get the flu this season. If a
sample of 100 adults is selected from the population,
a. What is the probability that at least 25 of the people

will be diagnosed with the flu? (Be careful: “at
least 25” means “25 or more.”)

b. What is the probability that fewer than 15 of the
people will be diagnosed with the flu? (Be careful:
“fewer than 15” means “14 or less.”)
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C H A P T E R

7
Probability and
Samples: The
Distribution of
Sample Means

Preview

7.1 Samples and Populations

7.2 The Distribution of Sample Means

7.3 Probability and the Distribution
of Sample Means

7.4 More About Standard Error

7.5 Looking Ahead to Inferential
Statistics

Summary

Focus on Problem Solving

Demonstration 7.1

Problems

Tools You Will Need
The following items are considered essential
background material for this chapter. If you
doubt your knowledge of any of these items,
you should review the appropriate chapter
and section before proceeding.

• Random sampling (Chapter 6)
• Probability and the normal distribution

(Chapter 6)
• z-Scores (Chapter 5)
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Preview
In this chapter we extend the topic of probability to cover
larger samples; specifically, samples that have more than
one score. Fortunately, you already know the one basic
fact governing probability for samples:

Samples tend to be similar to the populations from
which they are taken.

For example, if you take a sample from a population
that consists of 75% females and only 25% males, you
probably will get a sample that has more females than
males. Or, if you select a sample from a population for
which the average age is µ � 21 years, you probably will
get a sample with an average age around 21 years. We are
confident that you already know this basic fact because
research indicates that even 8-month-old infants under-
stand this basic law of sampling.

Xu and Garcia (2008) began one experiment by 
showing 8-month-old infants a large box filled with ping-
pong balls. The box was brought onto a puppet stage and
the front panel was opened to reveal the balls inside. The
box contained either mostly red with a few white balls 
or mostly white with a few red balls. The experimenter
alternated between the two boxes until the infants had seen
both displays several times. After the infants were familiar
with the boxes, the researchers began a series of test trials.
On each trial, the box was brought on stage with the front
panel closed. The researcher reached in the box and, one 
at a time, drew out a sample of five balls. The balls were
placed in a transparent container next to the box. On half of
the trials, the sample was rigged to have 1 red ball and 
4 white balls. For the other half, the sample had 1 white ball
and 4 red balls. The researchers then removed the front
panel to reveal the contents of the box and recorded how
long the infants continued to look at the box. The contents
of the box were either consistent with the sample, and,
therefore, expected, or inconsistent with the sample, 
and, therefore, unexpected. An expected outcome, for 
example, means that a sample with 4 red balls and 1 white

ball should come from a box with mostly red balls. This
same sample is unexpected from a box with mostly white
balls. The results showed that the infants consistently looked
longer at the unexpected outcome (M � 9.9 seconds) than at
the expected outcome (M � 7.5 seconds), indicating that the
infants considered the unexpected outcome surprising and
more interesting than the expected outcome.

The Problem: Xu and Garcia’s results strongly 
suggest that even 8-month-old infants understand the
basic principles that determine which samples have 
high probability and which have low probability.
Nevertheless, whenever you are picking ping pong 
balls from a box or recruiting people to participate in a
research study, it usually is possible to obtain thousands
or even millions of different samples from the same
population. Under these circumstances, how can we
determine the probability for obtaining any specific
sample?

The Solution: In this chapter we introduce the
distribution of sample means, which allows us to find
the exact probability of obtaining a specific sample 
mean from a specific population. This distribution
describes the entire set of all the possible sample means
for any sized sample. Because we can describe the entire
set, we can find probabilities associated with specific
sample means. (Recall from Chapter 6 that probabilities
are equivalent to proportions of the entire distribution.)
Also, because the distribution of sample means tends 
to be normal, it is possible to find probabilities using 
z-scores and the unit normal table. Although it is
impossible to predict exactly which sample will be
obtained, the probabilities allow researchers to 
determine which samples are likely (and which are 
very unlikely).

7.1 SAMPLES AND POPULATIONS

The preceding two chapters presented the topics of z-scores and probability. Whenever
a score is selected from a population, you should be able to compute a z-score that de-
scribes exactly where the score is located in the distribution. If the population is nor-
mal, you also should be able to determine the probability value for obtaining any
individual score. In a normal distribution, for example, any score located in the tail of
the distribution beyond z � �2.00 is an extreme value, and a score this large has a prob-
ability of only p � 0.0228.200
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However, the z-scores and probabilities that we have considered so far are limited
to situations in which the sample consists of a single score. Most research studies in-
volve much larger samples, such as n � 25 preschool children or n � 100 American
Idol contestants. In these situations, the sample mean, rather than a single score, is used
to answer questions about the population. In this chapter we extend the concepts of 
z-scores and probability to cover situations with larger samples. In particular, we intro-
duce a procedure for transforming a sample mean into a z-score. Thus, a researcher is
able to compute a z-score that describes an entire sample. As always, a z-score near zero
indicates a central, representative sample; a z-score beyond �2.00 or –2.00 indicates an
extreme sample. Thus, it is possible to describe how any specific sample is related to
all the other possible samples. In addition, we can use the z-scores to look up probabil-
ities for obtaining certain samples, no matter how many scores the sample contains.

In general, the difficulty of working with samples is that a sample provides an in-
complete picture of the population. Suppose, for example, a researcher randomly se-
lects a sample of n � 25 students from the state college. Although the sample should
be representative of the entire student population, there are almost certainly some seg-
ments of the population that are not included in the sample. In addition, any statistics
that are computed for the sample are not identical to the corresponding parameters for
the entire population. For example, the average IQ for the sample of 25 students is not
the same as the overall mean IQ for the entire population. This difference, or error, be-
tween sample statistics and the corresponding population parameters is called sampling
error and was illustrated in Figure 1.2 (p. 201).

Sampling error is the natural discrepancy, or amount of error, between a sam-
ple statistic and its corresponding population parameter.

Furthermore, samples are variable; they are not all the same. If you take two sep-
arate samples from the same population, the samples are different. They contain differ-
ent individuals, they have different scores, and they have different sample means. How
can you tell which sample gives the best description of the population? Can you even
predict how well a sample describes its population? What is the probability of select-
ing a sample with specific characteristics? These questions can be answered once we
establish the rules that relate samples and populations.

7.2 THE DISTRIBUTION OF SAMPLE MEANS

As noted, two separate samples probably are different even though they are taken from
the same population. The samples have different individuals, different scores, different
means, and so on. In most cases, it is possible to obtain thousands of different samples
from one population. With all these different samples coming from the same popula-
tion, it may seem hopeless to try to establish some simple rules for the relationships be-
tween samples and populations. Fortunately, however, the huge set of possible samples
forms a relatively simple and orderly pattern that makes it possible to predict the char-
acteristics of a sample with some accuracy. The ability to predict sample characteristics
is based on the distribution of sample means.

The distribution of sample means is the collection of sample means for all of
the possible random samples of a particular size (n) that can be obtained from a
population.

D E F I N I T I O N

D E F I N I T I O N

SECTION 7.2 / THE DISTRIBUTION OF SAMPLE MEANS 201
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Notice that the distribution of sample means contains all of the possible samples.
It is necessary to have all of the possible values to compute probabilities. For example,
if the entire set contains exactly 100 samples, then the probability of obtaining any spe-
cific sample is 1 out of 100: p � �1

1
00� (Box 7.1). 

Also, you should notice that the distribution of sample means is different from the
distributions that we have considered before. Until now we always have discussed 
distributions of scores; now the values in the distribution are not scores, but statistics
(sample means). Because statistics are obtained from samples, a distribution of statis-
tics is referred to as a sampling distribution.

A sampling distribution is a distribution of statistics obtained by selecting all
of the possible samples of a specific size from a population.

Thus, the distribution of sample means is an example of a sampling distribution. In
fact, it often is called the sampling distribution of M.

If you actually wanted to construct the distribution of sample means, you would
first select a random sample of a specific size (n) from a population, calculate the sam-
ple mean, and place the sample mean in a frequency distribution. Then you would 
select another random sample with the same number of scores. Again, you would cal-
culate the sample mean and add it to your distribution. You would continue selecting
samples and calculating means, over and over, until you had the complete set of all the
possible random samples. At this point, your frequency distribution would show the
distribution of sample means.

We demonstrate the process of constructing a distribution of sample means in
Example 7.1, but first we use common sense and a little logic to predict the general
characteristics of the distribution.

1. The sample means should pile up around the population mean. Samples are not
expected to be perfect but they are representative of the population. As a result,
most of the sample means should be relatively close to the population mean.

D E F I N I T I O N

202 CHAPTER 7 PROBABILITY AND SAMPLES: THE DISTRIBUTION OF SAMPLE MEANS

B O X
7.1 PROBABILITY AND THE DISTRIBUTION OF SAMPLE MEANS

question requires that you have complete information
about the population from which the sample is being
selected. In this case, you must know all of the possible
cards in the deck before you can find the probability for
selecting any specific card.

In this chapter, we are examining probability and
sample means. To find the probability for any specific
sample mean, you first must know all of the possible sam-
ple means. Therefore, we begin by defining and describing
the set of all possible sample means that can be obtained
from a particular population. Once we have specified the
complete set of all possible sample means (i.e., the distri-
bution of sample means), we can find the probability of
selecting any specific sample means.

I have a bad habit of losing playing cards. This habit is
compounded by the fact that I always save the old deck
in the hope that someday I will find the missing cards.
As a result, I have a drawer filled with partial decks of
playing cards. Suppose that I take one of these almost-
complete decks, shuffle the cards carefully, and then
randomly select one card. What is the probability that 
I will draw a king?

You should realize that it is impossible to answer
this probability question. To find the probability of
selecting a king, you must know how many cards are 
in the deck and exactly which cards are missing. (It is
crucial that you know whether any kings are missing.)
The point of this simple example is that any probability
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2. The pile of sample means should tend to form a normal-shaped distribution.
Logically, most of the samples should have means close to µ, and it should be
relatively rare to find sample means that are substantially different from µ. As a
result, the sample means should pile up in the center of the distribution (around µ)
and the frequencies should taper off as the distance between M and µ increases.
This describes a normal-shaped distribution.

3. In general, the larger the sample size, the closer the sample means should be to
the population mean, µ. Logically, a large sample should be a better representa-
tive than a small sample. Thus, the sample means obtained with a large sample
size should cluster relatively close to the population mean; the means obtained
from small samples should be more widely scattered.

As you will see, each of these three commonsense characteristics is an accurate 
description of the distribution of sample means. The following example demonstrates
the process of constructing the distribution of sample means by repeatedly selecting
samples from a population.

Consider a population that consists of only 4 scores: 2, 4, 6, 8. This population is
pictured in the frequency distribution histogram in Figure 7.1.

We are going to use this population as the basis for constructing the distribution of
sample means for n � 2. Remember: This distribution is the collection of sample means
from all of the possible random samples of n � 2 from this population. We begin by
looking at all of the possible samples. For this example, there are 16 different samples,
and they are all listed in Table 7.1. Notice that the samples are listed systematically.
First, we list all of the possible samples with X � 2 as the first score, then all of the 
possible samples with X � 4 as the first score, and so on. In this way, we can be sure
that we have all of the possible random samples.

Next, we compute the mean, M, for each of the 16 samples (see the last column
of Table 7.1). The 16 means are then placed in a frequency distribution histogram in
Figure 7.2. This is the distribution of sample means. Note that the distribution in
Figure 7.2 demonstrates two of the characteristics that we predicted for the distribu-
tion of sample means.

1. The sample means pile up around the population mean. For this example, the
population mean is µ � 5, and the sample means are clustered around a value 
of 5. It should not surprise you that the sample means tend to approximate the
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FIGURE 7.1

Frequency distribution 
histogram for a population 
of 4 scores: 2, 4, 6, 8.

Remember that random 
sampling requires sampling 
with replacement.
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population mean. After all, samples are supposed to be representative of the
population.

2. The distribution of sample means is approximately normal in shape. This is a
characteristic that is discussed in detail later and is extremely useful because we
already know a great deal about probabilities and the normal distribution
(Chapter 6).

Finally, you should notice that we can use the distribution of sample means to 
answer probability questions about sample means. For example, if you take a sample of
n � 2 scores from the original population, what is the probability of obtaining a sam-
ple mean greater than 7? In symbols,

p(M > 7) � ?

204 CHAPTER 7 PROBABILITY AND SAMPLES: THE DISTRIBUTION OF SAMPLE MEANS

Scores Sample Mean

Sample First Second (M)

1 2 2 2
2 2 4 3
3 2 6 4
4 2 8 5
5 4 2 3
6 4 4 4
7 4 6 5
8 4 8 6
9 6 2 4

10 6 4 5
11 6 6 6
12 6 8 7
13 8 2 5
14 8 4 6
15 8 6 7
16 8 8 8

TABLE 7.1

All the possible samples 
of n � 2 scores that can be 
obtained from the population
presented in Figure 7.1. 
Notice that the table lists 
random samples. This requires
sampling with replacement, 
so it is possible to select the 
same score twice.

FIGURE 7.2

The distribution of 
sample means for n � 2. 
The distribution shows 
the 16 sample means 
from Table 7.1.

0 1 2 3 4 5 6 7 8 9

1

2

3

4

Fr
e

q
u

e
n

c
y

Sample means

0

Remember that our goal in 
this chapter is to answer 
probability questions about
samples with n > 1.
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Because probability is equivalent to proportion, the probability question can be re-
stated as follows: Of all of the possible sample means, what proportion have values
greater than 7? In this form, the question is easily answered by looking at the distribu-
tion of sample means. All of the possible sample means are pictured (see Figure 7.2),
and only 1 out of the 16 means has a value greater than 7. The answer, therefore, is 1
out of 16, or p � �1

1
6�.

Example 7.1 demonstrated the construction of the distribution of sample means for an
overly simplified situation with a very small population and samples that each contain
only n � 2 scores. In more realistic circumstances, with larger populations and larger
samples, the number of possible samples increases dramatically and it is virtually im-
possible to actually obtain every possible random sample. Fortunately, it is possible 
to determine exactly what the distribution of sample means looks like without taking
hundreds or thousands of samples. Specifically, a mathematical proposition known as
the central limit theorem provides a precise description of the distribution that would
be obtained if you selected every possible sample, calculated every sample mean, and
constructed the distribution of the sample mean. This important and useful theorem
serves as a cornerstone for much of inferential statistics. Following is the essence of the
theorem.

Central limit theorem: For any population with mean µ and standard deviation �, the distri-
bution of sample means for sample size n will have a mean of µ and a standard deviation of
�/�n� and will approach a normal distribution as n approaches infinity.

The value of this theorem comes from two simple facts. First, it describes the dis-
tribution of sample means for any population, no matter what shape, mean, or standard
deviation. Second, the distribution of sample means “approaches” a normal distribution
very rapidly. By the time the sample size reaches n � 30, the distribution is almost per-
fectly normal.

Note that the central limit theorem describes the distribution of sample means by
identifying the three basic characteristics that describe any distribution: shape, central
tendency, and variability. We examine each of these.

It has been observed that the distribution of sample means tends to be a normal distri-
bution. In fact, this distribution is almost perfectly normal if either of the following
two conditions is satisfied:

1. The population from which the samples are selected is a normal distribution.

2. The number of scores (n) in each sample is relatively large, around 30 or more.

(As n gets larger, the distribution of sample means more closely approximates a
normal distribution. When n > 30, the distribution is almost normal, regardless of the
shape of the original population.)

As we noted earlier, the fact that the distribution of sample means tends to be nor-
mal is not surprising. Whenever you take a sample from a population, you expect the
sample mean to be near to the population mean. When you take lots of different sam-
ples, you expect the sample means to “pile up” around µ, resulting in a normal-shaped
distribution. You can see this tendency emerging (although it is not yet normal) in
Figure 7.2.

THE SHAPE OF THE
DISTRIBUTION OF SAMPLE

MEANS

THE CENTRAL LIMIT THEOREM
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In Example 7.1, the distribution of sample means is centered around the mean of the
population from which the samples were obtained. In fact, the average value of all the
sample means is exactly equal to the value of the population mean. This fact should be
intuitively reasonable; the sample means are expected to be close to the population
mean, and they do tend to pile up around µ. The formal statement of this phenomenon
is that the mean of the distribution of sample means always is identical to the popula-
tion mean. This mean value is called the expected value of M.

In commonsense terms, a sample mean is “expected” to be near its population
mean. When all of the possible sample means are obtained, the average value is identi-
cal to µ.

The fact that the average value of M is equal to µ was first introduced in Chapter 4
(p. 121) in the context of biased versus unbiased statistics. The sample mean is an 
example of an unbiased statistic, which means that, on average, the sample statistic 
produces a value that is exactly equal to the corresponding population parameter. In this
case, the average value of all of the sample means is exactly equal to µ.

The mean of the distribution of sample means is equal to the mean of the popu-
lation of scores, µ, and is called the expected value of M.

So far, we have considered the shape and the central tendency of the distribution of sam-
ple means. To completely describe this distribution, we need one more characteristic,
variability. The value we will be working with is the standard deviation for the distribu-
tion of sample means. This standard deviation is identified by the symbol �M and is
called the standard error of M.

When the standard deviation was first introduced in Chapter 4, we noted that
this measure of variability serves two general purposes. First, the standard deviation
describes the distribution by telling whether the individual scores are clustered close
together or scattered over a wide range. Second, the standard deviation measures
how well any individual score represents the population by providing a measure of
how much distance is reasonable to expect between a score and the population mean.
The standard error serves the same two purposes for the distribution of sample
means.

1. The standard error describes the distribution of sample means. It provides a
measure of how much difference is expected from one sample to another. When
the standard error is small, then all of the sample means are close together and
have similar values. If the standard error is large, then the sample means are
scattered over a wide range and there are big differences from one sample to
another.

2. Standard error measures how well an individual sample mean represents the
entire distribution. Specifically, it provides a measure of how much distance is
reasonable to expect between a sample mean and the overall mean for the dis-
tribution of sample means. However, because the overall mean is equal to µ, the
standard error also provides a measure of how much distance to expect between
a sample mean (M) and the population mean (µ).

Remember that a sample is not expected to provide a perfectly accurate reflection
of its population. Although a sample mean should be representative of the population
mean, there typically is some error between the sample and the population. The standard

THE STANDARD ERROR OF M

D E F I N I T I O N

THE MEAN OF THE
DISTRIBUTION OF SAMPLE

MEANS: THE EXPECTED
VALUE OF M
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error measures exactly how much difference is expected on average between a sample
mean, M, and the population mean, µ.

The standard deviation of the distribution of sample means, �M, is called the stan-
dard error of M. The standard error provides a measure of how much distance is
expected on average between a sample mean (M) and the population mean (µ).

Once again, the symbol for the standard error is �M. The � indicates that this value
is a standard deviation, and the subscript M indicates that it is the standard deviation for
the distribution of sample means. Similarly, it is common to use the symbol �M to rep-
resent the mean of the distribution of sample means. However, µM is always equal to µ
and our primary interest in inferential statistics is to compare sample means (M) with
their population means (µ). Therefore, we simply use the symbol µ to refer to the mean
of the distribution of sample means.

The standard error is an extremely valuable measure because it specifies precisely
how well a sample mean estimates its population mean—that is, how much error you
should expect, on the average, between M and µ. Remember that one basic reason for
taking samples is to use the sample data to answer questions about the population.
However, you do not expect a sample to provide a perfectly accurate picture of the pop-
ulation. There always is some discrepancy, or error, between a sample statistic and the
corresponding population parameter. Now we are able to calculate exactly how much
error to expect. For any sample size (n), we can compute the standard error, which
measures the average distance between a sample mean and the population mean.

The magnitude of the standard error is determined by two factors: (1) the size of
the sample and (2) the standard deviation of the population from which the sample is
selected. We examine each of these factors.

The sample size Earlier we predicted, based on common sense, that the size of a sam-
ple should influence how accurately the sample represents its population. Specifically,
a large sample should be more accurate than a small sample. In general, as the sample
size increases, the error between the sample mean and the population mean should de-
crease. This rule is also known as the law of large numbers.

The law of large numbers states that the larger the sample size (n), the more
probable it is that the sample mean is close to the population mean.

The population standard deviation As we noted earlier, there is an inverse rela-
tionship between the sample size and the standard error: bigger samples have smaller
error, and smaller samples have bigger error. At the extreme, the smallest possible sam-
ple (and the largest standard error) occurs when the sample consists of n � 1 score. At
this extreme, each sample is a single score and the distribution of sample means is iden-
tical to the original distribution of scores. In this case, the standard deviation for the dis-
tribution of sample means, which is the standard error, is identical to the standard
deviation for the distribution of scores. In other words, when n � 1, the standard error
� �M is identical to the standard deviation � �.

When n � 1, �M � � (standard error � standard deviation).

You can think of the standard deviation as the “starting point” for standard error.
When n � 1, the standard error and the standard deviation are the same: �M � �. 

D E F I N I T I O N

D E F I N I T I O N
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As sample size increases beyond n � 1, the sample becomes a more accurate represen-
tative of the population, and the standard error decreases. The formula for standard
error expresses this relationship between standard deviation and sample size (n).

standard error � �M � �
�

�

n�
� (7.1)

Note that the formula satisfies all of the requirements for the standard error.
Specifically,

a. As sample size (n) increases, the size of the standard error decreases. (Larger
samples are more accurate.)

b. When the sample consists of a single score (n � 1), the standard error is the
same as the standard deviation (�M � �).

In Equation 7.1 and in most of the preceding discussion, we defined standard error
in terms of the population standard deviation. However, the population standard devia-
tion (�) and the population variance (�2) are directly related, and it is easy to substitute
variance into the equation for standard error. Using the simple equality � � ��2�, the
equation for standard error can be rewritten as follows:

standard error � �M � �
�

�

n�
� � �

�
�

�

n�

2�
� � ��

�

n

2

�� (7.2)

Throughout the rest of this chapter (and in Chapter 8), we continue to define stan-
dard error in terms of the standard deviation (Equation 7.1). However, in later chapters
(starting in Chapter 9) the formula based on variance (Equation 7.2) will become more
useful.

Figure 7.3 illustrates the general relationship between standard error and sample
size. (The calculations for the data points in Figure 7.3 are presented in Table 7.2.)
Again, the basic concept is that the larger a sample is, the more accurately it represents
its population. Also note that the standard error decreases in relation to the square root
of the sample size. As a result, researchers can substantially reduce error by increasing

208 CHAPTER 7 PROBABILITY AND SAMPLES: THE DISTRIBUTION OF SAMPLE MEANS

This formula is contained in 
the central limit theorem.

1

Standard distance
between a sample

mean and
the population

mean

Standard Error
(based on � � 10)

4 9 16 25 36 49 64 100

Number of scores in the sample (n)
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1
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FIGURE 7.3

The relationship between standard error and sample size. As the sample size is increased, there
is less error between the sample mean and the population mean.
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sample size up to around n � 30. However, increasing sample size beyond n � 30 does
not produce much additional improvement in how well the sample represents the 
population.

Before we move forward with our discussion of the distribution of sample means, we
pause for a moment to emphasize the idea that we are now dealing with three different
but interrelated distributions.

1. First, we have the original population of scores. This population contains the
scores for thousands or millions of individual people, and it has its own shape,
mean, and standard deviation. For example, the population of IQ scores consists
of millions of individual IQ scores that form a normal distribution with a mean
of µ � 100 and a standard deviation of � � 15. An example of a population is
shown in Figure 7.4(a).

2. Next, we have a sample that is selected from the population. The sample consists
of a small set of scores for a few people who have been selected to represent the
entire population. For example, we could select a sample of n � 25 people and
measure each individual’s IQ score. The 25 scores could be organized in a fre-
quency distribution and we could calculate the sample mean and the sample
standard deviation. Note that the sample also has its own shape, mean, and 
standard deviation. An example of a sample is shown in Figure 7.4(b).

3. The third distribution is the distribution of sample means. This is a theoretical
distribution consisting of the sample means obtained from all of the possible
random samples of a specific size. For example, the distribution of sample means
for samples of n � 25 IQ scores would be normal with a mean (expected value) 
of µ � 100 and a standard deviation (standard error) of �M � � 3. This15

25

THREE DIFFERENT
DISTRIBUTIONS
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Sample Size (n) Standard Error

1 �M � �
�

10

1�
� � 10.00

4 �M � �
�

10

4�
� � 5.00

9 �M � �
�

10

9�
� � 3.33

16 �M � 10——
�16�

� 2.50

25 �M � 10——
�25�

� 2.00

49 �M � 10——
�49�

� 1.43

64 �M � 10——
�64�

� 1.25

10———100 �M �
�100�

� 1.00

TABLE 7.2

Calculations for the points
shown in Figure 7.3. Again,
notice that the size of the 
standard error decreases as 
the size of the sample 
increases.
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distribution, shown in Figure 7.4(c), also has its own shape, mean, and standard
deviation.

Note that the scores for the sample [Figure 7.4(b)] were taken from the origi-
nal population [Figure 7.4(a)] and that the mean for the sample is one of the
values contained in the distribution of sample means [Figure 7.4(c)]. Thus, the
three distributions are all connected, but they are all distinct.
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μ � 100

� � 15

(a) Original population of IQ scores.

80 90 100 110 120 130

s � 11.5

M � 101.2

(b) A sample of n � 25 IQ scores.

μ � 100

�M � 3

(c) The distribution of sample means. Sample means for
 all the possible random samples of n � 25 IQ scores.

FIGURE 7.4

The distribution. Part (a)
shows the population of 
IQ scores. Part (b) shows a
sample of n � 25 IQ scores.
Part (c) shows the distribu-
tion of sample means for
samples of n � 25 scores.
Note that the sample mean
from part (b) is one of the
thousands of sample means
in the part (c) distribution.
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7.3 PROBABILITY AND THE DISTRIBUTION OF SAMPLE
MEANS

The primary use of the distribution of sample means is to find the probability associ-
ated with any specific sample. Recall that probability is equivalent to proportion.
Because the distribution of sample means presents the entire set of all possible sample
means, we can use proportions of this distribution to determine probabilities. The fol-
lowing example demonstrates this process.

The population of scores on the SAT forms a normal distribution with µ � 500 and 
� � 100. If you take a random sample of n � 25 students, what is the probability that
the sample mean will be greater than M � 540?

First, you can restate this probability question as a proportion question: Out of
all of the possible sample means, what proportion have values greater than 540? 
You know about “all of the possible sample means”; this is the distribution of
sample means. The problem is to find a specific portion of this distribution.

Although we cannot construct the distribution of sample means by repeatedly
taking samples and calculating means (as in Example 7.1), we know exactly what the
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L E A R N I N G  C H E C K 1. A population has a mean of µ � 50 and a standard deviation of � � 12.

a. For samples of size n � 4, what is the mean (expected value) and the standard
deviation (standard error) for the distribution of sample means?

b. If the population distribution is not normal, describe the shape of the distribu-
tion of sample means based on n � 4.

c. For samples of size n � 36, what is the mean (expected value) and the standard
deviation (standard error) for the distribution of sample means?

d. If the population distribution is not normal, describe the shape of the distribu-
tion of sample means based on n � 36.

2. As sample size increases, the value of expected value also increases. (True or
false?)

3. As sample size increases, the value of the standard error also increases. (True or
false?)

1. a. The distribution of sample means would have a mean of µ � 50 and a standard error of
�M � 12/�4

—
� 6.

b. The distribution of sample means does not satisfy either criterion to be normal. It would
not be a normal distribution.

c. The distribution of sample means is normal and would have a mean of µ � 50 and a
standard error of �M � 12/�36

—
� 2.

d. Because the sample size is greater than 30, the distribution of sample means is a normal
distribution.

2. False. The expected value does not depend on sample size.

3. False. The standard error decreases as sample size increases.

ANSWERS

Caution: Whenever you have 
a probability question about a
sample mean, you must use the
distribution of sample means.
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distribution looks like based on the information from the central limit theorem.
Specifically, the distribution of sample means has the following characteristics:

a. The distribution is normal because the population of SAT scores is normal.

b. The distribution has a mean of 500 because the population mean is µ � 500.

c. For n � 25, the distribution has a standard error of �M � 20:

�M � �
�

�

n�
� � �

�

10

2

0

5�
� � �

10
5
0

� � 20

This distribution of sample means is shown in Figure 7.5.
We are interested in sample means greater than 540 (the shaded area in Figure 7.5),

so the next step is to use a z-score to locate the exact position of M � 540 in the dis-
tribution. The value 540 is located above the mean by 40 points, which is exactly 
2 standard deviations (in this case, exactly 2 standard errors). Thus, the z-score for 
M � 540 is z � �2.00.

Because this distribution of sample means is normal, you can use the unit normal
table to find the probability associated with z � �2.00. The table indicates that
0.0228 of the distribution is located in the tail of the distribution beyond z � �2.00.
Our conclusion is that it is very unlikely, p � 0.0228 (2.28%), to obtain a random
sample of n � 25 students with an average SAT score greater than 540.

As demonstrated in Example 7.2, it is possible to use a z-score to describe the exact
location of any specific sample mean within the distribution of sample means. The
z-score tells exactly where the sample mean is located in relation to all of the other
possible sample means that could have been obtained. As defined in Chapter 5, a 
z-score identifies the location with a signed number so that

1. The sign tells whether the location is above (�) or below (�) the mean.

2. The number tells the distance between the location and the mean in terms of the
number of standard deviations.

A z-SCORE FOR SAMPLE
MEANS
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M

z
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540
μ

σM = 20

FIGURE 7.5

The distribution of sample
means for n � 25. Samples
were selected from a normal
population with µ� 500 and
�� 100.
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However, we are now finding a location within the distribution of sample means.
Therefore, we must use the notation and terminology appropriate for this distribution.
First, we are finding the location for a sample mean (M) rather than a score (X). Second,
the standard deviation for the distribution of sample means is the standard error, �M.
With these changes, the z-score formula for locating a sample mean is

z � �
M

�

�

M

�
� (7.3)

Just as every score (X) has a z-score that describes its position in the distribution of
scores, every sample mean (M) has a z-score that describes its position in the distribu-
tion of sample means. When the distribution of sample means is normal, it is possible
to use z-scores and the unit normal table to find the probability associated with any spe-
cific sample mean (as in Example 7.2). The following example demonstrates that it also
is possible to make quantitative predictions about the kinds of samples that should be
obtained from any population.

Once again, the distribution of SAT scores forms a normal distribution with a mean
of µ � 500 and a standard deviation of � � 100. For this example, we are going to
determine what kind of sample mean is likely to be obtained as the average SAT
score for a random sample of n � 25 students. Specifically, we determine the exact
range of values that is expected for the sample mean 80% of the time.

We begin with the distribution of sample means for n � 25. As demonstrated 
in Example 7.2, this distribution is normal with an expected value of µ � 500 and a
standard error of �M � 20 (Figure 7.6). Our goal is to find the range of values that
make up the middle 80% of the distribution. Because the distribution is normal, we
can use the unit normal table. First, the 80% in the middle is split in half, with 40%
(0.4000) on each side of the mean. Looking up 0.4000 in column D (the proportion
between the mean and z), we find a corresponding z-score of z � 1.28. Thus, the 
z-score boundaries for the middle 80% are z � �1.28 and z � �1.28. By definition, 
a z-score of 1.28 represents a location that is 1.28 standard deviations (or standard
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Caution: When computing z for
a single score, use the standard
deviation, �. When computing 
z for a sample mean, you must
use the standard error, �M

(see Box 7.2).

M

z

500

40% 40% 10%10%

0 +1.28−1.28

525.6474.4
μ

20

FIGURE 7.6

The middle 80% of the
distribution of sample 
means for n � 25. Sample
were selected from a 
normal population with 
µ� 500 and �� 100.
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errors) from the mean. With a standard error of 20 points, the distance from the mean
is 1.28(20) � 25.6 points. The mean is µ � 500, so a distance of 25.6 in both
directions produces a range of values from 474.4 to 525.6.

Thus, 80% of all the possible sample means are contained in a range between
474.4 and 525.6. If we select a sample of n � 25 students, we can be 80% confident
that the mean SAT score for the sample will be in this range.

The point of Example 7.3 is that the distribution of sample means makes it possi-
ble to predict the value that ought to be obtained for a sample mean. We know, for 
example, that a sample of n � 25 students ought to have a mean SAT score around 500.
More specifically, we are 80% confident that the value of the sample mean will be be-
tween 474.4 and 525.6. The ability to predict sample means in this way is a valuable
tool for the inferential statistics that follow.
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B O X
7.2 THE DIFFERENCE BETWEEN STANDARD DEVIATION AND STANDARD ERROR

standard error � �M � �
�

�

n�
�

If you are working with a single score, then n � 1, and
the standard error becomes

standard error � �M � �
�

�

n�
� � �

�

�

1�
�

� �� standard deviation

Thus, standard error always measures the standard 
distance from the population mean for any sample size,
including n � 1.

A constant source of confusion for many students is the
difference between standard deviation and standard
error. Remember that standard deviation measures the
standard distance between a score and the population
mean, X – µ. If you are working with a distribution of
scores, the standard deviation is the appropriate measure
of variability. Standard error, on the other hand, meas-
ures the standard distance between a sample mean and
the population mean, M – µ. Whenever you have a
question concerning a sample, the standard error is the
appropriate measure of variability.

If you still find the distinction confusing, there is a
simple solution. Namely, if you always use standard
error, you always will be right. Consider the formula for
standard error:

L E A R N I N G  C H E C K 1. For a population with a mean of µ � 40 and a standard deviation of � � 8, find
the z-score corresponding to a sample mean of M � 44 for each of the following
sample sizes.

a. n � 4

b. n � 16

2. What is the probability of obtaining a sample mean greater than M � 60 for a
random sample of n � 16 scores selected from a normal population with a mean
of µ � 65 and a standard deviation of � � 20?

3. A positively skewed distribution has µ � 60 and � � 8.

a. What is the probability of obtaining a sample mean greater than M � 62 for a
sample of n � 4 scores? (Be careful. This is a trick question.)
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7.4 MORE ABOUT STANDARD ERROR

At the beginning of this chapter, we introduced the idea that it is possible to obtain
thousands of different samples from a single population. Each sample has its own indi-
viduals, its own scores, and its own sample mean. The distribution of sample means
provides a method for organizing all of the different sample means into a single picture.
Figure 7.7 shows a prototypical distribution of sample means. To emphasize the fact
that the distribution contains many different samples, we have constructed this figure
so that the distribution is made up of hundreds of small boxes, each box representing a
single sample mean. Also notice that the sample means tend to pile up around the pop-
ulation mean (µ), forming a normal-shaped distribution as predicted by the central limit
theorem.
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b. What is the probability of obtaining a sample mean greater than M � 62 for a
sample of n � 64 scores?

1. a. The standard error is �M � 4, and z �1.00.

b. The standard error is �M � 2, and z � 2.00.

2. The standard error is �M � 5, and M � 60 corresponds to z � �1.00, p(M > 60) �
p(z > –1.00) � 0.8413 (or 84.13%).

3. a. The distribution of sample means does not satisfy either of the criteria for being normal.
Therefore, you cannot use the unit normal table, and it is impossible to find the probability.

b. With n � 64, the distribution of sample means is nearly normal. The standard error is 
8/�64� � 1, the z-score is �2.00, and the probability is 0.0228.

ANSWERS

M
μ

FIGURE 7.7

An example of a typical
distribution of sample
means. Each of the small
boxes represents the mean
obtained for one sample.
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The distribution shown in Figure 7.7 provides a concrete example for reviewing
the general concepts of sampling error and standard error. Although the following
points may seem obvious, they are intended to provide you with a better understanding
of these two statistical concepts.

1. Sampling Error. The general concept of sampling error is that a sample typi-
cally does not provide a perfectly accurate representation of its population.
More specifically, there typically is some discrepancy (or error) between a
statistic computed for a sample and the corresponding parameter for the popula-
tion. As you look at Figure 7.7, notice that the individual sample means are not
exactly equal to the population mean. In fact, 50% of the samples have means
that are smaller than µ (the entire left-hand side of the distribution). Similarly,
50% of the samples produce means that overestimate the true population mean.
In general, there is some discrepancy, or sampling error, between the mean for
a sample and the mean for the population from which the sample was obtained.

2. Standard Error. Again looking at Figure 7.7, notice that most of the sample
means are relatively close to the population mean (those in the center of the
distribution). These samples provide a fairly accurate representation of the
population. On the other hand, some samples produce means that are out in the
tails of the distribution, relatively far from the population mean. These extreme
sample means do not accurately represent the population. For each individual
sample, you can measure the error (or distance) between the sample mean and
the population mean. For some samples, the error is relatively small, but for
other samples, the error is relatively large. The standard error provides a way
to measure the “average,” or standard, distance between a sample mean and the
population mean.

Thus, the standard error provides a method for defining and measuring sampling
error. Knowing the standard error gives researchers a good indication of how accurately
their sample data represent the populations that they are studying. In most research sit-
uations, for example, the population mean is unknown, and the researcher selects a
sample to help obtain information about the unknown population. Specifically, the sam-
ple mean provides information about the value of the unknown population mean. The
sample mean is not expected to give a perfectly accurate representation of the popula-
tion mean; there will be some error, and the standard error tells exactly how much error,
on average, should exist between the sample mean and the unknown population mean.
The following example demonstrates the use of standard error and provides additional
information about the relationship between standard error and standard deviation.

A recent survey of students at a local college included the following question: How
many minutes do you spend each day watching electronic video (e.g., online, TV, cell
phone, iPod, etc.). The average response was µ � 80 minutes, and the distribution of
viewing times was approximately normal with a standard deviation of � � 20 minutes.
Next, we take a sample from this population and examine how accurately the sample
mean represents the population mean. More specifically, we will examine how sample
size affects accuracy by considering three different samples: one with n � 1 student,
one with n � 4 students, and one with n � 100 students.

Figure 7.8 shows the distributions of sample means based on samples of n � 1, 
n � 4, and n � 100. Each distribution shows the collection of all possible sample
means that could be obtained for that particular sample size. Notice that all three
sampling distributions are normal (because the original population is normal), and 
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all three have the same mean, µ � 80, which is the expected value of M. However,
the three distributions differ greatly with respect to variability. We will consider each
one separately.

The smallest sample size is n � 1. When a sample consists of a single student, the
mean for the sample equals the score for the student, M � X. Thus, when n � 1, the
distribution of sample means is identical to the original population of scores. In this
case, the standard error for the distribution of sample means is equal to the standard
deviation for the original population. Equation 7.1 confirms this observation.

�M � �
�

�

n�
� � �

�

20

1�
� � 20

When the sample consists of a single student, you expect, on average, a 20-point
difference between the sample mean and the mean for the population. As we noted
earlier, the population standard deviation is the “starting point” for the standard error.
With the smallest possible sample, n � 1, the standard error is equal to the standard
deviation [see Figure 7.8(a)].

As the sample size increases, however, the standard error gets smaller. For a sample
of n � 4 students, the standard error is

�M � �
�

�

n�
� � �

�

20

4�
� � �

2
2
0
� � 10

That is, the typical (or standard) distance between M and µ is 10 points. Figure 7.8(b)
illustrates this distribution. Notice that the sample means in this distribution approximate
the population mean more closely than in the previous distribution where n � 1.

With a sample of n � 100, the standard error is still smaller.

�M � �
�

�

n�
� � �

�

2

1

0

00�
� � �

2
1
0
0
� � 2
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80

20

80

10

80

2

Distribution of M 
for n � 100

σM � 2

Distribution of M 
for n � 4
σM � 10

Distribution of M 
for n � 1

σM � σ � 20

FIGURE 7.8

The distribution of sample means for random samples of size (a) n � 1, (b) n � 4, and (c) 
n � 100 obtained from a normal population with (µ � 80) and (� � 20). Notice that the size 
of the standard error decreases as the sample size increases.

(a) (b) (c)
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A sample of n � 100 students should produce a sample mean that represents 
the population much more accurately than a sample of n � 4 or n � 1. As shown in
Figure 7.8(c), there is very little error between M and µ when n � 100. Specifically,
you would expect, on average, only a 2-point difference between the population mean
and the sample mean.

In summary, this example illustrates that with the smallest possible sample (n � 1),
the standard error and the population standard deviation are the same. When sample size
is increased, the standard error gets smaller, and the sample means tend to approximate
µ more closely. Thus, standard error defines the relationship between sample size and the
accuracy with which M represents µ.

IN THE LITERATURE
REPORTING STANDARD ERROR

As we will see later, standard error plays a very important role in inferential statistics.
Because of its crucial role, the standard error for a sample mean, rather than the
sample standard deviation, is often reported in scientific papers. Scientific journals
vary in how they refer to the standard error, but frequently the symbols SE and SEM
(for standard error of the mean) are used. The standard error is reported in two ways.
Much like the standard deviation, it may be reported in a table along with the sample
means (Table 7.3). Alternatively, the standard error may be reported in graphs.

Figure 7.9 illustrates the use of a bar graph to display information about the
sample mean and the standard error. In this experiment, two samples (groups A 
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TABLE 7.3

The mean self-consciousness
scores for participants who were
working in front of a video
camera and those who were not
(controls).

n Mean SE

Control 17 32.23 2.31
Camera 15 45.17 2.78

Group
A

M
 s

c
o

re
 (

±S
E

)

Group
B

5

0

10

15

20

25

30

35
FIGURE 7.9

The mean (�SE) score for
treatment groups A and B.
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and B) are given different treatments, and then the subjects’ scores on a dependent
variable are recorded. The mean for group A is M � 15, and for group B, it is M
� 30. For both samples, the standard error of M is �M � 4. Note that the mean is
represented by the height of the bar, and the standard error is depicted by brackets at
the top of each bar. Each bracket extends 1 standard error above and 1 standard error
below the sample mean. Thus, the graph illustrates the mean for each group plus or
minus 1 standard error (M � SE). When you glance at Figure 7.9, not only do you 
get a “picture” of the sample means, but also you get an idea of how much error you
should expect for those means.

Figure 7.10 shows how sample means and standard error are displayed in a line
graph. In this study, two samples representing different age groups are tested on a 
task for four trials. The number of errors committed on each trial is recorded for all
participants. The graph shows the mean (M) number of errors committed for each group
on each trial. The brackets show the size of the standard error for each sample mean.
Again, the brackets extend 1 standard error above and below the value of the mean.
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FIGURE 7.10

The mean (�SE) number 
of mistakes made for groups
A and B on each trial.

L E A R N I N G  C H E C K 1. A population has a standard deviation of � � 10.

a. On average, how much difference should there be between the population mean
and a single score selected from this population?

b. On average, how much difference should there be between the population mean
and the sample mean for n � 4 scores selected from this population?

c. On average, how much difference should there be between the population mean
and the sample mean for n � 25 scores selected from this population?

2. Can the value of the standard error ever be larger than the value of the population
standard deviation? Explain your answer.

3. A researcher plans to select a random sample from a population with a standard
deviation of � � 12.

a. How large a sample is needed to have a standard error of 6 points or less?

b. How large a sample is needed to have a standard error of 4 points or less?
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7.5 LOOKING AHEAD TO INFERENTIAL STATISTICS

Inferential statistics are methods that use sample data as the basis for drawing general
conclusions about populations. However, we have noted that a sample is not expected to
give a perfectly accurate reflection of its population. In particular, there will be some error
or discrepancy between a sample statistic and the corresponding population parameter. In
this chapter, we have observed that a sample mean is not exactly equal to the population
mean. The standard error of M specifies how much difference is expected on average be-
tween the mean for a sample and the mean for the population.

The natural differences that exist between samples and populations introduce a 
degree of uncertainty and error into all inferential processes. Specifically, there is always
a margin of error that must be considered whenever a researcher uses a sample mean as
the basis for drawing a conclusion about a population mean. Remember that the sample
mean is not perfect. In the next seven chapters we introduce a variety of statistical meth-
ods that all use sample means to draw inferences about population means.

In each case, the distribution of sample means and the standard error are critical
elements in the inferential process. Before we begin this series of chapters, we pause
briefly to demonstrate how the distribution of sample means, along with z-scores and
probability, can help us use sample means to draw inferences about population means.

Suppose that a psychologist is planning a research study to evaluate the effect of a new
growth hormone. It is known that regular adult rats (with no hormone) weigh an average
of µ � 400 grams. Of course, not all rats are the same size, and the distribution of their
weights is normal with � � 20. The psychologist plans to select a sample of n � 25
newborn rats, inject them with the hormone, and then measure their weights when they
become adults. The structure of this research study is shown in Figure 7.11.

The psychologist makes a decision about the effect of the hormone by comparing
the sample of treated rats with the regular untreated rats in the original population. If
the treated rats in the sample are noticeably different from untreated rats, then the
researcher has evidence that the hormone has an effect. The problem is to determine
exactly how much difference is necessary before we can say that the sample is
noticeably different.

The distribution of sample means and the standard error can help researchers
make this decision. In particular, the distribution of sample means can be used to
show exactly what would be expected for a sample of rats who do not receive any
hormone injections. This allows researchers to make a simple comparison between

a. The sample of treated rats (from the research study)

b. Samples of untreated rats (from the distribution of sample means)

E X A M P L E  7 . 5
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1. a. � � 10 points

b. �M � 5 points

c. �M � 2 points

2. No. The standard error is computed by dividing the standard deviation by the square root of
n. The standard error is always less than or equal to the standard deviation.

3. a. A sample of n � 4 or larger.

b. A sample of n � 9 or larger.

ANSWERS
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If our treated sample is noticeably different from the untreated samples, then we
have evidence that the treatment has an effect. On the other hand, if our treated sample
still looks like one of the untreated samples, then we must conclude that the treatment
does not appear to have any effect.

We begin with the original population of untreated rats and consider the distribution
of sample means for all of the possible samples of n � 25 rats. The distribution of
sample means has the following characteristics:

1. It is a normal distribution, because the population of rat weights is normal.

2. It has an expected value of 400, because the population mean for untreated rats
is µ � 400.

3. It has a standard error of �M �
20——

�2�5
� �

20
�
5

� 4, because the population standard
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Treated 
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n = 25 rats

Sample of 
n = 25 rats

μ = 400
σ = 20

FIGURE 7.11

The structure of the 
research study described in
Example 7.5. The purpose 
of the study is to determine
whether the treatment (a
growth hormone) has an
effect on weight for rats.

deviation is � � 20 and the sample size is n � 25.

The distribution of sample means is shown in Figure 7.12. Notice that a sample
of n � 25 untreated rats (without the hormone) should have a mean weight around
400 grams. To be more precise, we can use z-scores to determine the middle 95% 
of all the possible sample means. As demonstrated in Chapter 6 (p. 190), the middle
95% of a normal distribution is located between z-score boundaries of z � �1.96 
and z � �1.96 (check the unit normal table). These z-score boundaries are shown in
Figure 7.12. With a standard error of �M � 4 points, a z-score of z � 1.96 corresponds
to a distance of 1.96(4) � 7.84 points from the mean. Thus, the z-score boundaries of
�1.96 correspond to sample means of 392.16 and 407.84.

We have demonstrated that a sample of untreated rats is almost guaranteed (95%
probability) to have a sample mean between 392.16 and 407.84. If our sample has a
mean within this range, then we must conclude that our sample of treated rats is not
noticeably different from samples of untreated rats. In this case, we conclude that the
treatment does not appear to have any effect.

On the other hand, if the mean for the treated sample is outside the 95% range,
then we can conclude that our sample of treated rats is noticeably different from the
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samples that would be obtained without any treatment. In this case, the research
results provide evidence that the treatment has an effect.

In Example 7.5 we used the distribution of sample means, together with z-scores
and probability, to provide a description of what is reasonable to expect for an untreated
sample. Then, we evaluated the effect of a treatment by determining whether the treated
sample was noticeably different from an untreated sample. This procedure forms the
foundation for the inferential technique known as hypothesis testing, which is intro-
duced in Chapter 8 and repeated throughout the remainder of this book.

The research situation shown in Figure 7.11 introduces one final issue concerning sam-
ple means and standard error. In Figure 7.11, as in most research studies, the researcher
must rely on a single sample to provide an accurate representation of the population
being investigated. As we have noted, however, if you take two different samples from
the same population, the samples will have different individuals with different scores
and different sample means. Thus, every researcher must face the nagging question, “If
I had taken a different sample, would I have obtained different results?”

The importance of this question is directly related to the degree of similarity among
all the different samples. For example, if there is a high level of consistency from one
sample to another, then a researcher can be reasonably confident that the specific sam-
ple being studied provides a good measurement of the population. That is, when all of
the samples are similar, then it does not matter which one you have selected. On the
other hand, if there are big differences from one sample to another, then the researcher
is left with some doubts about the accuracy of his or her specific sample. In this case,
a different sample could have produced vastly different results.

In this context, the standard error can be viewed as a measure of the reliability of
a sample mean. The term reliability refers to the consistency of different measurements
of the same thing. More specifically, a measurement procedure is said to be reliable if
you make two different measurements of the same thing and obtain identical (or nearly
identical) values. If you view a sample as a “measurement” of a population, then a sam-
ple mean is a “measurement” of the population mean.

STANDARD ERROR AS A
MEASURE OF RELIABILITY
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z

μ = 400392.16

−1.96 +1.96

407.84

σM = 4

FIGURE 7.12

The distribution of sample
means for samples of 
n � 25 untreated rats 
(from Example 7.5).

The relationship between the
number of scores in the sample
and the size of the standard 
error is shown in Figure 7.3 on
page 208.
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If the standard error is small, then all of the possible sample means are clustered
close together and a researcher can be confident that any individual sample mean pro-
vides a reliable measure of the population. On the other hand, a large standard error in-
dicates that there are relatively large differences from one sample mean to another, and
a researcher must be concerned that a different sample could produce a different con-
clusion. Fortunately, the size of the standard error can be controlled. In particular, if a
researcher is concerned about a large standard error and the potential for big differences
from one sample to another, then the researcher has the option of reducing the standard
error by selecting a larger sample. Thus, the ability to compute the value of the standard
error provides researchers with the ability to control the reliability of their samples.

The reliability of a sample mean is directly related to the degree of confidence that
a specific sample mean is a stable and accurate representative of the population. If a re-
searcher suspects that adding one or two new scores to a sample might produce a sub-
stantial change in the sample mean, then the sample is not reliable and the researcher
has no confidence that it is stable and accurate. There are two factors that influence
whether a few new scores might substantially change a sample mean.

1. The number of scores in the sample. If there are only 2 or 3 scores in a sample,
then a few new scores can have a huge influence on the sample mean. On the
other hand, if a sample already has 100 scores, then one or two new ones can-
not have much effect.

2. The size of the population standard deviation. When the standard deviation is
large, it means that the scores are spread over a wide range of values. In this
situation it is possible to select one or two extreme scores that are very different
from the others. As we noted in Chapter 3 (p. 90), adding one or two extreme
scores to a sample can have a large influence on the sample mean. With a small
standard deviation, however, all of the scores are close together and a few new
scores should be similar to the ones already in the sample.

Notice that these two factors are the same values that are used to calculate the stan-
dard error. A large sample means that the standard error is small and the sample mean
is reliable. Also, a small population standard deviation means that the standard error is
small and the sample mean is reliable. In either case, a researcher can be confident that
adding a few new scores to an existing sample will not have a significant influence on
the sample mean.
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L E A R N I N G  C H E C K 1. A population forms a normal distribution with a mean of µ � 80 and a standard
deviation of � � 20.

a. If single score is selected from this population, how much distance would you
expect, on average, between the score and the population mean?

b. If a sample of n � 100 scores is selected from this population, how much dis-
tance would you expect, on average, between the sample mean and the popula-
tion mean?

2. A population forms a normal shaped distribution with µ � 40 and � � 8.

a. A sample of n � 16 scores from this population has a mean of M � 36. 
Would you describe this as a relatively typical sample, or is the sample mean
an extreme value? Explain your answer.

b. If the sample from part a had n � 4 scores, would it be considered typical or
extreme?
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3. The SAT scores for the entering freshman class at a local college form a normal
distribution with a mean of µ � 530 and a standard deviation of � � 80.

a. For a random sample of n � 16 students, what range of values for the sample
mean would be expected 95% of the time?

b. What range of values would be expected 95% of the time if the sample size
were n � 100?

4. An automobile manufacturer claims that a new model will average µ � 45 
miles per gallon with � � 4. A sample of n � 16 cars is tested and averages 
only M � 43 miles per gallon. Is this sample mean likely to occur if the manufac-
turer’s claim is true? Specifically, is the sample mean within the range of values
that would be expected 95% of the time? (Assume that the distribution of mileage
scores is normal.)

1. a. For a single score, the standard distance from the mean is the standard deviation, � � 20.

b. For a sample of n � 100 scores, the average distance between the sample mean and the
population mean is the standard error, �M � 20/�100� � 2.

2. a. With n � 16 the standard error is 2, and the sample mean corresponds to z � �2.00.
This is an extreme value.

b. With n � 4 the standard error is 4, and the sample mean corresponds to z � �1.00. This
is a relatively typical value.

3. a. With n � 16 the standard error is �M � 20 points. Using z � �1.96, the 95% range
extends from 490.8 to 569.2.

b. With n � 100 the standard error is only 8 points and the range extends from 514.32 to
545.68.

4. With n � 16, the standard error is �M � 1. If the real mean is µ � 45, then 95% of all
sample means should be within 1.96(1) � 1.96 points of µ � 45. This is a range of values
from 43.04 to 46.96. Our sample mean is outside this range, so it is not the kind of sample
that ought to be obtained if the manufacturer’s claim is true.

ANSWERS

1. The distribution of sample means is defined as the set
of Ms for all the possible random samples for a specific
sample size (n) that can be obtained from a given
population. According to the central limit theorem, the
parameters of the distribution of sample means are as
follows:
a. Shape. The distribution of sample means is normal if

either one of the following two conditions is satisfied:
(1) The population from which the samples are

selected is normal.
(2) The size of the samples is relatively large (n � 30

or more).
b. Central Tendency. The mean of the distribution 

of sample means is identical to the mean of the

population from which the samples are selected. The
mean of the distribution of sample means is called
the expected value of M.

c. Variability. The standard deviation of the
distribution of sample means is called the standard
error of M and is defined by the formula

�M � �
�

�

n�
� or �M � ��

�

n

2

��
Standard error measures the standard distance

between a sample mean (M) and the population mean (µ).

2. One of the most important concepts in this chapter is
standard error. The standard error is the standard

SUMMARY
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RESOURCES 225

deviation of the distribution of sample means. It measures
the standard distance between a sample mean (M) and 
the population mean (µ). The standard error tells how
much error to expect if you are using a sample mean to
represent a population mean.

3. The location of each M in the distribution of sample
means can be specified by a z-score:

z � �
M

�

�

M

�
�

Because the distribution of sample means tends to be
normal, we can use these z-scores and the unit normal

table to find probabilities for specific sample means. 
In particular, we can identify which sample means are
likely and which are very unlikely to be obtained from
any given population. This ability to find probabilities
for samples is the basis for the inferential statistics in
the chapters ahead.

4. In general terms, the standard error measures how much
discrepancy you should expect between a sample statistic
and a population parameter. Statistical inference involves
using sample statistics to make a general conclusion
about a population parameter. Thus, standard error plays
a crucial role in inferential statistics.

KEY TERMS

sampling error (201)

distribution of sample means (201)

sampling distribution (202)

central limit theorem (205)

expected value of M (206)

standard error of M (207)

law of large numbers (207)
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You can find a tutorial quiz and other learning exercises for Chapter 7 on the book

companion website. The website also provides access to two workshops entitled Standard
Error and Central Limit Theorem that review the material covered in Chapter 7.

Improve your understanding of statistics with Aplia’s auto-graded problem sets and
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The statistical computer package SPSS is not structured to compute the standard error or
a z-score for a sample mean. In later chapters, however, we introduce new inferential
statistics that are included in SPSS. When these new statistics are computed, SPSS typi-
cally includes a report of standard error that describes how accurately, on average, the
sample represents its population.

FOCUS ON PROBLEM SOLVING

1. Whenever you are working probability questions about sample means, you must use
the distribution of sample means. Remember that every probability question can be
restated as a proportion question. Probabilities for sample means are equivalent to
proportions of the distribution of sample means.

2. When computing probabilities for sample means, the most common error is to use
standard deviation (�) instead of standard error (�M) in the z-score formula. Standard
deviation measures the typical deviation (or error) for a single score. Standard error
measures the typical deviation (or error) for a sample. Remember: The larger the
sample is, the more accurately the sample represents the population. Thus, sample
size (n) is a critical part of the standard error.

Standard error � �M � �
�

�

n�
�

Although the distribution of sample means is often normal, it is not always a normal dis-
tribution. Check the criteria to be certain that the distribution is normal before you use
the unit normal table to find probabilities (see item 1a of the Summary). Remember that
all probability problems with a normal distribution are easier to solve if you sketch the
distribution and shade in the area of interest.

DEMONSTRATION 7.1

PROBABILITY AND THE DISTRIBUTION OF SAMPLE MEANS

A population forms a normal distribution with a mean of µ � 60 and a standard deviation
of � � 12. For a sample of n � 36 scores from this population, what is the probability of
obtaining a sample mean greater than 64?

p(M > 64) � ?

Rephrase the probability question as a proportion question. Out of all of the
possible sample means for n � 36, what proportion has values greater than 64? All of the
possible sample means is simply the distribution of sample means, which is normal, with a
mean of µ � 60 and a standard error of

�M � �
�

�

n
��� � �

�

12

36
�� � �

1
6
2
� � 2

The distribution is shown in Figure 7.13(a).  Because the problem is asking for the propor-
tion greater than M � 64, this portion of the distribution is shaded in Figure 7.13(b).
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Compute the z-score for the sample mean. A sample mean of M � 64 corresponds
to a z-score of

z � �
M

�

�

M

�
� � �

64 �

2
60

� �
4–
2

� 2.00

Therefore, p(M > 64) � p(z > 2.00)

Look up the proportion in the unit normal table. Find z � 2.00 in column A and
read across the row to find p � 0.0228 in column C. This is the answer as shown in
Figure 7.13(c).

p(M > 64) � p(z > 2.00) � 0.0228 (or 2.28%)

PROBLEMS 227

S T E P  2

S T E P  3

60

64

60

64 64

Column C 
p = 0.0228

Column B 
p = 0.9772

μ
60
μμ

σM = 2 σM = 2

M M M

FIGURE 7.13

Sketches of the distributions for Demonstration 7.1.

PROBLEMS

1. Briefly define each of the following:
a. Distribution of sample means
b. Expected value of M
c. Standard error of M

2. Describe the distribution of sample means (shape,
expected value, and standard error) for samples of 
n � 36 selected from a population with a mean of 
µ � 100 and a standard deviation of � � 12.

3. A sample is selected from a population with a mean of
µ � 40 and a standard deviation of � � 8.
a. If the sample has n � 4 scores, what is the expected

value of M and the standard error of M?
b. If the sample has n � 16 scores, what is the expected

value of M and the standard error of M?

4. The distribution of sample means is not always a
normal distribution. Under what circumstances is the
distribution of sample means not normal?

5. A population has a standard deviation of � � 30.
a. On average, how much difference should exist

between the population mean and the sample mean
for n � 4 scores randomly selected from the
population?

b. On average, how much difference should exist for a
sample of n � 25 scores?

c. On average, how much difference should exist for a
sample of n � 100 scores?

6. For a population with a mean of µ � 70 and a standard
deviation of � � 20, how much error, on average,
would you expect between the sample mean (M) and
the population mean for each of the following sample
sizes?
a. n � 4 scores
b. n � 16 scores
c. n � 25 scores

(a) (b) (c)
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7. For a population with a standard deviation of � � 20,
how large a sample is necessary to have a standard
error that is:
a. less than or equal to 5 points?
b. less than or equal to 2 points?
c. less than or equal to 1 point?

8. If the population standard deviation is � � 8, how
large a sample is necessary to have a standard error
that is:
a. less than 4 points?
b. less than 2 points?
c. less than 1 point?

9. For a sample of n � 25 scores, what is the value of the
population standard deviation (�) necessary to produce
each of the following a standard error values?
a. �M � 10 points?
b. �M � 5 points?
c. �M � 2 points?

10. For a population with a mean of µ � 80 and a standard
deviation of � � 12, find the z-score corresponding to
each of the following samples.
a. M � 83 for a sample of n � 4 scores
b. M � 83 for a sample of n � 16 scores
c. M � 83 for a sample of n � 36 scores

11. A sample of n � 4 scores has a mean of M � 75. Find
the z-score for this sample:
a. If it was obtained from a population with µ � 80

and � � 10.
b. If it was obtained from a population with µ � 80

and � � 20.
c. If it was obtained from a population with µ � 80

and � � 40.

12. A population forms a normal distribution with a mean
of µ � 80 and a standard deviation of � � 15. For
each of the following samples, compute the z-score for
the sample mean and determine whether the sample
mean is a typical, representative value or an extreme
value for a sample of this size.
a. M � 84 for n � 9 scores
b. M � 84 for n � 100 scores

13. A random sample is obtained from a normal
population with a mean of µ � 30 and a standard
deviation of � � 8. The sample mean is M � 33.
a. Is this a fairly typical sample mean or an extreme

value for a sample of n � 4 scores?
b. Is this a fairly typical sample mean or an extreme

value for a sample of n � 64 scores?

14. The population of IQ scores forms a normal distribution
with a mean of µ � 100 and a standard deviation of 

� � 15. What is the probability of obtaining a sample
mean greater than M � 97,
a. for a random sample of n � 9 people?
b. for a random sample of n � 25 people?

15. The scores on a standardized mathematics test for 
8th-grade children in New York State form a normal
distribution with a mean of µ � 70 and a standard
deviation of � � 10.
a. What proportion of the students in the state have

scores less than X � 75?
b. If samples of n � 4 are selected from the

population, what proportion of the samples will
have means less than M � 75?

c. If samples of n � 25 are selected from the
population, what proportion of the samples will
have means less than M � 75?

16. A population of scores forms a normal distribution
with a mean of µ � 40 and a standard deviation of 
� � 12.
a. What is the probability of randomly selecting a

score less than X � 34?
b. What is the probability of selecting a sample of 

n � 9 scores with a mean less than M � 34?
c. What is the probability of selecting a sample of 

n � 36 scores with a mean less than M � 34?

17. A population of scores forms a normal distribution
with a mean of µ � 80 and a standard deviation of 
� � 10.
a. What proportion of the scores have values between

75 and 85?
b. For samples of n � 4, what proportion of the

samples will have means between 75 and 85?
c. For samples of n � 16, what proportion of the

samples will have means between 75 and 85?

18. At the end of the spring semester, the Dean of Students
sent a survey to the entire freshman class. One question
asked the students how much weight they had gained or
lost since the beginning of the school year. The average
was a gain of µ � 9 pounds with a standard deviation of
� � 6. The distribution of scores was approximately
normal. A sample of n � 4 students is selected and the
average weight change is computed for the sample.
a. What is the probability that the sample mean will

be greater than M � 10 pounds? In symbols, what
is p(M 	 10)?

b. Of all of the possible samples, what proportion will
show an average weight loss? In symbols, what is
p(M 
 0)?

c. What is the probability that the sample mean will
be a gain of between M � 9 and M � 12 pounds?
In symbols, what is p(9 
 M 
 12)?
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19. The machinery at a food-packing plant is able to put
exactly 12 ounces of juice in every bottle. However,
some items such as apples come in variable sizes so it
is almost impossible to get exactly 3 pounds of apples
in a bag labeled “3 lbs.” Therefore, the machinery is
set to put an average of µ � 50 ounces (3 pounds and
2 ounces) in each bag. The distribution of bag weights
is approximately normal with a standard deviation of 
� � 4 ounces.
a. What is the probability of randomly picking a 

bag of apples that weighs less than 48 ounces 
(3 pounds)?

b. What is the probability of randomly picking n � 4
bags of apples that have an average weight less
than M � 48 ounces?

20. The average age for licensed drivers in the county 
is µ � 40.3 years with a standard deviation of � �
13.2 years.
a. A researcher obtained a random sample of n � 16

parking tickets and computed an average age of 
M � 38.9 years for the drivers. Compute the z-score
for the sample mean and find the probability of
obtaining an average age this young or younger
for a random sample of licensed drivers. Is it
reasonable to conclude that this set of n � 16
people is a representative sample of licensed
drivers?

b. The same researcher obtained a random sample of 
n � 36 speeding tickets and computed an average
age of M � 36.2 years for the drivers. Compute the
z-score for the sample mean and find the prob-
ability of obtaining an average age this young or
younger for a random sample of licensed drivers. 
Is it reasonable to conclude that this set of n � 36
people is a representative sample of licensed
drivers?

21. People are selected to serve on juries by randomly
picking names from the list of registered voters. 
The average age for registered voters in the county is 
µ � 44.3 years with a standard deviation of � � 12.4.
A statistician computes the average age for a group of
n � 12 people currently serving on a jury and obtains
a mean of M � 48.9 years.
a. How likely is it to obtain a random sample of 

n � 12 jurors with an average age equal to or
greater than 48.9?

b. Is it reasonable to conclude that this set of n � 12
people is not a representative random sample of
registered voters?

22. Welsh, Davis, Burke, and Williams (2002) con-
ducted a study to evaluate the effectiveness of a
carbohydrate-electrolyte drink on sports performance
and endurance. Experienced athletes were given
either a carbohydrate-electrolyte drink or a placebo
while they were tested on a series of high-intensity
exercises. One measure was how much time it took
for the athletes to run to fatigue. Data similar to the
results obtained in the study are shown in the
following table.

Time to Run to Fatigue (in minutes)

Mean SE

Placebo 21.7 2.2
Carbohydrate-electrolyte 28.6 2.7

a. Construct a bar graph that incorporates all of the
information in the table.

b. Looking at your graph, do you think that the
carbohydrate-electrolyte drink helps performance?

23. In the Preview section for this chapter, we discussed a
research study demonstrating that 8-month-old infants
appear to recognize which samples are likely to be
obtained from a population and which are not. In 
the study, the infants watched as a sample of n � 5
ping pong balls was selected from a large box. In 
one condition, the sample consisted of 1 red ball and 
4 white balls. After the sample was selected, the front
panel of the box was removed to reveal the contents.
In the expected condition, the box contained primarily
white balls like the sample and the infants looked at it
for an average of M � 7.5 seconds. In the unexpected
condition, the box had primarily red balls, unlike the
sample, and the infants looked at it for M � 9.9 seconds.
Assuming that the standard error for both means is
(�M � 1 second, draw a bar graph showing the two
sample means using brackets to show the size of the
standard error for each mean.
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Tools You Will Need
The following items are considered essen-
tial background material for this chapter. If
you doubt your knowledge of any of these
items, you should review the appropriate
chapter or section before proceeding.

• Proportions (math review, Appendix
A)

• Fractions
• Decimals
• Percentages

• Basic algebra (math review, Appendix A)
• z-Scores (Chapter 5)

C H A P T E R

8
Introduction 
to Hypothesis
Testing

Preview

8.1 The Logic of Hypothesis Testing

8.2 Uncertainty and Errors in
Hypothesis Testing

8.3 An Example of a Hypothesis Test

8.4 Directional (One-Tailed)
Hypothesis Tests

8.5 Concerns About Hypothesis
Testing: Measuring Effect Size

8.6 Statistical Power

Summary

Focus on Problem Solving

Demonstrations 8.1 and 8.2

Problems

Tools You Will Need
The following items are considered essential
background material for this chapter. If you
doubt your knowledge of any of these items,
you should review the appropriate chapter or
section before proceeding.

• z-Scores (Chapter 5)
• Distribution of sample means (Chapter 7)

• Expected value
• Standard error
• Probability and sample means
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Preview
Most of us spend more time looking down at our mobile
devices than we do looking up at the clouds. But if you 
do watch the clouds and have a little imagination, you
occasionally see them form into familiar shapes. Figure 8.1
is a photograph of a cloud formation seen over Kansas
City around Christmas in 2008. Do you recognize a 
familiar image?

The cloud pattern shown in Figure 8.1 was formed
simply by chance. Specifically, it was the random forces
of wind and air currents that produced a portrait of Santa
Claus. The clouds did not conspire to form the image, and
it was not deliberately created by a team of professional
skywriters. The point we would like to make is that what
appear to be meaningful patterns can be produced by
random chance.

The Problem Researchers often find meaningful
patterns in the sample data obtained in research studies.
The problem is deciding whether the patterns found in a
sample reflect real patterns that exist in the population
or are simply random, chance occurrences.

The Solution To differentiate between real,
systematic patterns and random, chance occurrences,
researchers rely on a statistical technique known as
hypothesis testing, which is introduced in this chapter.
As you will see, a hypothesis test first determines the
probability that the pattern could have been produced
by chance alone. If this probability is large enough, then
we conclude that the pattern can reasonably be
explained by chance. However, if the probability is
extremely small, then we can rule out chance as a
plausible explanation and conclude that some
meaningful, systematic force has created the pattern.
For example, it is reasonable, once in a lifetime, to see 
a cloud formation that resembles Santa Claus. However,
it would be extremely unlikely if the clouds also
included the words “Merry Christmas” spelled out
beneath Santa’s face. If this happened, we would
conclude that the pattern was not produced by the
random forces of chance, but rather was created by a
deliberate, systematic act.

FIGURE 8.1

A cloud formation seen over
Kansas City.
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8.1 THE LOGIC OF HYPOTHESIS TESTING

It usually is impossible or impractical for a researcher to observe every individual in 
a population. Therefore, researchers usually collect data from a sample and then use 
the sample data to help answer questions about the population. Hypothesis testing is a 
statistical procedure that allows researchers to use sample data to draw inferences about
the population of interest.

Hypothesis testing is one of the most commonly used inferential procedures. In fact,
most of the remainder of this book examines hypothesis testing in a variety of different
situations and applications. Although the details of a hypothesis test change from one 
situation to another, the general process remains constant. In this chapter, we introduce
the general procedure for a hypothesis test. You should notice that we use the statistical
techniques that have been developed in the preceding three chapters—that is, we com-
bine the concepts of z-scores, probability, and the distribution of sample means to create
a new statistical procedure known as a hypothesis test.

A hypothesis test is a statistical method that uses sample data to evaluate a
hypothesis about a population.

In very simple terms, the logic underlying the hypothesis-testing procedure is as
follows:

1. First, we state a hypothesis about a population. Usually the hypothesis concerns
the value of a population parameter. For example, we might hypothesize that
American adults gain an average of � � 7 pounds between Thanksgiving and
New Year’s Day each year.

2. Before we select a sample, we use the hypothesis to predict the characteristics
that the sample should have. For example, if we predict that the average weight
gain for the population is � � 7 pounds, then we would predict that our sample
should have a mean around 7 pounds. Remember: The sample should be similar
to the population, but you always expect a certain amount of error.

3. Next, we obtain a random sample from the population. For example, we might
select a sample of n � 200 American adults and measure the average weight
change for the sample between Thanksgiving and New Year’s Day.

4. Finally, we compare the obtained sample data with the prediction that was made
from the hypothesis. If the sample mean is consistent with the prediction, then
we conclude that the hypothesis is reasonable. But if there is a big discrepancy
between the data and the prediction, then we decide that the hypothesis is wrong.

A hypothesis test is typically used in the context of a research study. That is, a researcher
completes a research study and then uses a hypothesis test to evaluate the results. Depending
on the type of research and the type of data, the details of the hypothesis test change from one
research situation to another. In later chapters, we examine different versions of hypothesis
testing that are used for different kinds of research. For now, however, we focus on the basic
elements that are common to all hypothesis tests. To accomplish this general goal, we 
examine a hypothesis test as it applies to the simplest possible situation—using a sample
mean to test a hypothesis about a population mean.

In the six chapters that follow, we consider hypothesis testing in more complex 
research situations involving sample means and mean differences. In Chapters 15 and 16,
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we look at correlational research and examine how the relationships obtained for sample
data are used to evaluate hypotheses about relationships in the population. In Chapters 17
and 18, we examine how the proportions that exist in a sample are used to test hypothe-
ses about the corresponding proportions in the population. Chapter 19 reviews the com-
plete set of hypothesis tests and presents a guide to help you find the appropriate test for
a specific set of data.

Once again, we introduce hypothesis testing with a situation in which a researcher
is using one sample mean to evaluate a hypothesis about one unknown population mean.

The unknown population Figure 8.2 shows the general research situation that we
use to introduce the process of hypothesis testing. Notice that the researcher begins with
a known population. This is the set of individuals as they exist before treatment. For
this example, we are assuming that the original set of scores forms a normal distribu-
tion with � � 80 and � � 20. The purpose of the research is to determine the effect of
a treatment on the individuals in the population. That is, the goal is to determine what
happens to the population after the treatment is administered.

To simplify the hypothesis-testing situation, one basic assumption is made about
the effect of the treatment: If the treatment has any effect, it is simply to add a constant
amount to (or subtract a constant amount from) each individual’s score. You should 
recall from Chapters 3 and 4 that adding (or subtracting) a constant changes the mean
but does not change the shape of the population, nor does it change the standard devi-
ation. Thus, we assume that the population after treatment has the same shape as the
original population and the same standard deviation as the original population. This 
assumption is incorporated into the situation shown in Figure 8.2.

Note that the unknown population, after treatment, is the focus of the research
question. Specifically, the purpose of the research is to determine what would happen
if the treatment were administered to every individual in the population.

The sample in the research study The goal of the hypothesis test is to determine
whether the treatment has any effect on the individuals in the population (see Figure 8.2).
Usually, however, we cannot administer the treatment to the entire population, so the 
actual research study is conducted using a sample. Figure 8.3 shows the structure of the 
research study from the point of view of the hypothesis test. The original population, 
before treatment, is shown on the left-hand side. The unknown population, after treatment,
is shown on the right-hand side. Note that the unknown population is actually hypothetical
(the treatment is never administered to the entire population). Instead, we are asking what
would happen if the treatment were administered to the entire population. The research
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μ = 80

Known population
before treatment

σ =   20

μ = ?

Unknown population
after treatment

σ =       20
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FIGURE 8.2

The basic experimental
situation for hypothesis
testing. It is assumed that 
the parameter � is known 
for the population before
treatment. The purpose 
of the experiment is to 
determine whether the 
treatment has an effect on 
the population mean.
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study involves selecting a sample from the original population, administering the treatment
to the sample, and then recording scores for the individuals in the treated sample. Notice
that the research study produces a treated sample. Although this sample was obtained 
indirectly, it is equivalent to a sample that is obtained directly from the unknown treated
population. The hypothesis test uses the treated sample on the right-hand side of Figure 8.3
to evaluate a hypothesis about the unknown treated population on the right side of the 
figure.

A hypothesis test is a formalized procedure that follows a standard series of oper-
ations. In this way, researchers have a standardized method for evaluating the results of
their research studies. Other researchers recognize and understand exactly how the data
were evaluated and how conclusions were reached. To emphasize the formal structure
of a hypothesis test, we present hypothesis testing as a four-step process that is used
throughout the rest of the book. The following example provides a concrete foundation
for introducing the hypothesis-testing procedure.

Researchers have noted a decline in cognitive functioning as people age (Bartus,
1990). However, the results from other research suggest that the antioxidants in foods
such as blueberries can reduce and even reverse these age-related declines, at least in
laboratory rats (Joseph et al., 1999). Based on these results, one might theorize that
the same antioxidants might also benefit elderly humans. Suppose a researcher is
interested in testing this theory.

Standardized neuropsychological tests such as the Wisconsin Card Sorting Test
can be used to measure conceptual thinking ability and mental flexibility (Heaton,
Chelune, Talley, Kay, & Curtiss, 1993). Performance on this type of test declines
gradually with age. Suppose that our researcher selects a test for which adults older
than 65 have an average score of � � 80 with a standard deviation of � � 20. The
distribution of test scores is approximately normal. The researcher’s plan is to obtain
a sample of n � 25 adults who are older than 65, and give each participant a daily
dose of a blueberry supplement that is very high in antioxidants. After taking the
supplement for 6 months, the participants are given the neuropsychological test to
measure their level of cognitive function. If the mean score for the sample is

E X A M P L E  8 . 1
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FIGURE 8.3

From the point of view of 
the hypothesis test, the entire
population receives the 
treatment and then a sample
is selected from the treated
population. In the actual
research study, a sample is
selected from the original
population and the treatment
is administered to the sample.
From either perspective, the
result is a treated sample 
that represents the treated
population.
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noticeably different from the mean for the general population of elderly adults, then
the researcher can conclude that the supplement does appear to have an effect on
cognitive function. On the other hand, if the sample mean is around 80 (the same as
the general population mean), the researcher must conclude that the supplement does
not appear to have any effect.

Figure 8.3 depicts the research situation that was described in the preceding example.
Notice that the population after treatment is unknown. Specifically, we do not know
what will happen to the mean score if the entire population of elderly adults is given the
blueberry supplement. However, we do have a sample of n � 25 participants who have
received the supplement and we can use this sample to help draw inferences about the
unknown population. The following four steps outline the hypothesis-testing procedure
that allows us to use sample data to answer questions about an unknown population.

As the name implies, the process of hypothesis testing begins by stating a hypothesis
about the unknown population. Actually, we state two opposing hypotheses. Notice that
both hypotheses are stated in terms of population parameters.

The first, and most important, of the two hypotheses is called the null hypothesis.
The null hypothesis states that the treatment has no effect. In general, the null hypoth-
esis states that there is no change, no effect, no difference—nothing happened, hence
the name null. The null hypothesis is identified by the symbol H0. (The H stands for 
hypothesis, and the zero subscript indicates that this is the zero-effect hypothesis.) 
For the study in Example 8.1, the null hypothesis states that the blueberry supplement
has no effect on cognitive functioning for the population of adults who are more than
65 years old. In symbols, this hypothesis is

H0: �with supplement � 80 (Even with the supplement, 
the mean test score is still 80.)

The null hypothesis (H0) states that in the general population there is no
change, no difference, or no relationship. In the context of an experiment, H0

predicts that the independent variable (treatment) has no effect on the dependent
variable (scores) for the population.

The second hypothesis is simply the opposite of the null hypothesis, and it is called
the scientific, or alternative, hypothesis (H1). This hypothesis states that the treatment
has an effect on the dependent variable.

The alternative hypothesis (H1) states that there is a change, a difference, 
or a relationship for the general population. In the context of an experiment, H1

predicts that the independent variable (treatment) does have an effect on the
dependent variable.

For this example, the alternative hypothesis states that the supplement does have
an effect on cognitive functioning for the population and will cause a change in the
mean score. In symbols, the alternative hypothesis is represented as

H1: �with supplement � 80 (With the supplement, the mean 
test score is different from 80.)

D E F I N I T I O N

D E F I N I T I O N

STEP 1: STATE THE
HYPOTHESIS

THE FOUR STEPS OF A
HYPOTHESIS TEST
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The goal of inferential statistics
is to make general statements
about the population by using
sample data. Therefore, when
testing hypotheses, we make our
predictions about the population
parameters.

The null hypothesis and the
alternative hypothesis are 
mutually exclusive and 
exhaustive. They cannot both 
be true, and one of them must
be true. The data determine
which one should be rejected.
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Notice that the alternative hypothesis simply states that there will be some type of
change. It does not specify whether the effect will be increased or decreased test scores.
In some circumstances, it is appropriate for the alternative hypothesis to specify the 
direction of the effect. For example, the researcher might hypothesize that the supple-
ment will increase neuropsychological test scores (� � 80). This type of hypothesis 
results in a directional hypothesis test, which is examined in detail later in this chapter.
For now we concentrate on nondirectional tests, for which the hypotheses simply state
that the treatment has no effect (H0) or has some effect (H1).

Eventually the researcher uses the data from the sample to evaluate the credibility of
the null hypothesis. The data either provide support for the null hypothesis or tend to
refute the null hypothesis. In particular, if there is a big discrepancy between the data
and the null hypothesis, then we conclude that the null hypothesis is wrong.

To formalize the decision process, we use the null hypothesis to predict the kind of
sample mean that ought to be obtained. Specifically, we determine exactly which sample
means are consistent with the null hypothesis and which sample means are at odds with
the null hypothesis.

For our example, the null hypothesis states that the supplement has no effect and
the population mean is still � � 80. If this is true, then the sample mean should have a
value around 80. Therefore, a sample mean near 80 is consistent with the null hypoth-
esis. On the other hand, a sample mean that is very different from 80 is not consistent
with the null hypothesis. To determine exactly which values are “near” 80 and which
values are “very different from” 80, we examine all of the possible sample means that
could be obtained if the null hypothesis is true. For our example, this is the distribution
of sample means for n � 25. According to the null hypothesis, this distribution is cen-
tered at � � 80. The distribution of sample means is then divided into two sections:

1. Sample means that are likely to be obtained if H0 is true; that is, sample means
that are close to the null hypothesis

2. Sample means that are very unlikely to be obtained if H0 is true; that is, sample
means that are very different from the null hypothesis

Figure 8.4 shows the distribution of sample means divided into these two sections.
Notice that the high-probability samples are located in the center of the distribution and
have sample means close to the value specified in the null hypothesis. On the other
hand, the low-probability samples are located in the extreme tails of the distribution.
After the distribution has been divided in this way, we can compare our sample data
with the values in the distribution. Specifically, we can determine whether our sample
mean is consistent with the null hypothesis (like the values in the center of the distri-
bution) or whether our sample mean is very different from the null hypothesis (like the
values in the extreme tails).

The alpha level To find the boundaries that separate the high-probability samples
from the low-probability samples, we must define exactly what is meant by “low” prob-
ability and “high” probability. This is accomplished by selecting a specific probability
value, which is known as the level of significance, or the alpha level, for the hypothe-
sis test. The alpha (�) value is a small probability that is used to identify the low-
probability samples. By convention, commonly used alpha levels are � � .05 (5%), 
� �.01 (1%), and � � .001 (0.1%). For example, with � � .05, we separate the most 
unlikely 5% of the sample means (the extreme values) from the most likely 95% of the
sample means (the central values).

STEP 2: SET THE CRITERIA 
FOR A DECISION
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With rare exceptions, an alpha
level is never larger than .05.
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The extremely unlikely values, as defined by the alpha level, make up what is
called the critical region. These extreme values in the tails of the distribution define
outcomes that are not consistent with the null hypothesis; that is, they are very unlikely
to occur if the null hypothesis is true. Whenever the data from a research study produce
a sample mean that is located in the critical region, we conclude that the data are not
consistent with the null hypothesis, and we reject the null hypothesis.

The alpha level, or the level of significance, is a probability value that is used
to define the concept of “very unlikely” in a hypothesis test.

The critical region is composed of the extreme sample values that are very
unlikely (as defined by the alpha level) to be obtained if the null hypothesis is
true. The boundaries for the critical region are determined by the alpha level. If
sample data fall in the critical region, the null hypothesis is rejected.

Technically, the critical region is defined by sample outcomes that are very 
unlikely to occur if the treatment has no effect (that is, if the null hypothesis is true).
Reversing the point of view, we can also define the critical region as sample values
that provide convincing evidence that the treatment really does have an effect. For our
example, the regular population of elderly adults has a mean test score of � �80. We
selected a sample from this population and administered a treatment (the blueberry
supplement) to the individuals in the sample. What kind of sample mean would 
convince you that the treatment has an effect? It should be obvious that the most 
convincing evidence would be a sample mean that is really different from � � 80. In
a hypothesis test, the critical region is determined by sample values that are “really
different” from the original population.

D E F I N I T I O N S
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The distribution of sample means
if the null hypothesis is true
(all the possible outcomes)

Sample means
close to H0:

 high-probability values
if H0 is true

Extreme, low-
probability values

if H0 is true

Extreme, low-
probability values

if H0 is true

μ from H0

FIGURE 8.4

The set of potential samples
is divided into those that are
likely to be obtained and
those that are very unlikely
to be obtained if the null
hypothesis is true.
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The boundaries for the critical region To determine the exact location for the
boundaries that define the critical region, we use the alpha-level probability and the unit
normal table. In most cases, the distribution of sample means is normal, and the unit
normal table provides the precise z-score location for the critical region boundaries.
With � �.05, for example, the boundaries separate the extreme 5% from the middle
95%. Because the extreme 5% is split between two tails of the distribution, there is 
exactly 2.5% (or 0.0250) in each tail. In the unit normal table, you can look up a pro-
portion of 0.0250 in column C (the tail) and find that the z-score boundary is z � 1.96.
Thus, for any normal distribution, the extreme 5% is in the tails of the distribution 
beyond z � �1.96 and z � 	1.96. These values define the boundaries of the critical 
region for a hypothesis test using � �.05 (Figure 8.5).

Similarly, an alpha level of � �.01 means that 1%, or .0100, is split between the
two tails. In this case, the proportion in each tail is .0050, and the corresponding z-score
boundaries are z � 
2.58 (
2.57 is equally good). For � �.001, the boundaries are 
located at z � 
3.30. You should verify these values in the unit normal table and be
sure that you understand exactly how they are obtained.
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Middle 95%:
High-probability values

if H0 is true

z = −1.96 z = 1.96

Critical region:
Extreme 5%

μ from H0

Reject H0 Reject H0

0

80

FIGURE 8.5

The critical region (very
unlikely outcomes) for 
� � .05.

L E A R N I N G  C H E C K 1. The city school district is considering increasing class size in the elementary
schools. However, some members of the school board are concerned that larger
classes may have a negative effect on student learning. In words, what would the
null hypothesis say about the effect of class size on student learning?

2. If the alpha level is increased from � � .01 to � � .05, then the boundaries for the
critical region move farther away from the center of the distribution. (True or false?)

3. If a researcher conducted a hypothesis test with an alpha level of � � .02, what 
z-score values would form the boundaries for the critical region?
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At this time, we select a sample of adults who are more than 65 years old and give each
one a daily dose of the blueberry supplement. After 6 months, the neuropsychological
test is used to measure cognitive function for the sample of participants. Notice that the
data are collected after the researcher has stated the hypotheses and established the cri-
teria for a decision. This sequence of events helps to ensure that a researcher makes an
honest, objective evaluation of the data and does not tamper with the decision criteria
after the experimental outcome is known.

Next, the raw data from the sample are summarized with the appropriate statistics:
For this example, the researcher would compute the sample mean. Now it is possible
for the researcher to compare the sample mean (the data) with the null hypothesis. This
is the heart of the hypothesis test: comparing the data with the hypothesis.

The comparison is accomplished by computing a z-score that describes exactly
where the sample mean is located relative to the hypothesized population mean from
H0. In step 2, we constructed the distribution of sample means that would be expected
if the null hypothesis were true—that is, the entire set of sample means that could be
obtained if the treatment has no effect (see Figure 8.5). Now we calculate a z-score that
identifies where our sample mean is located in this hypothesized distribution. The 
z-score formula for a sample mean is

In the formula, the value of the sample mean (M) is obtained from the sample data,
and the value of � is obtained from the null hypothesis. Thus, the z-score formula can
be expressed in words as follows:

z �

Notice that the top of the z-score formula measures how much difference there is
between the data and the hypothesis. The bottom of the formula measures the standard
distance that ought to exist between a sample mean and the population mean.

In the final step, the researcher uses the z-score value obtained in step 3 to make a deci-
sion about the null hypothesis according to the criteria established in step 2. There are two
possible outcomes:

1. The sample data are located in the critical region. By definition, a sample value
in the critical region is very unlikely to occur if the null hypothesis is true.
Therefore, we conclude that the sample is not consistent with H0 and our deci-
sion is to reject the null hypothesis. Remember, the null hypothesis states that
there is no treatment effect, so rejecting H0 means that we are concluding that
the treatment did have an effect.

STEP 4: MAKE A DECISION

sample mean 	 hypothesized population mean
�����

standard error between M and �

z
M

M

�
	

�

μ

STEP 3: COLLECT DATA 
AND COMPUTE SAMPLE

STATISTICS
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ANSWERS 1. The null hypothesis would say that class size has no effect on student learning.

2. False. A larger alpha means that the boundaries for the critical region move closer to the
center of the distribution.

3. The .02 would be split between the two tails, with .01 in each tail. The z-score boundaries
would be z � �2.33 and z � 	2.33.

30991_ch08_ptg01_hr_231-280.qxd  9/2/11  11:30 PM  Page 240



For the example we have been considering, suppose that the sample pro-
duced a mean of M � 92 after taking the supplement for 6 months. The null
hypothesis states that the population mean is � � 80 and, with n � 25 and 
� � 20, the standard error for the sample mean is

Thus, a sample mean of M � 92 produces a z-score of

With an alpha level of � � .05, this z-score is far beyond the boundary of 
1.96. Because the sample z-score is in the critical region, we reject the null
hypothesis and conclude that the blueberry supplement did have an effect on
cognitive functioning.

2. The second possibility is that the sample data are not in the critical region. In
this case, the sample mean is reasonably close to the population mean specified
in the null hypothesis (in the center of the distribution). Because the data do not
provide strong evidence that the null hypothesis is wrong, our conclusion is to
fail to reject the null hypothesis. This conclusion means that the treatment does
not appear to have an effect.

For the research study examining the blueberry supplement, suppose our
sample produced a mean test score of M � 84. As before, the standard error for
a sample of n � 25 is �M � 4, and the null hypothesis states that � � 80.
These values produce a z-score of

The z-score of 1.00 is not in the critical region. Therefore, we would fail to
reject the null hypothesis and conclude that the blueberry supplement does not
appear to have an effect on cognitive functioning.

In general, the final decision is made by comparing our treated sample with the dis-
tribution of sample means that would be obtained for untreated samples. If our treated
sample looks much the same as samples that do not receive the blueberry treatment, we
conclude that the treatment does not appear to have any effect. On the other hand, if the
treated sample is noticeably different from the majority of untreated samples, we con-
clude that the treatment does have an effect.

An Analogy for Hypothesis Testing It may seem awkward to phrase both of the two
possible decisions in terms of rejecting the null hypothesis; either we reject H0 or we
fail to reject H0. These two decisions may be easier to understand if you think of a 
research study as an attempt to gather evidence to prove that a treatment works. From
this perspective, the process of conducting a hypothesis test is similar to the process that
takes place during a jury trial. For example,

1. The test begins with a null hypothesis stating that there is no treatment effect.
The trial begins with a null hypothesis that the defendant did not commit a
crime (innocent until proven guilty).

z
M

M

�
	

�
�

	
� �

μ 84 80

4

4

4
1 00.

z
M

M

�
	

�
�

	
� �
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4
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4
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� �
�
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2. The research study gathers evidence to show that the treatment actually does
have an effect, and the police gather evidence to show that the defendant really
did commit a crime. Note that both are trying to refute the null hypothesis.

3. If there is enough evidence, the researcher rejects the null hypothesis and con-
cludes that there really is a treatment effect. If there is enough evidence, the
jury rejects the hypothesis and concludes that the defendant is guilty of a crime.

4. If there is not enough evidence, the researcher fails to reject the null hypothesis.
Note that the researcher does not conclude that there is no treatment effect,
simply that there is not enough evidence to conclude that there is an effect.
Similarly, if there is not enough evidence, the jury fails to find the defendant
guilty. Note that the jury does not conclude that the defendant is innocent, sim-
ply that there is not enough evidence for a guilty verdict.

The z-score statistic that is used in the hypothesis test is the first specific example of
what is called a test statistic. The term test statistic simply indicates that the sample data
are converted into a single, specific statistic that is used to test the hypotheses. In the
chapters that follow, we introduce several other test statistics that are used in a variety
of different research situations. However, most of the new test statistics have the same
basic structure and serve the same purpose as the z-score. We have already described
the z-score equation as a formal method for comparing the sample data and the popu-
lation hypothesis. In this section, we discuss the z-score from two other perspectives
that may give you a better understanding of hypothesis testing and the role that z-scores
play in this inferential technique. In each case, keep in mind that the z-score serves as
a general model for other test statistics that come in future chapters.

The z-score formula as a recipe The z-score formula, like any formula, can be
viewed as a recipe. If you follow instructions and use all of the right ingredients, the
formula produces a z-score. In the hypothesis-testing situation, however, you do not
have all of the necessary ingredients. Specifically, you do not know the value for the
population mean (�), which is one component, or ingredient, in the formula.

This situation is similar to trying to follow a cake recipe in which one of the in-
gredients is not clearly listed. For example, the recipe may call for flour but there is a
grease stain that makes it impossible to read how much flour. Faced with this situation,
you might try the following steps:

1. Make a hypothesis about the amount of flour. For example, hypothesize that the
correct amount is 2 cups.

2. To test your hypothesis, add the rest of the ingredients along with the hypothe-
sized amount of flour and bake the cake.

3. If the cake turns out to be good, you can reasonably conclude that your hypoth-
esis was correct. But if the cake is terrible, you conclude that your hypothesis
was wrong.

In a hypothesis test with z-scores, we do essentially the same thing. We have a for-
mula (recipe) for z-scores but one ingredient is missing. Specifically, we do not know
the value for the population mean, �. Therefore, we try the following steps:

1. Make a hypothesis about the value of �. This is the null hypothesis.

2. Plug the hypothesized value in the formula along with the other values 
(ingredients).

A CLOSER LOOK AT THE 
z-SCORE STATISTIC
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3. If the formula produces a z-score near zero (which is where z-scores are sup-
posed to be), we conclude that the hypothesis was correct. On the other hand, if
the formula produces an extreme value (a very unlikely result), we conclude
that the hypothesis was wrong.

The z-score formula as a ratio In the context of a hypothesis test, the z-score for-
mula has the following structure: 

z � �
M

�

	

M

�
� �

Notice that the numerator of the formula involves a direct comparison between the
sample data and the null hypothesis. In particular, the numerator measures the obtained
difference between the sample mean and the hypothesized population mean. The stan-
dard error in the denominator of the formula measures the standard amount of distance
that exists naturally between a sample mean and the population mean without any treat-
ment effect causing the sample to be different. Thus, the z-score formula (and most
other test statistics) forms a ratio

z �

Thus, for example, a z-score of z � 3.00 means that the obtained difference 
between the sample and the hypothesis is 3 times bigger than would be expected if the
treatment had no effect.

In general, a large value for a test statistic like the z-score indicates a large dis-
crepancy between the sample data and the null hypothesis. Specifically, a large value
indicates that the sample data are very unlikely to have occurred by chance alone.
Therefore, when we obtain a large value (in the critical region), we conclude that it
must have been caused by a treatment effect.

L E A R N I N G  C H E C K

actual difference between the sample (M) and the hypothesis (�)
�������

standard difference between M and � with no treatment effect

sample mean 	 hypothesized population mean
�����

standard error between M and �
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L E A R N I N G  C H E C K 1. A researcher selects a sample of n � 16 individuals from a normal population with
a mean of � � 40 and � � 8. A treatment is administered to the sample and, after
treatment, the sample mean is M � 43. If the researcher uses a hypothesis test to
evaluate the treatment effect, what z-score would be obtained for this sample?

2. A small value (near zero) for the z-score statistic is evidence that the sample data
are consistent with the null hypothesis. (True or false?)

3. A z-score value in the critical region means that you should reject the null hypoth-
esis. (True or false?)

1. The standard error is 2 points and z � 3/2 � 1.50.

2. True. A z-score near zero indicates that the data support the null hypothesis.

3. True. A z-score value in the critical region means that the sample is not consistent with the
null hypothesis.

ANSWERS
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8.2 UNCERTAINTY AND ERRORS IN HYPOTHESIS TESTING

Hypothesis testing is an inferential process, which means that it uses limited informa-
tion as the basis for reaching a general conclusion. Specifically, a sample provides only
limited or incomplete information about the whole population, and yet a hypothesis test
uses a sample to draw a conclusion about the population. In this situation, there is 
always the possibility that an incorrect conclusion will be made. Although sample data
are usually representative of the population, there is always a chance that the sample is
misleading and will cause a researcher to make the wrong decision about the research
results. In a hypothesis test, there are two different kinds of errors that can be made.

It is possible that the data will lead you to reject the null hypothesis when in fact the
treatment has no effect. Remember: Samples are not expected to be identical to their
populations, and some extreme samples can be very different from the populations that
they are supposed to represent. If a researcher selects one of these extreme samples by
chance, then the data from the sample may give the appearance of a strong treatment
effect, even though there is no real effect. In the previous section, for example, we dis-
cussed a research study examining how a food supplement that is high in antioxidants
affects the cognitive functioning of elderly adults. Suppose that the researcher selects a
sample of n � 25 people who already have cognitive functioning that is well above 
average. Even if the blueberry supplement (the treatment) has no effect at all, these peo-
ple will still score higher than average on the neuropsychological test when they are
tested after 6 months of taking the supplement. In this case, the researcher is likely to
conclude that the treatment does have an effect, when in fact it really does not. This is
an example of what is called a Type I error.

A Type I error occurs when a researcher rejects a null hypothesis that is actu-
ally true. In a typical research situation, a Type I error means that the researcher
concludes that a treatment does have an effect when, in fact, it has no effect.

You should realize that a Type I error is not a stupid mistake in the sense that a 
researcher is overlooking something that should be perfectly obvious. On the contrary,
the researcher is looking at sample data that appear to show a clear treatment effect. The
researcher then makes a careful decision based on the available information. The prob-
lem is that the information from the sample is misleading.

In most research situations, the consequences of a Type I error can be very serious.
Because the researcher has rejected the null hypothesis and believes that the treatment
has a real effect, it is likely that the researcher will report or even publish the research
results. A Type I error, however, means that this is a false report. Thus, Type I errors
lead to false reports in the scientific literature. Other researchers may try to build theo-
ries or develop other experiments based on the false results. A lot of precious time and
resources may be wasted.

The Probability of a Type I Error A Type I error occurs when a researcher un-
knowingly obtains an extreme, nonrepresentative sample. Fortunately, the hypothesis
test is structured to minimize the risk that this will occur. Figure 8.5 shows the distri-
bution of sample means and the critical region for the research study we have been dis-
cussing. This distribution contains all of the possible sample means for samples of 
n � 25 if the null hypothesis is true. Notice that most of the sample means are near the

D E F I N I T I O N

TYPE I ERRORS
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hypothesized population mean, � �80, and that means in the critical region are very
unlikely to occur.

With an alpha level of � � .05, only 5% of the samples have means in the critical
region. Therefore, there is only a 5% probability (p � .05) that one of these samples
will be obtained. Thus, the alpha level determines the probability of obtaining a sample
mean in the critical region when the null hypothesis is true. In other words, the alpha
level determines the probability of a Type I error.

The alpha level for a hypothesis test is the probability that the test will lead to a
Type I error. That is, the alpha level determines the probability of obtaining
sample data in the critical region even though the null hypothesis is true.

In summary, whenever the sample data are in the critical region, the appropriate 
decision for a hypothesis test is to reject the null hypothesis. Normally this is the correct
decision because the treatment has caused the sample to be different from the original
population; that is, the treatment effect has pushed the sample mean into the critical 
region. In this case, the hypothesis test has correctly identified a real treatment effect.
Occasionally, however, sample data are in the critical region just by chance, without any
treatment effect. When this occurs, the researcher makes a Type I error; that is, the 
researcher concludes that a treatment effect exists when in fact it does not. Fortunately,
the risk of a Type I error is small and is under the control of the researcher. Specifically,
the probability of a Type I error is equal to the alpha level.

Whenever a researcher rejects the null hypothesis, there is a risk of a Type I error.
Similarly, whenever a researcher fails to reject the null hypothesis, there is a risk of a
Type II error. By definition, a Type II error is the failure to reject a false null hypothe-
sis. In more straightforward English, a Type II error means that a treatment effect 
really exists, but the hypothesis test fails to detect it.

A Type II error occurs when a researcher fails to reject a null hypothesis that
is really false. In a typical research situation, a Type II error means that the
hypothesis test has failed to detect a real treatment effect.

A Type II error occurs when the sample mean is not in the critical region even
though the treatment has had an effect on the sample. Often this happens when the 
effect of the treatment is relatively small. In this case, the treatment does influence the
sample, but the magnitude of the effect is not big enough to move the sample mean
into the critical region. Because the sample is not substantially different from the orig-
inal population (it is not in the critical region), the statistical decision is to fail to 
reject the null hypothesis and to conclude that there is not enough evidence to say that
there is a treatment effect.

The consequences of a Type II error are usually not as serious as those of a Type I
error. In general terms, a Type II error means that the research data do not show the
results that the researcher had hoped to obtain. The researcher can accept this out-
come and conclude that the treatment either has no effect or has only a small effect
that is not worth pursuing, or the researcher can repeat the experiment (usually with
some improvement, such as a larger sample) and try to demonstrate that the treatment
really does work.

D E F I N I T I O N

TYPE II ERRORS

D E F I N I T I O N
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Unlike a Type I error, it is impossible to determine a single, exact probability for
a Type II error. Instead, the probability of a Type II error depends on a variety of fac-
tors and therefore is a function, rather than a specific number. Nonetheless, the proba-
bility of a Type II error is represented by the symbol �, the Greek letter beta.

In summary, a hypothesis test always leads to one of two decisions:

1. The sample data provide sufficient evidence to reject the null hypothesis and
conclude that the treatment has an effect.

2. The sample data do not provide enough evidence to reject the null hypothesis.
In this case, you fail to reject H0 and conclude that the treatment does not 
appear to have an effect.

In either case, there is a chance that the data are misleading and the decision is
wrong. The complete set of decisions and outcomes is shown in Table 8.1. The risk of
an error is especially important in the case of a Type I error, which can lead to a false
report. Fortunately, the probability of a Type I error is determined by the alpha level,
which is completely under the control of the researcher. At the beginning of a hypoth-
esis test, the researcher states the hypotheses and selects the alpha level, which imme-
diately determines the risk that a Type I error will be made.

As you have seen, the alpha level for a hypothesis test serves two very important
functions. First, the alpha level helps to determine the boundaries for the critical 
region by defining the concept of “very unlikely” outcomes. At the same time, the
alpha level determines the probability of a Type I error. When you select a value for
alpha at the beginning of a hypothesis test, your decision influences both of these
functions.

The primary concern when selecting an alpha level is to minimize the risk of a
Type I error. Thus, alpha levels tend to be very small probability values. By conven-
tion, the largest permissible value is � �.05. When there is no treatment effect, an alpha
level of .05 means that there is still a 5% risk, or a 1-in-20 probability, of rejecting the
null hypothesis and committing a Type I error. Because the consequences of a Type I
error can be relatively serious, many individual researchers and many scientific publi-
cations prefer to use a more conservative alpha level such as .01 or .001 to reduce the
risk that a false report is published and becomes part of the scientific literature. (For
more information on the origins of the .05 level of significance, see the excellent short
article by Cowles and Davis, 1982.)

SELECTING AN ALPHA LEVEL
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TABLE 8.1

Possible outcomes of a 
statistical decision

Actual Situation

No Effect, Effect Exists,
H0 True H0 False

Reject H0 Type I error Decision correct

Retain H0 Decision correct Type II error

Experimenter’s
Decision
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At this point, it may appear that the best strategy for selecting an alpha level is to
choose the smallest possible value to minimize the risk of a Type I error. However,
there is a different kind of risk that develops as the alpha level is lowered. Specifically,
a lower alpha level means less risk of a Type I error, but it also means that the hypoth-
esis test demands more evidence from the research results.

The trade-off between the risk of a Type I error and the demands of the test is
controlled by the boundaries of the critical region. For the hypothesis test to 
conclude that the treatment does have an effect, the sample data must be in the 
critical region. If the treatment really has an effect, it should cause the sample to be
different from the original population; essentially, the treatment should push the
sample into the critical region. However, as the alpha level is lowered, the bound-
aries for the critical region move farther out and become more difficult to reach.
Figure 8.6 shows how the boundaries for the critical region move farther into the
tails as the alpha level decreases. Notice that z � 0, in the center of the distribution,
corresponds to the value of � specified in the null hypothesis. The boundaries for
the critical region determine how much distance between the sample mean and � is
needed to reject the null hypothesis. As the alpha level gets smaller, this distance
gets larger.

Thus, an extremely small alpha level, such as .000001 (one in a million), would
mean almost no risk of a Type I error but would push the critical region so far out that
it would become essentially impossible to ever reject the null hypothesis; that is, it
would require an enormous treatment effect before the sample data would reach the
critical boundaries.

In general, researchers try to maintain a balance between the risk of a Type I error
and the demands of the hypothesis test. Alpha levels of .05, .01, and .001 are consid-
ered reasonably good values because they provide a low risk of error without placing
excessive demands on the research results.
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FIGURE 8.6

The locations of the critical
region boundaries for 
three different levels of
significance: � � .05, 
� � .01, and � � .001.
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8.3 AN EXAMPLE OF A HYPOTHESIS TEST

At this time, we have introduced all the elements of a hypothesis test. In this section,
we present a complete example of the hypothesis-testing process and discuss how the
results from a hypothesis test are presented in a research report. For purposes of demon-
stration, the following scenario is used to provide a concrete background for the 
hypothesis-testing process.

Alcohol appears to be involved in a variety of birth defects, including low birth
weight and retarded growth. A researcher would like to investigate the effect of
prenatal alcohol exposure on birth weight. A random sample of n � 16 pregnant rats
is obtained. The mother rats are given daily doses of alcohol. At birth, one pup is
selected from each litter to produce a sample of n � 16 newborn rats. The average
weight for the sample is M � 15 grams. The researcher would like to compare the
sample with the general population of rats. It is known that regular newborn rats (not
exposed to alcohol) have an average weight of � � 18 grams. The distribution of
weights is normal with � � 4. Figure 8.7 shows the overall research situation. Notice
that the researcher’s question concerns the unknown population that is exposed to
alcohol. Also notice that we have a sample representing the unknown population, and
we have a hypothesis about the unknown population mean. Specifically, the null
hypothesis says that the alcohol has no effect and the unknown mean is still � � 18.
The goal of the hypothesis test is to determine whether the sample data are
compatible with the hypothesis.

E X A M P L E  8 . 2
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L E A R N I N G  C H E C K 1. Define a Type I error.

2. Define a Type II error.

3. Under what circumstances is a Type II error likely to occur?

4. If a sample mean is in the critical region with � � .05, it would still (always) be in
the critical region if alpha were changed to � � .01. (True or false?)

5. If a sample mean is in the critical region with � � .01, it would still (always) be in
the critical region if alpha were changed to � � .05. (True or false?)

1. A Type I error is rejecting a true null hypothesis—that is, saying that the treatment has an
effect when, in fact, it does not.

2. A Type II error is the failure to reject a false null hypothesis. In terms of a research study, a
Type II error occurs when a study fails to detect a treatment effect that really exists.

3. A Type II error is likely to occur when the treatment effect is very small. In this case, a
research study is more likely to fail to detect the effect.

4. False. With � � .01, the boundaries for the critical region move farther out into the tails of
the distribution. It is possible that a sample mean could be beyond the .05 boundary but not
beyond the .01 boundary.

5. True. With � � .01, the boundaries for the critical region are farther out into the tails of the
distribution than for � � .05. If a sample mean is beyond the .01 boundary it is definitely
beyond the .05 boundary.

ANSWERS
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The following steps outline the hypothesis test that evaluates the effect of alcohol
exposure on birth weight.

State the hypotheses, and select the alpha level. Both hypotheses concern the
unknown population that is exposed to alcohol (the population on the right-hand side
of Figure 8.7). The null hypothesis states that exposure to alcohol has no effect on
birth weight. Thus, the population of rats with alcohol exposure should have the same
mean birth weight as the regular, unexposed rats. In symbols,

H0: �alcohol exposure � 18 (Even with alcohol exposure, 
the rats still average 18 grams at birth.)

The alternative hypothesis states that alcohol exposure does affect birth weight,
so the exposed population should be different from the regular rats. In symbols,

H1: �alcohol exposure 
 18 (Alcohol exposure will change birth weight.)

Notice that both hypotheses concern the unknown population. For this test, we
will use an alpha level of � �.05. That is, we are taking a 5% risk of committing a 
Type I error.

Set the decision criteria by locating the critical region. By definition, the critical region
consists of outcomes that are very unlikely if the null hypothesis is true. To locate the
critical region we go through a three-stage process that is portrayed in Figure 8.8. We
begin with the null hypothesis, which states that the alcohol has no effect on newborn
rats. If H0 is true, the population treated with alcohol is the same as the original
population: that is, a normal distribution with � �18 and � � 4. Next, we consider all

S T E P  2

S T E P  1
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FIGURE 8.7

The structure of a research study to determine whether prenatal alcohol affects birth weight. A
sample is selected from the original population and is exposed to alcohol. The question is what
would happen if the entire population were exposed to alcohol. The treated sample provides
information about the unknown treated population.
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the possible outcomes for a sample of n � 16 newborn rats. This is the distribution of
sample means for n � 16. For this example, the distribution of sample means is normal,

is centered at � �18 (according to H0), and has a standard error of .

Finally, we use the distribution of sample means to identify the critical region,
which consists of those outcomes that are very unlikely if the null hypothesis is
true. With � �.05, the critical region consists of the extreme 5% of the distribution.
As we saw earlier, for any normal distribution, z-scores of z � 
1.96 separate the
middle 95% from the extreme 5% (a proportion of 0.0250 in each tail). Thus, we
have identified the sample means that, according to the null hypothesis, are very
unlikely to occur. It is the unlikely sample means, those with z-score values beyond

1.96, that form the critical region for the test. If we obtain a sample mean that is
in the critical region, we conclude that the sample is not compatible with the null
hypothesis and we reject H0.

Collect the data, and compute the test statistic. At this point, we would select 
one newborn pup from each of the n � 16 mothers that received alcohol during
pregnancy. The birth weight is recorded for each pup and the sample mean is
computed. For this example, we obtained a sample mean of M � 15 grams. 
The sample mean is then converted to a z-score, which is our test statistic. 

z
M

M

�
	

�
�

	
�

	
�	

μ 15 18

1

3

1
3 00.

S T E P  3

� � �
M

4

16
1

250 CHAPTER 8 INTRODUCTION TO HYPOTHESIS TESTING

Normal
μ =

 σ =
 18

Population
according to the

null hypothesis

  4

Middle 95%

High probability
values if H0 is true.

Fail to reject H0

Reject H0 Reject H0

σM = 1 

Distribution of M 
for n = 16 

according to H0

Decision criteria
for the

hypothesis test

z  = −1.96 z  = 1.96

μ  = 18

FIGURE 8.8

Locating the critical region
as a three-step process. You
begin with the population 
of scores that is predicted by
the null hypothesis. Then,
you construct the distribution
of sample means for the
sample size that is being
used. The distribution of
sample means corresponds 
to all the possible outcomes
that could be obtained if 
H0 is true. Finally, you use 
z-scores to separate the 
extreme outcomes (as 
defined by the alpha level)
from the high-probability
outcomes. The extreme
values determine the 
critical region.
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Make a decision. The z-score computed in step 3 has a value of 	3.00, which is
beyond the boundary of 	1.96. Therefore, the sample mean is located in the critical
region. This is a very unlikely outcome if the null hypothesis is true, so our decision
is to reject the null hypothesis. In addition to this statistical decision concerning the
null hypothesis, it is customary to state a conclusion about the results of the research
study. For this example, we conclude that prenatal exposure to alcohol does have a
significant effect on birth weight.

IN THE LITERATURE
REPORTING THE RESULTS OF THE STATISTICAL TEST

A special jargon and notational system are used in published reports of hypothesis
tests. When you are reading a scientific journal, for example, you typically are not
told explicitly that the researcher evaluated the data using a z-score as a test statistic
with an alpha level of .05. Nor are you told that “the null hypothesis is rejected.”
Instead, you see a statement such as:

The treatment with alcohol had a significant effect on the birth weight of newborn
rats, z � 3.00, p � .05.

Let us examine this statement, piece by piece. First, what is meant by the word
significant? In statistical tests, a significant result means that the null hypothesis has been
rejected, which means that the result is very unlikely to have occurred merely by chance.
For this example, the null hypothesis stated that the alcohol has no effect, however the
data clearly indicate that the alcohol did have an effect. Specifically, it is very unlikely
that the data would have been obtained if the alcohol did not have an effect.

A result is said to be significant, or statistically significant, if it is very 
unlikely to occur when the null hypothesis is true. That is, the result is 
sufficient to reject the null hypothesis. Thus, a treatment has a significant effect
if the decision from the hypothesis test is to reject H0.

Next, what is the meaning of z � 3.00? The z indicates that a z-score was used as
the test statistic to evaluate the sample data and that its value is 3.00. Finally, what is
meant by p � .05? This part of the statement is a conventional way of specifying the
alpha level that was used for the hypothesis test. It also acknowledges the possibility
(and the probability) of a Type I error. Specifically, the researcher is reporting that
the treatment had an effect but admits that this could be a false report. That is, it is
possible that the sample mean was in the critical region even though the alcohol had
no effect. However, the probability (p) of obtaining a sample mean in the critical
region is extremely small (less than .05) if there is no treatment effect.

In circumstances in which the statistical decision is to fail to reject H0, the report
might state that.

There was no evidence that the alcohol had an effect on birth weight, z � 1.30, p � .05.

In that case, we would be saying that the obtained result, z � 1.30, is not unusual
(not in the critical region) and that it has a relatively high probability of occurring
(greater than .05) even if the null hypothesis is true and there is no treatment effect.

D E F I N I T I O N

S T E P  4
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The APA style does not use a
leading zero in a probability
value that refers to a level of
significance.
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Sometimes students become confused trying to differentiate between p � .05 and
p � .05. Remember that you reject the null hypothesis with extreme, low-probability
values, located in the critical region in the tails of the distribution. Thus, a significant
result that rejects the null hypothesis corresponds to p � .05 (Figure 8.9).

When a hypothesis test is conducted using a computer program, the printout
often includes not only a z-score value but also an exact value for p, the probability
that the result occurred without any treatment effect. In this case, researchers are
encouraged to report the exact p value instead of using the less-than or greater-than
notation. For example, a research report might state that the treatment effect was
significant, with z � 2.45, p � .0142. When using exact values for p, however, you
must still satisfy the traditional criterion for significance; specifically, the p value
must be smaller than .05 to be considered statistically significant. Remember: The 
p value is the probability that the result would occur if H0 were true (without any
treatment effect), which is also the probability of a Type I error. It is essential that
this probability be very small.

The final decision in a hypothesis test is determined by the value obtained for the 
z-score statistic. If the z-score is large enough to be in the critical region, then we reject
the null hypothesis and conclude that there is a significant treatment effect. Otherwise,
we fail to reject H0 and conclude that the treatment does not have a significant effect.
The most obvious factor influencing the size of the z-score is the difference between the
sample mean and the hypothesized population mean from H0. A big mean difference
indicates that the treated sample is noticeably different from the untreated population
and usually supports a conclusion that the treatment effect is significant. In addition to
the mean difference, however, there are other factors that help determine whether the
z-score is large enough to reject H0. In this section we examine two factors that can 
influence the outcome of a hypothesis test.

1. The variability of the scores, which is measured by either the standard deviation
or the variance. The variability influences the size of the standard error in the
denominator of the z-score.

2. The number of scores in the sample. This value also influences the size of the
standard error in the denominator.

We use the research study from Example 8.2, shown in Figure 8.7, to examine each
of these factors. The study used a sample of n � 16 newborn rats and concluded that
alcohol has a significant effect on birth weight, z � 	3.00, p � .05.

FACTORS THAT INFLUENCE 
A HYPOTHESIS TEST
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p > α

p < αp < α Fail to reject H0

Reject H0 Reject H0

FIGURE 8.9

Sample means that fall in 
the critical region (shaded
areas) have a probability less
than alpha ( p � �). In this
case, H0 should be rejected.
Sample means that do not
fall in the critical region have
a probability greater than
alpha ( p � �).
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The variability of the scores In Chapter 4 (p. 124) we noted that high variability can
make it very difficult to see any clear patterns in the results from a research study. In a
hypothesis test, higher variability can reduce the chances of finding a significant treat-
ment effect. For the study in Figure 8.7, the standard deviation is � � 4. With a sample
of n � 16, this produced a standard error of �M � 1 point and a significant z-score of 
z � 	300. Now consider what happens if the standard deviation is increased to � � 12.
With the increased variability, the standard error becomes �M � 12/�1�6� � 3 points.
Using the same 3-points mean difference from the original example the new z-score 
becomes

The z-score is no longer beyond the critical boundary of 1.96, so the statistical deci-
sion is to fail to reject the null hypothesis. The increased variability means that the sample
data are no longer sufficient to conclude that the treatment has a significant effect. In gen-
eral, increasing the variability of the scores produces a larger standard error and a smaller
value (closer to zero) for the z-score. If other factors are held constant, then the larger the
variability, the lower the likelihood of finding a significant treatment effect.

The number of scores in the sample The second factor that influences the outcome
of a hypothesis test is the number of scores in the sample. The study in Figure 8.7 used
a sample of n � 16 rats obtained a standard error of �M � 4/�1�6� � 1 point and a sig-
nificant z-score of z � 	3.00. Now consider what happens if we increase the sample
size to n � 64 rats. With n � 64, the standard error becomes �M � 4/��64� � 0.5 points,
and the z-score becomes

Increasing the sample size from n � 16 to n � 64 has doubled the size of the 
z-score. In general, increasing the number of scores in the sample produces a smaller
standard error and a larger value for the z-score. If all other factors are held constant,
the larger the sample size, the greater the likelihood of finding a significant treatment
effect. In simple terms, finding a 3-point treatment effect with large sample is more
convincing than finding a 3-point effect with a small sample.

The mathematics used for a hypothesis test are based on a set of assumptions. When these
assumptions are satisfied, you can be confident that the test produces a justified conclu-
sion. However, if the assumptions are not satisfied, then the hypothesis test may be com-
promised. In practice, researchers are not overly concerned with the assumptions
underlying a hypothesis test because the tests usually work well even when the assump-
tions are violated. However, you should be aware of the fundamental conditions that are
associated with each type of statistical test to ensure that the test is being used appropri-
ately. The assumptions for hypothesis tests with z-scores are summarized as follows.

Random sampling It is assumed that the participants used in the study were selected
randomly. Remember, we wish to generalize our findings from the sample to the pop-
ulation. Therefore, the sample must be representative of the population from which it
has been drawn. Random sampling helps to ensure that it is representative.

ASSUMPTIONS FOR
HYPOTHESIS TESTS WITH 
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Independent observations The values in the sample must consist of independent
observations. In everyday terms, two observations are independent if there is no con-
sistent, predictable relationship between the first observation and the second. More pre-
cisely, two events (or observations) are independent if the occurrence of the first event
has no effect on the probability of the second event. Specific examples of independence
and non-independence are examined in Box 8.1. Usually, this assumption is satisfied
by using a random sample, which also helps to ensure that the sample is representative
of the population and that the results can be generalized to the population.

The value of � is unchanged by the treatment A critical part of the z-score formula
in a hypothesis test is the standard error, �M. To compute the value for the standard
error, we must know the sample size (n) and the population standard deviation (�). In
a hypothesis test, however, the sample comes from an unknown population (see Figures
8.3 and 8.7). If the population is really unknown, it would suggest that we do not know
the standard deviation and, therefore, we cannot calculate the standard error. To solve
this dilemma, we have made an assumption. Specifically, we assume that the standard
deviation for the unknown population (after treatment) is the same as it was for the pop-
ulation before treatment.

254 CHAPTER 8 INTRODUCTION TO HYPOTHESIS TESTING

B O X
8.1 INDEPENDENT OBSERVATIONS

influenced by other participants in the study. The fol-
lowing two situations demonstrate circumstances in
which the observations are not independent.
1. A researcher is interested in examining television

preferences for children. To obtain a sample of n � 20
children, the researcher selects 4 children from family
A, 3 children from family B, 5 children from family
C, 2 children from family D, and 6 children from
family E.

It should be obvious that the researcher does
not have 20 independent observations. Within each
family, the children probably share television 
preference (at least, they watch the same shows).
Thus, the response, for each child is likely to be
related to the responses of his or her siblings.

2. The principle of independent observations is vio-
lated if the sample is obtained using sampling with-
out replacement. For example, if you are selecting
from a group of 20 potential participants, each
individual has a 1 in 20 chance of being selected
first. After the first person is selected, however,
there are only 19 people remaining and the proba-
bility of being selected changes to 1 in 19. Because
the probability of the second selection depends on
the first, the two selections are not independent.

Independent observations are a basic requirement for
nearly all hypothesis tests. The critical concern is that
each observation or measurement is not influenced by
any other observation or measurement. An example 
of independent observations is the set of outcomes
obtained in a series of coin tosses. Assuming that the
coin is balanced, each toss has a 50–50 chance of
coming up either heads or tails. More important, each
toss is independent of the tosses that came before. 
On the fifth toss, for example, there is a 50% chance
of heads no matter what happened on the previous 
four tosses; the coin does not remember what hap-
pened earlier and is not influenced by the past. (Note:
Many people fail to believe in the independence of
events. For example, after a series of four tails in a
row, it is tempting to think that the probability of
heads must increase because the coin is overdue to
come up heads. This is a mistake, called the “gam-
bler’s fallacy.” Remember that the coin does not know
what happened on the preceding tosses and cannot be
influenced by previous outcomes.)

In most research situations, the requirement for
independent observations is satisfied by using a ran-
dom sample of separate, unrelated individuals. Thus,
the measurement obtained for each individual is not
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Actually, this assumption is the consequence of a more general assumption that is
part of many statistical procedures. This general assumption states that the effect of the
treatment is to add a constant amount to (or subtract a constant amount from) every
score in the population. You should recall that adding (or subtracting) a constant
changes the mean but has no effect on the standard deviation. You also should note that
this assumption is a theoretical ideal. In actual experiments, a treatment generally does
not show a perfect and consistent additive effect.

Normal sampling distribution To evaluate hypotheses with z-scores, we have used
the unit normal table to identify the critical region. This table can be used only if the
distribution of sample means is normal.
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L E A R N I N G  C H E C K 1. After years of teaching driver’s education, an instructor knows that students hit an
average of � � 10.5 orange cones while driving the obstacle course in their final
exam. The distribution of run-over cones is approximately normal with a standard
deviation of � � 4.8. To test a theory about text messaging and driving, the 
instructor recruits a sample of n � 16 student drivers to attempt the obstacle
course while sending a text message. The individuals in this sample hit an average
of M � 15.9 cones.

a. Do the data indicate that texting has a significant effect on driving? Test with 
� � .01.

b. Write a sentence describing the outcome of the hypothesis test as it would 
appear in a research report.

2. In a research report, the term significant is used when the null hypothesis is 
rejected. (True or false?)

3. In a research report, the results of a hypothesis test include the phrase “z � 3.15, 
p � .01.” This means that the test failed to reject the null hypothesis. (True or false?)

4. If other factors are held constant, increasing the size of the sample increases the
likelihood of rejecting the null hypothesis. (True or false?)

5. If other factors are held constant, are you more likely to reject the null hypothesis
with a standard deviation of � � 2 or with � � 10?

1. a. With � � .01, the critical region consists of z-scores in the tails beyond z � 
 2.58. 
For these data, the standard error is 1.2 and z � 4.50. Reject the null hypothesis and
conclude that texting has a significant effect on driving.

b. Texting while driving had a significant effect on the number of cones hit by the partici-
pants, z � 4.50, p � .01.

2. True.

3. False. The probability is less than .01, which means it is very unlikely that the result
occurred without any treatment effect. In this case, the data are in the critical region, and
H0 is rejected.

4. True. A larger sample produces a smaller standard error, which leads to a larger z-score.

5. � � 2. A smaller standard deviation produces a smaller standard error, which leads to larger
z-score.

ANSWERS
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8.4 DIRECTIONAL (ONE-TAILED) HYPOTHESIS TESTS

The hypothesis-testing procedure presented in Section 8.3 is the standard, or two-tailed,
test format. The term two-tailed comes from the fact that the critical region is divided
between the two tails of the distribution. This format is by far the most widely accepted
procedure for hypothesis testing. Nonetheless, there is an alternative that is discussed
in this section.

Usually a researcher begins an experiment with a specific prediction about the direc-
tion of the treatment effect. For example, a special training program is expected to increase
student performance, or alcohol consumption is expected to slow reaction times. In these
situations, it is possible to state the statistical hypotheses in a manner that incorporates the
directional prediction into the statement of H0 and H1. The result is a directional test, or
what commonly is called a one-tailed test.

In a directional hypothesis test, or a one-tailed test, the statistical hypotheses
(H0 and H1) specify either an increase or a decrease in the population mean.
That is, they make a statement about the direction of the effect.

The following example demonstrates the elements of a one-tailed hypothesis test.

Earlier, in Example 8.1, we discussed a research study that examined the effect of
antioxidants (such as those found in blueberries) on the cognitive skills of elderly
adults. In the study, each participant in a sample of n � 25 received a blueberry
supplement every day for 6 months and then was given a standardized test to measure
cognitive skill. For the general population of elderly adults (without any supplement),
the test scores form a normal distribution with a mean of � � 80 and a standard
deviation of � � 20. For this example, the expected effect is that the blueberry
supplement will improve cognitive performance. If the researcher obtains a sample
mean of M � 87 for the n � 25 participants, is the result sufficient to conclude that
the supplement really works?

Because a specific direction is expected for the treatment effect, it is possible for the 
researcher to perform a directional test. The first step (and the most critical step) is to
state the statistical hypotheses. Remember that the null hypothesis states that there is no
treatment effect and the alternative hypothesis says that there is an effect. For this 
example, the predicted effect is that the blueberry supplement will increase test scores.
Thus, the two hypotheses would state:

H0: Test scores are not increased. (The treatment does not work.)

H1: Test scores are increased. (The treatment works as predicted.)

To express directional hypotheses in symbols, it usually is easier to begin with the 
alternative hypothesis (H1). Again, we know that the general population has an average
test score of � � 80, and H1 states that test scores will be increased by the blueberry
supplement. Therefore, expressed in symbols, H1 states,

H1: � � 80 (With the supplement, the average score is greater than 80.)

THE HYPOTHESIS FOR A
DIRECTIONAL TEST

E X A M P L E  8 . 3

D E F I N I T I O N
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The null hypothesis states that the supplement does not increase scores. In symbols,

H0: � � 80 (With the supplement, the average score is not greater than 80.)

Note again that the two hypotheses are mutually exclusive and cover all of the 
possibilities.

The critical region is defined by sample outcomes that are very unlikely to occur if the
null hypothesis is true (that is, if the treatment has no effect). Earlier (p. 238), we noted
that the critical region can also be defined in terms of sample values that provide con-
vincing evidence that the treatment really does have an effect. For a directional test, the
concept of “convincing evidence” is the simplest way to determine the location of the
critical region. We begin with all of the possible sample means that could be obtained
if the null hypothesis is true. This is the distribution of sample means and it is normal
(because the population of test scores is normal), has an expected value of � � 80
(from H0), and, for a sample of n � 25, has a standard error of �M � 20/�25�� � 4. The
distribution is shown in Figure 8.10.

For this example, the treatment is expected to increase test scores. If untreated adults
average � � 80 on the test, then a sample mean that is substantially more than 80 would
provide convincing evidence that the treatment worked. Thus, the critical 
region is located entirely in the right-hand tail of the distribution corresponding to sam-
ple means much greater than � � 80 (see Figure 8.10). Because the critical region is
contained in one tail of the distribution, a directional test is commonly called a one-tailed
test. Also note that the proportion specified by the alpha level is not divided 
between two tails, but rather is contained entirely in one tail. Using � � .05 for exam-
ple, the whole 5% is located in one tail. In this case, the z-score boundary for the criti-
cal region is z � 1.65, which is obtained by looking up a proportion of .05 in column C
(the tail) of the unit normal table.

Notice that a directional (one-tailed) test requires two changes in the step-by-step
hypothesis-testing procedure.

1. In the first step of the hypothesis test, the directional prediction is incorporated
into the statement of the hypotheses.

2. In the second step of the process, the critical region is located entirely in one
tail of the distribution.

THE CRITICAL REGION FOR
DIRECTIONAL TESTS
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Reject H0
Data indicate
that H0 is wrong

FIGURE 8.10

Critical region for 
Example 8.3.

If the prediction is that the 
treatment will produce a 
decrease in scores, then the
critical region is located entirely
in the left-hand tail of the 
distribution.
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After these two changes, the remainder of a one-tailed test proceeds exactly the
same as a regular two-tailed test. Specifically, you calculate the z-score statistic and then
make a decision about H0 depending on whether the z-score is in the critical region.

For this example, the researcher obtained a mean of M � 87 for the 25 participants
who received the blueberry supplement. This sample mean corresponds to a z-score of

A z-score of z � 1.75 is in the critical region for a one-tailed test (see Figure 8.10).
This is a very unlikely outcome if H0 is true. Therefore, we reject the null hypothesis
and conclude that the blueberry supplement produces a significant increase in cognitive
performance scores. In the literature, this result would be reported as follows:

The supplement produced a significant increase in scores, z � 1.75, p � .05, 
one tailed.

Note that the report clearly acknowledges that a one-tailed test was used.

The general goal of hypothesis testing is to determine whether a particular treatment
has any effect on a population. The test is performed by selecting a sample, adminis-
tering the treatment to the sample, and then comparing the result with the original pop-
ulation. If the treated sample is noticeably different from the original population, then
we conclude that the treatment has an effect, and we reject H0. On the other hand, if the
treated sample is still similar to the original population, then we conclude that there is
no convincing evidence for a treatment effect, and we fail to reject H0. The critical fac-
tor in this decision is the size of the difference between the treated sample and the orig-
inal population. A large difference is evidence that the treatment worked; a small
difference is not sufficient to say that the treatment had any effect.

The major distinction between one-tailed and two-tailed tests is the criteria 
that they use for rejecting H0. A one-tailed test allows you to reject the null hypothesis
when the difference between the sample and the population is relatively small, provided
that the difference is in the specified direction. A two-tailed test, on the other hand, 
requires a relatively large difference independent of direction. This point is illustrated
in the following example.

Consider again the one-tailed test evaluating the effect of an antioxidant supplement.
If we had used a standard two-tailed test, the hypotheses would be

H0: � � 80 (The supplement has no effect on test scores.)

H1: � 
 80 (The supplement does have an effect on test scores.)

For a two-tailed test with � � .05, the critical region consists of z-scores beyond

1.96. The data from Example 8.3 produced a sample mean of M � 87 and z � 1.75.
For the two-tailed test, this z-score is not in the critical region, and we conclude that
the supplement does not have a significant effect.

With the two-tailed test in Example 8.4, the 7-point difference between the sam-
ple mean and the hypothesized population mean (M � 87 and � � 80) is not big
enough to reject the null hypothesis. However, with the one-tailed test introduced in
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Example 8.3, the same 7-point difference is large enough to reject H0 and conclude
that the treatment had a significant effect.

All researchers agree that one-tailed tests are different from two-tailed tests.
However, there are several ways to interpret the difference. One group of researchers
contends that a two-tailed test is more rigorous and, therefore, more convincing than a
one-tailed test. Remember that the two-tailed test demands more evidence to reject 
H0 and thus provides a stronger demonstration that a treatment effect has occurred.

Other researchers feel that one-tailed tests are preferable because they are more
sensitive. That is, a relatively small treatment effect may be significant with a one-
tailed test but fail to reach significance with a two-tailed test. Also, there is the argu-
ment that one-tailed tests are more precise because they test hypotheses about a specific
directional effect instead of an indefinite hypothesis about a general effect.

In general, two-tailed tests should be used in research situations when there is no
strong directional expectation or when there are two competing predictions. For exam-
ple, a two-tailed test would be appropriate for a study in which one theory predicts an
increase in scores but another theory predicts a decrease. One-tailed tests should be used
only in situations in which the directional prediction is made before the research is con-
ducted and there is a strong justification for making the directional prediction. In partic-
ular, if a two-tailed test fails to reach significance, you should never follow up with a
one-tailed test as a second attempt to salvage a significant result for the same data.

L E A R N I N G  C H E C K

8.5 CONCERNS ABOUT HYPOTHESIS TESTING: MEASURING
EFFECT SIZE

Although hypothesis testing is the most commonly used technique for evaluating and
interpreting research data, a number of scientists have expressed a variety of concerns
about the hypothesis testing procedure (for example, see Loftus, 1996; Hunter, 1997;
and Killeen, 2005).

There are two serious limitations with using a hypothesis test to establish the sig-
nificance of a treatment effect. The first concern is that the focus of a hypothesis test is
on the data rather than the hypothesis. Specifically, when the null hypothesis is rejected,
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L E A R N I N G  C H E C K 1. If a researcher predicts that a treatment will increase scores, then the critical region
for a one-tailed test would be located in the right-hand tail of the distribution.
(True or false?)

2. If the sample data are sufficient to reject the null hypothesis for a one-tailed test,
then the same data would also reject H0 for a two-tailed test. (True or false?)

3. A researcher obtains z � 2.43 for a hypothesis test. Using � � .01, the researcher
should reject the null hypothesis for a one-tailed test but fail to reject for a two-
tailed test. (True or false?)

1. True. A large sample mean, in the right-hand tail, would indicate that the treatment worked
as predicted.

2. False. Because a two-tailed test requires a larger mean difference, it is possible for a sample
to be significant for a one-tailed test but not for a two-tailed test.

3. True. The one-tailed critical value is z � 2.33 and the two-tailed value is z � 2.58.

ANSWERS
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we are actually making a strong probability statement about the sample data, not about
the null hypothesis. A significant result permits the following conclusion: “This spe-
cific sample mean is very unlikely (p � .05) if the null hypothesis is true.” Note that
the conclusion does not make any definite statement about the probability of the null 
hypothesis being true or false. The fact that the data are very unlikely suggests that the
null hypothesis is also very unlikely, but we do not have any solid grounds for making
a probability statement about the null hypothesis. Specifically, you cannot conclude
that the probability of the null hypothesis being true is less than 5% simply because you
rejected the null hypothesis with � � .05 (see Box 8.2).

A second concern is that demonstrating a significant treatment effect does not
necessarily indicate a substantial treatment effect. In particular, statistical significance

260 CHAPTER 8 INTRODUCTION TO HYPOTHESIS TESTING

B O X
8.2 A FLAW IN THE LOGIC OF HYPOTHESIS TESTING

In this situation, suppose that 125 researchers 
are all doing hypothesis tests with � � .05. Of these
researchers, 80% (n � 100) are testing a true H0. For
these researchers, the probability of rejecting the null
hypothesis (and making a Type I error) is � � .05.
Therefore, the 100 hypothesis tests for this group should
produce, at most, 5 tests that reject H0. 

Meanwhile, the other 20% of the researchers 
(n � 25) are testing a false null hypothesis. For this
group, the probability of rejecting the null hypothesis 
is unknown. For the sake of argument, however, let’s
assume that the probability of detecting the treatment
effect and correctly rejecting H0 is 60%. This means
that the 25 hypothesis tests should result in 15 tests
(60%) that reject H0 and 10 that fail to reject H0.

Notice that there could be as many as 20 hypothesis
tests that reject the null hypothesis (5 from the first
group and 15 from the second group). Thus, a total of 
20 researchers will find a statistically significant effect.
Of these 20 “significant” results, however, the 5 from
the first group are making a Type I error. In this case,
the probability of a Type I error is 5 out of 20, or 
p � 5/20 � .25, which is five times greater than the
alpha level of .05.  

Based on this kind of argument, many scientists
suspect that a large number of the results and conclu-
sions published in research journals are simply wrong.
Specifically, the Type I error rate in published 
research is almost certainly higher than the alpha
levels used in the hypothesis tests that support the
results (Siegfried, 2010). 

Suppose that you do a hypothesis test and reject the null
hypothesis with � � .05. Can you conclude that there is
a 5% probability that you are making a Type I error?
Can you also conclude that there is a 95% probability
that your decision is correct and the treatment does have
an effect? For both questions, the answer is no.  

The problem is that the probabilities for a hypothesis
test are well defined only when the null hypothesis is true.
Specifically, a hypothesis test using � � .05 is stru-
ctured so that the error rate is p � .05 and the accuracy
rate is p � .95 if the null hypothesis is true. If H0 is false,
however, these probabilities start to fall apart. When
there is a treatment effect (H0 is false), the probability
that a hypothesis test will detect it and reject H0 depends
on a variety of factors. For example, if the treatment
effect is very small, then a hypothesis test is unlikely to
detect it. With a large treatment effect, the hypothesis test
is more likely to detect it and the probability of rejecting
H0 increases. Thus, whenever there is a treatment effect
(H0 is false), it becomes impossible to define precisely
the probability of rejecting the null hypothesis.

Most researchers begin research studies believing
that there is a good likelihood that the null hypothesis
is false and there really is a treatment effect. They are
hoping that the study will provide evidence of the 
effect so they can convince their colleagues. Thus,
most research begins with some probability that the
null hypothesis is false. For the sake of argument, 
let’s assume that there is an 80% probability that the
null hypothesis is true. 

p(there is no treatment effect—H0 is true) � 0.80 and
p(there is a treatment effect—H0 is false)  � 0.20
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does not provide any real information about the absolute size of a treatment effect.
Instead, the hypothesis test has simply established that the results obtained in the 
research study are very unlikely to have occurred if there is no treatment effect. The
hypothesis test reaches this conclusion by (1) calculating the standard error, which
measures how much difference is reasonable to expect between M and �, and 
(2) demonstrating that the obtained mean difference is substantially bigger than the
standard error.

Notice that the test is making a relative comparison: the size of the treatment 
effect is being evaluated relative to the standard error. If the standard error is very
small, then the treatment effect can also be very small and still be large enough to be
significant. Thus, a significant effect does not necessarily mean a big effect.

The idea that a hypothesis test evaluates the relative size of a treatment effect,
rather than the absolute size, is illustrated in the following example.

We begin with a population of scores that forms a normal distribution with � � 50 and
� � 10. A sample is selected from the population and a treatment is administered to the
sample. After treatment, the sample mean is found to be M � 51. Does this sample
provide evidence of a statistically significant treatment effect? 

Although there is only a 1-point difference between the sample mean and the orig-
inal population mean, the difference may be enough to be significant. In particular, the
outcome of the hypothesis test depends on the sample size.

For example, with a sample of n � 25 the standard error is

and the z-score for M � 51 is

This z-score fails to reach the critical boundary of z � 1.96, so we fail to reject the
null hypothesis. In this case, the 1-point difference between M and � is not significant 
because it is being evaluated relative to a standard error of 2 points. 

Now consider the outcome with a sample of n �400. With a larger sample, the
standard error is

and the z-score for M � 51 is

Now the z-score is beyond the 1.96 boundary, so we reject the null hypothesis
and conclude that there is a significant effect. In this case, the 1-point difference
between M and � is considered statistically significant because it is being evaluated
relative to a standard error of only 0.5 points.
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The point of Example 8.5 is that a small treatment effect can still be statistically sig-
nificant. If the sample size is large enough, any treatment effect, no matter how small,
can be enough for us to reject the null hypothesis.

As noted in the previous section, one concern with hypothesis testing is that a hypoth-
esis test does not really evaluate the absolute size of a treatment effect. To correct this
problem, it is recommended that whenever researchers report a statistically significant
effect, they also provide a report of the effect size (see the guidelines presented by 
L. Wilkinson and the APA Task Force on Statistical Inference, 1999). Therefore, as we
present different hypothesis tests we also present different options for measuring and
reporting effect size.

A measure of effect size is intended to provide a measurement of the ab-
solute magnitude of a treatment effect, independent of the size of the sam-
ple(s) being used.

One of the simplest and most direct methods for measuring effect size is Cohen’s d.
Cohen (1988) recommended that effect size can be standardized by measuring the mean
difference in terms of the standard deviation. The resulting measure of effect size is
computed as

Cohen’s d ��
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For the z-score hypothesis test, the mean difference is determined by the difference
between the population mean before treatment and the population mean after treatment.
However, the population mean after treatment is unknown. Therefore, we must use the
mean for the treated sample in its place. Remember, the sample mean is expected to be
representative of the population mean and provides the best measure of the treatment
effect. Thus, the actual calculations are really estimating the value of Cohen’s d as 
follows:
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The standard deviation is included in the calculation to standardize the size of the
mean difference in much the same way that z-scores standardize locations in a distribu-
tion. For example, a 15-point mean difference can be a relatively large treatment effect
or a relatively small effect depending on the size of the standard deviation. This phe-
nomenon is demonstrated in Figure 8.11. The top portion of the figure (part a) shows the
results of a treatment that produces a 15-point mean difference in SAT scores; before
treatment, the average SAT score is � � 500, and after treatment the average is 515.
Notice that the standard deviation for SAT scores is � � 100, so the 15-point difference
appears to be small. For this example, Cohen’s d is
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Mtreatment 	 µno treatment–––––––––––––––––––
�

�treatment 	 �no treatment–––––––––––––––––––
�

D E F I N I T I O N

MEASURING EFFECT SIZE
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Cohen’s d measures the distance
between two means and is 
typically reported as a positive
number even when the formula
produces a negative value.
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Now consider the treatment effect shown in Figure 8.11(b). This time, the treat-
ment produces a 15-point mean difference in IQ scores; before treatment the average
IQ is 100, and after treatment the average is 115. Because IQ scores have a standard
deviation of � � 15, the 15-point mean difference now appears to be large. For this
example, Cohen’s d is

Cohen’s d ��
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Notice that Cohen’s d measures the size of the treatment effect in terms of the stan-
dard deviation. For example, a value of d � 0.50 indicates that the treatment changed
the mean by half of a standard deviation; similarly, a value of d � 1.00 indicates that
the size of the treatment effect is equal to one whole standard deviation. (See Box 8.3.)

Cohen (1988) also suggested criteria for evaluating the size of a treatment effect as
shown in Table 8.2.
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� � 500

� � 100

Distribution of SAT
scores before treatment
� � 500 and � � 100

 
d � 0.15

� � 100

� � 15

Distribution of IQ
scores before treatment
� � 100 and � � 15

Distribution of SAT
scores after treatment
� � 515 and � � 100

Distribution of IQ
scores after treatment
� � 115 and � � 15

 
d � 1.00

FIGURE 8.11

The appearance of a 15-point treatment effect in two different situations. In part (a), the standard
deviation is � � 100 and the 15-point effect is relatively small. In part (b), the standard deviation
is � � 15 and the 15-point effect is relatively large. Cohen’s d uses the standard deviation to help
measure effect size.

(a)

(b)
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As one final demonstration of Cohen’s d, consider the two hypothesis tests in
Example 8.5. For each test, the original population had a mean of � � 50 with a stan-
dard deviation of � � 10. For each test, the mean for the treated sample was M � 51.
Although one test used a sample of n � 25 and the other test used a sample of n � 400,
the sample size is not considered when computing Cohen’s d. Therefore, both of the 
hypothesis tests would produce the same value:
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Notice that Cohen’s d simply describes the size of the treatment effect and is not
influenced by the number of scores in the sample. For both hypothesis tests, the origi-
nal population mean was � � 50 and, after treatment, the sample mean was M � 51.
Thus, treatment appears to have increased the scores by 1 point, which is equal to one-
tenth of a standard deviation (Cohen’s d � 0.1).
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B O X
8.3 OVERLAPPING DISTRIBUTIONS

knows that 8-year-old children are taller than 6-year-old
children; on average, the difference is 3 or 4 inches.
However, this does not mean that all 8-year-old 
children are taller than all 6-year-old children. In 
fact, there is considerable overlap between the two
distributions, so that the tallest among the 6-year-old
children are actually taller than most 8-year-old chil-
dren. In fact, the height distributions for the two age
groups would look a lot like the two distributions in
Figure 8.10(b). Although there is a clear mean differ-
ence between the two distributions, there still can be
substantial overlap.

Cohen’s d measures the degree of separation
between two distributions, and a separation of one
standard deviation (d � 1.00) represents a large dif-
ference. Eight-year-old children really are bigger than 
6-year-old children.

Figure 8.11(b) shows the results of a treatment with a
Cohen’s d of 1.00; that is, the effect of the treatment 
is to increase the mean by one full standard deviation.
According to the guidelines in Table 8.2, a value of 
d � 1.00 is considered a large treatment effect. However,
looking at the figure, you may get the impression that
there really isn’t that much difference between the distri-
bution before treatment and the distribution after treat-
ment. In particular, there is substantial overlap between
the two distributions, so that many of the individuals who
receive the treatment are not any different from the indi-
viduals who do not receive the treatment.

The overlap between distributions is a basic fact of
life in most research situations; it is extremely rare for
the scores after treatment to be completely different (no
overlap) from the scores before treatment. Consider, for
example, children’s heights at different ages. Everyone

TABLE 8.2

Evaluating effect size with
Cohen’s d.

Magnitude of d Evaluation of Effect Size

d � 0.2 Small effect (mean difference around 0.2 standard deviation)
d � 0.5 Medium effect (mean difference around 0.5 standard deviation)
d � 0.8 Large effect (mean difference around 0.8 standard deviation)
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8.6 STATISTICAL POWER

Instead of measuring effect size directly, an alternative approach to determining the size
or strength of a treatment effect is to measure the power of the statistical test. The
power of a test is defined as the probability that the test will reject the null hypothesis
if the treatment really has an effect.

The power of a statistical test is the probability that the test will correctly reject
a false null hypothesis. That is, power is the probability that the test will identify
a treatment effect if one really exists.

Whenever a treatment has an effect, there are only two possible outcomes for a
hypothesis test: either fail to reject H0 or reject H0. Because there are only two possi-
ble outcomes, the probability for the first and the probability for the second must add
up to 1.00. The first outcome, failing to reject H0 when there is a real effect, was 
defined earlier (p. 245) as a Type II error with a probability identified as 
p � �. Therefore, the second outcome must have a probability of 1 – �. However, the
second outcome, rejecting H0 when there is a real effect, is the power of the test. Thus,
the power of a hypothesis test is equal to 1 – �. In the examples that follow, we demon-
strate the calculation of power for a hypothesis test; that is, the probability that the test
will correctly reject the null hypothesis. At the same time, however, we are computing
the probability that the test will result in a Type II error. For example, if the power of
the test is 70% (1 – �) then the probability of a Type II error must be 30% (�).

Researchers typically calculate power as a means of determining whether a 
research study is likely to be successful. Thus, researchers usually calculate the power
of a hypothesis test before they actually conduct the research study. In this way, they
can determine the probability that the results will be significant (reject H0) before 
investing time and effort in the actual research. To calculate power, however, it is first
necessary to make assumptions about a variety of factors that influence the outcome of
a hypothesis test. Factors such as the sample size, the size of the treatment effect, and
the value chosen for the alpha level can all influence a hypothesis test. The following
example demonstrates the calculation of power for a specific research situation.

We start with a normal-shaped population with a mean of � � 80 and a standard
deviation of � � 10. A researcher plans to select a sample of n � 25 individuals from

E X A M P L E  8 . 6  

D E F I N I T I O N
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L E A R N I N G  C H E C K 1. a. How does increasing sample size influence the outcome of a hypothesis test?

b. How does increasing sample size influence the value of Cohen’s d?

2. A researcher selects a sample from a population with � � 45 and � � 8. A treat-
ment is administered to the sample and, after treatment, the sample mean is found
to be M � 47. Compute Cohen’s d to measure the size of the treatment effect.

1. a. Increasing sample size increases the likelihood of rejecting the null hypothesis.

b. Cohen’s d is not influenced at all by the sample size.

2. d � 2/8 � 0.25

ANSWERS
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this population and administer a treatment to each individual. It is expected that the
treatment will have an 8-point effect; that is, the treatment will add 8 points to each
individual’s score.

Figure 8.12 shows the original population distribution and two possible outcomes:

1. If the null hypothesis is true and there is no treatment effect.

2. If the researcher’s expectation is correct and there is an 8-point effect.

The left-hand side of the figure shows what should happen according to the null
hypothesis. In this case, the treatment has no effect and the population mean is still 
� � 80. On the right-hand side of the figure we show what would happen if the treat-
ment has an 8-point effect. If the treatment adds 8 points to each person’s score, then
the population mean after treatment increases to � � 88.

Beneath each of the two populations, Figure 8.12 shows the distribution of sample
means for n � 25. According to the null hypothesis, the sample means are centered
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With an 8-point
treatment effect

� � 88 and 
� � 10

�M � 2

If H0 is true (no
treatment effect)

� � 80 and 
� � 10

Reject
H0 

	1.96 0

80

�1.96
z

Reject
H0 

Distribution of sample means
for n � 25 if H0 is true

Distribution of sample means
for n � 25 with 8-point effect

Original
Population

Normal with
� � 80 and

� � 10

7876 868482 929088

�M � 2

FIGURE 8.12

A demonstration of measuring
power for a hypothesis test.
The left-hand side shows the
distribution of sample means
that would occur if the null
hypothesis is true. The critical
region is defined for this
distribution. The right-hand
side shows the distribution 
of sample means that would
be obtained if there were an
8-point treatment effect.
Notice that if there is an 
8-point effect, essentially all
of the sample means would 
be in the critical region. Thus,
the probability of rejecting 
H0 (the power of the test)
would be nearly 100% for an
8-point treatment effect.
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around � � 80. With an 8-point treatment effect, the sample means are centered around
� � 88. Both distributions have a standard error of

Notice that the distribution on the left shows all of the possible sample means if
the null hypothesis is true. This is the distribution we use to locate the critical region
for the hypothesis test. Using � � .05, the critical region consists of extreme values in
this distribution, specifically sample means beyond z � 1.96 or z � 	1.96. These val-
ues are shown in Figure 8.12, and we have shaded all of the sample means located in
the critical region.

Now turn your attention to the distribution on the right, which shows all of the pos-
sible sample means if there is an 8-point treatment effect. Notice that most of these
sample means are located beyond the z � 1.96 boundary. This means that, if there is an
8-point treatment effect, you are almost guaranteed to obtain a sample mean in the crit-
ical region and reject the null hypothesis. Thus, the power of the test (the probability of
rejecting H0) is close to 100% if there is an 8-point treatment effect.

To calculate the exact value for the power of the test we must determine what por-
tion of the distribution on the right-hand side is shaded. Thus, we must locate the exact
boundary for the critical region, then find the probability value in the unit normal table.
For the distribution on the left-hand side, the critical boundary of z � �1.96 corre-
sponds to a location that is above � � 80 by a distance equal to

1.96�M � 1.96(2) � 3.92 points

Thus, the critical boundary of z � �1.96 corresponds to a sample mean of M � 80
� 3.92 � 83.92. Any sample mean greater than M � 83.92 is in the critical region and
would lead to rejecting the null hypothesis. Next, we determine what proportion of the
treated samples are greater than M � 83.92. For the treated distribution (right-hand
side), the population mean is � � 88 and a sample mean of M � 83.92 corresponds to
a z-score of

Finally, look up z � 	2.04 in the unit normal table and determine that the
shaded area (z � 	2.04) corresponds to p � 0.9793 (or 97.93%). Thus, if the
treatment has an 8-point effect, 97.93% of all the possible sample means will be in
the critical region and we will reject the null hypothesis. In other words, the power of
the test is 97.93%. In practical terms, this means that the research study is almost
guaranteed to be successful. If the researcher selects a sample of n � 25 individuals,
and if the treatment really does have an 8-point effect, then 97.93% of the time the
hypothesis test will conclude that there is a significant effect.

Logically, it should be clear that power and effect size are related. Figure 8.12 shows
the calculation of power for an 8-point treatment effect. Now consider what would hap-
pen if the treatment effect were only 4 points. With a 4-point treatment effect, the dis-
tribution on the right-hand side would shift to the left so that it is centered at � � 84.

POWER AND EFFECT SIZE
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In this new position, only about 50% of the treated sample means would be beyond the
z � 1.96 boundary. Thus, with a 4-point treatment effect, there is only a 50% proba-
bility of selecting a sample that leads to rejecting the null hypothesis. In other words,
the power of the test is only about 50% for a 4-point effect compared to nearly 98%
with an 8-point effect (Example 8.6). Again, it is possible to find the z-score corre-
sponding to the exact location of the critical boundary and to look up the probability
value for power in the unit normal table. In this case, you should obtain z � 	0.04 and
the exact power of the test is p � 0.5160, or 51.60%.

In general, as the effect size increases, the distribution of sample means on the
right-hand side moves even farther to the right so that more and more of the samples
are beyond the z � 1.96 boundary. Thus, as the effect size increases, the probability of
rejecting H0 also increases, which means that the power of the test increases. Thus,
measures of effect size such as Cohen’s d and measures of power both provide an in-
dication of the strength or magnitude of a treatment effect.

Although the power of a hypothesis test is directly influenced by the size of the treat-
ment effect, power is not meant to be a pure measure of effect size. Instead, power is
influenced by several factors, other than effect size, that are related to the hypothesis
test. Some of these factors are considered in the following section.

Sample size One factor that has a huge influence on power is the size of the sample.
In Example 8.6 we demonstrated power for an 8-point treatment effect using a sample
of n � 25. If the researcher decided to conduct the study using a sample of n � 4, then
the power would be dramatically different. With n � 4, the standard error for the sam-
ple means would be

Figure 8.13 shows the two distributions of sample means with n � 4 and a stan-
dard error of �M � 5 points. Again, the distribution on the left is centered at � � 80
and shows all of the possible sample means if H0 is true. As always, this distribution is
used to locate the critical boundaries for the hypothesis test, z � 	1.96 and z � �1.96.
The distribution on the right is centered at � � 88 and shows all of the possible sam-
ple means if there is an 8-point treatment effect. Note that less than half of the treated
sample means in the right-hand distribution are now located beyond the 1.96 boundary.
Thus, with a sample of n � 4, there is less than a 50% probability that the hypothesis
test would reject H0, even though the treatment has an 8-point effect. Earlier, in
Example 8.6, we found power equal to 97.93% for a sample of n � 25. However, when
the sample size is reduced to n � 4, power decreases to less than 50%. In general, a
larger sample produces greater power for a hypothesis test.

Because power is directly related to sample size, one of the primary reasons for
computing power is to determine what sample size is necessary to achieve a reasonable
probability for a successful research study. Before a study is conducted, researchers can
compute power to determine the probability that their research will successfully reject
the null hypothesis. If the probability (power) is too small, they always have the option
of increasing sample size to increase power.

Alpha level Reducing the alpha level for a hypothesis test also reduces the power of
the test. For example, lowering � from .05 to .01 lowers the power of the hypothesis
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test. The effect of reducing the alpha level can be seen by referring again to Figure 8.13.
In this figure, the boundaries for the critical region are drawn using � � .05.
Specifically, the critical region on the right-hand side begins at z � 1.96. If � were
changed to .01, the boundary would be moved farther to the right, out to z � 2.58. It
should be clear that moving the critical boundary to the right means that a smaller por-
tion of the treatment distribution (the distribution on the right-hand side) will be in the
critical region. Thus, there would be a lower probability of rejecting the null hypothe-
sis and a lower value for the power of the test.

One-tailed versus two-tailed tests Changing from a regular two-tailed test to a one-
tailed test increases the power of the hypothesis test. Again, this effect can be seen by
referring to Figure 8.13. The figure shows the boundaries for the critical region using a
two-tailed test with � � .05 so that the critical region on the right-hand side begins at 
z � 1.96. Changing to a one-tailed test would move the critical boundary to the left to
a value of z � 1.65. Moving the boundary to the left would cause a larger proportion
of the treatment distribution to be in the critical region and, therefore, would increase
the power of the test.
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With an 8-point
treatment effect
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FIGURE 8.13

A demonstration of how
sample size affects the power
of a hypothesis test. As in
Figure 8.12, the left-hand 
side shows the distribution 
of sample means if the null
hypothesis were true. The
critical region is defined 
for this distribution. The 
right-hand side shows the
distribution of sample means
that would be obtained if 
there were an 8-point 
treatment effect. Notice that
reducing the sample size to 
n � 4 has reduced the power
of the test to less than 50%
compared to a power of 
nearly 100% with a sample 
of n � 25 in Figure 8.12.
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L E A R N I N G  C H E C K 1. For a particular hypothesis test, the power is .50 (50%) for a 5-point treatment
effect. Will the power be greater or less than .50 for a 10-point treatment effect?

2. As the power of a test increases, what happens to the probability of a Type II error?

3. How does increasing sample size influence the power of a hypothesis test?

4. Find the exact value of the power for the hypothesis test shown in Figure 8.13.

1. The hypothesis test is more likely to detect a 10-point effect, so power will be greater.

2. As power increases, the probability of a Type II error decreases.

3. Increasing sample size increases the power of a test.

4. With n � 4, the critical boundary of z � 1.96 corresponds to a sample mean of M � 89.8,
and the exact value for power is p � 0.3594 or 35.945%.

ANSWERS

1. Hypothesis testing is an inferential procedure that uses
the data from a sample to draw a general conclusion
about a population. The procedure begins with a
hypothesis about an unknown population. Then a
sample is selected, and the sample data provide
evidence that either supports or refutes the hypothesis.

2. In this chapter, we introduced hypothesis testing using
the simple situation in which a sample mean is used to
test a hypothesis about an unknown population mean;
usually the mean for a population that has received a
treatment. The question is to determine whether the
treatment has an effect on the population mean (see
Figure 8.2).

3. Hypothesis testing is structured as a four-step process
that is used throughout the remainder of the book.

a. State the null hypothesis (H0), and select an alpha
level. The null hypothesis states that there is no
effect or no change. In this case, H0 states that the
mean for the treated population is the same as the
mean before treatment. The alpha level, usually 
� � .05 or � � .01, provides a definition of the
term very unlikely and determines the risk of a
Type I error. Also state an alternative hypothesis
(H1), which is the exact opposite of the null
hypothesis.

b. Locate the critical region. The critical region is
defined as extreme sample outcomes that would be
very unlikely to occur if the null hypothesis is true.
The alpha level defines “very unlikely.” 

c. Collect the data, and compute the test statistic. The
sample mean is transformed into a z-score by the
formula

The value of � is obtained from the null
hypothesis. The z-score test statistic identifies the
location of the sample mean in the distribution of
sample means. 

d. Make a decision. If the obtained z-score is in the
critical region, reject H0 because it is very unlikely
that these data would be obtained if H0 were true. In
this case, conclude that the treatment has changed the
population mean. If the z-score is not in the critical
region, fail to reject H0 because the data are not
significantly different from the null hypothesis. In
this case, the data do not provide sufficient evidence
to indicate that the treatment has had an effect.

4. Whatever decision is reached in a hypothesis test, there
is always a risk of making the incorrect decision. There
are two types of errors that can be committed.

A Type I error is defined as rejecting a true H0. 
This is a serious error because it results in falsely
reporting a treatment effect. The risk of a Type I error
is determined by the alpha level and, therefore, is under
the experimenter’s control.

A Type II error is defined as the failure to reject a false
H0. In this case, the experiment fails to detect an effect
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that actually occurred. The probability of a Type II error
cannot be specified as a single value and depends in part
on the size of the treatment effect. It is identified by the
symbol � (beta).

5. When a researcher expects that a treatment will change
scores in a particular direction (increase or decrease), 
it is possible to do a directional, or one-tailed, test. 
The first step in this procedure is to incorporate the
directional prediction into the hypotheses. For example,
if the prediction is that a treatment will increase scores,
the null hypothesis says that there is no increase and the
alternative hypothesis states that there is an increase. To
locate the critical region, you must determine what kind
of data would refute the null hypothesis by demonstra-
ting that the treatment worked as predicted. These
outcomes are located entirely in one tail of the
distribution, so the entire critical region (5%, 1%, 
or 0.1% depending on �) will be in one tail.

6. A one-tailed test is used when there is prior justification
for making a directional prediction. These a priori
reasons may be previous reports and findings or
theoretical considerations. In the absence of the a
priori basis, a two-tailed test is appropriate. In this
situation, you might be unsure of what to expect in the
study, or you might be testing competing theories.

7. In addition to using a hypothesis test to evaluate the
significance of a treatment effect, it is recommended
that you also measure and report the effect size. One

measure of effect size is Cohen’s d, which is a
standardized measure of the mean difference. Cohen’s
d is computed as
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8. The power of a hypothesis test is defined as the
probability that the test will correctly reject the null
hypothesis.

9. To determine the power for a hypothesis test, you
must first identify the treatment and null distributions.
Also, you must specify the magnitude of the treatment
effect. Next, you locate the critical region in the null
distribution. The power of the hypothesis test is the
portion of the treatment distribution that is located
beyond the boundary (critical value) of the critical
region.

10. As the size of the treatment effect increases, statistical
power increases. Also, power is influenced by several
factors that can be controlled by the experimenter:

a. Increasing the alpha level increases power.
b. A one-tailed test has greater power than a two-tailed

test.
c. A large sample results in more power than a small

sample.

KEY TERMS

hypothesis test (233)

null hypothesis (236)

alternative hypothesis (236)

level of significance (237)

alpha level (237)

critical region (238)

test statistic (242)

Type I error (244)

Type II error (245)

beta (246)

significant (251)

directional test (256)

one-tailed test (256)

effect size (262)
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RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 8 on the book

companion website. The website also provides access to a workshop titled Hypothesis
Testing, which reviews the concept and logic of hypothesis testing.
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Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.

Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific web-
site, Psychology CourseMate includes an integrated interactive eBook and other interac-
tive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

The statistical computer package SPSS is not structured to conduct hypothesis tests
using z-scores. In truth, the z-score test presented in this chapter is rarely used in actual
research situations. The problem with the z-score test is that it requires that you know
the value of the population standard deviation, and this information is usually not avail-
able. Researchers rarely have detailed information about the populations that they wish
to study. Instead, they must obtain information entirely from samples. In the following
chapters we introduce new hypothesis-testing techniques that are based entirely on sam-
ple data. These new techniques are included in SPSS.

FOCUS ON PROBLEM SOLVING

1. Hypothesis testing involves a set of logical procedures and rules that enable us to
make general statements about a population when all we have are sample data.
This logic is reflected in the four steps that have been used throughout this chap-
ter. Hypothesis-testing problems are easier to tackle when you learn to follow 
the steps.

State the hypotheses and set the alpha level.

Locate the critical region.

Compute the test statistic (in this case, the z-score) for the sample.

Make a decision about H0 based on the result of step 3.

2. Students often ask, “What alpha level should I use?” Or a student may ask, “Why
is an alpha of .05 used?” as opposed to something else. There is no single correct
answer to either of these questions. Keep in mind that the aim of setting an alpha
level in the first place: to reduce the risk of committing a Type I error. Therefore,
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the maximum acceptable value is � � .05. However, some researchers prefer to
take even less risk and use alpha levels of .01 or smaller.

Most statistical tests are now done with computer programs that provide an
exact probability (p value) for a Type I error. Because an exact value is available,
most researchers simply report the p value from the computer printout rather than
setting an alpha level at the beginning of the test. However, the same criterion
still applies: A result is not significant unless the p value is less than .05.

3. Take time to consider the implications of your decision about the null hypothe-
sis. The null hypothesis states that there is no effect. Therefore, if your decision
is to reject H0, you should conclude that the sample data provide evidence for a
treatment effect. However, it is an entirely different matter if your decision is to
fail to reject H0. Remember that when you fail to reject the null hypothesis, the
results are inconclusive. It is impossible to prove that H0 is correct; therefore, you
cannot state with certainty that “there is no effect” when H0 is not rejected. At
best, all you can state is that “there is insufficient evidence for an effect.”

4. It is very important that you understand the structure of the z-score formula 
(p. 242). It will help you understand many of the other hypothesis tests that are
covered later.

5. When you are doing a directional hypothesis test, read the problem carefully,
and watch for key words (such as increase or decrease, raise or lower, and more
or less) that tell you which direction the researcher is predicting. The predicted
direction determines the alternative hypothesis (H1) and the critical region. For
example, if a treatment is expected to increase scores, H1 would contain a
greater than symbol, and the critical region would be in the tail associated with
high scores.

DEMONSTRATION 8.1

HYPOTHESIS TEST WITH Z

A researcher begins with a known population—in this case, scores on a standardized test that
are normally distributed with � � 65 and � � 15. The researcher suspects that special train-
ing in reading skills will produce a change in the scores for the individuals in the population.
Because it is not feasible to administer the treatment (the special training) to everyone in the
population, a sample of n � 25 individuals is selected, and the treatment is given to this
sample. Following treatment, the average score for this sample is M � 70. Is there evidence
that the training has an effect on test scores?

State the hypothesis and select an alpha level. The null hypothesis states that the
special training has no effect. In symbols,

H0: � � 65 (After special training, the mean is still 65.)

The alternative hypothesis states that the treatment does have an effect.

H1: � � 65 (After training, the mean is different from 65.)

At this time you also select the alpha level. For this demonstration, we will use � � .05.
Thus, there is a 5% risk of committing a Type I error if we reject H0.

S T E P  1
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Locate the critical region. With � � .05, the critical region consists of sample means
that correspond to z-scores beyond the critical boundaries of z � 
1.96.

Obtain the sample data, and compute the test statistic. For this example, the dis-
tribution of sample means, according to the null hypothesis, is normal with an expected
value of � � 65 and a standard error of

In this distribution, our sample mean of M � 70 corresponds to a z-score of

Make a decision about H0, and state the conclusion. The z-score we obtained is
not in the critical region. This indicates that our sample mean of M � 70 is not an extreme
or unusual value to be obtained from a population with � � 65. Therefore, our statistical
decision is to fail to reject H0. Our conclusion for the study is that the data do not provide
sufficient evidence that the special training changes test scores.

DEMONSTRATION 8.2

EFFECT SIZE USING COHEN’S D

We will compute Cohen’s d using the research situation and the data from Demonstration 8.1.
Again, the original population mean was � � 65 and, after treatment (special training), the
sample mean was M � 70. Thus, there is a 5-point mean difference. Using the population
standard deviation, � � 15, we obtain an effect size of
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According to Cohen’s evaluation standards (see Table 8.2), this is a medium treatment
effect.
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PROBLEMS

1. In the z-score formula as it is used in a hypothesis test,
a. Explain what is measured by M – � in the

numerator.
b. Explain what is measured by the standard error in

the denominator.

2. The value of the z-score in a hypothesis test is
influenced by a variety of factors. Assuming that all
other variables are held constant, explain how the
value of z is influenced by each of the following:
a. Increasing the difference between the sample mean

and the original population mean.

b. Increasing the population standard deviation.
c. Increasing the number of scores in the sample.

3. In words, define the alpha level and the critical region
for a hypothesis test.

4. If the alpha level is changed from � � .05 to � � .01,
a. What happens to the boundaries for the critical

region?
b. What happens to the probability of a Type I error?

5. Although there is a popular belief that herbal remedies
such as ginkgo biloba and ginseng may improve
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learning and memory in healthy adults, these effects
are usually not supported by well-controlled research
(Persson, Bringlov, Nilsson, & Nyberg, 2004). In a
typical study, a researcher obtains a sample of n � 36
participants and has each person take the herbal
supplements every day for 90 days. At the end of the
90 days, each person takes a standardized memory
test. For the general population, scores from the test
are normally distributed with a mean of � � 80 and a
standard deviation of � � 18. The sample of research
participants had an average of M � 84.
a. Assuming a two-tailed test, state the null hypothesis

in a sentence that includes the two variables being
examined.

b. Using symbols, state the hypotheses (H0 and H1)
for the two-tailed test.

c. Sketch the appropriate distribution, and locate the
critical region for � � .05.

d. Calculate the test statistic (z-score) for the sample.
e. What decision should be made about the null

hypothesis, and what decision should be made
about the effect of the herbal supplements?

6. Childhood participation in sports, cultural groups, 
and youth groups appears to be related to improved 
self-esteem for adolescents (McGee, Williams, Howden-
Chapman, Martin, & Kawachi, 2006). In a representative
study, a sample of n � 100 adolescents with a history of
group participation is given a standardized self-esteem
questionnaire. For the general population of adolescents,
scores on this questionnaire form a normal distribution
with a mean of � � 40 and a standard deviation of 
� � 12. The sample of group-participation adolescents
had an average of M � 43.84.
a. Does this sample provide enough evidence to

conclude that self-esteem scores for these adolescents
are significantly different from those of the general
population? Use a two-tailed test with � � .01.

b. Compute Cohen’s d to measure the size of the
difference.

c. Write a sentence describing the outcome of the
hypothesis test and the measure of effect size as it
would appear in a research report.

7. A local college requires an English composition course
for all freshmen. This year they are evaluating a new
online version of the course. A random sample of 
n � 16 freshmen is selected and the students are
placed in the online course. At the end of the semester,
all freshmen take the same English composition exam.
The average score for the sample is M � 76. For the
general population of freshmen who took the
traditional lecture class, the exam scores form a
normal distribution with a mean of � � 80.
a. If the final exam scores for the population have a

standard deviation of � � 12, does the sample
provide enough evidence to conclude that the new
online course is significantly different from the

traditional class? Assume a two-tailed test with 
� � .05.

b. If the population standard deviation is � � 6, is the
sample sufficient to demonstrate a significant dif-
ference? Again, assume a two-tailed test with � � .05.

c. Comparing your answers for parts a and b, explain
how the magnitude of the standard deviation
influences the outcome of a hypothesis test.

8. A random sample is selected from a normal population
with a mean of � � 50 and a standard deviation of 
� � 12. After a treatment is administered to the
individuals in the sample, the sample mean is found 
to be M � 55.
a. If the sample consists of n � 16 scores, is the

sample mean sufficient to conclude that the
treatment has a significant effect? Use a 
two-tailed test with � � .05.

b. If the sample consists of n � 36 scores, is the
sample mean sufficient to conclude that the
treatment has a significant effect? Use a 
two-tailed test with � � .05.

c. Comparing your answers for parts a and b, explain
how the size of the sample influences the outcome
of a hypothesis test.

9. A random sample of n � 36 scores is selected from a
normal population with a mean of � � 60. After a
treatment is administered to the individuals in the
sample, the sample mean is found to be M � 52.
a. If the population standard deviation is � � 18, is 

the sample mean sufficient to conclude that the
treatment has a significant effect? Use a two-tailed
test with � � .05.

b. If the population standard deviation is � � 30, is 
the sample mean sufficient to conclude that the
treatment has a significant effect? Use a two-tailed
test with � � .05.

c. Comparing your answers for parts a and b, explain
how the magnitude of the standard deviation
influences the outcome of a hypothesis test.

10. Miller (2008) examined the energy drink consumption
of college undergraduates and found that males use
energy drinks significantly more often than females. 
To further investigate this phenomenon, suppose that 
a researcher selects a random sample of n � 36 male
undergraduates and a sample of n � 25 females. On
average, the males reported consuming M � 2.45 drinks
per month and females had an average of M � 1.28.
Assume that the overall level of consumption for
college undergraduates averages � � 1.85 energy
drinks per month, and that the distribution of monthly
consumption scores is approximately normal with a
standard deviation of � � 1.2.
a. Did this sample of males consume significantly

more energy drinks than the overall population
average? Use a one-tailed test with � � .01.
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b. Did this sample of females consume significantly
fewer energy drinks than the overall population
average? Use a one-tailed test with � � .01

11. A random sample is selected from a normal
population with a mean of � � 40 and a standard
deviation of � � 10. After a treatment is
administered to the individuals in the sample, the
sample mean is found to be M � 42.
a. How large a sample is necessary for this sample

mean to be statistically significant? Assume a 
two-tailed test with � � .05.

b. If the sample mean were M � 41, what sample size
is needed to be significant for a two-tailed test with
� � .05?

12. There is some evidence that REM sleep, associated
with dreaming, may also play a role in learning and
memory processing. For example, Smith and Lapp
(1991) found increased REM activity for college
students during exam periods. Suppose that REM
activity for a sample of n � 16 students during the
final exam period produced an average score of 
M � 143. Regular REM activity for the college
population averages � � 110 with a standard
deviation of � � 50. The population distribution is
approximately normal.
a. Do the data from this sample provide evidence for a

significant increase in REM activity during exams?
Use a one-tailed test with � � .01.

b. Compute Cohen’s d to estimate the size of the
effect.

c. Write a sentence describing the outcome of the
hypothesis test and the measure of effect size as it
would appear in a research report.

13. There is some evidence indicating that people with
visible tattoos are viewed more negatively than people
without visible tattoos (Resenhoeft, Villa, & Wiseman,
2008). In a similar study, a researcher first obtained
overall ratings of attractiveness for a woman with 
no tattoos shown in a color photograph. On a 7-point
scale, the woman received an average rating of 
� � 4.9, and the distribution of ratings was normal
with a standard deviation of � � 0.84. The researcher
then modified the photo by adding a tattoo of a
butterfly on the woman’s left arm. The modified 
photo was then shown to a sample of n � 16 students
at a local community college and the students used 
the same 7-point scale to rate the attractiveness of 
the woman. The average score for the photo with the
tattoo was M � 4.2.
a. Do the data indicate a significant difference in rated

attractiveness when the woman appeared to have a
tattoo? Use a two-tailed test with � � .05.

b. Compute Cohen’s d to measure the size of the effect.

c. Write a sentence describing the outcome of the
hypothesis test and the measure of effect size as it
would appear in a research report.

14. A psychologist is investigating the hypothesis that
children who grow up as the only child in the
household develop different personality characteristics
than those who grow up in larger families. A sample
of n � 30 only children is obtained and each child is
given a standardized personality test. For the general
population, scores on the test from a normal
distribution with a mean of � � 50 and a standard
deviation of � � 15. If the mean for the sample is 
M � 58, can the researcher conclude that there is a
significant difference in personality between only
children and the rest of the population? Use a two-
tailed test with � � .05.

15. A researcher is testing the hypothesis that consuming a
sports drink during exercise improves endurance. A
sample of n � 50 male college students is obtained and
each student is given a series of three endurance tasks
and asked to consume 4 ounces of the drink during
each break between tasks. The overall endurance score
for this sample is M � 53. For the general population
of male college students, without any sports drink, the
scores for this task average � � 50 with a standard
deviation of � � 12.
a. Can the researcher conclude that endurance scores

with the sports drink are significantly higher than
scores without the drink? Use a one-tailed test with
� � .05.

b. Can the researcher conclude that endurance scores
with the sports drink are significantly different than
scores without the drink? Use a two-tailed test with
� � .05.

c. You should find that the two tests lead to different
conclusions. Explain why.

16. Montarello and Martins (2005) found that fifth-grade
students completed more mathematics problems
correctly when simple problems were mixed in 
with their regular math assignments. To further
explore this phenomenon, suppose that a researcher
selects a standardized mathematics achievement test
that produces a normal distribution of scores with 
a mean of � � 100 and a standard deviation of 
� � 18. The researcher modifies the test by inserting
a set of very easy problems among the standardized
questions, and gives the modified test to a sample 
of n � 36 students. If the average test score for 
the sample is M � 104, is this result sufficient to
conclude that inserting the easy questions improves
student performance? Use a one-tailed test with 
� � .01.
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17. Researchers have often noted increases in violent
crimes when it is very hot. In fact, Reifman, Larrick,
and Fein (1991) noted that this relationship even
extends to baseball. That is, there is a much greater
chance of a batter being hit by a pitch when the
temperature increases. Consider the following
hypothetical data. Suppose that over the past 30 years,
during any given week of the major-league season, an
average of � � 12 players are hit by wild pitches.
Assume that the distribution is nearly normal with 
� � 3. For a sample of n � 4 weeks in which the
daily temperature was extremely hot, the weekly
average of hit-by-pitch players was M � 15.5. Are
players more likely to get hit by pitches during hot
weeks? Set alpha to .05 for a one-tailed test.

18. A researcher plans to conduct an experiment 
testing the effect of caffeine on reaction time 
during a driving simulation task. A sample of 
n � 9 participants is selected and each person
receives a standard dose of caffeine before being
tested on the simulator. The caffeine is expected to
lower reaction time by an average of 30 msec.
Scores on the simulator task for the regular
population (without caffeine) form a normal
distribution with � � 240 msec. and � � 30.
a. If the researcher uses a two-tailed test with � � .05,

what is the power of the hypothesis test?
b. Again assuming a two-tailed test with � � .05,

what is the power of the hypothesis test if the
sample size is increased to n � 25?

19. A sample of n � 40 is selected from a normal
population with � � 75 msec. and � � 12, and a
treatment is administered to the sample. The 
treatment is expected to increase scores by an 
average of 4 points.
a. If the treatment effect is evaluated with a two-tailed

hypothesis test using � � .05, what is the power of
the test?

b. What is the power of the test if the researcher uses
a one-tailed test with � � .05?

20. Briefly explain how increasing sample size influences
each of the following. Assume that all other factors are
held constant.
a. The size of the z-score in a hypothesis test.
b. The size of Cohen’s d.
c. The power of a hypothesis test.

21. Explain how the power of a hypothesis test is
influenced by each of the following. Assume that all
other factors are held constant.
a. Increasing the alpha level from .01 to .05.
b. Changing from a one-tailed test to a two-tailed test.

22. A researcher is investigating the effectiveness of a new
medication for lowering blood pressure for individuals
with systolic pressure greater than 140. For this
population, systolic scores average � � 160 with a
standard deviation of � � 20, and the scores form a
normal-shaped distribution. The researcher plans to
select a sample of n � 25 individuals, and measure
their systolic blood pressure after they take the
medication for 60 days. If the researcher uses a 
two-tailed test with � � .05,
a. What is the power of the test if the medication has

a 5-point effect?
b. What is the power of the test if the medication has

a 10-point effect?

23. A researcher is evaluating the influence of a treatment
using a sample selected from a normally distributed
population with a mean of � � 80 and a standard
deviation of � � 20. The researcher expects a 12-point
treatment effect and plans to use a two-tailed
hypothesis test with � � .05.
a. Compute the power of the test if the researcher uses

a sample of n � 16 individuals. (See Example 8.6.)
b. Compute the power of the test if the researcher uses

a sample of n � 25 individuals.
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REVIEW

P A R T II

After completing this part, you should understand the
basic procedures that form the foundation of inferential
statistics. These include:

1. The ability to transform scores into z-scores to 
describe locations within a distribution and to stan-
dardize entire distributions.

2. The ability to determine probabilities associated with
individual scores selected from a distribution, espe-
cially for scores from normal distributions.

3. The ability to transform sample means into z-scores
and to determine the probabilities associated with sam-
ple means.

4. The ability to use a sample mean to evaluate a 
hypothesis about an unknown population mean.

The general goal of inferential statistics is to use the limited
information from a sample to answer general questions
about an unknown population. In Chapter 8, we introduced
hypothesis testing, one of the most commonly used inferen-
tial procedures. The hypothesis test presented in Chapter 8
integrates z-scores from Chapter 5, probability from
Chapter 6, and the distribution of sample means from
Chapter 7 into a single procedure that allows researchers to
use a sample from an unknown population to evaluate a 
hypothesis about the population mean. The researcher first
obtains a sample from the unknown population and computes
the sample mean. The sample mean and a hypothesized value
for the population mean are then used to compute a z-score.
If the resulting z-score is a high-probability value, near the
center of the distribution of sample means, then the 
researcher concludes that the sample data fit the hypothesis
and the decision is to fail to reject the hypothesis. On the
other hand, if the resulting z-score is a low-probability value,
out in the tails of the distribution of sample means, then the 
researcher concludes that the sample data do not fit the 
hypothesis and the decision is to reject the hypothesis.

REVIEW EXERCISES

1. Find each of the requested values for a population
with a mean of � � 40 and a standard deviation of 
� � 8.
a. What is the z-score corresponding to X � 52?
b. What is the X value corresponding to z � 	0.50?
c. If all of the scores in the population are trans-

formed into z-scores, what will be the values for
the mean and standard deviation for the complete
set of z-scores?

d. What is the z-score corresponding to a sample
mean of M � 42 for a sample of n � 4 scores?

e. What is the z-score corresponding to a sample
mean of M � 42 for a sample of n � 16 scores?

2. A survey of female high school seniors shows that the
average amount of time spent on clothes, hair, and
makeup each morning before school is � � 35 minutes.
Assume that the distribution of preparation times is
approximately normal with a standard deviation of 
� � 14 minutes, and find each of the requested values.
a. What proportion of female high school seniors

spend more than 40 minutes preparing themselves
for going to school each morning?

b. What is the probability of randomly selecting a 
female high school senior who spends less than 
10 minutes on her clothes, hair, and makeup each
morning?

c. What is the probability of obtaining a mean prepa-
ration time less than M � 30 minutes for a sample
of n � 49 female high school students?

3. Brunt, Rhee, and Zhong (2008) surveyed 557 under-
graduate college students to examine their weight
status, health behaviors, and diet. Using body mass
index (BMI), they classified the students into four
categories: underweight, healthy weight, overweight,
and obese. They also measured dietary variety by
counting the number of different foods each student
ate from several food groups. Note that the
researchers are not measuring the amount of food
eaten, but rather the number of different foods eaten
(variety, not quantity). Nonetheless, it was somewhat
surprising that the results showed no differences
among the four weight categories that were related to
eating fatty and/or sugary snacks.

Suppose a researcher conducting a follow up study
obtains a sample of n � 25 students classified as
healthy weight and a sample of n � 36 students clas-
sified as overweight. Each student completes the food
variety questionnaire, and the healthy-weight group
produces a mean of M � 4.01 for the fatty, sugary
snack category compared to a mean of M � 4.48 for
the overweight group. The results from the Brunt,
Rhee, and Zhong study showed an overall mean vari-
ety score of � � 4.22 for the discretionary sweets or
fats food group. Assume that the distribution of scores
is approximately normal with a standard deviation of
� � 0.60.
a. Does the sample of n � 36 indicate that number of

fatty, sugary snacks eaten by overweight students
is significantly different from the overall popula-
tion mean? Use a two-tailed test with � � .05.

b. Based on the sample of n � 25 healthy-weight
students, can you conclude that healthy-weight
students eat significantly fewer fatty, sugary
snacks than the overall population? Use a one-
tailed test with � � .05.

279
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Chapter 11 The t Test for Two Related
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In Part II we presented the foundation for inferential statistics.
In this part, we begin to introduce some of the inferential pro-
cedures that are actually used in behavioral science research.

Specifically, we look at a family of t statistics that use sample
means and mean differences to draw inferences about the corre-
sponding population means and mean differences. The t statistics
are all modeled after the z-score for sample means that was intro-
duced in Chapter 7 and used for hypothesis testing in Chapter 8.
However, the t statistics do not require any prior knowledge about
the population being evaluated. The three t statistics introduced in
this part apply to three distinct research situations:

1. Using a single sample to draw an inference about the unknown
mean for a single population.

2. Using two separate samples to draw an inference about the
mean difference between two unknown populations.

3. Using one sample, with each individual tested in two different
treatment conditions, to draw an inference about the population
mean difference between the two conditions.

In addition to the hypothesis testing procedure introduced in
Chapter 8, this part introduces a new inferential technique known
as confidence intervals. Confidence intervals allow researchers to
use sample data to estimate population means or mean differences
by computing a range of values that is highly likely to contain the
unknown parameter. 

Using t Statistics
for Inferences
About Population
Means and Mean
Differences

281
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Tools You Will Need
The following items are considered essen-
tial background material for this chapter. If
you doubt your knowledge of any of these
items, you should review the appropriate
chapter or section before proceeding.

• Proportions (math review, Appendix
A)

• Fractions
• Decimals
• Percentages

• Basic algebra (math review, Appendix A)
• z-Scores (Chapter 5)

C H A P T E R

9
Introduction to
the t Statistic

Preview

9.1 The t Statistic: An Alternative to z

9.2 Hypothesis Tests with the 
t Statistic

9.3 Measuring Effect Size for the 
t Statistic

9.4 Directional Hypotheses and 
One-Tailed Tests

Summary

Focus on Problem Solving

Demonstrations 9.1 and 9.2

Problems

Tools You Will Need
The following items are considered essential
background material for this chapter. If you
doubt your knowledge of any of these items,
you should review the appropriate chapter or
section before proceeding.

• Sample standard deviation (Chapter 4)
• Degrees of freedom (Chapter 4)
• Standard error (Chapter 7)
• Hypothesis testing (Chapter 8)
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Preview
Numerous accounts suggest that for many animals, 
including humans, direct stare from another animal is
aversive (e.g., Cook, 1977). Try it out for yourself. 
Make direct eye contact with a stranger in a cafeteria.
Chances are the person will display avoidance by 
averting his or her gaze or turning away from you. 
Some insects, such as moths, have even developed 
eye-spot patterns on the wings or body to ward off 
predators (mostly birds) who may have a natural fear 
of eyes (Blest, 1957). Suppose that a comparative 
psychologist is interested in determining whether the
birds that feed on these insects show an avoidance of
eye-spot patterns.

Using methods similar to those of Scaife (1976), 
the researcher performed the following experiment. A
sample of n � 16 moth-eating birds is selected. The
animals are tested in an apparatus that consists of a 
two-chambered box. The birds are free to roam from 
one side of the box to the other through a doorway in the
partition that separates the two chambers. In one cham-
ber, there are two eye-spot patterns painted on the wall.
The other side of the box has plain walls. One at a 
time, the researcher tests each bird by placing it in the
doorway between the chambers. Each subject is left in
the apparatus for 60 minutes, and the amount of time
spent in the plain chamber is recorded.

The null hypothesis for this study would state that
eye-spot patterns have no effect on the behavior of moth-
eating birds. If this is true, then birds placed in the appara-
tus should wander randomly from side to side during the
60-minute period, averaging half of the time on each side.

Therefore, for the general population of moth-eating birds,
the null hypothesis states

H0: μplain side � 30 minutes

The Problem: The researcher has most of the
information needed to conduct a hypothesis test. In
particular, the researcher has a hypothesis about the
population (μ � 30 minutes) and a sample of n � 16
scores that produces a sample mean (M). However, the
researcher does not know the population standard
deviation (�). This value is needed to compute the
standard error for the sample mean (�M) that appears in
the denominator of the z-score equation. Recall that the
standard error measures how much difference is
reasonable to expect between a sample mean (M) and
the population mean (μ). The value of the standard error
is critical to deciding whether the sample data are
consistent with the null hypothesis or refute the null
hypothesis. Without the standard error, it is impossible
to conduct a z-score hypothesis test.

The Solution: Because it is impossible to compute
the standard error, a z-score cannot be used for the
hypothesis test. However, it is possible to estimate the
standard error using the sample data. The estimated
standard error can then be used to compute a new
statistic that is similar in structure to the z-score. The
new statistic is called a t statistic and it can be used to
conduct a new kind of hypothesis test.

284

9.1 THE t STATISTIC: AN ALTERNATIVE TO z

In the previous chapter, we presented the statistical procedures that permit 
researchers to use a sample mean to test hypotheses about an unknown population
mean. These statistical procedures were based on a few basic concepts, which we
summarize as follows:

1. A sample mean (M) is expected to approximate its population mean (μ). 
This permits us to use the sample mean to test a hypothesis about the popu-
lation mean.

2. The standard error provides a measure of how well a sample mean approxi-
mates the population mean. Specifically, the standard error determines how
much difference is reasonable to expect between a sample mean (M) and the
population mean (μ).

Remember that the expected
value of the distribution of
sample means is μ, the 
population mean.
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3. To quantify our inferences about the population, we compare the obtained 

sample mean (M) with the hypothesized population mean (μ) by computing a 
z-score test statistic.

z � �
M

�

�

M

�
� �

The goal of the hypothesis test is to determine whether the obtained difference 
between the data and the hypothesis is significantly greater than would be expected by
chance. When the z-scores form a normal distribution, we are able to use the unit 
normal table (in Appendix B) to find the critical region for the hypothesis test.

The shortcoming of using a z-score for hypothesis testing is that the z-score formula 
requires more information than is usually available. Specifically, a z-score requires that
we know the value of the population standard deviation (or variance), which is needed
to compute the standard error. In most situations, however, the standard deviation for
the population is not known. In fact, the whole reason for conducting a hypothesis test
is to gain knowledge about an unknown population. This situation appears to create a
paradox: You want to use a z-score to find out about an unknown population, but you
must know about the population before you can compute a z-score. Fortunately, there
is a relatively simple solution to this problem. When the variability for the population
is not known, we use the sample variability in its place.

In Chapter 4, the sample variance was developed specifically to provide an unbiased 
estimate of the corresponding population variance. Recall that the formulas for sample
variance and sample standard deviation are as follows:

sample variance � s2 � �
n

S
�

S
1

� � �
S
d
S
f

�

sample standard deviation � s � ��
n

S
�
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��
Using the sample values, we can now estimate the standard error. Recall from

Chapters 7 and 8 that the value of the standard error can be computed using either stan-
dard deviation or variance:

standard error � �M � �
�

�

n�
� or �M � ��

�

n

2

��
Now we estimate the standard error by simply substituting the sample variance or

standard deviation in place of the unknown population value:

estimated standard error � sM � �
�

s

n�
� or sM � ��

s
n

2

�� (9.1)

INTRODUCING THE 
t STATISTIC

THE PROBLEM WITH 
z-SCORES

obtained difference between data and hypothesis
�����

standard distance between M and �

SECTION 9.1 / THE t STATISTIC: AN ALTERNATIVE TO z 285

The concept of degrees of 
freedom, df � n – 1, was 
introduced in Chapter 4 (p. 117)
and is discussed later in this
chapter (p. 287).
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Notice that the symbol for the estimated standard error of M is sM instead of �M,
indicating that the estimated value is computed from sample data rather than from the
actual population parameter.

The estimated standard error (sM) is used as an estimate of the real standard
error, �M, when the value of � is unknown. It is computed from the sample
variance or sample standard deviation and provides an estimate of the standard
distance between a sample mean, M, and the population mean, μ.

Finally, you should recognize that we have shown formulas for standard error 
(actual or estimated) using both the standard deviation and the variance. In the past
(Chapters 7 and 8), we concentrated on the formula using the standard deviation. At this
point, however, we shift our focus to the formula based on variance. Thus, throughout
the remainder of this chapter, and in following chapters, the estimated standard error of
M typically is presented and computed using

There are two reasons for making this shift from standard deviation to variance:

1. In Chapter 4 (p. 119) we saw that the sample variance is an unbiased statistic;
on average, the sample variance (s2) provides an accurate and unbiased estimate
of the population variance (�2). Therefore, the most accurate way to estimate
the standard error is to use the sample variance to estimate the population 
variance.

2. In future chapters we encounter other versions of the t statistic that require
variance (instead of standard deviation) in the formulas for estimated standard
error. To maximize the similarity from one version to another, we use variance
in the formula for all of the different t statistics. Thus, whenever we present a 
t statistic, the estimated standard error is computed as

estimated standard error � ��sam
sa

p
m
le�pl

v
e
a
s
ri
i
a
z�n
e
ce

��
Now we can substitute the estimated standard error in the denominator of the 

z-score formula. The result is a new test statistic called a t statistic:

(9.2)

The t statistic is used to test hypotheses about an unknown population mean, μ,
when the value of � is unknown. The formula for the t statistic has the same
structure as the z-score formula, except that the t statistic uses the estimated
standard error in the denominator.

The only difference between the t formula and the z-score formula is that the 
z-score uses the actual population variance, �2 (or the standard deviation), and the 

D E F I N I T I O N

t
M

s
M

�
�μ

s
s

nM
�

2

D E F I N I T I O N
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t formula uses the corresponding sample variance (or standard deviation) when the pop-
ulation value is not known.

In this chapter, we have introduced the t statistic as a substitute for a z-score. The basic
difference between these two is that the t statistic uses sample variance (s2) and the 
z-score uses the population variance (�2). To determine how well a t statistic approxi-
mates a z-score, we must determine how well the sample variance approximates the
population variance.

In Chapter 4, we introduced the concept of degrees of freedom (p. 117). Reviewing
briefly, you must know the sample mean before you can compute sample variance. This
places a restriction on sample variability such that only n – 1 scores in a sample are in-
dependent and free to vary. The value n – 1 is called the degrees of freedom (or df) for
the sample variance.

degrees of freedom � df � n – 1 (9.3)

Degrees of freedom describe the number of scores in a sample that are inde-
pendent and free to vary. Because the sample mean places a restriction on the
value of one score in the sample, there are n – 1 degrees of freedom for a sam-
ple with n scores (see Chapter 4).

The greater the value of df for a sample, the better the sample variance, s2, repre-
sents the population variance, �2, and the better the t statistic approximates the z-score.
This should make sense because the larger the sample (n) is, the better the sample 
represents its population. Thus, the degrees of freedom associated with s2 also describe
how well t represents z.

Every sample from a population can be used to compute a z-score or a t statistic. If you
select all of the possible samples of a particular size (n), and compute the z-score for each
sample mean, then the entire set of z-scores form a z-score distribution. In the same way,
you can compute the t statistic for every sample and the entire set of t values form a t dis-
tribution. As we saw in Chapter 7, the distribution of z-scores for sample means tends to
be a normal distribution. Specifically, if the sample size is large (around n � 30 or more)
or if the sample is selected from a normal population, then the distribution of sample
means is a nearly perfect normal distribution. In these same situations, the t distribution
approximates a normal distribution, just as a t statistic approximates a z-score. How well
a t distribution approximates a normal distributor is determined by degrees of freedom. In
general, the greater the sample size (n) is, the larger the degrees of freedom (n – 1) are,
and the better the t distribution approximates the normal distribution (Figure 9.1).

A t distribution is the complete set of t values computed for every possible
random sample for a specific sample size (n) or a specific degrees of freedom
(df). The t distribution approximates the shape of a normal distribution.

D E F I N I T I O N

THE t DISTRIBUTION

D E F I N I T I O N

DEGREES OF FREEDOM 
AND THE t STATISTIC
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The exact shape of a t distribution changes with degrees of freedom. In fact, statisti-
cians speak of a “family” of t distributions. That is, there is a different sampling distri-
bution of t (a distribution of all possible sample t values) for each possible number of
degrees of freedom. As df gets very large, the t distribution gets closer in shape to a nor-
mal z-score distribution. A quick glance at Figure 9.1 reveals that distributions of t are
bell-shaped and symmetrical and have a mean of zero. However, the t distribution has
more variability than a normal z distribution, especially when df values are small (see
Figure 9.1). The t distribution tends to be flatter and more spread out, whereas the nor-
mal z distribution has more of a central peak.

The reason that the t distribution is flatter and more variable than the normal 
z-score distribution becomes clear if you look at the structure of the formulas for z and t.
For both formulas, z and t, the top of the formula, M – μ, can take on different values
because the sample mean (M) varies from one sample to another. For z-scores, how-
ever, the bottom of the formula does not vary, provided that all of the samples are the
same size and are selected from the same population. Specifically, all of the z-scores
have the same standard error in the denominator, �M � ��2/n�, because the population
variance and the sample size are the same for every sample. For t statistics, on the other
hand, the bottom of the formula varies from one sample to another. Specifically, the
sample variance (s2) changes from one sample to the next, so the estimated standard
error also varies, sM � �s2/n�. Thus, only the numerator of the z-score formula varies,
but both the numerator and the denominator of the t statistic vary. As a result, t statis-
tics are more variable than are z-scores, and the t distribution is flatter and more spread
out. As sample size and df increase, however, the variability in the t distribution 
decreases, and it more closely resembles a normal distribution.

Just as we used the unit normal table to locate proportions associated with z-scores, we
use a t distribution table to find proportions for t statistics. The complete t distribution
table is presented in Appendix B, page 703, and a portion of this table is reproduced in

DETERMINING PROPORTIONS
AND PROBABILITIES FOR t

DISTRIBUTIONS

THE SHAPE OF THE 
t DISTRIBUTION
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0

Normal distribution
t distribution, df � 20 
t distribution, df � 5  

FIGURE 9.1

Distributions of the t statistic
for different values of 
degrees of freedom are 
compared to a normal z-score
distribution. Like the normal
distribution, t distributions
are bell-shaped and symmet-
rical and have a mean of
zero. However, t distributions
have more variability, indi-
cated by the flatter and more
spread-out shape. The larger
the value of df is, the more
closely the t distribution
approximates a normal 
distribution.
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Table 9.1. The two rows at the top of the table show proportions of the t distribution
contained in either one or two tails, depending on which row is used. The first column
of the table lists degrees of freedom for the t statistic. Finally, the numbers in the body
of the table are the t values that mark the boundary between the tails and the rest of the
t distribution.

For example, with df � 3, exactly 5% of the t distribution is located in the tail 
beyond t � 2.353 (Figure 9.2). The process of finding this value is highlighted in 
Table 9.1. Begin by locating df � 3 in the first column of the table. Then locate a pro-
portion of 0.05 (5%) in the one-tail proportion row. When you line up these two values
in the table, you should find t � 2.353. Similarly, 5% of the t distribution is located in
the tail beyond t � –2.353 (see Figure 9.2). Finally, notice that a total of 10% (or 0.10)
is contained in the two tails beyond t � �2.353 (check the proportion value in the 
“two-tails combined” row at the top of the table).

A close inspection of the t distribution table in Appendix B demonstrates a point
we made earlier: As the value for df increases, the t distribution becomes more sim-
ilar to a normal distribution. For example, examine the column containing t values
for a 0.05 proportion in two tails. You will find that when df � 1, the t values that
separate the extreme 5% (0.05) from the rest of the distribution are t � �12.706. As
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TABLE 9.1

A portion of the t-distribution
table. The numbers in the table
are the values of t that separate
the tail from the main body of
the distribution. Proportions for
one or two tails are listed at the
top of the table, and df values
for t are listed in the first 
column.

Proportion in One Tail
0.25 0.10 0.05 0.025 0.01 0.005

Proportion in Two Tails Combined
df 0.50 0.20 0.10 0.05 0.02 0.01

1 1.000 3.078 6.314 12.706 31.821 63.657
2 0.816 1.886 2.920 4.303 6.965 9.925
3 0.765 1.638 2.353 3.182 4.541 5.841
4 0.741 1.533 2.132 2.776 3.747 4.604
5 0.727 1.476 2.015 2.571 3.365 4.032
6 0.718 1.440 1.943 2.447 3.143 3.707

–2.353 0 2.3530
t

5% 5%

FIGURE 9.2

The t distribution with 
df � 3. Note that 5% of the
distribution is located in
the tail beyond t � 2.353.
Also, 5% is in the tail beyond
t � �2.353. Thus, a
total proportion of 10%
(0.10) is in the two tails
beyond t � �2.353.
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you read down the column, however, you will find that the critical t values become
smaller and smaller, ultimately reaching �1.96. You should recognize �1.96 as the
z-score values that separate the extreme 5% in a normal distribution. Thus, as df
increases, the proportions in a t distribution become more like the proportions in a
normal distribution. When the sample size (and degrees of freedom) is sufficiently
large, the difference between a t distribution and the normal distribution becomes
negligible.

Caution: The t distribution table printed in this book has been abridged and 
does not include entries for every possible df value. For example, the table lists 
t values for df � 40 and for df � 60, but does not list any entries for df values 
between 40 and 60. Occasionally, you will encounter a situation in which your 
t statistic has a df value that is not listed in the table. In these situations, you should
look up the critical t for both of the surrounding df values listed and then use 
the larger value for t. If, for example, you have df � 53 (not listed), look up the 
critical t value for both df � 40 and df � 60 and then use the larger t value. 
If your sample t statistic is greater than the larger value listed, then you can be 
certain that the data are in the critical region, and you can confidently reject the null
hypothesis.
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L E A R N I N G  C H E C K 1. Under what circumstances is a t statistic used instead of a z-score for a 
hypothesis test?

2. A sample of n � 9 scores has SS � 288.

a. Compute the variance for the sample.

b. Compute the estimated standard error for the sample mean.

3. In general, a distribution of t statistics is flatter and more spread out than the stan-
dard normal distribution. (True or false?)

4. A researcher reports a t statistic with df � 20. How many individuals participated
in the study?

5. For df � 15, find the value(s) of t associated with each of the following:

a. The top 5% of the distribution.

b. The middle 95% of the distribution.

c. The middle 99% of the distribution.

1. A t statistic is used instead of a z-score when the population standard deviation and variance
are not known.

2. a. s2 � 36

b. sM � 2

3. True.

4. n � 21

5. a. t � �1.753

b. t � �2.131

c. t � �2.947

ANSWERS
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9.2 HYPOTHESIS TESTS WITH THE t STATISTIC

In the hypothesis-testing situation, we begin with a population with an unknown 
mean and an unknown variance, often a population that has received some treatment
(Figure 9.3). The goal is to use a sample from the treated population (a treated sample)
as the basis for determining whether the treatment has any effect.

As always, the null hypothesis states that the treatment has no effect; specifically,
H0 states that the population mean is unchanged. Thus, the null hypothesis provides a
specific value for the unknown population mean. The sample data provide a value for
the sample mean. Finally, the variance and estimated standard error are computed from
the sample data. When these values are used in the t formula, the result becomes

sample mean    
�

population mean
(from the data) (hypothesized from H0)

t �  
estimated standard error

(computed from the sample data)

As with the z-score formula, the t statistic forms a ratio. The numerator measures
the actual difference between the sample data (M) and the population hypothesis (μ).
The estimated standard error in the denominator measures how much difference is rea-
sonable to expect between a sample mean and the population mean. When the obtained
difference between the data and the hypothesis (numerator) is much greater than 
expected (denominator), we obtain a large value for t (either large positive or large neg-
ative). In this case, we conclude that the data are not consistent with the hypothesis, and
our decision is to “reject H0.” On the other hand, when the difference between the data
and the hypothesis is small relative to the standard error, we obtain a t statistic near
zero, and our decision is “fail to reject H0.”

The Unknown Population As mentioned earlier, the hypothesis test often concerns
a population that has received a treatment. This situation is shown in Figure 9.3. Note
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μ = 30 μ = ?

Known population
before treatment

Unknown population
after treatment

T
r
e
a
t
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FIGURE 9.3

The basic experimental
situation for using the 
t statistic or the z-score is
presented. It is assumed that
the parameter � is known for
the population before treat-
ment. The purpose of the
experiment is to determine
whether the treatment has an
effect. Note that the popula-
tion after treatment has 
unknown values for the mean
and the variance. We will use
a sample to test a hypothesis
about the population mean.
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that the value of the mean is known for the population before treatment. The question
is whether the treatment influences the scores and causes the mean to change. In this
case, the unknown population is the one that exists after the treatment is administered,
and the null hypothesis simply states that the value of the mean is not changed by the
treatment.

Although the t statistic can be used in the “before and after” type of research shown
in Figure 9.3, it also permits hypothesis testing in situations for which you do not have
a known population mean to serve as a standard. Specifically, the t test does not require
any prior knowledge about the population mean or the population variance. All you
need to compute a t statistic is a null hypothesis and a sample from the unknown pop-
ulation. Thus, a t test can be used in situations for which the null hypothesis is obtained
from a theory, a logical prediction, or just wishful thinking. For example, many surveys
contain rating-scale questions to determine how people feel about controversial issues.
Participants are presented with a statement and asked to express their opinion on a scale
from 1 to 7, with 1 indicating “strongly agree” and 7 indicating “strongly disagree.” A
score of 4 indicates a neutral position, with no strong opinion one way or the other. In
this situation, the null hypothesis would state that there is no preference in the popula-
tion, H0: μ � 4. The data from a sample is then used to evaluate the hypothesis. Note
that the researcher has no prior knowledge about the population mean and states a 
hypothesis that is based on logic.

The following research situation demonstrates the procedures of hypothesis testing with
the t statistic. Note that this is another example of a null hypothesis that is founded in
logic rather than prior knowledge of a population mean.

Infants, even newborns, prefer to look at attractive faces compared to less attractive
faces (Slater, et al., 1998). In the study, infants from 1 to 6 days old were shown 
two photographs of women’s faces. Previously, a group of adults had rated one of the
faces as significantly more attractive than the other. The babies were positioned in
front of a screen on which the photographs were presented. The pair of faces
remained on the screen until the baby accumulated a total of 20 seconds of looking at
one or the other. The number of seconds looking at the attractive face was recorded
for each infant. Suppose that the study used a sample of n � 9 infants and the data
produced an average of M � 13 seconds for the attractive face with SS � 72. Note
that all of the available information comes from the sample. Specifically, we do not
know the population mean or the population standard deviation.

State the hypotheses and select an alpha level. Although we have no information
about the population of scores, it is possible to form a logical hypothesis about the
value of μ. In this case, the null hypothesis states that the infants have no preference
for either face. That is, they should average half of the 20 seconds looking at each of
the two faces. In symbols, the null hypothesis states

H0: μattractive � 10 seconds

The alternative hypothesis states that there is a preference and one of the faces is pre-
ferred over the other. A directional, one-tailed test would specify which of the two faces
is preferred, but the nondirectional alternative hypothesis is expressed as follows:

H1: μattractive � 10 seconds

We set the level of significance at 	 � .05 for two tails.

S T E P  1

E X A M P L E  9 . 1

HYPOTHESIS TESTING
EXAMPLE
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Locate the critical region. The test statistic is a t statistic because the population
variance is not known. Therefore, the value for degrees of freedom must be
determined before the critical region can be located. For this sample

df � n – 1 � 9 – 1 � 8

For a two-tailed test at the .05 level of significance and with 8 degrees of
freedom, the critical region consists of t values greater than �2.306 or less than
–2.306. Figure 9.4 depicts the critical region in this t distribution.

Calculate the test statistic. The t statistic typically requires much more computation
than is necessary for a z-score. Therefore, we recommend that you divide the
calculations into a three-stage process as follows:

a. First, calculate the sample variance. Remember that the population variance is
unknown, and you must use the sample value in its place. (This is why we are
using a t statistic instead of a z-score.)

b. Next, use the sample variance (s2) and the sample size (n) to compute the
estimated standard error. This value is the denominator of the t statistic and
measures how much difference is reasonable to expect by chance between a
sample mean and the corresponding population mean.

Finally, compute the t statistic for the sample data.

Make a decision regarding H0. The obtained t statistic of 3.00 falls into the critical
region on the right-hand side of the t distribution (see Figure 9.4). Our statistical
decision is to reject H0 and conclude that babies do show a preference when given a
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Reject H0 Reject H0

df = 8

Fail to reject H0

+2.306–2.306
t

FIGURE 9.4

The critical region in the 
t distribution for 	 � .05 and
df � 8.
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choice between an attractive and an unattractive face. Specifically, the average
amount of time that the babies spent looking at the attractive face was significantly
different from the 10 seconds that would be expected if there were no preference. As
indicated by the sample mean, there is a tendency for the babies to spend more time
looking at the attractive face.

Two basic assumptions are necessary for hypothesis tests with the t statistic.

1. The values in the sample must consist of independent observations.
In everyday terms, two observations are independent if there is no consistent,

predictable relationship between the first observation and the second. More
precisely, two events (or observations) are independent if the occurrence of the
first event has no effect on the probability of the second event. We examined
specific examples of independence and non-independence in Box 8.1 (p. 254).

2. The population that is sampled must be normal.
This assumption is a necessary part of the mathematics underlying the devel-

opment of the t statistic and the t distribution table. However, violating this
assumption has little practical effect on the results obtained for a t statistic,
especially when the sample size is relatively large. With very small samples, a
normal population distribution is important. With larger samples, this assump-
tion can be violated without affecting the validity of the hypothesis test. If 
you have reason to suspect that the population distribution is not normal, use a
large sample to be safe.

As we noted in Chapter 8 (p. 252), a variety of factors can influence the outcome of
a hypothesis test. In particular, the number of scores in the sample and the magnitude
of the sample variance both have a large effect on the t statistic and thereby influence
the statistical decision. The structure of the t formula makes these factors easier to 
understand.

Because the estimated standard error, sM, appears in the denominator of the 
formula, a larger value for sM produces a smaller value (closer to zero) for t. Thus,
any factor that influences the standard error also affects the likelihood of rejecting
the null hypothesis and finding a significant treatment effect. The two factors that
determine the size of the standard error are the sample variance, s2, and the sample
size, n.

The estimated standard error is directly related to the sample variance so that the
larger the variance, the larger the error. Thus, large variance means that you are less
likely to obtain a significant treatment effect. In general, large variance is bad for 
inferential statistics. Large variance means that the scores are widely scattered, which
makes it difficult to see any consistent patterns or trends in the data. In general, high
variance reduces the likelihood of rejecting the null hypothesis.

On the other hand, the estimated standard error is inversely related to the number
of scores in the sample. The larger the sample is, the smaller the error is. If all other fac-
tors are held constant, large samples tend to produce bigger t statistics and therefore are
more likely to produce significant results. For example, a 2-point mean difference with

t
M

s
s

s

n
M

M
�

�
�

μ
where

2

THE INFLUENCE OF SAMPLE
SIZE AND SAMPLE VARIANCE

ASSUMPTIONS OF THE t TEST
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a sample of n � 4 may not be convincing evidence of a treatment effect. However, the
same 2-point difference with a sample of n � 100 is much more compelling.

9.3 MEASURING EFFECT SIZE FOR THE t STATISTIC

In Chapter 8, we noted that one criticism of a hypothesis test is that it does not really
evaluate the size of the treatment effect. Instead, a hypothesis test simply determines
whether the treatment effect is greater than chance, where “chance” is measured by 
the standard error. In particular, it is possible for a very small treatment effect to be
“statistically significant,” especially when the sample size is very large. To correct for
this problem, it is recommended that the results from a hypothesis test be accompanied
by a report of effect size, such as Cohen’s d.

When Cohen’s d was originally introduced (p. 262), the formula was presented as

Cohen’s d ��
st
m
an

e
d
a
a
n
r
d
d
i
d
ff
e
e
v
r
i
e
a
n
t
c
io
e
n

�� 

Cohen defined this measure of effect size in terms of the population mean dif-
ference and the population standard deviation. However, in most situations the pop-
ulation values are not known and you must substitute the corresponding sample
values in their place. When this is done, many researchers prefer to identify the cal-
culated value as an “estimated d” or name the value after one of the statisticians who
first substituted sample statistics into Cohen’s formula (e.g., Glass’s g or Hedges’s
g). For hypothesis tests using the t statistic, the population mean with no treatment
is the value specified by the null hypothesis. However, the population mean with
treatment and the standard deviation are both unknown. Therefore, we use the mean 
for the treated sample and the standard deviation for the sample after treatment as

�treatment � �no treatment
���

�

ESTIMATED COHEN’S d
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L E A R N I N G  C H E C K 1. A sample of n � 4 individuals is selected from a population with a mean of μ � 40.
A treatment is administered to the individuals in the sample and, after treatment,
the sample has a mean of M � 44 and a variance of s2 � 16. 

a. Is this sample sufficient to conclude that the treatment has a significant effect?
Use a two-tailed test with 	 � .05.

b. If all other factors are held constant and the sample size is increased to n � 16,
is the sample sufficient to conclude that the treatment has a significant effect?
Again, use a two-tailed test with 	 � .05.

1. a. H0: μ � 40 even after the treatment. With n � 4, the estimated standard error is 2, and
t � 4/2 � 2.00. With df � 3, the critical boundaries are set at t � �3.182. Fail to reject
H0 and conclude that the treatment does not have a significant effect.

b. With n � 16, the estimated standard error is 1 and t � 4.00.  With df � 15, the critical
boundary is �2.131. The t value is beyond the critical boundary, so we reject H0 and
conclude that the treatment does have a significant effect.

ANSWER
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estimates of the unknown parameters. With these substitutions, the formula for esti-
mating Cohen’s d becomes

estimated d � � �
M �

s
�

� (9.4)

The numerator measures that magnitude of the treatment effect by finding the dif-
ference between the mean for the treated sample and the mean for the untreated popu-
lation (μ from H0). The sample standard deviation in the denominator standardizes the
mean difference into standard deviation units. Thus, an estimated d of 1.00 indicates
that the size of the treatment effect is equivalent to one standard deviation. The fol-
lowing example demonstrates how the estimated d is used to measure effect size for a
hypothesis test using a t statistic.

For the infant face-preference study in Example 9.1, the babies averaged M � 13 out of
20 seconds looking at the attractive face. If there were no preference (as stated by the
null hypothesis), the population mean would be μ � 10 seconds. Thus, the results show
a 3-second difference between the mean with a preference (M � 13) and the mean with
no preference (μ � 10). Also, for this study the sample standard deviation is

Thus, Cohen’s d for this example is estimated to be

Cohen’s d � �
M �

s
�

� � �
13 �

3
10

� � 1.00

According to the standards suggested by Cohen (Table 8.2, p. 264), this is a large
treatment effect.

To help you visualize what is measured by Cohen’s d, we have constructed a set of
n � 9 scores with a mean of M � 13 and a standard deviation of s � 3 (the same values
as in Examples 9.1 and 9.2). The set of scores is shown in Figure 9.5. Notice that the fig-
ure also includes an arrow that locates μ � 10. Recall that μ � 10 is the value specified
by the null hypothesis and identifies what the mean ought to be if the treatment has no
effect. Clearly, our sample is not centered around μ � 10. Instead, the scores have been
shifted to the right so that the sample mean is M � 13. This shift, from 10 to 13, is the
3-point mean difference that was caused by the treatment effect. Also notice that the 3-
point mean difference is exactly equal to the standard deviation. Thus, the size of the
treatment effect is equal to 1 standard deviation. In other words, Cohen’s d � 1.00.

An alternative method for measuring effect size is to determine how much of the vari-
ability in the scores is explained by the treatment effect. The concept behind this meas-
ure is that the treatment causes the scores to increase (or decrease), which means that
the treatment is causing the scores to vary. If we can measure how much of the vari-
ability is explained by the treatment, we can obtain a measure of the size of the treat-
ment effect.

MEASURING THE
PERCENTAGE OF VARIANCE

EXPLAINED, r2

s
SS

df
� � � �

72

8
9 3

E X A M P L E  9 . 2

mean difference
���
sample standard deviation

296 CHAPTER 9 INTRODUCTION TO THE t STATISTIC

30991_ch09_ptg01_hr_281-314.qxd  9/2/11  11:31 PM  Page 296



To demonstrate this concept we use the data from the hypothesis test in Example 9.1.
Recall that the null hypothesis stated that the treatment (the attractiveness of the faces)
has no effect on the infants’ behavior. According to the null hypothesis, the infants
should show no preference between the two photographs, and therefore should spend
an average of μ � 10 out of 20 seconds looking at the attractive face.

However, if you look at the data in Figure 9.5, the scores are not centered around
μ � 10. Instead, the scores are shifted to the right so that they are centered around the
sample mean, M � 13. This shift is the treatment effect. To measure the size of the
treatment effect, we calculate deviations from the mean and the sum of squared devia-
tions, SS, in two different ways.

Figure 9.6(a) shows the original set of scores. For each score, the deviation from 
μ � 10 is shown as a colored line. Recall that μ � 10 comes from the null hypothesis
and represents the population mean if the treatment has no effect. Note that almost all
of the scores are located on the right-hand side of μ � 10. This shift to the right is the
treatment effect. Specifically, the preference for the attractive face has caused the 
infants to spend more time looking at the attractive photograph, which means that their
scores are generally greater than 10. Thus, the treatment has pushed the scores away
from μ � 10 and has increased the size of the deviations.

Next, we see what happens if the treatment effect is removed. In this example, the
treatment has a 3-point effect (the average increases from μ � 10 to M � 13). To 
remove the treatment effect, we simply subtract 3 points from each score. The adjusted
scores are shown in Figure 9.6(b) and, once again, the deviations from μ � 10 are
shown as colored lines. First, notice that the adjusted scores are centered at μ � 10, 
indicating that there is no treatment effect. Also notice that the deviations, the colored
lines, are noticeably smaller when the treatment effect is removed.

To measure how much the variability is reduced when the treatment effect is 
removed, we compute the sum of squared deviations, SS, for each set of scores. The left-
hand columns of Table 9.2 show the calculations for the original scores [Figure 9.6(a)], and
the right-hand columns show the calculations for the adjusted scores [Figure 9.6(b)]. Note
that the total variability, including the treatment effect, is SS � 153. However, when 
the treatment effect is removed, the variability is reduced to SS � 72. The difference 
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FIGURE 9.5

The sample distribution for
the scores that were used in
Examples 9.1 and 9.2. The
population mean, � � 10
seconds, is the value that
would be expected if 
attractiveness has no effect
on the infants’ behavior.
Note that the sample mean 
is displaced away from 
� � 10 by a distance equal
to one standard deviation.
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between these two values, 153 – 72 � 81 points, is the amount of variability that is 
accounted for by the treatment effect. This value is usually reported as a proportion or
percentage of the total variability:

� �
1
8
5
1
3
� � 0.5294 (52.94%)

variability accounted for
���

total variability
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 8 9 10 11 12 13 14 15 16   17  18

 No effect
μ � 10

 5 6 7 8 9  10  11 12 13   14  15 

No effect 
μ � 10

Original scores, including the treatment effect

Adjusted scores with the treatment effect removed

(a)

(b)

FIGURE 9.6

Deviations from � � 10 
(no treatment effect) for the
scores in Example 9.1. The
colored lines in part (a) show
the deviations for the original
scores, including the 
treatment effect. In part (b)
the colored lines show the
deviations for the adjusted
scores after the treatment
effect has been removed.

TABLE 9.2

Calculation of SS, the sum of
squared deviations, for the 
data in Figure 9.6. The first
three columns show the 
calculations for the original
scores, including the treatment
effect. The last three columns
show the calculations for the
adjusted scores after the 
treatment effect has been 
removed.

Calculation of SS
including the treatment effect

Deviation Squared
Score from � � 10 Deviation

8 �2 4
10 0 0
12 2 4
12 2 4
13 3 9
13 3 9
15 5 25
17 7 49
17 7 49

SS � 153

Calculation of SS after
the treatment effect is removed

Adjusted Deviation Squared
Score from � � 10 Deviation

8 � 3 � 5 �5 25
10 � 3 � 7 �3 9
12 � 3 � 9 �1 1
12 � 3 � 9 �1 1
13 � 3 � 10 0 0
13 � 3 � 10 0 0
15 � 3 � 12 2 4
17 � 3 � 14 4 16
17 � 3 � 14 4 16

SS � 72
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Thus, removing the treatment effect reduces the variability by 52.94%. This value is
called the percentage of variance accounted for by the treatment and is identified as r2.

Rather than computing r2 directly by comparing two different calculations for SS,
the value can be found from a single equation based on the outcome of the t test.

(9.5)

The letter r is the traditional symbol used for a correlation, and the concept of r2 is
discussed again when we consider correlations in Chapter 15. Also, in the context of t
statistics, the percentage of variance that we are calling r2 is often identified by the
Greek letter omega squared (
2).

For the hypothesis test in Example 9.1, we obtained t � 3.00 with df � 8. These
values produce

Note that this is exactly the same value we obtained with the direct calculation of
the percentage of variability accounted for by the treatment.

Interpreting r2 In addition to developing the Cohen’s d measure of effect size,
Cohen (1988) also proposed criteria for evaluating the size of a treatment effect that is
measured by r2. The criteria were actually suggested for evaluating the size of a corre-
lation, r, but are easily extended to apply to r2. Cohen’s standards for interpreting r2 are
shown in Table 9.3.

According to these standards, the data we constructed for Examples 9.1 and 9.2
show a very large effect size with r2 � .5294.

As a final note, we should remind you that, although sample size affects the hy-
pothesis test, this factor has little or no effect on measures of effect size. In particular,
estimates of Cohen’s d are not influenced at all by sample size, and measures of r2 are
only slightly affected by changes in the size of the sample. The sample variance, on the
other hand, influences hypothesis tests and measures of effect size. Specifically, high
variance reduces both the likelihood of rejecting the null hypothesis and measures of
effect size.

An alternative technique for describing the size of a treatment effect is to compute an
estimate of the population mean after treatment. For example, if the mean before treat-
ment is known to be � � 80 and the mean after treatment is estimated to be � � 86,
then we can conclude that the size of the treatment effect is around 6 points.  

Estimating an unknown population mean involves constructing a confidence inter-
val. A confidence interval is based on the observation that a sample mean tends to pro-
vide a reasonably accurate estimate of the population mean. The fact that a sample
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TABLE 9.3

Criteria for interpreting the
value of r2 as proposed by
Cohen (1988).

Percentage of Variance Explained, r2

r2 � 0.01 Small effect
r2 � 0.09 Medium effect
r2 � 0.25 Large effect
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mean tends to be near to the population mean implies that the population mean should
be near to the sample mean. For example, if we obtain a sample mean of M � 86, we
can be reasonably confident that the population mean is around 86. Thus, a confidence
interval consists of an interval of values around a sample mean, and we can be reason-
ably confident that the unknown population mean is located somewhere in the interval.

A confidence interval is an interval, or range of values, centered around a 
sample statistic. The logic behind a confidence interval is that a sample statistic,
such as a sample mean, should be relatively near to the corresponding 
population parameter. Therefore, we can confidently estimate that the value of
the parameter should be located in the interval.

The construction of a confidence interval begins with the observation that every sam-
ple mean has a corresponding t value defined by the equation

Although the values for M and sM are available from the sample data, we cannot
use the equation to calculate t because the value for � is unknown. Instead of calculat-
ing the t value, for a confidence interval we estimate the t value. For example, if the
sample has n � 9 scores, then the t statistic has df � 8, and the distribution of all pos-
sible t values can be pictured as in Figure 9.7. Notice that the t values pile up around 
t � 0, so we can estimate that the t value for our sample should have a value around 0.
Furthermore, the t distribution table lists a variety of different t values that correspond
to specific proportions of the t distribution. With df � 8, for example, 80% of the t val-
ues are located between t � �1.397 and t � –1.397. To obtain these values, simply look
up a two-tailed proportion of 0.20 (20%) for df � 8. Because 80% of all of the possi-
ble t values are located between �1.397, we can be 80% confident that our sample
mean corresponds to a t value in this interval. Similarly, we can be 95% confident that
the mean for a sample of n � 9 scores corresponds to a t value between �2.306 and
–2.306. Notice that we are able to estimate the value of t with a specific level of 

t
M

s
M

�
�μ

CONSTRUCTING A
CONFIDENCE INTERVAL

D E F I N I T I O N
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t distribution
df = 8

t = �1.397t = �1.397
t = 0

Middle 80%
of t distribution

FIGURE 9.7

The distribution of t statistics
with df � 8. The t values pile
up around t � 0 and 80% of
all of the possible values are
located between t � �1.397
and t � �1.397.
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confidence. To construct a confidence interval for �, we plug the estimated t value into
the t equation, and then we can calculate the value of �.

Before we demonstrate the process of constructing a confidence interval for an un-
known population mean, we simplify the calculations by regrouping the terms in the t
equation. Because the goal is to compute the value of �, we use simple algebra to solve
the equation for �. The result is

� � M � tsM (9.6) 

The process of using this equation to construct a confidence interval is demon-
strated in the following example.

Example 9.1 describes a study in which infants displayed a preference for the more
attractive face by looking at it, instead of the less attractive face, for the majority of a
20-second viewing period. Specifically, a sample of n � 9 infants spent an average of
M � 13 seconds out of a 20-second period looking at the more attractive face. The
data produced an estimated standard error of sM � 1. We use this sample to construct
a confidence interval to estimate the mean amount of time that the population of
infants spends looking at the more attractive face. That is, we construct an interval of
values that is likely to contain the unknown population mean.

Again, the estimation formula is

� � M � t(sM) 

In the equation, the value of M � 13 and sM � 1 are obtained from the sample
data. The next step is to select a level of confidence that determines the value of t
in the equation. The most commonly used confidence level is probably 95%, but
values of 80%, 90%, and 99% are also common. For this example, we use a
confidence level of 80%, which means that we construct the confidence interval so
that we are 80% confident that the population mean is actually contained in the
interval. Because we are using a confidence level of 80%, the resulting interval is
called the 80% confidence interval for �.

To obtain the value for t in the equation, we simply estimate that the t statistic
for our sample is located somewhere in the middle 80% of the t distribution. With 
df � n – 1 � 8, the middle 80% of the distribution is bounded by t values of �1.397
and –1.397 (see Figure 9.7). Using the sample data and the estimated range of 
t values, we obtain

� � M � t(sM) � 13 � 1.397(1.00) � 13 � 1.397

At one end of the interval, we obtain � � 13 � 1.397 � 14.397, and at the 
other end we obtain � � 13 – 1.397 � 11.603. Our conclusion is that the average
time looking at the more attractive fact for the population of infants is between 
� �11.603 seconds and � � 14.397 seconds, and we are 80% confident that the
true population mean is located within this interval. The confidence comes from the 
fact that the calculation was based on only one assumption. Specifically, we
assumed that the t statistic was located between �1.397 and –1.397, and we are
80% confident that this assumption is correct because 80% of all of the possible 
t values are located in this interval. Finally, note that the confidence interval is
constructed around the sample mean. As a result, the sample mean, M � 13, is
located exactly in the center of the interval.

E X A M P L E  9 . 3
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To have 80% in the middle,
there must be 20% (or .20) in
the tails. To find the t values,
look under two tails, .20 in the 
t table.
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Two characteristics of the confidence interval should be noted. First, notice what hap-
pens to the width of the interval when you change the level of confidence (the percent
confidence). To gain more confidence in your estimate, you must increase the width of
the interval. Conversely, to have a smaller, more precise interval, you must give up 
confidence. In the estimation formula, the percentage of confidence influences the
value of t. A larger level of confidence (the percentage), produces a larger t value and
a wider interval. This relationship can be seen in Figure 9.7. In the figure, we identified
the middle 80% of the t distribution to find an 80% confidence interval. It should be 
obvious that if we were to increase the confidence level to 95%, it would be necessary
to increase the range of t values, and thereby increase the width of the interval.

Second, note what happens to the width of the interval if you change the sample
size. This time the basic rule is as follows: The bigger the sample (n), the smaller the
interval. This relationship is straightforward if you consider the sample size as a mea-
sure of the amount of information. A bigger sample gives you more information about
the population and allows you to make a more precise estimate (a narrower interval).
The sample size controls the magnitude of the standard error in the estimation formula.
As the sample size increases, the standard error decreases, and the interval gets smaller.
Because confidence intervals are influenced by sample size, they do not provide an 
unqualified measure of absolute effect size and are not an adequate substitute for
Cohen’s d or r2. Nonetheless, they can be used in a research report to provide a 
description of the size of the treatment effect.

FACTORS AFFECTING THE
WIDTH OF A CONFIDENCE

INTERVAL

IN THE LITERATURE
REPORTING THE RESULTS OF A t TEST

In Chapter 8, we noted the conventional style for reporting the results of a hypothesis
test, according to APA format. First, recall that a scientific report typically uses the
term significant to indicate that the null hypothesis has been rejected and the term not
significant to indicate failure to reject H0. Additionally, there is a prescribed format for
reporting the calculated value of the test statistic, degrees of freedom, and alpha level
for a t test. This format parallels the style introduced in Chapter 8 (p. 251).

In Example 9.1 we calculated a t statistic of 3.00 with df � 8, and we decided to
reject H0 with alpha set at .05. Using the same data from Example 9.1, we obtained 
r2 � 0.5294 (52.94%) for the percentage of variance explained by the treatment effect.
In a scientific report, this information is conveyed in a concise statement, as follows:

The infants spent an average of M � 13 out of 20 seconds looking at the attractive face, with
SD � 3.00. Statistical analysis indicates that the time spent looking at the attractive face was
significantly greater than would be expected if there were no preference, t(8) � 3.00, p < .05,
r2 � 0.5294.

302 CHAPTER 9 INTRODUCTION TO THE t STATISTIC

L E A R N I N G  C H E C K 1. If all other factors are held constant, an 80% confidence interval is wider than a
90% confidence interval. (True or false?)

2. If all other factors are held constant, a confidence interval computed from a sam-
ple of n � 25 is wider than a confidence interval computed from a sample of n �
100. (True or false?)

1. False. Greater confidence requires a wider interval.

2. True. The smaller sample produces a wider interval.

ANSWERS
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The first statement reports the descriptive statistics, the mean (M � 13) and the
standard deviation (SD � 3), as previously described (Chapter 4, p. 123). The next
statement provides the results of the inferential statistical analysis. Note that the degrees
of freedom are reported in parentheses immediately after the symbol t. The value for the
obtained t statistic follows (3.00), and next is the probability of committing a Type I
error (less than 5%). Finally, the effect size is reported, r2 � 52.94%. If the 80%
confidence interval from Example 9.3 were included in the report as a description of
effect size, it would be added after the results of the hypothesis test as follows:

t(8) � 3.00, p < .05, 80% CI [11.603, 14.397].

Often, researchers use a computer to perform a hypothesis test like the one in
Example 9.1. In addition to calculating the mean, standard deviation, and the t
statistic for the data, the computer usually calculates and reports the exact probability
(or 	 level) associated with the t value. In Example 9.1 we determined that any t value
beyond �2.306 has a probability of less than .05 (see Figure 9.4). Thus, the obtained
t value, t � 3.00, is reported as being very unlikely, p < .05. A computer printout,
however, would have included an exact probability for our specific t value.

Whenever a specific probability value is available, you are encouraged to use it
in a research report. For example, the computer analysis of these data reports an 
exact p value of p � .017, and the research report would state “t(8) � 3.00, 
p � .017” instead of using the less specific “p < .05.” As one final caution, we note 
that occasionally a t value is so extreme that the computer reports p � 0.000. The
zero value does not mean that the probability is literally zero; instead, it means that
the computer has rounded off the probability value to three decimal places and
obtained a result of 0.000. In this situation, you do not know the exact probability
value, but you can report p < .001.
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The statement p < .05 was 
explained in Chapter 8, 
page 251.

L E A R N I N G  C H E C K 1. A sample of n � 16 individuals is selected from a population with a mean of 
μ � 80. A treatment is administered to the sample and, after treatment, the sample
mean is found to be M � 86 with a standard deviation of s � 8.

a. Does the sample provide sufficient evidence to conclude that the treatment has
a significant effect? Test with 	 � .05. 

b. Compute Cohen’s d and r2 to measure the effect size.

c. Find the 95% confidence interval for the population mean after treatment.

2. How does sample size influence the outcome of a hypothesis test and measures of
effect size? How does the standard deviation influence the outcome of a hypothesis
test and measures of effect size?

1. a. The estimated standard error is 2 points and the data produce t � 6/2 � 3.00. With 
df � 15, the critical values are t � �2.131, so the decision is to reject H0 and conclude
that there is a significant treatment effect. 

b. For these data, d � 6/8 � 0.75 and r2 � 9/24 � 0.375 or 37.5%.

c. For 95% confidence and df � 15, use t � �2.131. The confidence interval is � � 86
�2.131(2) and extends from 81.738 to 90.262.

2. Increasing sample size increases the likelihood of rejecting the null hypothesis but has little
or no effect on measures of effect size. Increasing the sample variance reduces the likeli-
hood of rejecting the null hypothesis and reduces measures of effect size.

ANSWERS
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9.4 DIRECTIONAL HYPOTHESES AND ONE-TAILED TESTS

As noted in Chapter 8, the nondirectional (two-tailed) test is more commonly used than
the directional (one-tailed) alternative. On the other hand, a directional test may be used
in some research situations, such as exploratory investigations or pilot studies or when
there is a priori justification (for example, a theory or previous findings). The follow-
ing example demonstrates a directional hypothesis test with a t statistic, using the same
experimental situation presented in Example 9.1.

The research question is whether attractiveness affects the behavior of infants looking
at photographs of women’s faces. The researcher is expecting the infants to prefer the
more attractive face. Therefore, the researcher predicts that the infants will spend
more than half of the 20-second period looking at the attractive face. For this
example, we use the same sample data that were used in the original hypothesis test
in Example 9.1. Specifically, the researcher tested a sample of n � 9 infants and
obtained a mean of M � 13 seconds looking at the attractive face with SS � 72.

State the hypotheses, and select an alpha level. With most directional tests, it is
usually easier to state the hypothesis in words, including the directional prediction,
and then convert the words into symbols. For this example, the researcher is
predicting that attractiveness will cause the infants to increase the amount of time
they spend looking at the attractive face; that is, more than half of the 20 seconds
should be spent looking at the attractive face. In general, the null hypothesis states
that the predicted effect will not happen. For this study, the null hypothesis states that
the infants will not spend more than half of the 20 seconds looking at the attractive
face. In symbols,

H0: μattractive � 10 seconds (Not more than half of the 20 seconds looking
at the attractive face)

Similarly, the alternative states that the treatment will work. In this case, H1 states 
that the infants will spend more than half of the time looking at the attractive face. In
symbols,

H1: μattractive � 10 seconds (More than half of the 20 seconds looking at
the attractive face)

This time, we set the level of significance at 	 � .01.

Locate the critical region. In this example, the researcher is predicting that the sample
mean (M) will be greater than 10 seconds. Thus, if the infants average more than 
10 seconds looking at the attractive face, the data will provide support for the
researcher’s prediction and will tend to refute the null hypothesis. Also note that a
sample mean greater than 10 will produce a positive value for the t statistic. Thus, 
the critical region for the one-tailed test will consist of positive t values located in 
the right-hand tail of the distribution. To find the critical value, you must look in the 
t distribution table using the one-tail proportions. With a sample of n � 9, the 
t statistic has df � 8; using 	 � .01, you should find a critical value of t � 2.896.
Therefore, if we obtain a t statistic greater than 2.896, we will reject the null
hypothesis and conclude that the infants show a significant preference for the
attractive face. Figure 9.8 shows the one-tailed critical region for this test.

S T E P  2

S T E P  1

E X A M P L E  9 . 4
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Calculate the test statistic. The computation of the t statistic is the same for either a
one-tailed or a two-tailed test. Earlier (in Example 9.1), we found that the data for
this experiment produce a test statistic of t � 3.00.

Make a decision. The test statistic is in the critical region, so we reject H0. In terms
of the experimental variables, we have decided that the infants show a preference
and spend significantly more time looking at the attractive face than they do
looking at the unattractive face. In a research report, the results would be presented
as follows:

The time spent looking at the attractive face was significantly greater than would be expected
if there were no preference, t(8) � 3.00, p < .01, one tailed.

Note that the report clearly acknowledges that a one-tailed test was used.

In step 2 of Example 9.4, we determined that the critical region is in the right-hand
tail of the distribution. However, it is possible to divide this step into two stages that
eliminate the need to determine which tail (right or left) should contain the critical
region. The first stage in this process is simply to determine whether the sample mean
is in the direction predicted by the original research question. For this example,
the researcher predicted that the infants would prefer the attractive face and spend
more time looking at it. Specifically, the researcher expects the infants to spend
more than 10 out of 20 seconds focused on the attractive face. The obtained sample
mean, M � 13 seconds, is in the correct direction. This first stage eliminates the
need to determine whether the critical region is in the left- or right-hand tail.
Because we already have determined that the effect is in the correct direction, the
sign of the t statistic (� or –) no longer matters. The second stage of the process is
to determine whether the effect is large enough to be significant. For this example,
the requirement is that the sample produces a t statistic greater than 2.896. If the
magnitude of the t statistic, independent of its sign, is greater than 2.896, then the
result is significant and H0 is rejected.

THE CRITICAL REGION FOR 
A ONE-TAILED TEST

S T E P  4

S T E P  3
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t distribution
df = 8

t = �2.896
t = 0

Reject H0

FIGURE 9.8

The one-tailed critical region
for the hypothesis test in
Example 9.4 with df � 8 and
	 � .01.
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L E A R N I N G  C H E C K 1. A new over-the-counter cold medication includes a warning label stating that it
“may cause drowsiness.” A researcher would like to evaluate this effect. It is
known that under regular circumstances the distribution of reaction times is nor-
mal with μ � 200. A sample of n � 9 participants is obtained. Each person is
given the new cold medication, and, 1 hour later, reaction time is measured for
each individual. The average reaction time for this sample is M � 206 with 
SS � 648. The researcher would like to use a hypothesis test with 	 � .05 to 
evaluate the effect of the medication.

a. Use a two-tailed test with 	 � .05 to determine whether the medication has a
significant effect on reaction time.

b. Write a sentences that demonstrates how the outcome of the hypothesis test
would appear in a research report.

c. Use a one-tailed test with 	 � .05 to determine whether the medication 
produces a significant increase in reaction time.

d. Write a sentence that demonstrates how the outcome of the one-tailed hypothe-
sis test would appear in a research report.

1. a. For the two-tailed test, H0: μ � 200. The sample variance is 81, the estimated standard
error is 3, and t � 6/3 � 2.00. With df � 8, the critical boundaries are � 2.306. Fail to
reject the null hypothesis.

b. The result indicates that the medication does not have a significant effect on reaction
time, t(8) � 2.00, p > .05.

c. For a one-tailed test, H0: μ ≤ 200 (no increase). The data product t � 6/3 � 2.00. With 
df � 8, the critical boundary is 1.860. Reject the null hypothesis.

d. The results indicate that the medication produces a significant increase in reaction time,
t(8) � 2.00, p < .05, one tailed.

ANSWER

1. The t statistic is used instead of a z-score for hypothesis
testing when the population standard deviation (or
variance) is unknown.

2. To compute the t statistic, you must first calculate the
sample variance (or standard deviation) as a substitute
for the unknown population value.

sample variance � s2 � �
S
d
S
f
�

Next, the standard error is estimated by substituting
s2 in the formula for standard error. The estimated
standard error is calculated in the following manner:

estimated standard error � sM � ��
s
n

2

��

Finally, a t statistic is computed using the estimated
standard error. The t statistic is used as a substitute for a
z-score that cannot be computed when the population
variance or standard deviation is unknown.

t � �
M

s
�

M

�
�

The structure of the t formula is similar to that of the
z-score in that

z or t �

For a hypothesis test, you hypothesize a value for the
unknown population mean and plug the hypothesized
value into the equation along with the sample mean and

sample mean � population mean
����

(estimated) standard error

SUMMARY
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RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 9 on the book

companion website. The website also provides access to a workshop entitled Single-
Sample t Test, which reviews the concepts and logic of hypothesis testing with the 
t statistic.

Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.
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the estimated standard error, which are computed from
the sample data. If the hypothesized mean produces an
extreme value for t, then you conclude that the
hypothesis was wrong.

4. The t distribution is an approximation of the normal z
distribution. To evaluate a t statistic that is obtained for
a sample mean, the critical region must be located in a t
distribution. There is a family of t distributions, with
the exact shape of a particular distribution of t values
depending on degrees of freedom (n – 1). Therefore, the
critical t values depend on the value for df associated
with the t test. As df increases, the shape of the t
distribution approaches a normal distribution.

5. When a t statistic is used for a hypothesis test, Cohen’s
d can be computed to measure effect size. In this
situation, the sample standard deviation is used in the
formula to obtain an estimated value for d:

estimated d ��
st
m
an

e
d
a
a
n
r
d
d
i
d
ff
e
e
v
r
i
e
a
n
t
c
io
e
n

�� �
M �

s
�

�

6. A second measure of effect size is r2, which measures
the percentage of the variability that is accounted for by
the treatment effect. This value is computed as follows:

7. An alternative method for describing the size of a
treatment effect is to use a confidence interval for �.
A confidence interval is a range of values that
estimates the unknown population mean. The
confidence interval uses the t equation, solved for the
unknown mean:

� � M � t(sM) 

First, select a level of confidence and then look up 
the corresponding t values to use in the equation. 
For example, for 95% confidence, use the range of
t values that determine the middle 95% of the
distribution.

r
t

t df
2

2

2
�

�

KEY TERMS

estimated standard error (286)

t statistic (286)

degrees of freedom (287)

t distribution (287)

estimated d (295)

percentage of variance accounted for
by the treatment (r2) (299)

confidence interval (300)
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Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific web-
site, Psychology CourseMate includes an integrated interactive eBook and other interac-
tive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to perform the t Test presented in this chapter.

Data Entry

Enter all of the scores from the sample in one column of the data editor, probably
VAR00001.

Data Analysis

1. Click Analyze on the tool bar, select Compare Means, and click on One-Sample
T Test.

2. Highlight the column label for the set of scores (VAR0001) in the left box and
click the arrow to move it into the Test Variable(s) box.

3. In the Test Value box at the bottom of the One-Sample t Test window, enter the
hypothesized value for the population mean from the null hypothesis. Note: The
value is automatically set at zero until you type in a new value.

4. In addition to performing the hypothesis test, the program computes a confidence
interval for the population mean difference. The confidence level is automatically
set at 95%, but you can select Options and change the percentage.

5. Click OK.

SPSS Output

We used the SPSS program to analyze the data from the infants-and-attractive-faces 
study in Example 9.1 and the program output is shown in Figure 9.9. The output includes
a table of sample statistics with the mean, standard deviation, and standard error for 
the sample mean. A second table shows the results of the hypothesis test, including the
values for t, df, and the level of significance (the p value for the test), as well as the
mean difference from the hypothesized value of � � 10 and a 95% confidence interval
for the mean difference. To obtain a 95% confidence interval for the mean, simply add 
� � 10 points to the values in the table. 

FOCUS ON PROBLEM SOLVING

1. The first problem we confront in analyzing data is determining the appropriate
statistical test. Remember that you can use a z-score for the test statistic only
when the value for � is known. If the value for � is not provided, then you must
use the t statistic.
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2. For the t test, the sample variance is used to find the value for the estimated 
standard error. Remember to use n – 1 in the denominator when computing the
sample variance (see Chapter 4). When computing estimated standard error, use
n in the denominator.

DEMONSTRATION 9.1

A HYPOTHESIS TEST WITH THE t STATISTIC

A psychologist has prepared an “Optimism Test” that is administered yearly to graduating
college seniors. The test measures how each graduating class feels about its future—the
higher the score, the more optimistic the class. Last year’s class had a mean score of 
μ � 15. A sample of n � 9 seniors from this year’s class was selected and tested. The
scores for these seniors are 7, 12, 11, 15, 7, 8, 15, 9, and 6, which produce a sample mean
of M � 10 with SS � 94.

On the basis of this sample, can the psychologist conclude that this year’s class has a
different level of optimism than last year’s class?

Note that this hypothesis test uses a t statistic because the population variance (�2) is
not known.

State the hypotheses, and select an alpha level. The statements for the null hypothesis
and the alternative hypothesis follow the same form for the t statistic and the z-score test.

H0: μ � 15 (There is no change.)

H1: μ 
 15 (This year’s mean is different.)

For this demonstration, we use 	 � .05, two tails.

S T E P  1
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One-Sample Statistics

VAR00001 9 13.0000

3.000 8 .017 3.00000 .6940 5.3060

1.00000

N

t df Sig. (2-tailed)
Mean

Difference Lower Upper

95% Confidence Interval of the
Difference

Mean

3.00000

Std. Deviation
Std. Error

Mean

One-Sample Test

VAR00001

Test Value = 10

FIGURE 9.9

The SPSS output for the hypothesis test presented in Example 9.1.
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Locate the critical region. With a sample of n � 9 students, the t statistic has 
df � n – 1 � 8. For a two-tailed test with 	 � .05 and df � 8, the critical t values are 
t � �2.306. These critical t values define the boundaries of the critical region. The 
obtained t value must be more extreme than either of these critical values to reject H0.

Compute the test statistic. As we have noted, it is easier to separate the calculation of
the t statistic into three stages.

Sample variance.

Estimated standard error. The estimated standard error for these data is

The t statistic. Now that we have the estimated standard error and the sample mean,
we can compute the t statistic. For this demonstration,

Make a decision about H0, and state a conclusion. The t statistic we obtained 
(t � –4.39) is in the critical region. Thus, our sample data are unusual enough to reject the
null hypothesis at the .05 level of significance. We can conclude that there is a significant
difference in level of optimism between this year’s and last year’s graduating classes,
t(8)� –4.39, p < .05, two-tailed.

DEMONSTRATION 9.2

EFFECT SIZE: ESTIMATING COHEN’S d AND COMPUTING r2

We will estimate Cohen’s d for the same data used for the hypothesis test in Demon-
stration 9.1. The mean optimism score for the sample from this year’s class was 5 points
lower than the mean from last year (M � 10 versus μ � 15). In Demonstration 9.1, we
computed a sample variance of s2 � 11.75, so the standard deviation is �11.75� � 3.43.
With these values,

To calculate the percentage of variance explained by the treatment effect, r2, we need
the value of t and the df value from the hypothesis test. In Demonstration 9.1, we obtained 
t � –4.39 with df � 8. Using these values in Equation 9.5, we obtain
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PROBLEMS

1. Under what circumstances is a t statistic used instead
of a z-score for a hypothesis test?

2. A sample of n � 25 scores has a mean of M � 83 and
a standard deviation of s � 15. 
a. Explain what is measured by the sample standard

deviation.
b. Compute the estimated standard error for the

sample mean and explain what is measured by the
standard error.

3. Find the estimated standard error for the sample mean
for each of the following samples.
a. n � 4 with SS � 48
b. n � 6 with SS � 270
c. n � 12 with SS � 132

4. Explain why t distributions tend to be flatter and more
spread out than the normal distribution.

5. Find the t values that form the boundaries of the
critical region for a two-tailed test with 	 � .05 for
each of the following sample sizes:
a. n � 6
b. n � 12
c. n � 24

6. The following sample of n � 6 scores was obtained
from a population with unknown parameters. 

Scores: 7, 1, 6, 3, 6, 7
a. Compute the sample mean and standard deviation.

(Note that these are descriptive values that
summarize the sample data.)

b. Compute the estimated standard error for M. (Note
that this is an inferential value that describes how
accurately the sample mean represents the unknown
population mean.)

7. The following sample was obtained from a population
with unknown parameters.

Scores: 6, 12, 0, 3, 4
a. Compute the sample mean and standard deviation.

(Note that these are descriptive values that
summarize the sample data.)

b. Compute the estimated standard error for M. (Note
that this is an inferential value that describes how
accurately the sample mean represents the unknown
population mean.)

8. To evaluate the effect of a treatment, a sample is
obtained from a population with a mean of μ � 75,
and the treatment is administered to the individuals in
the sample. After treatment, the sample mean is found
to be M � 79.6 with a standard deviation of s � 12.
a. If the sample consists of n � 16 individuals, are the

data sufficient to conclude that the treatment has a

significant effect using a two-tailed test with 
	 � .05?

b. If the sample consists of n � 36 individuals, are 
the data sufficient to conclude that the treatment
has a significant effect using a two-tailed test with
	 � .05?

c. Comparing your answer for parts a and b, how does
the size of the sample influence the outcome of a
hypothesis test?

9. To evaluate the effect of a treatment, a sample of n � 9
is obtained from a population with a mean of μ � 40,
and the treatment is administered to the individuals in
the sample. After treatment, the sample mean is found
to be M � 33.
a. If the sample has a standard deviation of s � 9, are

the data sufficient to conclude that the treatment
has a significant effect using a two-tailed test with
	 � .05?

b. If the sample standard deviation is s � 15, are the
data sufficient to conclude that the treatment has 
a significant effect using a two-tailed test with 
	 � .05?

c. Comparing your answer for parts a and b, how does
the variability of the scores in the sample influence
the outcome of a hypothesis test?

10. A random sample of n � 16 individuals is selected
from a population with μ � 70, and a treatment is
administered to each individual in the sample. After
treatment, the sample mean is found to be M � 76
with SS � 960.
a. How much difference is there between the mean for

the treated sample and the mean for the original
population? (Note: In a hypothesis test, this value
forms the numerator of the t statistic.)

b. How much difference is expected just by chance
between the sample mean and its population mean?
That is, find the standard error for M. (Note: In a
hypothesis test, this value is the denominator of the
t statistic.)

c. Based on the sample data, does the treatment have 
a significant effect? Use a two-tailed test with 
	 � .05.

11. The spotlight effect refers to overestimating the extent
to which others notice your appearance or behavior,
especially when you commit a social faux pas. Effecti-
vely, you feel as if you are suddenly standing in a
spotlight with everyone looking. In one demonstration
of this phenomenon, Gilovich, Medvec, and Savitsky
(2000) asked college students to put on a Barry
Manilow T-shirt that fellow students had previously
judged to be embarrassing. The participants were 
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then led into a room in which other students were
already participating in an experiment. After a few
minutes, the participant was led back out of the room
and was allowed to remove the shirt. Later, each
participant was asked to estimate how many people in
the room had noticed the shirt. The individuals who
were in the room were also asked whether they 
noticed the shirt. In the study, the participants
significantly overestimated the actual number of
people who had noticed.
a. In a similar study using a sample of n � 9

participants, the individuals who wore the shirt
produced an average estimate of M � 6.4 with 
SS � 162. The average number who said they
noticed was 3.1. Is the estimate from the
participants significantly different from the actual
number? Test the null hypothesis that the true mean
is μ � 3.1 using a two-tailed test with 	 � .05.

b. Is the estimate from the participants significantly
higher than the actual number (μ � 3.1)? Use a 
one-tailed test with 	 � .05.

12. Many animals, including humans, tend to avoid direct
eye contact and even patterns that look like eyes. Some
insects, including moths, have evolved eye-spot
patterns on their wings to help ward off predators.
Scaife (1976) reports a study examining how eye-spot
patterns affect the behavior of birds. In the study, the
birds were tested in a box with two chambers and 
were free to move from one chamber to another. In 
one chamber, two large eye-spots were painted on one
wall. The other chamber had plain walls. The
researcher recorded the amount of time each bird spent
in the plain chamber during a 60-minute session.
Suppose the study produced a mean of M � 37
minutes in the plain chamber with SS � 288 for a
sample of n � 9 birds. (Note: If the eye-spots have 
no effect, then the birds should spend an average of 
μ � 30 minutes in each chamber.)
a. Is this sample sufficient to conclude that the eye-

spots have a significant influence on the birds’
behavior? Use a two-tailed test with 	 � .05.

b. Compute the estimated Cohen’s d to measure the
size of the treatment effect.

c. Construct the 95% confidence interval to estimate
the mean amount of time spent on the plain side for
the population of birds.

13. Standardized measures seem to indicate that the
average level of anxiety has increased gradually over
the past 50 years (Twenge, 2000). In the 1950s, the
average score on the Child Manifest Anxiety Scale
was � � 15.1. A sample of n � 16 of today’s children
produces a mean score of M � 23.3 with SS � 240.
a. Based on the sample, has there been a significant

change in the average level of anxiety since the
1950s? Use a two-tailed test with 	 � .01.

b. Make a 90% confidence interval estimate of today’s
population mean level of anxiety.

c. Write a sentence that demonstrates how the
outcome of the hypothesis test and the confidence
interval would appear in a research report.

14. The librarian at the local elementary school claims
that, on average, the books in the library are more than
20 years old. To test this claim, a student takes a
sample of n � 30 books and records the publication
date for each. The sample produces an average age of
M � 23.8 years with a variance of s2 � 67.5. Use this
sample to conduct a one-tailed test with 	 � .01 to
determine whether the average age of the library books
is significantly greater than 20 years (μ > 20).

15. For several years researchers have noticed that there
appears to be a regular, year-by-year increase in the
average IQ for the general population. This
phenomenon is called the Flynn effect after the
researcher who first reported it (Flynn, 1984, 1999),
and it means that psychologists must continuously
update IQ tests to keep the population mean at 
� � 100. To evaluate the size of the effect, a
researcher obtained a 10-year-old IQ test that was
standardized to produce a mean IQ of � � 100 for the
population 10 years ago. The test was then given to a
sample of n � 64 of today’s 20-year-old adults. The
average score for the sample was M � 107 with a
standard deviation of s � 12. 
a. Based on the sample, is the average IQ for today’s

population significantly different from the average
10 years ago, when the test would have produces 
a mean of � � 100? Use a two-tailed test with 
	 � .01. 

b. Make an 80% confidence interval estimate of
today’s population mean IQ for the 10-year-old test.

16. In a classic study of infant attachment, Harlow (1959)
placed infant monkeys in cages with two artificial
surrogate mothers. One “mother” was made from bare
wire mesh and contained a baby bottle from which the
infants could feed. The other mother was made from soft
terry cloth and did not provide any access to food.
Harlow observed the infant monkeys and recorded how
much time per day was spent with each mother. In a
typical day, the infants spent a total of 18 hours clinging
to one of the two mothers. If there were no preference
between the two, you would expect the time to be
divided evenly, with an average of μ � 9 hours for each
of the mothers. However, the typical monkey spent
around 15 hours per day with the terry-cloth mother,
indicating a strong preference for the soft, cuddly
mother. Suppose a sample of n � 9 infant monkeys
averaged M � 15.3 hours per day with SS � 216 with
the terry-cloth mother. Is this result sufficient to
conclude that the monkeys spent significantly more time
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with the softer mother than would be expected if there
were no preference? Use a two-tailed test with 	 � .05.

17. Belsky, Weinraub, Owen, and Kelly (2001) reported
on the effects of preschool childcare on the
development of young children. One result suggests
that children who spend more time away from their
mothers are more likely to show behavioral problems
in kindergarten. Using a standardized scale, the average
rating of behavioral problems for kindergarten children
is μ � 35. A sample of n � 16 kindergarten children
who had spent at least 20 hours per week in childcare
during the previous year produced a mean score of 
M � 42.7 with a standard deviation of s � 6.
a. Are the data sufficient to conclude that children

with a history of childcare show significantly more
behavioral problems than the average kindergarten
child? Use a one-tailed test with 	 � .01.

b. Compute r2, the percentage of variance accounted
for, to measure the size of the preschool effect.

c. Write a sentence showing how the outcome of the
hypothesis test and the measure of effect size would
appear in a research report.

18. Other research examining the effects of preschool
childcare has found that children who spent time in
day care, especially high-quality day care, perform
better on math and language tests than children who
stay home with their mothers (Broberg, Wessels,
Lamb, & Hwang, 1997). Typical results, for example,
show that a sample of n � 25 children who attended
day care before starting school had an average score of
M � 87 with SS � 1536 on a standardized math test
for which the population mean is μ � 81.
a. Is this sample sufficient to conclude that the

children with a history of preschool day care are
significantly different from the general population?
Use a two-tailed test with 	 � .01.

b. Compute Cohen’s d to measure the size of the
preschool effect.

c. Write a sentence showing how the outcome of the
hypothesis test and the measure of effect size would
appear in a research report.

19. A random sample of n � 25 scores is obtained from a
population with a mean of μ � 45. A treatment is
administered to the individuals in the sample and, after
treatment, the sample mean is M � 48.
a. Assuming that the sample standard deviation is 

s � 6 compute r2 and the estimated Cohen’s d to
measure the size of the treatment effect.

b. Assuming that the sample standard deviation is 
s � 15, compute r2 and the estimated Cohen’s d to
measure the size of the treatment effect.

c. Comparing your answers from parts a and b, how
does the variability of the scores in the sample
influence the measures of effect size?

20. A random sample is obtained from a population with a
mean of μ � 70. A treatment is administered to the
individuals in the sample and, after treatment, the
sample mean is M � 78 with a standard deviation of 
s � 20.
a. Assuming that the sample consists of n � 25

scores, compute r2 and the estimated Cohen’s d to
measure the size of treatment effect.

b. Assuming that the sample consists of n � 16
scores, compute r2 and the estimated Cohen’s d to
measure the size of treatment effect.

c. Comparing your answers from parts a and b, how
does the number of scores in the sample influence
the measures of effect size?

21. An example of the vertical-horizontal illusion is shown
in the figure below. Although the two lines are exactly
the same length, the vertical line appears to be much
longer. To examine the strength of this illusion, a
researcher prepared an example in which both lines
were exactly 10 inches long. The example was 
shown to individual participants who were told that 
the horizontal line was 10 inches long and then 
were asked to estimate the length of the vertical 
line. For a sample of n � 25 participants, the average
estimate was M � 12.2 inches with a standard
deviation of s � 1.00.

An example of the vertical-
horizontal illusion

a. Use a one-tailed hypothesis test with 	 � .01 to
demonstrate that the individuals in the sample
significantly overestimate the true length of the line.
(Note: Accurate estimation would produce a mean of
μ � 10 inches.)

b. Calculate the estimated d and r2, the percentage of
variance accounted for, to measure the size of this
effect.

c. Construct a 95% confidence interval for the
population mean estimated length of the vertical line.

22. In studies examining the effect of humor on
interpersonal attractions, McGee and Shevlin (2009)
found that an individual’s sense of humor had a
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significant effect on how the individual was perceived
by others. In one part of the study, female college
students were given brief descriptions of a potential
romantic partner. The fictitious male was described
positively as being single, ambitious, and having 
good job prospects. For one group of participants, 
the description also said that he had a great sense of
humor. For another group, it said that he had no sense
of humor. After reading the description, each
participant was asked to rate the attractiveness of the
man on a seven-point scale from 1 (very attractive) to
7 (very unattractive). A score of 4 indicates a neutral
rating.
a. The females who read the “great sense of humor”

description gave the potential partner an average
attractiveness score of M � 4.53 with a standard
deviation of s � 1.04. If the sample consisted of 
n � 16 participants, is the average rating significantly
higher than neutral (μ � 4)? Use a one-tailed test
with 	 � .05.

b. The females who read the description saying “no
sense of humor” gave the potential partner an

average attractiveness score of M � 3.30 with a
standard deviation of s � 1.18. If the sample
consisted of n � 16 participants, is the average
rating significantly lower than neutral (μ � 4)? Use
a one-tailed test with 	 � .05.

23. A psychologist would like to determine whether there
is a relationship between depression and aging. It is
known that the general population averages μ � 40 on a
standardized depression test. The psychologist obtains a
sample of n � 9 individuals who are all more than 
70 years old. The depression scores for this sample are
as follows: 37, 50, 43, 41, 39, 45, 49, 44, 48.
a. On the basis of this sample, is depression for

elderly people significantly different from
depression in the general population? Use a 
two-tailed test with 	 � .05.

b. Compute the estimated Cohen’s d to measure the
size of the difference.

c. Write a sentence showing how the outcome of the
hypothesis test and the measure of effect size would
appear in a research report.
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Tools You Will Need
The following items are considered essen-
tial background material for this chapter. If
you doubt your knowledge of any of these
items, you should review the appropriate
chapter or section before proceeding.

• Proportions (math review, Appendix
A)

• Fractions
• Decimals
• Percentages

• Basic algebra (math review, Appendix A)
• z-Scores (Chapter 5)

C H A P T E R

10
The t Test 
for Two
Independent
Samples

Preview

10.1 Introduction to the Independent-
Measures Design

10.2 The t Statistic for an Independent-
Measures Research Design

10.3 Hypothesis Tests and Effect Size
with the Independent-Measures 
t Statistic

10.4 Assumptions Underlying the
Independent-Measures t Formula

Summary

Focus on Problem Solving

Demonstrations 10.1 and 10.2

Problems

Tools You Will Need
The following items are considered essential
background material for this chapter. If you
doubt your knowledge of any of these items,
you should review the appropriate chapter or
section before proceeding.

• Sample variance (Chapter 4)
• Standard error formulas 

(Chapter 7)
• The t statistic (Chapter 9)

• Distribution of t values
• df for the t statistic
• Estimated standard error
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Preview
In a classic study in the area of problem solving, Katona
(1940) compared the effectiveness of two methods of
instruction. One group of participants was shown the
exact, step-by-step procedure for solving a problem, and
then these participants were required to memorize the
solution. This method was called learning by memoriza-
tion (later called the expository method). Participants in a
second group were encouraged to study the problem and
find the solution on their own. Although these participants
were given helpful hints and clues, the exact solution was
never explained. This method was called learning by
understanding (later called the discovery method).

Katona’s experiment included the problem shown in
Figure 10.1. This figure shows a pattern of five squares
made of matchsticks. The problem is to change the pattern
into exactly four squares by moving only three matches. (All
matches must be used, none can be removed, and all the
squares must be the same size.) Two groups of participants
learned the solution to this problem. One group learned by
understanding, and the other group learned by memoriza-
tion. After 3 weeks, both groups returned to be tested again.
The two groups did equally well on the matchstick problem
they had learned earlier. But when they were given two 
new problems (similar to the matchstick problem), the 
understanding group performed much better than the 
memorization group.

The Problem: Although the data a show a mean
difference between the two groups in Katona’s study, you
cannot automatically conclude that the difference was
caused by the method they used to solve the first problem.
Specifically, the two groups consist of different people
with different backgrounds, different skills, different IQs,
and so on. Because the two different groups consist of
different individuals, you should expect them to have
different scores and different means. This issue was first
presented in Chapter 1 when we introduced the concept of
sampling error (see Figure 1.2 on p. 9). Thus, there are
two possible explanations for the difference between the
two groups.

1. It is possible that there really is a difference between
the two treatment conditions so that the method of
understanding produces better learning than the
method of memorization.

2. It is possible that there is no difference between the
two treatment conditions and the mean difference
obtained in the experiment is simply the result of
sampling error.

A hypothesis test is necessary to determine which 
of the two explanations is most plausible. However, the
hypothesis tests we have examined thus far are intended to
evaluate the data from only one sample. In this study there
are two separate samples.

The Solution: In this chapter we introduce the
independent-measures t test, which is a hypothesis test
that uses two separate samples to evaluate the mean
difference between two treatment conditions or between
two different populations. Like the t test introduced in
Chapter 9, the independent-measures t test uses the
sample variance to compute an estimated standard error.
This test, however, combines the variance from the 
two separate samples to evaluate the difference between
two separate sample means.

Incidentally, if you still have not discovered the solu-
tion to the matchstick problem, keep trying. According to
Katona’s results, it would be a very poor teaching strategy
for us to give you the answer to the matchstick problem. If
you still have not discovered the solution, however, check
Appendix C at the beginning of the Chapter 10 problem
solutions; there we show you how it is done.

316

FIGURE 10.1

A pattern of five squares made of matchsticks. 
The problem is to change the pattern into exactly 
four squares by moving only three matchsticks.
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10.1 INTRODUCTION TO THE INDEPENDENT-MEASURES DESIGN

Until this point, all the inferential statistics we have considered involve using one sam-
ple as the basis for drawing conclusions about one population. Although these single-
sample techniques are used occasionally in real research, most research studies require
the comparison of two (or more) sets of data. For example, a social psychologist may
want to compare men and women in terms of their political attitudes, an educational
psychologist may want to compare two methods for teaching mathematics, or a clinical
psychologist may want to evaluate a therapy technique by comparing depression scores
for patients before therapy with their scores after therapy. In each case, the research
question concerns a mean difference between two sets of data.

There are two general research designs that can be used to obtain the two sets of
data to be compared:

1. The two sets of data could come from two completely separate groups of partic-
ipants. For example, the study could involve a sample of men compared with a
sample of women. Or the study could compare grades for one group of fresh-
men who are given laptop computers with grades for a second group who are
not given computers.

2. The two sets of data could come from the same group of participants. For 
example, the researcher could obtain one set of scores by measuring depression
for a sample of patients before they begin therapy and then obtain a second set
of data by measuring the same individuals after 6 weeks of therapy.

The first research strategy, using completely separate groups, is called an independent-
measures research design or a between-subjects design. These terms emphasize the fact
that the design involves separate and independent samples and makes a comparison
between two groups of individuals. The structure of an independent-measures research
design is shown in Figure 10.2. Notice that the research study uses two separate 
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Unknown
μ  =  ? 

Sample A

Unknown
μ  =  ? 

Sample B

Population A
Taught by method A

Population B
Taught by method B

FIGURE 10.2

Do the achievement scores
for children taught by
method A differ from the
scores for children taught by
method B? In statistical
terms, are the two population
means the same or different?
Because neither of the two
population means is known,
it will be necessary to take
two samples, one from each
population. The first sample
provides information about
the mean for the first popula-
tion, and the second sample
provides information about
the second population.
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samples to represent the two different populations (or two different treatments) being
compared.

A research design that uses a separate group of participants for each treatment
condition (or for each population) is called an independent-measures research
design or a between-subjects research design.

In this chapter, we examine the statistical techniques used to evaluate the data from
an independent-measures design. More precisely, we introduce the hypothesis test that
allows researchers to use the data from two separate samples to evaluate the mean dif-
ference between two populations or between two treatment conditions.

The second research strategy, in which the two sets of data are obtained from
the same group of participants, is called a repeated-measures research design or a
within-subjects design. The statistics for evaluating the results from a repeated-
measures design are introduced in Chapter 11. Also, at the end of Chapter 11, we
discuss some of the advantages and disadvantages of independent-measures and 
repeated-measures designs.

10.2 THE t STATISTIC FOR AN INDEPENDENT-MEASURES
RESEARCH DESIGN

Because an independent-measures study involves two separate samples, we need some
special notation to help specify which data go with which sample. This notation in-
volves the use of subscripts, which are small numbers written beside a sample statistic.
For example, the number of scores in the first sample would be identified by n1; for the
second sample, the number of scores is n2. The sample means would be identified by
M1 and M2. The sums of squares would be SS1 and SS2.

The goal of an independent-measures research study is to evaluate the mean differ-
ence between two populations (or between two treatment conditions). Using 
subscripts to differentiate the two populations, the mean for the first population 
is �1, and the second population mean is �2. The difference between means is 
simply �1 � �2. As always, the null hypothesis states that there is no change, no 
effect, or, in this case, no difference. Thus, in symbols, the null hypothesis for the
independent-measures test is

H0: �1 � �2 � 0 (No difference between the population means)

You should notice that the null hypothesis could also be stated as �1 � �2.
However, the first version of H0 produces a specific numerical value (zero) that is used
in the calculation of the t statistic. Therefore, we prefer to phrase the null hypothesis in
terms of the difference between the two population means.

The alternative hypothesis states that there is a mean difference between the two
populations,

H1: �1 � �2 � 0 (There is a mean difference.)

Equivalently, the alternative hypothesis can simply state that the two population
means are not equal: �1 � �2.

THE HYPOTHESIS 
FOR AN INDEPENDENT-

MEASURES TEST

D E F I N I T I O N
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The independent-measures hypothesis test uses another version of the t statistic. The
formula for this new t statistic has the same general structure as the t statistic formula
that was introduced in Chapter 9. To help distinguish between the two t formulas, we
refer to the original formula (Chapter 9) as the single-sample t statistic and we refer to
the new formula as the independent-measures t statistic. Because the new independent-
measures t includes data from two separate samples and hypotheses about two popula-
tions, the formulas may appear to be a bit overpowering. However, the new formulas
are easier to understand if you view them in relation to the single-sample t formulas
from Chapter 9. In particular, there are two points to remember:

1. The basic structure of the t statistic is the same for both the independent-measures
and the single-sample hypothesis tests. In both cases,

t �

2. The independent-measures t is basically a two-sample t that doubles all the
elements of the single-sample t formulas.

To demonstrate the second point, we examine the two t formulas piece by piece.

The overall t formula The single-sample t uses one sample mean to test a hypothe-
sis about one population mean. The sample mean and the population mean appear in
the numerator of the t formula, which measures how much difference there is between
the sample data and the population hypothesis.

The independent-measures t uses the difference between two sample means to
evaluate a hypothesis about the difference between two population means. Thus, the 
independent-measures t formula is

In this formula, the value of M1 � M2 is obtained from the sample data and the
value for �1 � �2 comes from the null hypothesis. 

The estimated standard error In each of the t-score formulas, the standard error in
the denominator measures how accurately the sample statistic represents the population
parameter. In the single-sample t formula, the standard error measures the amount 
of error expected for a sample mean and is represented by the symbol sM. For the 
independent-measures t formula, the standard error measures the amount of error that
is expected when you use a sample mean difference (M1 � M2) to represent a popula-
tion mean difference (�1 � �2). The standard error for the sample mean difference is 
represented by the symbol .

Caution: Do not let the notation for standard error confuse you. In general, stan-
dard error measures how accurately a statistic represents a parameter. The symbol for
standard error takes the form sstatistic. When the statistic is a sample mean, M, the sym-
bol for standard error is sM. For the independent-measures test, the statistic is a sample

s
M M1 2�( )

sample statistic � hypothesized population parameter
������

estimated standard error

THE FORMULAS FOR AN
INDEPENDENT-MEASURES

HYPOTHESIS TEST

�
� � � ��

�

M M

s
M M

1 2 1 2

1 2

( ) ( )
( )
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sample mean � population mean
t � � �

M
s
�

M

�
�

estimated standard error

sample mean difference � population mean difference
t �

estimated standard error
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mean difference (M1 � M2), and the symbol for standard error is . In each case,
the standard error tells how much discrepancy is reasonable to expect between the sam-
ple statistic and the corresponding population parameter.

Interpreting the estimated standard error The estimated standard error of 
M1 � M2 that appears in the bottom of the independent-measures t statistic can be 
interpreted in two ways. First, the standard error is defined as a measure of the standard,
or average, distance between a sample statistic (M1 � M2) and the corresponding pop-
ulation parameter (�1 � �2). As always, samples are not expected to be perfectly 
accurate and the standard error measures how much difference is reasonable to expect
between a sample statistic and the population parameter.

Sample mean Population mean
difference estimated standard error difference
�M1 � M2�

�average distance�
��1 � �2�

When the null hypothesis is true, however, the population mean difference is zero.

Sample mean
difference estimated standard error

�M1 � M2�
�average distance�

The standard error is measuring how close the sample mean difference is to
zero, which is equivalent to measuring how much difference there is between the
two sample means.

M1  
estimated standard error

�average distance�
M2

This produces a second interpretation for the estimated standard error. Specifically,
the standard error can be viewed as a measure of how much difference is reasonable to
expect between two sample means if the null hypothesis is true.

The second interpretation of the estimated standard error produces a simplified 
version of the independent-measures t statistic.

t �

�

In this version, the numerator of the t statistic measures how much difference 
actually exists between the two sample means, including any difference that is caused by
the different treatments. The denominator measures how much difference should exist
between the two sample means if there is no treatment effect that causes them to be dif-
ferent. A large value for the t statistic is evidence for the existence of a treatment effect.

To develop the formula for , we consider the following three points:

1. Each of the two sample means represents it own population mean, but in each
case there is some error.

M1 approximates �1 with some error.

M2 approximates �2 with some error.

s
M M1 2�( )CALCULATING 

THE ESTIMATED 
STANDARD ERROR

actual difference between M1 and M2������
standard difference (If H0 is true) between M1 and M2

sample mean difference
���
estimated standard error

s
M M1 2�( )
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← →⎯⎯⎯⎯⎯⎯

← →⎯⎯⎯⎯⎯⎯ 0
0

If is trueH( )

← →⎯⎯⎯⎯⎯⎯
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Thus, there are two sources of error.

2. The amount of error associated with each sample mean is measured by the
estimated standard error of M. Using Equation 9.1 (p. 285), the estimated 
standard error for each sample mean is computed as follows:

3. For the independent-measures t statistic, we want to know the total amount of
error involved in using two sample means to approximate two population
means. To do this, we find the error from each sample separately and then add
the two errors together. The resulting formula for standard error is

(10.1)

Because the independent-measures t statistic uses two sample means, the formula
for the estimated standard error simply combines the error for the first sample mean and
the error for the second sample mean (Box 10.1).

B O X  1 0 . 1

Although Equation 10.1 accurately presents the concept of standard error for the 
independent-measures t statistic, this formula is limited to situations in which the 

POOLED VARIANCE

s
s

n

s

nM M1 2

1
2

1

2
2

2
�

� �( )

For ForM s
s

n
M s

s

nM M1
1
2

1
2

2
2

� �
22
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B O X
10.1 THE VARIABILITY OF DIFFERENCE SCORES

possible difference and the smallest possible differ-
ence. Look at Figure 10.3; the biggest difference 
occurs when X1 � 70 and X2 � 20. This is a 
difference of X1 � X2 � 50 points. The smallest 
difference occurs when X1 � 50 and X2 � 30. This 
is a difference of X1 � X2 � 20 points. Notice that
the differences go from a high of 50 to a low of 20. 
This is a range of 30 points:

range for population I (X1 scores) � 20 points
range for population II (X2 scores) � 10 points
range for the differences (X1 � X2) � 30 points

The variability for the difference scores is found 
by adding together the variability for each of the 
two populations.

In the independent-measures t statistics, we com-
pute the variability (standard error) for a sample mean 
difference. To compute this value, we add together the
variability for each of the two sample means.

It may seem odd that the independent-measures t statis-
tic adds together the two sample errors when it subtracts
to find the difference between the two sample means.
The logic behind this apparently unusual procedure is
demonstrated here.

We begin with two populations, I and II 
(Figure 10.3). The scores in population I range 
from a high of 70 to a low of 50. The scores in 
population II range from 30 to 20. We use the range
as a measure of how spread out (variable) each 
population is:

For population I, the scores cover a range of 20 points.
For population II, the scores cover a range of 10 points.

If we randomly select one score from population I
and one score from population II and compute the
difference between these two scores (X1 � X2), what
range of values is possible for these differences? 
To answer this question, we need to find the biggest
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two samples are exactly the same size (that is, n1 � n2). For situations in which 
the two sample sizes are different, the formula is biased and, therefore, inappropriate.
The bias comes from the fact that Equation 10.1 treats the two sample variances equally.
However, when the sample sizes are different, the two sample variances are not equally
good and should not be treated equally. In Chapter 7, we introduced the law of large
numbers, which states that statistics obtained from large samples tend to be better (more
accurate) estimates of population parameters than statistics obtained from small samples.
This same fact holds for sample variances: The variance obtained from a large sample is
a more accurate estimate of �2 than the variance obtained from a small sample.

One method for correcting the bias in the standard error is to combine the two sam-
ple variances into a single value called the pooled variance. The pooled variance is 
obtained by averaging or “pooling” the two sample variances using a procedure that 
allows the bigger sample to carry more weight in determining the final value.

You should recall that when there is only one sample, the sample variance is
computed as

For the independent-measures t statistic, there are two SS values and two df values
(one from each sample). The values from the two samples are combined to compute
what is called the pooled variance. The pooled variance is identified by the symbol 
and is computed as

pooled variance (10.2)

With one sample, the variance is computed as SS divided by df. With two samples,
the pooled variance is computed by combining the two SS values and then dividing by
the combination of the two df values.

As we mentioned earlier, the pooled variance is actually an average of the two sam-
ple variances, but the average is computed so that the larger sample carries more weight
in determining the final value. The following examples demonstrate this point.

� �
�

�
s

SS SS

df dfp
2 1 2

1 2

s
p
2

s
SS

df
2 �
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20

Population II Population I

10 30 40 50 60 70 80

Smallest difference
20 points

Biggest difference
50 points

FIGURE 10.3

Two population distributions.
The scores in population I
vary from 50 to 70 (a 20-point
spread), and the scores in
population II range from 20 to
30 (a 10-point spread). If you
select one score from each of
these two populations, the
closest two values are 
X1 � 50 and X2 � 30. The
two values that are farthest
apart are X1 � 70 and 
X2 � 20.

An alternative to computing
pooled variance is presented in
Box 10.2, p. 339.
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Equal samples sizes We begin with two samples that are exactly the same size. The
first sample has n � 6 scores with SS � 50, and the second sample has n � 6 scores
with SS � 30. Individually, the two sample variances are

Variance for sample

Variance for sample

The pooled variance for these two samples is

Note that the pooled variance is exactly halfway between the two sample vari-
ances. Because the two samples are exactly the same size, the pooled variance is sim-
ply the average of the two sample variances.

Unequal samples sizes Now consider what happens when the samples are not the
same size. This time the first sample has n � 3 scores with SS � 20, and the second 
sample has n � 9 scores with SS � 48. Individually, the two sample variances are

Variance for sample 

Variance for sample

The pooled variance for these two samples is

This time the pooled variance is not located halfway between the two sample vari-
ances. Instead, the pooled value is closer to the variance for the larger sample (n � 9
and s2 � 6) than to the variance for the smaller sample (n � 3 and s2 � 10). The larger
sample carries more weight when the pooled variance is computed.

When computing the pooled variance, the weight for each of the individual sample
variances is determined by its degrees of freedom. Because the larger sample has a
larger df value, it carries more weight when averaging the two variances. This produces
an alternative formula for computing pooled variance.

pooled variance (10.3)

For example, if the first sample has df1 � 3 and the second sample has df2 � 7,
then the formula instructs you to take 3 of the first sample variance and 7 of the second 
sample variance for a total of 10 variances. You then divide by 10 to obtain the aver-
age. The alternative formula is especially useful if the sample data are summarized as
means and variances. Finally, you should note that because the pooled variance is an
average of the two sample variances, the value obtained for the pooled variance is 
always located between the two sample variances.

� �
�

�
s

df s df s

df dfp
2 1 1

2
2 2

2

1 2

s
SS SS

df dfp
2 1 2

1 2

20 48

2 8

68

10
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324 CHAPTER 10 THE t TEST FOR TWO INDEPENDENT SAMPLES

Using the pooled variance in place of the individual sample variances, we can now 
obtain an unbiased measure of the standard error for a sample mean difference. The 
resulting formula for the independent-measures estimated standard error is

estimated standard error of M1 � M2 � s(M1�M2) � ��
n

s2
p

1
� � �

n

s�
2
p

2
�� (10.4)

Conceptually, this standard error measures how accurately the difference 
between two sample means represents the difference between the two population
means.  In a hypothesis test, H0 specifies that �1 � �2 � 0, and the standard error
also measures how much difference is expected, on average, between the two sam-
ple means. In either case, the formula combines the error for the first sample mean
with the error for the second sample mean. Also note that the pooled variance 
from the two samples is used to compute the standard error for the sample mean 
difference.

The complete formula for the independent-measures t statistic is as follows:

� (10.5)

In the formula, the estimated standard error in the denominator is calculated using
Equation 10.4, and requires calculation of the pooled variance using either Equation 10.2
or 10.3.

The degrees of freedom for the independent-measures t statistic are determined by
the df values for the two separate samples:

df for the t statistic � df for the first sample + df for the second sample
� df1 + df2
� (n1 � 1) + (n2 � 1) (10.6)

Equivalently, the df value for the independent-measures t statistic can be expressed as

df � n1 + n2 � 2 (10.7)

Note that the df formula subtracts 2 points from the total number of scores; 1 point
for the first sample and 1 for the second.

The independent-measures t statistic is used for hypothesis testing. Specifically,
we use the difference between two sample means (M1 � M2) as the basis for testing 
hypotheses about the difference between two population means (�1 � �2). In this 
context, the overall structure of the t statistic can be reduced to the following:

t ��
data �

e
h
rr
y
o
p
r
othesis
�

This same structure is used for both the single-sample t from Chapter 9 and the new
independent-measures t that was introduced in the preceding pages. Table 10.1 identi-
fies each component of these two t statistics and should help reinforce the point that we
made earlier in the chapter; that is, the independent-measures t statistic simply doubles
each aspect of the single-sample t statistic.

sample mean difference � population mean difference
������

estimated standard error

t
M M

s
M M

�
� � � ��

�

1 2 1 2

1 2

( ) ( )
( )

THE FINAL FORMULA 
AND DEGREES OF FREEDOM

ESTIMATED STANDARD
ERROR
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1. What is the defining characteristic of an independent-measures research study?

2. Explain what is measured by the estimated standard error in the denominator of
the independent-measures t statistic.

3. One sample from an independent-measures study has n � 4 with SS � 100. The
other sample has n � 8 and SS � 140. 

a. Compute the pooled variance. (Note: Equation 10.2 works well with these data.)

b. Compute the estimated standard error for the mean difference.

4. One sample from an independent-measures study has n � 9 with a variance of 
s2 � 35. The other sample has n � 3 and s2 � 40.

a. Compute the pooled variance. (Note: Equation 10.3 works well with these data.)

b. Compute the estimated standard error for the mean difference.

5. An independent-measures t statistic is used to evaluate the mean difference 
between two treatments with n � 8 in one treatment and n � 12 in the other. 
What is the df value for the t statistic?

1. An independent-measures study uses a separate group of participants to represent each of
the populations or treatment conditions being compared.

2. The estimated standard error measures how much difference is expected, on average, 
between a sample mean difference and the population mean difference. In a hypothesis 
test, �1 � �2 is set to zero and the standard error measures how much difference is 
expected between the two sample means.

3. a. The pooled variance is 240/10 � 24.

b. The estimated standard error is 3.

4. a. The pooled variance is 36.

b. The estimated standard error is 4.

5. df � df1 + df2 � 7 + 11 � 18.
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TABLE 10.1

The basic elements of a t statistic
for the single-sample t and the
independent-measures t.

Hypothesized Estimated
Sample Population Standard Sample

Data Parameter Error Variance

Single-sample M � ��
s
n

2

�� s2 � �
S
d
S
f
�

t statistic

Independent-
measures (M1 � M2) (�1 � �2) ��

n

s2
p

1
� � �

n

s�
2
p

2
�� s2

p � �
S
d
S
f
1

1

�

�

S
d
S
f2

2�

t statistic

ANSWERS

L E A R N I N G  C H E C K

10.3 HYPOTHESIS TESTS AND EFFECT SIZE 
WITH THE INDEPENDENT-MEASURES t STATISTIC

The independent-measures t statistic uses the data from two separate samples to help
decide whether there is a significant mean difference between two populations or 
between two treatment conditions. A complete example of a hypothesis test with two
independent samples follows.
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Research results suggest a relationship between the TV viewing habits of 5-year-old
children and their future performance in high school. For example, Anderson, Huston,
Wright, and Collins (1998) report that high school students who had regularly
watched Sesame Street as children had better grades in high school than their peers
who had not watched Sesame Street. Suppose that a researcher intends to examine
this phenomenon using a sample of 20 high school students.

The researcher first surveys the students’ parents to obtain information on the
family’s TV-viewing habits during the time that the students were 5 years old. Based
on the survey results, the researcher selects a sample of n � 10 students with a history
of watching Sesame Street and a sample of n � 10 students who did not watch the
program. The average high school grade is recorded for each student and the data 
are as follows:

E X A M P L E  1 0 . 1

326 CHAPTER 10 THE t TEST FOR TWO INDEPENDENT SAMPLES

Average High School Grade

Watched Did Not Watch
Sesame Street Sesame Street

86 99 90 79
87 97 89 83
91 94 82 86
97 89 83 81
98 92 85 92

n � 10 n � 10
M � 93 M � 85
SS � 200 SS � 160

Note that this is an independent-measures study using two separate samples
representing two distinct populations of high school students. The researcher would
like to know whether there is a significant difference between the two types of high
school student.

State the hypotheses and select the alpha level.

H0: �1 � �2 � 0 (No difference.)

H1: �1 � �2 � 0 (There is a difference.)

We set � � .01.
Directional hypotheses could be used and would specify whether the students

who watched Sesame Street should have higher or lower grades.

This is an independent-measures design. The t statistic for these data has degrees of
freedom determined by

df � df1 � df2

� (n1 � 1) � (n2 � 1)

� 9 � 9

� 18
The t distribution for df � 18 is presented in Figure 10.4. For � � .01, the critical

region consists of the extreme 1% of the distribution and has boundaries of t � +2.878
and t � �2.878.

S T E P  2

S T E P  1
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Obtain the data and compute the test statistic. The data are given, so all that remains
is to compute the t statistic. As with the single-sample t test in Chapter 9, we
recommend that the calculations be divided into three parts.

First, find the pooled variance for the two samples:

� 20

Second, use the pooled variance to compute the estimated standard error:

� 2

Third, compute the t statistic:

� 4

�
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t
M M

s
M M
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t = �2.878 t = 0 t = �2.878

Reject H0 Reject H0

t distribution
df = 18

FIGURE 10.4

The critical region for the
independent-measures hypoth-
esis test in Example 10.1 with
df � 18 and � � .01.

Caution: The pooled variance
combines the two samples to
obtain a single estimate of 
variance. In the formula, the 
two samples are combined in 
a single fraction.

Caution: The standard error adds
the errors from two separate
samples. In the formula, these
two errors are added as two
separate fractions. In this case,
the two errors are equal because
the sample sizes are the same.

30991_ch10_ptg01_hr_315-350.qxd  9/3/11  3:46 AM  Page 327



328 CHAPTER 10 THE t TEST FOR TWO INDEPENDENT SAMPLES

Make a decision. The obtained value (t � 4.00) is in the critical region. In this
example, the obtained sample mean difference is four times greater than would be
expected if there were no difference between the two populations. In other words, this
result is very unlikely if H0 is true. Therefore, we reject H0 and conclude that there is
a significant difference between the high school grades for students who watched
Sesame Street and those who did not. Specifically, the students who watched Sesame
Street had significantly higher grades than those who did not watch the program.

Note that the Sesame Street study in Example 10.1 is an example of nonexperi-
mental research (see Chapter 1, p. 17). Specifically, the researcher did not manipulate
the TV programs watched by the children and did not control a variety of variables that
could influence high school grades. As a result, we cannot conclude that watching
Sesame Street causes higher high school grades. In particular, many other, uncontrolled
factors, such as the parents’ level of education or family economic status, might explain
the difference between the two groups. Thus, we do not know exactly why there is a 
relationship between watching Sesame Street and high school grades, but we do know
that a relationship exists.

As noted in Chapters 8 and 9, a hypothesis test is usually accompanied by a report of
effect size to provide an indication of the absolute magnitude of the treatment effect.
One technique for measuring effect size is Cohen’s d, which produces a standardized
measure of mean difference. In its general form, Cohen’s d is defined as

d ��
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�� 
�1 � �2

�       

In the context of an independent-measures research study, the difference between
the two sample means (M1 � M2) is used as the best estimate of the mean difference
between the two populations, and the pooled standard deviation (the square root of the
pooled variance) is used to estimate the population standard deviation. Thus, the for-
mula for estimating Cohen’s d becomes

estimated d �
estimated mean difference   

� �
M1

�
�

s2
p	
M2

�
estimated standard deviation

(10.8)

For the data from Example 10.1, the two sample means are 93 and 85, and the
pooled variance is 20. The estimated d for these data is

Using the criteria established to evaluate Cohen’s d (see Table 8.2 on p. 264), this
value indicates a very large treatment effect.

The independent-measures t test also allows for measuring effect size by comput-
ing the percentage of variance accounted for, r2. As we saw in Chapter 9, r2 measures
how much of the variability in the scores can be explained by the treatment effects. For
example, some of the variability in the high school grades from the Sesame Street study
can be explained by knowing whether a particular student watched the program; 
students who watched Sesame Street tend to have higher grades and students who did
not watch the show tend to have lower grades. By measuring exactly how much of the
variability can be explained, we can obtain a measure of how big the treatment effect

d
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MEASURING EFFECT SIZE FOR
THE INDEPENDENT-

MEASURES t TEST

S T E P  4
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actually is. The calculation of r2 for the independent-measures t test is exactly the same
as it was for the single-sample t test in Chapter 9.

(10.9)

For the data in Example 10.1, we obtained t � 4.00 with df � 18. These values 
produce an r2 of

According to the standards used to evaluate r2 (see Table 9.3 on p. 299), this value
also indicates a very large treatment effect.

Although the value of r2 is usually obtained by using Equation 10.9, it is possible
to determine the percentage of variability directly by computing SS values for the set of
scores. The following example demonstrates this process using the data from the
Sesame Street study in Example 10.1.

The Sesame Street study described in Example 10.1 compared high school grades for
two groups of students; one group who had watched Sesame Street when they were
children and one group who had not watched the program. If we assume that the null
hypothesis is true and that there is no difference between the two populations of students,
then there should be no systematic difference between the two samples. In this case, the
two samples can be combined to form a single set of n � 20 scores with an overall mean
of M � 89. The two samples are shown as a single distribution in Figure 10.5(a).

For this example, however, the conclusion from the hypothesis test is that there is
a real difference between the two groups. The students who watched Sesame Street
have a mean score of M � 93, which is 4 points above the overall average. Similarly,
the students who did not watch the program had a mean score of M � 85, 4 points
below the overall average. Thus, the Sesame Street effect causes one group of scores
to move toward the right of the distribution, away from the middle, and causes the
other group to move toward the left, away from the middle. The result is that the
Sesame Street effect causes the scores to spread out and increases the variability.

To determine how much the treatment effect has increased the variability, we
remove the treatment effect and examine the resulting scores. To remove the effect,
we add 4 points to the score for each student who did not watch Sesame Street and
we subtract 4 points from the score for each student who did watch. This adjustment
causes both groups to have a mean of M � 89, so there is no longer any mean
difference between the two groups. The adjusted scores are shown in Figure 10.5(b).

It should be clear that the adjusted scores in Figure 10.5(b) are less variable (more
closely clustered) than the original scores in Figure 10.5(a). That is, removing the
treatment effect has reduced the variability. To determine exactly how much the
treatment influences variability, we have computed SS, the sum of squared deviations,
for each set of scores. For the scores in Figure 10.5(a), including the treatment effect, we
obtain SS � 680. When the treatment effect is removed, in Figure 10.5(b), the variability
is reduced to SS � 360. The difference between these two values is 320 points. Thus, the
treatment effect accounts for 320 points of the total variability in the original scores.
When expressed as a proportion of the total variability, we obtain
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You should recognize that this is exactly the same value we obtained for r2 using
Equation 10.9.

As noted in Chapter 9, it is possible to compute a confidence interval as an alternative
method for measuring and describing the size of the treatment effect. For the single-
sample t, we used a single sample mean, M, to estimate a single population mean. For
the independent-measures t, we use a sample mean difference, M1 � M2, to estimate
the population mean difference, �1 � �2. In this case, the confidence interval literally
estimates the size of the population mean difference between the two populations or
treatment conditions.  

As with the single-sample t, the first step is to solve the t equation for the unknown
parameter. For the independent-measures t statistic, we obtain

(10.10)

In the equation, the values for M1 � M2 and for are obtained from the sam-
ple data. Although the value for the t statistic is unknown, we can use the degrees of
freedom for the t statistic and the t distribution table to estimate the t value. Using the
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1 2
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M M( )

CONFIDENCE INTERVALS FOR
ESTIMATING ��1 � ��2
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79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

M � 89

Average High School Grade

Sesame Street

No Sesame Street

Original scores including the treatment effect

79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

M � 89

Average High School Grade 

Adjusted scores after the treatment effect is removed

(a)

(b)

FIGURE 10.5

The two groups of scores from Example 10.1 combined into a single distribution. The original scores, including the 
treatment effect, are shown in part (a). Part (b) shows the adjusted scores, after the treatment effect has been removed.
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estimated t and the known values from the sample, we can then compute the value of
�1 � �2. The following example demonstrates the process of constructing a confidence
interval for a population mean difference.

Earlier we presented a research study comparing high school grades for students who
had watched Sesame Street as children with the grades for students who had not
watched the program (p. 326). The results of the hypothesis test indicated a
significant mean difference between the two populations of students. Now, we
construct a 95% confidence interval to estimate the size of the population mean
difference.  

The data from the study produced a mean grade of M � 93 for the Sesame Street
group and a mean of M � 85 for the no-Sesame Street group, and the estimated
standard error for the mean difference was . With n � 10 scores in each

sample, the independent-measures t statistic has df � 18. To have 95% confidence,
we simply estimate that the t statistic for the sample mean difference is located
somewhere in the middle 95% of all the possible t values. According to the 
t distribution table, with df � 18, 95% of the t values are located between t � +2.101
and t � �2.101. Using these values in the estimation equation, we obtain

This produces an interval of values ranging from 8 � 4.202 � 3.798 to 8 + 4.202
� 12.202. Thus, our conclusion is that students who watched Sesame Street have
higher grades that those who did not, and the mean difference between the two
populations is somewhere between 3.798 points and 12.202 points. Furthermore, we
are 95% confident that the true mean difference is in this interval because the only
value estimated during the calculations was the t statistic, and we are 95% confident
that the t value is located in the middle 95% of the distribution. Finally note that the
confidence interval is constructed around the sample mean difference. As a result, the
sample mean difference, M1 � M2 � 93 � 83 � 8 points, is located exactly in the
center of the interval.

As with the confidence interval for the single-sample t (p. 302), the confidence 
interval for an independent-measures t is influenced by a variety of factors other than
the actual size of the treatment effect. In particular, the width of the interval depends on
the percentage of confidence used so that a larger percentage produces a wider interval.
Also, the width of the interval depends on the sample size, so that a larger sample 
produces a narrower interval. Because the interval width is related to sample size, the
confidence interval is not a pure measure of effect size like Cohen’s d or r2. 

In addition to describing the size of a treatment effect, estimation can be used to get 
an indication of the significance of the effect. Example 10.3 presented an independent-
measures research study examining the effect on high school grades of having watched
Sesame Street as a child. Based on the results of the study, the 95% confidence interval 
estimated that the population mean difference for the two groups of students was between
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3.798 and 12.202 points. The confidence interval estimate is shown in Figure 10.6. In addi-
tion to the confidence interval for �1 � �2, we have marked the spot where the mean 
difference is equal to zero. You should recognize that a mean difference of zero is exactly
what would be predicted by the null hypothesis if we were doing a hypothesis test. You also
should realize that a zero difference (�1 � �2 � 0) is outside of the 95% confidence inter-
val. In other words, �1 � �2 � 0 is not an acceptable value if we want 95% confidence in
our estimate. To conclude that a value of zero is not acceptable with 95% confidence is
equivalent to concluding that a value of zero is rejected with 95% confidence. This conclu-
sion is equivalent to rejecting H0 with � � .05. On the other hand, if a mean difference of
zero were included within the 95% confidence interval, then we would have to conclude that
�1 � �2 � 0 is an acceptable value, which is the same as failing to reject H0.

IN THE LITERATURE

REPORTING THE RESULTS OF AN INDEPENDENT-MEASURES t TEST

A research report typically presents the descriptive statistics followed by the results 
of the hypothesis test and measures of effect size (inferential statistics). In Chapter 4
(p. 123), we demonstrated how the mean and the standard deviation are reported in
APA format. In Chapter 9 (p. 302), we illustrated the APA style for reporting the
results of a t test. Now we use the APA format to report the results of Example 10.1,
an independent-measures t test. A concise statement might read as follows:

The students who watched Sesame Street as children had higher high school grades (M � 93,
SD � 4.71) than the students who did not watch the program (M � 85, SD � 4.22). The mean
difference was significant, t (18) � 4.00, p < .01, d � 1.79.

You should note that standard deviation is not a step in the computations for the
independent-measures t test, yet it is useful when providing descriptive statistics for
each treatment group. It is easily computed when doing the t test because you need 
SS and df for both groups to determine the pooled variance. Note that the format for
reporting t is exactly the same as that described in Chapter 9 (p. 302) and that the
measure of effect size is reported immediately after the results of the hypothesis test.

332 CHAPTER 10 THE t TEST FOR TWO INDEPENDENT SAMPLES

The hypothesis test for these
data was conducted in Example
10.1 (p. 326) and the decision
was to reject H0.

3.798 12.202

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

95% confidence interval
estimate for �1 � �2

�1 � �2

according to H0

(                                                                )

FIGURE 10.6

The 95% confidence interval for the population mean difference (�1 � �2) from Example 10.3. Note that �1 � �2 � 0 is 
excluded from the confidence interval, indicating that a zero difference is not an acceptable value (H0 would be rejected in a
hypothesis test with � � .05).
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Also, as we noted in Chapter 9, if an exact probability is available from a
computer analysis, it should be reported. For the data in Example 10.1, the computer
analysis reports a probability value of p � .001 for t � 4.00 with df � 18. In the
research report, this value would be included as follows:

The difference was significant, t(18) � 4.00, p � .001, d � 1.79.

Finally, if a confidence interval is reported to describe effect size, it appears
immediately after the results from the hypothesis test. For the Sesame Street
examples (Example 10.1 and Example 10.3), the report would be as follows:

The difference was significant, t(18) � 4.00, p � .001, 95% CI [3.798, 12.202].
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1. An educational psychologist would like to determine whether access to computers
has an effect on grades for high school students. One group of n � 16 students has
home room each day in a computer classroom in which each student has a com-
puter. A comparison group of n � 16 students has home room in a traditional
classroom. At the end of the school year, the average grade is recorded for each
student. The data are as follows:

Computer Traditional

M � 86 M � 82.5
SS � 1005 SS � 1155

a. Is there a significant difference between the two groups? Use a two-tailed test
with � � .05.

b. Compute Cohen’s d to measure the size of the difference.

c. Write a sentence that demonstrates how the outcome of the hypothesis test and
the measure of effect size would appear in a research report.

d. Compute the 90% confidence interval for the population mean difference 
between a computer classroom and a regular classroom.

2. A researcher report states that there is a significant difference between treatments
for an independent-measures design with t(28) � 2.27.

a. How many individuals participated in the research study? (Hint: Start with the
df value.)

b. Should the report state that p 
 .05 or p � .05?

1. a. The pooled variance is 72, the standard error is 3, and t � 1.17. With a critical value
of t � 2.042, fail to reject the null hypothesis.

b. Cohen’s d � 3.5/√72 � 0.412

c. The results show no significant difference in grades for students with computers com-
pared to students without computers, t(30) � 1.17, p 
 .05, d � 0.412.

d. With df � 30 and 90% confidence, the t values for the confidence interval are 	1.697.
The interval is �1 � �2 � 3.5 	 1.697(3). Thus, the population mean difference is
estimated to be between �1.591 and 8.591. The fact that zero is an acceptable value
(inside the interval) is consistent with the decision that there is no significant difference
between the two population means.

2. a. The df � 28, so the total number of participants is 30.

b. A significant result is indicated by p � .05.

L E A R N I N G  C H E C K

ANSWERS
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When planning an independent-measures study, a researcher usually has some 
expectation or specific prediction for the outcome. For the Sesame Street study in
Example 10.1, the researcher clearly expects the students who watched Sesame Street
to have higher grades than the students who did not watch. This kind of directional
prediction can be incorporated into the statement of the hypotheses, resulting in a 
directional, or one-tailed, test. Recall from Chapter 8 that one-tailed tests can lead to
rejecting H0 when the mean difference is relatively small compared to the magnitude
required by a two-tailed test. As a result, one-tailed tests should be used when clearly
justified by theory or previous findings. The following example demonstrates the
procedure for stating hypotheses and locating the critical region for a one-tailed test
using the independent-measures t statistic.

We use the same research situation that was described in Example 10.1. The
researcher is using an independent-measures design to examine the relationship
between watching educational TV as a child and academic performance as a high
school student. The prediction is that high school students who watched Sesame
Street regularly as 5-year-old children have higher grades.

State the hypotheses and select the alpha level. As always, the null hypothesis says
that there is no effect, and the alternative hypothesis says that there is an effect. For
this example, the predicted effect is that the students who watched Sesame Street
have higher grades. Thus, the two hypotheses are as follows.

H0: �Sesame Street � �No Sesame Street (Grades are not higher with Sesame Street)

H1: �Sesame Street 
 �No Sesame Street (Grades are higher with Sesame Street)

Note that it is usually easier to state the hypotheses in words before you try to
write them in symbols. Also, it usually is easier to begin with the alternative
hypothesis (H1), which states that the treatment works as predicted. Also note that the
equal sign goes in the null hypothesis, indicating no difference between the two
treatment conditions. The idea of zero difference is the essence of the null hypothesis,
and the numerical value of zero is used for (�1 � �2) during the calculation of the 
t statistic.  For this test we use � � .01.

Locate the critical region. For a directional test, the critical region is located entirely
in one tail of the distribution. Rather than trying to determine which tail, positive or
negative, is the correct location, we suggest that you identify the criteria for the
critical region in a two-step process as follows. First, look at the data and determine
whether the sample mean difference is in the direction that was predicted. If the
answer is no, then the data obviously do not support the predicted treatment effect,
and you can stop the analysis. On the other hand, if the difference is in the predicted
direction, then the second step is to determine whether the difference is large enough
to be significant. To test for significance, simply find the one-tailed critical value in
the t distribution table. If the calculated t statistic is more extreme (either positive or
negative) than the critical value, then the difference is significant.

For this example, the students who watched Sesame Street had higher grades, as
predicted. With df � 18, the one-tailed critical value for � � .01 is t � 2.552.

Collect the data and calculate the test statistic. The details of the calculations were
shown in Example 10.1. The data produce a t statistic of t � 4.00.

S T E P  3

S T E P  2

S T E P  1

E X A M P L E  1 0 . 4

DIRECTIONAL HYPOTHESES
AND ONE-TAILED TESTS
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Make a decision. The t statistic of t � 4.00 is well beyond the critical boundary of 
t � 2.552. Therefore, we reject the null hypothesis and conclude that grades for
students who watched Sesame Street are significantly higher than grades for students
who did not watch the program. In a research report, the one-tailed test would be
clearly noted:

Grades were significantly higher for students who watched Sesame Street, t(18) � 4.00, 
p � .01, one tailed.

In Chapter 9 (p. 294), we identified several factors that can influence the outcome of a
hypothesis test. Two factors that play important roles are the variability of the scores
and the size of the samples. Both factors influence the magnitude of the estimated stan-
dard error in the denominator of the t statistic. However, the standard error is directly
related to sample variance (larger variance leads to larger error) but it is inversely 
related to sample size (larger size leads to smaller error). As a result, larger variance
produces a smaller value for the t statistic (closer to zero) and reduces the likelihood of
finding a significant result. By contrast, a larger sample produces a larger value for the
t statistic (farther from zero) and increases the likelihood of rejecting H0.

Although variance and sample size both influence the hypothesis test, only vari-
ance has a large influence on measures of effect size such as Cohen’s d and r2; larger
variance produces smaller measures of effect size. Sample size, on the other hand, has
no effect on the value of Cohen’s d and only a small influence on r2. 

The following example provides a visual demonstration of how large sample vari-
ance can obscure a mean difference between samples and lower the likelihood of 
rejecting H0 for an independent-measures study.

We use the data in Figure 10.7 to demonstrate the influence of sample variance. The
figure shows the results from a research study comparing two treatments. Notice that the
study uses two separate samples, each with n � 9, and there is a 5-point mean difference

E X A M P L E  1 0 . 5

THE ROLE OF SAMPLE
VARIANCE AND SAMPLE SIZE

IN THE INDEPENDENT-
MEASURES t TEST

S T E P  4
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Treatment 1

n  � 9
M  � 8
s  � 1.22

Treatment 2

n  � 9
M  � 13
s  � 1.22

FIGURE 10.7

Two sample distributions representing two different treatments. These data show a significant difference between treatments,
t(16) � 8.62, p � .01, and both measures of effect size indicate a very large treatment effect, d � 4.10 and r2 � 0.82.
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between the two samples: M � 8 for treatment 1 and M � 13 for treatment 2. Also
notice that there is a clear difference between the two distributions; the scores for
treatment 2 are clearly higher than the scores for treatment 1.

For the hypothesis test, the data produce a pooled variance of 1.50 and an
estimated standard error of 0.58. The t statistic is

t � � �
0.

5
58
� � 8.62

With df � 16, this value is far into the critical region (for � � .05 or � � .01),
so we reject the null hypothesis and conclude that there is a significant difference
between the two treatments.

Now consider the effect of increasing sample variance. Figure 10.8 shows the results
from a second research study comparing two treatments. Notice that there are still n � 9
scores in each sample, and the two sample means are still M � 8 and M � 13. However,
the sample variances have been greatly increased: Each sample now has s2 � 44.25 as
compared with s2 � 1.5 for the data in Figure 10.7. Notice that the increased variance
means that the scores are now spread out over a wider range, with the result that the 
two samples are mixed together without any clear distinction between them.

The absence of a clear difference between the two samples is supported by the
hypothesis test. The pooled variance is 44.25, the estimated standard error is 3.14,
and the independent-measures t statistic is

t � � �
3.

5
14
� � 1.59

With df � 16 and � � .05, this value is not in the critical region. Therefore, we
fail to reject the null hypothesis and conclude that there is no significant difference
between the two treatments. Although there is still a 5-point difference between
sample means (as in Figure 10.7), the 5-point difference is not significant with the
increased variance. In general, large sample variance can obscure any mean
difference that exists in the data and reduces the likelihood of obtaining a significant
difference in a hypothesis test.

mean difference
���
estimated standard error

mean difference
���
estimated standard error
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Treatment 1

n  � 9
M  � 8
s  � 6.65

Treatment 2

n  � 9
M  � 13
s  � 6.65

FIGURE 10.8

Two sample distributions representing two different treatments. These data show exactly the same mean difference as the
scores in Figure 10.7; however, the variance has been greatly increased. With the increased variance, there is no longer a
significant difference between treatments, t(16) � 1.59, p 
 .05, and both measures of effect size are substantially reduced, 
d � 0.75 and r2 � 0.14.
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Finally, we should note that the problems associated with high variance often 
can be minimized by transforming the original scores to ranks and then conducting an
alternative statistical analysis known as the Mann-Whitney test, which is designed
specifically for ordinal data. The Mann-Whitney test is presented in Appendix E, 
which also discusses the general purpose and process of converting numerical scores 
into ranks. The Mann-Whitney test also can be used if the data violate one of the 
assumptions for the independent-measures t test outlined in the next section.

10.4 ASSUMPTIONS UNDERLYING THE 
INDEPENDENT-MEASURES t FORMULA

There are three assumptions that should be satisfied before you use the independent-
measures t formula for hypothesis testing:

1. The observations within each sample must be independent (see p. 254).

2. The two populations from which the samples are selected must be normal.

3. The two populations from which the samples are selected must have equal
variances.

The first two assumptions should be familiar from the single-sample t hypothesis
test presented in Chapter 9. As before, the normality assumption is the less important
of the two, especially with large samples. When there is reason to suspect that the 
populations are far from normal, you should compensate by ensuring that the samples
are relatively large.

The third assumption is referred to as homogeneity of variance and states that the
two populations being compared must have the same variance. You may recall a simi-
lar assumption for the z-score hypothesis test in Chapter 8. For that test, we assumed
that the effect of the treatment was to add a constant amount to (or subtract a constant
amount from) each individual score. As a result, the population standard deviation after
treatment was the same as it had been before treatment. We now are making essentially
the same assumption, but phrasing it in terms of variances.

Recall that the pooled variance in the t-statistic formula is obtained by averaging
together the two sample variances. It makes sense to average these two values only if
they both are estimating the same population variance—that is, if the homogeneity of
variance assumption is satisfied. If the two sample variances are estimating different
population variances, then the average is meaningless. (Note: If two people are asked
to estimate the same thing—for example, what your IQ is—it is reasonable to average
the two estimates. However, it is not meaningful to average estimates of two different
things. If one person estimates your IQ and another estimates the number of grapes in
a pound, it is meaningless to average the two numbers.)

Homogeneity of variance is most important when there is a large discrepancy 
between the sample sizes. With equal (or nearly equal) sample sizes, this assumption is
less critical, but still important. Violating the homogeneity of variance assumption can
negate any meaningful interpretation of the data from an independent-measures exper-
iment. Specifically, when you compute the t statistic in a hypothesis test, all of the 
numbers in the formula come from the data except for the population mean difference,
which you get from H0. Thus, you are sure of all of the numbers in the formula except
one. If you obtain an extreme result for the t statistic (a value in the critical region), then
you conclude that the hypothesized value was wrong. But consider what happens when
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Remember: Adding a constant to
(or subtracting a constant from)
each score does not change the
standard deviation.
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you violate the homogeneity of variance assumption. In this case, you have two ques-
tionable values in the formula (the hypothesized population value and the meaningless
average of the two variances). Now if you obtain an extreme t statistic, you do not know
which of these two values is responsible. Specifically, you cannot reject the hypothesis
because it may have been the pooled variance that produced the extreme t statistic.
Without satisfying the homogeneity of variance requirement, you cannot accurately 
interpret a t statistic, and the hypothesis test becomes meaningless.

How do you know whether the homogeneity of variance assumption is satisfied? One
simple test involves just looking at the two sample variances. Logically, if the two pop-
ulation variances are equal, then the two sample variances should be very similar.
When the two sample variances are reasonably close, you can be reasonably confident
that the homogeneity assumption has been satisfied and proceed with the test. However,
if one sample variance is more than three or four times larger than the other, then there
is reason for concern. A more objective procedure involves a statistical test to evaluate
the homogeneity assumption. Although there are many different statistical methods for
determining whether the homogeneity of variance assumption has been satisfied,
Hartley’s F-max test is one of the simplest to compute and to understand. An additional
advantage is that this test can also be used to check homogeneity of variance with more
than two independent samples. Later, in Chapter 12, we examine statistical methods for
comparing several different samples, and Hartley’s test is useful again. The following
example demonstrates the F-max test for two independent samples.

The F-max test is based on the principle that a sample variance provides an unbiased
estimate of the population variance. The null hypothesis for this test states that the
population variances are equal, therefore, the sample variances should be very
similar. The procedure for using the F-max test is as follows:

1. Compute the sample variance, , for each of the separate samples.

2. Select the largest and the smallest of these sample variances and compute
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A relatively large value for F-max indicates a large difference between the
sample variances. In this case, the data suggest that the population variances are
different and that the homogeneity assumption has been violated. On the other
hand, a small value of F-max (near 1.00) indicates that the sample variances are
similar and that the homogeneity assumption is reasonable.

3. The F-max value computed for the sample data is compared with the critical
value found in Table B.3 (Appendix B). If the sample value is larger than the
table value, then you conclude that the variances are different and that the 
homogeneity assumption is not valid.

To locate the critical value in the table, you need to know:

a. k � number of separate samples. (For the independent-measures t test, k � 2.)

b. df � n � 1 for each sample variance. The Hartley test assumes that all 
samples are the same size.

c. The alpha level. The table provides critical values for � � .05 and � � .01.
Generally a test for homogeneity would use the larger alpha level.

s
SS

df
2 �

E X A M P L E  1 0 . 6

HARTLEY’S F-MAX TEST
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Suppose, for example, that two independent samples each have n � 10 with
sample variances of 12.34 and 9.15. For these data,

With � � .05, k � 2, and df � n � 1 � 9, the critical value from the table is
4.03. Because the obtained F-max is smaller than this critical value, you conclude
that the data do not provide evidence that the homogeneity of variance assumption
has been violated.

The goal for most hypothesis tests is to reject the null hypothesis to demonstrate
a significant difference or a significant treatment effect. However, when testing for
homogeneity of variance, the preferred outcome is to fail to reject H0. Failing to 
reject H0 with the F-max test means that there is no significant difference between
the two population variances and the homogeneity assumption is satisfied. In this
case, you may proceed with the independent-measures t test using pooled variance.

If the F-max test rejects the hypothesis of equal variances, or if you simply sus-
pect that the homogeneity of variance assumption is not justified, you should not
compute an independent-measures t statistic using pooled variance. However, there
is an alternative formula for the t statistic that does not pool the two sample variances
and does not require the homogeneity assumption. The alternative formula is 
presented in Box 10.2.

F
s

s
-max

largest

smallest
� � �

2

2

12 34

9 15
1 3

( )
( )

.

.
. 55
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B O X
10.2 AN ALTERNATIVE TO POOLED VARIANCE

Decimal values for df should be rounded down to
the next lower integer.

The adjustment to degrees of freedom lowers the
value of df, which pushes the boundaries for the critical 
region farther out. Thus, the adjustment makes the test
more demanding and therefore corrects for the same
bias problem that the pooled variance attempts to avoid.

Note: Many computer programs that perform
statistical analysis (such as SPSS) report two versions
of the independent-measures t statistic; one using
pooled variance (with equal variances assumed) and
one using the adjustment shown here (with equal 
variances not assumed).

Computing the independent-measures t statistic using
pooled variance requires that the data satisfy the homo-
geneity of variance assumption. Specifically, the two
distributions from which the samples are obtained must
have equal variances. To avoid this assumption, many
statisticians recommend an alternative formula for com-
puting the independent-measures t statistic that does not
require pooled variance or the homogeneity assumption.
The alternative procedure consists of two steps:

1. The standard error is computed using the two separate
sample variances as in Equation 10.1.

2. The value of degrees of freedom for the t statistic
is adjusted using the following equation:

df
V V

V

n

V

n

V
s

n
�

�

�
�

�

�1 2

2

1
2

1

2
2

2

1
1
2

1

1 1

( )
where annd V

s

n2
2
2

2

�
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1. The independent-measures t statistic uses the data from
two separate samples to draw inferences about the mean
difference between two populations or between two
different treatment conditions.

2. The formula for the independent-measures t statistic has
the same structure as the original z-score or the single-
sample t:

t �

For the independent-measures t, the sample statistic is
the sample mean difference (M1 � M2). The population

sample statistic � population parameter
�����

estimated standard error
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1. A researcher is using an independent-measures design to evaluate the difference
between two treatment conditions with n � 8 in each treatment. The first treat-
ment produces M � 63 with a variance of s2 � 18, and the second treatment has
M � 58 with s2 � 14.

a. Use a one-tailed test with � � .05 to determine whether the scores in the first
treatment are significantly greater than the scores in the second. (Note: Because
the two samples are the same size, the pooled variance is simply the average of
the two sample variances.)

b. Predict how the value for the t statistic would be affected if the two sample
variances were increased to s2 � 68 and s2 � 60. Compute the new t to con-
firm your answer.

c. Predict how the value for the t statistic for the original samples would be 
affected if each sample had n � 32 scores (instead of n � 8). Compute the 
new t to confirm your answer.

2. The homogeneity of variance assumption requires that the two sample variances
be equal. (True or false?)

3. When you are using an F-max test to evaluate the homogeneity of variance 
assumption, you usually do not want to find a significant difference between the
variances. (True or false?)

1. a. The pooled variance is 16, the estimated standard error is 2, and t(14) � 2.50. With a
one-tailed critical value of 1.761, reject the null hypothesis. Scores in the first treatment are
significantly higher than scores in the second.

b. Increasing the variance should lower the value of t. The new pooled variance is 64, the
estimated standard error is 4, and t(14) � 1.25.

c. Increasing the sample sizes should increase the value of t. The pooled variance is still 16,
but the new standard error is 1, and t(62) � 5.00.

2. False. The assumption is that the two population variances are equal.

3. True. If there is a significant difference between the two variances, you cannot do the t test
with pooled variance.

L E A R N I N G  C H E C K

ANSWERS

SUMMARY

parameter is the population mean difference, (�1 � �2).
The estimated standard error for the sample mean
difference is computed by combining the errors for the
two sample means. The resulting formula is

where the estimated standard error is

s
s

n

s

nM M

p p

1 2

2

1

2

2
�

� �( )

t
M M

s
M M

�
� � � ��

�

1 2 1 2

1 2

( ) ( )
( )
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The pooled variance in the formula, , is the weighted
mean of the two sample variances:

This t statistic has degrees of freedom determined by
the sum of the df values for the two samples:

df � df1 + df2

� (n1 � 1) + (n2 � 1)

3. For hypothesis testing, the null hypothesis states that
there is no difference between the two population
means:

H0: �1 � �2 or �1 � �2 � 0

4. When a hypothesis test with an independent-measures
t statistic indicates a significant difference, you should
also compute a measure of the effect size. One
measure of effect size is Cohen’s d, which is a
standardized measure of the mean difference. For the
independent-measures t statistic, Cohen’s d is
estimated as follows:

estimated d � �
M1

�
�

s2
p	
M2�

A second common measure of effect size is the
percentage of variance accounted for by the treatment

s
SS SS

df dfp
2 1 2

1 2

�
�

�

s
p
2
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effect. This measure is identified by r2 and is
computed as

5. An alternative method for describing the size of the
treatment effect is to construct a confidence interval for
the population mean difference, �1 � �2. The
confidence interval uses the independent-measures 
t equation, solved for the unknown mean difference:

First, select a level of confidence and then look up the
corresponding t values. For example, for 95%
confidence, use the range of t values that determine the
middle 95% of the distribution. The t values are then
used in the equation along with the values for the
sample mean difference and the standard error, which
are computed from the sample data.

6. Appropriate use and interpretation of the t statistic using
pooled variance require that the data satisfy the
homogeneity of variance assumption. This assumption
stipulates that the two populations have equal variances.
An informal test of the assumption can be made by
verifying that the two sample variances are approximately
equal. Hartley’s F-max test provides a statistical
technique for determining whether the data satisfy the
homogeneity assumption. An alternative technique that
avoids pooling variances and eliminates the need for the
homogeneity assumption is presented in Box 10.2.

� �� � � 	
�1 2 1 2

1 2
M M ts

M M( )

r
t

t df
2

2

2
�

�

KEY TERMS

independent-measures research design
(318)

between-subjects research design (318)

repeated-measures research design (318)

within-subjects research design (318)

independent-measures t statistic (319)

estimated standard error of M1 � M2 (320)

pooled variance (322)

Mann-Whitney test (337)

homogeneity of variance (337)

RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 10 on the 

book companion website. The website also provides access to a workshop entitled
Independent vs. Repeated t-tests, which compares the t test presented in this chapter 
with the repeated-measures test presented in Chapter 11.
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Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.

Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific website,
Psychology CourseMate includes an integrated interactive eBook and other interactive
learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to perform The Independent-Measures t Test presented in
this chapter.

Data Entry

1. The scores are entered in what is called stacked format, which means that all of the
scores from both samples are entered in one column of the data editor (probably
VAR00001). Enter the scores for sample #2 directly beneath the scores from 
sample #1 with no gaps or extra spaces.

2. Values are then entered into a second column (VAR00002) to identify the sample
or treatment condition corresponding to each of the scores. For example, enter a 1
beside each score from sample #1 and enter a 2 beside each score from sample #2.

Data Analysis

1. Click Analyze on the tool bar, select Compare Means, and click on Independent-
Samples t Test.

2. Highlight the column label for the set of scores (VAR0001) in the left box and click
the arrow to move it into the Test Variable(s) box.

3. Highlight the label from the column containing the sample numbers (VAR0002) in
the left box and click the arrow to move it into the Group Variable box.

4. Click on Define Groups.
5. Assuming that you used the numbers 1 and 2 to identify the two sets of scores,

enter the values 1 and 2 into the appropriate group boxes.
6. Click Continue.
7. In addition to performing the hypothesis test, the program computes a confidence

interval for the population mean difference. The confidence level is automatically
set at 95% but you can select Options and change the percentage.

8. Click OK.
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Group Statistics

Independent Samples Test

Independent Samples Test

VAR00001

VAR00001

VAR00002

1.00

2.00

Equal variances assumed

Equal variances not
assumed

VAR00001 Equal variances assumed

Equal variances not
assumed

.001

.001

8.00000

8.00000

2.00000

2.00000

3.79816

3.79443

12.20184

12.20557

4.000

4.000

18

17.780

.543.384

Sig. (2-tailed)
Mean

Difference
Std. Error
Difference

10

10

93.0000

85.0000

4.71405

4.21637

1.49071

1.33333

Sig.F

Levene’s Test for Equality of
Variances t-test for Equality of Means

t-test for Equality of Means

t df

Lower Upper

95%
Confidence

Interval of the
Difference

MeanN Std. Deviation
Std. Error

Mean

SPSS Output

We used the SPSS program to analyze the data from the Sesame Street study in
Example 10.1 and the program output is shown in Figure 10.9. The output includes 
a table of sample statistics with the mean, standard deviation, and standard error 
of the mean for each group. A second table, which is split into two sections in 
Figure 10.9, begins with the results of Levene’s test for homogeneity of variance.
This test should not be significant (you do not want the two variances to be 
different), so you want the reported Sig. value to be greater than .05. Next, the results
of the independent-measures t test are presented using two different assumptions. 
The top row shows the outcome assuming equal variances, using the pooled variance
to compute t. The second row does not assume equal variances and computes the 
t statistic using the alternative method presented in Box 10.2. Each row reports the
calculated t value, the degrees of freedom, the level of significance (the p value 
for the test), the size of the mean difference and the standard error for the mean 
difference (the denominator of the t statistic). Finally, the output includes a 95%
confidence interval for the mean difference.
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FIGURE 10.9

The SPSS output for the independent-measures hypothesis test in Example 10.1.
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FOCUS ON PROBLEM SOLVING

1. As you learn more about different statistical methods, one basic problem is 
deciding which method is appropriate for a particular set of data. Fortunately, it
is easy to identify situations in which the independent-measures t statistic is used.
First, the data always consist of two separate samples (two ns, two Ms, two SSs,
and so on). Second, this t statistic is always used to answer questions about a
mean difference: On the average, is one group different (better, faster, smarter)
than the other group? If you examine the data and identify the type of question
that a researcher is asking, you should be able to decide whether an independent-
measures t is appropriate.

2. When computing an independent-measures t statistic from sample data, we sug-
gest that you routinely divide the formula into separate stages rather than trying
to do all of the calculations at once. First, find the pooled variance. Second, com-
pute the standard error. Third, compute the t statistic.

3. One of the most common errors for students involves confusing the formulas
for pooled variance and standard error. When computing pooled variance, you
are “pooling” the two samples together into a single variance. This variance is
computed as a single fraction, with two SS values in the numerator and two df
values in the denominator. When computing the standard error, you are adding
the error from the first sample and the error from the second sample. These
two separate errors are added as two separate fractions under the square root
symbol.

DEMONSTRATION 10.1

THE INDEPENDENT-MEASURES t TEST

In a study of jury behavior, two samples of participants were provided details about a trial
in which the defendant was obviously guilty. Although group 2 received the same details
as group 1, the second group was also told that some evidence had been withheld from the
jury by the judge. Later the participants were asked to recommend a jail sentence. The
length of term suggested by each participant is presented here. Is there a significant differ-
ence between the two groups in their responses?

344 CHAPTER 10 THE t TEST FOR TWO INDEPENDENT SAMPLES

Group 1 Group 2

4 3
4 7
3 8
2 5
5 4
1 7
1 6
4 8

for Group 1: M � 3 and SS � 16

for Group 2: M � 6 and SS � 24
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There are two separate samples in this study. Therefore, the analysis uses the independent-
measures t test.

State the hypothesis, and select an alpha level.

H0: �1 � �2 � 0 (For the population, knowing that evidence has been 
withheld has no effect on the suggested sentence.)

H1: �1 � �2 ≠ 0 (For the population, knowing that evidence has been withheld
has an effect on the jury’s response.)

We set the level of significance to � � .05, two tails.

Identify the critical region. For the independent-measures t statistic, degrees of free-
dom are determined by

df � n1 + n2 � 2

� 8 + 8 � 2

� 14

The t distribution table is consulted, for a two-tailed test with � � .05 and df � 14.
The critical t values are �2.145 and �2.145.

Compute the test statistic. As usual, we recommend that the calculation of the t statis-
tic be separated into three stages.

Pooled variance: For these data, the pooled variance equals

Estimated standard error: Now we can calculate the estimated standard error for mean
differences.

The t statistic: Finally, the t statistic can be computed.

Make a decision about H0, and state a conclusion. The obtained t value of �3.53 falls
in the critical region of the left tail (critical t � ±2.145). Therefore, the null hypothesis is
rejected. The participants who were informed about the withheld evidence gave signifi-
cantly longer sentences, t(14)� �3.53, p � .05, two tails.

S T E P  4

t
M M

s
M M

�
� � � ��

�

1 2 1 2

1 2

( ) ( )
( )

�
� �3 6 0

0 85

( )
.

�
�3

0 85.
��3 53.

s
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n

s
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p p

1 2
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� �0 358 0 358. . � 0 716. �0 85.
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SS SS

df dfp
2 1 2

1 2

16 24

7 7
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S T E P  3

S T E P  2

S T E P  1
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DEMONSTRATION 10.2

EFFECT SIZE FOR THE INDEPENDENT-MEASURES t

We estimate Cohen’s d and compute r2 for the jury decision data in Demonstration 10.1.
For these data, the two sample means are M1 � 3 and M2 � 6, and the pooled variance is
2.86. Therefore, our estimate of Cohen’s d is 

estimated d � �
M1

�
�

s2
p	
M2� � �

�

3 �

2.8

6

6	
� � �

1.
3
69
� � 1.78

With a t value of t � 3.53 and df � 14, the percentage of variance accounted for is

r
t

t df
2

2

2

2

2

3 53

3 53 14

12 46

26 46
0 4�

�
�

�
� �

.

.

.

.
.

( )
( )

77 47or %( )
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1. Describe the basic characteristics of an independent-
measures, or a between-subjects, research study.

2. Describe what is measured by the estimated standard
error in the bottom of the independent-measures 
t statistic.

3. If other factors are held constant, explain how 
each of the following influences the value of the
independent-measures t statistic and the likelihood
of rejecting the null hypothesis:
a. Increasing the number of scores in each sample.
b. Increasing the variance for each sample.

4. Describe the homogeneity of variance assumption 
and explain why it is important for the independent-
measures t test.

5. One sample has SS � 48 and a second sample has 
SS � 32.
a. If n � 5 for both samples, find each of the sample

variances and compute the pooled variance.
Because the samples are the same size, you should
find that the pooled variance is exactly halfway
between the two sample variances.

b. Now assume that n � 5 for the first sample and 
n � 9 for the second. Again, calculate the two sample
variances and the pooled variance. You should find
that the pooled variance is closer to the variance for
the larger sample.

6. One sample has SS � 70 and a second sample has 
SS � 42.
a. If n � 8 for both samples, find each of the sample

variances, and calculate the pooled variance.
Because the samples are the same size, you should

find that the pooled variance is exactly halfway
between the two sample variances.

b. Now assume that n � 8 for the first sample and n � 4
for the second. Again, calculate the two sample
variances and the pooled variance. You should find
that the pooled variance is closer to the variance for
the larger sample.

7. As noted on page 320, when the two population means
are equal, the estimated standard error for the
independent-measures t test provides a measure of
how much difference to expect between two sample
means. For each of the following situations, assume
that �1 � �2 and calculate how much difference
should be expected between the two sample means.
a. One sample has n � 8 scores with SS � 45 and the

second sample has n � 4 scores with SS � 15.
b. One sample has n � 8 scores with SS � 150 and

the second sample has n � 4 scores with SS � 90.
c. In part b, the samples have larger variability (bigger

SS values) than in part a, but the sample sizes are
unchanged. How does larger variability affect the size
of the standard error for the sample mean difference?

8. Two separate samples, each with n � 12 individuals,
receive two different treatments. After treatment, the first
sample has SS � 1740 and the second has SS � 1560.
a. Find the pooled variance for the two samples.
b. Compute the estimated standard error for the

sample mean difference.
c. If the sample mean difference is 8 points, is this

enough to reject the null hypothesis and conclude
that there is a significant difference for a two-tailed
test at the .05 level?

PROBLEMS
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d. If the sample mean difference is 12 points, is this
enough to indicate a significant difference for a
two-tailed test at the .05 level?

e. Calculate the percentage of variance accounted for
(r2) to measure the effect size for an 8-point mean
difference and for a 12-point mean difference.

9. Two separate samples receive two different treatments.
The first sample has n � 9 with SS � 710, and the
second has n � 6 with SS � 460.
a. Compute the pooled variance for the two samples.
b. Calculate the estimated standard error for the

sample mean difference.
c. If the sample mean difference is 10 points, is this

enough to reject the null hypothesis using a two-
tailed test with � � .05?

d. If the sample mean difference is 13 points, is this
enough to reject the null hypothesis using a two
tailed test with � � .05?

10. For each of the following, assume that the two
samples are selected from populations with equal
means and calculate how much difference should be
expected, on average, between the two sample means.
a. Each sample has n � 5 scores with s2 � 38 for the

first sample and s2 � 42 for the second. (Note:
Because the two samples are the same size, the
pooled variance is equal to the average of the 
two sample variances.)

b. Each sample has n � 20 scores with s2 � 38 for the
first sample and s2 � 42 for the second.

c. In part b, the two samples are bigger than in part a,
but the variances are unchanged. How does sample
size affect the size of the standard error for the
sample mean difference?

11. For each of the following, calculate the pooled
variance and the estimated standard error for the
sample mean difference
a. The first sample has n � 4 scores and a variance of

s2 � 55, and the second sample has n � 6 scores
and a variance of s2 � 63.

b. Now the sample variances are increased so that 
the first sample has n � 4 scores and a variance of
s2 � 220, and the second sample has n � 6 scores
and a variance of s2 � 252.

c. Comparing your answers for parts a and b, how
does increased variance influence the size of the
estimated standard error?

12. A researcher conducts an independent-measures study
comparing two treatments and reports the t statistic as
t(30) � 2.085.
a. How many individuals participated in the entire study?
b. Using a two-tailed test with � � .05, is there a

significant difference between the two treatments? 
c. Compute r2 to measure the percentage of variance

accounted for by the treatment effect.

13. Hallam, Price, and Katsarou (2002) investigated the
influence of background noise on classroom
performance for children aged 10 to 12. In one part of
the study, calming music led to better performance on
an arithmetic task compared to a no-music condition.
Suppose that a researcher selects one class of n � 18
students who listen to calming music each day while
working on arithmetic problems. A second class 
of n � 18 serves as a control group with no music.
Accuracy scores are measured for each child and 
the average for students in the music condition is 
M � 86.4 with SS � 1550 compared to an average of
M � 78.8 with SS � 1204 for students in the no-
music condition.
a. Is there a significant difference between the two

music conditions? Use a two-tailed test with � � .05. 
b. Compute the 90% confidence interval for the

population mean difference.
c. Write a sentence demonstrating how the results

from the hypothesis test and the confidence interval
would appear in a research report.

14. Do you view a chocolate bar as delicious or as
fattening? Your attitude may depend on your gender.
In a study of American college students, Rozin, Bauer,
and Catanese (2003) examined the importance of food
as a source of pleasure versus concerns about food
associated with weight gain and health. The following
results are similar to those obtained in the study. The
scores are a measure of concern about the negative
aspects of eating.

Males Females

n � 9 n � 15
M � 33 M � 42
SS � 740 SS � 1240

a. Based on these results, is there a significant
difference between the attitudes for males and for
females? Use a two-tailed test with � � .05.

b. Compute r2, the percentage of variance accounted
for by the gender difference, to measure effect size
for this study.

c. Write a sentence demonstrating how the result of
the hypothesis test and the measure of effect size
would appear in a research report.

15. In a study examining overweight and obese college
football players, Mathews and Wagner (2008) found
that on average both offensive and defensive linemen
exceeded the at-risk criterion for body mass index
(BMI). BMI is a ratio of body weight to height
squared and is commonly used to classify people as
overweight or obese. Any value greater than 30 kg/m2

is considered to be at risk. In the study, a sample of 
n � 17 offensive linemen averaged M � 34.4 with a
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standard deviation of s � 4.0. A sample of n � 19
defensive linemen averaged M � 31.9 with s � 3.5.
a. Use a single-sample t test to determine whether 

the offensive linemen are significantly above the
at-risk criterion for BMI. Use a one-tailed test 
with � � .01.

b. Use a single-sample t test to determine whether the
defensive linemen are significantly above the at-risk
criterion for BMI. Use a one-tailed test with � � .01.

c. Use an independent-measures t test to determine
whether there is a significant difference between
the offensive linemen and the defensive linemen.
Use a two-tailed test with � � .01.

16. Functional foods are those containing nutritional
supplements in addition to natural nutrients. Examples
include orange juice with calcium and eggs with
omega-3. Kolodinsky, et al. (2008) examined attitudes
toward functional foods for college students. For
American students, the results indicated that females
had a more positive attitude toward functional foods
and were more likely to purchase them compared to
males. In a similar study, a researcher asked students
to rate their general attitude toward functional foods
on a 7-point scale (higher score is more positive). The
results are as follows:

Females Male

n � 8                 n � 12
M � 4.69 M � 4.43
SS � 1.60 SS � 2.72

a. Do the data indicate a significant difference in
attitude for males and females? Use a two-tailed
test with � � .05. 

b. Compute r2, the amount of variance accounted for
by the gender difference, to measure effect size.

c. Write a sentence demonstrating how the results of
the hypothesis test and the measure of effect size
would appear in a research report.

17. In 1974, Loftus and Palmer conducted a classic study
demonstrating how the language used to ask a question
can influence eyewitness memory. In the study,
college students watched a film of an automobile
accident and then were asked questions about what
they saw. One group was asked, “About how fast were
the cars going when they smashed into each other?”
Another group was asked the same question except the
verb was changed to “hit” instead of “smashed into.”
The “smashed into” group reported significantly
higher estimates of speed than the “hit” group.
Suppose a researcher repeats this study with a sample
of today’s college students and obtains the following
results.

Estimated Speed

Smashed into Hit

n � 15 n � 15
M � 40.8 M � 34.0

SS � 510 SS � 414

a. Do the results indicate a significantly higher
estimated speed for the “smashed into” group? Use
a one-tailed test with � � .01.

b. Compute the estimated value for Cohen’s d to
measure the size of the effect.

c. Write a sentence demonstrating how the results of
the hypothesis test and the measure of effect size
would appear in a research report.

18. Numerous studies have found that males report higher
self-esteem than females, especially for adolescents
(Kling, Hyde, Showers, & Buswell, 1999). Typical
results show a mean self-esteem score of M � 39.0 with
SS � 60.2 for a sample of n � 10 male adolescents and
a mean of M � 35.4 with SS � 69.4 for a sample of 
n � 10 female adolescents.
a. Do the results indicate that self-esteem is

significantly higher for males? Use a one-tailed 
test with � � .01.  

b. Use the data to make a 95% confidence interval
estimate of the mean difference in self-esteem
between male and female adolescents.

c. Write a sentence demonstrating how the results
from the hypothesis test and the confidence interval
would appear in a research report. 

19. A researcher is comparing the effectiveness of two sets
of instructions for assembling a child’s bike. A sample
of eight fathers is obtained. Half of the fathers are
given one set of instructions and the other half
receives the second set. The researcher measures how
much time is needed for each father to assemble the
bike. The scores are the number of minutes needed by
each participant.

Instruction Set I Instruction Set II

8 14
4 10
8 6
4 10

a. Is there a significant difference in time for the 
two sets of instructions? Use a two-tailed test 
at the .05 level of significance.

b. Calculate the estimated Cohen’s d and r2 to
measure effect size for this study.
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20. When people learn a new task, their performance
usually improves when they are tested the next day,
but only if they get at least 6 hours of sleep (Stickgold,
Whidbee, Schirmer, Patel, & Hobson, 2000). The
following data demonstrate this phenomenon. The
participants learned a visual discrimination task on one
day, and then were tested on the task the following
day. Half of the participants were allowed to have at
least 6 hours of sleep and the other half were kept
awake all night. Is there a significant difference
between the two conditions? Use a two-tailed test 
with � � .05.

Performance Scores

6 Hours of Sleep No Sleep

n � 14 n � 14
M � 72 M � 65
SS � 932 SS � 706

21. Steven Schmidt (1994) conducted a series of
experiments examining the effects of humor on
memory. In one study, participants were given a mix
of humorous and nonhumorous sentences and
significantly more humorous sentences were recalled.
However, Schmidt argued that the humorous sentences
were not necessarily easier to remember, they were
simply preferred when participants had a choice
between the two types of sentence. To test this
argument, he switched to an independent-measures
design in which one group got a set of exclusively
humorous sentences and another group got a set of
exclusively nonhumorous sentences. The following
data are similar to the results from the independent-
measures study.

Humorous Nonhumorous
Sentences Sentences

4 5 2 4 6 3 5 3
6 7 6 6 3 4 2 6
2 5 4 3 4 3 4 4
3 3 5 3 5 2 6 4

Do the results indicate a significant difference in the
recall of humorous versus nonhumorous sentences?
Use a two-tailed test with � � .05.

22. Downs and Abwender (2002) evaluated soccer players
and swimmers to determine whether the routine blows
to the head experienced by soccer players produced
long-term neurological deficits. In the study,
neurological tests were administered to mature soccer
players and swimmers and the results indicated

significant differences. In a similar study, a researcher
obtained the following data.

Swimmers Soccer players

10 7
8 4
7 9
9 3

13 7
7
6

12

a. Are the neurological test scores significantly lower
for the soccer players than for the swimmers in the
control group? Use a one-tailed test with � � .05.

b. Compute the value of r2 (percentage of variance
accounted for) for these data.

23. Research has shown that people are more likely 
to show dishonest and self-interested behaviors 
in darkness than in a well-lit environment 
(Zhong, Bohns, & Gino, 2010). In one experiment,
participants were given a set of 20 puzzles and 
were paid $0.50 for each one solved in a 5-minute
period. However, the participants reported their 
own performance and there was no obvious method
for checking their honesty. Thus, the task provided 
a clear opportunity to cheat and receive undeserved
money. One group of participants was tested in 
a room with dimmed lighting and a second group 
was tested in a well-lit room. The reported number 
of solved puzzles was recorded for each individual.
The following data represent results similar to 
those obtained in the study.

Well-Lit Room Dimly Lit Room

7 9
8 11

10 13
6 10
8 11
5 9
7 15

12 14
5 10

a. Is there a significant difference in reported
performance between the two conditions? Use a 
two-tailed test with � � .01.

b. Compute Cohen’s d to estimate the size of the
treatment effect.
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C H A P T E R

11
The t Test for
Two Related
Samples

Preview

11.1 Introduction to Repeated-Measures
Designs

11.2 The t Statistic for a Repeated-
Measures Research Design

11.3 Hypothesis Tests and Effect Size
for the Repeated-Measures
Design

11.4 Uses and Assumptions for
Repeated-Measures t Tests

Summary

Focus on Problem Solving

Demonstrations 11.1 and 11.2

Problems

Tools You Will Need
The following items are considered essential
background material for this chapter. If you
doubt your knowledge of any of these items,
you should review the appropriate chapter or
section before proceeding.

• Introduction to the t statistic (Chapter 9)
• Estimated standard error
• Degrees of freedom
• t Distribution
• Hypothesis tests with the t statistic

• Independent-measures design (Chapter 10)
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11.1 INTRODUCTION TO REPEATED-MEASURES DESIGNS

In the previous chapter, we introduced the independent-measures research design 
as one strategy for comparing two treatment conditions or two populations. The 
independent-measures design is characterized by the fact that two separate samples
are used to obtain the two sets of scores that are to be compared. In this chapter, we 
examine an alternative strategy known as a repeated-measures design, or a within-
subjects design. With a repeated-measures design, two separate scores are obtained
for each individual in the sample. For example, a group of patients could be mea-
sured before therapy and then measured again after therapy. Or, response time could
be measured in a driving simulation task for a group of individuals who are first
tested when they are sober and then tested again after two alcoholic drinks. In each
case, the same variable is being measured twice for the same set of individuals; that
is, we are literally repeating measurements on the same sample.

A repeated-measures design, or a within-subject design, is one in which the
dependent variable is measured two or more times for each individual in a single
sample. The same group of subjects is used in all of the treatment conditions.

D E F I N I T I O N

Preview
Swearing is a common, almost reflexive, response to pain.
Whether you knock your shin into the edge of a coffee
table or smash your thumb with a hammer, most of us
respond with a streak of obscenities. One question, how-
ever, is whether swearing focuses attention on the pain
and, thereby, increases its intensity, or serves as a distrac-
tion that reduces pain. To address this issue, Stephens,
Atkins, and Kingston (2009) conducted an experiment
comparing swearing with other responses to pain. In the
study, participants were asked to place one hand in icy
cold water for as long as they could bear the pain. Half 
of the participants were told to repeat their favorite swear
word over and over for as long as their hands were in the
water. The other half repeated a neutral word. The
researchers recorded how long each participant was able 
to tolerate the ice water. After a brief rest, the two groups
switched words and repeated the ice water plunge. Thus,
all the participants experienced both conditions (swearing
and neutral) with half swearing on their first plunge and
half on their second. The results clearly showed that swear-
ing significantly increased the average amount of time that
participants could tolerate the pain.

The Problem: In the previous chapter, we introduced
a statistical procedure for evaluating the mean difference
between two sets of data (the independent-measures 
t statistic). However, the independent-measures t statistic

is intended for research situations involving two separate
and independent samples. You should realize that 
the two sets of scores in the swearing study are not
independent samples. In fact, the same group individuals
participated in both of the treatment conditions. What 
is needed is a new statistical analysis for comparing 
two means that are both obtained from the same group
of participants.

The Solution: In this chapter, we introduce the repeated-
measures t statistic, which is used for hypothesis tests
evaluating the mean difference between two sets of scores
obtained from the same group of individuals. As you will
see, however, this new t statistic is very similar to the
original t statistic that was introduced in Chapter 9.

Finally, we should note that researchers often
have a choice when they are planning a research study
that compares two different treatment conditions.
Specifically, a researcher may choose to use two
separate groups of participants, one for each of the
treatments, or a researcher may choose to use one
group and measure each individual in both of the
treatment conditions. Later in this chapter, we take 
a closer look at the differences between these two
research designs and discuss the advantages and
disadvantages of each.

352
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The main advantage of a repeated-measures study is that it uses exactly the same
individuals in all treatment conditions. Thus, there is no risk that the participants in 
one treatment are substantially different from the participants in another. With an 
independent-measures design, on the other hand, there is always a risk that the results
are biased because the individuals in one sample are systematically different (smarter,
faster, more extroverted, and so on) than the individuals in the other sample. At the end
of this chapter, we present a more detailed comparison of repeated-measures studies
and independent-measures studies, considering the advantages and disadvantages of
both types of research.

Occasionally, researchers try to approximate the advantages of a repeated-measures 
design by using a technique known as matched subjects. A matched-subjects design 
involves two separate samples, but each individual in one sample is matched one-to-one
with an individual in the other sample. Typically, the individuals are matched on one
or more variables that are considered to be especially important for the study. For 
example, a researcher studying verbal learning might want to be certain that the 
two samples are matched in terms of IQ and gender. In this case, a male participant with
an IQ of 120 in one sample would be matched with another male with an IQ of 120 in
the other sample. Although the participants in one sample are not identical to the 
participants in the other sample, the matched-subjects design at least ensures that the
two samples are equivalent (or matched) with respect to some specific variables.

In a matched-subjects design, each individual in one sample is matched with
an individual in the other sample. The matching is done so that the two individ-
uals are equivalent (or nearly equivalent) with respect to a specific variable that
the researcher would like to control.

Of course, it is possible to match participants on more than one variable. For 
example, a researcher could match pairs of subjects on age, gender, race, and IQ. In this
case, for example, a 22-year-old white female with an IQ of 115 who was in one 
sample would be matched with another 22-year-old white female with an IQ of 115 in
the second sample. The more variables that are used, however, the more difficult it 
is to find matching pairs. The goal of the matching process is to simulate a repeated-
measures design as closely as possible. In a repeated-measures design, the matching is
perfect because the same individual is used in both conditions. In a matched-subjects
design, however, the best you can get is a degree of match that is limited to the 
variable(s) that are used for the matching process.

In a repeated-measures design or a matched-subjects design comparing two treat-
ment conditions, the data consist of two sets of scores, which are grouped into sets of
two, corresponding to the two scores obtained for each individual or each matched pair
of subjects (Table 11.1). Because the scores in one set are directly related, one-to-one,
with the scores in the second set, the two research designs are statistically equivalent
and share the common name related-samples designs (or correlated-samples designs).
In this chapter, we focus our discussion on repeated-measures designs because they are
overwhelmingly the more common example of related-samples designs. However, you
should realize that the statistical techniques used for repeated-measures studies also can
be applied directly to data from matched-subjects studies. We should also note that a
matched-subjects study occasionally is called a matched samples design, but the 
subjects in the samples must be matched one-to-one before you can use the statistical
techniques in this chapter.

D E F I N I T I O N

THE MATCHED-SUBJECTS
DESIGN

SECTION 11.1 / INTRODUCTION TO REPEATED-MEASURES DESIGNS 353
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354 CHAPTER 11 THE t TEST FOR TWO RELATED SAMPLES

Now we examine the statistical techniques that allow a researcher to use the
sample data from a repeated-measures study to draw inferences about the general
population.

11.2 THE t STATISTIC FOR A REPEATED-MEASURES
RESEARCH DESIGN

The t statistic for a repeated-measures design is structurally similar to the other t statistics
we have examined. As we shall see, it is essentially the same as the single-sample t statis-
tic covered in Chapter 9. The major distinction of the related-samples t is that it is 
based on difference scores rather than raw scores (X values). In this section, we examine
difference scores and develop the t statistic for related samples.

Many over-the-counter cold medications include the warning “may cause drowsiness.”
Table 11.2 shows an example of data from a study that examines this phenomenon.
Note that there is one sample of n � 4 participants, and that each individual is mea-
sured twice. The first score for each person (X1) is a measurement of reaction time 
before the medication was administered. The second score (X2) measures reaction time
1 hour after taking the medication. Because we are interested in how the medication 
affects reaction time, we have computed the difference between the first score and the
second score for each individual. The difference scores, or D values, are shown in the
last column of the table. Notice that the difference scores measure the amount of change

DIFFERENCE SCORES: 
THE DATA FOR A 

REPEATED-MEASURES 
STUDY

TABLE 11.1

An example of the data from 
a repeated-measures or a
matched-subjects study using 
n � 5 participants (or 
matched pairs).

Participant or First Second
Matched Pair Score Score

#1 12 15
#2 10 14
#3 15 17
#4 17 17
#5 12 18

TABLE 11.2

Reaction-time measurements
taken before and after taking 
an over-the-counter cold 
medication.

Before After
Medication Medication Difference

Person (X1) (X2) D

A 215 210 �5
B 221 242 21
C 196 219 23
D 203 228 25

�D � 64

MD � �
�

n
D
� � �

6
4
4
� � 16

Note that MD is the mean for the
sample of D scores.

←The 2 scores for
one participant or
one matched pair
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in reaction time for each person. Typically, the difference scores are obtained by 
subtracting the first score (before treatment) from the second score (after treatment) for
each person:

difference score � D � X2 � X1 (11.1)

Note that the sign of each D score tells you the direction of the change. Person A, for
example, shows a decrease in reaction time after taking the medication (a negative
change), but person B shows an increase (a positive change).

The sample of difference scores (D values) serves as the sample data for the 
hypothesis test and all calculations are done using the D scores. To compute the t statistic,
for example, we use the number of D scores (n) as well as the sample mean (MD) and the
value of SS for the sample of D scores.

The researcher’s goal is to use the sample of difference scores to answer questions
about the general population. In particular, the researcher would like to know whether
there is any difference between the two treatment conditions for the general population.
Note that we are interested in a population of difference scores. That is, we would like
to know what would happen if every individual in the population were measured in two
treatment conditions (X1 and X2) and a difference score (D) were computed for every-
one. Specifically, we are interested in the mean for the population of difference scores.
We identify this population mean difference with the symbol μD (using the subscript
letter D to indicate that we are dealing with D values rather than X scores).

As always, the null hypothesis states that, for the general population, there is no 
effect, no change, or no difference. For a repeated-measures study, the null hypothesis
states that the mean difference for the general population is zero. In symbols,

H0: μD � 0

Again, this hypothesis refers to the mean for the entire population of difference
scores. Figure 11.1(a) shows an example of a population of difference scores with a

THE HYPOTHESES 
FOR A RELATED-SAMPLES

STUDY

SECTION 11.2 / THE t STATISTIC FOR A REPEATED-MEASURES RESEARCH DESIGN 355

0

μD = 0

0

μD > 0

(a) (b)

FIGURE 11.1

(a) A population of difference scores for which the mean is �D � 0. Note that the typical 
difference score (D value) is not equal to zero. (b) A population of difference scores for which
the mean is greater than zero. Note that most of the difference scores are also greater than zero.
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mean of μD � 0. Although the population mean is zero, the individual scores in the pop-
ulation are not all equal to zero. Thus, even when the null hypothesis is true, we still
expect some individuals to have positive difference scores and some to have negative
difference scores. However, the positives and negatives are unsystematic and in the
long run balance out to μD � 0. Also note that a sample selected from this population
probably will not have a mean exactly equal to zero. As always, there will be some error
between a sample mean and the population mean, so even if μD � 0 (H0 is true), we do
not expect MD to be exactly equal to zero.

The alternative hypothesis states that there is a treatment effect that causes the
scores in one treatment condition to be systematically higher (or lower) than the scores
in the other condition. In symbols,

H1: μD � 0

According to H1, the difference scores for the individuals in the population tend to
be systematically positive (or negative), indicating a consistent, predictable difference
between the two treatments.

Figure 11.1(b) shows an example of a population of difference scores with a posi-
tive mean difference, μD > 0. This time, most of the individuals in the population have
difference scores that are greater than zero. A sample selected from this population will
contain primarily positive difference scores and will probably have a mean difference
that is greater than zero, MD > 0. See Box 11.1 for further discussion of H0 and H1.

Figure 11.2 shows the general situation that exists for a repeated-measures hypothesis test.
You may recognize that we are facing essentially the same situation that we encountered
in Chapter 9. In particular, we have a population for which the mean and the standard 
deviation are unknown, and we have a sample that will be used to test a hypothesis about
the unknown population. In Chapter 9, we introduced the single-sample t statistic, which
allowed us to use a sample mean as a basis for testing hypotheses about an unknown 

THE t STATISTIC FOR
RELATED SAMPLES

B O X
11.1 ANALOGIES FOR H0 AND H1 IN THE REPEATED-MEASURES TEST

An Analogy for H1: On the other hand, suppose that
we evaluate your performance on a new video game by
measuring your score every day for a week. Again, we
probably will find small differences in your scores from
one day to the next, just as we did with the IQ scores.
However, the day-to-day changes in your game score
will not be random. Instead, there should be a general
trend toward higher scores as you gain more experience
with the new game. Thus, most of the day-to-day
changes should show an increase. This is the situation
that is predicted by the alternative hypothesis for the
repeated-measures test. According to H1, the changes
that occur are systematic and predictable and will not
average out to zero.

An Analogy for H0: Intelligence is a fairly stable character-
istic; that is, you do not get noticeably smarter or dumber
from one day to the next. However, if we gave you an IQ
test every day for a week, we probably would get seven
different numbers. The day-to-day changes in your IQ
score are caused by random factors such as your health,
your mood, and your luck at guessing answers you do not
know. Some days your IQ score is slightly higher, and
some days it is slightly lower. On average, the day-to-day
changes in IQ should balance out to zero. This is the situa-
tion that is predicted by the null hypothesis for a repeated-
measures test. According to H0, any changes that occur
either for an individual or for a sample are just due to
chance, and in the long run, they will average out to zero.
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population mean. This t-statistic formula is used again here to develop the repeated-
measures t test. To refresh your memory, the single-sample t statistic (Chapter 9) is defined
by the formula

In this formula, the sample mean, M, is calculated from the data, and the value for
the population mean, μ, is obtained from the null hypothesis. The estimated standard
error, sM, is also calculated from the data and provides a measure of how much differ-
ence it is reasonable to expect between a sample mean and the population mean.

For the repeated-measures design, the sample data are difference scores and are
identified by the letter D, rather than X. Therefore, we use Ds in the formula to 
emphasize that we are dealing with difference scores instead of X values. Also, the pop-
ulation mean that is of interest to us is the population mean difference (the mean
amount of change for the entire population), and we identify this parameter with the
symbol μD. With these simple changes, the t formula for the repeated-measures design
becomes

(11.2)

In this formula, the estimated standard error for MD, sMD
, is computed in exactly

the same way as it is computed for the single-sample t statistic. To calculate the esti-
mated standard error, the first step is to compute the variance (or the standard devia-
tion) for the sample of D scores.

t
M

s
D D

MD

�
− μ

t
M

s
M

�
− μ
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μD

Population of
difference scores

= ?

Sample of
difference scores

Subject

A
B
C
D

I II

10
15
12
11

14
13
15
12

D

4
−2  
3
1

FIGURE 11.2

A sample of n � 4 people is
selected from the population.
Each individual is measured
twice, once in treatment I and
once in treatment II, and a
difference score, D, is 
computed for each individual.
This sample of difference
scores is intended to represent
the population. Note that we
are using a sample of 
difference scores to represent
a population of difference
scores. Note that the mean for
the population of difference
scores is unknown. The null
hypothesis states that for the
general population there is no
consistent or systematic 
difference between the two
treatments, so the population
mean difference is �D � 0.

As noted earlier, the repeated-
measures t formula is also used
for matched-subjects designs.
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358 CHAPTER 11 THE t TEST FOR TWO RELATED SAMPLES

The estimated standard error is then computed using the sample variance (or sample
standard deviation) and the sample size, n.

(11.3)

Notice that all of the calculations are done using the difference scores (the D scores)
and that there is only one D score for each subject. With a sample of n subjects, there 
are exactly n D scores, and the t statistic has df � n – 1. Remember that n refers to the
number of D scores, not the number of X scores in the original data.

You should also note that the repeated-measures t statistic is conceptually similar
to the t statistics that we have previously examined:

t �

In this case, the sample data are represented by the sample mean of the difference
scores (MD), the population parameter is the value predicted by H0 (μD � 0), and the
estimated standard error is computed from the sample data using Equation 11.3.

sample statistic � population parameter
�����

estimated standard error

s
s

n
s

s

n
M MD D

� �
2

or

s
SS

n

SS

df
s

SS

df
2

1
� � �

−
or

11.3 HYPOTHESIS TESTS AND EFFECT SIZE 
FOR THE REPEATED-MEASURES DESIGN

In a repeated-measures study, each individual is measured in two different treatment
conditions and we are interested in whether there is a systematic difference between 
the scores in the first treatment condition and the scores in the second treatment condi-
tion. A difference score (D value) is computed for each person and the hypothesis 
test uses the difference scores from the sample to evaluate the overall mean difference,
μD, for the entire population. The hypothesis test with the repeated-measures t statistic

L E A R N I N G  C H E C K 1. For a research study comparing two treatment conditions, what characteristic 
differentiates a repeated-measures design from an independent-measures design?

2. Describe the data used to compute the sample mean and the sample variance for
the repeated-measures t statistic.

3. In words and in symbols, what is the null hypothesis for a repeated-measures t test?

1. For a repeated-measures design, the same group of individuals is tested in both of the treat-
ments. An independent-measures design uses a separate group for each treatment.

2. The two scores obtained for each individual are used to compute a difference score. The
sample of difference scores is used to compute the mean and variance.

3. The null hypothesis states that, for the general population, the average difference between
the two conditions is zero. In symbols, μD � 0.

ANSWERS
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follows the same four-step process that we have used for other tests. The complete 
hypothesis-testing procedure is demonstrated in Example 11.1.

Research indicates that the color red increases men’s attraction to women (Elliot 
& Niesta, 2008). In the original study, men were shown women’s photographs
presented on either a white or a red background. Photographs presented on red were
rated significantly more attractive than the same photographs mounted on white. In 
a similar study, a researcher prepares a set of 30 women’s photographs, with 
15 mounted on a white background and 15 mounted on red. One picture is identified 
as the test photograph, and appears twice in the set, once on white and once on red.
Each male participant looks through the entire set of photographs and rates the
attractiveness of each woman on a 12-point scale. Table 11.3 summarizes the ratings
of the test photograph for a sample of n � 9 men. Are the ratings for the test photograph
significantly different when it is presented on a red background compared to a white
background?

State the hypotheses, and select the alpha level.

H0: μD � 0 (There is no difference between the two colors.)

H1: μD � 0 (There is a change.)

For this test, we use � � .01.

Locate the critical region. For this example, n � 9, so the t statistic has df � n – 1 � 8.
For � � .01, the critical value listed in the t distribution table is ± 3.355. The critical
region is shown in Figure 11.3.

S T E P  2

S T E P  1

E X A M P L E  1 1 . 1
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TABLE 11.3

Attractiveness ratings for a
woman shown in a photograph
presented on a red and a white
background.

White Red
Participant Background Background D D2

A 6 9 �3 9
B 8 9 �1 1
C 7 10 �3 9
D 7 11 �4 16
E 8 11 �3 9
F 6 9 �3 9
G 5 11 �6 36
H 10 11 �1 1
I 8 11 �3 9

�D � 27 �D2 � 99

MD � �
27
9
� � 3.00

SS � �D2 � �
(�

n
D)2

� � 99 � �
(27

9
)2

� � 99 � 81 � 18
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Calculate the t statistic. Table 11.3 shows the sample data and the calculations of 
MD � 3.00 and SS � 18. Note that all calculations are done with the difference
scores. As we have done with the other t statistics, we present the calculation of the 
t statistic as a three-step process.

First, compute the sample variance.

Next, use the sample variance to compute the estimated standard error.

Finally, use the sample mean (MD) and the hypothesized population mean 
(μD) along with the estimated standard error to compute the value for the t statistic.

Make a decision. The t value we obtained falls in the critical region (see Figure 11.3).
The researcher rejects the null hypothesis and concludes that the background color has
a significant effect on the judged attractiveness of the woman in the test photograph.

As we noted with other hypothesis tests, whenever a treatment effect is found to be sta-
tistically significant, it is recommended that you also report a measure of the absolute
magnitude of the effect. The most commonly used measures of effect size are Cohen’s
d and r2, the percentage of variance accounted for. The size of the treatment effect also
can be described with a confidence interval estimating the population mean difference,
�D. Using the data from Example 11.1, we demonstrate how these values are calculated
to measure and describe effect size.

MEASURING EFFECT SIZE FOR
THE REPEATED-MEASURES t
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FIGURE 11.3

The critical region for the 
t distribution with df � 8 
and � � .01.
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Cohen’s d In Chapters 8 and 9, we introduced Cohen’s d as a standardized measure
of the mean difference between treatments. The standardization simply divides the pop-
ulation mean difference by the standard deviation. For a repeated-measures study,
Cohen’s d is defined as

Because the population mean and standard deviation are unknown, we use the sam-
ple values instead. The sample mean, MD, is the best estimate of the actual mean 
difference, and the sample standard deviation (square root of sample variance) provides
the best estimate of the actual standard deviation. Thus, we are able to estimate the
value of d as follows:

(11.4)

For the repeated-measures study in Example 11.1, MD � 3 and the sample variance
is s2 � 2.25, so the data produce

estimated d � �
M
s
D� � � �

3.
1.5

00
� � 2.00

Any value greater than 0.80 is considered to be a large effect, and these data are
clearly in that category (see Table 8.2 on p. 264).

The percentage of variance accounted for, r2 Percentage of variance is computed
using the obtained t value and the df value from the hypothesis test, exactly as was done
for the single-sample t (see p. 299) and for the independent-measures t (see p. 329). For
the data in Example 11.1, we obtain

For these data, 81.8% of the variance in the scores is explained by the background
color for the photograph. More specifically, the color red caused the difference scores
to be consistently positive. Thus, the deviations from zero are largely explained by the
treatment.

Confidence intervals for estimating �D As noted in the previous two chapters, it is
possible to compute a confidence interval as an alternative method for measuring and
describing the size of the treatment effect. For the repeated-measures t, we use a sam-
ple mean difference, MD, to estimate the population mean difference, �D. In this case,
the confidence interval literally estimates the size of the treatment effect by estimating
the population mean difference between the two treatment conditions.

As with the other t statistics, the first step is to solve the t equation for the unknown
parameter. For the repeated-measures t statistic, we obtain

(11.5)μ
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Because we are measuring the
size of the effect and not the
direction, it is customary to
ignore the minus sign and report
Cohen’s d as a positive value.

estimated d � � �
M
s
D�

sample mean difference
���
sample standard deviation
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362 CHAPTER 11 THE t TEST FOR TWO RELATED SAMPLES

In the equation, the values for MD and for sMD
are obtained from the sample data.

Although the value for the t statistic is unknown, we can use the degrees of freedom for
the t statistic and the t distribution table to estimate the t value. Using the estimated 
t and the known values from the sample, we can then compute the value of �D. The 
following example demonstrates the process of constructing a confidence interval for a
population mean difference.

In Example 11.1 we presented a research study demonstrating how men’s attractiveness
ratings for women are influenced by the color red. In the study, a sample of n � 9 men
rated a woman shown in a photograph as significantly more attractive when the photo
was presented on a red background than when it was on a white background. The mean
difference between treatments was MD � 3 points and the estimated standard error for
the mean difference was sMD

� 0.50. Now, we construct a 95% confidence interval to
estimate the size of the population mean difference.

With a sample of n � 9 participants, the repeated-measures t statistic has df � 8.
To have 95% confidence, we simply estimate that the t statistic for the sample 
mean difference is located somewhere in the middle 95% of all the possible t values.
According to the t distribution table, with df � 8, 95% of the t values are located
between t � �2.306 and t � �2.306. Using these values in the estimation equation,
together with the values for the sample mean and the standard error, we obtain

� 3 	 2.306(0.50)

� 3 	 1.153

This produces an interval of values ranging from 3 – 1.153 � 1.847 to 3 � 1.153 �
4.153. Our conclusion is that for general population of men, changing the background
color from white to red increases the average attractiveness rating for the woman in the
photograph between 1.847 and 4.153 points. We are 95% confident that the true mean
difference is in this interval because the only value estimated during the calculations 
was the t statistic, and we are 95% confident that the t value is located in the middle 
95% of the distribution. Finally note that the confidence interval is constructed around
the sample mean difference. As a result, the sample mean difference, MD � 3 points, is
located exactly in the center of the interval.

As with the other confidence intervals presented in Chapters 9 and 10, the confi-
dence interval for a repeated-measures t is influenced by a variety of factors other than
the actual size of the treatment effect. In particular, the width of the interval depends on
the percentage of confidence used, so that a larger percentage produces a wider inter-
val. Also, the width of the interval depends on the sample size, so that a larger sample
produces a narrower interval. Because the interval width is related to sample size, the
confidence interval is not a pure measure of effect size like Cohen’s d or r2.

Finally, we should note that the 95% confidence interval computed in Example 11.2
does not include the value �D � 0. In other words, we are 95% confident that the popu-
lation mean difference is not �D � 0. This is equivalent to concluding that a null 
hypothesis specifying that �D � 0 would be rejected with a test using � � .05. 
If �D � 0 were included in the 95% confidence interval, it would indicate that a 
hypothesis test would fail to reject H0 with � � .05.

μ
D D M

M ts
D

� 	

E X A M P L E  1 1 . 2
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IN THE LITERATURE
REPORTING THE RESULTS OF A REPEATED-MEASURES t TEST

As we have seen in Chapters 9 and 10, the APA format for reporting the results of 
t tests consists of a concise statement that incorporates the t value, degrees of freedom,
and alpha level. One typically includes values for means and standard deviations,
either in a statement or a table (Chapter 4). For Example 11.1, we observed a mean
difference of MD � 3.00 with s � 1.50. Also, we obtained a t statistic of t � 6.00
with df � 8, and our decision was to reject the null hypothesis at the .01 level 
of significance. Finally, we measured effect size by computing the percentage of
variance explained and obtained r2 � 0.818. A published report of this study might
summarize the results as follows:

Changing the background color from white to red increased the attractiveness rating of
the woman in the photograph by an average of M � 3.00 points with SD � 1.50. The
treatment effect was statistically significant, t(8) � 6.00, p < .01, r2 � 0.818.

When the hypothesis test is conducted with a computer program, the printout
typically includes an exact probability for the level of significance. The p-value 
from the printout is then stated as the level of significance in the research report.
However, the data from Example 11.1 produced a significance level of p � .000 in
the computer printout. In this case, the probability was so small that the computer
rounded it off to 3 decimal points and obtained a value of zero. In this situation you
do not know the exact probability value and should report p < .001.

If the confidence interval from Example 11.2 is reported as a description of effect
size together with the results from the hypothesis test, it would appear as follows:

Changing the background color from white to red significantly increased the attrac-
tiveness rating, t(8) � 6.00, p < .001, 95% CI [1.817, 4.183].

Often, a close look at the sample data from a research study makes it easier to see the
size of the treatment effect and to understand the outcome of the hypothesis test. In
Example 11.1, we obtained a sample of n � 9 men who produce a mean difference of
MD � 3.00 with a standard deviation of s � 1.50 points. The sample mean and standard
deviation describe a set of scores centered at MD � 3.00 with most of the scores located
within 1.5 points of the mean. Figure 11.4 shows the actual set of difference scores that
were obtained in Example 11.1. In addition to showing the scores in the sample, we have
highlighted the position of μD � 0; that is, the value specified in the null hypothesis.
Notice that the scores in the sample are displaced away from zero. Specifically, the data
are not consistent with a population mean of μD � 0, which is why we rejected the null
hypothesis. In addition, note that the sample mean is located 2 standard deviations above
zero. This distance corresponds to the effect size measured by Cohen’s d � 2.00. For
these data, the picture of the sample distribution (see Figure 11.4) should help you to 
understand the measure of effect size and the outcome of the hypothesis test.

In a repeated-measures study, the variability of the difference scores becomes a rela-
tively concrete and easy-to-understand concept. In particular, the sample variability 
describes the consistency of the treatment effect. For example, if a treatment consis-
tently adds a few points to each individual’s score, then the set of difference scores 
are clustered together with relatively small variability. This is the situation that we 

VARIABILITY AS A MEASURE
OF CONSISTENCY FOR THE

TREATMENT EFFECT

DESCRIPTIVE STATISTICS 
AND THE HYPOTHESIS TEST
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364 CHAPTER 11 THE t TEST FOR TWO RELATED SAMPLES

observed in Example 11.1 (see Figure 11.4) in which all of the participants produced
higher attractiveness ratings for the photograph on a red background. In this situation,
with small variability, it is easy to see the treatment effect and it is likely to be significant.

Now consider what happens when the variability is large. Suppose that the
red/white study in Example 11.1 produced a sample of n � 9 difference scores con-
sisting of –4, –3, –2, �1, �1, �3, �8, �11, and �12. These difference scores also
have a mean of MD � 3.00, but now the variability is substantially increased so that 
SS � 288 and the standard deviation is s � 6.00. Figure 11.5 shows the new set of 
difference scores. Again, we have highlighted the position of μD � 0, which is the value
specified in the null hypothesis. Notice that the high variability means that there is no
consistent treatment effect. Some participants rate the photograph as more attractive
when it is on a red background (the positive differences) and some rate it higher on a
white background (the negative differences). In the hypothesis test, the high variability
increases the size of the estimated standard error and results in a hypothesis test that
produces t � 1.50, which is not in the critical region. With these data, we would fail to
reject the null hypothesis and conclude that the color has no effect on the perceived 
attractiveness of the woman in the photograph.

With small variability (see Figure 11.4), the 3-point treatment effect is easy to see
and is statistically significant. With large variability (see Figure 11.5), the 3-point 
effect is not easy to see and is not significant. As we have noted several times in the
past, large variability can obscure patterns in the data and reduces the likelihood of
finding a significant treatment effect.

In many repeated-measures and matched-subjects studies, the researcher has a specific
prediction concerning the direction of the treatment effect. For example, in the study
described in Example 11.1, the researcher expects the woman to be judged as more 

DIRECTIONAL HYPOTHESIS
AND ONE-TAILED TESTS

MD � 3

H0: �D � 0

s � 1.5s � 1.5
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FIGURE 11.4

The sample of difference
scores from Example 11.1.
The mean is MD � 3 and the
standard deviation is s � 1.5.
The data show a consistent
increase in scores (positive
differences) and suggest that
�D � 0 is not a reasonable
hypothesis.
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attractive when her photograph is presented on a red background. This kind of direc-
tional prediction can be incorporated into the statement of the hypotheses, resulting in
a directional, or one-tailed, hypothesis test. The following example demonstrates how
the hypotheses and critical region are determined for a directional test.

We reexamine the experiment presented in Example 11.1. The researcher is using a
repeated-measures design to investigate the effect of the color red on the perceived
attractiveness of a woman. The researcher predicts that the attractiveness ratings for
the woman in a photograph will increase when the photograph is presented on a red
background compared to a white background.

State the hypotheses and select the alpha level. For this example, the researcher
predicts that attractiveness ratings will increase when the photograph is shown on the
red background. The null hypothesis, on the other hand says that the attractiveness
ratings will not increase but rather will be unchanged or even lowered with the red
background. In symbols,

H0: μD � 0 (There is no increase with the color red.)

The alternative hypothesis says that the treatment does work. For this example, 
H1 says that the color red will increase the attractiveness ratings.

H1: μD > 0 (The rating is increased.)

We use � � .01.

Locate the critical region. As we demonstrated with the independent-measures t statistic
(p. 305), the critical region for a one-tailed test can be located using a two-stage process.
Rather than trying to determine which tail of the distribution contains the critical region,
you first look at the sample mean difference to verify that it is in the predicted direction.
If not, then the treatment clearly did not work as expected and you can stop the test. If
the change is in the correct direction, then the question is whether it is large enough to 
be significant. For this example, change is in the predicted direction (the researcher
predicted higher ratings and the sample mean shows an increase.) With n � 9, we obtain
df � 8 and a critical value of t � 2.896 for a one-tailed test with � � .01. Thus, any 
t statistic beyond 2.896 (positive or negative) is sufficient to reject the null hypothesis.

S T E P  2

S T E P  1

E X A M P L E  1 1 . 3
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FIGURE 11.5

A sample of difference
scores with a mean 
difference of MD � 3 and 
a standard deviation of 
s � 6. The data do not show
a consistent increase or
decrease in scores. Because
there is no consistent 
treatment effect, �D � 0 is a
reasonable hypothesis.
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Compute the t statistic. We calculated the t statistic in Example 11.1, and obtained 
t � 6.00.

Make a decision. The obtained t statistic is well beyond the critical boundary.
Therefore, we reject the null hypothesis and conclude that the color red significantly
increased the attractiveness ratings for the woman in the photograph. In a research
report, the use of a one-tailed test would be clearly noted as follows:

Changing the background color from white to red significantly increased the attractiveness
rating, t(8) � 6.00, p < .01, one tailed.

S T E P  4

S T E P  3

11.4 USES AND ASSUMPTIONS FOR REPEATED-MEASURES 
t TESTS

In many research situations, it is possible to use either a repeated-measures design or
an independent-measures design to compare two treatment conditions. The independent-
measures design would use two separate samples (one in each treatment condition) 
and the repeated-measures design would use only one sample with the same individu-
als participating in both treatments. The decision about which design to use is often

REPEATED-MEASURES
VERSUS INDEPENDENT-

MEASURES DESIGNS

L E A R N I N G  C H E C K 1. A researcher is investigating the effectiveness of acupuncture treatment for chronic
back pain. A sample of n � 4 participants is obtained from a pain clinic. Each
individual ranks the current level of pain and then begins a 6-week program of
acupuncture treatment. At the end of the program, the pain level is rated again and
the researcher records the amount of difference between the two ratings. For this
sample, pain level decreased by an average of M � 4.5 points with SS � 27.

a. Are the data sufficient to conclude that acupuncture has a significant effect on
back pain? Use a two-tailed test with � � .05.

b. Can you conclude that acupuncture significantly reduces back pain? Use a 
one-tailed test with � � .05.

2. Compute the effect size using both Cohen’s d and r2 acupuncture study in the
previous question.

3. A computer printout for a repeated-measures t test reports a p value of p � .021.

a. Can the researcher claim a significant effect with � �.01?

b. Is the effect significant with � �.05?

1. a. For these data, the sample variance is 9, the standard error is 1.50, and t � 3.00. With 
df � 3, the critical values are t � ±3.182. Fail to reject the null hypothesis.

b. For a one-tailed test, the critical value is t � 2.353. Reject the null hypothesis and 
conclude that acupuncture treatment significantly reduces pain.

2. d � 4.5/3 � 1.50 and r2 � 9/12 � 0.75.

3. a. The exact p value, p � .021, is not less than � � .01. Therefore, the effect is not signifi-
cant for � � .01 (p > .01).

b. The p value is less than .05, so the effect is significant with � � .05.

ANSWERS
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made by considering the advantages and disadvantages of the two designs. In general,
the repeated-measures design has most of the advantages.

Number of subjects A repeated-measures design typically requires fewer subjects
than an independent-measures design. The repeated-measures design uses the subjects
more efficiently because each individual is measured in both of the treatment condi-
tions. This can be especially important when there are relatively few subjects available
(for example, when you are studying a rare species or individuals in a rare profession).

Study changes over time The repeated-measures design is especially well suited for
studying learning, development, or other changes that take place over time. Remember
that this design involves measuring individuals at one time and then returning to mea-
sure the same individuals at a later time. In this way, a researcher can observe behav-
iors that change or develop over time.

Individual differences The primary advantage of a repeated-measures design is that
it reduces or eliminates problems caused by individual differences. Individual differ-
ences are characteristics such as age, IQ, gender, and personality that vary from one 
individual to another. These individual differences can influence the scores obtained in
a research study, and they can affect the outcome of a hypothesis test. Consider the data
in Table 11.4. The first set of data represents the results from a typical independent-
measures study and the second set represents a repeated-measures study. Note that we
have identified each participant by name to help demonstrate the effects of individual
differences.

For the independent-measures data, note that every score represents a different per-
son. For the repeated-measures study, on the other hand, the same participants are
measured in both of the treatment conditions. This difference between the two designs
has some important consequences.

1. We have constructed the data so that both research studies have exactly the same
scores and they both show the same 5-point mean difference between treatments.
In each case, the researcher would like to conclude that the 5-point difference was
caused by the treatments. However, with the independent-measures design, there
is always the possibility that the participants in treatment 1 have different character-
istics than those in treatment 2. For example, the three participants in treatment 1
may be more intelligent than those in treatment 2 and their higher intelligence
caused them to have higher scores. Note that this problem disappears with the
repeated-measures design. Specifically, with repeated measures there is no possi-
bility that the participants in one treatment are different from those in another
treatment because the same participants are used in all of the treatments.

SECTION 11.4 / USES AND ASSUMPTIONS FOR REPEATED-MEASURES t TESTS 367

TABLE 11.4

Hypothetical data showing 
the results from an independent-
measures study and a repeated-
measures study. The two sets of
data use exactly the same 
numerical scores and they both
show the same 5-point mean
difference between treatments.

Independent-Measures Study Repeated-Measures Study
(2 Separate Samples) (Same Sample in Both Treatments)

Treatment 1 Treatment 2 Treatment 1 Treatment 2 D

(John) X � 18 (Sue) X � 15 (John) X � 18 (John) X � 15 �3
(Mary) X � 27 (Tom) X � 20 (Mary) X � 27 (Mary) X � 20 �7

(Bill) X � 33 (Dave) X � 28 (Bill) X � 33 (Bill) X � 28 �5

M � 26 M � 21 MD � �5
SS � 114 SS � 86 SS � 8
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2. Although the two sets of data contain exactly the same scores and have exactly
the same 5-point mean difference, you should realize that they are very different
in terms of the variance used to compute standard error. For the independent-
measures study, you calculate the SS or variance for the scores in each of the
two separate samples. Note that in each sample there are big differences 
between participants. In treatment 1, for example, Bill has a score of 33 and
John’s score is only 18. These individual differences produce a relatively 
large sample variance and a large standard error. For the independent-measures
study, the standard error is 5.77, which produces a t statistic of t � 0.87. For
these data, the hypothesis test concludes that there is no significant difference
between treatments.

In the repeated-measures study, the SS and variance are computed for the
difference scores. If you examine the repeated-measures data in Table 11.4, 
you will see that the big differences between John and Bill that exist in treat-
ment 1 and in treatment 2 are eliminated when you get to the difference scores.
Because the individual differences are eliminated, the variance and standard
error are dramatically reduced. For the repeated-measures study, the standard
error is 1.15 and the t statistic is t � –4.35. With the repeated-measures t, the
data show a significant difference between treatments. Thus, one big advantage
of a repeated-measures study is that it reduces variance by removing individual
differences, which increases the chances of finding a significant result.

The primary disadvantage of a repeated-measures design is that the structure of the 
design allows for factors other than the treatment effect to cause a participant’s score to
change from one treatment to the next. Specifically, in a repeated-measures design,
each individual is measured in two different treatment conditions, usually at two dif-
ferent times. In this situation, outside factors that change over time may be responsible
for changes in the participants’ scores. For example, a participant’s health or mood may
change over time and cause a difference in the participant’s scores. Outside factors such
as the weather can also change and may have an influence on participants’ scores.
Because a repeated-measures study typically takes place over time, it is possible that
time-related factors (other than the two treatments) are responsible for causing changes
in the participants’ scores.

Also, it is possible that participation in the first treatment influences the individ-
ual’s score in the second treatment. If the researcher is measuring individual perform-
ance, for example, the participants may gain experience during the first treatment
condition, and this extra practice may help their performance in the second condition.
In this situation, the researcher would find a mean difference between the two condi-
tions; however, the difference would not be caused by the treatments, instead it would
caused be by practice effects. Changes in scores that are caused by participation in an
earlier treatment are called order effects and can distort the mean differences found in
repeated-measures research studies.

Counterbalancing One way to deal with time-related factors and order effects is to
counterbalance the order of presentation of treatments. That is, the participants are ran-
domly divided into two groups, with one group receiving treatment 1 followed by treat-
ment 2, and the other group receiving treatment 2 followed by treatment 1. The goal of
counterbalancing is to distribute any outside effects evenly over the two treatments. For
example, if practice effects are a problem, then half of the participants gain experience
in treatment 1, which then helps their performance in treatment 2. However, the other
half gain experience in treatment 2, which helps their performance in treatment 1. Thus,
prior experience helps the two treatments equally.

TIME-RELATED FACTORS 
AND ORDER EFFECTS
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Finally, if there is reason to expect strong time-related effects or strong order 
effects, your best strategy is not to use a repeated-measures design. Instead, use 
independent-measures (or a matched-subjects design) so that each individual partici-
pates in only one treatment and is measured only one time.

The related-samples t statistic requires two basic assumptions:

1. The observations within each treatment condition must be independent (see 
p. 254). Notice that the assumption of independence refers to the scores within
each treatment. Inside each treatment, the scores are obtained from different
individuals and should be independent of one another.

2. The population distribution of difference scores (D values) must be normal.
As before, the normality assumption is not a cause for concern unless the

sample size is relatively small. In the case of severe departures from normality,
the validity of the t test may be compromised with small samples. However,
with relatively large samples (n > 30), this assumption can be ignored.

If there is reason to suspect that one of the assumptions for the repeated-measures
t test has been violated, an alternative analysis known as the Wilcoxon test is presented
in Appendix E. The Wilcoxon test requires that the original scores be transformed into
ranks before evaluating the difference between the two treatment conditions.

ASSUMPTIONS OF THE
RELATED-SAMPLES t TEST
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L E A R N I N G  C H E C K 1. What assumptions must be satisfied for repeated-measures t tests to be valid?

2. Describe some situations for which a repeated-measures design is well suited.

3. How is a matched-subjects design similar to a repeated-measures design? How 
do they differ?

4. The data from a research study consist of 10 scores in each of two different treatment
conditions. How many individual subjects would be needed to produce these data

a. For an independent-measures design?

b. For a repeated-measures design?

c. For a matched-subjects design?

1. The observations within a treatment are independent. The population distribution of D scores
is assumed to be normal.

2. The repeated-measures design is suited to situations in which a particular type of subject is
not readily available for study. This design is helpful because it uses fewer subjects (only
one sample is needed). Certain questions are addressed more adequately by a repeated-
measures design—for example, any time one would like to study changes across time in the
same individuals. Also, when individual differences are large, a repeated-measures design is
helpful because it reduces the amount of this type of error in the statistical analysis.

3. They are similar in that the role of individual differences in the experiment is reduced. They
differ in that there are two samples in a matched-subjects design and only one in a repeated-
measures study.

4. a. The independent-measures design would require 20 subjects (two separate samples with
n � 10 in each).

b. The repeated-measures design would require 10 subjects (the same 10 individuals are
measured in both treatments).

c. The matched-subjects design would require 20 subjects (10 matched pairs).

ANSWERS
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1. In a related-samples research study, the individuals in
one treatment condition are directly related, one-to-one,
with the individuals in the other treatment condition(s).
The most common related-samples study is a repeated-
measures design, in which the same sample of individuals
is tested in all of the treatment conditions. This design
literally repeats measurements on the same subjects. An
alternative is a matched-subjects design, in which the
individuals in one sample are matched one-to-one with
individuals in another sample. The matching is based
on a variable relevant to the study.

2. The repeated-measures t test begins by computing a
difference between the first and second measurements
for each subject (or the difference for each matched
pair). The difference scores, or D scores, are obtained by

D � X2 – X1

The sample mean, MD, and sample variance, s2, are
used to summarize and describe the set of difference
scores.

3. The formula for the repeated-measures t statistic is

In the formula, the null hypothesis specifies μD � 0,
and the estimated standard error is computed by

4. A repeated-measures design may be preferred to an
independent-measures study when one wants to observe
changes in behavior in the same subjects, as in learning
or developmental studies. An important advantage of
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the repeated-measures design is that it removes or
reduces individual differences, which, in turn lowers
sample variability and tends to increase the chances for
obtaining a significant result.

5. For a repeated-measures design, effect size can be
measured using either r2 (the percentage of variance
accounted for) or Cohen’s d (the standardized mean
difference). The value of r2 is computed the same way
for both independent- and repeated-measures designs.

Cohen’s d is defined as the sample mean difference
divided by standard deviation for both repeated- and
independent-measures designs. For repeated-measures
studies, Cohen’s d is estimated as

6. An alternative method for describing the size of the
treatment effect is to construct a confidence interval for
the population mean difference, �D. The confidence
interval uses the repeated-measures t equation, solved
for the unknown mean difference:

First, select a level of confidence and then look up the
corresponding t values. For example, for 95%
confidence, use the range of t values that determine the
middle 95% of the distribution. The t values are then
used in the equation along with the values for the
sample mean difference and the standard error, which
are computed from the sample data.
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SUMMARY

KEY TERMS

repeated-measures design (352)

within-subjects design (352)

matched-subjects design (353)

related-samples design (353)

difference scores (354)

estimated standard error for MD (357)

repeated-measures t statistic (358)

individual differences (367)

order effects (368)

Wilcoxon test (369)

estimated
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RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 11 on the book

companion website. The website also provides access to a workshop entitled
Independent vs. Repeated t-tests that compares the t test presented in this chapter with
the independent-measures test that was presented in Chapter 10.

Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.

Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific web-
site, Psychology CourseMate includes an integrated interactive eBook and other interac-
tive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials. 

General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to perform The Repeated-Measures t Test presented in this
chapter.

Data Entry

Enter the data into two columns (VAR0001 and VAR0002) in the data editor with the
first score for each participant in the first column and the second score in the second
column. The two scores for each participant must be in the same row.

Data Analysis

1. Click Analyze on the tool bar, select Compare Means, and click on Paired-
Samples T Test.

2. One at a time, highlight the column labels for the two data columns and click the
arrow to move them into the Paired Variables box.

RESOURCES 371
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3. In addition to performing the hypothesis test, the program computes a confidence
interval for the population mean difference. The confidence level is automatically
set at 95%, but you can select Options and change the percentage.

4. Click OK.

SPSS Output

We used the SPSS program to analyze the data from the red/white photograph experi-
ment in Example 11.1 and the program output is shown in Figure 11.6. The output
includes a table of sample statistics with the mean and standard deviation for each
treatment. A second table shows the correlation between the two sets of scores (corre-
lations are presented in Chapter 15). The final table, which is split into two sections in
Figure 11.6, shows the results of the hypothesis test, including the mean and standard
deviation for the difference scores, the standard error for the mean, a 95% confidence
interval for the mean difference, and the values for t, df, and the level of significance
(the p value for the test).

372 CHAPTER 11 THE t TEST FOR TWO RELATED SAMPLES

Paired Samples Statistics

Paired Samples Correlations

Paired Samples Test

VAR00001

VAR00002

VAR00001 & VAR00002

Pair 1

Pair 1

Pair 1 VAR00001 - VAR00002 �4.15300 �1.84700 �6.000 8 .000

.419.3099

9

9

1.48137

.97183

.49379

.32394

CorrelationN

Paired Differences

Sig.

Lower Upper t df Sig. (2-tailed)

95% Confidence Interval
of the Difference

N

7.2222

10.2222

Mean Std. Deviation
Std. Error

Mean

Paired Samples Test

VAR00001 - VAR00002Pair 1 .500001.50000�3.00000

Std. Deviation

Paired Differences

Mean
Std. Error

Mean

FIGURE 11.6

The SPSS output for the repeated-measures hypothesis test in Example 11.1.
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FOCUS ON PROBLEM SOLVING

1. Once data have been collected, we must then select the appropriate statistical
analysis. How can you tell whether the data call for a repeated-measures t test?
Look at the experiment carefully. Is there only one sample of subjects? Are the
same subjects tested a second time? If your answers are yes to both of these
questions, then a repeated-measures t test should be done. There is only one
situation in which the repeated-measures t can be used for data from two samples,
and that is for matched-subjects studies (p. 353).

2. The repeated-measures t test is based on difference scores. In finding difference
scores, be sure that you are consistent with your method. That is, you may use
either X2 – X1 or X1 – X2 to find D scores, but you must use the same method for all
subjects.

DEMONSTRATION 11.1

A REPEATED-MEASURES t TEST

A major oil company would like to improve its tarnished image following a large oil spill.
Its marketing department develops a short television commercial and tests it on a sample
of n � 7 participants. People’s attitudes about the company are measured with a short
questionnaire, both before and after viewing the commercial. The data are as follows:

Person X1 (Before) X2 (After) D (Difference)

A 15 15 0
B 11 13 �2
C 10 18 �8
D 11 12 �1
E 14 16 �2
F 10 10 0
G 11 19 �8

Was there a significant change? Note that participants are being tested twice—once before
and once after viewing the commercial. Therefore, we have a repeated-measures design.

State the hypotheses, and select an alpha level. The null hypothesis states that the
commercial has no effect on people’s attitude, or, in symbols,

H0: μD � 0 (The mean difference is zero.)

The alternative hypothesis states that the commercial does alter attitudes about the 
company, or

H1: μD � 0 (There is a mean change in attitudes.)

For this demonstration, we use an alpha level of .05 for a two-tailed test.

Locate the critical region. Degrees of freedom for the repeated-measures t test are
obtained by the formula

df � n – 1

S T E P  2

S T E P  1

DEMONSTRATION 11.1 373

�D � 21

MD � 21––
7 � 3.00

SS � 74
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For these data, degrees of freedom equal

df � 7 – 1 � 6

The t distribution table is consulted for a two-tailed test with � � .05 for df � 6. The
critical t values for the critical region are t � ±2.447.

Compute the test statistic. Once again, we suggest that the calculation of the t statis-
tic be divided into a three-part process.

Variance for the D scores: The variance for the sample of D scores is

Estimated standard error for MD: The estimated standard error for the sample mean
difference is computed as follows:

The repeated-measures t statistic: Now we have the information required to calculate
the t statistic.

Make a decision about H0, and state the conclusion. The obtained t value is not
extreme enough to fall in the critical region. Therefore, we fail to reject the null 
hypothesis. We conclude that there is not enough evidence to conclude that the commer-
cial changes people’s attitudes, t(6) � 2.26, p > .05, two-tailed. (Note that we state that 
p is greater than .05 because we failed to reject H0.)

DEMONSTRATION 11.2

EFFECT SIZE FOR THE REPEATED-MEASURES t

We estimate Cohen’s d and calculate r2 for the data in Demonstration 11.1. The data
produced a sample mean difference of MD � 3.00 with a sample variance of s2 � 12.33.
Based on these values, Cohen’s d is
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The hypothesis test produced t � 2.26 with df � 6. Based on these values,
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PROBLEMS 375

PROBLEMS

1. For the following studies, indicate whether a repeated-
measures t test is the appropriate analysis. Explain
your answers.
a. A researcher is comparing the amount of time spent

playing video games each week for college males
versus college females.

b. A researcher is comparing two new designs for cell
phones by having a group of high school students
send a scripted text message on each model and
measuring the difference in speed for each student.

c. A researcher is evaluating the effects of fatigue by
testing people in the morning when they are well
rested and testing again at midnight when they have
been awake for at least 14 hours.

2. Participants enter a research study with unique
characteristics that produce different scores from one
person to another. For an independent-measures 
study, these individual differences can cause problems.
Briefly explain how these problems are eliminated or
reduced with a repeated-measures study.

3. Explain the difference between a matched-subjects
design and a repeated-measures design.

4. A researcher conducts an experiment comparing 
two treatment conditions and obtains data with 
10 scores for each treatment condition.
a. If the researcher used an independent-measures

design, how many subjects participated in the
experiment?

b. If the researcher used a repeated-measures design,
how many subjects participated in the experiment?

c. If the researcher used a matched-subjects design,
how many subjects participated in the experiment?

5. A sample of n � 9 individuals participates in a repeated-
measures study that produces a sample mean difference
of MD � 6.5 with SS � 200 for the difference scores.
a. Calculate the standard deviation for the sample of

difference scores. Briefly explain what is measured
by the standard deviation.

b. Calculate the estimated standard error for the
sample mean difference. Briefly explain what is
measured by the estimated standard error.

6. a. A repeated-measures study with a sample of n � 25
participants produces a mean difference of MD � 3
with a standard deviation of s � 4. Based on the
mean and standard deviation, you should be able to
visualize (or sketch) the sample distribution. Use a
two-tailed hypothesis test with � � .05 to
determine whether it is likely that this sample came
from a population with μD � 0.

b. Now assume that the sample standard deviation is 
s � 12, and once again visualize the sample
distribution. Use a two-tailed hypothesis test with 
� � .05 to determine whether it is likely that this
sample came from a population with μD � 0.

Explain how the size of the sample standard
deviation influences the likelihood of finding a
significant mean difference.

7. a. A repeated-measures study with a sample of n � 9
participants produces a mean difference of MD � 3
with a standard deviation of s � 6. Based on the
mean and standard deviation, you should be able 
to visualize (or sketch) the sample distribution. 
Use a two-tailed hypothesis test with � � .05 to
determine whether it is likely that this sample came
from a population with μD � 0.

b. Now assume that the sample mean difference is 
MD � 12, and once again visualize the sample
distribution. Use a two-tailed hypothesis test with 
� � .05 to determine whether it is likely that this
sample came from a population with �D � 0.

c. Explain how the size of the sample mean difference
influences the likelihood of finding a significant
mean difference.

8. A sample of difference scores from a repeated-measures
experiment has a mean of MD � 4 with a standard
deviation of s � 6.
a. If n � 4, is this sample sufficient to reject the null

hypothesis using a two-tailed test with � � .05?
b. Would you reject H0 if n � 16? Again, assume a

two-tailed test with � � .05.
c. Explain how the size of the sample influences the

likelihood of finding a significant mean difference.

9. As mentioned in Chapters 2 and 3 (pp. 38 and 81),
Steven Schmidt (1994) reported a series of studies
examining the effect of humor on memory. In one 
part of the study, participants were presented with a
list containing a mix of humorous and nonhumorous
sentences, and were then asked to recall as many
sentences as possible. Schmidt recorded the number of
humorous and the number of nonhumorous sentences
recalled by each individual. Notice that the data
consist of two memory scores for each participant.
Suppose that a difference score is computed for each
individual in a sample of n � 16 and the resulting 
data show that participants recalled an average of 
MD � 3.25 more humorous sentences than
nonhumorous, with SS � 135. Are these results
sufficient to conclude that humor has a significant
effect on memory? Use a two-tailed test with � � .05.
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10. Research has shown that losing even one night’s 
sleep can have a significant effect on performance of
complex tasks such as problem solving (Linde &
Bergstroem, 1992). To demonstrate this phenomenon,
a sample of n � 25 college students was given a
problem-solving task at noon on one day and again at
noon on the following day. The students were not
permitted any sleep between the two tests. For each
student, the difference between the first and second
score was recorded. For this sample, the students
averaged MD � 4.7 points better on the first test with a
variance of s2 � 64 for the difference scores.
a. Do the data indicate a significant change in problem-

solving ability? Use a two-tailed test with � � .05.
b. Compute an estimated Cohen’s d to measure the

size of the effect.

11. Strack, Martin, and Stepper (1988) reported that
people rate cartoons as funnier when holding a pen 
in their teeth (which forced them to smile) than when
holding a pen in their lips (which forced them to
frown). A researcher attempted to replicate this result
using a sample of n � 25 adults between the ages of
40 and 45. For each person, the researcher recorded
the difference between the rating obtained while
smiling and the rating obtained while frowning. On
average the cartoons were rated as funnier when the
participants were smiling, with an average difference
of MD � 1.6 with SS � 150.
a. Do the data indicate that the cartoons are rated

significantly funnier when the participants are
smiling? Use a one-tailed test with � � .01.

b. Compute r2 to measure the size of the treatment
effect.

c. Write a sentence describing the outcome of the
hypothesis test and the measure of effect size as it
would appear in a research report.

12. How would you react to doing much worse on an
exam than you expected? There is some evidence to
suggest that most individuals believe that they can
cope with this kind of problem better than their fellow
students (Igou, 2008). In the study, participants read 
a scenario of a negative event and were asked to use
a 10-point scale to rate how it would affect their
immediate well-being (�5 strongly worsen to �5
strongly improve). Then they were asked to imagine
the event from the perspective of an ordinary fellow
student and rate how it would affect that person. The
difference between the two ratings was recorded.
Suppose that a sample of n � 25 participants produced
a mean difference of MD = 1.28 points (self rated
higher) with a standard deviation of s � 1.50 for the
difference scores.
a. Is this result sufficient to conclude that there is a

significant difference in the ratings for self versus
others? Use a two-tailed test with � � .05.

b. Compute r2 and estimate Cohen’s d to measure the
size of the treatment effect.

c. Write a sentence describing the outcome of the
hypothesis test and the measure of effect size as it
would appear in a research report.

13. Research results indicate that physically attractive
people are also perceived as being more intelligent
(Eagly, Ashmore, Makhijani, & Longo, 1991). As 
a demonstration of this phenomenon, a researcher
obtained a set of 10 photographs, 5 showing men who
were judged to be attractive and 5 showing men who
were judged to be unattractive. The photographs were
shown to a sample of n � 25 college students and the
students were asked to rate the intelligence of the
person in the photo on a scale from 1 to 10. For each
student, the researcher determined the average rating
for the 5 attractive photos and the average for the 
5 unattractive photos, and then computed the difference
between the two scores. For the entire sample, the
average difference was MD � 2.7 (attractive photos
rated higher) with s � 2.00. Are the data sufficient to
conclude that there was a significant difference in
perceived intelligence for the two sets of photos? Use a
two-tailed test at the .05 level of significance.

14. Researchers have noted a decline in cognitive
functioning as people age (Bartus, 1990). However,
the results from other research suggest that the
antioxidants in foods such as blueberries may reduce
and even reverse these age-related declines (Joseph 
et al., 1999). To examine this phenomenon, suppose
that a researcher obtains a sample of n � 16 adults
who are between the ages of 65 and 75. The researcher
uses a standardized test to measure cognitive per-
formance for each individual. The participants then
begin a 2-month program in which they receive daily
doses of a blueberry supplement. At the end of the 
2-month period, the researcher again measures cognitive
performance for each participant. The results show 
an average increase in performance of MD � 7.4 with
SS � 1215.
a. Does this result support the conclusion that the

antioxidant supplement has a significant effect on
cognitive performance? Use a two-tailed test with
� � .05.

b. Construct a 95% confidence interval to estimate the
average cognitive performance improvement for the
population of older adults.

15. The following data are from a repeated-measures study
examining the effect of a treatment by measuring a
group of n � 4 participants before and after they
receive the treatment.
a. Calculate the difference scores and MD.
b. Compute SS, sample variance, and estimated

standard error.
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c. Is there a significant treatment effect? Use � � .05,
two tails.

Before After
Participant Treatment Treatment

A 7 10
B 6 13
C 9 12
D 5 8

16. A researcher for a cereal company wanted to demon-
strate the health benefits of eating oatmeal. A sample
of 9 volunteers was obtained and each participant ate a
fixed diet without any oatmeal for 30 days. At the end
of the 30-day period, cholesterol was measured for
each individual. Then the participants began a second
30-day period in which they repeated exactly the same
diet except that they added 2 cups of oatmeal each
day. After the second 30-day period, cholesterol levels
were measured again and the researcher recorded the
difference between the two scores for each participant.
For this sample, cholesterol scores averaged MD � 16
points lower with the oatmeal diet with SS � 538 for
the difference scores.
a. Are the data sufficient to indicate a significant

change in cholesterol level? Use a two-tailed test
with � � .01.

b. Compute r2, the percentage of variance accounted
for by the treatment, to measure the size of the
treatment effect.

c. Write a sentence describing the outcome of the
hypothesis test and the measure of effect size as it
would appear in a research report.

17. A variety of research results suggest that visual images
interfere with visual perception. In one study, Segal
and Fusella (1970) had participants watch a screen,
looking for brief presentations of a small blue arrow.
On some trials, the participants were also asked to
form a mental image (for example, imagine a
volcano). The results for a sample of n � 6, show that
participants made an average of MD � 4.3 more errors
while forming images than while not forming images.
The difference scores had SS � 63. Do the data
indicate a significant difference between the two
conditions? Use a two-tailed test with � � .05.

18. One of the primary advantages of a repeated-measures
design, compared to independent-measures, is that it
reduces the overall variability by removing variance
caused by individual differences. The following data
are from a research study comparing two treatment
conditions.

a. Assume that the data are from an independent-
measures study using two separate samples, each
with n � 6 participants. Compute the pooled
variance and the estimated standard error for the
mean difference.

b. Now assume that the data are from a repeated-
measures study using the same sample of n � 6
participants in both treatment conditions. Compute
the variance for the sample of difference scores 
and the estimated standard error for the mean
difference. (You should find that the repeated-
measures design substantially reduces the variance
and the standard error.)

Treatment 1 Treatment 2 Difference

10 13 3
12 12 0
8 10 2
6 10 4
5 6 1
7 9 2

M � 8 M � 10 MD � 2
SS � 34 SS � 30 SS � 10

19. The previous problem demonstrates that removing
individual differences can substantially reduce
variance and lower the standard error. However, 
this benefit only occurs if the individual differences
are consistent across treatment conditions. In
problem 18, for example, the first two participants
(top two rows) consistently had the highest scores 
in both treatment conditions. Similarly, the last 
two participants consistently had the lowest scores
in both treatments. To construct the following 
data, we started with the scores in problem 18 
and scrambled the scores in treatment 1 to 
eliminate the consistency of the individual
differences. 
a. Assume that the data are from an independent-

measures study using two separate samples, each
with n � 6 participants. Compute the pooled
variance and the estimated standard error for the
mean difference.

b. Now assume that the data are from a repeated-
measures study using the same sample of n � 6
participants in both treatment conditions. Compute
the variance for the sample of difference scores and
the estimated standard error for the mean
difference. (This time you should find that
removing the individual differences does not reduce
the variance or the standard error.)
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Treatment 1 Treatment 2 Difference

6 13 7
7 12 5
8 10 2

10 10 0
5 6 0

12 9 �3

M � 8 M � 10 MD � 2

SS � 34                  SS � 30 SS � 64

20. A researcher uses a matched-subjects design to in-
vestigate whether single people who own pets are
generally happier than singles without pets. A mood
inventory questionnaire is administered to a group of 
20- to 29-year-old non–pet owners and a similar age
group of pet owners. The pet owners are matched one to
one with the non–pet owners for income, number of close
friendships, and general health. The data are as follows:

Matched Non–Pet Pet
Pair Owner Owner

A 12 14
B 8 7
C 10 13
D 9 9
E 7 13
F 10 12

a. Is there a significant difference in the mood scores
for non–pet owners versus pet owners? Test with 
� � .05 for two tails.

b. Construct the 95% confidence interval to estimate
the size of the mean difference in mood between
the population of pet owners and the population of
non–pet owners. (You should find that a mean
difference of �D � 0 is an acceptable value, which
is consistent with the conclusion from the
hypothesis test.)

21. There is some evidence suggesting that you are likely
to improve your test score if you rethink and change
answers on a multiple-choice exam (Johnston, 1975).
To examine this phenomenon, a teacher gave the same
final exam to two sections of a psychology course.
The students in one section were told to turn in their
exams immediately after finishing, without changing
any of their answers. In the other section, students
were encouraged to reconsider each question and to
change answers whenever they felt it was appropriate.
Before the final exam, the teacher had matched 9
students in the first section with 9 students in the

second section based on their midterm grades. For
example, a student in the no-change section with an 
89 on the midterm exam was matched with student 
in the change section who also had an 89 on the
midterm. The final exam grades for the 9 matched
pairs of students are presented in the following table.
a. Do the data indicate a significant difference

between the two conditions? Use a two-tailed test
with � � .05.

b. Construct a 95% confidence interval to estimate the
size of the population mean difference.

c. Write a sentence demonstrating how the results of
the hypothesis test and the confidence interval
would appear in a research report.

Matched No-Change Change
Pair Section Section

#1 71 86
#2 68 80
#3 91 88
#4 65 74
#5 73 82
#6 81 89
#7 85 85
#8 86 88
#9 65 76

22. The teacher from the previous problem also tried 
a different approach to answering the question of
whether changing answers helps or hurts exam grades.
In a separate class, students were encouraged to
review their final exams and change any answers they
wanted to before turning in their papers. However, the
students had to indicate both the original answer 
and the changed answer for each question. The teacher
then graded each exam twice, one using the set of
original answers and once with the changes. In the
class of n � 22 students, the average exam score
improved by an average of MD � 2.5 points with the
changed answers. The standard deviation for the
difference scores was s � 3.1. Are the data sufficient
to conclude that rethinking and changing answers can
significantly improve exam scores? Use a one-tailed
test at the .01 level of significance.

23. At the Olympic level of competition, even the smallest
factors can make the difference between winning and
losing. For example, Pelton (1983) has shown that
Olympic marksmen shoot much better if they fire
between heartbeats, rather than squeezing the trigger
during a heartbeat. The small vibration caused by a
heartbeat seems to be sufficient to affect the
marksman’s aim. The following hypothetical data

30991_ch11_ptg01_hr_351-382.qxd  9/3/11  3:33 AM  Page 378



PROBLEMS 379

demonstrate this phenomenon. A sample of n � 8
Olympic marksmen fires a series of rounds while a
researcher records heartbeats. For each marksman, a
score is recorded for shots fired during heartbeats and
for shots fired between heartbeats. Do these data
indicate a significant difference? Test with � � .05.

During Between
Participant Heartbeats Heartbeats

A 93 98
B 90 94
C 95 96
D 92 91
E 95 97
F 91 97
G 92 95
H 93 97

24. The Preview section of this chapter presented a
repeated-measures research study demonstrating 
that swearing can help reduce pain (Stephens, Atkins,
& Kingston, 2009). In the study, each participant was
asked to plunge a hand into icy water and keep it there
as long as the pain would allow. In one condition, the
participants repeated their favorite curse words while

their hands were in the water. In the other condition,
the participants repeated a neutral word. Data similar
to the results obtained in the study are shown in the
following table.
a. Do these data indicate a significant difference in

pain tolerance between the two conditions? Use a
two-tailed test with � � .05.

b. Compute r2, the percentage of variance accounted
for, to measure the size of the treatment effect.

c. Write a sentence demonstrating how the results of
the hypothesis test and the measure of effect size
would appear in a research report.

Amount of Time (in Seconds)

Participant Swear Words Neutral Words

1 94 59
2 70 61
3 52 47
4 83 60
5 46 35
6 117 92
7 69 53
8 39 30
9 51 56

10 73 61

Improve your statistical skills with 

ample practice exercises and detailed 

explanations on every question. Purchase

www.aplia.com/statistics
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REVIEW

P A R T III

After completing this part, you should be able to perform
hypothesis tests and compute confidence intervals using 
t statistics. These include:

1. The single-sample t introduced in Chapter 9.
2. The independent-measures t introduced in Chapter 10.
3. The repeated-measures t introduced in Chapter 11.

In this part, we considered a set of three t statistics that are
used to draw inferences about the means and mean differ-
ences for unknown populations. Because the populations
are completely unknown, we rely on sample data to provide
all of the necessary information. In particular, each inferen-
tial procedure begins by computing sample means and sam-
ple variances (or the corresponding SS values or standard
deviations). Therefore, a good understanding of the defini-
tions and formulas from Chapters 3 and 4 is a critical foun-
dation for this section.

With three different t statistics available, the first prob-
lem is often deciding which one is appropriate for a specific
research situation. Perhaps the best approach is to begin
with a close look at the sample data.

1. For the single-sample t (Chapter 9), there is only one
group of participants and only one score for each
individual. With a single sample mean and a single
sample variance, the t statistic can be used to test a
hypothesis about a single unknown population mean
or construct a confidence interval to estimate the
population mean.

2. For the independent-measures t, there are two sepa-
rate groups of participants who produce two groups of
scores. The mean and variance are computed for each
group, producing two sample means and two sample
variances. After pooling the two variances, the t sta-
tistic uses the difference between the two sample
means to test a hypothesis about the corresponding
difference between the two unknown population
means or estimate the population mean difference
with a confidence interval. The null hypothesis al-
ways states that there is no difference between the
two population means; �1 – �2 � 0.

3. For the repeated-measures t, there is only one group
of participants but each individual is measured twice,
at two different times and/or under two different
treatment conditions. The two scores are then used to
find a difference score for each person, and the mean
and variance are computed for the sample of differ-
ence scores. The t statistic uses the sample mean
difference to test a hypothesis about the correspon-
ding population mean difference or estimate the popu-
lation mean difference with a confidence interval. The
null hypothesis always states that the mean for the
population of difference scores is zero; �D � 0.

REVIEW EXERCISES

1. People tend to evaluate the quality of their lives rela-
tive to others around them. In a demonstration of this
phenomenon, Frieswijk, Buunk, Steverink, and Slaets
(2004) conducted interviews with frail elderly people.
In the interview, each person was compared with 
fictitious others who were worse off. After the inter-
views, the participants completed a life-satisfaction
survey and reported more satisfaction with their own
lives. Following are hypothetical data similar to those
obtained in the research study, representing satisfac-
tion scores for a sample of n � 9 older people who
completed the interview. Assume that the average score
on the life-satisfaction scale is � � 20. The scores for
the sample are 18, 23, 24, 22, 19, 27, 23, 26, 25.

a. Calculate the mean and standard deviation for
the sample.

b. Are the data sufficient to conclude that the people
in this sample are significantly more satisfied than
others in the general population? Use a one-tailed
test with � � .05.

c. Compute Cohen’s d to estimate the size of the effect.
d. Compute the 90% confidence interval for the

mean life-satisfaction score for people who par-
ticipate in this type of interview.

2. In the problems at the end of Chapter 8, we presented
a study indicating that people with visible tattoos are
viewed more negatively than people without visible
tattoos (Resenhoeft, Villa, & Wiseman, 2008).
Suppose that a researcher intends to examine this
phenomenon by asking participants to rate the attrac-
tiveness of women in a series of ten photographs. For
one group of participants, none of the women has any
visible tattoos. For a second group, however, the
researcher modified one of the photographs by adding
a tattoo of a butterfly on the woman’s left arm. Using
a 7-point rating scale, the n � 15 participants who
viewed the photograph with no tattoo gave the
woman an average rating of M � 4.9 with SS � 15.0.
The n � 15 participants who saw the photograph with
a tattoo gave the same woman an average rating of 
M � 4.2 with SS � 18.6.

a. Does the existence of a tattoo have a significant 
effect on the attractiveness rating of the woman in
the photograph? Use a two-tailed test with � � .05.

b. Compute r2, the percentage of variance accounted
for by the treatment, to measure the effect size.

c. Write a sentence describing the outcome of the
hypothesis test and the measure of effect size as it
would appear in a research report.

380
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3. The stimulant Ritalin has been shown to increase 
attention span and improve academic performance 
in children with ADHD (Evans, Pelham, Smith, et al.,
2001). To demonstrate the effectiveness of the drug, a
researcher selects a sample of n � 20 children diag-
nosed with the disorder and measures each child’s
attention span before and after taking the drug. 
The data show an average increase of attention span

of MD � 4.8 minutes with a variance of s2 � 125 for
the sample of difference scores.

a. Is this result sufficient to conclude that Ritalin
significantly improves attention span? Use a one-
tailed test with � � .05.

b. Compute the 80% confidence interval for the
mean change in attention span for the population.

REVIEW 381
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383

In Part III we presented a set of t statistics that use sample means
and mean differences to draw inferences about the corresponding
population means and mean differences. However, the t statistics

are limited to situations that compare no more than two population
means. Often, a research question involves the differences among
more than two means and, in these situations, t tests are not appro-
priate. In this part we introduce a new hypothesis testing technique
known as analysis of variance (ANOVA). ANOVA permits 
researchers to evaluate the mean differences among two or more
populations using sample data. We present three different applica-
tions of ANOVA that apply to three distinct research situations:

1. Independent-measures designs: Using two or more separate
samples to draw an inference about the mean differences 
between two or more unknown populations.

2. Repeated-measures designs: Using one sample, with each indi-
vidual tested in two or more different treatment conditions, to
draw an inference about the population mean differences
among the conditions.

3. Two-factor designs: Allowing two independent variables to
change simultaneously within one study to create combinations
of treatment conditions involving both variables. The ANOVA
then evaluates the mean differences attributed to each variable
acting independently and to combinations of the two variables
interacting together.

In the next three chapters we continue to examine statistical
methods that use sample means as the foundation for drawing 
inferences about population means. The primary application of these

Chapter 12 Introduction to Analysis of
Variance 383

Chapter 13 Repeated-Measures 
Analysis of Variance 433

Chapter 14 Two-Factor Analysis of
Variance (Independent
Measures) 465

Analysis of
Variance: Tests
for Differences
Among Two or
More Population
Means

P A R T

IV
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inferential methods is to help researchers interpret the out-
come of their research studies. In a typical study, the goal is
to demonstrate a difference between two or more treatment
conditions. For example, a researcher hopes to demonstrate
that a group of children who are exposed to violent TV pro-
grams behave more aggressively than children who are
shown nonviolent TV programs. In this situation, the data
consist of one sample mean representing the scores in one
treatment condition and another sample mean representing
the scores from a different treatment. The researcher hopes to
find a difference between the sample means and would like to
generalize the mean difference to the entire population.

The problem is that sample means can be different even
when there are no differences whatsoever among the popu-
lation means. As you saw in Chapter 1 (see Figure 1.2), two
samples can have different means even when they are 
selected from the same population. Thus, even though a 
researcher may obtain a sample mean difference in a 
research study, it does not necessarily indicate that there is a
mean difference in the population. As with the t tests pre-
sented in Part III, a hypothesis test is needed to determine
whether the mean differences found in sample data are sta-
tistically significant. With more than two sample means, the
appropriate hypothesis test is ANOVA.

384
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Preview

12.1 Introduction

12.2 The Logic of ANOVA

12.3 ANOVA Notation and Formulas

12.4 The Distribution of F-Ratios

12.5 Examples of Hypothesis Testing
and Effect Size with ANOVA

12.6 Post Hoc Tests

12.7 The Relationship Between
ANOVA and t Tests

Summary

Focus on Problem Solving

Demonstrations 12.1 and 12.2

Problems

Tools You Will Need
The following items are considered 
essential background material for this
chapter. If you doubt your knowledge 
of any of these items, you should review
the appropriate chapter or section before
proceeding.

• Variability (Chapter 4)
• Sum of squares
• Sample variance
• Degrees of freedom
• Introduction to hypothesis testing

(Chapter 8)
• The logic of hypothesis testing
• Independent-measures t statistic

(Chapter 10)
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Preview
“But I read the chapter four times! How could I possibly
have failed the exam?!”

Most of you probably have had the experience of
reading a textbook and suddenly realizing that you have
no idea of what was said on the past few pages. Although
you have been reading the words, your mind has 
wandered off, and the meaning of the words has never
reached memory. In an influential paper on human 
memory, Craik and Lockhart (1972) proposed a levels of
processing theory of memory that can account for this
phenomenon. In general terms, this theory says that all
perceptual and mental processing leaves behind a memory
trace. However, the quality of the memory trace depends
on the level or the depth of the processing. If you superfi-
cially skim the words in a book, your memory also is
superficial. On the other hand, when you think about the
meaning of the words and try to understand what you are
reading, the result is a good, substantial memory that
should serve you well on exams. In general, deeper 
processing results in better memory.

Rogers, Kuiper, and Kirker (1977) conducted an 
experiment demonstrating the effect of levels of process-
ing. Participants in this experiment were shown lists of
words and asked to answer questions about each word. 
The questions were designed to require different levels of 
processing, from superficial to deep. In one experimental
condition, participants were simply asked to judge the
physical characteristics of each printed word (“Is it 
printed in capital letters or lowercase letters?”). A second
condition asked about the sound of each word (“Does it
rhyme with ‘boat’?”). In a third condition, participants
were required to process the meaning of each word (“Does
it have the same meaning as ‘attractive’?”). The final 
condition required participants to understand each word
and relate its meaning to themselves (“Does this word
describe you?”). After going through the complete list, all
participants were given a surprise memory test. As you can
see in Figure 12.1, deeper processing resulted in better
memory. Remember that the participants were not trying 
to memorize the words; they were simply reading through
the list answering questions. However, the more they
processed and understood the words, the better they 
recalled the words on the test.

The Problem: In terms of human memory, the
Rogers, Kuiper, and Kirker experiment is notable

because it demonstrates the importance of “self” in
memory. You are most likely to remember material
that is directly related to you. In terms of statistics,
however, this study is notable because it compares
four different treatment conditions in a single
experiment. We now have four different means 
and need a hypothesis test to evaluate the mean
differences. Unfortunately, the t tests introduced in
Chapter 10 and 11 are limited to comparing only 
two treatments. A new hypothesis test is needed for
this kind of data.

The Solution: In this chapter we introduce a new
hypothesis test known as analysis of variance that is
designed to evaluate the mean differences from research
studies producing two or more sample means. Although
“two or more” may seem like a small step from 
“two,” this new hypothesis testing procedure provides
researchers with a tremendous gain in experimental
sophistication. In this chapter, and the two that follow,
we examine some of the many applications of analysis
of variance.
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Physical Sound

Mean
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(level of processing)
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FIGURE 12.1

Mean recall as a function of the level of processing.

Rogers, T. B., Kuiper, N. A., & Kirker, W. S. (1977). Self-
reference and the encoding of personal information. Journal of
personality and Social Psychology, 35, 677–688. Copyright
(1977) by the American Psychological Association. Adapted
by permission of the author.
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12.1 INTRODUCTION

Analysis of variance (ANOVA) is a hypothesis-testing procedure that is used to eval-
uate mean differences between two or more treatments (or populations). As with all
inferential procedures, ANOVA uses sample data as the basis for drawing general
conclusions about populations. It may appear that ANOVA and t tests are simply two
different ways of doing exactly the same job: testing for mean differences. In some
respects, this is true—both tests use sample data to test hypotheses about population
means. However, ANOVA has a tremendous advantage over t tests. Specifically, 
t tests are limited to situations in which there are only two treatments to compare. The
major advantage of ANOVA is that it can be used to compare two or more treatments.
Thus, ANOVA provides researchers with much greater flexibility in designing 
experiments and interpreting results.

Figure 12.2 shows a typical research situation for which ANOVA would be used.
Note that the study involves three samples representing three populations. The goal of
the analysis is to determine whether the mean differences observed among the samples
provide enough evidence to conclude that there are mean differences among the three
populations. Specifically, we must decide between two interpretations:

1. There really are no differences between the populations (or treatments). The
observed differences between the sample means are caused by random, unsys-
tematic factors (sampling error) that differentiate one sample from another.

2. The populations (or treatments) really do have different means, and these 
population mean differences are responsible for causing systematic differences
between the sample means.

You should recognize that these two interpretations correspond to the two hypotheses
(null and alternative) that are part of the general hypothesis-testing procedure.

Before we continue, it is necessary to introduce some of the terminology that is used to
describe the research situation shown in Figure 12.2. Recall (from Chapter 1) that when
a researcher manipulates a variable to create the treatment conditions in an experiment,
the variable is called an independent variable. For example, Figure 12.2 could represent

TERMINOLOGY IN ANOVA

Population 2
(Treatment 2)

Population 1
(Treatment 1)

Population 3
(Treatment 3)

μ
3

= ?μ
2

= ?μ1 = ?

Sample 3Sample 2Sample 1
 n � 15
 M � 23.1
 SS � 114

 n � 15
 M � 28.5
 SS � 130

 n � 15
 M � 20.8
 SS � 101

FIGURE 12.2

A typical situation in which
ANOVA would be used.
Three separate samples are
obtained to evaluate the mean
differences among three
populations (or treatments)
with unknown means.
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a study examining driving performance under three different telephone conditions: driv-
ing with no phone, talking on a hands-free phone, and talking on a hand-held phone.
Note that the three conditions are created by the researcher. On the other hand, when a
researcher uses a nonmanipulated variable to designate groups, the variable is called a
quasi-independent variable. For example, the three groups in Figure 12.2 could repre-
sent 6-year-old, 8-year-old, and 10-year-old children. In the context of ANOVA, an 
independent variable or a quasi-independent variable is called a factor. Thus, Figure 12.2
could represent an experimental study in which the telephone condition is the factor
being evaluated or it could represent a nonexperimental study in which age is the factor
being examined.

In ANOVA, the variable (independent or quasi-independent) that designates the
groups being compared is called a factor.

In addition, the individual groups or treatment conditions that are used to make up
a factor are called the levels of the factor. For example, a study that examined perfor-
mance under three different telephone conditions would have three levels of the factor.

The individual conditions or values that make up a factor are called the levels
of the factor.

Like the t tests presented in Chapters 10 and 11, ANOVA can be used with 
either an independent-measures or a repeated-measures design. Recall that an 
independent-measures design means that there is a separate group of participants for each
of the treatments (or populations) being compared. In a repeated-measures design, on the
other hand, the same group is tested in all of the different treatment conditions. In addi-
tion, ANOVA can be used to evaluate the results from a research study that involves more
than one factor. For example, a researcher may want to compare two different therapy
techniques, examining their immediate effectiveness as well as the persistence of their 
effectiveness over time. In this situation, the research study could involve two different
groups of participants, one for each therapy, and measure each group at several different
points in time. The structure of this design is shown in Figure 12.3. Notice that the study
uses two factors, one independent-measures factor and one repeated-measures factor:

1. Factor 1: Therapy technique. A separate group is used for each technique (inde-
pendent measures).

2. Factor 2: Time. Each group is tested at three different times (repeated measures).

In this case, the ANOVA would evaluate mean differences between the two thera-
pies as well as mean differences between the scores obtained at different times. A study
that combines two factors, like the one in Figure 12.3, is called a two-factor design or
a factorial design.

The ability to combine different factors and to mix different designs within one
study provides researchers with the flexibility to develop studies that address scientific
questions that could not be answered by a single design using a single factor.

Although ANOVA can be used in a wide variety of research situations, this
chapter introduces ANOVA in its simplest form. Specifically, we consider only 
single-factor designs. That is, we examine studies that have only one independent
variable (or only one quasi-independent variable). Second, we consider only 
independent-measures designs; that is, studies that use a separate group of 
participants for each treatment condition. The basic logic and procedures that are
presented in this chapter form the foundation for more complex applications of

D E F I N I T I O N

D E F I N I T I O N

388 CHAPTER 12 INTRODUCTION TO ANALYSIS OF VARIANCE
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ANOVA. For example, in Chapter 13, we extend the analysis to single-factor, 
repeated-measures designs and in Chapter 14, we introduce two-factor designs.
But for now, in this chapter, we limit our discussion of ANOVA to single-factor,
independent-measures research studies.

The following example introduces the statistical hypotheses for ANOVA. Suppose
that a researcher examined driving performance under three different telephone con-
ditions: no phone, a hands-free phone, and a hand-held phone. Three samples of 
participants are selected, one sample for each treatment condition. The purpose of the
study is to determine whether using a telephone affects driving performance. In sta-
tistical terms, we want to decide between two hypotheses: the null hypothesis (H0),
which states that the telephone condition has no effect, and the alternative hypothe-
sis (H1), which states that the telephone condition does affect driving. In symbols, the
null hypothesis states

H0: �1 � �2 � �3

In words, the null hypothesis states that the telephone condition has no effect on
driving performance. That is, the population means for the three telephone conditions
are all the same. In general, H0 states that there is no treatment effect.

The alternative hypothesis states that the population means are not all the same:

H1: There is at least one mean difference among the populations.

In general, H1 states that the treatment conditions are not all the same; that is, there
is a real treatment effect. As always, the hypotheses are stated in terms of population
parameters, even though we use sample data to test them.

Notice that we are not stating a specific alternative hypothesis. This is because
many different alternatives are possible, and it would be tedious to list them all. 

STATISTICAL HYPOTHESES
FOR ANOVA

SECTION 12.1 / INTRODUCTION 389

Scores for
group 1

measured
before

Therapy I

Before
Therapy

Therapy I
(Group 1)

THERAPY
TECHNIQUE

Therapy II
(Group 2)

TIME

After
Therapy
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After Therapy

Scores for
group 1

measured
after

Therapy I

Scores for
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measured
6 months after
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Scores for
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measured
before
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FIGURE 12.3

A research design with two factors. The research study uses two factors: One factor uses two levels of therapy technique 
(I versus II), and the second factor uses three levels of time (before, after, and 6 months after). Also notice that the therapy factor
uses two separate groups (independent measures) and the time factor uses the same group for all three levels (repeated measures).
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One alternative, for example, is that the first two populations are identical, but that the
third is different. Another alternative states that the last two means are the same, but
that the first is different. Other alternatives might be

H1: �1 � �2 � �3 (All three means are different.)

H1: �1 � �3, but �2 is different.

We should point out that a researcher typically entertains only one (or at most a
few) of these alternative hypotheses. Usually a theory or the outcomes of previous stud-
ies dictate a specific prediction concerning the treatment effect. For the sake of sim-
plicity, we state a general alternative hypothesis rather than try to list all of the possible
specific alternatives.

The test statistic for ANOVA is very similar to the independent-measures t statistic
used in Chapter 10. For the t statistic, we first computed the standard error, which
measures how much difference is expected between two sample means if there is 
no treatment effect (that is, if H0 is true). Then we computed the t statistic with the 
following structure:

t �

For ANOVA, however, we want to compare differences among two or more sam-
ple means. With more than two samples, the concept of “difference between sample
means” becomes difficult to define or measure. For example, if there are only two sam-
ples and they have means of M � 20 and M � 30, then there is a 10-point difference
between the sample means. Suppose, however, that we add a third sample with a mean
of M � 35. Now how much difference is there between the sample means? It should 
be clear that we have a problem. The solution to this problem is to use variance to 
define and measure the size of the differences among the sample means. Consider the 
following two sets of sample means:

Set 1 Set 2

M1 � 20 M1 � 28
M2 � 30 M2 � 30
M3 � 35 M3 � 31

If you compute the variance for the three numbers in each set, then the variance is
s2 � 58.33 for set 1 and the variance is s2 � 2.33 for set 2. Notice that the two vari-
ances provide an accurate representation of the size of the differences. In set 1, there
are relatively large differences between sample means and the variance is relatively
large. In set 2, the mean differences are small and the variance is small.

Thus, we can use variance to measure sample mean differences when there are two
or more samples. The test statistic for ANOVA uses this fact to compute an F-ratio with
the following structure:

F �

Note that the F-ratio has the same basic structure as the t statistic but is based 
on variance instead of sample mean difference. The variance in the numerator of the 
F-ratio provides a single number that measures the differences among all of the sample
means. The variance in the denominator of the F-ratio, like the standard error in the 

variance (differences) between sample means
������
variance (differences) expected with no treatment effect

obtained difference between two sample means
�������
standard error (the difference expected with no treatment effect)

THE TEST STATISTIC 
FOR ANOVA

390 CHAPTER 12 INTRODUCTION TO ANALYSIS OF VARIANCE
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denominator of the t statistic, measures the mean differences that would be expected if
there were no treatment effect. Thus, the t statistic and the F-ratio provide the same
basic information. In each case, a large value for the test statistic provides evidence that
the sample mean differences (numerator) are larger than would be expected if there
were no treatment effects (denominator).

If we already have t tests for comparing mean differences, you might wonder why
ANOVA is necessary. Why create a whole new hypothesis-testing procedure that sim-
ply duplicates what the t tests can already do? The answer to this question is based in a
concern about Type I errors.

Remember that each time you do a hypothesis test, you select an alpha level that
determines the risk of a Type I error. With � � .05, for example, there is a 5%, or a 
1-in-20, risk of a Type I error. Often a single experiment requires several hypothesis
tests to evaluate all the mean differences. However, each test has a risk of a Type I
error, and the more tests you do, the more risk there is.

For this reason, researchers often make a distinction between the testwise alpha level
and the experimentwise alpha level. The testwise alpha level is simply the alpha level that
you select for each individual hypothesis test. The experimentwise alpha level is the total
probability of a Type I error accumulated from all of the separate tests in the experiment.
As the number of separate tests increases, so does the experimentwise alpha level.

The testwise alpha level is the risk of a Type I error, or alpha level, for an
individual hypothesis test.

When an experiment involves several different hypothesis tests, the experiment-
wise alpha level is the total probability of a Type I error that is accumulated
from all of the individual tests in the experiment. Typically, the experimentwise
alpha level is substantially greater than the value of alpha used for any one of the
individual tests.

For example, an experiment involving three treatments would require three separate
t tests to compare all of the mean differences:

Test 1 compares treatment I with treatment II.

Test 2 compares treatment I with treatment III.

Test 3 compares treatment II with treatment III.

If all tests use � � .05, then there is a 5% risk of a Type I error for the first test, a
5% risk for the second test, and another 5% risk for the third test. The three separate
tests accumulate to produce a relatively large experimentwise alpha level. The advan-
tage of ANOVA is that it performs all three comparisons simultaneously in one hy-
pothesis test. Thus, no matter how many different means are being compared, ANOVA
uses one test with one alpha level to evaluate the mean differences, and thereby avoids
the problem of an inflated experimentwise alpha level.

12.2 THE LOGIC OF ANOVA

The formulas and calculations required in ANOVA are somewhat complicated, but the
logic that underlies the whole procedure is fairly straightforward. Therefore, this sec-
tion gives a general picture of ANOVA before we start looking at the details. We 
introduce the logic of ANOVA with the help of the hypothetical data in Table 12.1.

D E F I N I T I O N S

TYPE I ERRORS 
AND MULTIPLE-HYPOTHESIS

TESTS

SECTION 12.2 / THE LOGIC OF ANOVA 391
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These data represent the results of an independent-measures experiment comparing 
performance in a driving simulator under three telephone conditions.

One obvious characteristic of the data in Table 12.1 is that the scores are not all the
same. In everyday language, the scores are different; in statistical terms, the scores are
variable. Our goal is to measure the amount of variability (the size of the differences)
and to explain why the scores are different.

The first step is to determine the total variability for the entire set of data. To com-
pute the total variability, we combine all of the scores from all of the separate samples
to obtain one general measure of variability for the complete experiment. Once we have
measured the total variability, we can begin to break it apart into separate components.
The word analysis means dividing into smaller parts. Because we are going to analyze
variability, the process is called analysis of variance. This analysis process divides the
total variability into two basic components.

1. Between-Treatments Variance. Looking at the data in Table 12.1, we clearly
see that much of the variability in the scores results from general differences
between treatment conditions. For example, the scores in the no-phone condi-
tion tend to be much higher (M � 4) than the scores in the hand-held condition
(M � 1). We calculate the variance between treatments to provide a measure of
the overall differences between treatment conditions. Notice that the variance
between treatments is really measuring the differences between sample means.

2. Within-Treatment Variance. In addition to the general differences between
treatment conditions, there is variability within each sample. Looking again at
Table 12.1, we see that the scores in the no-phone condition are not all the
same; they are variable. The within-treatments variance provides a measure of
the variability inside each treatment condition.

Analyzing the total variability into these two components is the heart of ANOVA.
We now examine each of the components in more detail.

Remember that calculating variance is simply a method for measuring how big the dif-
ferences are for a set of numbers. When you see the term variance, you can automati-
cally translate it into the term differences. Thus, the between-treatments variance
simply measures how much difference exists between the treatment conditions. There
are two possible explanations for these between-treatment differences:

1. The differences between treatments are not caused by any treatment effect but
are simply the naturally occurring, random, and unsystematic differences that

BETWEEN-TREATMENTS
VARIANCE
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TABLE 12.1

Hypothetical data from an 
experiment examining driving
performance under three 
telephone conditions.*

Treatment 1: Treatment 2: Treatment 3:
No Phone Hand-Held Hands-Free
(Sample 1) (Sample 2) (Sample 3)

4 0 1
3 1 2
6 3 2
3 1 0
4 0 0

M � 4 M � 1 M � 1

*Note that there are three separate samples, with n � 5 in each
sample. The dependent variable is a measure of performance in
a driving simulator.
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exist between one sample and another. That is, the differences are the result of
sampling error.

2. The differences between treatments have been caused by the treatment effects.
For example, if using a telephone really does interfere with driving performance,
then scores in the telephone conditions should be systematically lower than
scores in the no-phone condition.

Thus, when we compute the between-treatments variance, we are measuring dif-
ferences that could be caused by a systematic treatment effect or could simply be ran-
dom and unsystematic mean differences caused by sampling error. To demonstrate that
there really is a treatment effect, we must establish that the differences between treat-
ments are bigger than would be expected by sampling error alone. To accomplish this
goal, we determine how big the differences are when there is no systematic treatment
effect; that is, we measure how much difference (or variance) can be explained by ran-
dom and unsystematic factors. To measure these differences, we compute the variance
within treatments.

Inside each treatment condition, we have a set of individuals who all receive exactly the
same treatment; that is, the researcher does not do anything that would cause these in-
dividuals to have different scores. In Table 12.1, for example, the data show that five
individuals were tested while talking on a hand-held phone (sample 2). Although these
five individuals all received exactly the same treatment, their scores are different. Why
are the scores different? The answer is that there is no specific cause for the differences.
Instead, the differences that exist within a treatment represent random and unsystem-
atic differences that occur when there are no treatment effects causing the scores to be
different. Thus, the within-treatments variance provides a measure of how big the dif-
ferences are when H0 is true.

Figure 12.4 shows the overall ANOVA and identifies the sources of variability that
are measured by each of the two basic components.

Once we have analyzed the total variability into two basic components (between treat-
ments and within treatments), we simply compare them. The comparison is made by

THE F-RATIO: THE TEST
STATISTIC FOR ANOVA

WITHIN-TREATMENTS
VARIANCE

SECTION 12.2 / THE LOGIC OF ANOVA 393

Total
variability

Measures differences
caused by
1. Systematic treatment effects
2. Random, unsystematic factors

Between-
treatments
variance

Measures differences
caused by
1. Random, unsystematic factors

Within-
treatments
variance

FIGURE 12.4

The independent-measures
ANOVA partitions, or ana-
lyzes, the total variability into
two components: variance
between treatments and
variance within treatments.
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computing an F-ratio. For the independent-measures ANOVA, the F-ratio has the 
following structure:

F � � (12.1)

When we express each component of variability in terms of its sources (see Figure
12.4), the structure of the F-ratio is

F � (12.2)

The value obtained for the F-ratio helps determine whether any treatment effects
exist. Consider the following two possibilities:

1. When there are no systematic treatment effects, the differences between
treatments (numerator) are entirely caused by random, unsystematic factors.
In this case, the numerator and the denominator of the F-ratio are both 
measuring random differences and should be roughly the same size. With 
the numerator and denominator roughly equal, the F-ratio should have a
value around 1.00. In terms of the formula, when the treatment effect is 
zero, we obtain

F �

Thus, an F-ratio near 1.00 indicates that the differences between treatments
(numerator) are random and unsystematic, just like the differences in the 
denominator. With an F-ratio near 1.00, we conclude that there is no evidence
to suggest that the treatment has any effect.

2. When the treatment does have an effect, causing systematic differences 
between samples, then the combination of systematic and random differences 
in the numerator should be larger than the random differences alone in the 
denominator. In this case, the numerator of the F-ratio should be noticeably
larger than the denominator, and we should obtain an F-ratio that is substan-
tially larger than 1.00. Thus, a large F-ratio is evidence for the existence of
systematic treatment effects; that is, there are consistent differences 
between treatments.

Because the denominator of the F-ratio measures only random and unsystematic
variability, it is called the error term. The numerator of the F-ratio always includes the
same unsystematic variability as in the error term, but it also includes any systematic
differences caused by the treatment effect. The goal of ANOVA is to find out whether
a treatment effect exists.

For ANOVA, the denominator of the F-ratio is called the error term. The
error term provides a measure of the variance caused by random, unsystematic
differences. When the treatment effect is zero (H0 is true), the error term 
measures the same sources of variance as the numerator of the F-ratio, so the
value of the F-ratio is expected to be nearly equal to 1.00.

D E F I N I T I O N

0 � random, unsystematic differences
–––––––––––––––––––––––––––––––– 

random, unsystematic differences

systematic treatment effects � random, unsystematic differences
––––––––––––––––––––––––––––––––––––––––––––––––––––

random, unsystematic differences

differences including any treatment effects
�����

differences with no treatment effects
variance between treatments
���
variance within treatments
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12.3 ANOVA NOTATION AND FORMULAS

Because ANOVA typically is used to examine data from more than two treatment
conditions (and more than two samples), we need a notational system to keep track of
all the individual scores and totals. To help introduce this notational system, we use the
hypothetical data from Table 12.1 again. The data are reproduced in Table 12.2 along
with some of the notation and statistics that are described in the following list.

1. The letter k is used to identify the number of treatment conditions—that is, the
number of levels of the factor. For an independent-measures study, k also speci-
fies the number of separate samples. For the data in Table 12.2, there are three
treatments, so k � 3.

2. The number of scores in each treatment is identified by a lowercase letter n. For
the example in Table 12.2, n � 5 for all the treatments. If the samples are of
different sizes, you can identify a specific sample by using a subscript. For
example, n2 is the number of scores in treatment 2.

3. The total number of scores in the entire study is specified by a capital letter N.
When all of the samples are the same size (n is constant), N � kn. For the data
in Table 12.2, there are n � 5 scores in each of the k � 3 treatments, so we
have a total of N � 3(5) � 15 scores in the entire study.

4. The sum of the scores (�X) for each treatment condition is identified by the
capital letter T (for treatment total). The total for a specific treatment can be
identified by adding a numerical subscript to the T. For example, the total for
the second treatment in Table 12.2 is T2 � 5.

5. The sum of all of the scores in the research study (the grand total) is identified by
G. You can compute G by adding up all N scores or by adding up the treatment
totals: G � �T.

6. Although there is no new notation involved, we also have computed SS and M
for each sample, and we have calculated �X2 for the entire set of N � 15 scores

SECTION 12.3 / ANOVA NOTATION AND FORMULAS 395

1. ANOVA is a statistical procedure that compares two or more treatment conditions
for differences in variance. (True or false?)

2. In ANOVA, what value is expected, on the average, for the F-ratio when the null
hypothesis is true?

3. What happens to the value of the F-ratio if differences between treatments are 
increased? What happens to the F-ratio if variability inside the treatments is increased?

4. In ANOVA, the total variability is partitioned into two parts. What are these two
variability components called, and how are they used in the F-ratio?

1. False. Although ANOVA uses variance in the computations, the purpose of the test is to
evaluate differences in means between treatments.

2. When H0 is true, the expected value for the F-ratio is 1.00 because the top and bottom of
the ratio are both measuring the same variance.

3. As differences between treatments increase, the F-ratio increases. As variability within
treatments increases, the F-ratio decreases.

4. The two components are between-treatments variability and within-treatments variability.
Between-treatments variance is the numerator of the F-ratio, and within-treatments variance
is the denominator.

L E A R N I N G  C H E C K

ANSWERS
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in the study. These values are given in Table 12.2 and are important in the
formulas and calculations for ANOVA.

Finally, we should note that there is no universally accepted notation for ANOVA.
Although we are using Gs and Ts, for example, you may find that other sources use
other symbols.

Because ANOVA requires extensive calculations and many formulas, one common
problem for students is simply keeping track of the different formulas and numbers.
Therefore, we examine the general structure of the procedure and look at the organiza-
tion of the calculations before we introduce the individual formulas.

1. The final calculation for ANOVA is the F-ratio, which is composed of 
two variances:

F �

2. Each of the two variances in the F-ratio is calculated using the basic formula
for sample variance.

sample variance � s2 � �
S
d
S
f

�

Therefore, we need to compute an SS and a df for the variance between treat-
ments (numerator of F), and we need another SS and df for the variance within
treatments (denominator of F). To obtain these SS and df values, we must go
through two separate analyses: First, compute SS for the total study, and ana-
lyze it in two components (between and within). Then compute df for the total
study, and analyze it in two components (between and within).

Thus, the entire process of ANOVA requires nine calculations: three values for SS,
three values for df, two variances (between and within), and a final F-ratio. However,
these nine calculations are all logically related and are all directed toward finding the
final F-ratio. Figure 12.5 shows the logical structure of ANOVA calculations.

variance between treatments
���
variance within treatments

ANOVA FORMULAS
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TABLE 12.2

The same data that appeared in
Table 12.1 with summary values
and notation appropriate for an
ANOVA.

Telephone Conditions

Treatment 1 Treatment 2 Treatment 3
No Phone Hand-Held Phone Hands-Free Phone
(Sample 1) (Sample 2) (Sample 3)

4 0 1 �X2 � 106
3 1 2 G � 30
6 3 2 N � 15
3 1 0 k � 3
4 0 0

T1 � 20 T2 � 5 T3 � 5
SS1 � 6 SS2 � 6 SS3 � 4
n1 � 5 n2 � 5 n3 � 5

M1 � 4 M2 � 1 M3 � 1

Because ANOVA formulas
require �X for each treatment
and �X for the entire set of
scores, we have introduced 
new notation (T and G) to help
identify which �X is being 
used. Remember: T stands 
for treatment total, and G stands
for grand total.
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The ANOVA requires that we first compute a total sum of squares and then partition this
value into two components: between treatments and within treatments. This analysis is
outlined in Figure 12.6. We will examine each of the three components separately.

1. Total Sum of Squares, SStotal. As the name implies, SStotal is the sum of
squares for the entire set of N scores. As described in Chapter 4 (pp. 111–112),
this SS value can be computed using either a definitional or a computational
formula. However, ANOVA typically involves a large number of scores and the
mean is often not a whole number. Therefore, it is usually much easier to calcu-
late SStotal using the computational formula:

SS � �X2 � �
(�

N
X)2

�

ANALYSIS OF THE SUM OF
SQUARES (SS)
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To obtain each of
the SS and df values,
the total variability
is analyzed into the
two components

Each variance in
the F-ratio is
computed as SS/df

The final goal for the
ANOVA is an F-ratio F �

Variance between treatments
Variance within treatments

�
Variance
between

treatments

SS between

SS between SS within

SS total

df between
�

Variance
within

treatments

SS within
df within

df between df within

df total

FIGURE 12.5

The structure and sequence
of calculations for the
ANOVA.

SS within treatments

 ΣSS inside each treatment

SS between treatments
n (SS for the treatment means)

or

 Σ 
G2

N

T 2

n

SS Total

N
 G2

 Σ X 2  �

�

FIGURE 12.6

Partitioning the sum 
of squares (SS) for the 
independent-measures
ANOVA.
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To make this formula consistent with the ANOVA notation, we substitute the
letter G in place of �X and obtain

SStotal � �X2 � �
G
N

2

� (12.3)

Applying this formula to the set of data in Table 12.2, we obtain

� 106 � 60

� 46

2. Within-Treatments Sum of Squares, SSwithin treatments. Now we are looking
at the variability inside each of the treatment conditions. We already have 
computed the SS within each of the three treatment conditions (Table 12.2): 
SS1 � 6, SS2 � 6, and SS3 � 4. To find the overall within-treatment sum of
squares, we simply add these values together:

SSwithin treatments � �SSinside each treatment (12.4)

For the data in Table 12.2, this formula gives

SSwithin treatments � 6 � 6 � 4

� 16

3. Between-Treatments Sum of Squares, SSbetween treatments. Before we intro-
duce any equations for SSbetween treatments, consider what we have found so far.
The total variability for the data in Table 12.2 is SStotal � 46. We intend to
partition this total into two parts (see Figure 12.5). One part, SSwithin treatments,
has been found to be equal to 16. This means that SSbetween treatments must be
equal to 30 so that the two parts (16 and 30) add up to the total (46). Thus, the
value for SSbetween treatments can be found simply by subtraction:

SSbetween � SStotal � SSwithin (12.5)

However, it is also possible to compute SSbetween independently, then check your
calculations by ensuring that the two components, between and within, add up to the
total. Box 12.1 presents two different formulas for calculating SSbetween directly from
the data.

Computing SSbetween Including the two formulas in Box 12.1, we have presented
three different equations for computing SSbetween. Rather than memorizing all three,
however, we suggest that you pick one formula and use it consistently. There are 
two reasonable alternatives to use. The simplest is Equation 12.5, which finds SSbetween

simply by subtraction: First you compute SStotal and SSwithin, then subtract:

SSbetween � SStotal � SSwithin

The second alternative is to use Equation 12.7, which computes SSbetween using the
treatment totals (the T values). The advantage of this alternative is that it provides a way
to check your arithmetic: Calculate SStotal, SSbetween, and SSwithin separately, and then
check to be sure that the two components add up to equal SStotal.

SS
total

� �106
30

15

2

To simplify the notation, we use
the subscripts between and within
in place of between treatments
and within treatments.
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Using Equation 12.6, which computes SS for the set of sample means, is usually
not a good choice. Unless the sample means are all whole numbers, this equation can
produce very tedious calculations. In most situations, one of the other two equations is
a better alternative.

The analysis of degrees of freedom (df) follows the same pattern as the analysis of SS.
First, we find df for the total set of N scores, and then we partition this value into two
components: degrees of freedom between treatments and degrees of freedom within
treatments. In computing degrees of freedom, there are two important considerations to
keep in mind:

1. Each df value is associated with a specific SS value.

2. Normally, the value of df is obtained by counting the number of items that were
used to calculate SS and then subtracting 1. For example, if you compute SS for
a set of n scores, then df � n � 1.

With this in mind, we examine the degrees of freedom for each part of the analysis.

1. Total Degrees of Freedom, dftotal. To find the df associated with SStotal, you
must first recall that this SS value measures variability for the entire set of 
N scores. Therefore, the df value is

dftotal � N � 1 (12.8)

For the data in Table 12.2, the total number of scores is N � 15, so the total
degrees of freedom are

dftotal � 15 � 1

� 14

THE ANALYSIS OF DEGREES
OF FREEDOM (DF )
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B O X
12.1 ALTERNATIVE FORMULAS FOR SSbetween

treatment means are not whole numbers. Therefore, we
also present a computational formula for SSbetween that uses
the treatment totals (T) instead of the treatment means.

SSbetween � � �
T
n

2

� � �
G
N

2

� (12.7)

For the data in Table 12.2, this formula produces:

� 80 � 5 � 5 � 60
� 90 � 60
� 30

Note that all three techniques (Equations 12.5, 12.6,
and 12.7) produce the same result, SSbetween � 30.

SS
between

� � � �
20

5

5

5

5

5

30

15

2 2 2 2

Recall that the variability between treatments is 
measuring the differences between treatment means.
Conceptually, the most direct way of measuring the
amount of variability among the treatment means is to
compute the sum of squares for the set of sample means,
SSmeans. For the data in Table 12.2, the samples means
are 4, 1, and 1. These three values produce SSmeans � 6.
However, each of the three means represents a group of
n � 5 scores. Therefore, the final value for SSbetween is
obtained by multiplying SSmeans by n.

SSbetween � n(SSmeans) (12.6)

For the data in Table 12.2, we obtain

SSbetween � n(SSmeans) � 5(6) � 30

Unfortunately, Equation 12.6 can only be used when
all of the samples are exactly the same size (equal ns), and 
the equation can be very awkward, especially when the
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2. Within-Treatments Degrees of Freedom, dfwithin. To find the df associated
with SSwithin, we must look at how this SS value is computed. Remember, we
first find SS inside of each of the treatments and then add these values together.
Each of the treatment SS values measures variability for the n scores in the
treatment, so each SS has df � n � 1. When all of these individual treatment
values are added together, we obtain

dfwithin � �(n � 1) � �dfin each treatment (12.9)

For the experiment we have been considering, each treatment has n � 5 scores.
This means there are n � 1 � 4 degrees of freedom inside each treatment.
Because there are three different treatment conditions, this gives a total of 
12 for the within-treatments degrees of freedom. Notice that this formula for 
df simply adds up the number of scores in each treatment (the n values) 
and subtracts 1 for each treatment. If these two stages are done separately, 
you obtain

dfwithin � N � k (12.10)

(Adding up all the n values gives N. If you subtract 1 for each treatment, then
altogether you have subtracted k because there are k treatments.) For the data in
Table 12.2, N � 15 and k � 3, so

dfwithin � 15 � 3

� 12

3. Between-Treatments Degrees of Freedom, dfbetween. The df associated with
SSbetween can be found by considering how the SS value is obtained. This SS
formulas measure the variability for the set of treatments (totals or means). To
find dfbetween, simply count the number of treatments and subtract 1. Because
the number of treatments is specified by the letter k, the formula for df is

dfbetween � k � 1 (12.11)

For the data in Table 12.2, there are three different treatment conditions (three
T values or three sample means), so the between-treatments degrees of freedom
are computed as follows:

dfbetween � 3 � 1

� 2

Notice that the two parts we obtained from this analysis of degrees of freedom
add up to equal the total degrees of freedom:

dftotal � dfwithin � dfbetween

14 � 12 � 2

The complete analysis of degrees of freedom is shown in Figure 12.7.
As you are computing the SS and df values for ANOVA, keep in mind that the 

labels that are used for each value can help you understand the formulas. Specifically,

1. The term total refers to the entire set of scores. We compute SS for the whole
set of N scores, and the df value is simply N � 1.

400 CHAPTER 12 INTRODUCTION TO ANALYSIS OF VARIANCE
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2. The term within treatments refers to differences that exist inside the individual
treatment conditions. Thus, we compute SS and df inside each of the separate
treatments.

3. The term between treatments refers to differences from one treatment to 
another. With three treatments, for example, we are comparing three different
means (or totals) and have df � 3 � 1 � 2.

The next step in the ANOVA procedure is to compute the variance between treatments and
the variance within treatments, which are used to calculate the F-ratio (see Figure 12.5).

In ANOVA, it is customary to use the term mean square, or simply MS, in place
of the term variance. Recall (from Chapter 4) that variance is defined as the mean of
the squared deviations. In the same way that we use SS to stand for the sum of the
squared deviations, we now use MS to stand for the mean of the squared deviations. For
the final F-ratio we need an MS (variance) between treatments for the numerator and
an MS (variance) within treatments for the denominator. In each case

MS (variance) � s2 � �
S
d
S
f

� (12.12)

For the data we have been considering,

and

MS s
SS

dfwithin within
within

within

� � � �2 16

12
1 3. 33

MS s
SS

dfbetween between
between

between

� � � �2 30

2
115

CALCULATION OF VARIANCES
(MS) AND THE F-RATIO
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N��1

df within treatmentsdf between treatments

k  Σ(n �1) = k

df total

N�1

FIGURE 12.7

Partitioning degrees of 
freedom (df ) for the 
independent-measures
ANOVA.
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We now have a measure of the variance (or differences) between the treatments
and a measure of the variance within the treatments. The F-ratio simply compares these
two variances:

(12.13)

For the experiment we have been examining, the data give an F-ratio of

For this example, the obtained value of F � 11.28 indicates that the numerator of
the F-ratio is substantially bigger than the denominator. If you recall the conceptual
structure of the F-ratio as presented in Equations 12.1 and 12.2, the F value we obtained
indicates that the differences between treatments are more than 11 times bigger than
what would be expected if there were no treatment effect. Stated in terms of the exper-
imental variables: using a telephone while driving does appear to have an effect on driv-
ing performance. However, to properly evaluate the F-ratio, we must select an � level
and consult the F-distribution table that is discussed in the next section.

ANOVA Summary Tables It is useful to organize the results of the analysis in one
table called an ANOVA summary table. The table shows the source of variability 
(between treatments, within treatments, and total variability), SS, df, MS, and F. For the
previous computations, the ANOVA summary table is constructed as follows:

Source SS df MS

Between treatments 30 2 15 F � 11.28
Within treatments 16 12 1.33
Total 46 14

Although these tables are no longer used in published reports, they are a common
part of computer printouts, and they do provide a concise method for presenting the re-
sults of an analysis. (Note that you can conveniently check your work: Adding the first
two entries in the SS column, 30 � 16, produces SStotal. The same applies to the df col-
umn.) When using ANOVA, you might start with a blank ANOVA summary table and
then fill in the values as they are calculated. With this method, you are less likely to
“get lost” in the analysis, wondering what to do next.

F � �
15

1 33
11 28

.
.

F
s

s

MS

MS
� �between

within

between

within

2

2
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L E A R N I N G  C H E C K 1. Calculate SStotal, SSbetween, and SSwithin for the following set of data:

Treatment 1 Treatment 2 Treatment 3

n � 10 n � 10 n � 10 N � 30
T � 10 T � 20 T � 30 G � 60

SS � 27 SS � 16 SS � 23 �X2 � 206

2. A researcher uses an ANOVA to compare three treatment conditions with a sample
of n � 8 in each treatment. For this analysis, find dftotal, dfbetween, and dfwithin.
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3. A researcher reports an F-ratio with dfbetween � 2 and dfwithin � 30 for an 
independent-measures ANOVA. How many treatment conditions were compared
in the experiment? How many subjects participated in the experiment?

4. A researcher conducts an experiment comparing four treatment conditions with a
separate sample of n � 6 in each treatment. An ANOVA is used to evaluate the
data, and the results of the ANOVA are presented in the following table. Complete
all missing values in the table. Hint: Begin with the values in the df column.

Source SS df MS

Between treatments __ __ __ F � ____
Within treatments __ __ 2
Total 58 __

1. SStotal � 86; SSbetween � 20; SSwithin � 66

2. dftotal � 23; dfbetween � 2; dfwithin � 21

3. There were 3 treatment conditions (dfbetween � k � 1 � 2). A total of N � 33 individuals
participated (dfwithin � 30 � N � k).

4. Source SS df MS

Between treatments 18 3 6 F � 3.00
Within treatments 40 20 2
Total 58 23

ANSWERS

12.4 THE DISTRIBUTION OF F-RATIOS

In ANOVA, the F-ratio is constructed so that the numerator and denominator of
the ratio are measuring exactly the same variance when the null hypothesis is true (see
Equation 12.2). In this situation, we expect the value of F to be around 1.00.

If the null hypothesis is false, then the F-ratio should be much greater than 1.00.
The problem now is to define precisely which values are “around 1.00” and which are
“much greater than 1.00.” To answer this question, we need to look at all of the pos-
sible F values—that is, the distribution of F-ratios.

Before we examine this distribution in detail, you should note two obvious 
characteristics:

1. Because F-ratios are computed from two variances (the numerator and denomi-
nator of the ratio), F values always are positive numbers. Remember that 
variance is always positive.

2. When H0 is true, the numerator and denominator of the F-ratio are measuring
the same variance. In this case, the two sample variances should be about the
same size, so the ratio should be near 1. In other words, the distribution of 
F-ratios should pile up around 1.00.

With these two factors in mind, we can sketch the distribution of F-ratios. The dis-
tribution is cut off at zero (all positive values), piles up around 1.00, and then tapers off
to the right (Figure 12.8). The exact shape of the F distribution depends on the degrees
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of freedom for the two variances in the F-ratio. You should recall that the precision of
a sample variance depends on the number of scores or the degrees of freedom. In gen-
eral, the variance for a large sample (large df) provides a more accurate estimate of the
population variance. Because the precision of the MS values depends on df, the shape
of the F distribution also depends on the df values for the numerator and denominator
of the F-ratio. With very large df values, nearly all of the F-ratios are clustered very
near to 1.00. With the smaller df values, the F distribution is more spread out.

For ANOVA, we expect F near 1.00 if H0 is true, and we expect a large value for F if H0

is not true. In the F distribution, we need to separate those values that are reasonably near
1.00 from the values that are significantly greater than 1.00. These critical values are pre-
sented in an F distribution table in Appendix B, page 705. A portion of the F distribution
table is shown in Table 12.3. To use the table, you must know the df values for the F-ratio
(numerator and denominator), and you must know the alpha level for the hypothesis test.
It is customary for an F table to have the df values for the numerator of the F-ratio printed
across the top of the table. The df values for the denominator of F are printed in a column
on the left-hand side. For the experiment we have been considering, the numerator of the
F-ratio (between treatments) has df � 2, and the denominator of the F-ratio (within treat-
ments) has df � 12. This F-ratio is said to have “degrees of freedom equal to 2 and 12.”
The degrees of freedom would be written as df � 2, 12. To use the table, you would first
find df � 2 across the top of the table and df � 12 in the first column. When you line 
up these two values, they point to a pair of numbers in the middle of the table. These 
numbers give the critical cutoffs for � � .05 and � � .01. With df � 2, 12, for example,
the numbers in the table are 3.88 and 6.93. Thus, only 5% of the distribution (� � .05)
corresponds to values greater than 3.88, and only1% of the distribution (� � .01) corre-
sponds to values greater than 6.93 (see Figure 12.8).

In the experiment comparing driving performance under different telephone con-
ditions, we obtained an F-ratio of 11.28. According to the critical cutoffs in Figure 12.8,
this value is extremely unlikely (it is in the most extreme 1%). Therefore, we would 
reject H0 with an � level of either .05 or .01, and conclude that the different telephone
conditions significantly affect driving performance.

THE F DISTRIBUTION TABLE

404 CHAPTER 12 INTRODUCTION TO ANALYSIS OF VARIANCE

F
0 1 2 3 4 5 6 7

5%

1%

3.88 6.93

FIGURE 12.8

The distribution of F-ratios
with df � 2, 12. Of all the
values in the distribution,
only 5% are larger than 
F � 3.88, and only 1% are
larger than F � 6.93.
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12.5 EXAMPLES OF HYPOTHESIS TESTING AND EFFECT SIZE
WITH ANOVA

Although we have now seen all the individual components of ANOVA, the following
example demonstrates the complete ANOVA process using the standard four-step 
procedure for hypothesis testing.

The data in Table 12.4 were obtained from an independent-measures experiment
designed to examine people’s preferences for viewing distance of a 42-inch, 
high-definition television. Four viewing distances were evaluated, 9 feet, 12 feet, 
15 feet, and 18 feet, with a separate group of participants tested at each distance.
Each individual watched a 30-minute television program from a specific distance and
then completed a brief questionnaire measuring their satisfaction with the experience.
One question asked them to rate the viewing distance on a scale from 1 (Very 
Bad—definitely need to move closer or farther away) to 7 (Excellent—perfect
viewing distance). The purpose of the ANOVA is to determine whether there are any
significant differences among the four viewing distances that were tested.

Before we begin the hypothesis test, note that we have already computed several
summary statistics for the data in Table 12.4. Specifically, the treatment totals (T) and
SS values are shown for each sample, and the grand total (G) as well as N and �X2

are shown for the entire set of data. Having these summary values simplifies the

E X A M P L E  1 2 . 1
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TABLE 12.3

A portion of the F distribution
table. Entries in roman type are
critical values for the .05 level
of significance, and bold type
values are for the .01 level of
significance. The critical values
for df � 2, 12 have been 
highlighted (see text).

Degrees of Freedom: Numerator
Degrees of Freedom:

Denominator 1 2 3 4 5 6

10 4.96 4.10 3.71 3.48 3.33 3.22
10.04 7.56 6.55 5.99 5.64 5.39

11 4.84 3.98 3.59 3.36 3.20 3.09
9.65 7.20 6.22 5.67 5.32 5.07

12 4.75 3.88 3.49 3.26 3.11 3.00
9.33 6.93 5.95 5.41 5.06 4.82

13 4.67 3.80 3.41 3.18 3.02 2.92
9.07 6.70 5.74 5.20 4.86 4.62

14 4.60 3.74 3.34 3.11 2.96 2.85
8.86 6.51 5.56 5.03 4.69 4.46

1. A researcher obtains F � 4.18 with df � 2, 15. Is this value sufficient to reject H0

with � � .05? Is it big enough to reject H0 if � � .01?

2. With � � .05, what value forms the boundary for the critical region in the distribution
of F-ratios with df � 2, 24?

1. For � � .05, the critical value is 3.68 and you should reject H0. For � � .01, the critical
value is 6.36 and you should fail to reject H0.

2. The critical value is 3.40.

L E A R N I N G  C H E C K

ANSWERS
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computations in the hypothesis test, and we suggest that you always compute these
summary statistics before you begin an ANOVA.

State the hypotheses and select an alpha level.

H0: �1 � �2 � �3 � �4 (There is no treatment effect.)

H1: At least one of the treatment means is different.

We use � � .05.

Locate the critical region.
We first must determine degrees of freedom for MSbetween treatments and MSwithin

treatments (the numerator and denominator of the F-ratio), so we begin by analyzing
the degrees of freedom. For these data, the total degrees of freedom are

dftotal � N � 1

� 20 � 1

� 19

Analyzing this total into two components, we obtain

dfbetween � k � 1 � 4 � 1 � 3

dfwithin � �dfinside each treatment � 4 � 4 � 4 � 4 � 16

The F-ratio for these data has df � 3, 16. The distribution of all the possible 
F-ratios with df � 3, 16 is presented in Figure 12.9. Note that F-ratios larger than
3.24 are extremely rare (p 	 .05) if H0 is true and, therefore, form the critical region
for the test.

Compute the F-ratio.
The series of calculations for computing F is presented in Figure 12.5 and can be

summarized as follows:

a. Analyze the SS to obtain SSbetween and SSwithin.

b. Use the SS values and the df values (from step 2) to calculate the two variances,
MSbetween and MSwithin.

c. Finally, use the two MS values (variances) to compute the F-ratio.

Analysis of SS. First, we compute the total SS and then the two components, as
indicated in Figure 12.6.

SStotal is simply the SS for the total set of N � 20 scores.

S T E P  3 :

S T E P  2 :

S T E P  1 :
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TABLE 12.4

Satisfaction with different 
viewing distances of a 42-inch
high-definition television.

9 feet 12 feet 15 feet 18 feet

3 4 7 6 N � 20
0 3 6 3 G � 60
2 1 5 4 �X2 � 262
0 1 4 3
0 1 3 4

T � 5 T � 10 T � 25 T � 20 
SS � 8 SS � 8 SS � 10 SS � 6

Often it is easier to postpone
finding the critical region until
after step 3, where you compute
the df values as part of the
calculations for the F-ratio.
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SStotal � �X2 � �
G
N

2

�

� 262 � 180

� 82

SSwithin combines the SS values from inside each of the treatment conditions.

SSwithin � �SSinside each treatment � 8 � 8 � 10 � 6 � 32

SSbetween measures the differences among the four treatment means (or treatment
totals). Because we have already calculated SStotal and SSwithin, the simplest way to
obtain SSbetween is by subtraction (Equation 12.5).

SSbetween � SStotal � SSwithin

� 82 � 32

� 50

Calculation of mean squares. Because we already found dfbetween � 3 and
dfwithin � 16 (Step 2), we now can compute the variance or MS value for each 
of the two components.

Calculation of F. We compute the F-ratio:

F
MS

MS
� � �between

within

16 67

2 00
8 33

.

.
.

MS
SS

df

MS

between
between

between

wit

� � �
50

3
16 67.

hhin
within

within

� � �
SS

df

32

16
2 00.

� �262
60

20

2
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3.24

5%

1 2 3 4

df = 3, 16

FIGURE 12.9

The distribution of F-ratios
with df � 3, 16. The critical
value for � � .05 is F � 3.24.
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Make a decision.
The F value we obtained, F � 8.33, is in the critical region (see Figure 12.9). It

is very unlikely (p 	 .05) that we would obtain a value this large if H0 is true.
Therefore, we reject H0 and conclude that there is a significant treatment effect.

Example 12.1 demonstrated the complete, step-by-step application of the ANOVA
procedure. There are two additional points that can be made using this example.

First, you should look carefully at the statistical decision. We have rejected H0

and concluded that not all the treatments are the same. But we have not determined
which ones are different. Is a 9-foot distance different from 12 feet? Is 12 feet 
different from 15 feet? Unfortunately, these questions remain unanswered. We do
know that at least one difference exists (we rejected H0), but additional analysis is
necessary to find out exactly where this difference is. We address this problem in
Section 12.6.

Second, as noted earlier, all of the components of the analysis (the SS, df, MS, and F)
can be presented together in one summary table. The summary table for the analysis in
Example 12.1 is as follows:

Source SS df MS

Between treatments 50 3 16.67 F � 8.33
Within treatments 32 16 2.00
Total 82 19

Although these tables are very useful for organizing the components of an
ANOVA, they are not commonly used in published reports. The current method for 
reporting the results from an ANOVA is presented on page 409.

As we noted previously, a significant mean difference simply indicates that the dif-
ference observed in the sample data is very unlikely to have occurred just by chance.
Thus, the term significant does not necessarily mean large, it simply means larger
than expected by chance. To provide an indication of how large the effect actually 
is, researchers should report a measure of effect size in addition to the measure of 
significance.

For ANOVA, the simplest and most direct way to measure effect size is to com-
pute the percentage of variance accounted for by the treatment conditions. Like the 
r2 value used to measure effect size for the t tests in Chapters 9, 10, and 11, this 
percentage measures how much of the variability in the scores is accounted for by the
differences between treatments. For ANOVA, the calculation and the concept of the
percentage of variance is extremely straightforward. Specifically, we determine how
much of the total SS is accounted for by the SSbetween treatments.

SSbetween treatments
The percentage of variance accounted for  � ––––––––––––––

SStotal

(12.14)

For the data in Example 12.1, the percentage of variance accounted for  � —50
82 � 0.61

(or 61%).

MEASURING EFFECT SIZE 
FOR ANOVA

S T E P  4 :
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In published reports of ANOVA results, the percentage of variance accounted for
by the treatment effect is usually called 
2 (the Greek letter eta squared) instead of
using r2. Thus, for the study in Example 12.1, 
2 � 0.61.

IN THE LITERATURE

REPORTING THE RESULTS OF ANOVA

The APA format for reporting the results of ANOVA begins with a presentation of
the treatment means and standard deviations in the narrative of the article, a table, or
a graph. These descriptive statistics are not part of the calculations for the ANOVA,
but you can easily determine the treatment means from n and T (M � T/n) and the
standard deviations from the SS and n�1 values for each treatment. Next, report the
results of the ANOVA. For the study described in Example 12.1, the report might
state the following:

SECTION 12.5 / EXAMPLES OF HYPOTHESIS TESTING AND EFFECT SIZE WITH ANOVA 409

The means and standard deviations are presented in Table 1. The analysis of 
variance indicates that there are significant differences among the four viewing
distances, F(3, 16) � 8.33, p 	 .05, 
2 � 0.61.

TABLE 1

Ratings of satisfaction with different television viewing distances.

9 Feet 12 Feet 15 Feet 18 Feet

M 1.00 2.00 5.00 4.00
SD 1.41 1.41 1.58 1.22

Note how the F-ratio is reported. In this example, degrees of freedom for between
and within treatments are df = 3, 16, respectively. These values are placed in
parentheses immediately following the symbol F. Next, the calculated value for F is
reported, followed by the probability of committing a Type I error (the alpha level)
and the measure of effect size.

When an ANOVA is done using a computer program, the F-ratio is usually
accompanied by an exact value for p. The data from Example 12.1 were analyzed
using the SPSS program (see Resources at the end of this chapter) and the computer
output included a significance level of p = .001. Using the exact p value from the
computer output, the research report would conclude, “The analysis of variance
revealed significant differences among the four viewing distances, F(3, 16) = 8.33, 
p = .001, 
2 = 0.61.”

Because ANOVA requires relatively complex calculations, students encountering this
statistical technique for the first time often tend to be overwhelmed by the formulas
and arithmetic and lose sight of the general purpose for the analysis. The following
two examples are intended to minimize the role of the formulas and shift attention
back to the conceptual goal of the ANOVA process.

A CONCEPTUAL VIEW 
OF ANOVA
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The following data represent the outcome of an experiment using two separate
samples to evaluate the mean difference between two treatment conditions. Take a
minute to look at the data and, without doing any calculations, try to predict the
outcome of an ANOVA for these values. Specifically, predict what values should be
obtained for the between-treatments variance (MS) and the F-ratio. If you do not
“see” the answer after 20 or 30 seconds, try reading the hints that follow the data.

Treatment I Treatment II

4 2 N � 8
0 1 G � 16
1 0 �X 2 � 56
3 5

T � 8 T � 8
SS � 10 SS � 14

If you are having trouble predicting the outcome of the ANOVA, read the
following hints, and then go back and look at the data.

Hint 1: Remember: SSbetween and MSbetween provide a measure of how much difference
there is between treatment conditions.

Hint 2: Find the mean or total (T) for each treatment, and determine how much difference
there is between the two treatments.

You should realize by now that the data have been constructed so that there is
zero difference between treatments. The two sample means (and totals) are identical,
so SSbetween � 0, MSbetween � 0, and the F-ratio is zero.

Conceptually, the numerator of the F-ratio always measures how much difference
exists between treatments. In Example 12.2, we constructed an extreme set of scores
with zero difference. However, you should be able to look at any set of data and quickly
compare the means (or totals) to determine whether there are big differences or small
differences between treatments.

Being able to estimate the magnitude of between-treatment differences is a good
first step in understanding ANOVA and should help you to predict the outcome of an
ANOVA. However, the between-treatment differences are only one part of the analysis.
You must also understand the within-treatment differences that form the denominator of
the F-ratio. The following example is intended to demonstrate the concepts underlying
SSwithin and MSwithin. In addition, the example should give you a better understanding of
how the between-treatment differences and the within-treatment differences act together
within the ANOVA.

The purpose of this example is to present a visual image for the concepts of
between-treatments variability and within-treatments variability. In this example, 
we compare two hypothetical outcomes for the same experiment. In each case, the
experiment uses two separate samples to evaluate the mean difference between 
two treatments. The following data represent the two outcomes, which we call
experiment A and experiment B.

E X A M P L E  1 2 . 3

E X A M P L E  1 2 . 2

410 CHAPTER 12 INTRODUCTION TO ANALYSIS OF VARIANCE
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Experiment A Experiment B

Treatment Treatment
I II I II

8 12 4 12
8 13 11 9
7 12 2 20
9 11 17 6
8 13 0 16
9 12 8 18
7 11 14 3

M � 8 M � 12 M � 8 M � 12
s � 0.82       s � 0.82 s � 6.35      s � 6.35

The data from experiment A are displayed in a frequency distribution graph in
Figure 12.10(a). Notice that there is a 4-point difference between the treatment means
(M1 � 8 and M2 � 12). This is the between-treatments difference that contributes to
the numerator of the F-ratio. Also notice that the scores in each treatment are
clustered closely around the mean, indicating that the variance inside each treatment
is relatively small. This is the within-treatments variance that contributes to the
denominator of the F-ratio. Finally, you should realize that it is easy to see the mean
difference between the two samples. The fact that there is a clear mean difference
between the two treatments is confirmed by computing the F-ratio for experiment A.

SECTION 12.5 / EXAMPLES OF HYPOTHESIS TESTING AND EFFECT SIZE WITH ANOVA 411

Between
treatments

Treatment 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Treatment 2

18 19 20

Fr
e

q
u

e
n

c
y

1

2

3

Between
treatments

Treatment 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Treatment 2

18 19 20

Fr
e

q
u

e
n

c
y

1

2

3

M1 � 8
SS1 � 4

M2 � 12
SS2 � 4

M2 � 12
SS2 � 242

M1 � 8
SS1 � 242

Experiment B

Experiment A(a)

(b)

FIGURE 12.10

A visual representation of the
between-treatments variability
and the within-treatments
variability that form the
numerator and denominator,
respectively, of the F-ratio. In
(a), the difference between
treatments is relatively large
and easy to see. In (b), the
same 4-point difference 
between treatments is 
relatively small and is 
overwhelmed by the 
within-treatments variability.
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An F-ratio of F � 83.96 is sufficient to reject the null hypothesis, so we
conclude that there is a significant difference between the two treatments.

Now consider the data from experiment B, which are shown in Figure 12.10(b)
and present a very different picture. This experiment has the same 4-point difference
between treatment means that we found in experiment A (M1 � 8 and M2 � 12).
However, for these data the scores in each treatment are scattered across the entire
scale, indicating relatively large variance inside each treatment. In this case, the large
variance within treatments overwhelms the relatively small mean difference between
treatments. In the figure it is almost impossible to see the mean difference between
treatments. For these data, the F-ratio confirms that there is no clear mean difference
between treatments.

F � � �
M

M

S

S
b

w

et

i

w

th

e

i

e

n

n
� � �

40
5
.
6
33
� � 1.39

For experiment B, the F-ratio is not large enough to reject the null hypothesis,
so we conclude that there is no significant difference between the two treatments.
Once again, the statistical conclusion is consistent with the appearance of the data in
Figure 12.10(b). Looking at the figure, we see that the scores from the two samples
appear to be intermixed randomly with no clear distinction between treatments.

As a final point, note that the denominator of the F-ratio, MSwithin, is a measure
of the variability (or variance) within each of the separate samples. As we have noted
in previous chapters, high variability makes it difficult to see any patterns in the data.
In Figure 12.10(a), the 4-point mean difference between treatments is easy to see
because the sample variability is small. In Figure 12.10(b), the 4-point difference gets
lost because the sample variability is large. In general, you can think of variance as
measuring the amount of “noise” or “confusion” in the data. With large variance,
there is a lot of noise and confusion and it is difficult to see any clear patterns.

Although Examples 12.2 and 12.3 present somewhat simplified demonstrations
with exaggerated data, the general point of the examples is to help you see what hap-
pens when you perform an ANOVA. Specifically:

1. The numerator of the F-ratio (MSbetween) measures how much difference exists
between the treatment means. The bigger the mean differences, the bigger the
F-ratio.

2. The denominator of the F-ratio (MSwithin) measures the variance of the scores
inside each treatment; that is, the variance for each of the separate samples. In
general, larger sample variance produces a smaller F-ratio.

We should note that the number of scores in the samples also can influence the out-
come of an ANOVA. As with most other hypothesis tests, if other factors are held con-
stant, increasing the sample size tends to increase the likelihood of rejecting the null
hypothesis. However, changes in sample size have little or no effect on measures of 
effect size such as 
2.

Finally, we should note that the problems associated with high variance often can
be minimized by transforming the original scores to ranks and then conducting an 

between-treatments difference
����
within-treatments differences

between-treatments difference
����
within-treatments differences
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alternative statistical analysis known as the Kruskal-Wallis test, which is designed
specifically for ordinal data. The Kruskal-Wallis test is presented in Appendix E,
which also discusses the general purpose and process of converting numerical scores
into ranks. The Kruskal-Wallis test also can be used if the data violate one of the 
assumptions for the independent-measures ANOVA, which are outlined at the end 
of section 12.7.

You may have recognized that the two research outcomes presented in Example 12.3
are similar to those presented earlier in Example 10.5 in Chapter 10. Both examples are
intended to demonstrate the role of variance in a hypothesis test. Both examples show
that large values for sample variance can obscure any patterns in the data and reduce
the potential for finding significant differences between means.

For the independent-measures t statistic in Chapter 10, the sample variance con-
tributed directly to the standard error in the bottom of the t formula. Now, the sample
variance contributes directly to the value of MSwithin in the bottom of the F-ratio. In the
t-statistic and in the F-ratio the variances from the separate samples are pooled together
to create one average value for sample variance. For the independent-measures t statis-
tic, we pooled two samples together to compute

pooled variance � s2
p � �

S
d
S
f
1

1

�

�

S
d
S
f2

2�

Now, in ANOVA, we are combining two or more samples to calculate
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S

d

S

fw
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Notice that the concept of pooled variance is the same whether you have exactly
two samples or more than two samples. In either case, you simply add the SS values and
divide by the sum of the df values. The result is an average of all of the different sam-
ple variances.

In the previous examples, all of the samples were exactly the same size (equal ns).
However, the formulas for ANOVA can be used when the sample size varies within an
experiment. You also should note, however, that the general ANOVA procedure is
most accurate when used to examine experimental data with equal sample sizes.
Therefore, researchers generally try to plan experiments with equal ns. However, there
are circumstances in which it is impossible or impractical to have an equal number of
subjects in every treatment condition. In these situations, ANOVA still provides a valid
test, especially when the samples are relatively large and when the discrepancy between
sample sizes is not extreme.

The following example demonstrates an ANOVA with samples of different sizes.

A researcher is interested in the amount of homework required by different
academic majors. Students are recruited from Biology, English, and Psychology 
to participant in the study. The researcher randomly selects one course that each

E X A M P L E  1 2 . 4

AN EXAMPLE WITH UNEQUAL
SAMPLE SIZES

SS1 � SS2 � SS3 � � � �
���
df1 � df2 � df3 � � � �

MSwithin AND POOLED
VARIANCE
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student is currently taking and asks the student to record the amount of out-of-class
work required each week for the course. The researcher used all of the volunteer
participants, which resulted in unequal sample sizes. The data are summarized in
Table 12.5.

State the hypotheses, and select the alpha level.

H0: �1 � �2 � �3

H1: At least one population is different.

� � .05

Locate the critical region.
To find the critical region, we first must determine the df values for the F-ratio:

dftotal � N � 1 � 20 � 1 � 19

dfbetween � k � 1 � 3 � 1 � 2

dfwithin � N � k � 20 � 3 � 17

The F-ratio for these data has df � 2, 17. With � � .05, the critical value for the
F-ratio is 3.59.

Compute the F-ratio.
First, compute the three SS values. As usual, SStotal is the SS for the total set of 

N � 20 scores, and SSwithin combines the SS values from inside each of the treatment
conditions.

SStotal � �X2 � �
G
N

2

�

SSwithin � �SSinside each treatment

� 3377 � 3125 � 37 � 90 � 60

� 252 � 187

SSbetween can be found by subtraction (Equation 12.5).

SSbetween � SStotal � SSwithin

� 252 � 187

� 65

� �3377
250

20

2

S T E P  3 :

S T E P  2 :

S T E P  1 :

TABLE 12.5

Average hours of homework per
week for one course for students
in three academic majors.

Biology English Psychology

n � 4 n � 10 n � 6 N � 20
M � 9 M � 13 M � 14 G � 250
T � 36 T � 130 T � 84 �X2 � 3377

SS � 37 SS � 90 SS � 60
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Or, SSbetween can be calculated using the computation formula (Equation 12.7). If
you use the computational formula, be careful to match each treatment total (T) with
the appropriate sample size (n) as follows:

Finally, compute the MS values and the F-ratio:

Make a decision.
Because the obtained F-ratio is not in the critical region, we fail to reject the null

hypothesis and conclude that there are no significant differences among the three
populations of students in terms of the average amount of homework each week.

S T E P  4 :

MS
SS

df

MS
SS

df

between

within

� � �

�

65

2
32 5.

� �

� �

187

17
11

32 5
F

MS

MS

.between

within
111

2 95� .

SS
T

n

G

Nbetween � �

�  � �

Σ
2 2

2 236

4
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844

6

250

20
324 1690 1176 3125
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2 2
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L E A R N I N G  C H E C K 1. A researcher used ANOVA and computed F � 4.25 for the following data.

Treatments

I II III

n � 10 n � 10 n � 10
M � 20 M � 28 M � 35
SS � 1005 SS � 1391 SS � 1180

a. If the mean for treatment III were changed to M � 25, what would happen to
the size of the F-ratio (increase or decrease)? Explain your answer.

b. If the SS for treatment I were changed to SS � 1400, what would happen to the
size of the F-ratio (increase or decrease)? Explain your answer.

2. A research study comparing three treatment conditions produces T � 20 with n � 4
for the first treatment, T � 10 with n � 5 for the second treatment, and T � 30
with n � 6 for the third treatment. Calculate SSbetween treatments for these data.

1. a. If the mean for treatment III were changed to M � 25, it would reduce the size of the
mean differences (the three means would be closer together). This would reduce the size
of MSbetween and would reduce the size of the F-ratio.

b. If the SS in treatment I were increased to SS � 1400, it would increase the size of the
variability within treatments. This would increase MSwithin and would reduce the size of
the F-ratio.

2. With G � 60 and N � 15, SSbetween � 30.

ANSWERS
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12.6 POST HOC TESTS

As noted earlier, the primary advantage of ANOVA (compared to t tests) is that it 
allows researchers to test for significant mean differences when there are more than 
two treatment conditions. ANOVA accomplishes this feat by comparing all the indi-
vidual mean differences simultaneously within a single test. Unfortunately, the process
of combining several mean differences into a single test statistic creates some difficulty
when it is time to interpret the outcome of the test. Specifically, when you obtain a sig-
nificant F-ratio (reject H0), it simply indicates that somewhere among the entire set of
mean differences there is at least one that is statistically significant. In other words, the
overall F-ratio only tells you that a significant difference exists; it does not tell exactly
which means are significantly different and which are not.

Consider, for example, a research study that uses three samples to compare three
treatment conditions. Suppose that the three sample means are M1 � 3, M2 � 5, and 
M3 � 10. In this hypothetical study there are three mean differences:

1. There is a 2-point difference between M1 and M2.

2. There is a 5-point difference between M2 and M3.

3. There is a 7-point difference between M1 and M3.

If an ANOVA were used to evaluate these data, a significant F-ratio would indicate
that at least one of the sample mean differences is large enough to satisfy the criterion
of statistical significance. In this example, the 7-point difference is the biggest of the
three and, therefore, it must indicate a significant difference between the first treatment
and the third treatment (�1 � �3). But what about the 5-point difference? Is it also large
enough to be significant? And what about the 2-point difference between M1 and M2? Is
it also significant? The purpose of post hoc tests is to answer these questions.

Post hoc tests (or posttests) are additional hypothesis tests that are done after
an ANOVA to determine exactly which mean differences are significant and
which are not.

As the name implies, post hoc tests are done after an ANOVA. More specifically,
these tests are done after ANOVA when

1. You reject H0 and

2. There are three or more treatments (k � 3).

Rejecting H0 indicates that at least one difference exists among the treatments. If
there are only two treatments, then there is no question about which means are different
and, therefore, no need for posttests. However, with three or more treatments (k � 3),
the problem is to determine exactly which means are significantly different.

In general, a post hoc test enables you to go back through the data and compare the 
individual treatments two at a time. In statistical terms, this is called making pairwise
comparisons. For example, with k � 3, we would compare �1 versus �2, then �2 versus
�3, and then �1 versus �3. In each case, we are looking for a significant mean differ-
ence. The process of conducting pairwise comparisons involves performing a series of
separate hypothesis tests, and each of these tests includes the risk of a Type I error. As
you do more and more separate tests, the risk of a Type I error accumulates and is called
the experimentwise alpha level (see p. 391).

POSTTESTS AND TYPE I
ERRORS

D E F I N I T I O N

416 CHAPTER 12 INTRODUCTION TO ANALYSIS OF VARIANCE
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We have seen, for example, that a research study with three treatment conditions
produces three separate mean differences, each of which could be evaluated using a
post hoc test. If each test uses � � .05, then there is a 5% risk of a Type I error for the
first posttest, another 5% risk for the second test, and one more 5% risk for the third
test. Although the probability of error is not simply the sum across the three tests, it
should be clear that increasing the number of separate tests definitely increases the
total, experimentwise probability of a Type I error.

Whenever you are conducting posttests, you must be concerned about the experi-
mentwise alpha level. Statisticians have worked with this problem and have developed
several methods for trying to control Type I errors in the context of post hoc tests. We
consider two alternatives.

The first post hoc test we consider is Tukey’s HSD test. We selected Tukey’s HSD test
because it is a commonly used test in psychological research. Tukey’s test allows you
to compute a single value that determines the minimum difference between treatment
means that is necessary for significance. This value, called the honestly significant dif-
ference, or HSD, is then used to compare any two treatment conditions. If the mean dif-
ference exceeds Tukey’s HSD, then you conclude that there is a significant difference
between the treatments. Otherwise, you cannot conclude that the treatments are signif-
icantly different. The formula for Tukey’s HSD is

(12.15)

where the value of q is found in Table B.5 (Appendix B, p. 708), MSwithin is the within-
treatments variance from the ANOVA, and n is the number of scores in each treatment.
Tukey’s test requires that the sample size, n, be the same for all treatments. To locate the
appropriate value of q, you must know the number of treatments in the overall experi-
ment (k), the degrees of freedom for MSwithin (the error term in the F-ratio), and you
must select an alpha level (generally the same � used for the ANOVA).

To demonstrate the procedure for conducting post hoc tests with Tukey’s HSD, we use
the hypothetical data shown in Table 12.6. The data represent the results of a study com-
paring scores in three different treatment conditions. Note that the table displays sum-
mary statistics for each sample and the results from the overall ANOVA. With k � 3
treatments, dfwithin � 24, and � � .05, you should find that the value of q for the test is
q � 3.53 (see Table B.5). Therefore, Tukey’s HSD is

HSD q
MS

n
.

.
.� � �within 3 53

4 00

9
2 36

E X A M P L E  1 2 . 5

HSD q
MS

n
� within

TUKEY’S HONESTLY
SIGNIFICANT DIFFERENCE

(HSD) TEST
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The q value used in Tukey’s
HSD test is called a Studentized
range statistic.

TABLE 12.6

Hypothetical results from a
research study comparing three
treatment conditions. Summary
statistics are presented for each
treatment along with the 
outcome from the ANOVA.

Treatment Treatment Treatment
A B C

n � 9 n � 9 n � 9
T � 27 T � 49 T � 63

M � 3.00 M � 5.44 M � 7.00

Source SS df MS

Between 73.19 2 36.60
Within 96.00 24 4.00
Total 169.19 26
Overall F(2, 24) � 9.15
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Thus, the mean difference between any two samples must be at least 2.36 to be 
significant. Using this value, we can make the following conclusions:

1. Treatment A is significantly different from treatment B (MA � MB � 2.44).

2. Treatment A is also significantly different from treatment C (MA � MC � 4.00).

3. Treatment B is not significantly different from treatment C (MB � MC � 1.56).

Because it uses an extremely cautious method for reducing the risk of a Type I error,
the Scheffé test has the distinction of being one of the safest of all possible post hoc
tests (smallest risk of a Type I error). The Scheffé test uses an F-ratio to evaluate the
significance of the difference between any two treatment conditions. The numerator of
the F-ratio is an MSbetween that is calculated using only the two treatments you want to
compare. The denominator is the same MSwithin that was used for the overall ANOVA.
The “safety factor” for the Scheffé test comes from the following two considerations:

1. Although you are comparing only two treatments, the Scheffé test uses the
value of k from the original experiment to compute df between treatments.
Thus, df for the numerator of the F-ratio is k � 1.

2. The critical value for the Scheffé F-ratio is the same as was used to evaluate the
F-ratio from the overall ANOVA. Thus, Scheffé requires that every posttest
satisfy the same criterion that was used for the complete ANOVA. The follow-
ing example uses the data from Table 12.6 to demonstrate the Scheffé posttest
procedure.

Remember that the Scheffé procedure requires a separate SSbetween, MSbetween, and 
F-ratio for each comparison being made. Although Scheffé computes SSbetween

using the regular computational formula (Equation 12.7), you must remember that
all of the numbers in the formula are entirely determined by the two treatment
conditions being compared. We begin by comparing treatment A (with T � 27 
and n � 9) and treatment B (with T � 49 and n � 9). The first step is to compute
SSbetween for these two groups. In the formula for SS, notice that the grand total 
for the two groups is G � 27 � 49 � 76, and the total number of scores for the
two groups is N � 9 � 9 � 18.

Although we are comparing only two groups, these two were selected from a
study consisting of k � 3 samples. The Scheffé test uses the overall study to
determine the degrees of freedom between treatments. Therefore, dfbetween

� 3 � 1 � 2, and the MSbetween is

MS
SS

dfbetween
between

between

� � �
26 89

2
1

.
33 45.

SS
T

n

G

Nbetween
� �

� � �

�

Σ
2 2

2 2 227

9

49

9
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18
� �

�

81 266 78 320 89

26 89

. .

.

E X A M P L E  1 2 . 6

THE SCHEFFÉ TEST
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Finally, the Scheffé procedure uses the error term from the overall ANOVA to
compute the F-ratio. In this case, MSwithin � 4.00 with dfwithin � 24. Thus, the
Scheffé test produces an F-ratio of

FA verus B � �
M

M

S

S
b

w

et

i

w

th

e

i

e

n

n
� � �

1
4
3
.
.
0
4
0
5

� � 3.36

With df � 2, 24 and � � .05, the critical value for F is 3.40 (see Table B.4).
Therefore, our obtained F-ratio is not in the critical region, and we must conclude that
these data show no significant difference between treatment A and treatment B.

The second comparison involves treatment B (T � 49) and treatment C (T � 63).
This time the data produce SSbetween � 10.89, MSbetween � 5.45, and F(2, 24) � 1.36
(check the calculations for yourself). Once again the critical value for F is 3.40, so we
must conclude that the data show no significant difference between treatment B and
treatment C.

The final comparison is treatment A (T � 27) and treatment C (T � 63). This
time the data produce SSbetween � 72, MSbetween � 36, and F(2, 24) � 9.00 (check the
calculations for yourself). Once again the critical value for F is 3.40, and this time we
conclude that the data show a significant difference.

Thus, the Scheffé posttest indicates that the only significant difference is between
treatment A and treatment C.

There are two interesting points to be made from the posttest outcomes pre-
sented in the preceding two examples. First, the Scheffé test was introduced as being
one of the safest of the posttest techniques because it provides the greatest protec-
tion from Type I errors. To provide this protection, the Scheffé test simply requires
a larger difference between sample means before you may conclude that the differ-
ence is significant. For example, using Tukey’s test in Example 12.5, we found that
the difference between treatment A and treatment B was large enough to be signifi-
cant. However, this same difference failed to reach significance according to the
Scheffé test (Example 12.6). The discrepancy between the results is an example of
the Scheffé test’s extra demands: The Scheffé test simply requires more evidence
and, therefore, it is less likely to lead to a Type I error.

The second point concerns the pattern of results from the three Scheffé tests in
Example 12.6. You may have noticed that the posttests produce what are apparently
contradictory results. Specifically, the tests show no significant difference between A
and B and they show no significant difference between B and C. This combination of
outcomes might lead you to suspect that there is no significant difference between A
and C. However, the test did show a significant difference. The answer to this apparent
contradiction lies in the criterion of statistical significance. The differences between A
and B and between B and C are too small to satisfy the criterion of significance.
However, when these differences are combined, the total difference between A and C
is large enough to meet the criterion for significance.

SECTION 12.6 / POST HOC TESTS 419

1. With k � 2 treatments, are post hoc tests necessary when the null hypothesis is
rejected? Explain why or why not.

2. An ANOVA comparing three treatments produces an overall F-ratio with df � 2, 27.
If the Scheffé test was used to compare two of the three treatments, then the Scheffé
F-ratio would also have df � 2, 27. (True or false?)

L E A R N I N G  C H E C K
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12.7 THE RELATIONSHIP BETWEEN ANOVA AND t TESTS

When you are evaluating the mean difference from an independent-measures study com-
paring only two treatments (two separate samples), you can use either an independent-
measures t test (Chapter 10) or the ANOVA presented in this chapter. In practical terms,
it makes no difference which you choose. These two statistical techniques always result
in the same statistical decision. In fact the two methods use many of the same calcula-
tions and are very closely related in several other respects. The basic relationship 
between t statistics and F-ratios can be stated in an equation:

F � t2

This relationship can be explained by first looking at the structure of the formulas
for F and t. The t statistic compares distances: the distance between two sample means
(numerator) and the distance computed for the standard error (denominator). The 
F-ratio, on the other hand, compares variances. You should recall that variance is a
measure of squared distance. Hence, the relationship: F � t2.

There are several other points to consider in comparing the t statistic to the F-ratio.

1. It should be obvious that you are testing the same hypotheses whether you
choose a t test or an ANOVA. With only two treatments, the hypotheses for
either test are

H0: �1 � �2

H1: �1 � �2

2. The degrees of freedom for the t statistic and the df for the denominator of the
F-ratio (dfwithin) are identical. For example, if you have two samples, each with
six scores, the independent-measures t statistic has df � 10, and the F-ratio has
df � 1, 10. In each case, you are adding the df from the first sample (n � 1)
and the df from the second sample (n � 1).

3. The distribution of t and the distribution of F-ratios match perfectly if you
take into consideration the relationship F � t2. Consider the t distribution
with df � 18 and the corresponding F distribution with df � 1, 18 that are
presented in Figure 12.11. Notice the following relationships:

a. If each of the t values is squared, then all of the negative values become
positive. As a result, the whole left-hand side of the t distribution (below

420 CHAPTER 12 INTRODUCTION TO ANALYSIS OF VARIANCE

3. Using the data and the results from Example 12.1,

a. Use Tukey’s HSD test to determine whether there is a significant mean difference
between a 12-foot and a 15-foot distance. Use � � .05.

b. Use the Scheffé test to determine whether there is a significant mean difference
between 12 feet and 15 feet. Use � � .05.

1. No. Post hoc tests are used to determine which treatments are different. With only two
treatment conditions, there is no uncertainty as to which two treatments are different.

2. True

3. a. For this test, q � 4.05 and HSD � 2.55. There is a 3-point mean difference between 
12 feet and 15 feet, which is large enough to be significant.

b. The Scheffé F � 3.75, which is greater than the critical value of 3.24. Conclude that the
mean difference between 12 feet and 15 feet is significant.

ANSWERS
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zero) is flipped over to the positive side. This creates an asymmetrical, posi-
tively skewed distribution—that is, the F distribution.

b. For � � .05, the critical region for t is determined by values greater than
�2.101 or less than �2.101. When these boundaries are squared, you get 
±2.1012 � 4.41

Notice that 4.41 is the critical value for � � .05 in the F distribution. Any value
that is in the critical region for t ends up in the critical region for F-ratios after it is
squared.

The independent-measures ANOVA requires the same three assumptions that were
necessary for the independent-measures t hypothesis test:

1. The observations within each sample must be independent (see p. 254).

2. The populations from which the samples are selected must be normal.

3. The populations from which the samples are selected must have equal variances
(homogeneity of variance).

Ordinarily, researchers are not overly concerned with the assumption of normality,
especially when large samples are used, unless there are strong reasons to suspect that
the assumption has not been satisfied. The assumption of homogeneity of variance is an
important one. If a researcher suspects that it has been violated, it can be tested by
Hartley’s F-max test for homogeneity of variance (Chapter 10, p. 338).

Finally, if you suspect that one of the assumptions for the independent-measures
ANOVA has been violated, you can still proceed by transforming the original scores
into ranks and then using an alternative statistical analysis known as the Kruskal-
Wallis test, which is designed specifically for ordinal data. The Kruskal-Wallis test is

ASSUMPTIONS FOR THE
INDEPENDENT-MEASURES

ANOVA

SECTION 12.7 / THE RELATIONSHIP BETWEEN ANOVA AND t TESTS 421

0 1 2 3 4 5

4.41
(2.1012)

95 %

95 %

–2.101 0 2.101

FIGURE 12.11

The distribution of t statis-
tics with df � 18 and the
corresponding distribution
of F-ratios with df � 1, 18.
Notice that the critical 
values for � � .05 are 
t � 
2.101 and that 
F � 2.1012 � 4.41.
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presented in Appendix E. As noted earlier, the Kruskal-Wallis test also can be useful
if large sample variance prevents the independent-measures ANOVA from producing
a significant result.

422 CHAPTER 12 INTRODUCTION TO ANALYSIS OF VARIANCE

1. A researcher uses an independent-measures t test to evaluate the mean difference
obtained in a research study, and obtains a t statistic of t � 3.00. If the researcher
had used an ANOVA to evaluate the results, the F-ratio would be F � 9.00. (True
or false?)

2. An ANOVA produces an F-ratio with df � 1, 34. Could the data have been ana-
lyzed with a t test? What would be the degrees of freedom for the t statistic?

1. True. F � t2

2. If the F-ratio has df � 1, 34, then the experiment compared only two treatments, and you
could use a t statistic to evaluate the data. The t statistic would have df � 34.

L E A R N I N G  C H E C K

ANSWERS

1. Analysis of variance (ANOVA) is a statistical technique
that is used to test the significance of mean differences
among two or more treatment conditions. The null
hypothesis for this test states that, in the general
population, there are no mean differences among the
treatments. The alternative states that at least one mean
is different from another.

2. The test statistic for ANOVA is a ratio of two variances
called an F-ratio. The variances in the F-ratio are called
mean squares, or MS values. Each MS is computed by

3. For the independent-measures ANOVA, the F-ratio is

The MSbetween measures differences between the
treatments by computing the variability of the treatment
means or totals. These differences are assumed to be
produced by

a. Treatment effects (if they exist)
b. Random, unsystematic differences (chance)

The MSwithin measures variability inside each of the
treatment conditions. Because individuals inside a
treatment condition are all treated exactly the same, any

F
MS

MS
� between

within

MS
SS

df
�

SUMMARY

differences within treatments cannot be caused by
treatment effects. Thus, the within-treatments MS is
produced only by random, unsystematic differences.
With these factors in mind, the F-ratio has the
following structure:

When there is no treatment effect (H0 is true), the
numerator and the denominator of the F-ratio are
measuring the same variance, and the obtained ratio
should be near 1.00. If there is a significant treatment
effect, then the numerator of the ratio should be larger
than the denominator, and the obtained F value should
be much greater than 1.00.

4. The formulas for computing each SS, df, and MS value
are presented in Figure 12.12, which also shows the
general structure for the ANOVA.

5. The F-ratio has two values for degrees of freedom, one
associated with the MS in the numerator and one
associated with the MS in the denominator. These df
values are used to find the critical value for the F-ratio
in the F distribution table.

6. Effect size for the independent-measures ANOVA is
measured by computing eta squared, the percentage of
variance accounted for by the treatment effect.

F �
treatment effect � differences due to chance
�����

differences due to chance
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7. When the decision from an ANOVA is to reject the null
hypothesis and when the experiment contains more than

�
SS

SS
between

total

η2 �
�

SS

SS SS
between

between within

RESOURCES 423

Within treatments

SS = ΣSSeach treatment

Between treatments
SS = SStotal � SSwithin

          or SS =

                 df = k � 1

    MS = 

Total

df = N � 1  
N

 G2

SS = Σ X 2  �

 Σ 
G2

N

T 2

n
�

SS
df

                 df = N � k

    MS = 
SS
df

MS between treatments

MS within treatments
F-ratio = 

FIGURE 12.12

Formulas for ANOVA.

two treatment conditions, it is necessary to continue the
analysis with a post hoc test, such as Tukey’s HSD test
or the Scheffé test. The purpose of these tests is to
determine exactly which treatments are significantly
different and which are not.

KEY TERMS

analysis of variance (ANOVA) (386)

factor (388)

levels (388)

testwise alpha level (391)

experimentwise alpha level (391)

between-treatments variance (392)

treatment effect (393)

within-treatments variance (393)

F-ratio (394)

error term (394)

mean square (MS) (401)

ANOVA summary table (402)

distribution of F-ratios (403)
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pairwise comparisons (416)
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RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter.
You can find a tutorial quiz and other learning exercises for Chapter 12 on the book
companion website.
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Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.

Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific web-
site, Psychology CourseMate includes an integrated interactive eBook and other interac-
tive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials. 

General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to perform The Single-Factor, Independent-Measures
Analysis of Variance (ANOVA) presented in this chapter.

Data Entry

1. The scores are entered in a stacked format in the data editor, which means that all
of the scores from all of the different treatments are entered in a single column
(VAR00001). Enter the scores for treatment #2 directly beneath the scores from
treatment #1 with no gaps or extra spaces. Continue in the same column with the
scores from treatment #3, and so on.

2. In the second column (VAR00002), enter a number to identify the treatment
condition for each score. For example, enter a 1 beside each score from the 
first treatment, enter a 2 beside each score from the second treatment, 
and so on.

Data Analysis

1. Click Analyze on the tool bar, select Compare Means, and click on One-Way
ANOVA.

2. Highlight the column label for the set of scores (VAR0001) in the left box and click
the arrow to move it into the Dependent List box.

3. Highlight the label for the column containing the treatment numbers (VAR0002) in
the left box and click the arrow to move it into the Factor box.

4. If you want descriptive statistics for each treatment, click on the Options box,
select Descriptives, and click Continue.

5. Click OK.

424 CHAPTER 12 INTRODUCTION TO ANALYSIS OF VARIANCE

30991_ch12_ptg01_hr_383-432.qxd  9/3/11  3:20 AM  Page 424

www.aplia.com/statistics
www.cengagebrain.com


SPSS Output

We used the SPSS program to analyze the data from the television viewing study in
Example 12.1 and the program output is shown in Figure 12.13. The output begins with
a table showing descriptive statistics (number of scores, mean, standard deviation, stan-
dard error for the mean, a 95% confidence interval for the mean, maximum and mini-
mum scores) for each sample. The second part of the output presents a summary table
showing the results from the ANOVA.

FOCUS ON PROBLEM SOLVING

1. It can be helpful to compute all three SS values separately, then check to verify that
the two components (between and within) add up to the total. However, you can
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FIGURE 12.13

SPSS output of the ANOVA for the television-viewing distance study in Example 12.1.
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greatly simplify the calculations if you simply find SStotal and SSwithin, then obtain
SSbetween by subtraction.

2. Remember that an F-ratio has two separate values for df: a value for the numerator
and one for the denominator. Properly reported, the dfbetween value is stated first.
You will need both df values when consulting the F distribution table for the critical
F value. You should recognize immediately that an error has been made if you see
an F-ratio reported with a single value for df.

3. When you encounter an F-ratio and its df values reported in the literature, you
should be able to reconstruct much of the original experiment. For example, if you
see “F(2, 36) � 4.80,” you should realize that the experiment compared k � 3
treatment groups (because dfbetween � k � 1 � 2), with a total of N � 39 subjects
participating in the experiment (because dfwithin � N � k � 36).

DEMONSTRATION 12.1

ANALYSIS OF VARIANCE

A human-factors psychologist studied three computer keyboard designs. Three samples of
individuals were given material to type on a particular keyboard, and the number of errors
committed by each participant was recorded. The data are as follows:

Keyboard A Keyboard B Keyboard C

0 6 6 N � 15
4 8 5 G � 60
0 5 9 �X2 � 356
1 4 4
0 2 6

T � 5 T � 25 T � 30
SS � 12 SS � 20 SS � 14

Are these data sufficient to conclude that there are significant differences in typing 
performance among the three keyboard designs?

State the hypotheses, and specify the alpha level. The null hypothesis states that there
is no difference among the keyboards in terms of number of errors committed. In symbols,
we would state

H0: �1 � �2 � �3 (Type of keyboard used has no effect.)

As noted previously in this chapter, there are a number of possible statements for
the alternative hypothesis. Here we state the general alternative hypothesis:

H1: At least one of the treatment means is different.

We set alpha at � � .05.

Locate the critical region. To locate the critical region, we must obtain the values for
dfbetween and dfwithin.

S T E P  2

S T E P  1
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dfbetween � k � 1 � 3 � 1 � 2

dfwithin � N � k � 15 � 3 � 12

The F-ratio for this problem has df � 2, 12, and the critical F value for � � .05 is 
F � 3.88. 

Perform the analysis. The analysis involves the following steps:

1. Perform the analysis of SS.

2. Perform the analysis of df.

3. Calculate mean squares.

4. Calculate the F-ratio.

Perform the analysis of SS. We compute SStotal followed by its two components.

Analyze degrees of freedom. We compute dftotal. Its components, dfbetween and dfwithin,
were previously calculated (see step 2).

dftotal � N � 1 � 15 � 1 � 14

dfbetween � 2

dfwithin � 12

Calculate the MS values. We determine the values for MSbetween and MSwithin.

Compute the F-ratio. Finally, we can compute F.

F
MS

MS
� � �between

within

35

3 83
9 14

.
.

MS
SS

df

MS

between
between

between

within

� � �
70

2
35

�� � �
SS

df
within

within

46

12
3 83.

SS
T

n

G

Nbetween
� �

� � � �

Σ
2 2

2 2 25

5

25

5

30

5

600

15
25

5

625

5

900

5

3600

15
5 125

2

=

=

� � �

� �� �

�

180 240

70

SS SSwithin inside each treatment� Σ
 � � �

  �

12 20 14

46

SS X
G

Ntotal
 � � � � � �Σ 2

2 2

356
60

15
356

36000

15
356 240 116� � �

S T E P  3
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6. An independent-measures research study compares
three treatment conditions with a sample of n = 10 in
each condition. The sample means are M1 = 2, M2 = 3,
and M3 = 7.
a. Compute SS for the set of 3 treatment means. (Use the

three means as a set of n = 3 scores and compute SS.)
b. Using the result from part a, compute n(SSmeans).

Note that this value is equal to SSbetween (see
Equation 12.6).

c. Now, compute SSbetween with the computational
formula using the T values (Equation 12.7). You
should obtain the same result as in part b.

7. The following data summarize the results from an
independent-measures study comparing three treatment
conditions.

I II III

n � 6 n � 6 n � 6
M � 1 M � 5 M � 6           N � 18
T � 6 T � 30 T � 36           G � 72

SS � 30 SS � 35 SS � 40        ΣX2 � 477

Make a decision about H0, and state a conclusion. The obtained F of 9.14 exceeds the
critical value of 3.88. Therefore, we can reject the null hypothesis. The type of keyboard
used has a significant effect on the number of errors committed, F(2, 12) � 9.14, p 	 .05.
The following table summarizes the results of the analysis:

Source SS df MS

Between treatments 70 2 35 F � 9.14
Within treatments 46 12 3.83
Total 116 14

DEMONSTRATION 12.2

COMPUTING EFFECT SIZE FOR ANOVA

We compute eta squared (
2), the percentage of variance explained, for the data that were
analyzed in Demonstration 12.1. The data produced a between-treatments SS of 70 and a
total SS of 116. Thus,

PROBLEMS

η2 70

116
0 60 60� � �

SS

SS
between

total

(or ). %

S T E P  4

1. Explain why the F-ratio is expected to be near 1.00
when the null hypothesis is true.

2. Describe the similarities between an F-ratio and a 
t statistic.

3. Several factors influence the size of the F-ratio. For
each of the following, indicate whether it would
influence the numerator or the denominator of the 
F-ratio, and indicate whether the size of the F-ratio
would increase or decrease.
a. Increase the differences between the sample means.
b. Increase the size of the sample variances.

4. Why should you use ANOVA instead of several t tests
to evaluate mean differences when an experiment
consists of three or more treatment conditions?

5. Posttests are done after an ANOVA.
a. What is the purpose of posttests?
b. Explain why you do not need posttests if the

analysis is comparing only two treatments.
c. Explain why you do not need posttests if the

decision from the ANOVA is to fail to reject the
null hypothesis.
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a. Use an ANOVA with � = .05 to determine whether
there are any significant differences among the
three treatment means.

b. Calculate 
2 to measure the effect size for this study.
c. Write a sentence demonstrating how a research

report would present the results of the hypothesis
test and the measure of effect size.

8. For the preceding problem you should find that there
are significant differences among the three treatments.
The primary reason for the significance is that the
mean for treatment I is substantially smaller than the
means for the other two treatments. To create the
following data, we started with the values from
problem 7 and added 3 points to each score in
treatment I. Recall that adding a constant causes the
mean to change but has no influence on the variability
of the sample. In the resulting data, the mean
differences are much smaller than those in problem 7.

I II III

n � 6 n � 6 n � 6
M � 4 M � 5 M � 6 N � 18
T � 24 T � 30 T � 36 G � 90

SS � 30 SS � 35 SS � 40 ΣX2 � 567

a. Before you begin any calculations, predict how the
change in the data should influence the outcome of
the analysis. That is, how will the F-ratio and the
value of 
2 for these data compare with the values
obtained in problem 7?

b. Use an ANOVA with � = .05 to determine whether
there are any significant differences among the
three treatment means. (Does your answer agree
with your prediction in part a?)

c. Calculate 
2 to measure the effect size for this
study. (Does your answer agree with your
prediction in part a?)

9. The following data summarize the results from an
independent-measures study comparing three treatment
conditions.

I II III

n � 5 n � 5 n � 5
M � 2 M � 5 M � 8 N � 15
T � 10 T � 25 T � 40 G � 75

SS � 16 SS � 20 SS � 24 ΣX2 � 525

a. Calculate the sample variance for each of the three
samples.

b. Use an ANOVA with � = .05 to determine whether
there are any significant differences among the
three treatment means.

10. For the preceding problem you should find that there
are significant differences among the three treatments.
One reason for the significance is that the sample
variances are relatively small. To create the following
data, we started with the values from problem 9 and
increased the variability (the SS values) within each
sample.

I II III

n � 5 n � 5 n � 5
M � 2 M � 5 M � 8 N � 15
T � 10 T � 25 T � 40 G � 75

SS � 64 SS � 80 SS � 96 ΣX2 � 705

a. Calculate the sample variance for each of the three
samples. Describe how these sample variances
compare with those from problem 9.

b. Predict how the increase in sample variance should
influence the outcome of the analysis. That is, how
will the F-ratio for these data compare with the
value obtained in problem 9?

c. Use an ANOVA with � � .05 to determine whether
there are any significant differences among the
three treatment means. (Does your answer agree
with your prediction in part b?)

11. Binge drinking on college campuses has been a hot topic
in the popular media and in scholarly research. Flett,
Goldstein, Wall, Hewitt, Wekerle, and Azzi (2008)
report the results of a study relating perfectionism to
binge drinking. In the study, students were classified into
three groups based on the number of binge drinking
episodes they experienced during the past month (0, 1, 2
or more). The students then completed a perfectionism
questionnaire including one scale measuring parental
criticism. One sample item is “I never felt that I could
meet my parents’ standards.” Students rated their level
of agreement with each item, and the total score was
calculated for each student. The following results are
similar to those obtained by the researchers.

Binge Drinking Episodes in Past Month

0 1 2 or more

8 10 13 N � 15
8 12 14

10 8 12 G � 165
9 9 15

10 11 16 ΣX2 � 1909

M � 9 M � 10 M � 14
T � 45 T � 50 T � 70

SS � 4 SS � 10 SS � 10
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a. Use an ANOVA with � = .05 to determine whether
there are any significant differences among the
three treatment means.

b. Calculate 
2 to measure the effect size for this
study.

c. Write a sentence demonstrating how a research
report would present the results of the hypothesis
test and the measure of effect size.

12. A researcher reports an F-ratio with df = 3, 36 from an
independent-measures research study.
a. How many treatment conditions were compared in

the study?
b. What was the total number of participants in the

study?

13. A research report from an independent-measures study
states that there are significant differences between
treatments, F(2, 54) = 3.58, p 	 .05.
a. How many treatment conditions were compared in

the study?
b. What was the total number of participants in the

study?

14. There is some evidence that high school students
justify cheating in class on the basis of poor teacher
skills or low levels of teacher caring (Murdock, Miller,
and Kohlhardt, 2004). Students appear to rationalize
their illicit behavior based on perceptions of how their
teachers view cheating. Poor teachers are thought not
to know or care whether students cheat, so cheating in
their classes is okay. Good teachers, on the other hand,
do care and are alert to cheating, so students tend not
to cheat in their classes. Following are hypothetical
data similar to the actual research results. The scores
represent judgments of the acceptability of cheating
for the students in each sample.

Poor Average Good 
Teacher Teacher Teacher

n � 6 n � 8 n � 10 N � 24
M � 6 M � 2 M � 2 G � 72
SS � 30 SS � 33 SS � 42 �X 2 � 393

a. Use an ANOVA with � = .05 to determine whether
there are significant differences in student judgments
depending on how they see their teachers.

b. Calculate 
2 to measure the effect size for this study.

430 CHAPTER 12 INTRODUCTION TO ANALYSIS OF VARIANCE

c. Write a sentence demonstrating how a research
report would present the results of the hypothesis
test and the measure of effect size.

15. The following summary table presents the results from
an ANOVA comparing three treatment conditions with
n = 8 participants in each condition. Complete all
missing values. (Hint: Start with the df column.)

Source SS df MS

Between treatments 15 F �

Within treatments
Total 93

16. A pharmaceutical company has developed a drug that
is expected to reduce hunger. To test the drug, two
samples of rats are selected with n = 20 in each
sample. The rats in the first sample receive the drug
every day and those in the second sample are given a
placebo. The dependent variable is the amount of food
eaten by each rat over a 1-month period. An ANOVA
is used to evaluate the difference between the two
sample means and the results are reported in the
following summary table. Fill in all missing values in
the table. (Hint: Start with the df column.)

Source SS df MS

Between treatments 20 F � 4.00
Within treatments
Total

17. A developmental psychologist is examining the
development of language skills from age 2 to age 4.
Three different groups of children are obtained, one
for each age, with n = 16 children in each group. Each
child is given a language-skills assessment test. The
resulting data were analyzed with an ANOVA to test
for mean differences between age groups. The results
of the ANOVA are presented in the following table.
Fill in all missing values.

Source SS df MS

Between treatments 20 F � 

Within treatments
Total 200
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18. The following data were obtained from an
independent-measures research study comparing three
treatment conditions. Use an ANOVA with � = .05 to
determine whether there are any significant mean
differences among the treatments.

Treatment

I II III

2 5 7 N � 14
5 2 3 G � 42
0 1 6 �X2 � 182
1 2 4
2
2

T � 12 T � 10 T � 20
SS � 14 SS � 9 SS � 10

19. The following values summarize the results from an
independent-measures study comparing two treatment
conditions.
a. Use an independent-measures t test with � = .05 to

determine whether there is a significant mean
difference between the two treatments.

b. Use an ANOVA with � = .05 to determine whether
there is a significant mean difference between the
two treatments.

Treatment

I II

n � 8 n � 4
M � 4 M � 10 N � 12
T � 32 T � 40 G � 72

SS � 45 SS � 15 �X 2 � 588

20. The following data represent the results from an
independent-measures study comparing two treatment
conditions.
a. Use an independent-measures t test with � = .05 to

determine whether there is a significant mean
difference between the two treatments.

b. Use an ANOVA with � = .05 to determine whether
there is a significant mean difference between the
two treatments.

PROBLEMS 431

Treatment

I II

8 2 N � 10
7 3 G � 50
6 3 �X2 � 306
5 5
9 2

M � 7 M � 3
T � 35 T � 15

SS � 10 SS � 6

21. One possible explanation for why some birds migrate
and others maintain year round residency in a single
location is intelligence. Specifically, birds with small
brains, relative to their body size, are simply not smart
enough to find food during the winter and must migrate
to warmer climates where food is easily available 
(Sol, Lefebvre, & Rodriguez-Teijeiro, 2005). Birds
with bigger brains, on the other hand, are more creative
and can find food even when the weather turns harsh.
Following are hypothetical data similar to the actual
research results. The numbers represent relative brain
size for the individual birds in each sample.

Short- Long-
Non- Distance Distance

Migrating Migrants Migrants

18 6 4 N � 18
13 11 9 G � 180
19 7 5 �X2 � 2150
12 9 6
16 8 5
12 13 7

M � 15 M � 9 M � 6
T � 90 T � 54 T � 36

SS � 48 SS � 34 SS � 16

a. Use an ANOVA with � = .05 to determine whether
there are any significant mean differences among
the three groups of birds.

b. Compute 
2, the percentage of variance explained
by the group differences, for these data.
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c. Write a sentence demonstrating how a research
report would present the results of the hypothesis
test and the measure of effect size.

d. Use the Tukey HSD posttest to determine which
groups are significantly different.

22. There is some research indicating that college students
who use Facebook while studying tend to have lower
grades than non-users (Kirschner & Karpinski, 2010). 
A representative study surveys students to determine 
the amount of Facebook use during the time they are
studying or doing homework. Based on the amount of
time spent on Facebook, students are classified into three
groups and their grade point averages are recorded. The
following data show the typical pattern of results. 

Facebook Use While Studying

Non-User Rarely Use Regularly Use

3.70 3.51 3.02
3.45 3.42 2.84
2.98 3.81 3.42
3.94 3.15 3.10
3.82 3.64 2.74
3.68 3.20 3.22
3.90 2.95 2.58
4.00 3.55 3.07
3.75 3.92 3.31
3.88 3.45 2.80

a. Use an ANOVA with � = .05 to determine whether
there are significant mean differences among the
three groups.

b. Compute 
2 to measure the size of the effect.
c. Write a sentence demonstrating how the result from

the hypothesis test and the measure of effect size
would appear in a research report.

432 CHAPTER 12 INTRODUCTION TO ANALYSIS OF VARIANCE

23. New research suggests that watching television,
especially medical shows such as Grey’s Anatomy and
House can result in more concern about personal health
(Ye, 2010). Surveys administered to college students
measure television viewing habits and health concerns
such as fear of developing the diseases and disorders
seen on television. For the following data, students are
classified into three categories based on their television
viewing patterns and health concerns are measured on a
10-point scale with 0 indicating “none.”

Television Viewing

Little or None Moderate Substantial

4 5 5
2 7 7
5 3 6
1 4 6
3 8 8
7 6 9
4 2 6
4 7 4
8 3 6
2 5 8

a. Use an ANOVA with � = .05 to determine whether
there are significant mean differences among the
three groups.

b. Compute 
2 to measure the size of the effect.
c. Use Tukey’s HSD test with � = .05 to determine

which groups are significantly different.
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C H A P T E R

13
Repeated-
Measures
Analysis 
of Variance

Preview

13.1 Overview of Repeated-Measures
Designs

13.2 The Repeated-Measures ANOVA

13.3 Hypothesis Testing and Effect Size
with the Repeated-Measures
ANOVA

13.4 Advantages and Disadvantages of
the Repeated-Measures Design

13.5 Repeated-Measures ANOVA and
Repeated-Measures t test

Summary

Focus on Problem Solving

Demonstrations 13.1 and 13.2

Problems

Tools You Will Need
The following items are considered essential
background material for this chapter. If you
doubt your knowledge of any of these items,
you should review the appropriate chapter or
section before proceeding.

• Independent-measures analysis of 
variance (Chapter 12)

• Repeated-measures designs (Chapter 11)
• Individual differences
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Preview
Suppose that you were offered a choice between receiving
$1000 in 5 years or a smaller amount today. How much
would you be willing to take today to avoid waiting 
5 years to get the full $1000 payment?

The general result for this kind of decision is that 
the longer the $1000 payment is delayed, the smaller the
amount that people will accept today. For example, you
may be willing to take $300 today rather than waiting 
5 years for the $1000. However, you might be willing to
settle for $100 today if you have to wait 10 years for 
the $1000. This phenomenon is known as delayed 
discounting because people discount the value of a future
reward depending on how long it is delayed (Green, 

Fry, & Myerson, 1994). In a typical study examining 
delayed discounting, people are asked to place a value on a
future reward for several different delay periods. For 
example, how much would you accept today instead of
waiting for a future reward of $1000 if you had to wait 
1 month before receiving the payment? How about waiting
6 months? 12 months? 24 months? 60 months?

Typical results for a sample of college students are
shown in Figure 13.1. Note that the average value declines
regularly as the delay period increases. The statistical
question is whether the mean differences from one delay
period to another are significant.

The Problem: You should recognize that evaluating
mean differences for more than two sample means is a
job for analysis of variance (ANOVA). However, the
discounting study is a repeated-measures design with
five scores for each individual, and the ANOVA
introduced in Chapter 12 is intended for independent-
measures studies. Once again, a new hypothesis test is
needed.

The Solution: In this chapter we introduce the
repeated-measures ANOVA. As the name implies, this
new procedure is used to evaluate the differences
between two or more sample means obtained from a
repeated-measures research study. As you will see,
many of the notational symbols and computations are
the same as those used for the independent-measures
ANOVA. In fact, your best preparation for this chapter
is a good understanding of the basic ANOVA procedure
presented in Chapter 12.
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Mean amount of immediate
payment selected as 
equivalent to receiving a
$1000 payment at each delay.
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13.1 OVERVIEW OF REPEATED-MEASURES DESIGNS

In the preceding chapter, we introduced ANOVA as a hypothesis-testing procedure for
evaluating differences among two or more sample means. The specific advantage of
ANOVA, especially in contrast to t tests, is that ANOVA can be used to evaluate the sig-
nificance of mean differences in situations in which there are more than two sample
means being compared. However, the presentation of ANOVA in Chapter 12 was lim-
ited to single-factor, independent-measures research designs. Recall that single factor
indicates that the research study involves only one independent variable (or only one
quasi-independent variable), and the term independent-measures indicates that the study
uses a separate sample for each of the different treatment conditions being compared. 

In this chapter, we extend the ANOVA procedure to single-factor, repeated-
measures designs. The defining characteristic of a repeated-measures design is that 
one group of individuals participates in all of the different treatment conditions. The 
repeated-measures ANOVA is used to evaluate mean differences in two general 
research situations:

1. An experimental study in which the researcher manipulates an independent
variable to create two or more treatment conditions, with the same group of
individuals tested in all of the conditions. 

2. A nonexperimental study in which the same group of individuals is simply
observed at two or more different times. 

Examples of these two research situations are presented in Table 13.1. Table 13.1(a)
shows data from a study in which the researcher changes the type of distraction to 

TABLE 13.1

Two sets of data representing
typical examples of single-
factor, repeated-measures 
research designs.

Visual Detection Scores

No Visual Auditory
Participant Distraction Distraction Distraction

A 47 22 41
B 57 31 52
C 38 18 40
D 45 32 43

Depression Scores

Before After 6-Month
Participant Therapy Therapy Follow-Up

A 71 53 55
B 62 45 44
C 82 56 61
D 77 50 46
E 81 54 55

(a) Data from an experimental study evaluating the effects of different
types of distraction on the performance of a visual detection task.

(b) Data from a nonexperimental design evaluating the 
effectiveness of a clinical therapy for treating depression.
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create three treatment conditions. One group of participants is then tested in all three
conditions. In this study, the factor being examined is the type of distraction.

Table 13.1(b) shows a study in which a researcher observes depression scores for
the same group of individuals at three different times. In this study, the time of mea-
surement is the factor being examined. Another common example of this type of design
is found in developmental psychology when the participants’ age is the factor being
studied. For example, a researcher could study the development of vocabulary skill by
measuring vocabulary for a sample of 3-year-old children, then measuring the same
children again at ages 4 and 5.

13.2 THE REPEATED-MEASURES ANOVA

The hypotheses for the repeated-measures ANOVA are exactly the same as those for
the independent-measures ANOVA presented in Chapter 12. Specifically, the null 
hypothesis states that, for the general population, there are no mean differences among
the treatment conditions being compared. In symbols,

H0: �1 � �2 � �3 � ...

The null hypothesis states that, on average, all of the treatments have exactly the
same effect. According to the null hypothesis, any differences that may exist among the
sample means are not caused by systematic treatment effects but rather are the result of
random and unsystematic factors. 

The alternative hypothesis states that there are mean differences among the treat-
ment conditions. Rather than specifying exactly which treatments are different, we use
a generic version of H1, which simply states that differences exist:

H1: At least one treatment mean (�) is different from another.

Notice that the alternative says that, on average, the treatments do have different
effects. Thus, the treatment conditions may be responsible for causing mean differences
among the samples. As always, the goal of the ANOVA is to use the sample data to 
determine which of the two hypotheses is more likely to be correct.

The F-ratio for the repeated-measures ANOVA has the same structure that was used 
for the independent-measures ANOVA in Chapter 12. In each case, the F-ratio com-
pares the actual mean differences between treatments with the amount of difference that
would be expected if there were no treatment effect. The numerator of the F-ratio mea-
sures the actual mean differences between treatments. The denominator measures how
big the differences should be if there is no treatment effect. As always, the F-ratio uses
variance to measure the size of the differences. Thus, the F-ratio for both ANOVAs has
the general structure

variance (differences) between treatments
F� ––––––––––––––––––––––––––––––––––––––––––––––––– 

variance (differences) expected if there is no treatment effect

A large value for the F-ratio indicates that the differences between treatments are
greater than would be expected without any treatment effect. If the F-ratio is larger than

THE F-RATIO FOR 
REPEATED-MEASURES 

ANOVA 

HYPOTHESES FOR 
THE REPEATED-MEASURES

ANOVA
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the critical value in the F distribution table, then we can conclude that the differences
between treatments are significantly larger than would be caused by chance.

Individual Differences in the F-ratio Although the structure of the F-ratio is the same
for independent-measures and repeated-measures designs, there is a fundamental differ-
ence between the two designs that produces a corresponding difference in the two F-ratios.
Specifically, individual differences are a part of one ratio but are eliminated from the other.

You should recall that the term individual differences refers to participant charac-
teristics such as age, personality, and gender that vary from one person to another and
may influence the measurements that you obtain for each person. Suppose, for exam-
ple, that you are measuring reaction time. The first participant in your study is a 
19-year-old female with an IQ of 136 who is on the college varsity volleyball team. The
next participant is a 42-year-old male with an IQ of 111 who returned to college after
losing his job and comes to the research study with a head cold. Would you expect to
obtain the same reaction time score for these two individuals?

Individual differences are a part of the variance in the numerator and in the 
denominator of the F-ratio for the independent-measures ANOVA. However, individ-
ual difference are eliminated or removed from the variances in the F-ratio for the 
repeated measures ANOVA. The idea of removing individual differences was first pre-
sented in Chapter 11 when we introduced the repeated-measures design (p. 367), but
we review it briefly now.

In a repeated-measures study, exactly the same individuals participate in all of the
treatment conditions. Therefore, if there are any mean differences between treatments,
they cannot be explained by individual differences. Thus, individual differences are 
automatically eliminated from the numerator of the repeated-measures F-ratio. 

A repeated-measures design also allows you to remove individual differences from
the variance in the denominator of the F-ratio. Because the same individuals are meas-
ured in every treatment condition, it is possible to measure the size of the individual dif-
ferences. In Table 13.1(a), for example, participant A has scores that are consistently
10 points lower than the scores for participant B. Because the individual differences 
are systematic and predictable, they can be measured and separated from the random,
unsystematic differences in the denominator of the F-ratio.

Thus, individual differences are automatically eliminated from the numerator of
the repeated-measures F-ratio. In addition, they can be measured and removed from the
denominator. As a result, the structure of the final F-ratio is as follows:

variance/differences between treatments
(without individual differences)       

F � �������������������������
variance/differences with no treatment effect

(with individual differences removed)

The process of removing individual differences is an important part of the proce-
dure for a repeated-measures ANOVA.

The general purpose of the repeated-measures ANOVA is to determine whether the dif-
ferences that are found between treatment conditions are significantly greater than
would be expected if there is no treatment effect. In the numerator of the F-ratio, the
between-treatments variance measures the actual mean differences between the treat-
ment conditions. The variance in the denominator is intended to measure how much 

THE LOGIC OF THE 
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ANOVA
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difference is reasonable to expect if there are no systematic treatment effects and no
systematic individual differences. In other words, the denominator measures variability
caused entirely by random and unsystematic factors. For this reason, the variance in the
denominator is called the error variance. In this section we examine the elements that
make up the two variances in the repeated-measures F-ratio.

The numerator of the F-ratio: between-treatments variance Logically, any dif-
ferences that are found between treatments can be explained by only two factors:

1. Systematic Differences Caused by the Treatments. It is possible that the
different treatment conditions really do have different effects and, therefore,
cause the individuals’ scores in one condition to be higher (or lower) than in
another. Remember that the purpose for the research study is to determine
whether a treatment effect exists.

2. Random, Unsystematic Differences. Even if there is no treatment effect, it is
possible for the scores in one treatment condition to be different from the scores
in another. For example, suppose that I measure your IQ score on a Monday
morning. A week later I come back and measure your IQ again under exactly
the same conditions. Will you get exactly the same IQ score both times? In fact,
minor differences between the two measurement situations would probably
cause you to end up with two different scores. For example, for one of the IQ
tests you might be more tired, or hungry, or worried, or distracted than you
were on the other test. These differences can cause your scores to vary. The
same thing can happen in a repeated-measures research study. The same indi-
viduals are measured at two or more different times and, even though there 
may be no difference between the two treatment conditions, you can still end
up with different scores. However, these differences are random and unsystem-
atic and are classified as error variance.

Thus, it is possible that any differences (or variance) found between treatments
could be caused by treatment effects, and it is possible that the differences could sim-
ply be the result of chance. On the other hand, it is impossible that the differences 
between treatments are caused by individual differences. Because the repeated-
measures design uses exactly the same individuals in every treatment condition, indi-
vidual differences are automatically eliminated from the variance between treatments
in the numerator of the F-ratio.

The denominator of the F-ratio: error variance The goal of the ANOVA is to 
determine whether the differences that are observed in the data are greater than would
be expected without any systematic treatment effects. To accomplish this goal, the 
denominator of the F-ratio is intended to measure how much difference (or variance) is
reasonable to expect from random and unsystematic factors. This means that we must
measure the variance that exists when there are no treatment effects or any other sys-
tematic differences.

We begin exactly as we did with the independent-measures F-ratio; specifically,
we calculate the variance that exists within treatments. Recall from Chapter 12 that
within each treatment all of the individuals are treated in exactly the same way.
Therefore, any differences that exist within treatments cannot be caused by treatment
effects.

In a repeated-measures design, however, it is also possible that individual differ-
ences can cause systematic differences between the scores within treatments. For 
example, one individual may score consistently higher than another. To eliminate the
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individual differences from the denominator of the F-ratio, we measure the individual
differences and then subtract them from the rest of the variability. The variance that 
remains is a measure of pure error without any systematic differences that can be 
explained by treatment effects or by individual differences.

In summary, the F-ratio for a repeated-measures ANOVA has the same basic struc-
ture as the F-ratio for independent measures (Chapter 12) except that it includes no
variability caused by individual differences. The individual differences are automati-
cally eliminated from the variance between treatments (numerator) because the 
repeated-measures design uses the same individuals in all treatments. In the denomina-
tor, the individual differences are subtracted during the analysis. As a result, the 
repeated-measures F-ratio has the following structure:

F �

� (13.1)

Note that this F-ratio is structured so that there are no individual differences con-
tributing to either the numerator or the denominator. When there is no treatment effect,
the F-ratio is balanced because the numerator and denominator are both measuring 
exactly the same variance. In this case, the F-ratio should have a value near 1.00. When
research results produce an F-ratio near 1.00, we conclude that there is no evidence of
a treatment effect and we fail to reject the null hypothesis. On the other hand, when a
treatment effect does exist, it contributes only to the numerator and should produce a
large value for the F-ratio. Thus, a large value for F indicates that there is a real treat-
ment effect and, therefore, we should reject the null hypothesis.

treatment effects � random, unsystematic differences
–––––––––––––––––––––––––––––––––––––––––––

random, unsystematic differences

between-treatments variance 
���

error variance 
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L E A R N I N G  C H E C K 1. Explain why individual differences do not contribute to the between-treatments
variability in a repeated-measures study.

2. What sources of variability contribute to the within-treatment variability for a
repeated-measures study?

3. Describe the structure of the F-ratio for the repeated-measures ANOVA.

1. Because the individuals in one treatment are exactly the same as the individuals in every
other treatment, there are no individual differences from one treatment to another.

2. Variability (differences) within treatments is caused by individual differences and random,
unsystematic differences.

3. The numerator of the F-ratio measures between-treatments variability, which consists of
treatment effects and random, unsystematic differences. The denominator measures variabil-
ity that is exclusively caused by random, unsystematic differences.

ANSWERS

13.3 HYPOTHESIS TESTING AND EFFECT SIZE 
WITH THE REPEATED-MEASURES ANOVA

The overall structure of the repeated-measures ANOVA is shown in Figure 13.2. Note that
the ANOVA can be viewed as a two-stage process. In the first stage, the total variance 
is partitioned into two components: between-treatments variance and within-treatments
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variance. This stage is identical to the analysis that we conducted for an independent-
measures design in Chapter 12.

The second stage of the analysis is intended to remove the individual differences
from the denominator of the F-ratio. In the second stage, we begin with the variance
within treatments and then measure and subtract out the between-subject variance,
which measures the size of the individual differences. The remaining variance, often
called the residual variance, or error variance, provides a measure of how much vari-
ance is reasonable to expect after the treatment effects and individual differences have
been removed. The second stage of the analysis is what differentiates the repeated-
measures ANOVA from the independent-measures ANOVA. Specifically, the repeated-
measures design requires that the individual differences be removed.

In a repeated-measures ANOVA, the denominator of the F-ratio is called the
residual variance, or the error variance, and measures how much variance is
expected if there are no systematic treatment effects and no individual differ-
ences contributing to the variability of the scores.

We use the data in Table 13.2 to introduce the notation for the repeated-measures
ANOVA. The data represent the results of a study comparing different viewing dis-
tances for a 42-inch high-definition television. Four viewing distances were evaluated,

NOTATION FOR 
THE REPEATED-MEASURES

ANOVA

D E F I N I T I O N

440 CHAPTER 13 REPEATED-MEASURES ANALYSIS OF VARIANCE

Stage 2

Stage 1

Between-treatments
variance

Numerator of
F -ratio

Denominator of
F -ratio

1. Treatment effect
2. Error or chance
    (excluding individual
    differences)

Between-subjects
variance

1. Individual 
    differences

Error
variance

1. Error (excluding
    individual
    differences)

Total
variance

Within-treatments
variance

1. Individual 
    differences
2. Other error

FIGURE 13.2

The partitioning of variance
for a repeated-measures
experiment.
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9 feet, 12 feet, 15 feet, and 18 feet. Each participant was free to move back and forth
among the four distances while watching a 30-minute video on the television. The only
restriction was that each person had to spend at least 2 minutes watching from each of
the four distances. At the end of the video, each participant rated the all of the viewing
distances on a scale from 1 (Very Bad, definitely need to move closer or farther away)
to 7 (excellent, perfect viewing distance). You may notice that this research study and
the numerical values in the table are identical to those used to demonstrate the 
independent-measures ANOVA in the previous chapter (Example 12.1, page 405). In
this case, however, the data represent a repeated-measures study in which the same
group of n � 5 individuals is tested in all four treatment conditions.

You should recognize that most of the notation in Table 13.2 is identical to the 
notation used in an independent-measures analysis (Chapter 12). For example, there are
n � 5 participants who are tested in k � 4 treatment conditions, producing a total of 
N � 20 scores that add up to a grand total of G � 60. Note, however, that N � 20 now
refers to the total number of scores in the study, not the number of participants.

The repeated-measures ANOVA introduces only one new notational symbol. The
letter P is used to represent the total of all of the scores for each individual in the study.
You can think of the P values as “Person totals” or “Participant totals.” In Table 13.2,
for example, participant A had scores of 3, 4, 6, and 7 for a total of P � 20. The P val-
ues are used to define and measure the magnitude of the individual differences in the
second stage of the analysis.

We use the data in Table 13.2 to demonstrate the repeated-measures ANOVA. Again,
the goal of the test is to determine whether there are any significant differences among
the four distances being compared. Specifically, are any of the mean differences in the
data greater than would be expected if there are no systematic differences among the
four viewing distances?

The first stage of the repeated-measures analysis is identical to the independent-
measures ANOVA that was presented in Chapter 12. Specially, the SS and df for 
the total set of scores are analyzed into within-treatments and between-treatments
components.

Because the numerical values in Table 13.2 are the same as the values used in
Example 12.1 (p. 405), the computations for the first stage of the repeated-measures
analysis are identical to those in Example 12.1. Rather than repeating the same

STAGE 1 OF THE 
REPEATED-MEASURES 

ANOVA

E X A M P L E  1 3 . 1
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TABLE 13.2

Satisfaction with different view-
ing distances of a 42-inch, high-
definition television.
Note: For comparison, the
scores are identical to the values
in Example 12.1 on page 405.

Viewing Distance

Person 9 Feet 12 Feet 15 Feet 18 Feet Person Totals

A 3 4 7 6 P � 20 n � 5
B 0 3 6 3 P � 12 k � 4
C 2 1 5 4 P � 12 N � 20
D 0 1 4 3 P � 8 G � 60
E 0 1 3 4 P � 8 �X2 � 262

T � 5 T � 10 T � 25 T � 20
SS � 8 SS � 8 SS � 10 SS � 6

30991_ch13_ptg01_hr_433-464.qxd  9/3/11  2:30 AM  Page 441



arithmetic, the results of the first stage of the repeated-measures analysis can be
summarized as follows:

Total:

SStotal � �X2 � �
G
N

2

� � 262 � �
(6

2
0
0
)2

� � 262 � 180 � 82

dftotal � N � 1 � 19

Within treatments:

SSwithin treatments � �SSinside each treatment � 8 � 8 � 10 � 6 � 32

dfwithin treatments � �dfinside each treatment � 4 � 4 � 4 � 4 = 16

Between treatments: For this example we use the computational formula for
SSbetween treatments.

SSbetween treatments � � �
T
n

2

� � �
G
N

2

� � �
5
5

2

� � �
1
5
02

� � �
2
5
52

� � �
2
5
02

� � �
6
2
0
0

2

� � 50

dfbetween treatments � k � 1 � 3

For more details on the formulas and calculations, see Example 12.1, 
pages 405–407.

This completes the first stage of the repeated-measures ANOVA. Note that the
two components, between and within, add up to the total for the SS values and for the
df values. Also note that the between-treatments SS and df values provide a measure
of the mean differences between treatments and are used to compute the variance in
the numerator of the final F-ratio. 

The second stage of the analysis involves removing the individual differences from the
denominator of the F-ratio. Because the same individuals are used in every treatment,
it is possible to measure the size of the individual differences. For the data in Table 13.2,
for example, participant A tends to have the highest scores and participants D and E
tend to have the lowest scores. These individual differences are reflected in the P values,
or person totals, in the right-hand column. We use these P values to create a com-
putational formula for SSbetween subjects in much the same way that we used the
treatment totals, the T values, in the computational formula for SSbetween treatments.
Specifically, the formula for the between-subjects SS is

SSbetween subjects � ��
P
k

2

� � �
G
N

2

� (13.2)

Notice that the formula for the between-subjects SS has exactly the same
structure as the computational formula for the between-treatments SS (see the
calculation above). In this case we use the person totals (P values) instead of the
treatment totals (T values). Each P value is squared and divided by the number of
scores that were added to obtain the total. In this case, each person has k scores, 
one for each treatment. Box 13.1 presents another demonstration of the similarity 

STAGE 2 OF THE 
REPEATED-MEASURES 

ANOVA
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of the formulas for SS between subjects and SS between treatments. For the data in
Table 13.2,

SSbetween subjects � �
2
4
02

� � �
1
4
22

� � �
1
4
22

� � �
8
4

2

� � �
8
4

2

� � �
6
2
0
0

2

�

� 100 � 36 � 36 � 16 � 16 – 180

� 24

The value of SSbetween subjects provides a measure of the size of the individual
differences—that is, the differences between subjects. In the second stage of the
analysis, we simply subtract the individual differences to obtain the measure of error
that forms the denominator of the F-ratio. Thus, the final step in the analysis of SS is

SSerror � SSwithin treatments � SSbetween subjects (13.3)

We have already computed SSwithin treatments � 32 and SSbetween subjects � 24, therefore

SSerror � 32 � 24 � 8

The analysis of degrees of freedom follows exactly the same pattern that was used
to analyze SS. Remember that we are using the P values to measure the magnitude of
the individual differences. The number of P values corresponds to the number of
subjects, n, so the corresponding df is

dfbetween subjects � n � 1 (13.4)

For the data in Table 13.2, there are n � 5 subjects and

dfbetween subjects � 5 � 1 � 4
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B O X
1 3 . 1 SSbetween subjects AND SSbetween treatments

column totals are now P values (instead of T values)
and the number of scores in each column is now identi-
fied by k (instead of n). With these changes in notation,
the formula for SSbetween subjects has exactly the same
structure as the formula for SSbetween treatments. If you
examine the two equations, the similarity should be
clear.

Participant
A B C D E

9 feet 3 0 2 0 0 T � 5
12 feet 4 3 1 1 1 T � 10
15 feet 7 6 5 4 3 T � 25
18 feet 6 3 4 3 4 T � 20

P � 20 P � 12 P � 12 P � 8 P � 8

The data for a repeated-measures study are normally
presented in a matrix, with the treatment conditions
determining the columns and the participants defining
the rows. The data in Table 13.2 demonstrate this nor-
mal presentation. The calculation of SSbetween treatments

provides a measure of the differences between treatment
conditions—that is, a measure of the mean differences
between the columns in the data matrix. For the data in
Table 13.2, the column totals are 5, 10, 20, and 25.
These values are variable, and SSbetween treatments mea-
sures the amount of variability.

The following table reproduces the data from 
Table 13.2, but now we have turned the data matrix on
its side so that the participants define the columns and
the treatment conditions define the rows.

In this new format, the differences between the
columns represent the between-subjects variability. The
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Next, we subtract the individual differences from the within-subjects component
to obtain a measure of error. In terms of degrees of freedom,

dferror � dfwithin treatments � dfbetween subjects (13.5)

For the data in Table 13.2,

dferror � 16 � 4 � 12

An algebraically equivalent formula for dferror uses only the number of treatment
conditions (k) and the number of participants (n): 

dferror � (k � 1)(n � 1) (13.6)

The usefulness of equation 13.6 is discussed in Box 13.2.
Remember: The purpose for the second stage of the analysis is to measure the

individual differences and then remove the individual differences from the denominator of
the F-ratio. This goal is accomplished by computing SS and df between subjects (the
individual differences) and then subtracting these values from the within-treatments values.
The result is a measure of variability resulting from error with the individual differences
removed. This error variance (SS and df) is used in the denominator of the F-ratio.

The final calculation in the analysis is the F-ratio, which is a ratio of two variances.
Each variance is called a mean square, or MS, and is obtained by dividing the
appropriate SS by its corresponding df value. The MS in the numerator of the F-ratio
measures the size of the differences between treatments and is calculated as

MSbetween treatments ��
S

d

S

fb

b

e

e

t

t

w

w

e

e

e

e

n

n

t

t

r

r

e

e

a

a

t

t

m

m

e

e

n

n

t

t

s

s
� (13.7)

For the data in Table 13.2,

MS
between treatments

� �
50

3
16 67.

CALCULATION OF THE
VARIANCES (MS VALUES)

AND THE F-RATIO

444 CHAPTER 13 REPEATED-MEASURES ANALYSIS OF VARIANCE

B O X
1 3 . 2 USING THE ALTERNATIVE FORMULA FOR dferror

second df value, which is dferror � 10. Using this value
and the fact that k � 1 � 2, use equation 13.6 to find
the number of participants. 

dferror � 10 � (k � 1)(n � 1) � 2(n � 1)

If 2(n � 1) � 10, then n � 1 must equal 5.
Therefore, n � 6. 

Therefore, we conclude that a repeated-measures
study producing an F-ratio with df � 2, 10 must have
compared 3 treatment conditions using a sample of 
6 participants.

The statistics presented in a research report not only
describe the significance of the results but typically
provide enough information to reconstruct the research
design. The alternative formula for dferror is particularly
useful for this purpose. Suppose, for example, that a
research report for a repeated-measures study includes
an F-ratio with df � 2, 10. How many treatment condi-
tions were compared in the study, and how many indi-
viduals participated?

To answer these questions, begin with the first df
value, which is dfbetween treatments � 2 � k � 1. From
this value, it is clear that k � 3 treatments. Next, use the

30991_ch13_ptg01_hr_433-464.qxd  9/3/11  2:30 AM  Page 444



The denominator of the F-ratio measures how much difference is reasonable to 
expect if there are no systematic treatment effects and the individual differences have
been removed. This is the error variance, or the residual variance, obtained in stage 2
of the analysis.

MSerror � �
S

d

S

fe

e

r

r

r

r

o

o

r

r
� (13.8)

For the data in Table 13.2,

Finally, the F-ratio is computed as

F ��
MSbet

M
we

S
en

er

t

r

r

o

e

r

atments
� (13.9)

For the data in Table 13.2,

Once again, notice that the repeated-measures ANOVA uses MSerror in the
denominator of the F-ratio. This MS value is obtained in the second stage of the
analysis, after the individual differences have been removed. As a result, individual
differences are completely eliminated from the repeated-measures F-ratio, so that the
general structure is

For the data we have been examining, the F-ratio is F � 24.88, indicating that
the differences between treatments (numerator) are almost 25 times bigger than you
would expect without any treatment effects (denominator). A ratio this large provides
clear evidence that there is a real treatment effect. To verify this conclusion you must
consult the F distribution table to determine the appropriate critical value for the test.
The degrees of freedom for the F-ratio are determined by the two variances that form
the numerator and the denominator. For a repeated-measures ANOVA, the df values
for the F-ratio are reported as

df � dfbetween treatments, dferror

For the example we are considering, the F-ratio has df � 2, 12 (“degrees of 
freedom equal two and twelve”). Using the F distribution table (p. 705) with 	 � .05,
the critical value is F � 3.88, and with 	 � .01 the critical value is F � 6.93. Our
obtained F-ratio, F � 24.88, is well beyond either of the critical values, so we can
conclude that the differences between treatments are significantly greater than
expected by chance using either 	 � .05 or 	 � .01.

F � �
16 67

0 67
24 88

.

.
.

� �
8

12
0 67.
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MSerror

treatment effects � unsystematic differences (without individual diffs)
unsystematic differences (without individual diffs)

F �
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The summary table for the repeated-measures ANOVA from Example 13.1 is
presented in Table 13.3. Although these tables are no longer commonly used in
research reports, they provide a concise format for displaying all of the elements of
the analysis.

The most common method for measuring effect size with ANOVA is to compute the
percentage of variance that is explained by the treatment differences. In the context of
ANOVA, the percentage of variance is commonly identified as 
2 (eta squared). In
Chapter 12, for the independent-measures analysis, we computed 
2 as


2 � ��
SSbetw

S
e

S
en

to

t

t

r

a

e

l

atments
�

The intent is to measure how much of the total variability is explained by the dif-
ferences between treatments. With a repeated-measures design, however, there is 
another component that can explain some of the variability in the data. Specifically,
part of the variability is caused by differences between individuals. In Table 13.2, for
example, person A consistently scored higher than person B. This consistent difference
explains some of the variability in the data. When computing the size of the treatment
effect, it is customary to remove any variability that can be explained by other factors,
and then compute the percentage of the remaining variability that can be explained by
the treatment effects. Thus, for a repeated-measures ANOVA, the variability from the
individual differences is removed before computing 
2. As a result, 
2 is computed as


2 � (13.10)

Because Equation 13.10 computes a percentage that is not based on the total vari-
ability of the scores (one part, SSbetween subjects, is removed), the result is often called a
partial eta squared.

The general goal of Equation 13.10 is to calculate a percentage of the variability
that has not already been explained by other factors. Thus, the denominator of 
Equation 13.10 is limited to variability from the treatment differences and variability
that is exclusively from random, unsystematic factors. With this in mind, an equivalent 
version of the 
2 formula is


2 � (13.11)
SSbetween treatments

���
SSbetween treatments � SSerror

SSbetween treatments
���
SStotal � SSbetween subjects

SSbetween treatments
����
SSbetween treatments � SSwithin treatments

MEASURING EFFECT SIZE 
FOR THE REPEATED-
MEASURES ANOVA
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TABLE 13.3

A summary table for the 
repeated-measures ANOVA for
the data from Example 13.1.

Source SS df MS F

Between treatments 50 3 16.67 F(3,12) � 24.88
Within treatments 32 16

Between subjects 24 4
Error 8 12 0.67

Total 82 19
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In this new version of the eta-squared formula, the denominator consists of the
variability that is explained by the treatment differences plus the other unexplained
variability. Using either formula, the data from Example 13.1 produce

This result means that 86.2% of the variability in the data (except for the individ-
ual differences) is accounted for by the differences between treatments.

IN THE LITERATURE
REPORTING THE RESULTS OF A REPEATED-MEASURES ANOVA

As described in Chapter 12 (p. 409), the format for reporting ANOVA results in
journal articles consists of

1. A summary of descriptive statistics (at least treatment means and standard 
deviations, and tables or graphs as needed)

2. A concise statement of the outcome of the ANOVA

For the study in Example 13.1, the report could state:

The means and variances for the four television viewing distances are shown in
Table 1. A repeated-measures analysis of variance indicated significant mean 
differences in the participants’ ratings of the four distances, F(3, 12) � 24.88, 
p � .01, 
2 � 0.862.

TABLE 1

Ratings of satisfaction with different television-viewing distances

9 Feet 12 Feet 15 Feet 18 Feet

M 1.00 2.00 5.00 4.00
SD 1.41 1.41 1.58 1.22

Recall that ANOVA provides an overall test of significance for the mean differences
between treatments. When the null hypothesis is rejected, it indicates only that there is
a difference between at least two of the treatment means. If k � 2, it is obvious which
two treatments are different. However, when k is greater than 2, the situation becomes
more complex. To determine exactly where significant differences exist, the researcher
must follow the ANOVA with post hoc tests. In Chapter 12, we used Tukey’s HSD and
the Scheffé test to make these multiple comparisons among treatment means. These two
procedures attempt to control the overall alpha level by making adjustments for the
number of potential comparisons.

For a repeated-measures ANOVA, Tukey’s HSD and the Scheffé test can be used in
the exact same manner as was done for the independent-measures ANOVA, provided that
you substitute MSerror in place of MSwithin treatments in the formulas and use dferror in place of
dfwithin treatments when locating the critical value in a statistical table. Note that statisticians
are not in complete agreement about the appropriate error term in post hoc tests for repeated-
measures designs (for a discussion, see Keppel, 1973, or Keppel & Zedeck, 1989).

POST HOC TESTS 
WITH REPEATED-MEASURES

ANOVA

η2 50

58
0 862 86 2� � . . %or( )
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The basic assumptions for the repeated-measures ANOVA are identical to those 
required for the independent-measures ANOVA.

1. The observations within each treatment condition must be independent (see p. 254).

2. The population distribution within each treatment must be normal. (As before,
the assumption of normality is important only with small samples.)

3. The variances of the population distributions for each treatment should be
equivalent.

For the repeated-measures ANOVA, there is an additional assumption, called 
homogeneity of covariance. Basically, it refers to the requirement that the relative
standing of each subject be maintained in each treatment condition. This assumption is
violated if the effect of the treatment is not consistent for all of the subjects or if order
effects exist for some, but not other, subjects. This issue is very complex and is beyond
the scope of this book. However, methods do exist for dealing with violations of this
assumption (for a discussion, see Keppel, 1973).

If there is reason to suspect that one of the assumptions for the repeated-measures
ANOVA has been violated, an alternative analysis known as the Friedman test can be
used. The Friedman test is presented in Appendix E. It requires that the original scores be
transformed into ranks before evaluating the differences between treatment conditions.

ASSUMPTIONS OF 
THE REPEATED-MEASURES

ANOVA
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L E A R N I N G  C H E C K 1. Explain how SSerror is computed in the repeated-measures ANOVA.

2. A repeated-measures study is used to evaluate the mean differences among 
three treatment conditions using a sample of n � 8 participants. What are the df
values for the F-ratio?

3. For the following data, compute SSbetween treatments and SSbetween subjects.

Treatment

Subject 1 2 3 4

A 2 2 2 2 G � 32
B 4 0 0 4 �X2 � 96
C 2 0 2 0
D 4 2 2 4

T � 12 T � 4 T � 6 T � 10
SS � 4 SS � 4 SS � 3 SS � 11

4. A research report includes a repeated-measures F-ratio with df � 3, 24. How
many treatment conditions were compared, and how many individuals participated
in the study? (See Box 13.2.)

1. SSerror � SSwithin � SSbetween subjects Variability from individual differences is subtracted
from the within-treatments variability.

2. df � 2, 14

3. SSbetween treatments � 10, SSbetween subjects � 8

4. There were 4 treatment conditions (k � 1 � 3) and 9 participants (n � 1 � 8).

ANSWERS
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13.4 ADVANTAGES AND DISADVANTAGES 
OF THE REPEATED-MEASURES DESIGN

When we first encountered the repeated-measure design (Chapter 11), we noted that this
type of research study has certain advantages and disadvantages (pp. 366�369). On the
bright side, a repeated-measures study may be desirable if the supply of participants is
limited. A repeated-measures study is economical in that the research requires relatively
few participants. Also, a repeated-measures design eliminates or minimizes most of the
problems associated with individual differences. However, disadvantages also exist.
These take the form of order effects, such as fatigue, that can make the 
interpretation of the data difficult.

Now that we have introduced the repeated-measures ANOVA, we can examine one
of the primary advantages of this design—namely, the elimination of variability caused
by individual differences. Consider the structure of the F-ratio for both the 
independent-and the repeated-measures designs.

F �

In each case, the goal of the analysis is to determine whether the data provide evi-
dence for a treatment effect. If there is no treatment effect, then the numerator and 
denominator are both measuring the same random, unsystematic variance and the 
F-ratio should produce a value near 1.00. On the other hand, the existence of a treatment
effect should make the numerator substantially larger than the denominator and result in
a large value for the F-ratio.

For the independent-measures design, the unsystematic differences include individ-
ual differences as well as other random sources of error. Thus, for the independent-meas-
ures ANOVA, the F-ratio has the following structure:

For the repeated-measures design, the individual differences are eliminated or sub-
tracted out, and the resulting F-ratio is structured as follows:

The removal of individual differences from the analysis becomes an advantage in
situations in which very large individual differences exist among the participants being
studied.

When individual differences are large, the presence of a treatment effect may be
masked if an independent-measures study is performed. In this case, a repeated-measures
design would be more sensitive in detecting a treatment effect because individual differ-
ences do not influence the value of the F-ratio.

This point will become evident in the following example. Suppose that we know how
much variability is accounted for by the different sources of variance. For example,

treatment effect � 10 units of variance

individual differences � 10 units of variance

other error � 1 unit of variance

F �
treatment effect � error (excluding individual differences)

error (excluding individual differences)

F �
treatment effect � individual differences and other error

individual differences and other error

treatment effects � random, unsystematic differences
–––––––––––––––––––––––––––––––––––––––––––

random, unsystematic differences
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Notice that a large amount of the variability in the experiment is caused by indi-
vidual differences. By comparing the F-ratios for an independent- and a repeated-
measures analysis, we are able to see a fundamental difference between the two types
of experimental designs. For an independent-measures experiment, we obtain

Thus, the independent-measures ANOVA produces an F-ratio of F � 1.91. Recall
that the F-ratio is structured to produce F � 1.00 if there is no treatment effect what-
soever. In this case, the F-ratio is near to 1.00 and strongly suggests that there is little
or no treatment effect. If you check the F-distribution table in Appendix B, you will
find that it is almost impossible for an F-ratio as small as 1.91 to be significant. For 
the independent-measures ANOVA, the 10-point treatment effect is overwhelmed by
all of the other variance.

Now consider what happens with a repeated-measures ANOVA. With the individ-
ual differences removed, the F-ratio becomes:

� �
10

1
� 1
� � �

1
1
1
�  � 11

For the repeated-measures ANOVA, the numerator of the F-ratio (which includes
the treatment effect) is 11 times larger than the denominator (which has no treatment
effect). This result strongly indicates that there is a substantial treatment effect. In this
example, the F-ratio is much larger for the repeated-measures study because the indi-
vidual differences, which are extremely large, have been removed. In the independent-
measures ANOVA, the presence of a treatment effect is obscured by the influence of
individual differences. This problem is eliminated by the repeated-measures design, in
which variability caused by individual differences is partitioned out of the analysis.
When the individual differences are large, a repeated-measures experiment may pro-
vide a more sensitive test for a treatment effect. In statistical terms, a repeated-
measures test has more power than an independent-measures test; that is, it is more
likely to detect a real treatment effect.

As we have demonstrated, one major advantage of a repeated-measures design is that it
removes individual differences from the denominator of the F-ratio, which usually 
increases the likelihood of obtaining a significant result. However, removing individual
differences is an advantage only when the treatment effects are reasonably consistent for
all of the participants. If the treatment effects are not consistent across participants, the 
individual differences tend to disappear and value in the denominator is not noticeably 
reduced by removing them. This phenomenon is demonstrated in the following example.

Table 13.4 presents hypothetical data from a repeated-measures research study. We
constructed the data specifically to demonstrate the relationship between consistent
treatment effects and large individual differences.

E X A M P L E  1 3 . 2

INDIVIDUAL DIFFERENCES
AND THE CONSISTENCY 

OF THE TREATMENT EFFECTS

F �
treatment effect � error

error

�
� �10 10 1

10��
� �

1

21

11
1 91.
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F �
treatment effect � individual differences � error

individual differences � error
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First, notice the consistency of the treatment effects. Treatment II has the same 
effect on every participant, increasing everyone’s score by 1 or 2 points compared to
treatment I. Also, treatment III produces a consistent increase of 1 or 2 points compared
to treatment II. One consequence of the consistent treatment effects is that the individual
differences are maintained in all of the treatment conditions. For example, participant 
A has the lowest score in all three treatments, and participant D always has the highest
score. The participant totals (P values) reflect the consistent differences. For example,
participant D has the largest score in every treatment and, therefore, has the largest 
P value. Also notice that there are big differences between the P totals from one
individual to the next. For these data, SSbetween subjects � 30 points.

Now consider the data in Table 13.5. To construct these data we started with 
the same numbers within each treatment that were used in Table 13.4. However, we
scrambled the numbers within each column to eliminate the consistency of the
treatment effects. In Table 13.5, for example, two participants show an increase in
scores as they go from treatment I to treatment II, and two show a decrease. The data
also show an inconsistent treatment effect as the participants go from treatment II to
treatment III. One consequence of the inconsistent treatment effects is that there are no
consistent individual differences between participants. Participant C, for example, has
the lowest score in treatment II and the highest score in treatment III. As a result, there
are no longer consistent differences between the individual participants. All of the P
totals are about the same. For these data, SSbetween subjects � 3.33 points. Because the
two sets of data (Tables 13.4 and 13.5) have the same treatment totals (T values) and 
SS values, they have the same SSbetween treatments and SSwithin treatments. For both sets of data,

SSbetween treatments � 18 and SSwithin treatments � 32

However, there is a huge difference between the two sets of data when you
compute SSerror for the denominator of the F-ratio. For the data in Table 13.4, with
consistent treatment effects and large individual differences,

SSerror � SSwithin treatments � SSbetween subjects

� 32 � 30

� 2

For the data in Table 13.5, with no consistent treatment effects and relatively
small differences between the individual P totals,

SSerror � SSwithin treatments � SSbetween subjects

� 32 � 3.33

� 28.67
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TABLE 13.4

Data from a repeated-measures
study comparing three treatments.
The data show consistent 
treatment effects from one 
participant to another, which
produce consistent and relatively
large differences in the 
individual P totals.

Treatment

Person I II III

A 0 1 2 P � 3
B 1 2 3 P � 6
C 2 4 6 P � 12
D 3 5 7 P � 15

T � 6 T � 12 T � 18
SS � 5 SS � 10 SS � 17
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Thus, consistent treatment effects tend to produce a relatively small error term
for the F-ratio. As a result, consistent treatment effects are more likely to be
statistically significant (reject the null hypothesis). For the examples we have been
considering, the data in Table 13.4 produce an F-ratio of F � 27.0. With df � 2, 6,
this F-ratio is well into the critical region for 	 � .05 or .01 and we conclude that
there are significant differences among the three treatments. On the other hand, the
same mean differences in Table 13.5 produce F � 1.88. With df � 2, 6, this value 
is not in the critical region for 	 � .05 or .01, and we conclude that there are no
significant differences.

In summary, when treatment effects are consistent from one individual to another,
the individual differences also tend to be consistent and relatively large. The large
individual differences get subtracted from the denominator of the F-ratio producing a
larger value for F and increasing the likelihood that the F-ratio will be in the critical
region.

13.5 REPEATED-MEASURES ANOVA 
AND REPEATED-MEASURES t TEST

As we noted in Chapter 12 (pp. 420–421), whenever you are evaluating the difference
between two sample means, you can use either a t test or ANOVA. In Chapter 12, we
demonstrated that the two tests are related in many respects, including:

1. The two tests always reach the same conclusion about the null hypothesis.

2. The basic relationship between the two test statistics is F � t2.

3. The df value for the t statistic is identical to the df value for the denominator of
the F-ratio.

4. If you square the critical value for the two-tailed t test, you obtain the critical
value for the F-ratio. Again, the basic relationship is F � t2.

In Chapter 12, these relationships were demonstrated for the independent-measures
tests, but they are also true for repeated-measures designs comparing two treatment
conditions. The following example demonstrates the relationships.
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TABLE 13.5

Data from a repeated-measures
study comparing three treatments.
The data show treatment effects
that are inconsistent from one
participant to another and, as a
result, produce relatively small
differences in the individual 
P totals. Note that the data have
exactly the same scores within
each treatment as the data in
Table 13.5, however, the scores
have been scrambled to eliminate
the consistency of the treatment
effects.

Treatment

Person I II III

A 0 4 3 P � 7
B 1 5 2 P � 8
C 2 1 7 P � 10
D 3 2 6 P � 11

T � 6 T � 12 T � 18
SS � 5 SS � 10 SS � 17
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The following table shows the data from a repeated-measures study comparing 
two treatment conditions. We have structured the data in a format that is compatible
with the repeated-measures t test. Note that the calculations for the t test are based on
the difference scores (D values) in the final column.

E X A M P L E  1 3 . 3

The repeated-measures t test The null hypothesis for the t test states that, for the
general population, there is no mean difference between the two treatment conditions.

H0: �D � 0

With n � 4 participants, the test has df � 3 and the critical boundaries for a 
two-tailed test with 	 � .05 are t � �3.182. 

For these data, the sample mean difference is MD � 4, the variance for the
difference scores is s2 � 16, and the standard error is SM

D
� 2 points. These values

produce a t statistic of

The t value is not in the critical region so we fail to reject H0 and conclude that
there is no significant difference between the two treatments.

The repeated-measures ANOVA Now we reorganize the data into a format that is
compatible with a repeated-measures ANOVA. Notice that the ANOVA uses the orig-
inal scores (not the difference scores) and requires the P totals for each participant. 

�
�

�
4 0

2
2 00.t

M

s
D D

MD

�
�μ

Again, the null hypothesis states that, for the general population, there is no mean
difference between the two treatment conditions.

H0: �1 � �2
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Treatment

Participant I II D

A 3 5 2
B 4 14 10
C 5 7 2
D 4 6 2

MD � 4
SSD � 48

Treatment

Participant I II P

A 3 5 8 G � 48
B 4 14 18 �X2 � 372
C 5 7 12 N � 8
D 4 6 10

30991_ch13_ptg01_hr_433-464.qxd  9/3/11  2:30 AM  Page 453



For this study, dfbetween treatments � 1, dfwithin treatments � 6, dfbetween subjects � 3,
which produce dferror � (6 � 3) � 3. Thus, the F-ratio has df � 1, 3 and the critical
value for 	 � .05 is F � 10.13. Note that the denominator of the F-ratio has the same
df value as the t statistic (df � 3) and that the critical value for F is equal to the
squared critical value for t (10.13 � 3.1822).

For these data, SStotal � 84,

SSwithin � 52

SSbetween treatments � (84 � 52) � 32

SSbetween subjects � 28

SSerror � (52 � 28) � 24

The two variances in the F-ratio are
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Notice that the F-ratio and the t statistic are related by the equation F � t2

(4 � 22). The F-ratio (like the t statistic) is not in the critical region so, once again,
we fail to reject H0 and conclude that there is no significant difference between the
two treatments.

� �
32

8
4 00.

� �
24

3
8

� �
32

1
32
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1. The repeated-measures ANOVA is used to evaluate the
mean differences obtained in a research study
comparing two or more treatment conditions using the
same sample of individuals in each condition. The test
statistic is an F-ratio, in which the numerator measures
the variance (differences) between treatments and the
denominator measures the variance (differences) that is
expected without any treatment effects or individual
differences.

F ��
MSbet

M
we
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r

r
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e

r

atments
�

2. The first stage of the repeated-measures ANOVA is
identical to the independent-measures ANOVA and
separates the total variability into two components:
between-treatments and within-treatments. Because a

SUMMARY

repeated-measures design uses the same subjects in
every treatment condition, the differences between
treatments cannot be caused by individual differences.
Thus, individual differences are automatically
eliminated from the between-treatments variance in the
numerator of the F-ratio.

3. In the second stage of the repeated-measures analysis,
individual differences are computed and removed from
the denominator of the F-ratio. To remove the
individual differences, you first compute the variability
between subjects (SS and df) and then subtract these
values from the corresponding within-treatments values.
The residual provides a measure of error excluding
individual differences, which is the appropriate
denominator for the repeated-measures F-ratio. The
equations for analyzing SS and df for the repeated-
measures ANVOA are presented in Figure 13.3. 
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4. Effect size for the repeated-measures ANOVA is
measured by computing eta squared, the percentage of
variance accounted for by the treatment effect. For the
repeated-measures ANOVA


2 �

�

Because part of the variability (the SS caused by
individual differences) is removed before computing 

2, this measure of effect size is often called a partial
eta squared.

SSbetween treatments
���
SSbetween treatments � SSerror

SSbetween treatments
���
SStotal � SSbetween subjects

5. When the obtained F-ratio is significant (that is, H0 is
rejected), it indicates that a significant difference lies
between at least two of the treatment conditions. To
determine exactly where the difference lies, post hoc
comparisons may be made. Post hoc tests, such as
Tukey’s HSD, use MSerror rather than MSwithin treatments

and dferror instead of dfwithin treatments.

6. A repeated-measures ANOVA eliminates the influence
of individual differences from the analysis. If individual
differences are extremely large, then a treatment effect
might be masked in an independent-measures
experiment. In this case, a repeated-measures design
might be a more sensitive test for a treatment effect.

SStotal = ∑X
2 – —

SSbetween treatments = SStotal � SSwithin treatments

= ∑ T 2
  G 2

— � —
n

G 2

N
dftotal = N � 1  

or, SSbetween treatments 

dfbetween treatments = k�1

SSbetween subjects =

dfwithin treatments = Σ(n �1)

dfbetween subjects  = n �1

N

Numerator of F-ratio

Denominator of F-ratio

SSwithin treatments = ΣSSinside each treatment

 Σ 
G2

N

P 2

k
�

SSerror = SSwithin treatments � SSbetween subjects

dferror = dfwithin treatments � dfbetween subjects

FIGURE 13.3

Formulas for the repeated-measures ANOVA.

KEY TERMS

individual differences (437)

between-treatments variance(437)

error variance (438)

between-subjects variance (440)
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RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 13 on the book

companion website. 

Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.

Log in to CengageBrain to access the resources your instructor requires. For this book,
you can access:

Psychology CourseMate brings course concepts to life with interactive learning,
study, and exam preparation tools that support the printed textbook. A textbook-specific
website, Psychology CourseMate includes an integrated interactive eBook and other
interactive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to perform the Single-Factor, Repeated-Measures Analysis
of Variance (ANOVA) presented in this chapter.

Data Entry

Enter the scores for each treatment condition in a separate column, with the scores for each
individual in the same row. All of the scores for the first treatment go in the VAR00001
column, the second treatment scores go in the VAR00002 column, and so on.

Data Analysis

1. Click Analyze on the tool bar, select General Linear Model, and click on
Repeated-Measures.

2. SPSS presents a box entitled Repeated-Measures Define Factors. Within the box,
the Within-Subjects Factor Name should already contain Factor 1. If not, type in
Factor 1.

3. Enter the Number of levels (number of different treatment conditions) in the
next box.

4. Click Add.
5. Click Define.
6. One by one, move the column labels for your treatment conditions into the Within

Subjects Variables box. (Highlight the column label on the left and click the arrow
to move it into the box.)

7. If you want descriptive statistics for each treatment, click on the Options box,
select Descriptives, and click Continue.

8. Click OK.
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SPSS Output

We used the SPSS program to analyze the data from the television viewing study in
Example 13.1 and portions of the program output are shown in Figure 13.4. Note that 
large portions of the SPSS output are not relevant for our purposes and are not included in
Figure 13.1. The first item of interest is the table of Descriptive Statistics, which presents
the mean, standard deviation, and number of scores for each treatment. Next, we skip 
to the table showing Tests of Within-Subjects Effects. The top line of the factor 1 box
(Sphericity Assumed) shows the between-treatments sum of squares, degrees of freedom,
and mean square that form the numerator of the F-ratio. The same line reports the value of
the F-ratio and the level of significance (the p value or alpha level). Similarly, the top line
of the Error (factor 1) box shows the sum of squares, the degrees of freedom, and the 
mean square for the error term (the denominator of the F-ratio). The final box in the output 
(not shown in Figure 13.4) is labeled Tests of Between-Subjects Effects and the bottom
line (Error) reports the between-subjects sum of squares and degrees of freedom (ignore
the mean square and F-ratio, which are not part of the repeated-measures ANOVA). 
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Descriptive Statistics

Tests of Within-Subjects Effects

Measure: MEASURE_1

Source

factor 1

Type III Sum
of Squares df Mean

Square F Sig.

Mean

VAR00001

VAR00002

VAR00003

VAR00004

Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

50.000

50.000

50.000

50.000

3

1.600

2.500

1.000

16.667

31.250

20.000

50.000

8.000

8.000

8.000

8.000

12

6.400

10.000

4.000

.667

1.250

.800

2.000

25.000

25.000

25.000

25.000

.000

.001

.000

.007

Error (factor 1) Sphericity Assumed

Greenhouse-Geisser

Huynh-Feldt

Lower-bound

1.0000

2.0000

5.0000

4.0000

1.41421

1.41421

1.58114

1.22474

5

5

5

5

Std. Deviation N

FIGURE 13.4

Portions of the SPSS output for the repeated-measures ANOVA for the television viewing study in Example 13.1.
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FOCUS ON PROBLEM SOLVING

1. Before you begin a repeated-measures ANOVA, complete all of the preliminary
calculations needed for the ANOVA formulas. This requires that you find the total
for each treatment (Ts), the total for each person (Ps), the grand total (G), the SS for
each treatment condition, and �X2 for the entire set of N scores. As a partial check
on these calculations, be sure that the T values add up to G and that the P values
have a sum of G.

2. To help remember the structure of repeated-measures ANOVA, keep in mind that a
repeated-measures experiment eliminates the contribution of individual differences.
There are no individual differences contributing to the numerator of the F-ratio
(MSbetween treatments) because the same individuals are used for all treatments.
Therefore, you must also eliminate individual differences in the denominator. This
is accomplished by partitioning within-treatments variability into two components:
between-subjects variability and error variability. It is the MS value for error
variability that is used in the denominator of the F-ratio.

DEMONSTRATION 13.1

REPEATED-MEASURES ANOVA

The following data were obtained from a research study examining the effect of sleep
deprivation on motor-skills performance. A sample of five participants was tested on a
motor-skills task after 24 hours of sleep deprivation, tested again after 36 hours, and tested
once more after 48 hours. The dependent variable is the number of errors made on the
motor-skills task. Do these data indicate that the number of hours of sleep deprivation has
a significant effect on motor skills performance?

Participant 24 Hours 36 Hours 48 Hours P totals

A 0 0 6 6 N � 15
B 1 3 5 9 G � 45
C 0 1 5 6 �X2 � 245
D 4 5 9 18
E 0 1 5 6

T � 5 T � 10 T � 30
SS � 12 SS � 16 SS � 12

State the hypotheses, and specify alpha. The null hypothesis states that, for the general
population, there are no differences among the three deprivation conditions. Any differences
that exist among the samples are simply the result of chance or error. In symbols,

H0: �1 � �2 � �3

The alternative hypothesis states that there are differences among the conditions.

H1: At least one of the treatment means is different.

S T E P  1
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We use 	 � .05.

The repeated-measures analysis. Rather than compute the df values and look for a
critical value for F at this time, we proceed directly to the ANOVA.

The first stage of the analysis is identical to the independent-measures ANOVA presented
in Chapter 12.

SSwithin � � SSinside each treatment � 12 � 16 � 12 � 40

SSbetween� �70

and the corresponding degrees of freedom are

dftotal � N � �1 � 14

dfwithin � � df � 4 � 4 � 4 � 12

dfbetween � k � 1 � 2

The second stage of the repeated-measures analysis measures and removes the individual
differences from the denominator of the F-ratio.

SSbetween subjects � � �
P
k

2

� � �
G
N

2

�

� �
6
3

2

� � �
9
3

2

� � �
6
3

2

� � �
1
3
82

� � �
6
3

2

� � �
4
1
5
5

2

�

� 36

SSerror � SSwithin � SSbetween subjects

� 40 � 36

� 4

and the corresponding df values are

dfbetween subjects � n � 1 � 4

dferror � dfwithin � dfbetween subjects

� 12 � 4

� 8

The mean square values that form the F-ratio are as follows:

MSbetween � �
S

d

S

fb

b

e

e

t

t

w

w

e

e

e

e

n

n
� � �

7
2
0
� � 35

MSerror � �
S

d

S

fe

e

r

r

r

r

o

o

r

r
� � �

4
8

� � 0.50
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SStotal � � X2 � �
G
N

2

� � 245 � �
4
1
5
5

2

� � 110
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Finally, the F-ratio is

F � �
M

M

Sb

S
e

e

t

r

w

ro

e

r

en
� � �

0
3
.5
5
0

� � 70.00

Make a decision and state a conclusion. With df � 2, 8 and 	 � .05, the critical
value is F � 4.46. Our obtained F-ratio (F � 70.00) is well into the critical region, so our
decision is to reject the null hypothesis and conclude that there are significant differences
among the three levels of sleep deprivation.

DEMONSTRATION 13.2

EFFECT SIZE FOR THE REPEATED-MEASURES ANOVA

We compute 
2, the percentage of variance explained by the treatment differences, for the
data in Demonstration 13.1. Using Equation 13.11 we obtain


2 � � �
70

7
�

0
4

� � �
7
7
0
4
� � 0.95 (or 95%)

SSbetween treatments
���
SSbetween treatments � SSerror

S T E P  3
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1. How does the denominator of the F-ratio (the error
term) differ for a repeated-measures ANOVA
compared to an independent-measures ANOVA?

2. The repeated-measures ANOVA can be viewed as a
two-stage process. What is the purpose of the second
stage?

3. A researcher conducts an experiment comparing 
three treatment conditions with n � 10 scores in each
condition.
a. If the researcher uses an independent-measures

design, how many individuals are needed for the
study and what are the df values for the F-ratio?

b. If the researcher uses a repeated-measures design,
how many individuals are needed for the study and
what are the df values for the F-ratio?

4. A researcher conducts a repeated-measures experiment
using a sample of n � 8 subjects to evaluate the dif-
ferences among four treatment conditions. If the
results are examined with an ANOVA, what are 
the df values for the F-ratio?

5. A researcher uses a repeated-measures ANOVA to
evaluate the results from a research study and reports
an F-ratio with df � 2, 30.
a. How many treatment conditions were compared in

the study?
b. How many individuals participated in the study?

6. A published report of a repeated-measures research study
includes the following description of the statistical
analysis. “The results show significant differences among
the treatment conditions, F(2, 20) � 6.10, p �.01.”
a. How many treatment conditions were compared in

the study?
b. How many individuals participated in the study?

7. The following data were obtained from a repeated-
measures study comparing three treatment conditions.
Use a repeated-measures ANOVA with 	 �.05 to
determine whether there are significant mean
differences among the three treatments.

Treatments

Person
Person I II III Totals

A 0 4 2 P � 6
B 1 5 6 P � 12 N � 18
C 3 3 3 P � 9 G � 48
D 0 1 5 P � 6 �X2 � 184
E 0 2 4 P � 6
F 2 3 4 P � 9

M � 1 M � 3 M � 4
T � 6 T � 18 T � 24

SS � 8 SS � 10 SS � 10

PROBLEMS
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8. The following data were obtained from a repeated-
measures study comparing two treatment conditions.
Use a repeated-measures ANOVA with 	 � .05 to
determine whether there are significant mean
differences between the two treatments.

Treatments

Person
Person I II Totals

A 3 5 P � 8
B 5 9 P � 14 N � 16
C 1 5 P � 6 G � 80
D 1 7 P � 8 �X2 � 500
E 5 9 P � 14
F 3 7 P � 10
G 2 6 P � 8
H 4 8 P � 12

M � 3 M � 7
T � 24 T � 56

SS � 18 SS � 18

9. The following data were obtained from a repeated-
measures study comparing three treatment conditions. 
a. Use a repeated-measures ANOVA with 	 � .05 to

determine whether there are significant mean
differences among the three treatments.

b. Compute 
2, the percentage of variance accounted
for by the mean differences, to measure the size of
the treatment effects.

c. Write a sentence demonstrating how a research
report would present the results of the hypothesis
test and the measure of effect size.

Treatments

Person
Person I II III Totals

A 1 1 4 P � 6
B 3 4 8 P � 15 N � 15
C 0 2 7 P � 9 G � 45
D 0 0 6 P � 6 �X2 � 231
E 1 3 5 P � 9

M � 1 M � 2 M � 6
T � 5 T � 10 T � 30

SS � 6 SS � 10 SS � 10

10. For the data in problem 9,
a. Compute SStotal and SSbetween treatments.

b. Eliminate the mean differences between treatments
by adding 2 points to each score in treatment I,
adding 1 point to each score in treatment II, and

subtracting 3 points from each score in treatment
III. (All three treatments should end up with M � 3
and T � 15.)

c. Calculate SStotal for the modified scores. (Caution:
You first must find the new value for �X2.)

d. Because the treatment effects were eliminated in
part b, you should find that SStotal for the modified
scores is smaller than SStotal for the original scores.
The difference between the two SS values should be
exactly equal to the value of SSbetween treatments for
the original scores.

11. The following data were obtained from a repeated-
measures study comparing three treatment conditions.

Treatment

Subject I II III P

A 6 8 10 24 G � 48
B 5 5 5 15 �X2 � 294
C 1 2 3 6
D 0 1 2 3

T � 12 T � 16 T � 20
SS � 26 SS � 30 SS � 38

Use a repeated-measures ANOVA with 	 � .05 to
determine whether these data are sufficient to
demonstrate significant differences between the
treatments.

12. In Problem 11 the data show large and consistent
differences between subjects. For example, subject A
has the largest score in every treatment and subject D
always has the smallest score. In the second stage of
the ANOVA, the large individual differences are
subtracted out of the denominator of the F-ratio, which
results in a larger value for F.

The following data were created by using the same
numbers that appeared in Problem 11. However, we
eliminated the consistent individual differences by
scrambling the scores within each treatment. 

Treatment

Subject I II III P

A 6 2 3 11 G � 48
B 5 1 5 11 �X2 � 294
C 0 5 10 15
D 1 8 2 11

T � 12 T � 16 T � 20
SS � 26 SS � 30 SS � 38

a. Use a repeated-measures ANOVA with 	 � .05 to
determine whether these data are sufficient to
demonstrate significant differences between the
treatments.
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b. Explain how the results of this analysis compare
with the results from Problem 11.

13. One of the primary advantages of a repeated-measures
design, compared to an independent-measures design,
is that it reduces the overall variability by removing
variance caused by individual differences. The
following data are from a research study comparing
three treatment conditions.
a. Assume that the data are from an independent-

measures study using three separate samples, each
with n � 6 participants. Ignore the column of 
P totals and use an independent-measures ANOVA
with 	 � .05 to test the significance of the mean
differences. 

b. Now assume that the data are from a repeated-
measures study using the same sample of n � 6
participants in all three treatment conditions. Use a
repeated-measures ANOVA with 	 � .05 to test
the significance of the mean differences.

c. Explain why the two analyses lead to different
conclusions.

Treatment Treatment Treatment 
1 2 3 P

6 9 12 27
8 8 8 24 N � 18
5 7 9 21 G � 108
0 4 8 12 �X2 � 800
2 3 4 9
3 5 7 15

M � 4 M � 6 M � 8
T � 24 T � 36 T � 48

SS � 42 SS � 28 SS � 34

14. The following data are from an experiment comparing
three different treatment conditions:

A B C

0 1 2 N � 15
2 5 5 �X 2 � 354
1 2 6
5 4 9
2 8 8

T � 10 T � 20 T � 30
SS � 14 SS � 30 SS � 30

a. If the experiment uses an independent-measures
design, can the researcher conclude that the
treatments are significantly different? Test at the
.05 level of significance.

b. If the experiment is done with a repeated-measures
design, should the researcher conclude that the
treatments are significantly different? Set alpha at
.05 again.

c. Explain why the analyses in parts a and b lead to
different conclusions.

15. A researcher is evaluating customer satisfaction with
the service and coverage of two phone carriers. Each
individual in a sample of n � 25 uses one carrier for
two weeks and then switches to the other. Each
participant then rates the two carriers. The following
table presents the results from the repeated-measures
ANOVA comparing the average ratings. Fill in the
missing values in the table. (Hint: Start with the 
df values.)

Source SS df MS

Between treatments 2 F �

Within treatments
Between subjects
Error 12

Total 23

16. The following summary table presents the results from a
repeated-measures ANOVA comparing three treatment
conditions with a sample of n � 11 subjects. Fill in 
the missing values in the table. (Hint: Start with the 
df values.)

Source SS df MS

Between treatments F � 5.00
Within treatments 80

Between subjects
Error 60

Total

17. The following summary table presents the results 
from a repeated-measures ANOVA comparing four
treatment conditions, each with a sample of n � 12
participants. Fill in the missing values in the table.
(Hint: Start with the df values.) 

Source SS df MS

Between treatments 54 20 F �

Within treatments
Between subjects
Error 3

Total 194
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18. A recent study indicates that simply giving college
students a pedometer can result in increased walking
(Jackson & Howton, 2008). Students were given
pedometers for a 12-week period, and asked to record
the average number of steps per day during weeks 1,
6, and 12. The following data are similar to the results
obtained in the study.

Number of steps (x1000)

Week

Participant 1 6 12 P

A 6 8 10 24
B 4 5 6 15
C 5 5 5 15 G � 72
D 1 2 3 6 �X2 � 400
E 0 1 2 3
F 2 3 4 9

T � 18 T � 24 T � 30
SS � 28 SS � 32 SS � 40

a. Use a repeated-measures ANOVA with 	 � .05 to
determine whether the mean number of steps
changes significantly from one week to another.

b. Compute 
2 to measure the size of the treatment
effect.

c. Write a sentence demonstrating how a research
report would present the results of the hypothesis
test and the measure of effect size.

19. A repeated-measures experiment comparing only 
two treatments can be evaluated with either a t statistic
or an ANOVA. As we found with the independent-
measures design, the t test and the ANOVA produce
equivalent conclusions, and the two test statistics are
related by the equation F � t2. The following data are
from a repeated-measures study:

Subject Treatment 1 Treatment 2 Difference

1 2 4 �2
2 1 3 �2
3 0 10 �10
4 1 3 �2

a. Use a repeated-measures t statistic with 	 � .05 to
determine whether the data provide evidence of a
significant difference between the two treatments.
(Caution: ANOVA calculations are done with the 
X values, but for t you use the difference scores.)

b. Use a repeated-measures ANOVA with 	 � .05 to
evaluate the data. (You should find F � t2.) 

20. For either independent-measures or repeated-measures
designs comparing two treatments, the mean difference
can be evaluated with either a t test or an ANOVA.
The two tests are related by the equation F � t2. For
the following data,
a. Use a repeated-measures t test with 	 � .05 to

determine whether the mean difference between
treatments is statistically significant.

b. Use a repeated-measures ANOVA with 	 � .05 to
determine whether the mean difference between
treatments is statistically significant. (You should
find that F � t2.) 

Person Treatment 1 Treatment 2 Difference

A 4 7 3
B 2 11 9
C 3 6 3
D 7 10 3

M � 4 M � 8.5 MD � 4.5
T � 16 T � 34

SS � 14 SS � 17 SS � 27

21. In the Preview section for this chapter, we presented
an example of a delayed discounting study in which
people are willing to settle for a smaller reward today
in exchange for a larger reward in the future. The
following data represent the typical results from one of
these studies. The participants are asked how much
they would take today instead of waiting for a specific
delay period to receive $1000. Each participant
responds to all 5 of the delay periods. Use a repeated-
measures ANOVA with 	 � .01 to determine whether
there are significant differences among the 5 delay
periods for the following data:

Participant 1 6 1 2 5
month months year years years

A 950 850 800 700 550
B 800 800 750 700 600
C 850 750 650 600 500
D 750 700 700 650 550
E 950 900 850 800 650
F 900 900 850 750 650

22. The endorphins released by the brain act as natural
painkillers. For example, Gintzler (1970) monitored
endorphin activity and pain thresholds in pregnant 
rats during the days before they gave birth. The data
showed an increase in pain threshold as the pregnancy
progressed. The change was gradual until 1 or 2 days
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before birth, at which point there was an abrupt
increase in pain threshold. Apparently a natural
painkilling mechanism was preparing the animals for
the stress of giving birth. The following data represent
pain-threshold scores similar to the results obtained by
Gintzler. Do these data indicate a significant change in
pain threshold? Use a repeated-measures ANOVA
with 	 �.01.

Days Before Giving Birth

Subject 7 5 3 1

A 39 40 49 52
B 38 39 44 55
C 44 46 50 60
D 40 42 46 56
E 34 33 41 52
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ample practice exercises and detailed 

explanations on every question. Purchase

www.aplia.com/statistics

30991_ch13_ptg01_hr_433-464.qxd  9/3/11  2:30 AM  Page 464

www.aplia.com/statistics


C H A P T E R

14
Two-Factor
Analysis 
of Variance
(Independent
Measures)

Preview
14.1 An Overview of the Two-Factor,

Independent-Measures ANOVA

14.2 Main Effects and Interactions

14.3 Notation and Formulas for the
Two-Factor ANOVA

14.4 Using a Second Factor to Reduce
Variance Caused by Individual
Differences 

14.5 Assumptions for the Two-Factor
ANOVA

Summary

Focus on Problem Solving

Demonstrations 14.1 and 14.2

Problems

Tools You Will Need
The following items are considered 
essential background material for this
chapter. If you doubt your knowledge 
of any of these items, you should review 
the appropriate chapter or section 
before proceeding.

• Introduction to analysis of variance
(Chapter 12)
• The logic of analysis of variance
• ANOVA notation and formulas
• Distribution of F-ratios
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Preview
Imagine that you are seated at your desk, ready to take the
final exam in statistics. Just before the exams are handed
out, a television crew appears and sets up a camera and
lights aimed directly at you. They explain that they are
filming students during exams for a television special.
You are told to ignore the camera and go ahead with 
your exam.

Would the presence of a TV camera affect your per-
formance on an exam? For some of you, the answer to this
question is “definitely yes” and for others, “probably not.”
In fact, both answers are right; whether the TV camera
affects performance depends on your personality. Some of
you would become terribly distressed and self-conscious,
while others really could ignore the camera and go on as if
everything were normal.

In an experiment that duplicates the situation we
have described, Shrauger (1972) tested participants on a
concept-formation task. Half of the participants worked
alone (no audience), and half worked with an audience of
people who claimed to be interested in observing the
experiment. Shrauger also divided the participants into
two groups on the basis of personality: those high in 
self-esteem and those low in self-esteem. The dependent
variable for this experiment was the number of errors on
the concept formation task. Data similar to those obtained
by Shrauger are shown in Figure 14.1. Notice that 
the audience had no effect on the high-self-esteem 
participants. However, the low-self-esteem participants
made nearly twice as many errors with an audience 
as when working alone.

The Problem: Shrauger’s study is an example of 
research that involves two independent variables in
the same study. The independent variables are:

1. Audience (present or absent)
2. Self-esteem (high or low)

The results of the study indicate that the effect of one
variable (audience) depends on another variable (self-esteem).

You should realize that it is quite common to have
two variables that interact in this way. For example, a
drug may have a profound effect on some patients and
have no effect whatsoever on others. Some children sur-
vive abusive environments and live normal, productive
lives, while others show serious difficulties. To observe

how one variable interacts with another, it is necessary to
study both variables simultaneously in one study.
However, the analysis of variance (ANOVA) procedures
introduced in Chapters 12 and 13 are limited to evaluat-
ing mean differences produced by one independent 
variable and are not appropriate for mean differences
involving two (or more) independent variables.

The Solution: ANOVA is a very flexible hypothesis
testing procedure and can be modified again to evaluate
the mean differences produced in a research study with
two (or more) independent variables. In this chapter we
introduce the two-factor ANOVA, which tests the
significance of each independent variable acting alone
as well as the interaction between variables.
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FIGURE 14.1

Results of an experiment examining the effect of an
audience on the number of errors made on a concept
formation task for participants who are rated either high
or low in self-esteem. Notice that the effect of the
audience depends on the self-esteem of the participants.

Shrauger, J. S. (1972). Self-esteem and reactions to being
observed by others. Journal of Personality and Social
Psychology, 23, 192�200. Copyright 1972 by the American
Psychological Association. Adapted by permission of the author.
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Factor B: Audience Condition

No Audience Audience

Scores for a group Scores for a group
of participants who of participants who
are classified as low are classified as low
self-esteem and are self-esteem and are
tested with no audience. tested with an audience.

Scores for a group Scores for a group
of participants who of participants who
are classified as high are classified as high
self-esteem and are self-esteem and are
tested with no audience. tested with an audience.

14.1 AN OVERVIEW OF THE TWO-FACTOR, 
INDEPENDENT-MEASURES ANOVA 

In most research situations, the goal is to examine the relationship between two vari-
ables. Typically, the research study attempts to isolate the two variables to eliminate or
reduce the influence of any outside variables that may distort the relationship being
studied. A typical experiment, for example, focuses on one independent variable (which
is expected to influence behavior) and one dependent variable (which is a measure of
the behavior). In real life, however, variables rarely exist in isolation. That is, behavior
usually is influenced by a variety of different variables acting and interacting simulta-
neously. To examine these more complex, real-life situations, researchers often design
research studies that include more than one independent variable. Thus, researchers
systematically change two (or more) variables and then observe how the changes 
influence another (dependent) variable.

In Chapters 12 and 13, we examined ANOVA for single-factor research designs—that
is, designs that included only one independent variable or only one quasi-independent 
variable. When a research study involves more than one factor, it is called a factorial 
design. In this chapter, we consider the simplest version of a factorial design. Specifically,
we examine ANOVA as it applies to research studies with exactly two factors. In addition,
we limit our discussion to studies that use a separate sample for each treatment condition—
that is, independent-measures designs. Finally, we consider only research designs for
which the sample size (n) is the same for all treatment conditions. In the terminology of
ANOVA, this chapter examines two-factor, independent-measures, equal n designs.

We use Shrauger’s audience and self-esteem study described in the Chapter
Preview to introduce the two-factor research design. Table 14.1 shows the structure of
Shrauger’s study. Note that the study involves two separate factors: One factor is 
manipulated by the researcher, changing from no-audience to audience, and the second
factor is self-esteem, which varies from high to low. The two factors are used to create
a matrix with the different levels of self-esteem defining the rows and the different 
audience conditions defining the columns. The resulting two-by-two matrix shows four
different combinations of the variables, producing four different conditions. Thus, 
the research study would require four separate samples, one for each cell, or box, in the
matrix. The dependent variable for the study is the number of errors on the concept-
formation task for people observed in each of the four conditions. 

SECTION 14.1 / AN OVERVIEW OF THE TWO-FACTOR, INDEPENDENT-MEASURES ANOVA 467

An independent variable is a
manipulated variable in an 
experiment. A quasi-independent
variable is not manipulated 
but defines the groups of scores
in a nonexperimental study.

TABLE 14.1

The structure of a two-factor
experiment presented as a 
matrix. The two factors are self-
esteem and presence/absence of
an audience, with two levels for
each factor.

Low

High

Factor A:

Self-Esteem
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The two-factor ANOVA tests for mean differences in research studies that are
structured like the audience-and-self-esteem example in Table 14.1. For this example,
the two-factor ANOVA evaluates three separate sets of mean differences:

1. What happens to the mean number of errors when the audience is added or
taken away?

2. Is there a difference in the mean number of errors for participants with high
self-esteem compared to those with low self-esteem?

3. Is the mean number of errors affected by specific combinations of self-esteem
and audience? (For example, an audience may have a large effect on participants
with low self-esteem but only a small effect for those with high self-esteem.)

Thus, the two-factor ANOVA allows us to examine three types of mean differ-
ences within one analysis. In particular, we conduct three separate hypotheses tests for
the same data, with a separate F-ratio for each test. The three F-ratios have the same
basic structure:

F �

In each case, the numerator of the F-ratio measures the actual mean differences
in the data, and the denominator measures the differences that would be expected if
there is no treatment effect. As always, a large value for the F-ratio indicates that the
sample mean differences are greater than would be expected by chance alone, and,
therefore, provides evidence of a treatment effect. To determine whether the obtained
F-ratios are significant, we need to compare each F-ratio with the critical values
found in the F-distribution table in Appendix B.

14.2 MAIN EFFECTS AND INTERACTIONS

As noted in the previous section, a two-factor ANOVA actually involves three distinct
hypothesis tests. In this section, we examine these three tests in more detail.

Traditionally, the two independent variables in a two-factor experiment are
identified as factor A and factor B. For the study presented in Table 14.1, self-esteem
is factor A, and the presence or absence of an audience is factor B. The goal of the
study is to evaluate the mean differences that may be produced by either of these
factors acting independently or by the two factors acting together.

One purpose of the study is to determine whether differences in self-esteem (factor A)
result in differences in performance. To answer this question, we compare the mean
score for all of the participants with low self-esteem with the mean for those with high
self-esteem. Note that this process evaluates the mean difference between the top row
and the bottom row in Table 14.1.

To make this process more concrete, we present a set of hypothetical data in
Table 14.2. The table shows the mean score for each of the treatment conditions
(cells) as well as the overall mean for each column (each audience condition) and the
overall mean for each row (each self-esteem group). These data indicate that the low
self-esteem participants (the top row) had an overall mean of M � 8 errors. This over-
all mean was obtained by computing the average of the two means in the top row. In

MAIN EFFECTS

variance (differences) between treatments
�������
variance (differences) expected if there is no treatment effect

468 CHAPTER 14 TWO-FACTOR ANALYSIS OF VARIANCE (INDEPENDENT MEASURES)

30991_ch14_ptg01_hr_465-506.qxd  9/3/11  2:05 AM  Page 468



contrast, the high self-esteem participants had an overall mean of M � 4 errors (the
mean for the bottom row). The difference between these means constitutes what is
called the main effect for self-esteem, or the main effect for factor A.

Similarly, the main effect for factor B (audience condition) is defined by the mean
difference between the columns of the matrix. For the data in Table 14.2, the two groups
of participants tested with no audience had an overall mean score of M � 5 errors.
Participants tested with an audience committed an overall average of M � 7 errors. The
difference between these means constitutes the main effect for the audience conditions,
or the main effect for factor B.

The mean differences among the levels of one factor are referred to as the main
effect of that factor. When the design of the research study is represented as a
matrix with one factor determining the rows and the second factor determining
the columns, then the mean differences among the rows describe the main 
effect of one factor, and the mean differences among the columns describe the
main effect for the second factor.

The mean differences between columns or rows simply describe the main effects
for a two-factor study. As we have observed in earlier chapters, the existence of sam-
ple mean differences does not necessarily imply that the differences are statistically
significant. In general, two samples are not expected to have exactly the same means.
There are always small differences from one sample to another, and you should not
automatically assume that these differences are an indication of a systematic treatment
effect. In the case of a two-factor study, any main effects that are observed in the data
must be evaluated with a hypothesis test to determine whether they are statistically
significant effects. Unless the hypothesis test demonstrates that the main effects are
significant, you must conclude that the observed mean differences are simply the 
result of sampling error.

The evaluation of main effects accounts for two of the three hypothesis tests in a
two-factor ANOVA. We state hypotheses concerning the main effect of factor A and
the main effect of factor B and then calculate two separate F-ratios to evaluate the 
hypotheses.

For the example we are considering, factor A involves the comparison of two dif-
ferent levels of self-esteem. The null hypothesis would state that there is no difference
between the two levels; that is, self-esteem has no effect on performance. In symbols,

H0: �A1
� �A2

The alternative hypothesis is that the two different levels of self-esteem do produce
different scores:

H1: �A1
� �A2

D E F I N I T I O N
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TABLE 14.2

Hypothetical data for an experi-
ment examining the effect of an
audience on participants with
different levels of self-esteem.

No 
Audience Audience

Low M � 8

High M � 4

M � 5 M � 7

M � 7 M � 9

M � 3 M � 5
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To evaluate these hypotheses, we compute an F-ratio that compares the actual
mean differences between the two self-esteem levels versus the amount of difference
that would be expected without any systematic treatment effects.

F �

F �

Similarly, factor B involves the comparison of the two different audience condi-
tions. The null hypothesis states that there is no difference in the mean number of 
errors between the two conditions. In symbols,

H0: �B1
� �B2

As always, the alternative hypothesis states that the means are different:

H1: �B1
� �B2

Again, the F-ratio compares the obtained mean difference between the two audi-
ence conditions versus the amount of difference that would be expected if there is no
systematic treatment effect.

F �

F �

In addition to evaluating the main effect of each factor individually, the two-factor
ANOVA allows you to evaluate other mean differences that may result from unique
combinations of the two factors. For example, specific combinations of self-esteem and
an audience acting together may have effects that are different from the effects of self-
esteem or an audience acting alone. Any “extra” mean differences that are not explained
by the main effects are called an interaction, or an interaction between factors. The real
advantage of combining two factors within the same study is the ability to examine the
unique effects caused by an interaction.

An interaction between two factors occurs whenever the mean differences
between individual treatment conditions, or cells, are different from what would
be predicted from the overall main effects of the factors.

To make the concept of an interaction more concrete, we reexamine the data shown
in Table 14.2. For these data, there is no interaction; that is, there are no extra mean dif-
ferences that are not explained by the main effects. For example, within each audience
condition (each column of the matrix) the average number of errors for the low self-
esteem participants is 4 points higher than the average for the high self-esteem partici-
pants. This 4-point mean difference is exactly what is predicted by the overall main 
effect for self-esteem. 

Now consider a different set of data shown in Table 14.3. These new data show 
exactly the same main effects that existed in Table 14.2 (the column means and the row

D E F I N I T I O N

INTERACTIONS

variance (differences) between the column means
�������
variance (differences) expected if there is no treatment effect

variance (differences) between the means for factor B
�������
variance (differences) expected if there is no treatment effect

variance (differences) between the row means
�������
variance (differences) expected if there is no treatment effect

variance (differences) between the means for factor A
�������
variance (differences) expected if there is no treatment effect
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means have not been changed). But now there is an interaction between the two factors.
For example, for the low self-esteem participants (top row), there is a 4-point difference
in the number of errors committed with an audience and without an audience. This 4-point
difference cannot be explained by the 2-point main effect for the audience factor. Also,
for the high self-esteem participants (bottom row), the data show no difference between
the two audience conditions. Again, the zero difference is not what would be expected
based on the 2-point main effect for the audience factor. Mean differences that are not 
explained by the main effects are an indication of an interaction between the two factors.

To evaluate the interaction, the two-factor ANOVA first identifies mean differ-
ences that are not explained by the main effects. The extra mean differences are then
evaluated by an F-ratio with the following structure:

F �

The null hypothesis for this F-ratio simply states that there is no interaction:

H0: There is no interaction between factors A and B. All of the mean 
differences between treatment conditions are explained by the main effects
of the two factors.

The alternative hypothesis is that there is an interaction between the two factors:

H1: There is an interaction between factors. The mean differences between
treatment conditions are not what would be predicted from the overall main
effects of the two factors.

In the previous section, we introduced the concept of an interaction as the unique effect
produced by two factors working together. This section presents two alternative defini-
tions of an interaction. These alternatives are intended to help you understand the con-
cept of an interaction and to help you identify an interaction when you encounter one in
a set of data. You should realize that the new definitions are equivalent to the original
and simply present slightly different perspectives on the same concept.

The first new perspective on the concept of an interaction focuses on the notion
of independence for the two factors. More specifically, if the two factors are inde-
pendent, so that one factor does not influence the effect of the other, then there is no
interaction. On the other hand, when the two factors are not independent, so that the
effect of one factor depends on the other, then there is an interaction. The notion of
dependence between factors is consistent with our earlier discussion of interactions.
If one factor influences the effect of the other, then unique combinations of the 
factors produce unique effects.

MORE ABOUT INTERACTIONS

variance (mean differences) not explained by main effects
�������
variance (differences) expected if there is no treatment effects
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The data in Table 14.3 show
the same pattern of results 
that was obtained in Shrauger’s
research study.

TABLE 14.3

Hypothetical data for an experi-
ment examining the effect of an
audience on participants with
different levels of self-esteem.
The data show the same main
effects as the values in Table 14.5
but the individual treatment
means have been modified to
create an interaction.

No 
Audience Audience

Low M � 8

High M � 4

M � 5 M � 7

M � 6 M � 10

M � 4 M � 4
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When the effect of one factor depends on the different levels of a second factor,
then there is an interaction between the factors.

This definition of an interaction should be familiar in the context of a “drug interac-
tion.” Your doctor and pharmacist are always concerned that the effect of one medication
may be altered or distorted by a second medication that is being taken at the same time.
Thus, the effect of one drug (factor A) depends on a second drug (factor B), and you have
an interaction between the two drugs.

Returning to Table 14.2, notice that the size of the audience effect (first column
versus second column) does not depend on the self-esteem of the participants. For these
data, adding an audience produces the same 2-point increase in errors for both groups
of participants. Thus, the audience effect does not depend on self-esteem, and there is
no interaction. Now consider the data in Table 14.3. This time, the effect of adding an
audience depends on the self-esteem of the participants. For example, there is a 4-point
increase in errors for the low-self-esteem participants but adding an audience has no 
effect on the errors for the high-self-esteem participants. Thus, the audience effect 
depends on the level of self-esteem, which means that there is an interaction between
the two factors.

The second alternative definition of an interaction is obtained when the results of a
two-factor study are presented in a line graph. In this case, the concept of an interaction
can be defined in terms of the pattern displayed in the graph. Figure 14.2 shows the two
sets of data we have been considering. The original data from Table 14.2, where there is
no interaction, are presented in Figure 14.2(a). To construct this figure, we selected one
of the factors to be displayed on the horizontal axis; in this case, the different levels of
the audience factor. The dependent variable, the number of errors, is shown on the 
vertical axis. Note that the figure actually contains two separate graphs: The top line
shows the relationship between the audience factor and errors for the low-self-esteem

D E F I N I T I O N
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FIGURE 14.2

(a) Graph showing the treatment means from Table 14.2, for which there is no reaction. (b) Graph for Table 14.3, for which
there is an interaction.
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participants, and the bottom line shows the relationship for the high-self-esteem partici-
pants. In general, the picture in the graph matches the structure of the data matrix; 
the columns of the matrix appear as values along the X-axis, and the rows of the matrix
appear as separate lines in the graph (Box 14.1).

For the original set of data, Figure 14.2(a), note that the two lines are parallel; that
is, the distance between lines is constant. In this case, the distance between lines reflects
the 2-point difference in mean errors between low- and high-self-esteem participants,
and this 2-point difference is the same for both audience conditions.

Now look at a graph that is obtained when there is an interaction in the data.
Figure 14.2(b) shows the data from Table 14.3. This time, note that the lines in the
graph are not parallel. The distance between the lines changes as you scan from left
to right. For these data, the distance between the lines corresponds to the self-esteem
effect—that is, the mean difference in errors for low- versus high-self-esteem partic-
ipants. The fact that this difference depends on the audience condition is an indica-
tion of an interaction between the two factors. 

When the results of a two-factor study are presented in a graph, the existence of
nonparallel lines (lines that cross or converge) indicates an interaction between
the two factors.

For many students, the concept of an interaction is easiest to understand using the
perspective of interdependency; that is, an interaction exists when the effects of one
variable depend on another factor. However, the easiest way to identify an interaction
within a set of data is to draw a graph showing the treatment means. The presence of
nonparallel lines is an easy way to spot an interaction.

D E F I N I T I O N
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The A � B interaction typically
is called the “A by B” interaction.
If there is an interaction between
an audience and self-esteem, it
may be called the “audience by
self-esteem” interaction.

B O X
14.1 GRAPHING RESULTS FROM A TWO-FACTOR DESIGN

two dots corresponding to the two means in the B1 column
of the data matrix. Similarly, we have placed two dots
above B2 and another two dots above B3. Finally, we have
drawn a line connecting the three dots corresponding to
level 1 of factor A (the three means in the top row of the
data matrix). We have also drawn a second line that 
connects the three dots corresponding to level 2 of 
factor A. These lines are labeled A1 and A2 in the figure.

One of the best ways to get a quick overview of the
results from a two-factor study is to present the data in a
line graph. Because the graph must display the means
obtained for two independent variables (two factors),
constructing the graph can be a bit more complicated
than constructing the single-factor graphs we presented
in Chapter 3 (pp. 93–95).

Figure 14.3 shows a line graph presenting the 
results from a two-factor study with 2 levels of factor A
and 3 levels of factor B. With a 2 � 3 design, there are 
a total of 6 different treatment means, which are shown 
in the following matrix.

In the graph, note that values for the dependent vari-
able (the treatment means) are shown on the vertical axis.
Also note that the levels for one factor (we selected 
factor B) are displayed on the horizontal axis. Directly
above the B1 value on the horizontal axis, we have placed

Factor B

B1 B2 B3

10 40 20

30 50 30
Factor A

A1

A2
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The two-factor ANOVA consists of three hypothesis tests, each evaluating specific
mean differences: the A effect, the B effect, and the A � B interaction. As we have
noted, these are three separate tests, but you should also realize that the three tests
are independent. That is, the outcome for any one of the three tests is totally 
unrelated to the outcome for either of the other two. Thus, it is possible for data 
from a two-factor study to display any possible combination of significant and/or 
nonsignificant main effects and interactions. The data sets in Table 14.4 show 
several possibilities.

Table 14.4(a) shows data with mean differences between levels of factor A (an 
A effect) but no mean differences for factor B and no interaction. To identify the 
A effect, notice that the overall mean for A1 (the top row) is 10 points higher than
the overall mean for A2 (the bottom row). This 10-point difference is the main 
effect for factor A. To evaluate the B effect, notice that both columns have exactly
the same overall mean, indicating no difference between levels of factor B; hence,
there is no B effect. Finally, the absence of an interaction is indicated by the fact
that the overall A effect (the 10-point difference) is constant within each column;
that is, the A effect does not depend on the levels of factor B. (Another indication
is that the data indicate that the overall B effect is constant within each row.)

Table 14.4(b) shows data with an A effect and a B effect but no interaction. 
For these data, the A effect is indicated by the 10-point mean difference between rows,
and the B effect is indicated by the 20-point mean difference between columns. The fact
that the 10-point A effect is constant within each column indicates no interaction.

Finally, Table 14.4(c) shows data that display an interaction but no main effect
for factor A or for factor B. For these data, there is no mean difference between rows
(no A effect) and no mean difference between columns (no B effect). However,
within each row (or within each column), there are mean differences. The “extra”
mean differences within the rows and columns cannot be explained by the overall
main effects and, therefore, indicate an interaction.

INDEPENDENCE OF MAIN
EFFECTS AND INTERACTIONS
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FIGURE 14.3

A line graph showing the
results from a two-factor
experiment.

TABLE 14.4

Three sets of data showing
different combinations of main
effects and interaction for a 
two-factor study. (The numerical
value in each cell of the matrices
represents the mean value 
obtained for the sample in that
treatment condition.)

(a) Data showing a main effect for factor A but no B effect and no interaction

B1 B2

A1 20 20 A1 mean � 20
10-point difference

A2 10 10 A2 mean � 10

B1 mean B2 mean
� 15 � 15

No difference
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(b) Data showing main effects for both factor A and factor B but no interaction

B1 B2

A1 10 30 A1 mean � 20
10-point difference

A2 20 40 A2 mean � 30

B1 mean B2 mean
� 15 � 35

20-point difference

(c) Data showing no main effect for either factor but an interaction

B1 B2

A1 10 20 A1 mean � 15
No difference

A2 20 10 A2 mean � 15

B1 mean B2 mean
� 15 � 15

No difference

1. Each of the following matrices represents a possible outcome of a two-factor 
experiment. For each experiment:

a. Describe the main effect for factor A.

b. Describe the main effect for factor B.

c. Does there appear to be an interaction between the two factors?

2. In a graph showing the means from a two-factor experiment, parallel lines indicate
that there is no interaction. (True or false?)

3. A two-factor ANOVA consists of three hypothesis tests. What are they?

4. It is impossible to have an interaction unless you also have main effects for at least
one of the two factors. (True or false?)

1. For Experiment I:

a. There is a main effect for factor A; the scores in A2 average 20 points higher than in A1.

b. There is a main effect for factor B; the scores in B2 average 10 points higher than in B1.

c. There is no interaction; there is a constant 20-point difference between A1 and A2 that
does not depend on the levels of factor B.

L E A R N I N G  C H E C K

Experiment I

B1 B2

A1 M � 10 M � 20

A2 M � 30 M � 40

Experiment II

B1 B2

A1 M � 10 M � 30

A2 M � 20 M � 20

ANSWERS
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14.3 NOTATION AND FORMULAS FOR THE TWO-FACTOR
ANOVA

The two-factor ANOVA is composed of three distinct hypothesis tests:

1. The main effect for factor A (often called the A-effect). Assuming that factor A
is used to define the rows of the matrix, the main effect for factor A evaluates
the mean differences between rows.

2. The main effect for factor B (called the B-effect). Assuming that factor B is
used to define the columns of the matrix, the main effect for factor B evaluates
the mean differences between columns.

3. The interaction (called the A � B interaction). The interaction evaluates mean
differences between treatment conditions that are not predicted from the overall
main effects from factor A and factor B.

For each of these three tests, we are looking for mean differences between treat-
ments that are larger than would be expected if there are no treatment effects. In 
each case, the significance of the treatment effect is evaluated by an F-ratio. All three 
F-ratios have the same basic structure:

F � (14.1)

The general structure of the two-factor ANOVA is shown in Figure 14.4. Note that
the overall analysis is divided into two stages. In the first stage, the total variability is
separated into two components: between-treatments variability and within-treatments
variability. This first stage is identical to the single-factor ANOVA introduced 
in Chapter 12, with each cell in the two-factor matrix viewed as a separate treatment
condition. The within-treatments variability that is obtained in stage 1 of the analysis is
used to compute the denominator for the F-ratios. As we noted in Chapter 12, within
each treatment, all of the participants are treated exactly the same. Thus, any differ-
ences that exist within the treatments cannot be caused by treatment effects. As a result,

variance (mean differences) between treatments
��������
variance (mean differences) expected if there are no treatment effects
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For Experiment II:

a. There is no main effect for factor A; the scores in A1 and in A2 both average 20.

b. There is a main effect for factor B; on average, the scores in B2 are 10 points higher than
in B1.

c. There is an interaction. The difference between A1 and A2 depends on the level of factor
B. (There is a �10 difference in B1 and a �10 difference in B2.)

2. True.

3. The two-factor ANOVA evaluates the main effect for factor A, the main effect for factor B,
and the interaction between the two factors.

4. False. Main effects and interactions are completely independent.
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the within-treatments variability provides a measure of the differences that exist when
there are no systematic treatment effects influencing the scores (see Equation 14.1).

The between-treatments variability obtained in stage 1 of the analysis combines all
of the mean differences produced by factor A, factor B, and the interaction. The purpose
of the second stage is to partition the differences into three separate components: dif-
ferences attributed to factor A, differences attributed to factor B, and any remaining
mean differences that define the interaction. These three components form the numer-
ators for the three F-ratios in the analysis.

The goal of this analysis is to compute the variance values needed for the three
F-ratios. We need three between-treatments variances (one for factor A, one for 
factor B, and one for the interaction), and we need a within-treatments variance.
Each of these variances (or mean squares) is determined by a sum of squares value
(SS) and a degrees of freedom value (df):

We use the data shown in Table 14.5 to demonstrate the two-factor ANOVA. The
data are representative of many studies examining the relationship between arousal
and performance. The general result of these studies is that increasing the level of
arousal (or motivation) tends to improve the level of performance. (You probably
have tried to “psych yourself up” to do well on a task.) For very difficult tasks,
however, increasing arousal beyond a certain point tends to lower the level of
performance. (Your friends have probably advised you to “calm down and stay
focused” when you get overanxious about doing well.) This relationship between
arousal and performance is known as the Yerkes-Dodson law.

The data are displayed in a matrix with the two levels of task difficulty 
(factor A) making up the rows and the three levels of arousal (factor B) making up

E X A M P L E  1 4 . 1

mean square� �MS
SS

df
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Stage 2

Stage 1

Total
variance

Between-treatments
variance

Within-treatments
variance

Factor A
variance

Factor B
variance

Interaction
variance

FIGURE 14.4

Structure of the analysis for 
a two-factor ANOVA.

Remember that in ANOVA a
variance is called a mean square,
or MS.
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the columns. For the easy task, note that performance scores increase consistently
as arousal increases. For the difficult task, on the other hand, performance peaks 
at a medium level of arousal and drops when arousal is increased to a high level.
Note that the data matrix has a total of six cells, or treatment conditions, with a
separate sample of n � 5 subjects in each condition. Most of the notation should
be familiar from the single-factor ANOVA presented in Chapter 12. Specifically,
the treatment totals are identified by T values, the total number of scores in the
entire study is N � 30, and the grand total (sum) of all 30 scores is G � 120. In
addition to these familiar values, we have included the totals for each row and 
for each column in the matrix. The goal of the ANOVA is to determine whether
the mean differences observed in the data are significantly greater than would be
expected if there are no treatment effects.

The first stage of the two-factor ANOVA separates the total variability into two
components: between-treatments and within-treatments. The formulas for this stage are
identical to the formulas used in the single-factor ANOVA in Chapter 12 with the
provision that each cell in the two-factor matrix is treated as a separate treatment
condition. The formulas and the calculations for the data in Table 14.5 are as follows:

Total variability

(14.2)SS X
G

Ntotal � �Σ 2
2

STAGE 1 OF THE TWO-FACTOR
ANOVA

478 CHAPTER 14 TWO-FACTOR ANALYSIS OF VARIANCE (INDEPENDENT MEASURES)

Factor B
Arousal Level

Low Medium High

3 1 10
1 4 10
1 8 14
6 6 7
4 6 9

M � 3 M � 5 M � 10
T � 15 T � 25 T � 50

SS � 18 SS � 28 SS � 26

0 2 1
2 7q
0 2 1
0 2 6
3 2 1

M � 1 M � 3 M � 2
T � 5 T � 15 T � 10

SS � 8 SS � 20 SS � 20

TCOL1 � 20 TCOL2 � 40 TCOL3 � 60

TROW1 � 90

TROW2 � 30

N � 30
G � 120

	X2 � 860

TABLE 14.5

Data for a two-factor research
study comparing two levels of
task difficulty (easy and hard)
and three levels of arousal (low,
medium, and high). The study
involves a total of six different
treatment conditions with n � 5
participants in each condition.

Factor A

Task Difficulty

Easy

Difficult
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For these data,

� 860 � 480

� 380

This SS value measures the variability for all N � 30 scores and has degrees of
freedom given by

dftotal � N � 1 (14.3)

For the data in Table 14.5, dftotal � 29.

Within-treatments variability To compute the variance within treatments, we first
compute SS and df � n � 1 for each of the individual treatment conditions. Then the
within-treatments SS is defined as

SSwithin treatments � 	SSeach treatment (14.4)

And the within-treatments df is defined as

dfwithin treatments � 	dfeach treatment (14.5)

For the six treatment conditions in Table 14.4,

SSwithin treatments � 18 � 28 � 26 � 8 � 20 � 20

� 120

dfwithin treatments � 4 � 4 � 4 � 4 � 4 � 4 

� 24

Between-treatments variability Because the two components in stage 1 must add up
to the total, the easiest way to find SSbetween treatments is by subtraction.

SSbetween treatments � SStotal � SSwithin (14.6)

For the data in Table 14.4, we obtain

SSbetween treatments � 380 � 120 � 260

However, you can also use the computational formula to calculate 
SSbetween treatments directly.

SSbetween treatments (14.7)

For the data in Table 14.4, there are six treatments (six T values), each with 
n � 5 scores, and the between-treatments SS is

SSbetween treatments

� 45�125�500�5�45�20�480

� 260

�  � � � � � �
15

5

25

5

50

5

5

5

15

5

10

5

120

30

2 2 2 2 2 2 2

� �Σ T

n

G

N

2 2

SStotal � �860
120

30

2
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The between-treatments df value is determined by the number of treatments (or
the number of T values) minus one. For a two-factor study, the number of treatments
is equal to the number of cells in the matrix. Thus,

dfbetween treatments � number of cells � 1 (14.8)

For these data, dfbetween treatments � 5.

This completes the first stage of the analysis. Note that the two components,
when added, equal the total for both SS values and df values.

SSbetween treatments � SSwithin treatments � SStotal

240 � 120 � 360

dfbetween treatments � dfwithin treatments � dftotal

5 � 24 � 29

The second stage of the analysis determines the numerators for the three F-ratios.
Specifically, this stage determines the between-treatments variance for factor A, factor
B, and the interaction.

1. Factor A. The main effect for factor A evaluates the mean differences between
the levels of factor A. For this example, factor A defines the rows of the matrix,
so we are evaluating the mean differences between rows. To compute the SS
for factor A, we calculate a between-treatment SS using the row totals in exactly
the same way that we computed SSbetween treatments using the treatment totals 
(T values) earlier. For factor A, the row totals are 90 and 30, and each total 
was obtained by adding 15 scores.

Therefore,

(14.9)

For our data,

�540 � 60 � 480

�120

Factor A involves two treatments (or two rows), easy and difficult, so the 
df value is

dfA � number of rows � 1 (14.10)

� 2 � 1

� 1

2. Factor B. The calculations for factor B follow exactly the same pattern that was
used for factor A, except for substituting columns in place of rows. The main

SS
A

� � �
90

15

30

15

120

30

2 2 2

SS
T

n

G

NA
ROW

ROW

� �Σ
2 2

STAGE 2 OF THE TWO-FACTOR
ANOVA
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effect for factor B evaluates the mean differences between the levels of factor B,
which define the columns of the matrix.

(14.11)

For our data, the column totals are 20, 40, and 60, and each total was 
obtained by adding 10 scores. Thus,

� 40�160�360�480

� 80

dfB � number of columns � 1 (14.12)

� 3 � 1

� 2

3. The A � B Interaction. The A � B interaction is defined as the “extra” mean
differences not accounted for by the main effects of the two factors. We use this
definition to find the SS and df values for the interaction by simple subtraction.
Specifically, the between-treatments variability is partitioned into three parts: the
A effect, the B effect, and the interaction (see Figure 14.4). We have already
computed the SS and df values for A and B, so we can find the interaction values
by subtracting to find out how much is left. Thus,

SSA�B � SSbetween treatments � SSA � SSB (14.13)

For our data,

SSA�B � 260 � 120 � 80

� 60

Similarly,

dfA�B � dfbetween treatments � dfA � dfB (14.14)

� 5 � 1 � 2

� 2

The two-factor ANOVA consists of three separate hypothesis tests with three
separate F-ratios. The denominator for each F-ratio is intended to measure the variance
(differences) that would be expected if there are no treatment effects. As we saw in
Chapter 12, the within-treatments variance is the appropriate denominator for an
independent-measures design. Remember that inside each treatment all of the
individuals are treated exactly the same, which means that the differences that exist
were not caused by any systematic treatment effects (see Chapter 12, p. 393). The
within-treatments variance is called a mean square, or MS, and is computed as follows:

MSwithin treatments � �
S
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For the data in Table 14.4,

MSwithin treatments � �
1
2
2
4
0

� � 5.00

This value forms the denominator for all three F-ratios.
The numerators of the three F-ratios all measured variance or differences between

treatments: differences between levels of factor A, differences between levels of factor B,
and extra differences that are attributed to the A � B interaction. These three variances
are computed as follows:

For the data in Table 14.5, the three MS values are

Finally, the three F-ratios are

FA � �
MSwith

M

in

S

tr

A

eatments
� � �

12
5
0

� � 24.00

FB � �
MSwith

M
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S

tr

B
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� � �

4
5
0
� � 8.00

FA�B � �
MSw

M

ithi

S

n

A

t

�

rea

B

tments
� � �

3
5
0
� � 6.00

To determine the significance of each F-ratio, we must consult the F distribution
table using the df values for each of the individual F-ratios. For this example, the F-ratio
for factor A has df � 1 for the numerator and df � 24 for the denominator. Checking the
table with df � 1, 24, we find a critical value of 4.26 for 
 � .05 and a critical value of
7.82 for 
 � .01. Our obtained F-ratio, F � 24.00 exceeds both of these values, so we
conclude that there is a significant difference between the levels of factor A. That is, 
performance on the easy task (top row) is significantly different from performance on
the difficult task (bottom row).

The F-ratio for factor B has df � 2, 24. The critical values obtained from the table
are 3.40 for 
 � .05 and 5.61 for 
 � .01. Again, our obtained F-ratio, F � 8.00, 
exceeds both values, so we can conclude that there are significant differences among
the levels of factor B. For this study, the three levels of arousal result in significantly
different levels of performance.

Finally, the F-ratio for the A � B interaction has df � 2, 24 (the same as factor B).
With critical values of 3.40 for 
 � .05 and 5.61 for 
 � .01, our obtained F-ratio of
F � 6.00 is sufficient to conclude that there is a significant interaction between task
difficulty and level of arousal.
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Table 14.6 is a summary table for the complete two-factor ANOVA from 
Example 14.1. Although these tables are no longer commonly used in research reports,
they provide a concise format for displaying all of the elements of the analysis.

SECTION 14.3 / NOTATION AND FORMULAS FOR THE TWO-FACTOR ANOVA 483

TABLE 14.6

A summary table for the 
two-factor ANOVA for the 
data from Example 14.1.

Source SS df MS F

Between treatments 260 5
Factor A (difficulty) 120 1 120 F(1, 24) � 24.00
Factor B (arousal) 80 2 40 F(2, 24) � 8.00
A � B 60 2 30 F(2, 24) � 6.00

Within treatments 120 24 5
Total 380 29

a. Calculate the totals for each level of factor A, and compute SS for factor A.
b. Calculate the totals for factor B, and compute SS for this factor. (Note: You should

find that the totals for B are all the same, so there is no variability for this factor.)
c. Given that the between-treatments (or between-cells) SS is equal to 100, what is

the SS for the interaction?

1. Within each treatment condition, all individuals are treated exactly the same. Therefore, the
within-treatment variability measures the differences that exist between one score and another
when there is no treatment effect causing the scores to be different. This is exactly the 
variance that is needed for the denominator of the F-ratios.

2. a. The totals for factor A are 30 and 90, and each total is obtained by adding 30 scores. 
SSA � 60.

b. All three totals for factor B are equal to 40. Because they are all the same, there is no
variability, and SSB � 0.

c. The interaction is determined by differences that remain after the main effects have been
accounted for. For these data,

SSA�B � SSbetween treatments � SSA � SSB

� 100 � 60 � 0

� 40

ANSWERS

L E A R N I N G  C H E C K 1. Explain why the within-treatment variability is the appropriate denominator for the 
two-factor independent-measures F-ratios.

2. The following data summarize the results from a two-factor independent-
measures experiment:

Factor B

B1 B2 B3

n � 10 n � 10 n � 10
A1 T � 0 T � 10 T � 20

SS � 30 SS � 40 SS � 50

n � 10 n � 10 n � 10
A2 T � 40 T � 30 T � 20

SS � 60 SS � 50 SS � 40

Factor A
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The general technique for measuring effect size with an ANOVA is to compute a
value for �2, the percentage of variance that is explained by the treatment effects. For
a two-factor ANOVA, we compute three separate values for eta squared: one mea-
suring how much of the variance is explained by the main effect for factor A, one for
factor B, and a third for the interaction. As we did with the repeated-measures
ANOVA (p. 446), we remove any variability that can be explained by other sources
before we calculate the percentage for each of the three specific effects. Thus, for 
example, before we compute the �2 for factor A, we remove the variability that is 
explained by factor B and the variability explained by the interaction. The resulting
equation is,

(14.15)

Note that the denominator of Equation 14.15 consists of the variability that is 
explained by factor A and the other unexplained variability. Thus, an equivalent version
of the equation is,

(14.16)

Similarly, the �2 formulas for factor B and for the interaction are as follows:

for factor B, �2 � � (14.17)

for A � B, �2 � � (14.18)

Because each of the �2 equations computes a percentage that is not based on the
total variability of the scores, the results are often called partial eta squares. For the data
in Example 14.1, the equations produce the following values:

IN THE LITERATURE
REPORTING THE RESULTS OF A TWO-FACTOR ANOVA

The APA format for reporting the results of a two-factor ANOVA follows the same
basic guidelines as the single-factor report. First, the means and standard deviations
are reported. Because a two-factor design typically involves several treatment
conditions, these descriptive statistics usually are presented in a table or a graph.

� �
� �

�2 80

380 120 60
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MEASURING EFFECT SIZE 
FOR THE TWO-FACTOR

ANOVA

484 CHAPTER 14 TWO-FACTOR ANALYSIS OF VARIANCE (INDEPENDENT MEASURES)

30991_ch14_ptg01_hr_465-506.qxd  9/3/11  2:05 AM  Page 484



Next, the results of all three hypothesis tests (F-ratios) are reported. The results for
the study in Example 14.1 could be reported as follows:

SECTION 14.3 / NOTATION AND FORMULAS FOR THE TWO-FACTOR ANOVA 485

TABLE 1
Mean performance score for each treatment condition.

Level of Arousal

Low Medium High

Easy M � 3 M � 5 M � 10
Difficulty SD � 2.12 SD � 2.65 SD � 2.55

Hard M � 1 M � 3 M � 2
SD � 1.41 SD � 2.24 SD � 2.24

The means and standard deviations for all treatment conditions are shown in
Table 1. The two-factor analysis of variance showed a significant main effect for
task difficulty, F(1, 24) � 24.00, p � .01, �2 � 0.50; a significant main effect
for arousal, F(2, 24) � 8.00, p � .01, �2 � 0.40; and a significant interaction
between difficulty and arousal, F(2, 24) � 6.00, p � .01, �2 � 0.33.

Because the two-factor ANOVA involves three separate tests, you must consider the
overall pattern of results rather than focusing on the individual main effects or the
interaction. In particular, whenever there is a significant interaction, you should be
cautious about accepting the main effects at face value (whether they are significant
or not). Remember, an interaction means that the effect of one factor depends on the
level of the second factor. Because the effect changes from one level to the next,
there is no consistent “main effect.”

Figure 14.5 shows the sample means obtained from the task difficulty and arousal
study. Recall that the analysis showed that both main effects and the interaction were

INTERPRETING THE RESULT
FROM A TWO-FACTOR ANOVA

10

9

8

7

6

5

4

3

2

1

 Low Medium High

Easy task

Difficult task

Mean
level of

performance

Level of Arousal

FIGURE 14.5

Sample means for the data 
in Example 14.1. The data
are hypothetical results for a
two-factor study examining
how performance is related
to task difficulty and level 
of arousal.
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significant. The main effect for factor A (task difficulty) can be seen by the fact that the
scores on the easy task are generally higher than scores on the difficult task. 

The main effect for factor B (arousal) is based on the general tendency for the
scores to increase as the level of arousal increases. However, this is not a completely
consistent trend. In fact, the scores on the difficult task show a sharp decrease when
arousal is increased from moderate to high. This is an example of the complications that
can occur when you have a significant interaction. Remember that an interaction means
that a factor does not have a consistent effect. Instead, the effect of one factor depends
on the other factor. For the data in Figure 14.5, the effect of increasing arousal depends
on the task difficulty. For the easy task, increasing arousal produces increased per-
formance. For the difficult task, however, increasing arousal beyond a moderate level
produces decreased performance. Thus, the consequences of increasing arousal depend
on the difficulty of the task. This interdependence between factors is the source of the
significant interaction.

The existence of a significant interaction indicates that the effect (mean differences) for
one factor depends on the levels of the second factor. When the data are presented in a
matrix showing treatment means, a significant interaction indicates that the mean differ-
ences within one column (or row) show a different pattern than the mean differences
within another column (or row). In this case, a researcher may want to perform a sepa-
rate analysis for each of the individual columns (or rows). In effect, the researcher is sep-
arating the two-factor experiment into a series of separate single-factor experiments. The
process of testing the significance of mean differences within one column (or one row)
of a two-factor design is called testing simple main effects. To demonstrate this process,
we once again use the data from the task-difficulty and arousal study (Example 14.1),
which are summarized in Figure 14.5.

For this demonstration, we test for significant mean differences within each column
of the two-factor data matrix. That is, we test for significant mean differences
between the two levels of task difficulty for the low level of arousal, then repeat the
test for the medium level of arousal, and once more for the high level. In terms of the
two-factor notation system, we test the simple main effect of factor A for each level
of factor B.

For the low level of arousal We begin by considering only the low level of arousal.
Because we are restricting the data to the first column of the data matrix, the data 
effectively have been reduced to a single-factor study comparing only two treatment
conditions. Therefore, the analysis is essentially a single-factor ANOVA duplicating
the procedure presented in Chapter 12. To facilitate the change from a two-factor to a

E X A M P L E  1 4 . 2

TESTING SIMPLE MAIN
EFFECTS

486 CHAPTER 14 TWO-FACTOR ANALYSIS OF VARIANCE (INDEPENDENT MEASURES)

Low Level of Arousal

Easy Task Difficult Task

n � 5 n � 5 N � 10
M � 3 M � 1 G � 20
T � 15 T � 5
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single-factor ANOVA, the data for the low level of arousal (first column of the matrix)
are reproduced using the notation for a single-factor study.

State the hypothesis. For this restricted set of the data, the null hypothesis would state
that there is no difference between the mean for the easy task condition and the mean
for the difficult task condition. In symbols,

H0: �easy � �difficult for the low level of arousal

To evaluate this hypothesis, we use an F-ratio for which the numerator, 
MSbetween treatments, is determined by the mean differences between these two groups
and the denominator consists of MSwithin treatments from the original ANOVA. Thus,
the F-ratio has the structure

F �

�

To compute the MSbetween treatments, we begin with the two treatment totals T � 15
and T � 5. Each of these totals is based on n � 5 scores, and the two totals add up to
a grand total of G � 20. The SSbetween treatments for the two treatments is
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T
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1
1
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Using MSwithin treatments � 5 from the original two-factor analysis, the final F-ratio is
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Note that this F-ratio has the same df values (1, 24) as the test for factor A main
effects (easy versus difficult) in the original ANOVA. Therefore, the critical value
for the F-ratio is the same as that in the original ANOVA. With df � 1, 24 the
critical value is 4.26. In this case, our F-ratio fails to reach the critical value, so we
conclude that there is no significant difference between the two tasks, easy and
difficult, at a low level of arousal. 

MSbetween treatments for the two treatments in column 1
������

MSwithin treatments from the original ANOVA

variance (differences) for the means in column 1
��������
variance (differences) expected if there are no treatment effects

S T E P  2

S T E P  1
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Remember that the F-ratio uses
MSwithin treatments from the origi-
nal ANOVA. This MS � 5 with
df � 24. Because this SS value
is based on only two treatments,
it has df � 1. Therefore,
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For the medium level of arousal The test for the medium level of arousal follows
the same process. The data for the medium level are as follows:

488 CHAPTER 14 TWO-FACTOR ANALYSIS OF VARIANCE (INDEPENDENT MEASURES)

Medium Level of Arousal

Easy Task Difficult Task

n � 5 n � 5 N � 10
M � 5 M � 3 G � 40
T � 25 T � 15

Note that these data show a 2-point mean difference between the two conditions 
(M � 5 and M � 3), which is exactly the same as the 2-point difference that we
evaluated for the low level of arousal (M � 3 and M � 1). Because the mean difference
is the same for these two levels of arousal, the F-ratios are also identical. For the low
level of arousal, we obtained F(1, 24) � 2.00, which was not significant. This test also
produces F(1, 24) � 2.00 and again we conclude that there is no significant difference.
(Note: You should be able to complete the test to verify this decision.)

For the high level of arousal The data for the high level are as follows:

High Level of Arousal

Easy Task Difficult Task

n � 5 n � 5 N � 10
M � 10 M � 2 G � 60
T � 50 Y � 10

For these data, 

SSbetween treatments � 	�
T
n

2
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G
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2

�
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5
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5
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10
�
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� 160

Again, we are comparing only two treatment conditions, so df � 1 and
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S
d
S
f
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16
1
0

� � 160

Thus, for the high level of arousal, the final F-ratio is
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As before, this F-ratio has df � 1, 24 and is compared with the critical value 
F � 4.26. This time the F-ratio is far into the critical region and we conclude that

30991_ch14_ptg01_hr_465-506.qxd  9/3/11  2:05 AM  Page 488



there is a significant difference between the easy task and the difficult task for the
high level of arousal.

As a final note, we should point out that the evaluation of simple main effects accounts
for the interaction as well as the overall main effect for one factor. In Example 14.1, the
significant interaction indicates that the effect of task difficulty (factor A) depends on the
level of arousal (factor B). The evaluation of the simple main effects demonstrates this 
dependency. Specifically, task difficulty has no significant effect on performance when
arousal level is low or medium, but does have a significant effect when arousal level is
high. Thus, the analysis of simple main effects provides a detailed evaluation of the effects
of one factor including its interaction with a second factor.

The fact that the simple main effects for one factor encompass both the interaction
and the overall main effect of the factor can be seen if you consider the SS values. For
this demonstration,
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Simple Main Effects for Arousal Interaction and Main Effect for Arousal

SSlow arousal � 10 SSA�B � 60
SSmedium arousal � 10 SSA � 120
SShigh arousal � 160

Total SS � 180 Total SS � 180

Notice that the total variability from the simple main effects of difficulty (factor A)
completely accounts for the total variability of factor A and the A � B interaction.

14.4 USING A SECOND FACTOR TO REDUCE VARIANCE
CAUSED BY INDIVIDUAL DIFFERENCES

As we noted in Chapters 10 and 12, a concern for independent-measures designs is the
variance that exists within each treatment condition. Specifically, large variance tends
to reduce the size of the t statistic or F-ratio and, therefore, reduces the likelihood of
finding significant mean differences. Much of the variance in an independent-measures
study comes from individual differences. Recall that individual differences are the char-
acteristics, such as age or gender, that differ from one participant to the next and can
influence the scores obtained in the study.

Occasionally, there are consistent individual differences for one specific partici-
pant characteristic. For example, the males in a study may consistently have lower
scores than the females. Or, the older participants may have consistently higher
scores than the younger participants. For example, suppose that a researcher com-
pares two treatment conditions using a separate group of children for each condition.
Each group of participants contains a mix of boys and girls. Hypothetical data for this
study are shown in Table 14.7(a), with each child’s gender noted with an M or an F.
While examining the results, the researcher notices that the girls tend to have higher
scores than the boys, which produces big individual differences and high variance
within each group. Fortunately, there is a relatively simple solution to the problem of
high variance. The solution involves using the specific variable, in this case gender,
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as a second factor. Instead of one group in each treatment, the researcher divides the
participants into two separate groups within each treatment: a group of boys and a
group of girls. This process creates the two-factor study shown in Table 14.7(b), with
one factor consisting of the two treatments (I and II) and the second factor consisting
of the gender (male and female). 

By adding a second factor and creating four groups of participants instead of only
two, the researcher has greatly reduced the individual differences (gender differences)
within each group. This should produce a smaller variance within each group and,
therefore, increase the likelihood of obtaining a significant mean difference. This
process is demonstrated in the following example.

We use the data in Table 14.7 to demonstrate how the variance caused by individual
differences can be reduced by adding a participant characteristic, such as age or gender,
as a second factor. For the single-factor study in Table 14.7(a), the two treatments
produce SSwithin treatments � 50 � 68 � 118. With n � 8 in each treatment, we obtain
dfwithin treatments � 7 � 7 � 14. These values produce MSwithin treatments � � 8.43,
which is the denominator of the F-ratio evaluating the mean difference between
treatments. For the two-factor study in Table 14.7(b), the four treatments produce
SSwithin treatments � 10 � 12 � 8 � 24 � 54. With n � 4 in each treatment, we obtain
dfwithin treatments � 3 � 3 � 3 � 3 � 12. These value produce MSwithin treatments �

� 4.50, which is the denominator of the F-ratio evaluating the main effect for the
treatments. Notice that the error term for the single-factor F is nearly twice as big as 
the error term for the two-factor F. Reducing the individual differences within each
group has greatly reduced the within-treatment variance that forms the denominator 
of the F-ratio. 

Both designs, single-factor and two-factor, evaluate the difference between the
two treatment means, M � 3 and M � 6, with n � 8 in each treatment. These values
produce SSbetween treatments � 36 and, with k � 2 treatments, we obtain dfbetween

treatments � 1. Thus, MSbetween treatments � � 36. (For the two-factor design, this 
is the MS for the main effect of the treatment factor.) With different denominators,
however, the two designs produce very different F-ratios. For the single-factor
design, we obtain

36

1

54
12

118

14

E X A M P L E  1 4 . 3

490 CHAPTER 14 TWO-FACTOR ANALYSIS OF VARIANCE (INDEPENDENT MEASURES)

TABLE 14.7

A single-factor study comparing
two treatments (a) can be 
transformed into a two-factor
study (b) by using a participant
characteristic (gender) as 
a second factor. This process
creates smaller, more 
homogeneous groups, which
reduces the variance within
groups.

(a)

Treatment I Treatment II

3 (M) 8 (F)
4 (F) 4 (F)
4 (F) 1 (M)
0 (M) 10 (F)
6 (F) 5 (M)
1 (M) 5 (M)
2 (F) 10 (F)
4 (M) 5 (M)
M � 3 M � 6
SS � 50 SS � 68

(b)

Treatment I Treatment II

Males 3 1
0 5
1 5
4 5

M � 2 M � 4
SS � 10 SS � 12

Females 4 8
4 4
6 10
2 10

M � 4 M � 8
SS � 8 SS � 24
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With df � 1, 14, the critical value for 
 � .05 is F � 4.60. Our F-ratio is not 
in the critical region, so we fail to reject the null hypothesis and must conclude that
there is no significant difference between the two treatments.

For the two-factor design, however, we obtain 
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With df � 1, 14, the critical value for 
 � .05 is F � 4.75. Our F-ratio is 
well beyond this value, so we reject the null hypothesis and conclude that there is 
a significant difference between the two treatments.

For the single-factor study in Example 14.3, the individual differences caused by
gender are part of the variance within each treatment condition. This increased variance
reduces the F-ratio and results in a conclusion of no significant difference 
between treatments. In the two-factor analysis, the individual differences caused by
gender are measured by the main effect for gender, which is a between-groups factor.
Because the gender differences are now between-groups rather than within-groups,
they no longer contribute to the variance.  

The two-factor ANOVA has other advantages beyond reducing the variance.
Specifically, it allows you to evaluate mean differences between genders as well as
differences between treatments, and it reveals any interaction between treatment
and gender. 

14.5 ASSUMPTIONS FOR THE TWO-FACTOR ANOVA

The validity of the ANOVA presented in this chapter depends on the same three 
assumptions we have encountered with other hypothesis tests for independent-measures
designs (the t test in Chapter 10 and the single-factor ANOVA in Chapter 12):

1. The observations within each sample must be independent (see p. 254).

2. The populations from which the samples are selected must be normal.

3. The populations from which the samples are selected must have equal variances
(homogeneity of variance).

As before, the assumption of normality generally is not a cause for concern, 
especially when the sample size is relatively large. The homogeneity of variance 
assumption is more important, and if it appears that your data fail to satisfy this 
requirement, you should conduct a test for homogeneity before you attempt the
ANOVA. Hartley’s F-max test (see p. 338) allows you to use the sample variances from
your data to determine whether there is evidence for any differences among the popu-
lation variances. Remember, for the two-factor ANOVA, there is a separate sample for
each cell in the data matrix. The test for homogeneity applies to all of these samples
and the populations that they represent.
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1. A research study with two independent variables is
called a two-factor design. Such a design can be
diagramed as a matrix with the levels of one factor
defining the rows and the levels of the other factor
defining the columns. Each cell in the matrix
corresponds to a specific combination of the two factors.

2. Traditionally, the two factors are identified as factor A
and factor B. The purpose of the ANOVA is to
determine whether there are any significant mean
differences among the treatment conditions or cells in
the experimental matrix. These treatment effects are
classified as follows:
a. The A-effect: Overall mean differences among the

levels of factor A.

492 CHAPTER 14 TWO-FACTOR ANALYSIS OF VARIANCE (INDEPENDENT MEASURES)

SUMMARY

b. The B-effect: Overall mean differences among the
levels of factor B.

c. The A � B interaction: Extra mean differences that
are not accounted for by the main effects.

3. The two-factor ANOVA produces three F-ratios: one
for factor A, one for factor B, and one for the A � B
interaction. Each F-ratio has the same basic structure:

F �

The formulas for the SS, df, and MS values for the 
two-factor ANOVA are presented in Figure 14.6.

MStreatment effect(either A or B or A � B)
����

MSwithin treatments

SS

SS SS

df (number of cells) 1

Between treatments

T 2

n
G 2

N

df ( levels of B ) 1

Factor B (columns)

T 2
COL

n
G 2

N

SS is found by
subtraction

df is found by
subtraction

Interaction

df ( levels of A) 1

Factor A (rows)

T 2
ROW

n
G 2

N

SS SS each cell

df df each cell

Within treatments

SS X 2

df N 1

Total
G2

N

SS for the factor
df for the factor

MS factor
SS within treatments

df within treatments
MS within

� 	

� 	

� 	

� 	

� 	

�

� � 	 �

��

�

� �

� � �

� �

�

ROW COL

FIGURE 14.6

The ANOVA for an independent-measures two-factor design.

two-factor design (467)

matrix (467)

cells (467)

main effect (469)

interaction (470)

KEY TERMS
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RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 14 on the book

companion website. The website also provides access to two workshops entitled Two Way
ANOVA and Factorial ANOVA that both review the two-factor analysis presented in this
chapter.

Improve your understanding of statistics with Aplia’s auto-graded problem 
sets and immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.

Log in to CengageBrain to access the resources your instructor requires. For this book,
you can access:

Psychology CourseMate brings course concepts to life with interactive learning,
study, and exam preparation tools that support the printed textbook. A textbook-specific
website, Psychology CourseMate includes an integrated interactive eBook and other
interactive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to perform the Two-Factor, Independent-Measures
Analysis of Variance (ANOVA) presented in this chapter.

Data Entry

1. The scores are entered into the SPSS data editor in a stacked format, which means
that all of the scores from all of the different treatment conditions are entered in a
single column (VAR00001).

2. In a second column (VAR00002), enter a code number to identify the level of factor
A for each score. If factor A defines the rows of the data matrix, enter a 1 beside each
score from the first row, enter a 2 beside each score from the second row, and so on.

3. In a third column (VAR00003), enter a code number to identify the level of factor B
for each score. If factor B defines the columns of the data matrix, enter a 1 beside
each score from the first column, enter a 2 beside each score from the second 
column, and so on.
Thus, each row of the SPSS data editor has one score and two code numbers, with
the score in the first column, the code for factor A in the second column, and the
code for factor B in the third column.
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Data Analysis

1. Click Analyze on the tool bar, select General Linear Model, and click on Univariant.
2. Highlight the column label for the set of scores (VAR0001) in the left box and click

the arrow to move it into the Dependent Variable box.
3. One by one, highlight the column labels for the two factor codes and click the

arrow to move them into the Fixed Factors box.
4. If you want descriptive statistics for each treatment, click on the Options box,

select Descriptives, and click Continue.
5. Click OK.

SPSS Output

We used the SPSS program to analyze the data from the arousal-and-task-difficulty
study in Example 14.1 and part of the program output is shown in Figure 14.7. The
output begins with a table listing the factors (not shown in Figure 14.7), followed by a
table showing descriptive statistics, including the mean and standard deviation for each
cell, or treatment condition. The results of the ANOVA are shown in the table labeled
Tests of Between-Subjects Effects. The top row (Corrected Model) presents the 
between-treatments SS and df values. The second row (Intercept) is not relevant for 
our purposes. The next three rows present the two main effects and the interaction (the
SS, df, and MS values, as well as the F-ratio and the level of significance), with each
factor identified by its column number from the SPSS data editor. The next row (Error)
describes the error term (denominator of the F-ratio), and the final row (Corrected Total)
describes the total variability for the entire set of scores. (Ignore the row labeled Total.)

FOCUS ON PROBLEM SOLVING

1. Before you begin a two-factor ANOVA, take time to organize and summarize the
data. It is best if you summarize the data in a matrix with rows corresponding to the
levels of one factor and columns corresponding to the levels of the other factor. In
each cell of the matrix, show the number of scores (n), the total and mean for the
cell, and the SS within the cell. Also compute the row totals and column totals that
are needed to calculate main effects.

2. For a two-factor ANOVA, there are three separate F-ratios. These three F-ratios use the
same error term in the denominator (MSwithin). On the other hand, these F-ratios have
different numerators and may have different df values associated with each of these
numerators. Therefore, you must be careful when you look up the critical F values in
the table. The two factors and the interaction may have different critical F values.

DEMONSTRATION 14.1

TWO-FACTOR ANOVA

The following data are representative of the results obtained in a research study examining
the relationship between eating behavior and body weight (Schachter, 1968). The two factors
in this study were:

1. The participant’s weight (normal or obese)

2. The participant’s state of hunger (full stomach or empty stomach)

494 CHAPTER 14 TWO-FACTOR ANALYSIS OF VARIANCE (INDEPENDENT MEASURES)
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Descriptive Statistics

Dependent Variable: VAR00001

VAR00002

1.00

VAR00003

Tests of Between-Subjects Effects

Source Type III Sum
of Squares df Mean

Square F Sig.

Mean

1.00

2.00

3.00

Total

Corrected Model

Intercept

VAR00002

VAR00003

VAR00002 * VAR00003

Error

Total

Corrected Total        

260.000

480.000

120.000

80.000

60.000

120.000

860.000

380.000

5

1

1

2

2

24

30

29

52.000

480.000

120.000

40.000

30.000

5.000

10.400

96.000

24.000

8.000

6.000

.000

.000

.000

.002

.008

3.0000

5.0000

10.0000

6.0000

2.12132

2.64575

2.54951

3.79850

5

5

5

15

Std. Deviation N

2.00 1.00

2.00

3.00

Total

1.0000

3.0000

2.0000

2.0000

1.41421

2.23607

2.23607

2.03540

5

5

5

15

1.00 1.00

2.00

3.00

Total

2.0000

4.0000

6.0000

4.0000

2.00000

2.53859

4.78423

3.61987

10

10

10

30

Dependent Variable: VAR00001

FIGURE 14.7

Portions of the SPSS output for the two-factor ANOVA for the arousal-and-task-difficulty study in Example 14.1.

All participants were led to believe that they were taking part in a taste test for several
types of crackers, and they were allowed to eat as many crackers as they wanted. The
dependent variable was the number of crackers eaten by each participant. There were 
two specific predictions for this study. First, it was predicted that normal participants’
eating behavior would be determined by their state of hunger. That is, people with empty
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stomachs would eat more and people with full stomachs would eat less. Second, it was
predicted that eating behavior for obese participants would not be related to their state of
hunger. Specifically, it was predicted that obese participants would eat the same amount
whether their stomachs were full or empty. Note that the researchers are predicting an
interaction: The effect of hunger will be different for the normal participants and the obese
participants. The data are as follows:

496 CHAPTER 14 TWO-FACTOR ANALYSIS OF VARIANCE (INDEPENDENT MEASURES)

Factor B: Hunger

Empty stomach Full stomach

n � 20 n � 20

M � 22 M � 15

T � 440 T � 300

SS � 1540 SS � 1270

n � 20 n � 20

M � 17 M � 18

T � 340 T � 360

SS � 1320 SS � 1266

Tempty � 780 Tfull � 660

Normal

Factor A:

Weight

Obese

Tnormal � 740

Tnormal � 700

G � 1440
N � 80

	X2 � 31,836

State the hypotheses, and select alpha. For a two-factor study, there are three separate
hypotheses, the two main effects and the interaction.

For factor A, the null hypothesis states that there is no difference in the amount eaten
for normal participants versus obese participants. In symbols,

H0: �normal � �obese

For factor B, the null hypothesis states that there is no difference in the amount eaten for
full-stomach versus empty-stomach conditions. In symbols,

H0: �full � �empty

For the A � B interaction, the null hypothesis can be stated two different ways. First, 
the difference in eating between the full-stomach and empty-stomach conditions will be
the same for normal and obese participants. Second, the difference in eating between the
normal and obese participants will be the same for the full-stomach and empty-stomach
conditions. In more general terms,

H0: The effect of factor A does not depend on the levels of factor B (and B does
not depend on A).

We use 
 � .05 for all tests.

The two-factor analysis. Rather than compute the df values and look up critical values
for F at this time, we proceed directly to the ANOVA.

The first stage of the analysis is identical to the independent-measures ANOVA presented in
Chapter 12, where each cell in the data matrix is considered a separate treatment condition.

S T A G E  1

S T E P  2

S T E P  1
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SSwithin treatments � 	SSinside each treatment � 1540 � 1270 � 1320 � 1266 � 5396

SSbetween treatments

4402          3002          3402         3602         14402

� ––––– � ––––– � ––––– � ––––– � ––––– 
20          20           20           20           80

� 520

The corresponding degrees of freedom are

dftotal � N � 1 � 79

dfwithin treatments � 	df � 19 � 19 � 19 � 19 � 76

dfbetween treatments � number of treatments � 1 � 3

The second stage of the analysis partitions the between-treatments variability into three
components: the main effect for factor A, the main effect for factor B, and the A � B
interaction.

For factor A (normal/obese),

For factor B (full/empty),

For the A � B interaction,

SSA�B � SSbetween treatments � SSA � SSB

� 520 � 20 � 180

� 320

SS
T

n

G

NB
COLS

COLS

� 	 �

� � �

2 2

2 2780

40

660

40

1440

80
180

2

�

SS
T

n

G

NA
ROWS

ROWS

� 	 �

� � �

2 2

2 2740

40

700

40

1440

80
20

2

�

S T A G E  2

� 	 �
T

n

G

N

2 2

SS X
G

Ntotal � 	 �

� � �

2
2

2

31 836
1440

80
5916,
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The corresponding degrees of freedom are

dfA � number of rows � 1 � 1

dfB � number of columns � 1 � 1

dfA � B � dfbetween treatments � dfA � dfB

� 3 � 1 � 1

� 1

The MS values needed for the F-ratios are

SSA 20
MSA � ––– � ––– � 20

dfA 1

SSB 180
MSB � ––– � –––– � 180 

dfB 1

SSA � B 320
MSA � B � –––––– � –––– � 320 

dfA � B 1

SSwithin treatments 5396 
MSwithin treatments � ––––––––––––– � ––––– � 71

dfwithin treatments 76

Finally, the F-ratios are

MSA 20
FA � –––––––––––––– � ––– � 0.28 

MSwithin treatments        71

MSB 180
FB � –––––––––––––– � –––– � 2.54 

MSwithin treatments           71

MSA � B 320
FA � B � –––––––––––––– � –––– � 4.51 

MSwithin treatments          71

Make a decision and state a conclusion. All three F-ratios have df � 1, 76. 
With 
 � .05, the critical F value is 3.98 for all three tests.

For these data, factor A (weight) has no significant effect; F(1, 76) � 0.28.
Statistically, there is no difference in the number of crackers eaten by normal versus
obese participants.

Similarly, factor B (fullness) has no significant effect; F(1, 76) � 2.54.
Statistically, the number of crackers eaten by full participants is no different from the
number eaten by hungry participants. (Note: This conclusion concerns the combined
group of normal and obese participants. The interaction concerns these two groups
separately.)

These data produce a significant interaction; F(1, 76) � 4.51, p � .05. This means
that the effect of fullness does depend on weight. A closer look at the original data shows
that the degree of fullness did affect the normal participants, but it had no effect on the
obese participants.

S T E P  3

498 CHAPTER 14 TWO-FACTOR ANALYSIS OF VARIANCE (INDEPENDENT MEASURES)
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DEMONSTRATION 14.2

MEASURING EFFECT SIZE FOR THE TWO-FACTOR ANOVA

Effect size for each main effect and for the interaction is measured by eta squared (�2),
the percentage of variance explained by the specific main effect or interaction. In each
case, the variability that is explained by other sources is removed before the percentage is
computed. For the two-factor ANOVA in Demonstration 14.1,

PROBLEMS

For factor ,
total

A
SS

SS SS SS
A

B A B

η2 20

591
�

� �
�

�
66 180 320

0 004 0 4

2

� �
�

�

. . %or

For factor ,

( )

B
S

η
SS

SS SS SS
B

A A Btotal

or
� �

�
� �

�
×

180

5916 20 320
0 032.

For ,
total

3 2

322

. %( )

A B
SS

SS SS SS
A B

A B

� �
� �

��η 00

5916 20 180
0 056 5 6

� �
� . . %or( )

PROBLEMS 499

1. Define each of the following terms:
a. Factor
b. Level
c. Two-factor study

2. The structure of a two-factor study can be presented as a
matrix with the levels of one factor determining the 
rows and the levels of the second factor determining 
the columns. With this structure in mind, describe the
mean differences that are evaluated by each of the 
three hypothesis tests that make up a two-factor ANOVA.

3. Briefly explain what happens during the second stage of
the two-factor ANOVA.

4. For the data in the following matrix:

5. The following matrix presents the results from an
independent-measures, two-factor study with a sample
of n = 10 participants in each treatment condition. Note
that one treatment mean is missing.

No Treatment Treatment

Male M � 5 M � 3 Overall M � 4

Female M � 9 M � 13 Overall M � 11

overall M � 7 overall M � 8

a. Which two means are compared to describe the
treatment main effect?

b. Which two means are compared to describe the
gender main effect?

c. Is there an interaction between gender and treatment?
Explain your answer.

Factor B

B1 B2

A1 M � 20 M � 30
Factor A

A2 M � 40

a. What value for the missing mean would result in no
main effect for factor A?

b. What value for the missing mean would result in no
main effect for factor B?

c. What value for the missing mean would result in no
interaction? 

6. The following matrix presents the results of a two-
factor study with n = 10 scores in each of the six
treatment conditions. Note that one of the treatment
means is missing.

Factor B

B1 B2 B3

A1 M � 10 M � 20 M � 40
Factor A

A2 M � 20 M � 30
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a. What value for the missing mean would result in no
main effect for factor A?

b. What value for the missing mean would result in no
interaction?

7. For the data in the following graph:
a. Is there a main effect for the treatment factor?
b. Is there a main effect for the age factor?
c. Is there an interaction between age and treatment?

8. A researcher conducts an independent-measures, 
two-factor study using a separate sample of n = 15
participants in each treatment condition. The results are
evaluated using an ANOVA and the researcher reports
an F-ratio with df = 1, 84 for factor A, and an F-ratio
with df = 2, 84 for factor B.
a. How many levels of factor A were used in the study?
b. How many levels of factor B were used in the study?
c. What are the df values for the F-ratio evaluating the

interaction?

9. The following results are from an independent-
measures, two-factor study with n = 10 participants in
each treatment condition.

25 

20 

15 

10 

5 

8 Years 9 Years 10 Years 

Mean 
score 

Treatment 1 

Treatment 2 

Age

a. Use a two-factor ANOVA with 
 = .05 to evaluate
the main effects and the interaction.

b. Compute �2 to measure the effect size for each of
the main effects and the interaction.

10. The following results are from an independent-measures,
two-factor study with n = 5 participants in each
treatment condition.

Factor B

B1 B2

T � 40 T � 10
M � 4 M � 1
SS � 50 SS � 30

T � 50 T � 20
M � 5 M � 2
SS � 60 SS � 40

N � 40 
G �120 

	X2 � 640

Factor A

A1

A2

a. Use a two-factor ANOVA with 
 � .05 to evaluate
the main effects and the interaction.

b. Test the simple main effects using 
 � .05 to
evaluate the mean difference between treatment 
A1 and A2 for each level of factor B.

11. A researcher conducts an independent-measures,
two-factor study with two levels of factor A
and three levels of factor B, using a sample 
of n � 12 participants in each treatment 
condition.
a. What are the df values for the F-ratio evaluating 

the main effect of factor A?
b. What are the df values for the F-ratio evaluating 

the main effect of factor B?
c. What are the df values for the F-ratio evaluating 

the interaction?

12. Most sports injuries are immediate and obvious, like a
broken leg. However, some can be more subtle, like
the neurological damage that may occur when soccer
players repeatedly head a soccer ball. To examine
long-term effects of repeated heading, Downs and
Abwender (2002) examined two different age groups
of soccer players and swimmers. The dependent
variable was performance on a conceptual thinking
task. Following are hypothetical data, similar to the
research results.
a. Use a two-factor ANOVA with 
 � .05 to evaluate

the main effects and interaction.
b. Calculate the effects size (�2) for the main effects

and the interaction.
c. Briefly describe the outcome of the study.

Factor B

B1 B2 B3

T � 25 T � 40 T � 70
M � 5 M � 8 M � 14
SS � 30 SS � 38 SS � 46

T � 15 T � 20 T � 40
M � 3 M � 4 M � 8
SS � 22 SS � 26 SS � 30

N � 40 
G �120 

	X2 � 640

Factor A

A1

A2
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13. Some people like to pour beer gently down the side of
the glass to preserve bubbles. Others splash it down
the center to release the bubbles into a foamy head and
free the aromas. Champagne, however is best when the
bubbles remain concentrated in the wine. A group of
French scientists recently verified the difference
between the two pouring methods by measuring the
amount of bubbles in each glass of champagne poured
two different ways and at three different temperatures
(Liger-Belair, 2010). The following data present the
pattern of results obtained in the study.

PROBLEMS 501

Source SS df MS

Between treatments 60
Factor A 5 F �

Factor B F �

A � B Interaction 25 F �

Within treatments 2.5
Total

a. Use a two-factor ANOVA with 
 = .05 to evaluate
the mean differences.

b. Briefly explain how temperature and pouring
influence the bubbles in champagne according to
this pattern of results.

14. The following table summarizes the results from a
two-factor study with 2 levels of factor A and 3 levels
of factor B using a separate sample of n = 8
participants in each treatment condition. Fill in the
missing values. (Hint: Start with the df values.)

Factor B: Age

College Older

n � 20 n � 20
M � 9 M � 4
T � 180 T � 80

SS � 380 SS � 390

n � 20 n � 20
M � 9 M � 8
T � 180 T � 160

SS � 350 SS � 400

	X2 � 6360

Factor A:
Sport

Soccer

Swimming

Champagne Temperature (ºF)

40º 46º 52º

n = 10 n = 10 n = 10
M = 7 M = 3 M = 2
SS = 64 SS = 57 SS = 47

n = 10 n = 10 n = 10
M = 5 M = 1 M = 0
SS = 56 SS = 54 SS = 46

Gentle Pour

Splashing Pour

15. The following table summarizes the results from a
two-factor study with 3 levels of factor A and 3 levels
of factor B using a separate sample of n = 9
participants in each treatment condition. Fill in the
missing values. (Hint: Start with the df values.)

Source SS df MS

Between treatments 144

Factor A 18 F �

Factor B F �

A � B Interaction F � 7.0
Within treatments
Total 360

16. The Preview section for this chapter described a two-
factor study examining performance under two audience
conditions (factor B) for high and low self-esteem
participants (factor A). The following summary table
presents possible results from the analysis of that study.
Assuming that the study used a separate sample of 
n = 15 participants in each treatment condition 
(each cell), fill in the missing values in the table. 
(Hint: Start with the df values.) 

Source SS df MS

Between treatments 67
Audience F � 

Self-esteem 29 F � 

Interaction F � 5.50
Within treatments 4
Total

17. The following table summarizes the results from a
two-factor study with 2 levels of factor A and 3 levels
of factor B using a separate sample of n = 11
participants in each treatment condition. Fill in the
missing values. (Hint: Start with the df values.)
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Source SS df MS

Between treatments
Factor A F � 7

Factor B F � 8
A � B Interaction F � 3

Within treatments 240

Total

18. The following data are from a two-factor study
examining the effects of two treatment conditions on
males and females. 
a. Use an ANOVA with 
 = .05 for all tests to

evaluate the significance of the main effects 
and the interaction.

b. Compute �2 to measure the size of the effect for
each main effect and the interaction.

Treatments

I II

3 2
8 8
9 7

Tmale � 48
4 7

M � 6 M � 6
T � 24 T � 24 N � 16

SS � 26 SS � 22 G � 96

0 12
	X2 � 806

0 6
2 9
6 13

Tfemale � 48M � 2 M � 10
T � 8 T � 40

SS � 24 SS � 30

TI = 32      TII � 64

19. The following data are from a two-factor study
examining the effects of three treatment conditions on
males and females. 
a. Use an ANOVA with 
 = .05 for all tests to

evaluate the significance of the main effects 
and the interaction.

b. Test the simple main effects using 
 = .05 
to evaluate the mean difference between 
males and females for each of the three
treatments.  

Factor B Treatments

I II III

20. Mathematics word problems can be particularly
difficult, especially for primary-grade children. A
recent study investigated a combination of techniques
for teaching students to master these problems (Fuchs,
Fuchs, Craddock, Hollenbeck, Hamlett, &
Schatschneider, 2008). The study investigated the
effectiveness of small-group tutoring and the
effectiveness of a classroom instruction technique
known as “hot math.” The hot-math program teaches
students to recognize types or categories of problems
so that they can generalize skills from one problem to
another. The following data are similar to the results
obtained in the study. The dependent variable is a math
test score for each student after 16 weeks in the study.

1
2
6

M � 3
T � 9

SS � 14

7
2
9

M � 6
T � 18

SS � 26

9
11
7

M � 9
T � 27

SS � 8

3
1
5

M � 3
T � 9

SS � 8

10
11
15

M � 12
T � 36

SS � 14

16
18
11

M � 15
T � 45

SS � 26

Male

Female

Factor A:

Gender

Male

Female

Factor A:

Gender
N � 18
G � 144

	X2 � 1608

Tmale � 54

Tfemale � 90

No Tutoring With Tutoring

3 9
6 4
2 5
2 8
4 4
7 6

7 8
7 12
2 9
6 13
8 9
6 9

Traditional Instruction

Hot-Math Instruction
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a. Use a two-factor ANOVA with 
 = .05 to evaluate
the significance of the main effects and the
interaction.

b. Calculate the �2 values to measure the effect size
for the two main effects.

c. Describe the pattern of results. (Is tutoring
significantly better than no tutoring? Is traditional
classroom instruction significantly different from
hot math? Does the effect of tutoring depend on the
type of classroom instruction?)

21. In Chapter 12 (p. 432), we described a study reporting
that college students who are on Facebook (or have it
running in the background) while studying had lower
grades than students who did not use the social
network (Kirschner & Karpinski, 2010). A researcher
would like to know if the same result extends to
students in lower grade levels. The researcher planned
a two-factor study comparing Facebook users with
non-users for middle school students, high school
students, and college students. For consistency across
groups, grades were converted into six categories,
numbered 0 to 5 from low to high. The results are
presented in the following matrix.
a. Use a two-factor ANOVA with 
 = .05 to evaluate

the mean differences.
b. Describe the pattern of results.

person shown in the photograph. The study uses a
separate group of participants for each condition. The
following table presents data similar to the results
from previous research.
a. Use a two-factor ANOVA with 
 = .05 to evaluate

the main effects and the interaction.

Middle School High School College

3 5 5
5 5 4
5 2 2
3 4 5

5 1 1
3 2 0
2 3 0
2 2 3

User

Non-user

b. Describe the effect of background color on
judgments of males and females.

23. In the Preview section of this chapter, we presented an
experiment that examined the effect of an audience on
the performance of two different personality types.
Data from this experiment are as follows. The
dependent variable is the number of errors made by
each participant.

22. In Chapter 11, we described a research study in which
the color red appeared to increase men’s attraction to
women (Elliot & Niesta, 2008). The same researchers
have published other results showing that red also
increases women’s attraction to men but does not
appear to affect judgments of same sex individuals
(Elliot, et al., 2010). Combining these results into one
study produces a two-factor design in which men
judge photographs of both women and men, which are
shown on both red and white backgrounds. The
dependent variable is a rating of attractiveness for the

Person Shown in Photograph

Female Male

n � 10 n � 10
M � 4.5 M � 4.4
SS � 6 SS � 7

n � 10 n � 10
M � 7.5 M � 4.6
SS � 9 SS � 8

Background Color
for Photograph

White

Red

No Audience Audience

3 9
6 4
2 5
2 8
4 4
7 6

7 10
7 14
2 11
6 15
8 11
6 11

Self-Esteem

High

Low

a. Use an ANOVA with 
 = .05 to evaluate the data.
Describe the effect of the audience and the effect of
self-esteem on performance.

b. Calculate the effect size (�2) for each main effect
and for the interaction.

PROBLEMS 503
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After completing this part, you should be able to perform an
ANOVA to evaluate the significance of mean differences in
three research situations. These include:

1. The single-factor independent-measures design intro-
duced in Chapter 12.

2. The single-factor repeated-measures design introduced
in Chapter 13.

3. The two-factor independent-measures design intro-
duced in Chapter 14.

In this part we introduce three applications of ANOVA that
use an F-ratio statistic to evaluate the mean differences
among two or more populations. In each case, the F-ratio
has the following structure:

The numerator of the F-ratio measures the mean dif-
ferences that exist from one treatment condition to another, 
including any systematic differences caused by the treat-
ments. The denominator measures the differences that exist
when there are no systematic factors that cause one score to
be different from another. The F-ratio is structured so that
the numerator and denominator are measuring exactly the
same variance when the null hypothesis is true and there are
no systematic treatment effects. In this case, the F-ratio
should have a value near 1.00. Thus, an F-ratio near 1.00 
is evidence that the null hypothesis is true. Similarly, an 
F-ratio that is much larger than 1.00 provides evidence 
that a systematic treatment effect does exist and the null 
hypothesis should be rejected.

For independent-measures designs, either single-factor
or two-factor, the denominator of the F-ratio is obtained by
computing the variance within treatments. Inside each treat-
ment condition all participants are treated exactly the same,
so there are no systematic treatment effects that cause the
scores to vary. 

For a repeated-measures design, the same individuals
are used in every treatment condition, so any differences 
between treatments cannot be caused by individual 
differences. Thus, the numerator of the F-ratio does not
include any individual differences. Therefore, individual
differences must also be eliminated from the denominator
to balance the F-ratio. As a result, the repeated-measures
ANOVA is a two-stage process. The first stage separates
the between-treatments variance (numerator) and the
within-treatments variance. The second stage removes 
the systematic individual differences from the within-
treatments variance to produce the appropriate denomina-
tor for the F-ratio.

For a two-factor design, the mean differences 
between treatments can be caused by either of the two factors
or by specific combinations of factors. The goal of the

variance between treatments
F �

variance from random unsystematic sources

ANOVA is to separate these possible treatment effects so 
that each can be evaluated independent of the others. To 
accomplish this, the two-factor ANOVA is a two-stage
process. The first stage separates the between-treatments
variance and the within-treatments variance (denominator).
The second stage analyzes the between-treatments variance
into three components: the main effect from the first factor,
the main effect from the second factor, and the interaction. 

Note that the repeated-measures ANOVA and the 
two-factor ANOVA are both two-stage processes. Both begin
by separating the total variance into between-treatments and
within-treatments variance. However, the second stages of
these two ANOVAs serve different purposes and focus on
different components. The repeated-measures ANOVA 
focuses on the within-treatments variance and removes the 
individual differences to obtain the error variance. The two-
factor ANOVA separates the between-treatments variance
into the two main effects and the interaction.

REVIEW EXERCISES

1. Recent research indicates that the effectiveness of anti-
depressant medication is directly related to the severity of
the depression (Khan, Brodhead, Kolts, & Brown, 2005).
Based on pre-treatment depression scores, patients were
divided into four groups by level of depression. After 
receiving the antidepressant medication, depression
scores were measured again and the amount of improve-
ment was recorded for each patient. The following data
are similar to the results of the study.

a. Do the data indicate significant differences among
the four levels of severity? Test with 
 = .05.

b. Compute �2, the percentage of variance explained
by the group differences.

c. Write a sentence demonstrating how the outcome
of the hypothesis test and the measure of effect
size would appear in a research report.

Low High Moderately 
Moderate Moderate Severe Severe

0 1 4 5 N � 16
2 3 6 6 G � 48
2 2 2 6 	X2 � 204
0 2 4 3

M � 1 M � 2 M � 4 M � 5
T � 4 T � 8 T � 16 T � 20

SS � 4 SS � 2 SS � 8 SS � 6

2. Loss of hearing can be a significant problem for older
adults. Although hearing aids can correct the physical

P A R T IV
REVIEW
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problem, people who have lived with hearing impair-
ment often develop poor communication strategies and
social skills. To address this problem, a home educa-
tion program has been developed to help people who
are receiving hearing aids for the first time. The pro-
gram emphasizes communication skills. To evaluate
the program, overall quality of life and satisfaction
were measured before treatment, again at the end of the
training program, and once more at a 6-month follow-
up (Kramer, Allessie, Dondorp, Zekveld, & Kapteyn,
2005). Data similar to the results obtained in the study
are shown below.

Quality-of-Life Scores

Person Before After 6 Months

A 3 7 8 N � 12
B 0 5 7 G � 60
C 4 9 5 	X2 � 384
D 1 7 4

T � 8 T � 28 T � 24
SS � 10 SS � 8 SS � 10

a. Do the data indicate a significant improvement in
the quality of life following the training program?
Test at the .05 level of significance.

b. Calculate �2 to measure the size of the effect.
c. Write a sentence demonstrating how the outcome

of the hypothesis test and the measure of effect
size would appear in a research report.

3. Briefly describe what is meant by an interaction 
between factors in a two-factor research study.

4. A recent study of driving behavior suggests that self-
reported measures of high driving skills and low rat-
ings of safety skills create a dangerous combination
(Sümer, Özkan, & Lajunen, 2006). (Note: Those who
rate themselves as highly skilled drivers are probably
overly confident.) Drivers were classified as high or
low in self-rated skill based on responses to a driver-
skill inventory, then classified as high or low in safety
skill based on responses to a driver-aggression scale.
An overall measure of driving risk was obtained by
combining several variables such as number of acci-
dents, tickets, tendency to speed, and tendency to pass
other cars. The following data represent results similar
to those obtained in the study. Use a two-factor
ANOVA with 
 � .05 to evaluate the results.

Self-Rated Driving Skill

Low High

n � 8 n � 8
M � 5 M � 8.5
T � 40 T � 68

SS � 52 SS � 71

n � 8 n � 8
M � 3 M � 3.5
T � 24 T � 28

SS � 34 SS � 46

Driving Safety

Low

High

N � 32
G � 160
	X2 � 1151
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Back in Chapter 1 we stated that the primary goal of science
is to establish relationships between variables. Until this
point, the statistics we have presented all attempt to

accomplish this goal by comparing groups of scores using means
and variances as the basic statistical measures. Typically, one
variable is used to define the groups, and a second variable is
measured to obtain a set of scores within each group. Means and
variances are then computed for the scores, and the sample means
are used to test hypotheses about population means. If the hypoth-
esis test indicates a significant mean difference, then we conclude
that there is a relationship between the variables.

However, many research situations do not involve comparing
groups, and many do not produce data that allow you to calculate
means and variances. For example, a researcher can investigate the
relationship between two variables (for example, IQ and creativ-
ity) by measuring both variables within a single group of individ-
uals. Also, the measurement procedure may not produce numerical
scores. For example, participants can indicate their color prefer-
ences by simply picking a favorite color or by ranking several
choices. Without numerical scores, it is impossible to calculate
means and variances. Instead, the data consist of proportions or
frequencies. For example, a research study may investigate what
proportion of people select red as their favorite color and whether
this proportion is different for introverted people compared with
extroverted people.

Notice that these new research situations are still asking ques-
tions about the relationships between variables, and they are still
using sample data to make inferences about populations. However,
they are no longer comparing groups and they are no longer based
on means and variances. In this part, we introduce the statistical
methods that have been developed for these other kinds of research.

Correlations and
Nonparametric
Tests

507
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Tools You Will Need
The following items are considered essen-
tial background material for this chapter. If
you doubt your knowledge of any of these
items, you should review the appropriate
chapter or section before proceeding.

• Proportions (math review, Appendix
A)

• Fractions
• Decimals
• Percentages

• Basic algebra (math review, Appendix A)
• z-Scores (Chapter 5)

C H A P T E R

15
Correlation

Preview

15.1 Introduction

15.2 The Pearson Correlation

15.3 Using and Interpreting the
Pearson Correlation

15.4 Hypothesis Tests with the Pearson
Correlation

15.5 Alternatives to the Pearson
Correlation

Summary

Focus on Problem Solving

Demonstration 15.1

Problems

Tools You Will Need
The following items are considered essential
background material for this chapter. If you
doubt your knowledge of any of these items,
you should review the appropriate chapter or
section before proceeding.

• Sum of squares (SS) (Chapter 4)
• Computational formula
• Definitional formula

• z-scores (Chapter 5)
• Hypothesis testing (Chapter 8)
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15.1 INTRODUCTION

Correlation is a statistical technique that is used to measure and describe the rela-
tionship between two variables. Usually the two variables are simply observed as
they exist naturally in the environment—there is no attempt to control or manipulate

Preview
Having been a student and taken exams for much of your
life, you probably have noticed a curious phenomenon. 
In every class, there are some students who zip through
exams and turn in their papers while everyone else is still
on page 1. Other students cling to their exams and are still
working frantically when the instructor announces that
time is up and demands that all papers be turned in. Have
you wondered what grades these students receive? Are the
students who finish first the best in the class, or are they
completely unprepared and simply accepting their failure?
Are the A students the last to finish because they are com-
pulsively checking and rechecking their answers? To help
answer these questions, we carefully observed a recent
exam and recorded the amount of time each student spent
on the exam and the grade each student received. These
data are shown in Figure 15.1. Note that we have listed
time along the X-axis and grade on the Y-axis. Each stu-
dent is identified by a point on the graph that is located
directly above the student’s time and directly across from
the student’s grade. Also note that we have drawn a line
through the middle of the data points in Figure 15.1. The
line helps make the relationship between time and grade
more obvious. The graph shows that the highest grades
tend to go to the students who finished their exams early.
Students who held their papers to the bitter end tended to
have low grades.

The Problem: Although the data in Figure 15.1
appear to show a clear relationship, we need some
procedure to measure the relationship and a
hypothesis test to determine whether it is significant.
In the preceding five chapters, we described
relationships between variables in terms of mean
differences between two or more groups of scores,
and we used hypothesis tests that evaluate the
significance of mean differences. For the data in
Figure 15.1, there is only one group of scores, and
calculating a mean is not going to help describe the
relationship. To evaluate these data, a completely
different approach is needed for both descriptive and
inferential statistics.

The Solution: The data in Figure 15.1 are an
example of the results from a correlational research
study. In Chapter 1, the correlational design was
introduced as a method for examining the relationship
between two variables by measuring two different
variables for each individual in one group of
participants. The relationship obtained in a
correlational study is typically described and
evaluated with a statistical measure known as a
correlation. Just as a sample mean provides a 
concise description of an entire sample, a correlation
provides a concise description of a relationship. 
We look at how correlations are used and interpreted.
For example, now that you have seen the relationship
between time and grades, do you think it might be a
good idea to start turning in your exam papers a little
sooner? Wait and see.
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FIGURE 15.1

The relationship between exam grade and time
needed to complete the exam. Notice the general
trend in these data: Students who finish the exam
early tend to have better grades.
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SECTION 15.1 / INTRODUCTION 511

the variables. For example, a researcher could check high school records (with 
permission) to obtain a measure of each student’s academic performance, and then
survey each family to obtain a measure of income. The resulting data could be 
used to determine whether there is relationship between high school grades and 
family income. Notice that the researcher is not manipulating any student’s grade 
or any family’s income, but is simply observing what occurs naturally. You also
should notice that a correlation requires two scores for each individual (one score
from each of the two variables). These scores normally are identified as X and Y. The
pairs of scores can be listed in a table, or they can be presented graphically in a 
scatter plot (Figure 15.2). In the scatter plot, the values for the X variable are listed
on the horizontal axis and the Y values are listed on the vertical axis. Each individ-
ual is then represented by a single point in the graph so that the horizontal position
corresponds to the individual’s X value and the vertical position corresponds to 
the Y value. The value of a scatter plot is that it allows you to see any patterns or
trends that exist in the data. The scores in Figure 15.2, for example, show a clear 
relationship between family income and student grades; as income increases, grades
also increase.
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 Family income (in $1000)

Person

A
B
C
D
E
F
G
H
I
J
K
L
M
N

31
38
42
44
49
56
58
65
70
90
92

106
135
174

Student’s
Average
Grade

72
86
81
78
85
80
91
89
94
83
90
97
89
95

Family
Income

(in $1000)

90

85

80

75

70

95

100

30 55 70 90 110 130 150 170 190

FIGURE 15.2

Correlational data showing the relationship between family income (X) and student grades
(Y) for a sample of n � 14 high school students. The scores are listed in order from lowest
to highest family income and are shown in a scatter plot.

A correlation is a numerical value that describes and measures three characteristics of
the relationship between X and Y. These three characteristics are as follows:

1. The Direction of the Relationship. The sign of the correlation, positive or
negative, describes the direction of the relationship.

THE CHARACTERISTICS 
OF A RELATIONSHIP
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In a positive correlation, the two variables tend to change in the same direc-
tion: As the value of the X variable increases from one individual to another,
the Y variable also tends to increase; when the X variable decreases, the Y vari-
able also decreases.

In a negative correlation, the two variables tend to go in opposite directions.
As the X variable increases, the Y variable decreases. That is, it is an inverse
relationship.

The following examples illustrate positive and negative relationships.

Suppose you run the drink concession at the football stadium. After several seasons,
you begin to notice a relationship between the temperature at game time and the
beverages you sell. Specifically, you have noted that when the temperature is low,
you sell relatively little beer. However, as the temperature goes up, beer sales also
go up (Figure 15.3). This is an example of a positive correlation. You also have
noted a relationship between temperature and coffee sales: On cold days you sell a
lot of coffee, but coffee sales go down as the temperature goes up. This is an
example of a negative relationship.

2. The Form of the Relationship. In the preceding coffee and beer examples, the
relationships tend to have a linear form; that is, the points in the scatter plot
tend to cluster around a straight line. We have drawn a line through the middle

E X A M P L E  1 5 . 1
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FIGURE 15.3

Examples of positive and negative relationships. (a) Beer sales are positively related to
temperature. (b) Coffee sales are negatively related to temperature.

(a) (b)
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of the data points in each figure to help show the relationship. The most com-
mon use of correlation is to measure straight-line relationships. However, other
forms of relationships do exist and there are special correlations used to meas-
ure them. (We examine alternatives in Section 15.5.)

3. The Strength or Consistency of the Relationship. Finally, the correlation meas-
ures the consistency of the relationship. For a linear elationship, for example, 
the data points could fit perfectly on a straight line. Every time X increases by 
one point, the value of Y also changes by a consistent and predictable amount.
Figure 15.4(a) shows an example of a perfect linear relationship. However, rela-
tionships are usually not perfect. Although there may be a tendency for the value
of Y to increase whenever X increases, the amount that Y changes is not always
the same, and occasionally, Y decreases when X increases. In this situation, the
data points do not fall perfectly on a straight line. The consistency of the relation-
ship is measured by the numerical value of the correlation. A perfect correlation
always is identified by a correlation of 1.00 and indicates a perfectly consistent
relationship. For a correlation of 1.00 (or –1.00), each change in X is accompa-
nied by a perfectly predictable change in Y. At the other extreme, a correlation 
of 0 indicates no consistency at all. For a correlation of 0, the data points are
scattered randomly with no clear trend [see Figure 15.4(b)]. Intermediate values
between 0 and 1 indicate the degree of consistency.

Examples of different values for linear correlations are shown in Figure 15.4. In
each example we have sketched a line around the data points. This line, called an
envelope because it encloses the data, often helps you to see the overall trend in
the data. As a rule of thumb, when the envelope is shaped roughly like a football,
the correlation is around 0.7. Envelopes that are fatter than a football indicate
correlations closer to 0, and narrower shapes indicate correlations closer to 1.00.

You should also note that the sign (� or �) and the strength of a correlation are
independent. For example, a correlation of 1.00 indicates a perfectly consistent 
relationship whether it is positive (�1.00) or negative (�1.00). Similarly, correla-
tions of �0.80 and �0.80 are equally consistent relationships.

SECTION 15.1 / INTRODUCTION 513

Y

X

(c)
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(a)

Y

X

(d)

Y

X

(b)FIGURE 15.4

Examples of different
values for linear correla-
tions: (a) a perfect nega-
tive correlation, �1.00; 
(b) no linear trend, 0.00;
(c) a strong positive
relationship, approxi-
mately �0.90; (d) a
relatively weak negative
correlation, approximately
�0.40.
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15.2 THE PEARSON CORRELATION

By far the most common correlation is the Pearson correlation (or the Pearson product–
moment correlation) which measures the degree of straight-line relationship.

The Pearson correlation measures the degree and the direction of the linear
relationship between two variables.

The Pearson correlation is identified by the letter r. Conceptually, this correlation
is computed by

r �

�

When there is a perfect linear relationship, every change in the X variable is 
accompanied by a corresponding change in the Y variable. In Figure 15.4(a), for exam-
ple, every time the value of X increases, there is a perfectly predictable decrease in the
value of Y. The result is a perfect linear relationship, with X and Y always varying 
together. In this case, the covariability (X and Y together) is identical to the variability
of X and Y separately, and the formula produces a correlation with a magnitude of 1.00
or –1.00. At the other extreme, when there is no linear relationship, a change in the 

covariability of X and Y
����
variability of X and Y separately

degree to which X and Y vary together
�����
degree to which X and Y vary separately

D E F I N I T I O N
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1. For each of the following, indicate whether you would expect a positive or a nega-
tive correlation.

a. Model year and price for a used Honda

b. IQ and grade point average for high school students

c. Daily high temperature and daily energy consumption for 30 winter days in
New York City

2. The data points would be clustered more closely around a straight line for a corre-
lation of –0.80 than for a correlation of �0.05. (True or false?)

3. If the data points are clustered close to a line that slopes up from left to right, then
a good estimate of the correlation would be �0.90. (True or false?)

4. If a scatter plot shows a set of data points that form a circular pattern, the correla-
tion should be near zero. (True or false?)

1. a. Positive: Higher model years tend to have higher prices.

b. Positive: More intelligent students tend to get higher grades.

c. Negative: Higher temperature tends to decrease the need for heating.

2. True. The numerical value indicates the strength of the relationship. The sign only indicates
direction.

3. True.

4. True.

ANSWERS

L E A R N I N G  C H E C K
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X variable does not correspond to any predictable change in the Y variable. In this case,
there is no covariability, and the resulting correlation is zero.

To calculate the Pearson correlation, it is necessary to introduce one new concept: the
sum of products of deviations, or SP. This new value is similar to SS (the sum of
squared deviations), which is used to measure variability for a single variable. Now, we
use SP to measure the amount of covariability between two variables. The value for SP
can be calculated with either a definitional formula or a computational formula.

The definitional formula for the sum of products is

SP � �(X – MX)(Y – MY) (15.1)

where MX is the mean for the X scores and MY is the mean for the Ys.
The definitional formula instructs you to perform the following sequence of 

operations:

1. Find the X deviation and the Y deviation for each individual.

2. Find the product of the deviations for each individual.

3. Add the products.

Notice that this process “defines” the value being calculated: the sum of the prod-
ucts of the deviations.

The computational formula for the sum of products of deviations is

(15.2)

Because the computational formula uses the original scores (X and Y values), it
usually results in easier calculations than those required with the definitional formula,
especially if MX or MY is not a whole number. However, both formulas always produce
the same value for SP.

You may have noted that the formulas for SP are similar to the formulas you have
learned for SS (sum of squares). The relationship between the two sets of formulas is
described in Box 15.1. The following example demonstrates the calculation of SP with
both formulas.

The same set of n � 4 pairs of scores is used to calculate SP, first using the
definitional formula and then using the computational formula.

For the definitional formula, you need deviation scores for each of the X values
and each of the Y values. Note that the mean for the Xs is MX � 3 and the mean for
the Ys is MY � 5. The deviations and the products of deviations are shown in the
following table:

E X A M P L E  1 5 . 2

SP
n

� � �
� �

XY
X Y

THE SUM OF PRODUCTS 
OF DEVIATIONS
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Caution: The n in this formula
refers to the number of pairs 
of scores.

Scores Deviations Products

X Y X – MX Y – MY (X – MX)(Y – MY)

1 3 �2 �2 �4
2 6 �1 �1 �1
4 4 �1 �1 �1
5 7 �2 �2 �4

�6 � SP

Caution: The signs (� and –)
are critical in determining the
sum of products, SP.
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For these scores, the sum of the products of the deviations is SP � �6.
For the computational formula, you need the X value, the Y value, and the XY

product for each individual. Then you find the sum of the Xs, the sum of the Ys, and
the sum of the XY products. These values are as follows:

Substituting the totals in the formula gives

� 66–60

� 6

Both formulas produce the same result, SP � 6.

�  �66
12 20

4

( )

SP
n

� � �
� �

XY
X Y

X Y XY

1 3 3
2 6 12
4 4 16
5 7 35

12 20 66 Totals
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B O X
1 5 . 1 COMPARING THE SP AND SS FORMULAS

exists for the computational formulas. For SS, the compu-
tational formula is

As before, each squared value can be rewritten so
that the formula becomes

Again, note the similarity in structure between the 
SS formula and the SP formula. If you remember that
SS uses squares and SP uses products, the two new
formulas for the sum of products should be easy to
learn.

SS XX� � �
� �X X

n

SS X
X

n
� � �

�2

2( )

It will help you to learn the formulas for SP if you
note the similarity between the two SP formulas 
and the corresponding formulas for SS that were 
presented in Chapter 4. The definitional formula 
for SS is

SS � �(X – M)2

In this formula, you must square each deviation,
which is equivalent to multiplying it by itself. With this
in mind, the formula can be rewritten as

SS � �(X – M)(X – M)

The similarity between the SS formula and the SP
formula should be obvious—the SS formula uses squares
and the SP formula uses products. This same relationship
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As noted earlier, the Pearson correlation consists of a ratio comparing the covariability
of X and Y (the numerator) with the variability of X and Y separately (the denominator).
In the formula for the Pearson r, we use SP to measure the covariability of X and Y. The
variability of X is measured by computing SS for the X scores and the variability of Y
is measured by SS for the Y scores. With these definitions, the formula for the Pearson
correlation becomes

(15.3)

The following example demonstrates the use of this formula with a simple set of
scores.

The Pearson correlation is computed for the set of n � 5 pairs of scores shown in the
margin.

Before starting any calculations, it is useful to put the data in a scatter plot and
make a preliminary estimate of the correlation. These data have been graphed in
Figure 15.5. Looking at the scatter plot, it appears that there is a very good (but not
perfect) positive correlation. You should expect an approximate value of r � �0.8 
or �0.9. To find the Pearson correlation, we need SP, SS for X, and SS for Y. The
calculations for each of these values, using the definitional formulas, are presented 
in Table 15.1. (Note that the mean for the X values is MX � 6 and the mean for the 
Y scores is MY � 4.)

Using the values from Table 15.1, the Pearson correlation is

Note that the value we obtained for the correlation is perfectly consistent with 
the pattern shown in Figure 15.5. First, the positive value of the correlation indicates

r
SP

SS SS
X Y

� � � ��
( )( ) ( )( )

28

64 16

28

32
0 875.
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r
SP

SS SS
X Y

�

CALCULATION OF THE
PEARSON-CORRELATION

SECTION 5.2 / THE PEARSON CORRELATION 517

6

0 1 2 3 4 5 6 7 8 9 10
X

Y

4

2

X Y

0 2
10 6
4 2
8 4
8 6

FIGURE 15.5
Scatter plot of the data
from Example 15.3.

Note that you multiply SS for X
by SS for Y in the denominator
of the Pearson formula.
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that the points are clustered around a line that slopes up to the right. Second, the high
value for the correlation (near 1.00) indicates that the points are very tightly clustered
close to the line. Thus, the value of the correlation describes the relationship that
exists in the data.

The Pearson correlation measures the relationship between an individual’s location in
the X distribution and his or her location in the Y distribution. For example, a positive
correlation means that individuals who score high on X also tend to score high on Y.
Similarly, a negative correlation indicates that individuals with high X scores tend to
have low Y scores.

Recall from Chapter 5 that z-scores identify the exact location of each individual
score within a distribution. With this in mind, each X value can be transformed into 
a z-score, zX, using the mean and standard deviation for the set of Xs. Similarly, each 
Y score can be transformed into zY. If the X and Y values are viewed as a sample, the
transformation is completed using the sample formula for z (Equation 5.3). If the X and
Y values form a complete population, the z-scores are computed using Equation 5.1.
After the transformation, the formula for the Pearson correlation can be expressed 
entirely in terms of z-scores.

For a sample, r � (15.4)

For a population, � � (15.5)

Note that the population value is identified with a Greek letter, in this case the let-
ter rho (�), which is the Greek equivalent of the letter r.

�z z

N
X Y

�

�

z z

n
X Y

( 1)

THE PEARSON CORRELATION
AND z-SCORES
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Scores Deviations Squared Deviations Products

X Y X – MX Y – MY (X – MX)2 (Y – MY)2 (X – MX)(Y – MY)

0 2 �6 �2 36 4 �12
10 6 �4 �2 16 4 �8
4 2 �2 �2 4 4 �4
8 4 �2 0 4 0 0
8 6 �2 �2 4 4 �4

SSX � 64 SSY � 16 SP � �28

L E A R N I N G  C H E C K 1. Describe what is measured by a Pearson correlation.

2. Can SP ever have a value less than zero?

3. Calculate the sum of products of deviations (SP) for the following set of scores.
Use the definitional formula and then the computational formula. Verify that you
get the same answer with both formulas.

TABLE 15.1

Calculation of SSX, SSY, and 
SP for a sample of n � 5 pairs
of scores.
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15.3 USING AND INTERPRETING THE PEARSON
CORRELATION

Although correlations have a number of different applications, a few specific examples
are presented next to give an indication of the value of this statistical measure.

1. Prediction. If two variables are known to be related in a systematic way, then 
it is possible to use one of the variables to make accurate predictions about 
the other. For example, when you applied for admission to college, you were
required to submit a great deal of personal information, including your scores
on the Scholastic Achievement Test (SAT). College officials want this informa-
tion so that they can predict your chances of success in college. It has been
demonstrated over several years that SAT scores and college grade point aver-
ages are correlated. Students who do well on the SAT tend to do well in col-
lege; students who have difficulty with the SAT tend to have difficulty in
college. Based on this relationship, college admissions officers can make a
prediction about the potential success of each applicant. You should note that
this prediction is not perfectly accurate. Not everyone who does poorly on the

WHERE AND WHY
CORRELATIONS ARE USED
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4. For the following data:

a. Sketch a scatter plot and make an estimate of the Pearson correlation.

b. Compute the Pearson correlation.

1. The Pearson correlation measures the degree and direction of the linear relationship 
between two variables.

2. Yes. SP can be positive, negative, or zero depending on the relationship between X and Y.

3. SP � 5

4. r � �8/10 � �0.80

X Y

2 6
1 5
3 3
0 7
4 4

X Y

0 1
4 3
5 3
2 2
4 1

ANSWERS
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SAT has trouble in college. That is why you also submit letters of recommen-
dation, high school grades, and other information with your application.

2. Validity. Suppose that a psychologist develops a new test for measuring intelli-
gence. How could you show that this test truly measures what it claims; that is,
how could you demonstrate the validity of the test? One common technique 
for demonstrating validity is to use a correlation. If the test actually measures
intelligence, then the scores on the test should be related to other measures of
intelligence—for example, standardized IQ tests, performance on learning
tasks, problem-solving ability, and so on. The psychologist could measure 
the correlation between the new test and each of these other measures of 
intelligence to demonstrate that the new test is valid.

3. Reliability. In addition to evaluating the validity of a measurement procedure,
correlations are used to determine reliability. A measurement procedure is con-
sidered reliable to the extent that it produces stable, consistent measurements.
That is, a reliable measurement procedure produces the same (or nearly the
same) scores when the same individuals are measured twice under the same
conditions. For example, if your IQ was measured as 113 last week, you 
would expect to obtain nearly the same score if your IQ was measured again
this week. One way to evaluate reliability is to use correlations to determine the
relationship between two sets of measurements. When reliability is high, the
correlation between two measurements should be strong and positive. Further
discussion of the concept of reliability is presented in Box 15.2.

4. Theory Verification. Many psychological theories make specific predictions
about the relationship between two variables. For example, a theory may pre-
dict a relationship between brain size and learning ability; a developmental
theory may predict a relationship between the parents’ IQs and the child’s IQ; 
a social psychologist may have a theory predicting a relationship between 
personality type and behavior in a social situation. In each case, the prediction
of the theory could be tested by determining the correlation between the two
variables.

When you encounter correlations, there are four additional considerations that you
should bear in mind:

1. Correlation simply describes a relationship between two variables. It does not
explain why the two variables are related. Specifically, a correlation should not
and cannot be interpreted as proof of a cause-and-effect relationship between
the two variables.

2. The value of a correlation can be affected greatly by the range of scores repre-
sented in the data.

3. One or two extreme data points, often called outliers, can have a dramatic 
effect on the value of a correlation.

4. When judging how “good” a relationship is, it is tempting to focus on the 
numerical value of the correlation. For example, a correlation of �0.5 is
halfway between 0 and 1.00 and, therefore, appears to represent a moderate
degree of relationship. However, a correlation should not be interpreted as a
proportion. Although a correlation of 1.00 does mean that there is a 100% per-
fectly predictable relationship between X and Y, a correlation of 0.5 does not
mean that you can make predictions with 50% accuracy. To describe how accu-
rately one variable predicts the other, you must square the correlation. Thus, a

INTERPRETING
CORRELATIONS
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correlation of r � .5 means that one variable partially predicts the other, but the
predictable portion is only r2 � 0.52 � 0.25 (or 25%) of the total variability.

We now discuss each of these four points in detail.

One of the most common errors in interpreting correlations is to assume that a corre-
lation necessarily implies a cause-and-effect relationship between the two variables.
(Even Pearson blundered by asserting causation from correlational data [Blum,
1978].) We constantly are bombarded with reports of relationships: Cigarette smoking
is related to heart disease; alcohol consumption is related to birth defects; carrot con-
sumption is related to good eyesight. Do these relationships mean that cigarettes cause
heart disease or carrots cause good eyesight? The answer is no. Although there may
be a causal relationship, the simple existence of a correlation does not prove it. Earlier,
for example, we discussed a study showing a relationship between high school grades

CORRELATION 
AND CAUSATION
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B O X
1 5 . 2 RELIABILITY AND ERROR IN MEASUREMENT

one measurement to the next and the measurements are
not reliable. Measurements of reaction time, for exam-
ple, tend to be very unreliable. Suppose, for example,
that you are seated at a desk with your finger on a but-
ton and a light bulb in front of you. Your job is to push
the button as quickly as possible when the light goes on.
On some trials, you are focused on the light with your
finger tensed and ready to push. On other trials, you are
distracted, or day dreaming, or blink when the light
goes on so that time passes before you finally push 
the button. As a result, there is a huge error component
to the measurement and your reaction time can change
dramatically from one trial to the next. When 
measurements are unreliable you cannot trust any 
single measurement to provide an accurate indication 
of the individual’s true score. To deal with this 
problem, researchers typically measure reaction 
time repeatedly and then average it over a large 
number of measurements.

Correlations can be used to help researchers
measure and describe reliability. By taking two meas-
urements for each individual, it is possible to compute
the correlation between the first score and the second
score. A strong, positive correlation indicates a good
level of reliability: people who scored high on the
first measurement also scored high on the second. 
A weak correlation indicates that there is not a 
consistent relationship between the first score and 
the second score; that is, a weak correlation indicates
poor reliability.

The idea of reliability of measurement is tied directly to
the notion that each individual measurement includes an
element of error. Expressed as an equation,

measured score � true score � error

For example, if I try to measure your intelligence
with an IQ test, the score that I get is determined 
partially by your actual level of intelligence (your true
score) but it also is influenced by a variety of other
factors such as your current mood, your level of 
fatigue, your general health, and so on. These other
factors are lumped together as error, and are typically 
a part of any measurement.

It is generally assumed that the error component
changes randomly from one measurement to the next
and that this causes your score to change. For example,
your IQ score is likely to be higher when you are well
rested and feeling good compared to a measurement
that is taken when you are tired and depressed.
Although your actual intelligence hasn’t changed, the
error component causes your score to change from 
one measurement to another.

As long as the error component is relatively small,
then your scores will be relatively consistent from one
measurement to the next, and the measurements are said
to be reliable. If you are feeling especially happy and
well rested, it may affect your IQ score by a few points,
but it is not going to boost your IQ from 110 to 170.

On the other hand, if the error component is rela-
tively large, then you will find huge differences from
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and family income. However, this result does not mean that having a higher family in-
come causes students to get better grades. For example, if mom gets an unexpected
bonus at work, it is unlikely that her child’s grades will also show a sudden increase.
To establish a cause-and-effect relationship, it is necessary to conduct a true experi-
ment (see p. 14) in which one variable is manipulated by a researcher and other vari-
ables are rigorously controlled. The fact that a correlation does not establish causation
is demonstrated in the following example.

Suppose we select a variety of different cities and towns throughout the United States
and measure the number of churches (X variable) and the number of serious crimes 
(Y variable) for each. A scatter plot showing hypothetical data for this study is presented
in Figure 15.6. Notice that this scatter plot shows a strong, positive correlation between
churches and crime. You also should note that these are realistic data. It is reasonable
that small towns would have less crime and fewer churches and that large cities would
have large values for both variables. Does this relationship mean that churches cause
crime? Does it mean that crime causes churches? It should be clear that both answers
are no. Although a strong correlation exists between number of churches and crime, the
real cause of the relationship is the size of the population.

Whenever a correlation is computed from scores that do not represent the full range
of possible values, you should be cautious in interpreting the correlation. Suppose,
for example, that you are interested in the relationship between IQ and creativity. If
you select a sample of your fellow college students, your data probably will represent
only a limited range of IQ scores (most likely from 110 to 130). The correlation

CORRELATION 
AND  RESTRICTED RANGE
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FIGURE 15.6

Hypothetical data showing
the logical relationship
between the number of
churches and the number
of serious crimes for a
sample of U.S. cities.
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within this restricted range could be completely different from the correlation that
would be obtained from a full range of IQ scores. For example, Figure 15.7 shows a
strong positive relationship between X and Y when the entire range of scores is con-
sidered. However, this relationship is obscured when the data are limited to a 
restricted range.

To be safe, you should not generalize any correlation beyond the range of data
represented in the sample. For a correlation to provide an accurate description for the
general population, there should be a wide range of X and Y values in the data.

An outlier is an individual with X and/or Y values that are substantially different (larger
or smaller) from the values obtained for the other individuals in the data set. The data
point of a single outlier can have a dramatic influence on the value obtained for the cor-
relation. This effect is illustrated in Figure 15.8. Figure 15.8(a) shows a set of n � 5
data points for which the correlation between the X and Y variables is nearly zero 
(actually r � –0.08). In Figure 15.8(b), one extreme data point (14, 12) has been added
to the original data set. When this outlier is included in the analysis, a strong, positive
correlation emerges (now r � � 0.85). Note that the single outlier drastically alters the
value for the correlation and, thereby, can affect one’s interpretation of the relationship
between variables X and Y. Without the outlier, one would conclude there is no rela-
tionship between the two variables. With the extreme data point, r � �0.85, which 
implies a strong relationship with Y increasing consistently as X increases. The problem
of outliers is a good reason for looking at a scatter plot, instead of simply basing your
interpretation on the numerical value of the correlation. If you only “go by the num-
bers,” you might overlook the fact that one extreme data point inflated the size of the
correlation.

A correlation measures the degree of relationship between two variables on a scale from
0 to 1.00. Although this number provides a measure of the degree of relationship, many
researchers prefer to square the correlation and use the resulting value to measure the
strength of the relationship.

One of the common uses of correlation is for prediction. If two variables are cor-
related, you can use the value of one variable to predict the other. For example, college
admissions officers do not just guess which applicants are likely to do well; they use
other variables (SAT scores, high school grades, and so on) to predict which students
are most likely to be successful. These predictions are based on correlations. By using

CORRELATION AND THE
STRENGTH OF THE

RELATIONSHIP

OUTLIERS
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FIGURE 15.7
In this example, the full
range of X and Y values
shows a strong, positive
correlation, but the 
restricted range of scores
produces a correlation
near zero.
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correlations, the admissions officers expect to make more accurate predictions than
would be obtained by chance. In general, the squared correlation (r2) measures the gain
in accuracy that is obtained from using the correlation for prediction. The squared cor-
relation measures the proportion of variability in the data that is explained by the rela-
tionship between X and Y. It is sometimes called the coefficient of determination.

The value r2 is called the coefficient of determination because it measures the
proportion of variability in one variable that can be determined from the rela-
tionship with the other variable. A correlation of r � 0.80 (or –0.80), for exam-
ple, means that r2 � 0.64 (or 64%) of the variability in the Y scores can be
predicted from the relationship with X.

In earlier chapters (see pp. 299, 328, and 361) we introduced r2 as a method 
for measuring effect size for research studies where mean differences were used to
compare treatments. Specifically, we measured how much of the variance in the
scores was accounted for by the differences between treatments. In experimental 
terminology, r2 measures how much of the variance in the dependent variable is 
accounted for by the independent variable. Now we are doing the same thing, except
that there is no independent or dependent variable. Instead, we simply have two vari-
ables, X and Y, and we use r2 to measure how much of the variance in one variable
can be determined from its relationship with the other variable. The following exam-
ple demonstrates this concept.

D E F I N I T I O N
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FIGURE 15.8

A demonstration of how one extreme data point (an outlier) can influence the value of a correlation.

(a) (b)
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Figure 15.9 shows three sets of data representing different degrees of linear relationship.
The first set of data [Figure 15.9(a)] shows the relationship between IQ and shoe size.
In this case, the correlation is r � 0 (and r2 � 0), and you have no ability to predict a
person’s IQ based on his or her shoe size. Knowing a person’s shoe size provides no
information (0%) about the person’s IQ. In this case, shoe size provides no help
explaining why different people have different IQs.

Now consider the data in Figure 15.9(b). These data show a moderate, positive
correlation, r � �0.60, between IQ scores and college grade point averages (GPA).
Students with high IQs tend to have higher grades than students with low IQs. From this
relationship, it is possible to predict a student’s GPA based on his or her IQ. However,
you should realize that the prediction is not perfect. Although students with high IQs
tend to have high GPAs, this is not always true. Thus, knowing a student’s IQ provides
some information about the student’s grades, or knowing a student’s grades provides
some information about the student’s IQ. In this case, IQ scores help explain the fact 
that different students have different GPAs. Specifically, you can say that part of the
differences in GPA are accounted for by IQ. With a correlation of r � �0.60, we obtain
r2 � 0.36, which means that 36% of the variance in GPA can be explained by IQ.

Finally, consider the data in Figure 15.9(c). This time we show a perfect linear
relationship (r � �1.00) between monthly salary and yearly salary for a group of
college employees. With r � 1.00 and r2 � 1.00, there is 100% predictability. If 
you know a person’s monthly salary, you can predict perfectly the person’s annual
salary. If two people have different annual salaries, the difference can be completely
explained (100%) by the difference in their monthly salaries.

Just as r2 was used to evaluate effect size for mean differences in Chapters 9, 10,
and 11, r2 can now be used to evaluate the size or strength of the correlation. The same
standards that were introduced in Table 9.3 (p. 299), apply to both uses of the r2 meas-
ure. Specifically, an r2 value of 0.01 indicates a small effect or a small correlation, an
r2 value of 0.09 indicates a medium correlation, and r2 of 0.25 or larger indicates a large
correlation.

More information about the coefficient of determination (r2) is presented in
Section 15.5 and in Chapter 16. For now, you should realize that whenever two vari-
ables are consistently related, it is possible to use one variable to predict values for the

E X A M P L E  1 5 . 5

SECTION 15.3 / USING AND INTERPRETING THE PEARSON CORRELATION 525

Shoe size IQ Annual salary

IQ

C
o

lle
g

e
 G

PA

M
o

n
th

ly
 s

a
la

ry

FIGURE 15.9

Three sets of data showing three different degrees of linear relationship.
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second variable. One final comment concerning the interpretation of correlations is pre-
sented in Box 15.3.

526 CHAPTER 15 CORRELATION

B O X
1 5 . 3 REGRESSION TOWARD THE MEAN

your preschool program, these children score signifi-
cantly higher on the test. Why did their scores improve?
One answer is that the special program helped. But an
alternative answer is regression toward the mean. If
there is a less-than-perfect correlation between scores
on the first test and scores on the second test (which is
usually the case), individuals with extremely low scores
on test 1 will tend to have higher scores on test 2. It is a
statistical fact of life, not necessarily the result of any
special program.

Now try using the concept of regression toward the
mean to explain the following phenomena:

1. You have a truly outstanding meal at a restaurant.
However, when you go back with a group of
friends, you find that the food is disappointing.

2. You have the highest score on exam I in your sta-
tistics class, but score only a little above average
on exam II. 

Consider the following problem.

Explain why the rookie of the year in major-league
baseball usually does not perform as well in his
second season.

Notice that this question does not appear to be
statistical or mathematical in nature. However, the 
answer to the question is directly related to the statisti-
cal concepts of correlation and regression (Chapter 16).
Specifically, there is a simple observation about 
correlations known as regression toward the mean.

D E F I N I T I O N When there is a less-than-
perfect correlation between two variables, extreme
scores (high or low) for one variable tend to be paired
with the less extreme scores (more toward the mean) 
on the second variable. This fact is called regression
toward the mean.

Figure 15.10 shows a scatter plot with a less-than-
perfect correlation between two variables. The data points
in this figure might represent batting averages for baseball
rookies in 2010 (variable 1) and batting averages for the
same players in 2011 (variable 2). Because the correlation
is less than perfect, the highest scores on variable 1 are
generally not the highest scores on variable 2. In baseball
terms, the rookies who had the highest averages in 2010
do not have the highest averages in 2011.

Remember that a correlation does not explain why
one variable is related to the other; it simply says that
there is a relationship. The correlation cannot explain
why the best rookie does not perform as well in his
second year. But, because the correlation is not perfect,
it is a statistical fact that extremely high scores in 
one year generally will not be paired with extremely
high scores in the next year.

Regression toward the mean often poses a problem
for interpreting experimental results. Suppose, for 
example, that you want to evaluate the effects of a spe-
cial preschool program for disadvantaged children. You
select a sample of children who score extremely low on
an academic performance test. After participating in
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FIGURE 15.10

A demonstration of regression toward the mean. The
figure shows a scatterplot for a set of data with a 
less-than-perfect correlation. Notice that the highest
scores on variable 1 (extreme right-hand points) are 
not the highest scores on variable 2, but are displaced
downward toward the mean. Also, the lowest scores on
variable 1 (extreme left-hand points) are not the lowest
scores on variable 2, but are displaced upward toward
the mean.
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15.4 HYPOTHESIS TESTS WITH THE PEARSON CORRELATION

The Pearson correlation is generally computed for sample data. As with most sample
statistics, however, a sample correlation is often used to answer questions about the
corresponding population correlation. For example, a psychologist would like to know
whether there is a relationship between IQ and creativity. This is a general question
concerning a population. To answer the question, a sample would be selected, and the
sample data would be used to compute the correlation value. You should recognize
this process as an example of inferential statistics: using samples to draw inferences
about populations. In the past, we have been concerned primarily with using sample
means as the basis for answering questions about population means. In this section, 
we examine the procedures for using a sample correlation as the basis for testing 
hypotheses about the corresponding population correlation.

The basic question for this hypothesis test is whether a correlation exists in the popula-
tion. The null hypothesis is “No. There is no correlation in the population,” or “The
population correlation is zero.” The alternative hypothesis is “Yes. There is a real,
nonzero correlation in the population.” Because the population correlation is tradition-
ally represented by � (the Greek letter rho), these hypotheses would be stated in 
symbols as

H0: � � 0 (There is no population correlation.)

H1: � � 0 (There is a real correlation.)

When there is a specific prediction about the direction of the correlation, it is pos-
sible to do a directional, or one-tailed, test. For example, if a researcher is predicting a
positive relationship, the hypotheses would be

H0: � 	 0 (The population correlation is not positive.)

H1: � 
 0 (The population correlation is positive.)

The correlation from the sample data is used to evaluate the hypotheses. For the
regular, nondirectional test, a sample correlation near zero provides support for H0 and
a sample value far from zero tends to refute H0. For a directional test, a positive value
for the sample correlation would tend to refute a null hypothesis stating that the popu-
lation correlation is not positive.

THE HYPOTHESES
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L E A R N I N G  C H E C K 1. A researcher finds a correlation of r � (0.71 between the time spent playing video
games each week and grade point average for a group of high school boys. This
means that playing video games causes students to get lower grades. (True or
false?)

2. A researcher finds a correlation of r � 0.60 between salary and the number of
years of education for a group of 40-year-old men. How much of the variance in
salary is explained by the years of education?

1. False. You cannot conclude that there is a cause-and-effect relationship based on a correlation.

2. r2 � 0.36, or 36%

ANSWERS
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Although sample correlations are used to test hypotheses about population cor-
relations, you should keep in mind that samples are not expected to be identical to
the populations from which they come; there is some discrepancy (sampling error)
between a sample statistic and the corresponding population parameter. Specifically,
you should always expect some error between a sample correlation and the popula-
tion correlation it represents. One implication of this fact is that even when there is
no correlation in the population (� � 0), you are still likely to obtain a nonzero value
for the sample correlation. This is particularly true for small samples. Figure 15.11
illustrates how a small sample from a population with a near-zero correlation could
result in a correlation that deviates from zero. The colored dots in the figure repre-
sent the entire population and the three circled dots represent a random sample. Note
that the three sample points show a relatively good, positive correlation even
through there is no linear trend (� � 0) for the population.

When you obtain a nonzero correlation for a sample, the purpose of the hypothe-
sis test is to decide between the following two interpretations:

1. There is no correlation in the population (� � 0), and the sample value is the
result of sampling error. Remember, a sample is not expected to be identical to
the population. There always is some error between a sample statistic and the
corresponding population parameter. This is the situation specified by H0.

2. The nonzero sample correlation accurately represents a real, nonzero correlation
in the population. This is the alternative stated in H1.

The correlation from the sample helps to determine which of these two inter-
pretations is more likely. A sample correlation near zero supports the conclusion that
the population correlation is also zero. A sample correlation that is substantially dif-
ferent from zero supports the conclusion that there is a real, nonzero correlation in
the population.
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FIGURE 15.11

Scatterplot of a 
population of X and 
Y values with a near-zero
correlation. However, 
a small sample of n � 3
data points from this
population shows a
relatively strong, positive
correlation. Data points
in the sample are circled.
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The hypothesis test for the Pearson correlation has degrees of freedom defined by 
df � n – 2. An intuitive explanation for this value is that a sample with only n � 2 
data points has no degrees of freedom. Specifically, if there are only two points, they
will fit perfectly on a straight line, and the sample produces a perfect correlation of 
r � �1.00 or r � –1.00. Because the first two points always produce a perfect corre-
lation, the sample correlation is free to vary only when the data set contains more than
two points. Thus, df � n – 2.

Although it is possible to conduct the hypothesis test by computing either a t statis-
tic or an F-ratio, the computations for evaluating r have already been completed and
are summarized in Table B.6 in Appendix B. The table is based on the concept that a
sample is expected to be representative of the population from which it was obtained.
In particular, a sample correlation should be similar to the population correlation. If
the population correlation is zero, as specified in the null hypothesis, then the sample
correlation should be near zero. Thus, a sample correlation that is close to zero pro-
vides support for H0 and a sample correlation that is far from zero contradicts the null
hypothesis.

Table B.6 identifies exactly which sample correlations are likely to be obtained
from a population with � � 0 and which values are very unlikely. To use the table, you
need to know the sample size (n) and the alpha level. With a sample size of n � 20
and an alpha level of .05, for example, you locate df � n – 2 � 18 in the left-hand 
column and the value .05 for either one tail or two tails across the top of the table. For
df � 18 and � � .05 for a two-tailed test, the table shows a value of 0.444. Thus, if
the null hypothesis is true and there is no correlation in the population, then the sam-
ple correlation should be near to zero. According to the table, the sample correlation
should have a value between �0.444 and –0.444. If H0 is true, it is very unlikely 
(� � .05) to obtain a sample correlation outside this range. Therefore, a sample cor-
relation beyond �0.444 leads to rejecting the null hypothesis. The following examples
demonstrate the use of the table.

A researcher is using a regular, two-tailed test with � � .05 to determine whether 
a nonzero correlation exists in the population. A sample of n � 30 individuals is
obtained. With � � .05 and n � 30, the table lists a value of 0.361. Thus, the sample
correlation (independent of sign) must have a value greater than or equal to 0.361 to
reject H0 and conclude that there is a significant correlation in the population. Any
sample correlation between 0.361 and –0.361 is considered within the realm of
sampling error and, therefore, is not significant.

This time the researcher is using a directional, one-tailed test to determine whether
there is a positive correlation in the population.

H0: � 	 0 (There is not a positive correlation.)

H1: � 
 0 (There is a positive correlation.)

With � � .05 and a sample of n � 30, the table lists a value of 0.306 for a one-
tailed test. To reject H0 and conclude that there is a significant positive correlation in
the population, the sample correlation must be positive (as predicted) and have a
value greater than or equal to 0.306.

E X A M P L E  1 5 . 7
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THE HYPOTHESIS TEST

DEGREES OF FREEDOM 
FOR THE CORRELATION TEST
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The table lists critical values 
in terms of degrees of freedom:
df � n – 2. Remember to 
subtract 2 when using this 
table.
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IN THE LITERATURE
REPORTING CORRELATIONS

When correlations are computed, the results are reported using APA format. The
statement should include the sample size, the calculated value for the correlation,
whether it is a statistically significant relationship, the probability level, and the 
type of test used (one- or two-tailed). For example, a correlation might be reported
as follows:

A correlation for the data revealed a significant relationship between amount of education and
annual income, r � �0.65, n � 30, p 
 .01, two tails.

Sometimes a study might look at several variables, and correlations between 
all possible variable pairings are computed. Suppose, for example, that a study 
measured people’s annual income, amount of education, age, and intelligence. With 
four variables, there are six possible pairings leading to six different correlations. 
The results from multiple correlations are most easily reported in a table called a 
correlation matrix, using footnotes to indicate which correlations are significant. 
For example, the report might state:

530 CHAPTER 15 CORRELATION

The analysis examined the relationships among income, amount of education,
age, and intelligence for n � 30 participants. The correlations between pairs of
variables are reported in Table 1. Significant correlations are noted in the table.

TABLE 1

Correlation matrix for income, amount of education, age, and intelligence

Education Age IQ

Income �.65* �.41** �.27

Education �.11 �.38**

Age �.02

n � 30
*p 
 .01, two tails
**p 
 .05, two tails

L E A R N I N G  C H E C K 1. A researcher obtains a correlation of r � �0.39 for a sample of n � 25 individuals.
Does this sample provide sufficient evidence to conclude that there is a significant,
nonzero correlation in the population? Assume a two-tailed test with � � .05.

2. For a sample of n � 15, how large a correlation is needed to conclude at the 
.05 level of significance that there is a nonzero correlation in the population?
Assume a two-tailed test.

3. As sample size gets smaller, what happens to the magnitude of the correlation
necessary for significance? Explain why this occurs.
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Occasionally a researcher may suspect that the relationship between two variables is
being distorted by the influence of a third variable. Earlier in the chapter, for example,
we found a strong positive relationship between the number of churches and the number
of serious crimes for a sample of different towns and cities (see Example 15.4, p 522).
However, it is unlikely that there is a direct relationship between churches and crime.
Instead, both variables are influenced by population: Large cities have a lot of churches
and high crime rates compared to smaller towns, which have fewer churches and less
crime. If population were controlled, there probably would be no real correlation 
between churches and crime.

Fortunately, there is a statistical technique, known as partial correlation, that allows
a researcher to measure the relationship between two variables while eliminating or
holding constant the influence of a third variable. Thus, a researcher could use a partial
correlation to examine the relationship between churches and crime without the risk that
the relationship is distorted by the size of the population.

A partial correlation measures the relationship between two variables while
controlling the influence of a third variable by holding it constant.

In a situation with three variables, X, Y, and Z, it is possible to compute three indi-
vidual Pearson correlations:

1. rXY measuring the correlation between X and Y

2. rXZ measuring the correlation between X and Z

3. rYZ measuring the correlation between Y and Z

These three individual correlations can then be used to compute a partial correla-
tion. For example, the partial correlation between X and Y, holding Z constant, is 
determined by the formula

(15.6)

The following example demonstrates the calculation and interpretation of a partial
correlation.

We begin with the hypothetical data shown in Table 15.2. These scores have been
constructed to simulate the church/crime/population situation for a sample of n � 15
cities. The X variable represents the number of churches, Y represents the number of
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1. No. For n � 25, the critical value is r � 0.396. The sample value is not in the critical 
region.

2. For n � 15, df � 13 and the critical value is r � 0.514.

3. As the sample size gets smaller, the magnitude of the correlation needed for significance
gets larger. With a small sample, it is easy to get a relatively large correlation just by
chance. Therefore, a small sample requires a very large correlation before you can be 
confident there is a real (nonzero) relationship in the population.

ANSWERS
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crimes, and Z represents the population for each city. For these scores, the individual
Pearson correlations are all large and positive:

a. The correlation between churches and crime is rXY � 0.923.

b. The correlation between churches and population is rXZ � 0.961.

c. The correlation between crime and population is rYZ � 0.961.

The data points for the 15 cities are shown in the scatter plot in Figure 15.12. 
Note that there are three categories for the size of the population (three values for Z)
corresponding to small, medium, and large cities. Also note that the population
variable, Z, separates the scores into three distinct groups: When Z � 1, the population
is low and churches and crime (X and Y) are also low; when Z � 2, the population is
moderate and churches and crime (X and Y) are also moderate; and when Z � 3, the
population is large and churches and crime are both high. Thus, as the population
increases from one city to another, the number of churches and crimes also increase,
and the result is a strong positive correlation between churches and crime.

Within each of the three population categories, however, there is no linear
relationship between churches and crime. Specifically, within each group, the
population variable is constant and the five data points for X and Y form a circular
pattern, indicating no consistent linear relationship. The partial correlation allows 
us to hold population constant across the entire sample and measure the underlying
relationship between churches and crime without any influence from population. 
For these data, the partial correlation is

� 0

= 0

0 076.

r
XY Z−

( )
( )

�
�

� �

0 923 0 961 0 961

1 0 961 1 0 9612 2

. . .

. .(( )
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Number of Number of Population (Z)
Churches (X) Crimes (Y)

1 4 1
2 3 1
3 1 1
4 2 1
5 5 1
7 8 2
8 11 2
9 9 2

10 7 2
11 10 2
13 15 3
14 14 3
15 16 3
16 17 3
17 13 3

TABLE 15.2

Hypothetical data showing the
relationship between the number
of churches, the number of
crimes, and the population of a
set of n � 15 cities.
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Thus, when the population differences are eliminated, there is no correlation
remaining between churches and crime (r � 0).

In Example 15.8, the population differences, which correspond to the different val-
ues of the Z variable, were eliminated mathematically in the calculation of the partial
correlation. However, it is possible to visualize how these differences are eliminated in
the actual data. Looking at Figure 15.12, focus on the five points in the bottom left cor-
ner. These are the five cities with small populations, few churches, and little crime. The
five points in the upper right corner represent the five cities with large populations,
many churches, and a lot of crime. The partial correlation controls population size by
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FIGURE 15.12

Hypothetical data showing the relationship between the number of churches and the number of crimes for
three groups of cities. Those with small populations (Z � 1), those with medium populations (Z � 2), and
those with large populations (Z � 3).
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mathematically equalizing the populations for all 15 cities. Population is increased for
the five small cities. However, increasing the population also increases churches and
crime. Similarly, population is decreased for the five large cities, which also decreases
churches and crime. In Figure 15.12, imagine the five points in the bottom left moving
up and to the right so that they overlap with the points in the center. At the same time,
the five points in the upper right move down and to the left so that they also overlap the
points in the center. When population is equalized, the resulting set of 15 cities is shown
in Figure 15.13. Note that controlling the population appears to have eliminated the 
relationship between churches and crime. This appearance is verified by the correlation
for the 15 data points in Figure 15.13, which is r � 0, exactly the same as the partial
correlation.

In Example 15.8 we used a partial correlation to demonstrate that an apparent 
relationship between churches and crime was actually caused by the influence of a third
variable, population. It also is possible to use partial correlations to demonstrate that a
relationship is not caused by the influence of a third variable. As an example, consider
research examining the relationship between exposure to sexual content on television
and sexual behavior among adolescents (Collins et al., 2004). The study consisted of a
survey of 1,792 adolescents, 12 to 17 years old, who reported their television viewing
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FIGURE 15.13

The relationship between the number of churches and the number of crimes for the same 15 cities shown
in Figure 15.12 after the populations have been equalized.
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habits and their sexual behaviors. The results showed a clear relationship between tel-
evision viewing and behaviors. Specifically, the more sexual content the adolescents
watched on television, the more likely they were to engage in sexual behaviors. One
concern for the researchers was that the observed relationship may be influenced by the
age of the participants. For example, as the adolescents mature from age 12 to age 17,
they increasingly watch television programs with sexual content and they increase their
own sexual behaviors. Although the viewing of sexual content on television and the
participants’ sexual behaviors are increasing together, the observed relationship may
simply be the result of age differences. To address this problem, the researcher used a
partial correlation technique to eliminate or hold constant the age variable. The results
clearly showed that a relationship still exists between television sexual content and sex-
ual behavior even after the influence of the participants’ ages was accounted for.

Testing the significance of a partial correlation The statistical significance of a
partial correlation is determined using the same procedure as is used to evaluate a
regular Pearson correlation. Specifically, the partial correlation is compared with the
critical values listed in Table B6. For a partial correlation, however, you must use 
df � n – 3 instead of the n – 2 value that is used for the Pearson correlation. A sig-
nificant correlation means that it is very unlikely (p < �) that the sample correlation
would occur without a corresponding relationship in the population.
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L E A R N I N G  C H E C K 1. Sales figures show a positive relationship between temperature and ice cream
consumption; as temperature increases, ice cream consumption also increases.
Other research shows a positive relationship between temperature and crime rate
(Cohn & Rotton, 2000). When the temperature increases, both ice cream consump-
tion and crime rates tend to increase. As a result, there is a positive correlation
between ice cream consumption and crime rate. However, what do you think is the
true relationship between ice cream consumption and crime rate? Specifically,
what value would you predict for the partial correlation between the two variables
if temperature were held constant?

1. There should be no systematic relationship between ice cream consumption and crime rate.
The partial correlation should be near zero.

ANSWER

15.5 ALTERNATIVES TO THE PEARSON CORRELATION

The Pearson correlation measures the degree of linear relationship between two vari-
ables when the data (X and Y values) consist of numerical scores from an interval or
ratio scale of measurement. However, other correlations have been developed for non-
linear relationships and for other types of data. In this section we examine three addi-
tional correlations: the Spearman correlation, the point-biserial correlation, and the
phi-coefficient. As you will see, all three can be viewed as special applications of the
Pearson correlation.

When the Pearson correlation formula is used with data from an ordinal scale (ranks),
the result is called the Spearman correlation. The Spearman correlation is used in two
situations.

THE SPEARMAN
CORRELATION
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First, the Spearman correlation is used to measure the relationship between X and
Y when both variables are measured on ordinal scales. Recall from Chapter 1 that an
ordinal scale typically involves ranking individuals rather than obtaining numerical
scores. Rank-order data are fairly common because they are often easier to obtain
than interval or ratio scale data. For example, a teacher may feel confident about
rank-ordering students’ leadership abilities but would find it difficult to measure
leadership on some other scale.

In addition to measuring relationships for ordinal data, the Spearman correlation
can be used as a valuable alternative to the Pearson correlation, even when the original
raw scores are on an interval or a ratio scale. As we have noted, the Pearson correlation
measures the degree of linear relationship between two variables—that is, how well the
data points fit on a straight line. However, a researcher often expects the data to show
a consistently one-directional relationship but not necessarily a linear relationship. For
example, Figure 15.14 shows the typical relationship between practice and perform-
ance. For nearly any skill, increasing amounts of practice tend to be associated with 
improvements in performance (the more you practice, the better you get). However, it
is not a straight-line relationship. When you are first learning a new skill, practice 
produces large improvements in performance. After you have been performing a skill
for several years, however, additional practice produces only minor changes in per-
formance. Although there is a consistent relationship between the amount of practice
and the quality of performance, it clearly is not linear. If the Pearson correlation were
computed for these data, it would not produce a correlation of 1.00 because the data do
not fit perfectly on a straight line. In a situation like this, the Spearman correlation can
be used to measure the consistency of the relationship, independent of its form.

The reason that the Spearman correlation measures consistency, rather than form,
comes from a simple observation: When two variables are consistently related, their
ranks are linearly related. For example, a perfectly consistent positive relationship
means that every time the X variable increases, the Y variable also increases. Thus, the
smallest value of X is paired with the smallest value of Y, the second-smallest value of
X is paired with the second smallest value of Y, and so on. Every time the rank for 
X goes up by 1 point, the rank for Y also goes up by 1 point. As a result, the ranks fit
perfectly on a straight line. This phenomenon is demonstrated in the following 
example.
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FIGURE 15.14

Hypothetical data 
showing the relationship
between practice and
performance. Although
this relationship is 
not linear, there is a 
consistent positive 
relationship. An increase
in performance tends to
accompany an increase
in practice.
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Table 15.3 presents X and Y scores for a sample of n � 4 people. Note that the data
show a perfectly consistent relationship. Each increase in X is accompanied by an
increase in Y. However the relationship is not linear, as can be seen in the graph of
the data in Figure 15.15(a).

Next, we convert the scores to ranks. The lowest X is assigned a rank of 1, 
the next lowest a rank of 2, and so on. The Y scores are then ranked in the same
way. The ranks are listed in Table 15.3 and shown in Figure 15.15(b). Note that
the perfect consistency for the scores produces a perfect linear relationship for 
the ranks.

The preceding example demonstrates that a consistent relationship among
scores produces a linear relationship when the scores are converted to ranks. Thus,
if you want to measure the consistency of a relationship for a set of scores, you 
can simply convert the scores to ranks and then use the Pearson correlation formula
to measure the linear relationship for the ranked data. The degree of linear relation-
ship for the ranks provides a measure of the degree of consistency for the original
scores.
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Person X Y X�Rank Y�Rank

A 4 9 3 3
B 2 2 1 1
C 10 10 4 4
D 3 8 2 2

TABLE 15.3

Scores and ranks for 
Example 15.9.
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FIGURE 15.15

Scatter plots showing (a) the scores and (b) the ranks for the data in Example 15.9. Notice that there is
a consistent, positive relationship between the X and Y scores, although it is not a linear relationship.
Also notice that the scatter plot of the ranks shows a perfect linear relationship.

(a) (b)
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To summarize, the Spearman correlation measures the relationship between two
variables when both are measured on ordinal scales (ranks). There are two general sit-
uations in which the Spearman correlation is used:

1. Spearman is used when the original data are ordinal; that is, when the X and 
Y values are ranks. In this case, you simply apply the Pearson correlation 
formula to the set of ranks.

2. Spearman is used when a researcher wants to measure the consistency of a
relationship between X and Y, independent of the specific form of the rela-
tionship. In this case, the original scores are first converted to ranks, then 
the Pearson correlation formula is used with the ranks. Because the Pearson
formula measures the degree to which the ranks fit on a straight line, it also
measures the degree of consistency in the relationship for the original scores.
Incidentally, when there is a consistently one-directional relationship between
two variables, the relationship is said to be monotonic. Thus, the Spearman
correlation measures the degree of monotonic relationship between two 
variables.

In either case, the Spearman correlation is identified by the symbol rS to differen-
tiate it from the Pearson correlation. The complete process of computing the Spearman
correlation, including ranking scores, is demonstrated in Example 15.10.

The following data show a nearly perfect monotonic relationship between X and Y.
When X increases, Y tends to decrease, and there is only one reversal in this general
trend. To compute the Spearman correlation, we first rank the X and Y values, and we
then compute the Pearson correlation for the ranks.
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Original Data

X Y

3 12
4 10

10 11
11 9
12 2

Ranks

X Y XY

1 5 5
2 3 6
3 4 12
4 2 8
5 1 5

36 � �XY

The word monotonic describes 
a sequence that is consistently
increasing (or decreasing). Like
the word monotonous, it means
constant and unchanging.

We have listed the X values in
order so that the trend is easier
to recognize.

To compute the correlation, we need SS for X, SS for Y, and SP. Remember that all
of these values are computed with the ranks, not the original scores. The X ranks are
simply the integers 1, 2, 3, 4, and 5. These values have �X � 15 and �X2 � 55. The
SS for the X ranks is

Note that the ranks for Y are identical to the ranks for X; that is, they are the inte-
gers 1, 2, 3, 4, and 5. Therefore, the SS for Y is identical to the SS for X:

SSY � 10

SS X
X

nX � � �
�

� � �2

2 2

55
15

5
10

( ) ( )
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To compute the SP value, we need �X, �Y, and �XY for the ranks. The XY
values are listed in the table with the ranks, and we already have found that both the
Xs and the Ys have a sum of 15. Using these values, we obtain

Finally, the Spearman correlation simply uses the Pearson formula for the ranks.

The Spearman correlation indicates that the data show a consistent (nearly
perfect) negative trend.

When you are converting scores into ranks for the Spearman correlation, you may 
encounter two (or more) identical scores. Whenever two scores have exactly the same
value, their ranks should also be the same. This is accomplished by the following 
procedure:

1. List the scores in order from smallest to largest. Include tied values in the list.

2. Assign a rank (first, second, etc.) to each position in the ordered list.

3. When two (or more) scores are tied, compute the mean of their ranked positions,
and assign this mean value as the final rank for each score.

The process of finding ranks for tied scores is demonstrated here. These scores
have been listed in order from smallest to largest.

Rank
Scores Position Final Rank

3 1 1.5
3 2 1.5

Mean of 1 and 2

5 3 3
6 4 5 Mean of 4, 5, and 6
6 5 5
6 6 5

12 7 7

Note that this example has seven scores and uses all seven ranks. For X � 12, the
largest score, the appropriate rank is 7. It cannot be given a rank of 6 because that rank
has been used for the tied scores.

After the original X values and Y values have been ranked, the calculations necessary
for SS and SP can be greatly simplified. First, you should note that the X ranks and the
Y ranks are really just a set of integers: 1, 2, 3, 4, ... , n. To compute the mean for these

SPECIAL FORMULA FOR 
THE SPEARMAN

CORRELATION

RANKING TIED SCORES

r
SP

SS SS
s

X Y

�
( )( )

�
�

��
9

10 10
0 9

( )
.

SP XY
Y

n
� � �

� �
� ��

X( )( )
−

( )( )
36

15 15

5
9
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integers, you can locate the midpoint of the series by M � (n � 1)/2. Similarly, the SS
for this series of integers can be computed by

Also, because the X ranks and the Y ranks are the same values, the SS for X is
identical to the SS for Y.

Because calculations with ranks can be simplified and because the Spearman
correlation uses ranked data, these simplifications can be incorporated into the
final calculations for the Spearman correlation. Instead of using the Pearson 
formula after ranking the data, you can put the ranks directly into a simplified
formula:

rS � 1 � �
n(

6
n
�
2

D
�

2

1)
� (15.7)

where D is the difference between the X rank and the Y rank for each individual. This
special formula produces the same result that would be obtained from the Pearson 
formula. However, note that this special formula can be used only after the scores have
been converted to ranks and only when there are no ties among the ranks. If there 
are relatively few tied ranks, the formula still may be used, but it loses accuracy as 
the number of ties increases. The application of this formula is demonstrated in the 
following example.

To demonstrate the special formula for the Spearman correlation, we use the same
data that were presented in Example 15.10. The ranks for these data are shown 
again here:

Ranks Difference
X Y D D2

1 5 4 16
2 3 1 1
3 4 1 1
4 2 �2 4
5 1 �4 16

38 � �D2

Using the special formula for the Spearman correlation, we obtain

rS � 1 � �
n(

6
n
�
2 �

D2

1)
� � 1 � �

5(2
6
5
(3

�

8)
1)

� � 1 � �
2
1
2
2
8
0

� � 1 � 1.90 � �0.90

This is exactly the same answer that we obtained in Example 15.10, using the
Pearson formula on the ranks.

E X A M P L E  1 5 . 1 1

SS
n n

�
�2 1

12

( ) ( )Try it out.
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Caution: In this formula, you
compute the value of the 
fraction and then subtract 
from 1. The 1 is not part of 
the fraction.
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Testing a hypothesis for the Spearman correlation is similar to the procedure used for
the Pearson r. The basic question is whether a correlation exists in the population. The
sample correlation could be the result of chance, or perhaps it reflects an actual rela-
tionship between the variables in the population. For the Pearson correlation, the Greek
letter rho (�) was used for the population correlation. For the Spearman, �S is used for
the population parameter. Note that this symbol is consistent with the sample statistic, rS.
The null hypothesis states that there is no correlation (no monotonic relationship) 
between the variables for the population, or, in symbols:

H0: �S � 0 (The population correlation is zero.)

The alternative hypothesis predicts that a nonzero correlation exists in the popula-
tion, which can be stated in symbols as

H1: �S � 0 (There is a real correlation.)

To determine whether the Spearman correlation is statistically significant (that is, H0

should be rejected), consult Table B.7. This table is similar to the one used to determine
the significance of Pearson’s r (Table B.6); however, the first column is sample size (n)
rather than degrees of freedom. To use the table, line up the sample size in the first 
column with one of the alpha levels listed across the top. The values in the body of the
table identify the magnitude of the Spearman correlation that is necessary to be signifi-
cant. The table is built on the concept that a sample correlation should be representative
of the corresponding population value. In particular, if the population correlation is �S �0
(as specified in H0), then the sample correlation should be near zero. For each sample size
and alpha level, the table identifies the minimum sample correlation that is significantly
different from zero. The following example demonstrates the use of the table.

An industrial psychologist selects a sample of n �15 employees. These employees are
ranked in order of work productivity by their manager. They also are ranked by a peer.
The Spearman correlation computed for these data revealed a correlation of rS �.60.
Using Table B.7 with n �15 and � �.05, a correlation of at least �0.45 is needed to
reject H0. The observed correlation for the sample easily surpasses this critical value.
The correlation between manager and peer ratings is statistically significant.

E X A M P L E  1 5 . 1 2

TESTING THE SIGNIFICANCE
OF THE SPEARMAN

CORRELATION
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L E A R N I N G  C H E C K 1. Describe what is measured by a Spearman correlation, and explain how this corre-
lation is different from the Pearson correlation.

2. If the following scores are converted into ranks, what rank will be assigned to the
individuals who have scores of X � 7?

Scores: 1, 1, 1, 3, 6, 7, 7, 8, 10

3. Rank the following scores and compute the Spearman correlation:

X Y

2 7
12 38
9 6

10 19
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In Chapters 9, 10, and 11 we introduced r2 as a measure of effect size that often accom-
panies a hypothesis test using the t statistic. The r2 used to measure effect size and the r
used to measure a correlation are directly related, and we now have an opportunity to
demonstrate the relationship. Specifically, we compare the independent-measures t test
(Chapter 10) and a special version of the Pearson correlation known as the point-
biserial correlation.

The point-biserial correlation is used to measure the relationship between two
variables in situations in which one variable consists of regular, numerical scores, but
the second variable has only two values. A variable with only two values is called a
dichotomous variable or a binomial variable. Some examples of dichotomous vari-
ables are

1. Male versus female

2. College graduate versus not a college graduate

3. First-born child versus later-born child

4. Success versus failure on a particular task

5. Older than 30 years versus younger than 30 years

To compute the point-biserial correlation, the dichotomous variable is first con-
verted to numerical values by assigning a value of zero (0) to one category and a value
of one (1) to the other category. Then the regular Pearson correlation formula is used
with the converted data.

To demonstrate the point-biserial correlation and its association with the r2

measure of effect size, we use the data from Example 10.1 (p. 326). The original 
example compared high school grades for two groups of students: one group who
regularly watched Sesame Street as 5-year-old children and one who did not watch
the program. The data from the independent-measures study are presented on the 
left side of Table 15.4. Notice that the data consist of two separate samples and the 
independent-measures t was used to determine whether there was a significant mean
difference between the two populations represented by the samples.

On the right-hand side of Table 15.4, we have reorganized the data into a form that
is suitable for a point-biserial correlation. Specifically, we used each student’s high
school grade as the X value and we have created a new variable, Y, to represent the
group, or condition, for each student. In this case, we have used Y � 1 for students who
watched Sesame Street and Y � 0 for students who did not watch the program.

When the data in Table 15.4 were originally presented in Chapter 10, we conducted
an independent-measures t hypothesis test and obtained t � 4.00 with df � 18. We
measured the size of the treatment effect by calculating r2, the percentage of variance
accounted for, and obtained r2 � 0.47.

Calculating the point-biserial correlation for these data also produces a value for r.
Specifically, the X scores produce SS � 680; the Y values produce SS � 5.00, and the

THE POINT-BISERIAL
CORRELATION 

AND MEASURING EFFECT 
SIZE WITH r2

542 CHAPTER 15 CORRELATION

1. The Spearman correlation measures the consistency of the direction of the relationship
between two variables. The Spearman correlation does not depend on the form of the rela-
tionship, whereas the Pearson correlation measures how well the data fit a linear form.

2. Both scores get a rank of 6.5 (the average of 6 and 7).

3. rS � 0.80

ANSWERS

It is customary to use the 
numerical values 0 and 1, 
but any two different numbers
would work equally well and
would not affect the value of 
the correlation.
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sum of the products of the X and Y deviations produces SP � 40. The point-biserial cor-
relation is

Notice that squaring the value of the point-biserial correlation produces r2 � (0.686)2

� 0.47, which is exactly the value of r2 we obtained measuring effect size.
In some respects, the point-biserial correlation and the independent-measures

hypothesis test are evaluating the same thing. Specifically, both are examining the
relationship between the TV-viewing habits of 5-year-old children and their future
academic performance in high school.

1. The correlation is measuring the strength of the relationship between the two
variables. A large correlation (near 1.00 or –1.00) would indicate that there is a
consistent, predictable relationship between high school grades and watching
Sesame Street as a 5-year-old child. In particular, the value of r2 measures how
much of the variability in grades can be predicted by knowing whether the
participants watched Sesame Street.

2. The t test evaluates the significance of the relationship. The hypothesis test
determines whether the mean difference in grades between the two groups is
greater than can be reasonably explained by chance alone.

r
SP

SS SS
X Y

� � � �
( )( ) ( )( )

40

680 5

40

58 31
0 686

.
.
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TABLE 15.4

The same data are organized in
two different formats. On the
left-hand side, the data appear as
two separate samples appropriate
for an independent-measures 
t hypothesis test. On the 
right-hand side, the same data
are shown as a single sample,
with two scores for each 
individual: the original high
school grade and a dichotomous
score (Y) that identifies the group
in which the participant 
is located (Seasame Street � 1
and No-Sesame Street � 0). 
The data on the right are 
appropriate for a point-biserial
correlation.

Data for the Independent-Measures t test. Data for the Point-Biserial Correlation.
Two separate samples, each with Two scores, X and Y for each of 
n � 10 scores. the n � 20 participants.

Average High School Grade

Watched        Did Not Watch
Seasame Street Sesame Street

86 99 90 79
87 97 89 83
91 94 82 86
97 89 83 81
98 92 85 92

n � 10 n � 10
M � 93 M � 85
SS � 200 SS � 160

Participant Grade Group
X Y

A 86 1
B 87 1
C 91 1
D 97 1
E 98 1
F 99 1
G 97 1
H 94 1
I 89 1
J 92 1
K 90 0
L 89 0
M 82 0
N 83 0
O 85 0
P 79 0
Q 83 0
R 86 0
S 81 0
T 92 0
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As we noted in Chapter 10 (pp. 332–333), the outcome of the hypothesis test and
the value of r2 are often reported together. The t value measures statistical significance
and r2 measures the effect size. Also, as we noted in Chapter 10, the values for t and r2

are directly related. In fact, either can be calculated from the other by the equations

where df is the degrees of freedom for the t statistic.
However, you should note that r2 is determined entirely by the size of the correla-

tion, whereas t is influenced by the size of the correlation and the size of the sample.
For example, a correlation of r � 0.30 produces r2 � 0.09 (9%) no matter how large
the sample may be. On the other hand, a point-biserial correlation of r � 0.30 for a total
sample of 10 people (n � 5 in each group) produces a nonsignificant value of t � 0.889.
If the sample is increased to 50 people (n � 25 in each group), the same correlation pro-
duces a significant t value of t � 2.18. Although t and r are related, they are measuring
different things.

In the previous section we demonstrated that the point-biserial correlation produces 
an r value that is directly related to the r2 value used to measure effect size for the 
independent-measures t test. With one modification, this same process can be dupli-
cated for the repeated-measures t test. The modification involves using a partial cor-
relation (see pp. 531–535) to control for individual differences.

You should recall from Chapters 11 and 13 that one of the major distinctions 
between independent-measures and repeated-measures designs is that the repeated-
measures designs eliminate the influence of individual differences. When computing a
point-biserial correlation for repeated-measures data, we can use a partial correlation to
eliminate individual differences once again.

The left-hand side of Table 15.5 shows data from a repeated-measures study com-
paring two treatments with a sample of n � 4 participants. Note that we have added a
column of P values, or participant totals, showing the sum of the two scores for each
participant. For example, participant A has scores of 3 and 5, which add to P � 8. The
P values provide an indication of the individual differences. Participant A, for example,
has consistently smaller scores and a smaller P value than all of the other participants.
These data produce t � 2.00 with df � 3, which results in r2 � 4/(4 � 3) � 0.5714 as
the measure of effect size.

POINT-BISERIAL
CORRELATION, PARTIAL

CORRELATION, AND EFFECT
SIZE FOR THE REPEATED-

MEASURES t TEST

r
t

t df
t

r

r df
2

2

2

2
2

21
�

�
�

�
and ( ) /
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TABLE 15.5

The data on the left represent
scores from a repeated-measures
study comparing two treatments
with a sample of n � 4 
participants. The data on the
right are the same scores in a
format compatible with the
point-biserial correlation. The 
P values in each set of data
show the sum of the two scores
for each participant and 
provide a measure of 
individual differences.

Treatment

Participant I II P Score (X) Treatment (Y) P

A 3 5 8 3 0 8
B 4 14 18 4 0 18
C 5 7 12 5 0 12
D 4 6 10 4 0 10

5 1 8
14 1 18
7 1 12
6 1 10
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On the right-hand side of Table 15.5 we have reorganized the data into a format
compatible with the point-biserial correlation. The individual scores, or X values are
listed in the first column. The second column, or Y values, are numerical codes corre-
sponding to the two treatment conditions: Treatment I � 0 and Treatment II � 1. The
third column contains the P value for each individual, which measures the individual
differences between participants. For these data, the partial correlation between X and
Y, controlling for the P values, is

rXY-P � 0.756

Note that this is a slightly modified point-biserial correlation. The modification is
that we used a partial correlation to control the individual differences. However, squar-
ing this correlation produces r2 � (0.756)2 � 0.5715, which is identical, within round-
ing error, to the r2 value that measures effect size for the repeated-measures t test.

When both variables (X and Y) measured for each individual are dichotomous, the cor-
relation between the two variables is called the phi-coefficient. To compute phi (�), you
follow a two-step procedure:

1. Convert each of the dichotomous variables to numerical values by assigning a 
0 to one category and a 1 to the other category for each of the variables.

2. Use the regular Pearson formula with the converted scores.

This process is demonstrated in the following example.

A researcher is interested in examining the relationship between birth-order position and
personality. A random sample of n � 8 individuals is obtained, and each individual is
classified in terms of birth-order position as first-born or only child versus later-born.
Then each individual’s personality is classified as either introvert or extrovert.

The original measurements are then converted to numerical values by the
following assignments:

Birth Order Personality

1st or only child � 0 Introvert � 0
Later-born child � 1 Extrovert � 1

The original data and the converted scores are as follows:

Original Data Converted Scores

Birth Order Personality Birth Order Personality 
(X) (Y) (X) (Y)

1st Introvert 0 0
3rd Extrovert 1 1
Only Extrovert 0 1
2nd Extrovert 1 1
4th Extrovert 1 1
2nd Introvert 1 0
Only Introvert 0 0
3rd Extrovert 1 1

E X A M P L E  1 5 . 1 3

THE PHI-COEFFICIENT
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The Pearson correlation formula is then used with the converted data to compute
the phi-coefficient.

Because the assignment of numerical values is arbitrary (either category could be
designated 0 or 1), the sign of the resulting correlation is meaningless. As with most
correlations, the strength of the relationship is best described by the value of r2, the
coefficient of determination, which measures how much of the variability in one
variable is predicted or determined by the association with the second variable.

We also should note that although the phi-coefficient can be used to assess the
relationship between two dichotomous variables, the more common statistical
procedure is a chi-square statistic, which is examined in Chapter 17.

546 CHAPTER 15 CORRELATION

L E A R N I N G  C H E C K 1. Define a dichotomous variable.

2. The following data represent job-related stress scores for a sample of n � 8 
individuals. These people also are classified by salary level.

a. Convert the data into a form suitable for the point-biserial correlation.

b. Compute the point-biserial correlation for these data.

3. A researcher would like to know whether there is a relationship between gender and
manual dexterity for 3-year-old children. A sample of n � 10 boys and n � 10 girls
is obtained and each child is given a manual-dexterity test. Five of the girls failed
the test and only two of the boys failed. Describe how these data could be coded
into a form suitable for computing a phi-coefficient to measure the strength of the
relationship.

1. A dichotomous variable has only two possible values.

2. a. Salary level is a dichotomous variable and can be coded as Y � 1 for individuals with
salary more than $40,000 and Y � 0 for salary less than $40,000. The stress scores
produce SSX � 36, the salary codes produce SSY � 2, and SP � 6.

b. The point-biserial correlation is 0.71.

3. Gender could be coded with male � 0 and female � 1. Manual dexterity could be coded
with failure � 0 and success � 1. Eight boys would have scores of 0 and 1 and two would
have scores of 0 and 0. Five girls would have scores of 1 and 1 and five would have scores
of 1 and 0.

Salary More  Salary Less 
than $40,000 than $40,000

8 4
6 2
5 1
3 3

ANSWERS
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KEY TERMS 547

1. A correlation measures the relationship between two
variables, X and Y. The relationship is described by
three characteristics:

a. Direction. A relationship can be either positive or
negative. A positive relationship means that X and 
Y vary in the same direction. A negative relationship
means that X and Y vary in opposite directions. The
sign of the correlation (� or –) specifies the
direction.

b. Form. The most common form for a relationship 
is a straight line, which is measured by the 
Pearson correlation. Other correlations measure 
the consistency or strength of the relationship,
independent of any specific form.

c. Strength or consistency. The numerical value of the
correlation measures the strength or consistency of
the relationship. A correlation of 1.00 indicates a
perfectly consistent relationship and 0.00 indicates
no relationship at all. For the Pearson correlation, 
r � 1.00 (or –1.00) means that the data points fit
perfectly on a straight line.

2. The most commonly used correlation is the Pearson
correlation, which measures the degree of linear
relationship. The Pearson correlation is identified by the
letter r and is computed by

In this formula, SP is the sum of products of deviations
and can be calculated with either a definitional formula
or a computational formula:

definitional formula: SP � �(X – MX)(Y – MY)

computational formula: SP XY
X Y

n
� � �

� �

r
SP

SS SS
X Y

�

3. A correlation between two variables should not be
interpreted as implying a causal relationship. Simply
because X and Y are related does not mean that X causes
Y or that Y causes X.

4. To evaluate the strength of a relationship, you square
the value of the correlation. The resulting value, r2, 
is called the coefficient of determination because it
measures the portion of the variability in one variable
that can be predicted using the relationship with the
second variable.

5. A partial correlation measures the linear relationship
between two variables by eliminating the influence of a
third variable by holding it constant.

6. The Spearman correlation (rS) measures the consistency
of direction in the relationship between X and Y—that is,
the degree to which the relationship is one-directional,
or monotonic. The Spearman correlation is computed by
a two-stage process:
a. Rank the X scores and the Y scores separately.
b. Compute the Pearson correlation using the ranks.

7. The point-biserial correlation is used to measure 
the strength of the relationship when one of the two
variables is dichotomous. The dichotomous variable
is coded using values of 0 and 1, and the regular
Pearson formula is applied. Squaring the point-
biserial correlation produces the same r2 value that 
is obtained to measure effect size for the independent-
measures t test. When both variables, X and Y, are
dichotomous, the phi-coefficient can be used to
measure the strength of the relationship. Both
variables are coded 0 and 1, and the Pearson 
formula is used to compute the correlation.

SUMMARY

KEY TERMS

correlation (510)

positive correlation (512)

negative correlation (512)

perfect correlation (513)

Pearson correlation (514)

sum of products (SP) (515)

restricted range (522)

coefficient of determination (524)

regression toward the mean (526)

correlation matrix (530)

partial correlation (531)

Spearman correlation (535)

point-biserial correlation (542)

phi-coefficient (545)
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RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You  can find a tutorial quiz and other learning exercises for Chapter 15 on the

book companion website. The website also provides access to two workshops entitled
Correlation and Bivariate Scatter Plots, which include information on regression.

Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.

Log in to CengageBrain to access the resources your instructor requires. For this book,
you can access:

Psychology CourseMate brings course concepts to life with interactive learning,
study, and exam preparation tools that support the printed textbook. A textbook-specific
website, Psychology CourseMate includes an integrated interactive eBook and other
interactive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to perform The Pearson, Spearman, point-biserial, and
partial correlations. Note: We focus on the Pearson correlation and then describe how
slight modifications to this procedure can be made to compute the Spearman, point-
biserial, and partial correlations. Separate instructions for the phi-coefficient are pre-
sented at the end of this section.

Data Entry

The data are entered into two columns in the data editor, one for the X values
(VAR00001) and one for the Y values (VAR00002), with the two scores for each indi-
vidual in the same row.

Data Analysis

1. Click Analyze on the tool bar, select Correlate, and click on Bivariate.
2. One by one, move the labels for the two data columns into the Variables box.

(Hightlight each label and click the arrow to move it into the box.)

548 CHAPTER 15 CORRELATION
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3. The Pearson box should be checked but, at this point, you can switch to the
Spearman correlation by clicking the appropriate box.

4. Click OK.

SPSS Output

We used SPSS to compute the correlation for the data in Example 15.3 and the output is
shown in Figure 15.16. The program produces a correlation matrix showing all the pos-
sible correlations, including the correlation of X with X and the correlation of Y with Y
(both are perfect correlations). You want the correlation of X and Y, which is contained
in the upper right corner (or the lower left). The output includes the significance level 
(p value or alpha level) for the correlation.

To compute a partial correlation, click Analyze on the tool bar, select Correlate,
and click on Partial. Move the column labels for the two variables to be correlated into
the Variables box and move the column label for the variable to be held constant into
the Controlling for box and click OK.

To compute the Spearman correlation, enter either the X and Y ranks or the X and 
Y scores into the first two columns. Then follow the same Data Analysis instructions that
were presented for the Pearson correlation. At step 3 in the instructions, click on the
Spearman box before the final OK. (Note: If you enter X and Y scores into the data
editor, SPSS converts the scores to ranks before computing the Spearman correlation.)

To compute the point-biserial correlation, enter the scores (X values) in the 
first column and enter the numerical values (usually 0 and 1) for the dichotomous 
variable in the second column. Then, follow the same Data Analysis instructions that
were presented for the Pearson correlation.

The phi-coefficient can also be computed by entering the complete string of 0s 
and 1s into two columns of the SPSS data editor, then following the same Data Analysis
instructions that were presented for the Pearson correlation. However, this can be tedious,
especially with a large set of scores. The following is an alternative procedure for com-
puting the phi-coefficient with large data sets.
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Correlations

VAR00001

VAR00001 1 .875

.052

5 5

1

5 5

.875

.052

Pearson Correlation

Sig. (2-tailed)

N

VAR00002 Pearson Correlation

Sig. (2-tailed)

N

VAR00002

FIGURE 15.16

The SPSS output for the
correlation in Example 15.3.
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Data Entry

1. Enter the values, 0, 0, 1, 1 (in order) into the first column of the SPSS data editor.
2. Enter the values 0, 1, 0, 1 (in order) into the second column.
3. Count the number of individuals in the sample who are classified with X � 0

and Y � 0. Enter this frequency in the top box in the third column of the data
editor. Then, count how many have X � 0 and Y � 1 and enter the frequency in
the second box of the third column. Continue with the number who have X � 1
and Y � 0, and finally the number who have X � 1 and Y � 1. You should end
up with 4 values in column three.

4. Click Data on the Tool Bar at the top of the SPSS Data Editor page and select
Weight Cases at the bottom of the list.

5. Click the circle labeled Weight cases by, and then highlight the label for the
column containing your frequencies (VAR00003) on the left and move it into
the Frequency Variable box by clicking on the arrow.

6. Click OK.
7. Click Analyze on the tool bar, select Correlate, and click on Bivariate.
8. One by one, move the labels for the two data columns containing the 0s and 1s

(probably VAR00001 and VAR00002) into the Variables box. (Highlight each
label and click the arrow to move it into the box.)

9. Verify that the Pearson box is checked.
10. Click OK.

SPSS Output

The program produces the same correlation matrix that was described for the Pearson
correlation. Again, you want the correlation between X and Y, which is in the upper right
corner (or lower left). Remember, with the phi-coefficient, the sign of the correlation is
meaningless.

FOCUS ON PROBLEM SOLVING

1. A correlation always has a value from �1.00 to –1.00. If you obtain a
correlation outside this range, then you have made a computational error.

2. When interpreting a correlation, do not confuse the sign (� or –) with its
numerical value. The sign and the numerical value must be considered
separately. Remember that the sign indicates the direction of the relationship
between X and Y. On the other hand, the numerical value reflects the strength 
of the relationship or how well the points approximate a linear (straight-line)
relationship. Therefore, a correlation of –0.90 is as strong as a correlation of
�0.90. The signs tell us that the first correlation is an inverse relationship.

3. Before you begin to calculate a correlation, sketch a scatter plot of the data and
make an estimate of the correlation. (Is it positive or negative? Is it near 1 or
near 0?) After computing the correlation, compare your final answer with your
original estimate.

4. The definitional formula for the sum of products (SP) should be used only
when you have a small set (n) of scores and the means for X and Y are both
whole numbers. Otherwise, the computational formula produces quicker, easier,
and more accurate results.

550 CHAPTER 15 CORRELATION
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5. For computing a correlation, n is the number of individuals (and therefore the
number of pairs of X and Y values).

DEMONSTRATION 15.1

CORRELATION

Calculate the Pearson correlation for the following data:

Person X Y

A 0 4 MX � 4 with SSX � 40
B 2 1 MY � 6 with SSY � 54
C 8 10 SP � 40
D 6 9
E 4 6

Sketch a scatter plot. We have constructed a scatter plot for the data (Figure 15.17)
and placed an envelope around the data points to make a preliminary estimate of the cor-
relation. Note that the envelope is narrow and elongated. This indicates that the correlation
is large—perhaps 0.80 to 0.90. Also, the correlation is positive because increases in X are
generally accompanied by increases in Y.

Compute the Pearson correlation. For these data, the Pearson correlation is

r
SP

SS SS
X Y

� � � � �
40

40 54

40

2160

40

46 48
0 861

( ) .
.

S T E P  2

S T E P  1
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X

Y

0 1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

0

FIGURE 15.17

The scatter plot for the 
data of Demonstration 15.1.
An envelope is drawn around
the points to estimate the
magnitude of the correlation.
A line is drawn through the
middle of the envelope.
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In step 1, our preliminary estimate for the correlation was between �0.80 and �0.90.
The calculated correlation is consistent with this estimate.

Evaluate the significance of the correlation. The null hypothesis states that, for the
population, there is no linear relationship between X and Y, and that the value obtained for
the sample correlation is simply the result of sampling error. Specifically, H0 says that the
population correlation is zero (� � 0). With n � 5 pairs of X and Y values the test has 
df � 3. Table B.6 lists a critical value of 0.878 for a two-tailed test with � � .05. Because
our correlation is smaller than this value, we fail to reject the null hypothesis and conclude
that the correlation is not significant.

S T E P  3

552 CHAPTER 15 CORRELATION

PROBLEMS

1. What information is provided by the sign (� or –) of
the Pearson correlation?

2. What information is provided by the numerical value of
the Pearson correlation?

3. Calculate SP (the sum of products of deviations) for the
following scores. Note: Both means are whole numbers,
so the definitional formula works well

X Y

0 2
1 4
4 5
3 3
7 6

4. Calculate SP (the sum of products of deviations) for the
following scores. Note: Both means are decimal values,
so the computational formula works well.

X Y

0 2
0 1
1 0
2 1
1 2
0 3

5. For the following scores,

X Y

7 6
9 6
6 3

12 5
9 6
5 4

a. Sketch a scatter plot showing the six data points.
b. Just looking at the scatter plot, estimate the value of

the Pearson correlation.
c. Compute the Pearson correlation.

6. For the following scores,

X Y

1 3
3 5
2 1
2 3

a. Sketch a scatter plot and estimate the Pearson
correlation.

b. Compute the Pearson correlation.

7. For the following scores,

X Y

1 7
4 2
1 3
1 6
2 0
0 6
2 3
1 5

a. Sketch a scatter plot and estimate the Pearson
correlation.

b. Compute the Pearson correlation.

8. For the following scores,

X Y

1 6
4 1
1 4
1 3
3 1
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PROBLEMS 553

a. Sketch a scatter plot and estimate the value of the
Pearson correlation.

b. Compute the Pearson correlation.

9. With a small sample, a single point can have a large
effect on the magnitude of the correlation. To create
the following data, we started with the scores from
problem 8 and changed the first X value from X � 1 
to X � 6. 

X Y

6 6
4 1
1 4
1 3
3 1

a. Sketch a scatter plot and estimate the value of the
Pearson correlation.

b. Compute the Pearson correlation.

10. For the following set of scores,

X Y

6 4
3 1
5 0
6 7
4 2
6 4

a. Compute the Pearson correlation.
b. Add 2 points to each X value and compute the

correlation for the modified scores. How does
adding a constant to every score affect the value 
of the correlation?

c. Multiply each of the original X values by 2 and
compute the correlation for the modified scores.
How does multiplying each score by a constant
affect the value of the correlation?

11. Correlation studies are often used to help 
determine whether certain characteristics are
controlled more by genetic influences or by
environmental influences. These studies often
examine adopted children and compare their
behaviors with the behaviors of their birth parents
and their adoptive parents. One study examined 
how much time individuals spend watching TV
(Plomin, Corley, DeFries, & Fulker, 1990). The
following data are similar to the results obtained 
in the study.

Amount of Time Spent Watching TV

Adopted Birth Adoptive 
Children Parents Parents

2 0 1
3 3 4
6 4 2
1 1 0
3 1 0
0 2 3
5 3 2
2 1 3
5 3 3

a. Compute the correlation between the children and
their birth parents.

b. Compute the correlation between the children and
their adoptive parents.

c. Based on the two correlations, does TV watching
appear to be inherited from the birth parents or is it
learned from the adoptive parents?

12. Judge and Cable (2010) report the results of a study
demonstrating a negative relationship between weight
and income for a group of women professionals.
Following are data similar to those obtained in the
study. To simplify the weight variable, the women
are classified into five categories that measure 
actual weight relative to height, from 1 � thinnest 
to 5 � heaviest. Income figures are annual income
(in thousands), rounded to the nearest $1,000.
a. Calculate the Pearson correlation for these data.
b. Is the correlation statistically significant? Use a

two-tailed test with � � .05.

Weight (X) Income (Y)

1 125
2 78
4 49
3 63
5 35
2 84
5 38
3 51
1 93
4 44

13. The researchers cited in the previous problem also
examined the weight/salary relationship for men and
found a positive relationship, suggesting that we have
very different standards for men than for women
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(Judge & Cable, 2010). The following are data similar
to those obtained for working men. Again, weight
relative to height is coded in five categories from 
1 � thinnest to 5 � heaviest. Income is recorded as
thousands earned annually.
a. Calculate the Pearson correlation for these data.
b. Is the correlation statistically significant? Use a

two-tailed test with � � .05.

Weight (X) Income (Y)

4 156
3 88
5 49
2 73
1 45
3 92
1 53
5 148

14. Identifying individuals with a high risk of Alzheimer’s
disease usually involves a long series of cognitive
tests. However, researchers have developed a 
7-Minute Screen, which is a quick and easy way to
accomplish the same goal. The question is whether 
the 7-Minute Screen is as effective as the complete
series of tests. To address this question, Ijuin et al.
(2008) administered both tests to a group of patients
and compared the results. The following data 
represent results similar to those obtained in the 
study.

Patient 7-Minute Screen Cognitive Series

A 3 11
B 8 19
C 10 22
D 8 20
E 4 14
F 7 13
G 4 9
H 5 20
I 14 25

a. Compute the Pearson correlation to measure the
degree of relationship between the two test scores.

b. Is the correlation statistically significant? Use a
two-tailed test with � � .01.

c. What percentage of variance for the cognitive
scores is predicted from the 7-Minute Screen
scores? (Compute the value of r2.)

15. Assuming a two-tailed test with � � .05, how large a
correlation is needed to be statistically significant for
each of the following samples?
a. A sample of n � 8
b. A sample of n � 18
c. A sample of n � 28

16. As we have noted in previous chapters, even a very
small effect can be significant if the sample is large
enough. For each of the following, determine how
large a sample is necessary for the correlation to be
significant. Assume a two-tailed test with � � .05.
(Note: The table does not list all the possible df values.
Use the sample size corresponding to the appropriate
df value that is listed in the table.)
a. A correlation of r � 0.30.
b. A correlation of r � 0.25.
c. A correlation of r � 0.20.

17. A researcher measures three variables, X, Y, and Z, for
each individual in a sample of n � 25. The Pearson
correlations for this sample are rXY � 0.8, rXZ � 0.6,
and rYZ � 0.7.
a. Find the partial correlation between X and Y,

holding Z constant.
b. Find the partial correlation between X and Z,

holding Y constant. (Hint: Simply switch the labels
for the variables Y and Z to correspond with the
labels in the equation.)

18. A researcher records the annual number of serious
crimes and the amount spent on crime prevention for
several small towns, medium cities, and large cities
across the country. The resulting data show a strong
positive correlation between the number of serious
crimes and the amount spent on crime prevention.
However, the researcher suspects that the positive
correlation is actually caused by population; as
population increases, both the amount spent on crime
prevention and the number of crimes also increases. 
If population is controlled, there probably should be 
a negative correlation between the amount spent on
crime prevention and the number of serious crimes.
The following data show the pattern of results
obtained. Note that the municipalities are coded in
three categories. Use a partial correlation, holding
population constant, to measure the true relationship
between crime rate and the amount spent on
prevention.
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Number of Amount for Population 
Crimes Prevention Size

3 6 1
4 7 1
6 3 1
7 4 1
8 11 2
9 12 2
11 8 2
12 9 2
13 16 3
14 17 3
16 13 3
17 14 3

19. A common concern for students (and teachers) is 
the assignment of grades for essays or term papers.
Because there are no absolute right or wrong answers,
these grades must be based on a judgment of quality.
To demonstrate that these judgments actually are
reliable, an English instructor asked a colleague to
rank-order a set of term papers. The ranks and the
instructor’s grades for these papers are as follows:

Rank Grade

1 A
2 B
3 A
4 B
5 B
6 C
7 D
8 C
9 C

10 D
11 F

a. Compute the Spearman correlation for these data.
(Note: You must convert the letter grades to ranks,
using tied ranks to represent tied grades.)

b. Is the Spearman correlation statistically significant?
Use a two-tailed test with � � .05.

20. It appears that there is a significant relationship
between cognitive ability and social status, at least for
birds. Boogert, Reader, and Laland (2006) measured
social status and individual learning ability for a group
of starlings. The following data represent results
similar to those obtained in the study. Because social
status is an ordinal variable consisting of five ordered

categories, the Spearman correlation is appropriate for
these data. Convert the social status categories and the
learning scores to ranks, and compute the Spearman
correlation.

Subject Social Status Learning Score

A 1 3
B 3 10
C 2 7
D 3 11
E 5 19
F 4 17
G 5 17
H 2 4
I 4 12
J 2 3

21. Problem 12 presented data showing a negative
relationship between weight and income for a sample
of working women. However, weight was coded in
five categories, which could be viewed as an ordinal
scale rather than an interval or ratio scale. If so, a
Spearman correlation is more appropriate than a
Pearson correlation.
a. Convert the weights and the incomes into ranks and

compute the Spearman correlation for the scores in
problem 12.

b. Is the Spearman correlation large enough to be
significant?

22. Problem 22 in Chapter 10 presented data showing
that mature soccer players, who have a history 
of hitting soccer balls with their heads, had
significantly lower cognitive scores than mature
swimmers, who do not suffer repeated blows to 
the head. The independent-measures t test produced
t � 2.11 with df � 11 and a value of r2 � 0.288
(28.8%).
a. Convert the data from this problem into a form

suitable for the point-biserial correlation (use 1 
for the swimmers and 0 for the soccer players), 
and then compute the correlation.

b. Square the value of the point-biserial correlation to
verify that you obtain the same r2 value that was
computed in Chapter 10.

23. Problem 14 in Chapter 10 described a study by Rozin,
Bauer, and Cantanese (2003) comparing attitudes toward
eating for male and female college students. The results
showed that females are much more concerned about
weight gain and other negative aspects of eating than are
males. The following data represent the results from one
measure of concern about weight gain.
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Males Females

22 54
44 57
39 32
27 53
35 49
19 41

35
36
48

Convert the data into a form suitable for the point-
biserial correlation and compute the correlation.

24. Studies have shown that people with high intelligence
are generally more likely to volunteer as participants

in research, but not for research that involves unusual
experiences such as hypnosis. To examine this
phenomenon, a researcher administers a questionnaire
to a sample of college students. The survey asks for
the student’s grade point average (as a measure of
intelligence) and whether the student would like to
take part in a future study in which participants 
would be hypnotized. The results showed that 7 
of the 10 lower-intelligence people were willing to
participant but only 2 of the 10 higher-intelligence
people were willing.
a. Convert the data to a form suitable for computing

the phi-coefficient. (Code the two intelligence
categories as 0 and 1 for the X variable, and code
the willingness to participate as 0 and 1 for the 
Y variable.)

b. Compute the phi-coefficient for the data.
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C H A P T E R

16
Introduction 
to Regression

Preview

16.1 Introduction to Linear Equations
and Regression

16.2 Analysis of Regression: Testing
the Significance of the Regression
Equation

16.3 Introduction to Multiple
Regression with Two Predictor
Variables

16.4 Evaluating the Contribution of
Each Predictor Variable

Summary

Focus on Problem Solving

Demonstrations 16.1 and 16.2

Problems

Tools You Will Need
The following items are considered essential
background material for this chapter. If you
doubt your knowledge of any of these items,
you should review the appropriate chapter or
section before proceeding.

• Sum of squares (SS) (Chapter 4)
• Computational formula
• Definitional formula

• z-scores (Chapter 5)
• Analysis of variance (Chapter 12)

• MS values and F-ratios
• Pearson correlation (Chapter 15)

• Sum of products (SP)
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16.1 INTRODUCTION TO LINEAR EQUATIONS AND REGRESSION

In the previous chapter, we introduced the Pearson correlation as a technique for 
describing and measuring the linear relationship between two variables. Figure 16.1
presents hypothetical data showing the relationship between SAT scores and college
grade point average (GPA). Note that the figure shows a good, but not perfect, positive
relationship. Also note that we have drawn a line through the middle of the data points.
This line serves several purposes:

1. The line makes the relationship between SAT scores and GPA easier to see.

2. The line identifies the center, or central tendency, of the relationship, just as the
mean describes central tendency for a set of scores. Thus, the line provides a
simplified description of the relationship. For example, if the data points were
removed, the straight line would still give a general picture of the relationship
between SAT scores and GPA.

3. Finally, the line can be used for prediction. The line establishes a precise, one-to-
one relationship between each X value (SAT score) and a corresponding Y value
(GPA). For example, an SAT score of 620 corresponds to a GPA of 3.25 (see
Figure 16.1). Thus, the college admissions officers could use the straight-line

Preview
In Chapter 15, we noted that one common application of
correlations is for purposes of prediction. Whenever there
is a consistent relationship between two variables, it is
possible to use the value of one variable to predict the
value of another. Managers at the electric company, for
example, can use the weather forecast to predict power
demands for upcoming days. If exceptionally hot summer
weather is forecast, they can anticipate an exceptionally
high demand for electricity. In the field of psychology, a
known relationship between certain personality character-
istics and eating disorders can allow clinicians to predict
that individuals who show specific characteristics are
more likely to develop disorders. A common prediction
that is especially relevant for college students (and poten-
tial college students) is based on the relationship between
scores on aptitude tests (such as the SAT) and future
grade point averages in college. Each year, SAT scores
from thousands of high school students are used to help
college admissions officers decide who should be admit-
ted and who should not.

The Problem: The correlations introduced in Chapter 15
allow researchers to measure and describe relationships,
and the hypothesis tests allow researchers to evaluate
the significance of correlations. However, we now want
to go one step further and actually use a correlation to
make predictions.

The Solution: In this chapter we introduce some of
the statistical techniques that are used to make
predictions based on correlations. Whenever there is a
linear relationship (Pearson correlation) between two
variables, it is possible to compute an equation that
provides a precise, mathematical description of the
relationship. With the equation, it is possible to plug in
the known value for one variable (for example, your
SAT score), and then calculate a predicted value for the
second variable (for example, your college grade point
average). The general statistical process of finding and
using a prediction equation is known as regression.

Beyond finding a prediction equation, however, it is
reasonable to ask how good its predictions are. For example,
I can make predictions about the outcome of a coin toss by
simply guessing. However, my predictions are correct only
about 50% of the time. In statistical terms, my predictions are
not significantly better than chance. In the same way, it is
appropriate to challenge the significance of any prediction
equation. In this chapter we introduce the techniques that are
used to find prediction equations, as well as the techniques
that are used to determine whether their predictions are statis-
tically significant. Incidentally, although there is some con-
troversy about the practice of using SAT scores to predict
college performance, there is a great deal of research show-
ing that SAT scores really are valid and significant predictors
(Camera & Echternacht, 2000; Geiser & Studley, 2002).

558
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relationship to predict that a student entering college with an SAT score of 620
should achieve a college GPA of approximately 3.25.

Our goal in this section is to develop a procedure that identifies and defines the
straight line that provides the best fit for any specific set of data. This straight line does
not have to be drawn on a graph; it can be presented in a simple equation. Thus, our
goal is to find the equation for the line that best describes the relationship for a set of 
X and Y data.

In general, a linear relationship between two variables X and Y can be expressed by the
equation

Y � bX � a (16.1)

where a and b are fixed constants.
For example, a local video store charges a membership fee of $5 per month, which

allows you to rent videos and games for $2 each. With this information, the total cost
for 1 month can be computed using a linear equation that describes the relationship 
between the total cost (Y) and the number of videos and games rented (X).

Y � 2X � 5

In the general linear equation, the value of b is called the slope. The slope deter-
mines how much the Y variable changes when X is increased by 1 point. For the video
store example, the slope is b � 2 and indicates that your total cost increases by $2 for
each video you rent. The value of a in the general equation is called the Y-intercept
because it determines the value of Y when X � 0. (On a graph, the a value identifies the
point where the line intercepts the Y-axis.) For the video store example, a � 5; there is
a $5 membership charge even if you never rent a video.

Figure 16.2 shows the general relationship between the monthly cost and number
of videos for the video store example. Notice that the relationship results in a straight

LINEAR EQUATIONS
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FIGURE 16.1

Hypothetical data showing
the relationship between SAT
scores and GPA with a 
regression line drawn
through the data points. The
regression line defines a
precise, one-to-one 
relationship between each 
X value (SAT score) and its
corresponding Y value (GPA).

Note that a positive slope means
that Y increases when X is 
increased, and a negative slope
indicates that Y decreases when
X is increased.
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line. To obtain this graph, we picked any two values of X and then used the equation to
compute the corresponding values for Y. For example,

when X � 3: when X � 8:

Y � bX � a Y � bX � a
� $2(3) � $5 � $2(8) � $5
� $6 � $5 � $16 � $5
� $11 � $21

Next, these two points are plotted on the graph: one point at X � 3 and Y � 11, the
other point at X � 8 and Y � 21. Because two points completely determine a straight
line, we simply drew the line so that it passed through these two points.

560 CHAPTER 16 INTRODUCTION TO REGRESSION
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FIGURE 16.2

The relationship between
total cost and number of
videos rented each month.
The video store charges a $5
monthly membership fee and
$2 for each video or game
rented. The relationship is
described by a linear 
equation Y � 2X � 5 where
Y is the total cost and X is the
number of videos.

When drawing a graph of a
linear equation, it is wise to
compute and plot at least 
three points to be certain that
you have not made a mistake.

L E A R N I N G  C H E C K 1. A local gym charges a $25 monthly membership fee plus $2 per hour for aerobics
classes. What is the linear equation that describes the relationship between the
total monthly cost (Y) and the number of class hours each month (X)?

2. For the following linear equation, what happens to the value of Y each time X is
increased by 1 point?

Y � �3X � 7
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Because a straight line can be extremely useful for describing a relationship between
two variables, a statistical technique has been developed that provides a standardized
method for determining the best-fitting straight line for any set of data. The statistical
procedure is regression, and the resulting straight line is called the regression line.

The statistical technique for finding the best-fitting straight line for a set of data
is called regression, and the resulting straight line is called the regression line.

The goal for regression is to find the best-fitting straight line for a set of data. To
accomplish this goal, however, it is first necessary to define precisely what is meant by
“best fit.” For any particular set of data, it is possible to draw lots of different straight
lines that all appear to pass through the center of the data points. Each of these lines can
be defined by a linear equation of the form Y � bX � a where b and a are constants
that determine the slope and Y-intercept of the line, respectively. Each individual line
has its own unique values for b and a. The problem is to find the specific line that 
provides the best fit to the actual data points.

To determine how well a line fits the data points, the first step is to define mathemati-
cally the distance between the line and each data point. For every X value in the data,
the linear equation determines a Y value on the line. This value is the predicted Y and
is called Ŷ (“Y hat”). The distance between this predicted value and the actual Y value
in the data is determined by

distance � Y � Ŷ

Note that we simply are measuring the vertical distance between the actual data
point (Y) and the predicted point on the line. This distance measures the error between
the line and the actual data (Figure 16.3).

Because some of these distances are positive and some are negative, the next step
is to square each distance to obtain a uniformly positive measure of error. Finally, to

THE LEAST-SQUARES
SOLUTION

D E F I N I T I O N

REGRESSION
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3. Use the linear equation Y � 2X � 7 to determine the value of Y for each of the
following values of X: 1, 3, 5, 10.

4. If the slope constant (b) in a linear equation is positive, then a graph of the equa-
tion is a line tilted from lower left to upper right. (True or false?)

1. Y � 2X � 25

2. The slope is �3, so Y decreases by 3 points each time X increases by 1 point.

3. X Y

1 �5
3 �1
5 3

10 13

4. True. A positive slope indicates that Y increases (goes up in the graph) when X increases
(goes to the right in the graph).

ANSWERS
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determine the total error between the line and the data, we add the squared errors for all
of the data points. The result is a measure of overall squared error between the line and
the data:

total squared error � �(Y � Ŷ )2

Now we can define the best-fitting line as the one that has the smallest total squared
error. For obvious reasons, the resulting line is commonly called the least-squared-error
solution. In symbols, we are looking for a linear equation of the form

Ŷ � bX � a

For each value of X in the data, this equation determines the point on the line (Ŷ )
that gives the best prediction of Y. The problem is to find the specific values for a and
b that make this the best-fitting line.

The calculations that are needed to find this equation require calculus and some 
sophisticated algebra, so we do not present the details of the solution. The results, how-
ever, are relatively straightforward, and the solutions for b and a are as follows:

b � �
S
S
S
P

X
� (16.2)

where SP is the sum of products and SSX is the sum of squares for the X scores.
A commonly used alternative formula for the slope is based on the standard devi-

ations for X and Y. The alternative formula is

b � r �s
s
X

Y� (16.3)

where sY is the standard deviation for the Y scores, sX is the standard deviation for the
X scores, and r is the Pearson correlation for X and Y. The value of the constant a in the
equation is determined by

a � MY � bMX (16.4)

562 CHAPTER 16 INTRODUCTION TO REGRESSION

X values

X, Y
data point

Y 
va

lu
e

s

Y = bX + aˆ

Distance = Y – Ŷ

FIGURE 16.3

The distance between the
actual data point (Y ) and the
predicted point on the line 
(Ŷ ) is defined as Y � Ŷ . The
goal of regression is to find
the equation for the line that
minimizes these distances.
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Note that these formulas determine the linear equation that provides the best 
prediction of Y values. This equation is called the regression equation for Y.

The regression equation for Y is the linear equation

Ŷ � bX � a (16.5)

where the constant b is determined by Equation 16.2, or 16.3 and the constant a
is determined by Equation 16.4. This equation results in the least squared error
between the data points and the line.

The scores in the following table are used to demonstrate the calculation and use of
the regression equation for predicting Y. 

X Y X � MX Y � MY (X � MX )2 (Y � MX )2 (X � Mx)(Y � MY)

2 3 �2 �5 4 25 10
6 11 2 3 4 9 6
0 6 �4 �2 16 4 8
4 6 0 �2 0 4 0
7 12 3 4 9 16 12
5 7 1 �1 1 1 �1
5 10 1 2 1 4 2
3 9 �1 1 1 1 �1

SSX � 36 SSY � 64 SP � 36

For these data, �X � 32, so MX � 4. Also, �Y � 64, so MY � 8. These values
have been used to compute the deviation scores for each X and Y value. The final
three columns show the squared deviations for X and for Y, and the products of the
deviation scores. 

Our goal is to find the values for b and a in the regression equation. Using
Equations 16.2 and 16.4, the solutions for b and a are

b � �
S
S
S
P

X
� � � 1.00

a � MY � bMX � 8 � 1(4) � 4.00

The resulting equation is

Ŷ � X � 4

The original data and the regression line are shown in Figure 16.4.

The regression line shown in Figure 16.4 demonstrates some simple and very pre-
dictable facts about regression. First, the calculation of the Y-intercept (Equation 16.4)
ensures that the regression line passes through the point defined by the mean for 
X and the mean for Y. That is, the point identified by the coordinates MX, MY will 
always be on the line. We have included the two means in Figure 16.4 to show that

36 
––
36

E X A M P L E  1 6 . 1
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the point they define is on the regression line. Second, the sign of the correlation 
(� or �) is the same as the sign of the slope of the regression line. Specifically, if
the correlation is positive, then the slope is also positive and the regression line slopes
up to the right. On the other hand, if the correlation is negative, then the slope is neg-
ative and the line slopes down to the right. A correlation of zero means that the slope
is also zero and the regression equation produces a horizontal line that passes through
the data at a level equal to the mean for the Y values. Note that the regression line in
Figure 16.4 has a positive slope. One consequence of this fact is that all of the points
on the line that are above the mean for X are also above the mean for Y. Similarly, 
all of the points below the mean for X are also below the mean for Y. Thus, every 
individual with a positive deviation for X is predicted to have a positive deviation 
for Y, and everyone with a negative deviation for X is predicted to have a negative 
deviation for Y.

As we noted at the beginning of this section, one common use of regression equations
is for prediction. For any given value of X, we can use the equation to compute a pre-
dicted value for Y. For the equation from Example 16.1, an individual with a score of
X � 1 would be predicted to have a Y score of

Ŷ � X � 4 � 1 � 4 � 5

USING THE REGRESSION
EQUATION FOR PREDICTION
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FIGURE 16.4

The X and Y data points and
the regression line for the 
n � 8 pairs of scores in
Example 16.1.
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Although regression equations can be used for prediction, a few cautions should be
considered whenever you are interpreting the predicted values:

1. The predicted value is not perfect (unless r � �1.00 or �1.00). If you examine
Figure 16.4, it should be clear that the data points do not fit perfectly on the
line. In general, there is some error between the predicted Y values (on the line)
and the actual data. Although the amount of error varies from point to point, on
average the errors are directly related to the magnitude of the correlation. With
a correlation near 1.00 (or �1.00), the data points generally are clustered close
to the line and the error is small. As the correlation gets nearer to zero, the
points move away from the line and the magnitude of the error increases.

2. The regression equation should not be used to make predictions for X values
that fall outside of the range of values covered by the original data. For
Example 16.1, the X values ranged from X � 0 to X � 7, and the regression
equation was calculated as the best-fitting line within this range. Because you
have no information about the X-Y relationship outside this range, the equation
should not be used to predict Y for any X value lower than 0 or greater than 7.

So far we have presented the regression equation in terms of the original values, or raw
scores, for X and Y. Occasionally, however, researchers standardize the scores by trans-
forming the X and Y values into z-scores before finding the regression equation. The 
resulting equation is often called the standardized form of the regression equation and
is greatly simplified compared to the raw-score version. The simplification comes from
the fact that z-scores have standardized characteristics. Specifically, the mean for a set
of z-scores is always zero and the standard deviation is always 1. As a result, the stan-
dardized form of the regression equation becomes

ẑY � (beta)zX (16.6)

First notice that we are now using the z-score for each X value (zX) to predict the
z-score for the corresponding Y value (zY). Also, note that the slope constant that was
identified as b in the raw-score formula is now identified as beta. Because both sets of
z-scores have a mean of zero, the constant a disappears from the regression equation.
Finally, when one variable, X, is being used to predict a second variable, Y, the value
of beta is equal to the Pearson correlation for X and Y. Thus, the standardized form of
the regression equation can also be written as

ẑY � rzX (16.7)

Because the process of transforming all of the original scores into z-scores can be
tedious, researchers usually compute the raw-score version of the regression equation
(Equation 16.5) instead of the standardized form. However, most computer programs
report the value of beta as part of the output from linear regression, and you should 
understand what this value represents.

STANDARDIZED FORM 
OF THE REGRESSION

EQUATIONS
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L E A R N I N G  C H E C K 1. Sketch a scatter plot for the following data—that is, a graph showing the X, Y data
points:

X Y

1 4
3 9
5 8
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It is possible to determine a regression equation for any set of data by simply using the
formulas already presented. The linear equation you obtain is then used to generate pre-
dicted Y values for any known value of X. However, it should be clear that the accuracy
of this prediction depends on how well the points on the line correspond to the actual
data points—that is, the amount of error between the predicted values, Ŷ, and the actual
scores, Y values. Figure 16.5 shows two different sets of data that have exactly the same
regression equation. In one case, there is a perfect correlation (r � �1) between X and
Y, so the linear equation fits the data perfectly. For the second set of data, the predicted
Y values on the line only approximate the real data points.

A regression equation, by itself, allows you to make predictions, but it does not
provide any information about the accuracy of the predictions. To measure the preci-
sion of the regression, it is customary to compute a standard error of estimate.

THE STANDARD ERROR 
OF ESTIMATE

566 CHAPTER 16 INTRODUCTION TO REGRESSION

ANSWERS

a. Find the regression equation for predicting Y from X. Draw this line on your
graph. Does it look like the best-fitting line?

b. Use the regression equation to find the predicted Y value corresponding to each
X in the data.

1. a. SSX � 8, SP � 8, b � 1, a � 4. The equation is Ŷ � X � 4.

b. The predicted Y values are 5, 7, and 9.

1 2 3 4 5 6 7 8

11
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Y

0
X
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5
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3
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1

Y

0
X

Y = X + 4ˆ Y = X + 4ˆ

FIGURE 16.5

(a) A scatter plot showing data points that perfectly fit the regression line defined by the
equation Ŷ � X � 4. Note that the correlation is r � �1.00. (b) A scatter plot for the data
from Example 16.1. Notice that there is error between the actual data points and the predicted
Y values of the regression line.

(a) (b)
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The standard error of estimate gives a measure of the standard distance between
the predicted Y values on the regression line and the actual Y values in the data.

Conceptually, the standard error of estimate is very much like a standard deviation:
Both provide a measure of standard distance. Also, the calculation of the standard error
of estimate is very similar to the calculation of standard deviation.

To calculate the standard error of estimate, we first find the sum of squared devia-
tions (SS). Each deviation measures the distance between the actual Y value (from the
data) and the predicted Y value (from the regression line). This sum of squares is com-
monly called SSresidual because it is based on the remaining distance between the actual
Y scores and the predicted values.

SSresidual � �(Y � Ŷ )2 (16.8)

The obtained SS value is then divided by its degrees of freedom to obtain a meas-
ure of variance. This procedure should be very familiar:

Variance � �
S
d
S
f
�

The degrees of freedom for the standard error of estimate are df � n � 2. The rea-
son for having n � 2 degrees of freedom, rather than the customary n � 1, is that we
now are measuring deviations from a line rather than deviations from a mean. To find
the equation for the regression line, you must know the means for both the X and the 
Y scores. Specifying these two means places two restrictions on the variability of 
the data, with the result that the scores have only n � 2 degrees of freedom. (Note: the 
df � n � 2 for SSresidual is the same df � n � 2 that we encountered when testing the
significance of the Pearson correlation on page 529.)

The final step in the calculation of the standard error of estimate is to take the square
root of the variance to obtain a measure of standard distance. The final equation is

standard error of estimate � �⎯S�S�re

d�s

f
i�du�al⎯� � ��

�(Y
n �

�� 2
Ŷ )2

�� (16.9)

The following example demonstrates the calculation of this standard error.

The same data that were used in Example 16.1 are used here to demonstrate the
calculation of the standard error of estimate. These data have the regression equation

Ŷ � X � 4

Using this regression equation, we have computed the predicted Y value, the
residual, and the squared residual for each individual, using the data from Example 16.1.

Predicted Squared
Data Y Values Residual Residual

X Y Ŷ � X � 4 Y � Ŷ (Y � Ŷ )2

2 3 6 �3 9
6 11 10 1 1
0 6 4 2 4
4 6 8 �2 4
5 7 9 �2 4

E X A M P L E  1 6 . 2
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Recall that variance measures
the average squared distance.

(continued)
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Predicted Squared
Data Y Values Residual Residual

X Y Ŷ � X � 4 Y � Ŷ (Y � Ŷ )2

7 12 11 1 1
5 10 9 1 1
3 9 7 2 4

0 SSresidual � 28

First note that the sum of the residuals is equal to zero. In other words, the sum
of the distances above the line is equal to the sum of the distances below the line.
This is true for any set of data and provides a way to check the accuracy of your
calculations. The squared residuals are listed in the final column. For these data, the
sum of the squared residuals is SSresidual � 28. With n � 8, the data have df � n � 2
� 6, so the standard error of estimate is

standard error of estimate � �⎯S�S�re

d�s

f
i�du�al⎯� � � 2.16

Remember: The standard error of estimate provides a measure of how accurately
the regression equation predicts the Y values. In this case, the standard distance
between the actual data points and the regression line is measured by standard error
of estimate � 2.16.

It should be clear from Example 16.2 that the standard error of estimate is directly 
related to the magnitude of the correlation between X and Y. If the correlation is near
1.00 (or �1.00), then the data points are clustered close to the line, and the standard
error of estimate is small. As the correlation gets nearer to zero, the data points become
more widely scattered, the line provides less accurate predictions, and the standard
error of estimate grows larger.

Earlier (p. 524), we observed that squaring the correlation provides a measure of the
accuracy of prediction. The squared correlation, r2, is called the coefficient of determi-
nation because it determines what proportion of the variability in Y is predicted by the
relationship with X. Because r2 measures the predicted portion of the variability in the 
Y scores, we can use the expression (1 � r2) to measure the unpredicted portion. Thus,

predicted variability � SSregression � r2SSY (16.10)

unpredicted variability � SSresidual � (1 � r2)SSY (16.11)

For example, if r � 0.80, then the predicted variability is r2 � 0.64 (or 64%) of
the total variability for the Y scores and the remaining 36% (1 � r2) is the unpredicted
variability. Note that when r � 1.00, the prediction is perfect and there are no residu-
als. As the correlation approaches zero, the data points move farther off the line and the
residuals grow larger. Using Equation 16.11 to compute SSresidual, the standard error of
estimate can be computed as

standard error of estimate � �⎯S�S�re

d�s

f
i�du�al⎯� � ��

(1 �

n �

r�2)
2
SSY�� (16.12)

RELATIONSHIP BETWEEN 
THE STANDARD ERROR 

AND THE CORRELATION

28��–––
6
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Because it is usually much easier to compute the Pearson correlation than to compute
the individual (Y � Ŷ)2 values, Equation 16.11 is usually the easiest way to compute
SSresidual, and Equation 16.12 is usually the easiest way to compute the standard error of
estimate for a regression equation. The following example demonstrates this new formula.

We use the same data used in Examples 16.1 and 16.2, which produced SSX � 36,
SSY � 64, and SP � 36. For these data, the Pearson correlation is

r �

With SSY � 64 and a correlation of r � 0.75, the predicted variability from the
regression equation is

SSregression � r2SSY � (0.752)(64) � 0.5625(64) � 36.00

Similarly, the unpredicted variability is

SSresidual � (1 � r2)SSY � (1 � 0.752)(64) � 0.4375(64) � 28.00

Notice that the new formula for SSresidual produces exactly the same value that we
obtained by adding the squared residuals in Example 16.2. Also note that this new
formula is generally much easier to use because it requires only the correlation value (r)
and the SS for Y. The primary point of this example, however, is that SSresidual and the
standard error of estimate are closely related to the value of the correlation. With a large
correlation (near �1.00 or �1.00), the data points are close to the regression line, and
the standard error of estimate is small. As a correlation gets smaller (near zero), the data
points move away from the regression line, and the standard error of estimate gets larger.

Because it is possible to have the same regression equation for several different
sets of data, it is also important to consider r2 and the standard error of estimate. The
regression equation simply describes the best-fitting line and is used for making pre-
dictions. However, r2 and the standard error of estimate indicate how accurate these
predictions are.

36             36
––––––– � ––– � 0.75 
�������36(64)      48
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L E A R N I N G  C H E C K 1. Describe what is measured by the standard error of estimate for a regression equation.

2. As the numerical value of a correlation increases, what happens to the standard
error of estimate?

3. A sample of n � 6 pairs of X and Y scores produces a correlation of r � 0.80 and
SSY � 100. What is the standard error of estimate for the regression equation?

1. The standard error of estimate measures the average, or standard, distance between the
predicted Y values on the regression line and the actual Y values in the data.

2. A larger correlation means that the data points are clustered closer to the line, which means
the standard error of estimate is smaller.

3. The standard error of estimate � �36/4���� � 3.

ANSWERS

30991_ch16_ptg01_hr_557-590.qxd  9/3/11  3:00 AM  Page 569



16.2 ANALYSIS OF REGRESSION: TESTING THE SIGNIFICANCE
OF THE REGRESSION EQUATION

As we noted in Chapter 15, a sample correlation is expected to be representative of its
population correlation. For example, if the population correlation is zero, then the sam-
ple correlation is expected to be near zero. Note that we do not expect the sample cor-
relation to be exactly equal to zero. This is the general concept of sampling error
that was introduced in Chapter 1 (p. 8). The principle of sampling error is that there is 
typically some discrepancy or error between the value obtained for a sample statistic
and the corresponding population parameter. Thus, when there is no relationship what-
soever in the population, a correlation of � � 0, you are still likely to obtain a nonzero
value for the sample correlation. In this situation, however, the sample correlation is
caused by chance and a hypothesis test usually demonstrates that the correlation is not
significant.

Whenever you obtain a nonzero value for a sample correlation, you also obtain
real, numerical values for the regression equation. However, if there is no real rela-
tionship in the population, both the sample correlation and the regression equation are
meaningless—they are simply the result of sampling error and should not be viewed as
an indication of any relationship between X and Y. In the same way that we tested the
significance of a Pearson correlation, we can test the significance of the regression
equation. In fact, when a single variable, X, is being used to predict a single variable,
Y, the two tests are equivalent. In each case, the purpose for the test is to determine
whether the sample correlation represents a real relationship or is simply the result of
sampling error. For both tests, the null hypothesis states that there is no relationship 
between the two variables in the population. A more specific null hypothesis for test-
ing the significance of a regression equation is that the equation does not account for a
significant proportion of the variance in the Y scores. An alternative version of H0 states
that the values of b or beta that are computed for the regression equation do not repre-
sent any real relationship between X and Y but rather are simply the result of chance or
sampling error. In other words, the true population value of b or beta is zero.

The process of testing the significance of a regression equation is called analysis
of regression and is very similar to the analysis of variance (ANOVA) presented in
Chapter 12. As with ANOVA, the regression analysis uses an F-ratio to determine
whether the variance predicted by the regression equation is significantly greater than
would be expected if there were no relationship between X and Y. The F-ratio is a ratio
of two variances, or mean square (MS) values, and each variance is obtained by divid-
ing an SS value by its corresponding degrees of freedom. The numerator of the F-ratio
is MSregression, which is the variance in the Y scores that is predicted by the regression
equation. This variance measures the systematic changes in Y that occur when the value
of X increases or decreases. The denominator is MSresidual, which is the unpredicted
variance in the Y scores. This variance measures the changes in Y that are independent
of changes in X. The two MS value are defined as

MSregression � �
S

d

S
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The F-ratio is

F � �
M
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n
� with df � 1, n � 2 (16.13)
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The complete analysis of SS and degrees of freedom is diagrammed in Figure 16.6.
The analysis of regression procedure is demonstrated in the following example, using the
same data that we used in Examples 16.1, 16.2, and 16.3.

The data consist of n � 8 pairs of scores with a correlation of r � 0.75 and SSY � 64.
The null hypothesis either states that there is no relationship between X and Y in the
population, or that the regression equation does not account for a significant portion
of the variance for the Y scores.

The F-ratio for the analysis of regression has df � 2, n � 2. For these data, 
df � 1, 6. With � � .05, the critical value is 5.99.

As noted in the previous section, the SS for the Y scores can be separated into
two components: the predicted portion corresponding to r2 and the unpredicted, or
residual, portion corresponding to (1�r2). With r � 0.75, we obtain r2 � 0.5625 and

predicted variability � SSregression � 0.5625(64) � 36

unpredicted variability � SSresidual � (1 � 0.5625)(64) � 0.4375(64) � 28

Using these SS values and the corresponding df values, we calculate a variance,
or MS, for each component. For these data the MS values are

SSregression 36
MSregression � ––––––––– � ––– � 36 

dfresidual            1

SSresidual 28
MSresidual � –––––––– � ––– � 4.67 

dfresidual        6

Finally, the F-ratio for evaluating the significance of the regression equation is

MSregression 36.00
F � –––––––––– � ––––– � 7.71 

MSresidual           4.67

The F-ratio is in the critical region, so we reject the null hypothesis and conclude
that the regression equation does account for a significant portion of the variance for
the Y scores. The complete analysis of regression is summarized in Table 16.1, which
is a common format for computer printouts of regression analysis.

E X A M P L E  1 6 . 4
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SSregression

r2SSY

SSresidual

(1 � r2)SSY

SSY

dfregression � 1 dfresidual � n � 2

dfY � n � 1FIGURE 16.6

The partitioning of SS and df
for analysis of regression.
The variability in the original
Y scores (both SSY and dfY) 
is partitioned into two 
components: (1) the 
variability that is explained
by the regression equation,
and (2) the residual 
variability.
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As noted earlier, in situation with a single X variable and a single Y variable, testing the
significance of the regression equation is equivalent to testing the significance of the
Pearson correlation. Therefore, whenever the correlation between two variables is sig-
nificant, you can conclude that the regression equation is also significant. Similarly, if
a correlation is not significant, then the regression equation is also not significant. For
the data in Example 16.3, we concluded that the regression equation is significant. This
conclusion is perfectly consistent with the corresponding test for the significance of the
Pearson correlation. For these data, the Pearson correlation is r � 0.75 with n � 8.
Checking Table B.6 in Appendix B, you should find a critical value of 0.707. Our 
correlation exceeds this criterion, so we conclude that the correlation is also significant.
In fact, the critical values listed in Table B.6 were developed using the F-ratio
(Equation 16.13) from analysis of regression.

SIGNIFICANCE 
OF REGRESSION 

AND SIGNIFICANCE 
OF THE CORRELATION

16.3 INTRODUCTION TO MULTIPLE REGRESSION 
WITH TWO PREDICTOR VARIABLES

Thus far, we have looked at regression in situations in which one variable is being used
to predict a second variable. For example, IQ scores can be used to predict academic per-
formance for a group of college students. However, a variable such as academic per-
formance is usually related to a variety of other factors. For example, college GPA is
probably related to motivation, self-esteem, SAT score, rank in high school graduating
class, parents’ highest level of education, and many other variables. In this case, it is pos-
sible to combine several predictor variables to obtain a more accurate prediction. For 
example, IQ predicts some of academic performance, but you can probably get a better
prediction if you use IQ and SAT scores together. The process of using several predic-
tor variables to help obtain more accurate predictions is called multiple regression.

Although it is possible to combine a large number of predictor variables in a 
single multiple-regression equation, we limit our discussion to the two-predictor case.
There are two practical reasons for this limitation.

1. Multiple regression, even limited to two predictors, can be relatively complex.
Although we present equations for the two-predictor case, the calculations are

572 CHAPTER 16 INTRODUCTION TO REGRESSION

TABLE 16.1

A summary table showing the
results of the analysis of 
regression in Example 16.4. 

Source SS df MS F

Regression 36 1 36.60 7.71
Residual 28 6 4.67
Total 64 7

L E A R N I N G  C H E C K 1. A set of n � 18 pairs of scores produces a Pearson correlation of r � 0.60 with
SSY � 100. Find SSregression and SSresidual and compute the F-ratio to evaluate the
significance of the regression equation of predicting Y.

1. SSregression � 36 with df � 1. SSresidual � 64 with df � 16. F � 9.00. With df � 1, 16, the
F-ratio is significant with either � � .05 or � � .01.

ANSWER
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usually performed by a computer, so there is not much point in developing a set
of complex equations when people are going to use a computer instead.

2. Usually, different predictor variables are related to each other, which means
that they are often measuring and predicting the same thing. Because the vari-
ables may overlap with each other, adding another predictor variable to a 
regression equation does not always add to the accuracy of prediction. This
situation is shown in Figure 16.7. In the figure, IQ overlaps with academic
performance, which means that part of academic performance can be predicted
by IQ. In this example, IQ overlaps (predicts) 40% of the variance in academic
performance (combine sections a and b in the figure). The figure also shows
that SAT scores overlap with academic performance, which means that part of
academic performance can be predicted by knowing SAT scores. Specifically,
SAT scores overlap, or predict, 30% of the variance (combine sections b and c).
Thus, using both IQ and SAT scores to predict academic performance should
produce better predictions than would be obtained from IQ alone. However,
there is also a lot of overlap between SAT scores and IQ. In particular, much of
the prediction from SAT scores overlaps with the prediction from IQ (section b).
As a result, adding SAT scores as a second predictor only adds a small amount
to the variance already predicted by IQ (section c). Because variables tend to
overlap in this way, adding new variables beyond the first one or two predictors
often does not add significantly to the quality of the prediction.

We identify the two predictor variables as X1 and X2. The variable we are trying to pre-
dict is identified as Y. Using this notation, the general form of the multiple regression
equation with two predictors is

Ŷ � b1X1 � b2X2 � a (16.14)

REGRESSION EQUATIONS
WITH TWO PREDICTORS

SECTION 16.3 / INTRODUCTION TO MULTIPLE REGRESSION WITH TWO PREDICTOR VARIABLES 573

10%
c

20%
b

20%
a

IQ SAT

Academic
Performance

FIGURE 16.7

Predicting the variance in
academic performance from
IQ and SAT scores. The
overlap between IQ and
academic performance 
indicates that 40% of the
variance in academic 
performance can be predicted
from IQ scores. Similarly,
30% of the variance in aca-
demic performance can be
predicted from SAT scores.
However, IQ and SAT also
overlap, so that SAT scores
contribute an additional
predication of only 10%
beyond what is already pre-
dicted by IQ.
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If all three variables, X1, X2, and Y, have been standardized by transformation into
z-scores, then the standardized form of the multiple regression equation predicts the 
z-score for each Y value. The standardized form is

ẑY � (beta1)zX1 � (beta2)zX2 (16.15)

Researchers rarely transform raw X and Y scores into z-scores before finding a 
regression equation, however, the beta values are meaningful and are usually reported
by computer programs conducting multiple regression. We return to the discussion of
beta values later in this section.

The goal of the multiple-regression equation is to produce the most accurate 
estimated values for Y. As with the single-predictor regression, this goal is accom-
plished with a least-squared solution. First, we define “error” as the difference between
the predicted Y value from the regression equation and the actual Y value for each 
individual. Each error is then squared to produce uniformly positive values, and then
we add the squared errors. Finally, we calculate values for b1, b2, and a that produce
the smallest possible sum of squared errors. The derivation of the final values is beyond
the scope of this text, but the final equations are as follows:

b1 � (16.16)

b2 � (16.17)

a � MY � b1MX1 � b2MX2 (16.18)

In these equations, you should recognize the following SS and SP values:

SSX1 is the sum of squared deviations for X1

SSX2 is the sum of squared deviations for X2

SPX1Y is the sum of products of deviations for X1 and Y

SPX2Y is the sum of products of deviations for X2 and Y

SPX1X2 is the sum of products of deviations for X1 and X2

Note: More detailed information about the calculation of SS is presented in Chapter
4 (pp. 111–112) and information concerning SP is in Chapter 15 (pp. 515–516). The 
following example demonstrates multiple regression with two predictor variables.

We use the data in Table 16.2 to demonstrate multiple regression. Note that each
individual has a Y score and two X scores that are used as predictor variables. Also
note that we have already computed the SS values for Y and for both of the X scores,
as well as all of the SP values. These values are used to compute the coefficients, b1

and b2, and the constant, a, for the regression equation.

Ŷ � b1X1 � b2X2 � a

E X A M P L E  1 6 . 5

(SPX2Y)(SSX1) � (SPX1X2)(SPX1Y)
����

(SSX1)(SSX2) � (SPX1X2)2

(SPX1Y)(SSX2) � (SPX1X2)(SPX2Y)
����

(SSX1)(SSX2) � (SPX1X2)2

574 CHAPTER 16 INTRODUCTION TO REGRESSION
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b1 � � � 0.672

b2 � � � 0.293

a � MY � b1MX1 � b2MX2 � 7 � 0.672(4) � 0.293(6) � 7 � 2.688 � 1.758 � 2.554

Thus, the final regression equation is,

Ŷ � 0.672X1 � 0.293X2 � 2.554

Example 16.5 also demonstrates that multiple regression can be a tedious process.
As a result, multiple regression is usually conducted on a computer. To demonstrate
this process, we used the SPSS computer program to perform a multiple regression on
the data in Table 16.2 and the output from the program is shown in Figure 16.8. At this
time, focus on the Coefficients Table at the bottom of the printout. The values in the
first column of Unstandardized Coefficients include the constant, b1 and b2 for the 
regression equation. We discuss other portions of the SPSS output later in this chapter.

(47)(62) � (42)(54)
���

(62)(64) � (42)2

(SPX2Y)(SSX1) � (SPX1X2)(SPX1Y)
����

(SSX1)(SSX2) � (SPX1X2)2

(54)(64) � (42)(47)
���

(62)(64) � (42)2

(SPX1Y)(SSX2) � (SPX1X2)(SPX2Y)
����

(SSX1)(SSX2) � (SPX1X2)2
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TABLE 16.2

Hypothetical data consisting of
three scores for each person.
Two of the scores, X1 and X2,
are used to predict the Y score
for each individual.

Person Y X1 X2

A 11 4 10 SPX1Y � 54
B 5 5 6 SPX2Y � 47
C 7 3 7 SPX1X2 � 42
D 3 2 4
E 4 1 3
F 12 7 5
G 10 8 8
H 4 2 4
I 8 7 10
J 6 1 3

MY � 7 MX1 � 4 MX2 � 6
SSY � 90 SSX1 � 62 SSX2 � 64

L E A R N I N G  C H E C K 1. A researcher computes a multiple-regression equation for predicting annual income
for 40-year-old men based on their level of education (X1 � number of years after
high school) and their social skills (X2 � score from a self-report questionnaire). The
regression equation is Ŷ � 8.3X1 � 2.1X2 � 3.5 and predicts income in thousands of
dollars. Two individuals are selected from the sample. One has X1 � 0 and X2 � 16;
the other has X1 � 3 and X2 � 12. Compute the predicted income for each.

1. The first man has a predicted income of Ŷ � 37.1 thousand dollars and the second has Ŷ � 53.6
thousand dollars.

ANSWER
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In the same way that we computed an r2 value to measure the percentage of variance 
accounted for with the single-predictor regression, it is possible to compute a correspon-
ding percentage for multiple regression. For a multiple-regression equation, this percent-
age is identified by the symbol R2. The value of R2 describes the proportion of the total
variability of the Y scores that is accounted for by the regression equation. In symbols,

R2 � �
SSre

S

g

S

re

Y

ssion
� or SSregression � R2SSY

For a regression with two predictor variables, R2 can be computed directly from the
regression equation as follows:

R2 � (16.19)b1SPX1Y � b2SPX2Y
���

SSY

R2 AND RESIDUAL VARIANCE

576 CHAPTER 16 INTRODUCTION TO REGRESSION

Model Summary

ANOVAb

Coefficientsa

Model

Model

Model

1

1 Regression

(Constant)

VAR00002

VAR00003

2.552

.672

.293

1.944

.407

.401

1.313

1.652

.732

.231

.142

.488

.558

.247

Residual

Total

50.086

39.914

90.000

2

7

9

25.043 4.392 .058a

5.702

Sum of
Squares

Unstandardized Coefficients

B Std. Error Beta t Sig.

Standardized
Coefficients

df F Sig.Mean Square

a. Predictors: (Constant), VAR00003, VAR00002

a. Predictors: (Constant), VAR00003, VAR00002
b. Dependent Variable: VAR00001

a. Dependent Variable: VAR00001

1

R

.746a .557 .430 2.38788

R Square
Adjusted R

Square
Std. Error of

the Estimate

FIGURE 16.8

The SPSS output for the multiple regression in Example 16.5.
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For the data in Table 16.2, we obtain a value of

R2 � � �
50

9

.0

0

59
� � 0.5562 (or 55.62%)

Thus, 55.6% of the variance for the Y scores can be predicted by the regression
equation. For the data in Table 16.2, SSY � 90, so the predicted portion of the 
variability is

SSregression � R2SSY � 0.5562(90) � 50.06

The unpredicted, or residual, variance is determined by 1 � R2. For the data in
Table 16.2, this is

SSresidual � (1 � R2)SSY � 0.4438(90) � 39.94

The value of R2 and 1 � R2 can also be obtained by computing the residual, or differ-
ence between the predicted Y and the actual Y for each individual, then computing the
sum of the squared residuals. The resulting value is SSresidual and measures the unpre-
dicted portion of the variability of Y, which is equal to (1 � R2)SSY. For the data in
Table 16.2, we first use the multiple-regression equation to compute the predicted
value of Y for each individual. The process of finding and squaring each residual is
shown in Table 16.3.

Note that the sum of the squared residuals, the unpredicted portion of SSY, is
39.960. This value corresponds to 44.4% of the variability for the Y scores:

�
SS

S
re

S
si

Y

dual� � �
39.96

90
� � 0.444 (or 44.4%)

Because the unpredicted portion of the variability is 1 � R2 � 44.4%, we conclude
that the predicted portion is R2 � 55.6%. Note that this answer is within rounding error
of R2 � 55.62% that we obtained from equation 16.19.

COMPUTING R2 AND 1 � R2

FROM THE RESIDUALS

0.672(54) � 0.293(47)
���

90
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In the computer printout in
Figure 16.8, the value of R2 is
reported in the Model Summary
table at the top.

TABLE 16.3

The predicted Y values and 
the residuals for the data in
Table 16.2. The predicted 
Y values were obtained using 
the values of X1 and X2 in the 
multiple-regression equation 
for each individual.

Predicted Y Residual Squared Residual
Actual Y (Ŷ ) (Y � Ŷ ) (Y � Ŷ )2

11 8.17 2.83 8.010
5 7.67 �2.67 7.129
7 6.62 0.38 0.144
3 5.07 �2.07 4.285
4 4.10 �0.10 0.010

12 8.72 3.28 10.758
10 10.27 �0.27 0.073
4 5.07 �1.07 1.145
8 10.19 �2.19 4.796
6 4.10 1.90 3.610

39.960 � SSresiduals
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On page 567, we defined the standard error of estimate for a linear regression equation
as the standard distance between the regression line and the actual data points. In more
general terms, the standard error of estimate can be defined as the standard distance 
between the predicted Y values (from the regression equation) and the actual Y values
(in the data). The more general definition applies equally well to both linear and 
multiple regression.

To find the standard error of estimate for either linear regression or multiple 
regression, we begin with SSresidual. For linear regression with one predictor, 
SSresidual � (1 � r2)SSY and has df � n � 2. For multiple regression with two predic-
tors, SSresidual � (1 � R2)SSY and has df � n � 3. In each case, we can use the SS and
df values to compute a variance or MSresidual.

MSresidual � �
SSre

d
s

f
idual�

The variance, or MS value, is a measure of the average squared distance between
the actual Y values and the predicted Y values. By simply taking the square root, we 
obtain a measure of standard deviation or standard distance. This standard distance for
the residuals is the standard error of estimate. Thus, for both linear regression and mul-
tiple regression

the standard error of estimate � �M�S�re�si�du�al�

For either linear or multiple regression, you do not expect the predictions from the 
regression equation to be perfect. In general, there is some discrepancy between the predicted
values of Y and the actual values. The standard error of estimate provides a measure of how
much discrepancy, on average, there is between the Ŷ values and the actual Y values.

Just as we did with the single-predictor equation, we can evaluate the significance of a
multiple-regression equation by computing an F-ratio to determine whether the equa-
tion predicts a significant portion of the variance for the Y scores. The total variability
of the Y scores is partitioned into two components, SSregression and SSresidual. With two
predictor variables, SSregression has df � 2, and SSresidual has df � n � 3. Therefore, the
two MS values for the F-ratio are

MSregression � �
SSreg

2

ression
� (16.20)

and

MSresidual � �
S

n

Sre

�

sid

3

ual
� (16.21)

The data for the n � 10 people in Table 16.2 have produced R2 � 0.5562
(or 55.62%) and SSY � 90. Thus,

SSregression � R2SSY � 0.556(90) � 50.06

SSresidual � (1 � R2)SSY � 0.4438(90) � 39.94

Therefore, MSregession � �
50

2
.06
� � 25.03 and MSresidual � �

39
7
.94
� � 5.71

and F � �
M

M

S

S

re

r

g

es

re

id

s

u

si

a

o

l

n
� � �

25.03

5.71
� � 4.38

TESTING THE SIGNIFICANCE
OF THE MULTIPLE

REGRESSION EQUATION:
ANALYSIS OF REGRESSION

THE STANDARD ERROR 
OF ESTIMATE

In the computer printout in
Figure 16.8, the standard error
of estimate is reported in the
Model Summary table at the top.

Because of rounding error, the
value we obtain for SSresidual is
slightly different from the value
in Table 16.3.
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With df � 2, 7, this F-ratio is not significant with � � .05, so we cannot conclude
that the regression equation accounts for a significant portion of the variance for the 
Y scores.

The analysis of regression is summarized in the following table, which is a com-
mon component of the output from most computer versions of multiple regression. In
the computer printout in Figure 16.8, this summary table is reported in the ANOVA
table in the center.

16.4 EVALUATING THE CONTRIBUTION OF EACH PREDICTOR
VARIABLE

In addition to evaluating the overall significance of the multiple-regression equation,
researchers are often interested in the relative contribution of each of the two predictor
variables. Is one of the predictors responsible for more of the prediction than the other?
Unfortunately, the b values in the regression equation are influenced by a variety of
other factors and do not address this issue. If b1 is larger than b2, it does not necessar-
ily mean that X1 is a better predictor than X2. However, in the standardized form of the
regression equation, the relative size of the beta values is an indication of the relative
contribution of the two variables. For the data in Table 16.3, the standardized regres-
sion equation is

ẑY � (beta1)zX1 � (beta2)zX2

� 0.558zX1 � 0.247zX2

In this case, the larger beta value for the X1 predictor indicates that X1 predicts more
of the variance than does X2. The signs of the beta values are also meaningful. In this 
example, both betas are positive, indicating the both X1 and X2 are positively related to Y.

SECTION 16.4 / EVALUATING THE CONTRIBUTION OF EACH PREDICTOR VARIABLE 579

Source SS df MS F

Regression 50.06 2 25.03 4.38
Residual 39.94 7 5.71
Total 90.00 9

L E A R N I N G  C H E C K 1. Data from a sample of n � 15 individuals are used to compute a multiple-
regression equation with two predictor variables. The equation has R2 � 0.20
and SSY � 150.

a. Find SSresidual and compute the standard error of estimate for the regression
equation.

b. Find SSregression and compute the F-ratio to evaluate the significance of the
regression equation.

1. a. SSresidual � 120. The standard error of estimate is �10
–––

� 3.16.

b. SSregression � 30 with df � 2. SSresidual � 120 with df � 12. F � 1.50. With df � 2, 12,
the F-ratio is not significant.

ANSWER

For the SPSS printout in 
Figure 16.8, the beta values are
shown in the Coefficients table.
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Beyond judging the relative contribution for each of the predictor variables, it also
is possible to evaluate the significance of each contribution. For example, does variable
X2 make a significant contribution beyond what is already predicted by variable X1?
The null hypothesis states that the multiple-regression equation (using X2 in addition to
X1) is not any better than the simple regression equation using X1 as a single predictor
variable. An alternative view of the null hypothesis is that the b2 (or beta2) value in the
equation is not significantly different from zero. To test this hypothesis, we first deter-
mine how much more variance is predicted using X1 and X2 together than is predicted
using X1 alone.

Earlier we found that the multiple regression equation with both X1 and X2

predicted R2 � 55.62% of the variance for the Y scores. To determine how much is 
predicted by X1 alone, we begin with the correlation between X1 and Y, which is

r � �
�(S�

S

S�
P

X

X

1�
1

)(�
Y

S�S�Y)�
� � �

�(6�
5

�
4

2)(�9�0�)�
�� � �

74

5

.

4

70
� � 0.7229

Squaring the correlation produces r2 � (0.7229)2 � 0.5226 or 52.26%. This
means that the relationship with X1 predicts 52.26% of the variance for the Y scores.
Therefore, the additional contribution made by adding X2 to the regression equation
can be computed as

(% with both X1 and X2) � (% with X1 alone)

� 55.62% � 52.26%

� 3.36%

Because SSY � 90, the additional variability from adding X2 as a predictor
amounts to

SSadditional � 3.36% of 90 � 0.0336(90) � 3.024

This SS value has df � 1, and can be used to compute an F-ratio evaluating the 
significance of the contribution of X2. First,

MSadditional � �
SSadd

1
itional� � �

3.
1
024
�� � 3.024

This MS value is evaluated by computing an F-ratio with the MSresidual value from
the multiple regression as the denominator. (Note: This is the same denominator that
was used in the F-ratio to evaluate the significance of the multiple-regression equation.)
For these data, we obtain

F � �
M
M

S
S
a

r

d

e

d

s

i

i

t

d

io

u

n

a

a

l

l� � �
3
5
.
.71
024
�� � 0.5296

With df � 1, 7, this F-ratio is not significant. Therefore, we conclude that adding
X2 to the regression equation does not significantly improve the prediction compared to
using X1 as a single predictor. The computer printout shown in Figure 16.8 reports a 
t statistic instead of an F-ratio to evaluate the contribution for each predictor variable.
Each t value is simply the square root of the F-ratio and is reported in the right-hand
side of the Coefficients table. Variable X2, for example, is reported as VAR00003 in 
the table and has t � 0.732, which is within rounding error of the F-ratio we obtained;
�F� � � ������������������������������������������������������0.5296 � 0.728. 
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In Chapter 15 we introduced partial correlation as a technique for measuring the rela-
tionship between two variables while eliminating the influence of a third variable. At
that time, we noted that partial correlations serve two general purposes:

1. A partial correlation can demonstrate that an apparent relationship between two
variables is actually caused by a third variable. Thus, there is no direct relation-
ship between the original two variables.

2. Partial correlation can demonstrate that there is a relationship between two vari-
ables even after a third variable is controlled. Thus, there really is a relationship
between the original two variables that is not being caused by a third variable.

Multiple regression provides an alternative procedure for accomplishing both of
these goals. Specifically, the regression analysis evaluates the contribution of each pre-
dictor variable after the influence of the other predictor has been considered. Thus, you
can determine whether each predictor variable contributes to the relationship by itself
or simply duplicates the contribution already made by another variable.

MULTIPLE REGRESSION 
AND PARTIAL CORRELATIONS

SUMMARY 581

1. When there is a general linear relationship between
two variables, X and Y, it is possible to construct a
linear equation that allows you to predict the Y value
corresponding to any known value of X.

predicted Y value � Ŷ� bX � a

The technique for determining this equation is called
regression. By using a least-squares method to
minimize the error between the predicted Y values and
the actual Y values, the best-fitting line is achieved
when the linear equation has

b � �
S
S
S
P

X
� � r �s

s
X

Y� and a � MY � bMX

2. The linear equation generated by regression (called the
regression equation) can be used to compute a predicted
Y value for any value of X. However, the prediction is
not perfect, so for each Y value, there is a predicted
portion and an unpredicted, or residual, portion. Overall,
the predicted portion of the Y score variability is
measured by r2, and the residual portion is measured by
1 �r2.

predicted variability � SSregression � r2SSY

unpredicted variability � SSresidual � (1 �r2)SSY

3. The residual variability can be used to compute the
standard error of estimate, which provides a measure
of the standard distance (or error) between the

predicted Y values on the line and the actual data
points. The standard error of estimate is computed by

standard error of estimate � ��
S�n

S�re

��si�d

2
u�al

�� � �M�S�re�si�du�al�

4. It is also possible to compute an F-ratio to evaluate the
significance of the regression equation. The process is
called analysis of regression and determines whether the
equation predicts a significant portion of the variance for
the Y scores. First a variance, or MS, value is computed
for the predicted variability and the residual variability,

MSregression � �
S

d

S

fr

r

e

e

g

g

r

r

e

e

s

s

s

s

i

i

o

o

n

n
� MSresidual � �

S

d

S

fr

r

e

e

s

s

i

i

d

d

u

u

a

a

l

l
�

where df regression � 1 and df residual � n �2. Next, an
F-ratio is computed to evaluate the significance of the
regression equation.

F � �
M

M

S

S
re

r

g

es

re

id

s

u

si

a

o

l

n
� with df � 1, n � 2

5. Multiple regression involves finding a regression
equation with more than one predictor variable. With
two predictors (X1 and X2), the equation becomes

Ŷ� b1X1 � b2X2 � a

with the values for b1, b2, and a computed using
equations 16.16, 16.17, and 16.18.

SUMMARY
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RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 16 on the book

companion website. The website also provides access to a workshop entitled Correlation
that includes information on regression. 

Improve your understanding of statistics with Aplia’s auto-graded problem sets and immedi-
ate, detailed explanations for every question. To learn more, visit www.aplia.com/statistics.
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6. For multiple regression, the value of R2 describes the
proportion of the total variability of the Y scores that 
is accounted for by the regression equation. With two
predictor variables,

R2 �

Predicted variability � SSregression � R2SSY.
Unpredicted variability � SSresidual � (1 �R2)SSY.

7. The residual variability for the multiple-regression
equation can be used to compute a standard error of
estimate, which provides a measure of the standard
distance (or error) between the predicted Y values from
the equation and the actual data points. For multiple
regression with two predictors, the standard error of
estimate is computed by

standard error of estimate � ��
S�n

S�re

��si�d

3
u�al

��
� �M�S�re�si�du�al�

b1SPX1Y � b2SPX2Y
���

SSY

8. Evaluating the significance of the two-predictor
multiple-regression equation involves computing an 
F-ratio that divides the MSregression (with df � 2) by
the MSresidual (with df � n �3). A significant F-ratio
indicates that the regression equation accounts for a
significant portion of the variance for the Y scores.

9. An F-ratio can also be used to determine whether a
second predictor variable (X2) significantly improves
the prediction beyond what was already predicted by
X1. The numerator of the F-ratio measures the
additional SS that is predicted by adding X2 as a
second predictor.

SSadditional � SSregression with X1 and X2

�SSregression with X1 alone

This SS value has df � 1. The denominator of the 
F-ratio is the MS residual from the two-predictor
regression equation.

KEY TERMS

linear relationship (559)

linear equation (559)

slope (559)

Y-intercept (559)

regression (561)

regression line (561)

least-squared-error solution (562)

regression equation for Y (563)

standard error of estimate (567)

predicted variability (SSregression) (568)

unpredicted variability (SSresidual) (568)

analysis of regression (570)

multiple regression (572)

partial correlation (581)
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General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to perform the Linear Regression and Multiple Regression
presented in this chapter.

Data Entry

With one predictor variable (X), you enter the X values in one column and the Y values
in a second column of the SPSS data editor. With two predictors (X1 and X2), enter the
X1 values in one column, X2 in a second column, and Y in a third column.

Data Analysis

1. Click Analyze on the tool bar, select Regression, and click on Linear.
2. In the left-hand box, highlight the column label for the Y values, then click the

arrow to move the column label into the Dependent Variable box.
3. For one predictor variable, highlight the column label for the X values and click 

the arrow to move it into the Independent Variable(s) box. For two predictor
variables, highlight the X1 and X2 column labels, one at a time, and click the arrow
to move them into the Independent Variable(s) box.

4. Click OK.

SPSS Output

We used SPSS to perform multiple regression for the data in Example 16.4 and the output
is shown in Figure 16.8 (p. 576). The Model Summary table presents the values for R,
R2, and the standard error of estimate. (Note: For a single predictor, R is simply the
Pearson correlation between X and Y.) The ANOVA table presents the analysis of 
regression evaluating the significance of the regression equation, including the F-ratio and 
the level of significance (the p value or alpha level for the test). The Coefficients table 
summarizes both the unstandardized and the standardized coefficients for the regression
equation. For one predictor, the table shows the values for the constant (a) and the coeffi-
cient (b). For two predictors, the table shows the constant (a) and the two coefficients 
(b1 and b2). The standardized coefficients are the beta values. For one predictor, beta is
simply the Pearson correlation between X and Y. Finally, the table uses a t statistic to
evaluate the significance of each predictor variable. For one predictor variable, this is
identical to the significance of the regression equation and you should find that t is 
equal to the square root of the F-ratio from the analysis of regression. For two predictor
variables, the t values measure the significance of the contribution of each variable 
beyond what is already predicted by the other variable.
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FOCUS ON PROBLEM SOLVING

1. A basic understanding of the Pearson correlation, including the calculation of SP
and SS values, is critical for understanding and computing regression equations.

2. You can calculate SSresidual directly by finding the residual (the difference between
the actual Y and the predicted Y for each individual), squaring the residuals, and
adding the squared values. However, it usually is much easier to compute r2 (or R2)
and then find SSresidual � (1 �r2)SSY.

3. The F-ratio for analysis of regression is usually calculated using the actual SSregression

and SSresidual. However, you can simply use r2 (or R2) in place of SSregression and you
can use 1 �r2 or (1 �R2) in place of SSresidual. Note: You must still use the correct 
df value for the numerator and the denominator.

DEMONSTRATION 16.1

LINEAR REGRESSION

The following data are used to demonstrate the process of linear regression. The scores
and summary statistics are as follows:

Person X Y

A 0 4 MX � 4 with SSX � 40
B 2 1 MY � 6 with SSY � 54
C 8 10 SP � 40
D 6 9
E 4 6

These data produce a Pearson correlation of r � 0.861.

Compute the values for the regression equation. The general form of the regression
equation is

Ŷ � bX � a where b � �
S
S
S
P

X
� and a � MY � bMX

For these data, b � �
4
4
0
0
� � 1.00 and a � 6 � 1(4) � �2.00

Thus, the regression equation is  Ŷ� (1)X � 2.00 or simply,  Ŷ� X � 2.

Evaluate the significance of the regression equation. The null hypothesis states
that the regression equation does not predict a significant portion of the variance for the 
Y scores. To conduct the test, the total variability for the Y scores, SSY � 54, is partitioned
into the portion predicted by the regression equation and the residual portion.

SSregression � r2(SSY) � 0.741(54) � 40.01 with df � 1

SSresidual � (1 �r2)(SSY) � 0.259(54) � 13.99 with df � n �2 � 3

S T E P  2

S T E P  1
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The two MS values (variances) for the F-ratio are

MSregression � �
SSreg

d
r

f
ession
� � �

40

1

.01
� � 40.01

MSresidual � �
SSre

d
s

f
idual
� � �

13

3

.99
� � 4.66

And the F-ratio is

F � �
M

M

S

S
re

r

g

es

re

id

s

u

si

a

o

l

n
� � �

4

4

0

.

.

6

0

6

1
� � 8.59

With df � 1, 3 and � � .05, the critical value for the F-ratio is 10.13. Therefore, we
fail to reject the null hypothesis and conclude that the regression equation does not predict
a significant portion of the variance for the Y scores.

DEMONSTRATION 16.2

MULTIPLE REGRESSION

The following data are used to demonstrate the process of multiple regression. Note that
there are two predictor variables, X1 and X2, that are used to compute a predicted Y score
for each individual.

Person X1 X2 Y

A 0 5 2
B 3 1 4
C 5 2 7
D 6 0 9
E 8 4 5
F 2 6 3

MX1 � 4 MX2 � 3 MY � 5
SSX1 � 42 SSX2 � 28 SSY � 34

SPX1Y � 27 SPX2Y � �24 SPX1X2 � �15

Compute the values for the multiple regression equation. The general form of the
multiple-regression equation is

Ŷ � b1X1 � b2X2 � a

The values for the multiple regression equation are

b1 � � � 0.416
(27)(28) � (�15)(�24)
���

(42)(28) � (�15)2

(SPX1Y)(SSX2) � (SPX1X2)(SPX2Y)
����

(SSX1)(SSX2) � (SPX1X2)2

S T E P  1
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b2 � � � �0.634

a � MY �b1MX1 �b2MX2 � 5 �0.416(4) � �0.634(3) � 5 �1.664 � 1.902 � 5.238

The multiple-regression equation is

Ŷ � 0.416X1 �0.634X2 � 5.238

Evaluate the significance of the regression equation. The null hypothesis states
that the regression equation does not predict a significant portion of the variance for the 
Y scores. To conduct the test, the total variability for the Y scores, SSY � 34, is partitioned
into the portion predicted by the regression equation and the residual portion. To find each
portion, we must first compute the value of R2.

R2 �

� 0.778 (or 77.8%)

Then, the two components for the F-ratio are

SSregression � R2(SSY) � 0.778(34) � 26.45 with df � 2

SSresidual � (1 �R2)(SSY) � 0.222(34) � 7.55 with df � n �3 � 3

The two MS values (variances) and the F-ratio are

MSregression � �
SSreg

d
r

f
ession
� � �

26

2

.45
� � 13.23

MSresidual � �
SSre

d
s

f
idual
� � �

7.

3

55
� � 2.52

with df � 2, 3, the F-ratio is not significant.

MSregression 13.23 
F � –––––––––– � ––––– � 5.25

MSresidual 2.52

(0.416)(27) � (�0.634)(�24)
����

34

b1SPX1Y � b2SPX2Y
���

SSY

S T E P  2

(�24)(42) � (�15)(27)
���

(42)(28) � (�15)2

(SPX2Y)(SSX1) � (SPX1X2)(SPX1Y)
����

(SSX1)(SSX2) � (SPX1X2)2
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PROBLEMS

1. Sketch a graph showing the line for the equation 
Y � �2X � 4. On the same graph, show the line for 
Y � X �4.

2. The regression equation is intended to be the “best
fitting” straight line for a set of data. What is the
criterion for “best fitting”?

3. A set of n � 20 pairs of scores (X and Y values) has
SSX � 16, SSY � 100, and SP � 32. If the mean for
the X values is MX � 6 and the mean for the Y values
is MY � 20.

a. Calculate the Pearson correlation for the 
scores.

b. Find the regression equation for predicting Y from
the X values.

4. A set of n � 25 pairs of scores (X and Y values)
produces a regression equation of  Ŷ� 3X � 2. Find
the predicted Y value for each of the following X
scores: 0, 1, 3, �2.

5. Briefly explain what is measured by the standard error
of estimate.
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6. In general, how is the magnitude of the standard
error of estimate related to the value of the
correlation?

7. For the following set of data, find the linear regression
equation for predicting Y from X:

X Y

7 6
9 6
6 3

12 5
9 6
5 4

8. For the following data:
a. Find the regression equation for predicting Y from X.
b. Calculate the Pearson correlation for these data.

Use r2 and SSY to compute SSresidual and the
standard error of estimate for the equation.

X Y

1 2
4 7
3 5
2 1
5 14
3 7

9. Does the regression equation from problem 8 account
for a significant portion of the variance in the Y scores?
Use � � .05 to evaluate the F-ratio.

10. For the following scores, 

X Y

3 6
6 1
3 4
3 3
5 1

a. Find the regression equation for predicting Y from X.
b. Calculate the predicted Y value for each X.

11. Problem 12 in Chapter 15 examined the relationship
between weight and income for a sample of n � 10
women. Weights were classified in five categories and
had a mean of M � 3 with SS � 20. Income, measured
in thousands, had a mean score of M � 66 with 
SS � 7430, and SP � �359.

a. Find the regression equation for predicting income
from weight. (Identify the income scores as 
X values and the weight scores as Y values.)

b. What percentage of the variance in the income 
is accounted for by the regression equation?
(Compute the correlation, r, then find r2.)

c. Does the regression equation account for a
significant portion of the variance in income? 
Use �� .05 to evaluate the F-ratio.

12. A professor obtains SAT scores and freshman grade
point averages (GPAs) for a group of n � 15 college
students. The SAT scores have a mean of M � 580
with SS � 22,400, and the GPAs have a mean of 
3.10 with SS � 1.26, and SP � 84.
a. Find the regression equation for predicting GPA

from SAT scores.
b. What percentage of the variance in GPAs is

accounted for by the regression equation?
(Compute the correlation, r, then find r2.)

c. Does the regression equation account for a
significant portion of the variance in GPA? Use 
�� .05 to evaluate the F-ratio.

13. Problem 14 in Chapter 15 described a study
examining the effectiveness of a 7-Minute Screen
test for Alzheimer’s disease. The study evaluated 
the relationship between scores from the 7-Minute
Screen and scores for the same patients from a 
set of cognitive exams that are typically used to 
test for Alzheimer’s disease. For a sample of 
n � 9 patients, the scores for the 7-Minute Screen 
averaged M � 7 with SS � 92. The cognitive 
test scores averaged M � 17 with SS � 236. For
these data, SP � 127.
a. Find the regression equation for predicting the

cognitive scores from the 7-Minute Screen score.
b. What percentage of variance in the cognitive scores

is accounted for by the regression equation?
c. Does the regression equation account for a

significant portion of the variance in the cognitive
scores? Use � � .05 to evaluate the F-ratio.

14. There appears to be some evidence suggesting that
earlier retirement may lead to memory decline
(Rohwedder & Willis, 2010). The researchers gave 
a memory test to men and women aged 60 to 
64 years in several countries that have different
retirement ages. For each country, the researchers
recorded the average memory score and the
percentage of individuals in the 60 to 64 age 
range who were retired. Note that a higher percentage
retired indicates a younger retirement age for 
that country. The following data are similar to the
results from the study. Use the data to find the
regression equation for predicting memory scores
from the percentage of people aged 60 to 64 who 
are retired.
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Country % Retired (X) Memory Score (Y)

Sweden 39 9.3
U.S.A. 48 10.9
England 59 10.7
Germany 70 9.1
Spain 74 6.4
Netherlands 78 9.1
Italy 81 7.2
France 87 7.9
Belgium 88 8.5
Austria 91 9.0

15. The regression equation is computed for a set of 
n � 18 pairs of X and Y values with a correlation of 
r � �80 and SSY � 100.
a. Find the standard error of estimate for the regression

equation.
b. How big would the standard error be if the sample

size were n � 38?

16. a. One set of 20 pairs of scores, X and Y values,
produces a correlation of r � 0.70. If SSY � 150, find
the standard error of estimate for the regression line.

b. A second set of 20 pairs of X and Y values produces
of correlation of r � 0.30. If SSY � 150, find the
standard error of estimate for the regression line.

17. a. A researcher computes the regression equation for a
sample of n � 25 pairs of scores, X and Y values. 
If an analysis of regression is used to test the
significance of the equation, what are the df values
for the F-ratio?

b. A researcher evaluating the significance of a
regression equation obtains an F-ratio with df � 1,
18. How many pairs of scores, X and Y values, are
in the sample?

18. For the following data:
a. Find the regression equation for predicting Y from X.
b. Use the regression equation to find a predicted 

Y for each X.
c. Find the difference between the actual Y value and

the predicted Y value for each individual, square the
differences, and add the squared values to obtain
SSresidual.

d. Calculate the Pearson correlation for these data. Use
r2 and SSY to compute SSresidual with Equation 16.11.
You should obtain the same value as in part c.

X Y

7 16
5 2
6 1
3 2
4 9

19. A multiple-regression equation with two predictor
variables produces R2 � .22.
a. If SSY � 20 for a sample of n � 18 individuals,

does the equation predict a significant portion of
the variance for the Y scores? Test with � � .05.

b. If SSY � 20 for a sample of n � 8 individuals, does
the equation predict a significant portion of the
variance for the Y scores? Test with � �.05.

20. A researcher obtained the following multiple-
regression equation using two predictor variables: 
Ŷ � 0.5X1 � 4.5X2 � 9.6. Given that SSY � 210, the
SP value for X1 and Y is 40, and the SP value for 
X2 and Y is 9, find R2, the percentage of variance
accounted for by the equation.

21. In Chapter 15 (p. 531), we presented an example
showing the general relationship among the number
of churches, the number of serious crimes, and the
population for a set of cities. At that time, we used 
a partial correlation to evaluate the relationship
between churches and crime while controlling
population. It is possible to use multiple regression
to accomplish essentially the same purpose. For the
following data,

Number of Population Number of
Churches (X1) (X2) Crimes (Y)

1 1 4
2 1 1
3 1 2
4 1 3
5 1 5
7 2 8
8 2 11
9 2 9

10 2 7
11 2 10
13 3 15
14 3 14
15 3 16
16 3 17
17 3 13

a. Find the multiple regression equation for predicting
the number of crimes using the number of churches
and population as predictor variables.

b. Find the value of R2 for the regression equation.
c. The correlation between the number of crimes and

population is r � 0.961, which means that 
r2 � .924 (92.4%) is the proportion of variance 
in the number of crimes that is predicted by
population size. Does adding the number of
churches as a second variable in the multiple
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regression equation add a significant amount to 
the prediction? Test with � � .05.

22. Problem 11 in Chapter 15 examined the TV-viewing
habits of adopted children in relation to their
biological parents and their adoptive parents. The
data are reproduced as follows. If both the biological
and adoptive parents are used to predict the viewing
habits of the children in a multiple-regression
equation, what percentage of the variance in the
children’s scores would be accounted for? That is,
compute R2.

Amount of Time Spent Watching TV

Adopted Birth Adoptive
Children Parents Parents

Y X1 X2

2 0 1
3 3 4
6 4 2
1 1 0
3 1 0
0 2 3
5 3 2
2 1 3
5 3 3

SSY � 32 SSX1 � 14 SSX2 � 16

SPX1X2 � 8
SPX1Y � 15
SPX2Y � 3

23. For the data in problem 22, the correlation between the
children’s scores and the biological parents’ scores is 
r � 0.709. Does adding the adoptive parents’ scores as
a second predictor significantly improve the ability to
predict the children’s scores? Use � �.05 to evaluate
the F-ratio.

24. For the following data, find the multiple-regression
equation for predicting Y from X1 and X2.

X1 X2 Y

1 3 1
2 4 2
3 5 6
6 9 8
4 8 3
2 7 4

M � 3 M � 6 M � 4
SSX1 � 16 SSX2 � 28 SSY � 34

SPX1X2 � 18
SPX1Y � 19
SPX2Y � 21

25. A researcher evaluates the significance of a multiple-
regression equation and obtains an F-ratio with df �
2, 36. How many participants were in the sample?

Improve your statistical skills with 

ample practice exercises and detailed 

explanations on every question. Purchase

www.aplia.com/statistics
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C H A P T E R

17
The Chi-Square
Statistic: Tests
for Goodness 
of Fit and
Independence

Preview
17.1 Parametric and Nonparametric

Statistical Tests

17.2 The Chi-Square Test for Goodness
of Fit

17.3 The Chi-Square Test for
Independence

17.4 Measuring Effect Size for the 
Chi-Square Test for Independence

17.5 Assumptions and Restrictions for
Chi-Square Tests

17.6 Special Applications for the 
Chi-Square Tests

Summary

Focus on Problem Solving

Demonstrations 17.1 and 17.2

Problems

Tools You Will Need
The following items are considered 
essential background material for this
chapter. If you doubt your knowledge 
of any of these items, you should 
review the appropriate chapter or 
section before proceeding.

• Proportions (math review, Appendix A)
• Frequency distributions (Chapter 2)
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Response to the Question:
Did You See Any Broken Glass?

Yes No

16 34

7 43

6 44

Preview
Loftus and Palmer (1974) conducted a classic experiment
demonstrating how language can influence eyewitness
memory. A sample of 150 students watched a film of 
an automobile accident. After watching the film, the 
students were separated into three groups. One group was
asked, “About how fast were the cars going when they
smashed into each other?” Another group received the
same question except that the verb was changed to “hit”
instead of “smashed into.” A third group served as a 
control and was not asked any question about the speed of
the two cars. A week later, the participants returned and
were asked if they remembered seeing any broken glass 
in the accident. (There was no broken glass in the film.)
Notice that the researchers are manipulating the form of
the initial question and then measuring a yes/no response
to a follow-up question 1 week later. Table 17.1 shows the
structure of this design represented by a matrix with the
independent variable (different groups) determining 
the rows of the matrix and the two categories for the 
dependent variable (yes/no) determining the columns. The
number in each cell of the matrix is the frequency count
showing how many participants are classified in that 
category. For example, of the 50 students who heard the
word smashed, there were 16 (32%) who claimed to 
remember seeing broken glass even though there was
none in the film. By comparison, only 7 of the 50 students
(14%) who heard the word hit said they recalled seeing
broken glass. The researchers would like to use these 
data to support the argument that a witness’s “memory” can
be influenced by the language used during questioning. 
If the two cars smashed into each other, then there must
have been some broken glass.

The Problem: Although the Loftus and Palmer study
involves an independent variable (the form of the question)
and a dependent variable (memory for broken glass), 
you should realize that this study is different from any
experiment we have considered in the past. Specifically,
the Loftus and Palmer study does not produce a numerical
score for each participant. Instead, each participant is
simply classified into one of two categories (yes or no).
The data consist of frequencies or proportions describing
how many individuals are in each category. You should
also note that Loftus and Palmer want to use a hypothesis
test to evaluate the data. The null hypothesis would state
that the form of the question has no effect on the memory
of the witness. The hypothesis test would determine
whether the sample data provide enough evidence to reject
this null hypothesis.

Because there are no numerical scores, it is impossible
to compute a mean or a variance for the sample data.
Therefore, it is impossible to use any of the familiar 
hypothesis tests (such as a t test or analysis of variance
[ANOVA]) to determine whether there is a significant
difference between the treatment conditions. What is
needed is a new hypothesis testing procedure that can be
used with non-numerical data.

The Solution: In this chapter we introduce 
two hypothesis tests based on the chi-square statistic.
Unlike earlier tests that require numerical scores 
(X values), the chi-square tests use sample frequencies 
and proportions to test hypothesis about the corresponding
population values.

592

TABLE 17.1

A frequency distribution 
table showing the number of
participants who answered either
yes or no when asked whether
they recalled seeing any broken
glass 1 week after witnessing 
an automobile accident.
Immediately after the accident, 
one group was asked how fast
the cars were going when they
smashed into each other. A
second group was asked how
fast the cars were going when
they hit each other. A third
group served as a control and
was not asked about the speed 
of the cars.

Smashed intoVerb Used 
to Ask about
the Speed of
the Cars

Hit

Control (Not Asked)
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17.1 PARAMETRIC AND NONPARAMETRIC STATISTICAL
TESTS

All of the statistical tests that we have examined thus far are designed to test hypothe-
ses about specific population parameters. For example, we used t tests to assess 
hypotheses about a population mean (µ) or mean difference (µ1 – µ2). In addition, these
tests typically make assumptions about other population parameters. Recall that, for
analysis of variance (ANOVA), the population distributions are assumed to be normal
and homogeneity of variance is required. Because these tests all concern parameters
and require assumptions about parameters, they are called parametric tests.

Another general characteristic of parametric tests is that they require a numerical
score for each individual in the sample. The scores then are added, squared, averaged,
and otherwise manipulated using basic arithmetic. In terms of measurement scales,
parametric tests require data from an interval or a ratio scale (see Chapter 1).

Often, researchers are confronted with experimental situations that do not conform
to the requirements of parametric tests. In these situations, it may not be appropriate to
use a parametric test. Remember that when the assumptions of a test are violated, the
test may lead to an erroneous interpretation of the data. Fortunately, there are several
hypothesis-testing techniques that provide alternatives to parametric tests. These alter-
natives are called nonparametric tests.

In this chapter, we introduce two commonly used examples of nonparametric tests.
Both tests are based on a statistic known as chi-square and both tests use sample data
to evaluate hypotheses about the proportions or relationships that exist within popula-
tions. Note that the two chi-square tests, like most nonparametric tests, do not state 
hypotheses in terms of a specific parameter and they make few (if any) assumptions
about the population distribution. For the latter reason, nonparametric tests sometimes
are called distribution-free tests.

One of the most obvious differences between parametric and nonparametric tests
is the type of data they use. All of the parametric tests that we have examined so far
require numerical scores. For nonparametric tests, on the other hand, the participants
are usually just classified into categories such as Democrat and Republican, or High,
Medium, and Low IQ. Note that these classifications involve measurement on nomi-
nal or ordinal scales, and they do not produce numerical values that can be used to 
calculate means and variances. Instead, the data for many nonparametric tests are 
simply frequencies—for example, the number of Democrats and the number of
Republicans in a sample of n � 100 registered voters.

Occasionally, you have a choice between using a parametric and a nonparametric
test. Changing to a nonparametric test usually involves transforming the data from 
numerical scores to nonnumerical categories. For example, you could start with numer-
ical scores measuring self-esteem and create three categories consisting of high,
medium, and low self-esteem. In most situations, the parametric test is preferred because
it is more likely to detect a real difference or a real relationship. However, there are 
situations for which transforming scores into categories might be a better choice.

1. Occasionally, it is simpler to obtain category measurements. For example, it is
easier to classify students as high, medium, or low in leadership ability than to
obtain a numerical score measuring each student’s ability.

2. The original scores may violate some of the basic assumptions that underlie
certain statistical procedures. For example, the t tests and ANOVA assume
that the data come from normal distributions. Also, the independent-measures

SECTION 17.1 / PARAMETRIC AND NONPARAMETRIC STATISTICAL TESTS 593
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tests assume that the different populations all have the same variance (the
homogeneity-of-variance assumption). If a researcher suspects that the data
do not satisfy these assumptions, it may be safer to transform the scores into
categories and use a nonparametric test to evaluate the data.

3. The original scores may have unusually high variance. Variance is a major
component of the standard error in the denominator of t statistics and the error
term in the denominator of F-ratios. Thus, large variance can greatly reduce 
the likelihood that these parametric tests will find significant differences.
Converting the scores to categories essentially eliminates the variance. For
example, all individuals fit into three categories (high, medium, and low), no
matter how variable the original scores are.

4. Occasionally, an experiment produces an undetermined, or infinite, score. For
example, a rat may show no sign of solving a particular maze after hundreds of
trials. This animal has an infinite, or undetermined, score. Although there is no
absolute number that can be assigned, you can say that this rat is in the highest
category, and then classify the other scores according to their numerical values.

17.2 THE CHI-SQUARE TEST FOR GOODNESS OF FIT

Parameters such as the mean and the standard deviation are the most common way to
describe a population, but there are situations in which a researcher has questions about
the proportions or relative frequencies for a distribution. For example,

How does the number of women lawyers compare with the number of men in the
profession?

Of the two leading brands of cola, which is preferred by most Americans?

In the past 10 years, has there been a significant change in the proportion of 
college students who declare a business major?

Note that each of the preceding examples asks a question about proportions in the
population. In particular, we are not measuring a numerical score for each individual.
Instead, the individuals are simply classified into categories and we want to know what
proportion of the population is in each category. The chi-square test for goodness of fit is
specifically designed to answer this type of question. In general terms, this chi-square test
uses the proportions obtained for sample data to test hypotheses about the corresponding
proportions in the population.

The chi-square test for goodness of fit uses sample data to test hypotheses 
about the shape or proportions of a population distribution. The test determines
how well the obtained sample proportions fit the population proportions specified
by the null hypothesis.

Recall from Chapter 2 that a frequency distribution is defined as a tabulation of 
the number of individuals located in each category of the scale of measurement. In a
frequency distribution graph, the categories that make up the scale of measurement 
are listed on the X-axis. In a frequency distribution table, the categories are listed in the
first column. With chi-square tests, however, it is customary to present the scale of
measurement as a series of boxes, with each box corresponding to a separate category

D E F I N I T I O N
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from the Greek letter � (chi,
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on the scale. The frequency corresponding to each category is simply presented as a
number written inside the box. Figure 17.1 shows how a distribution of eye colors for
a set of n � 40 students can be presented as a graph, a table, or a series of boxes. The
scale of measurement for this example consists of four categories of eye color (blue,
brown, green, other).

For the chi-square test of goodness of fit, the null hypothesis specifies the proportion
(or percentage) of the population in each category. For example, a hypothesis might
state that 50% of all lawyers are men and 50% are women. The simplest way of 
presenting this hypothesis is to put the hypothesized proportions in the series of boxes
representing the scale of measurement:

Men Women

H0: 50% 50%

Although it is conceivable that a researcher could choose any proportions for the
null hypothesis, there usually is some well-defined rationale for stating a null hypothe-
sis. Generally H0 falls into one of the following categories:

1. No Preference, Equal Proportions. The null hypothesis often states that there
is no preference among the different categories. In this case, H0 states that the
population is divided equally among the categories. For example, a hypothesis
stating that there is no preference among the three leading brands of soft drinks
would specify a population distribution as follows:

Brand X Brand Y Brand Z

H0: �
1
3� �

1
3� �

1
3�

The no-preference hypothesis is used in situations in which a researcher wants 
to determine whether there are any preferences among the categories, or whether
the proportions differ from one category to another.

THE NULL HYPOTHESIS FOR
THE GOODNESS-OF-FIT TEST
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Blue Brown Green Other

12

Blue Brown Green Other

f

Eye color

Eye
color

(X) f

Blue
Brown
Green
Other

12
21
3
4

5

10

0

15

20

21 3 4

FIGURE 17.1

Distribution of eye colors for a sample of n � 40 individuals. The same frequency distribution is shown as a bar graph, as a
table, and with the frequencies written in a series of boxes.

(Preferences in the population are 
equally divided among the three 
soft drinks.)
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Because the null hypothesis for the goodness-of-fit test specifies an exact
distribution for the population, the alternative hypothesis (H1) simply states
that the population distribution has a different shape from that specified in
H0. If the null hypothesis states that the population is equally divided among
three categories, then the alternative hypothesis says that the population is not
divided equally.

2. No Difference from a Known Population. The null hypothesis can state
that the proportions for one population are not different from the proportions
that are known to exist for another population. For example, suppose it is
known that 28% of the licensed drivers in the state are younger than 30 years
old and 72% are 30 or older. A researcher might wonder whether this same
proportion holds for the distribution of speeding tickets. The null hypothesis
would state that tickets are handed out equally across the population of 
drivers, so there is no difference between the age distribution for drivers 
and the age distribution for speeding tickets. Specifically, the null hypothesis
would be

Tickets Given Tickets Given
to Drivers to Drivers 

Younger Than 30 30 or Older

H0: 28% 72%

The no-difference hypothesis is used when a specific population distribution is
already known. For example, you may have a known distribution from an ear-
lier time, and the question is whether there has been any change in the propor-
tions. Or, you may have a known distribution for one population (drivers) and
the question is whether a second population (speeding tickets) has the same
proportions.

Again, the alternative hypothesis (H1) simply states that the population propor-
tions are not equal to the values specified by the null hypothesis. For this exam-
ple, H1 would state that the number of speeding tickets is disproportionately
high for one age group and disproportionately low for the other.

The data for a chi-square test are remarkably simple. There is no need to calculate a
sample mean or SS; you just select a sample of n individuals and count how many are
in each category. The resulting values are called observed frequencies. The symbol for
observed frequency is fo. For example, the following data represent observed frequen-
cies for a sample of 40 college students. The students were classified into three cate-
gories based on the number of times they reported exercising each week.

More Than 
No Exercise 1 Time a Week Once a Week

15 19 6 n � 40

Notice that each individual in the sample is classified into one and only one of the
categories. Thus, the frequencies in this example represent three completely separate
groups of students: 15 who do not exercise regularly, 19 who average once a week, and
6 who exercise more than once a week. Also note that the observed frequencies add up
to the total sample size: ∑fo � n. Finally, you should realize that we are not assigning
individuals to categories. Instead, we are simply measuring individuals to determine the
category in which they belong.

THE DATA FOR THE
GOODNESS-OF-FIT TEST
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The observed frequency is the number of individuals from the sample who are
classified in a particular category. Each individual is counted in one and only
one category.

The general goal of the chi-square test for goodness of fit is to compare the data (the
observed frequencies) with the null hypothesis. The problem is to determine how well
the data fit the distribution specified in H0—hence the name goodness of fit.

The first step in the chi-square test is to construct a hypothetical sample that represents
how the sample distribution would look if it were in perfect agreement with the propor-
tions stated in the null hypothesis. Suppose, for example, the null hypothesis states that the
population is distributed in three categories with the following proportions:

Category A Category B Category C

H0: 25% 50% 25%

If this hypothesis is correct, how would you expect a random sample of n � 40 
individuals to be distributed among the three categories? It should be clear that your
best strategy is to predict that 25% of the sample would be in category A, 50% would
be in category B, and 25% would be in category C. To find the exact frequency 
expected for each category, multiply the sample size (n) by the proportion (or percentage)
from the null hypothesis. For this example, you would expect

25% of 40 � 0.25(40) � 10 individuals in category A

50% of 40 � 0.50(40) � 20 individuals in category B

25% of 40 � 0.25(40) � 10 individuals in category C

The frequency values predicted from the null hypothesis are called expected fre-
quencies. The symbol for expected frequency is fe, and the expected frequency for each
category is computed by

expected frequency � fe � pn (17.1)

where p is the proportion stated in the null hypothesis and n is the sample size.

The expected frequency for each category is the frequency value that is 
predicted from the proportions in the null hypothesis and the sample size (n).
The expected frequencies define an ideal, hypothetical sample distribution that
would be obtained if the sample proportions were in perfect agreement with the
proportions specified in the null hypothesis.

Note that the no-preference null hypothesis always produces equal fe values for all
categories because the proportions (p) are the same for all categories. On the other
hand, the no-difference null hypothesis typically does not produce equal values for the
expected frequencies because the hypothesized proportions typically vary from one cat-
egory to another. You also should note that the expected frequencies are calculated, 
hypothetical values and the numbers that you obtain may be decimals or fractions. 
The observed frequencies, on the other hand, always represent real individuals and 
always are whole numbers.

D E F I N I T I O N

EXPECTED FREQUENCIES

D E F I N I T I O N

SECTION 17.2 / THE CHI-SQUARE TEST FOR GOODNESS OF FIT 597

(The population is distributed
across the three categories with
25% in category A, 50% in cate-
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The general purpose of any hypothesis test is to determine whether the sample data
support or refute a hypothesis about the population. In the chi-square test for goodness
of fit, the sample is expressed as a set of observed frequencies (fo values), and the null
hypothesis is used to generate a set of expected frequencies (fe values). The chi-square
statistic simply measures how well the data (fo) fit the hypothesis (fe). The symbol for
the chi-square statistic is �2. The formula for the chi-square statistic is

(17.2)

As the formula indicates, the value of chi-square is computed by the following
steps:

1. Find the difference between fo (the data) and fe (the hypothesis) for each category.

2. Square the difference. This ensures that all values are positive.

3. Next, divide the squared difference by fe.

4. Finally, add the values from all of the categories.

The first two steps determine the numerator of the chi-square statistic and should
be easy to understand. Specifically, the numerator measures how much difference there
is between the data (the fo values) and the hypothesis (represented by the fe values). The
final step is also reasonable: we add the values to obtain the total discrepancy between
the data and the hypothesis. Thus, a large value for chi-square indicates that the data do
not fit the hypothesis, and leads us to reject the null hypothesis.

However, the third step, which determines the denominator of the chi-square
statistic, is not so obvious. Why must we divide by fe before we add the category
values? The answer to this question is that the obtained discrepancy between fo and
fe is viewed as relatively large or relatively small depending on the size of the 
expected frequency. This point is demonstrated in the following analogy.

Suppose that you were going to throw a party and you expected 1,000 people to
show up. However, at the party you counted the number of guests and observed that
1,040 actually showed up. Forty more guests than expected are no major problem
when all along you were planning for 1,000. There will still probably be enough beer
and potato chips for everyone. On the other hand, suppose you had a party and you
expected 10 people to attend but instead 50 actually showed up. Forty more guests in
this case spell big trouble. How “significant” the discrepancy is depends in part 
on what you were originally expecting. With very large expected frequencies, 
allowances are made for more error between fo and fe. This is accomplished in the
chi-square formula by dividing the squared discrepancy for each category, (fo – fe)

2,
by its expected frequency.

It should be clear from the chi-square formula that the numerical value of chi-square
is a measure of the discrepancy between the observed frequencies (data) and the 
expected frequencies (H0). As usual, the sample data are not expected to provide a
perfectly accurate representation of the population. In this case, the proportions or
observed frequencies in the sample are not expected to be exactly equal to the 
proportions in the population. Thus, if there are small discrepancies between the fo
and fe values, we obtain a small value for chi-square and we conclude that there is a
good fit between the data and the hypothesis (fail to reject H0). However, when there
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are large discrepancies between fo and fe, we obtain a large value for chi-square and
conclude that the data do not fit the hypothesis (reject H0). To decide whether a 
particular chi-square value is “large” or “small,” we must refer to a chi-square 
distribution. This distribution is the set of chi-square values for all of the possible
random samples when H0 is true. Much like other distributions that we have exam-
ined (t distribution, F distribution), the chi-square distribution is a theoretical distri-
bution with well-defined characteristics. Some of these characteristics are easy to
infer from the chi-square formula.

1. The formula for chi-square involves adding squared values, so you can never
obtain a negative value. Thus, all chi-square values are zero or larger.

2. When H0 is true, you expect the data (fo values) to be close to the hypothesis 
(fe values). Thus, we expect chi-square values to be small when H0 is true.

These two factors suggest that the typical chi-square distribution is positively
skewed (Figure 17.2). Note that small values, near zero, are expected when H0 is true
and large values (in the right-hand tail) are very unlikely. Thus, unusually large values
of chi-square form the critical region for the hypothesis test.

Although the typical chi-square distribution is positively skewed, there is one other
factor that plays a role in the exact shape of the chi-square distribution—the number of
categories. Recall that the chi-square formula requires that you add values from every
category. The more categories you have, the more likely it is that you will obtain a large
sum for the chi-square value. On average, chi-square is larger when you are adding val-
ues from 10 categories than when you are adding values from only 3 categories. As a
result, there is a whole family of chi-square distributions, with the exact shape of each
distribution determined by the number of categories used in the study. Technically,
each specific chi-square distribution is identified by degrees of freedom (df) rather than
the number of categories. For the goodness-of-fit test, the degrees of freedom are 
determined by

df � C – 1 (17.3)

where C is the number of categories. A brief discussion of this df formula is presented
in Box 17.1. Figure 17.3 shows the general relationship between df and the shape of the
chi-square distribution. Note that the chi-square values tend to get larger (shift to the
right) as the number of categories and the degrees of freedom increase.
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Caution: The df for a chi-square
test is not related to sample size
(n), as it is in most other tests.

χ20

Critical
region

FIGURE 17.2

Chi-square distributions 
are positively skewed. The
critical region is placed 
in the extreme tail, which
reflects large chi-square
values.
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Recall that a large value for the chi-square statistic indicates a big discrepancy between
the data and the hypothesis, and suggests that we reject H0. To determine whether a 
particular chi-square value is significantly large, you must consult the table entitled The
Chi-Square Distribution (Appendix B). A portion of the chi-square table is shown in
Table 17.2. The first column lists df values for the chi-square test, and the other column
heads are proportions (alpha levels) in the extreme right-hand tail of the distribution.
The numbers in the body of the table are the critical values of chi-square. The table
shows, for example, that when the null hypothesis is true and df � 3, only 5% (.05) of
the chi-square values are greater than 7.81, and only 1% (.01) are greater than 11.34.
Thus, with df � 3, any chi-square value greater than 7.81 has a probability of p � .05,
and any value greater than 11.34 has a probability of p � .01.

LOCATING 
THE CRITICAL REGION 

FOR A CHI-SQUARE TEST
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B O X
17.1 A CLOSER LOOK AT DEGREES OF FREEDOM

Category Category Category
A B C

10 20 ?

In general, you are free to select proportions for all
but one of the categories, but then the final proportion 
is determined by the fact that the entire set must total
100%. Thus, you have C – 1 free choices, where C is
the number of categories: degrees of freedom, df, 
equal C – 1.

Degrees of freedom for the chi-square test literally
measure the number of free choices that exist when 
you are determining the null hypothesis or the expected
frequencies. For example, when you are classifying
individuals into three categories, you have exactly 
two free choices in stating the null hypothesis. You may
select any two proportions for the first two categories,
but then the third proportion is determined. If you 
hypothesize 25% in the first category and 50% in the
second category, then the third category must be 25% to
account for 100% of the population.

χ20

df = 1

df = 5

df = 9

FIGURE 17.3

The shape of the chi-square
distribution for different
values of df. As the number 
of categories increases, 
the peak (mode) of the 
distribution has a larger 
chi-square value.
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We use the same step-by-step process for testing hypotheses with chi-square as we used
for other hypothesis tests. In general, the steps consist of stating the hypotheses, locat-
ing the critical region, computing the test statistic, and making a decision about H0. The
following example demonstrates the complete process of hypothesis testing with the
goodness-of-fit test.

A psychologist examining art appreciation selected an abstract painting that had no
obvious top or bottom. Hangers were placed on the painting so that it could be hung
with any one of the four sides at the top. The painting was shown to a sample of 
n � 50 participants, and each was asked to hang the painting in the orientation that
looked correct. The following data indicate how many people chose each of the 
four sides to be placed at the top:

Top Up Bottom Left Right
(Correct) Up Side Up Side Up 

18 17 7 8

The question for the hypothesis test is whether there are any preferences among
the four possible orientations. Are any of the orientations selected more (or less) often
than would be expected simply by chance?

State the hypotheses and select an alpha level. The hypotheses can be stated as follows:

H0: In the general population, there is no preference for any specific 
orientation. Thus, the four possible orientations are selected equally
often, and the population distribution has the following proportions:

Top Up Bottom Left Right
(Correct) Up Side Up Side Up

25% 25% 25% 25%

H1: In the general population, one or more of the orientations is preferred
over the others.

We use � � .05.

S T E P  1

E X A M P L E  1 7 . 1

EXAMPLE OF THE CHI-SQUARE
TEST FOR GOODNESS OF FIT
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TABLE 17.2

A portion of the table of 
critical values for the chi-square
distribution.

Proportion in Critical Region

df 0.10 0.05 0.025 0.01 0.005

1 2.71 3.84 5.02 6.63 7.88
2 4.61 5.99 7.38 9.21 10.60
3 6.25 7.81 9.35 11.34 12.84
4 7.78 9.49 11.14 13.28 14.86
5 9.24 11.07 12.83 15.09 16.75
6 10.64 12.59 14.45 16.81 18.55
7 12.02 14.07 16.01 18.48 20.28
8 13.36 15.51 17.53 20.09 21.96
9 14.68 16.92 19.02 21.67 23.59
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Locate the critical region. For this example, the value for degrees of freedom is

df � C – 1 � 4 – 1 � 3

For df � 3 and � � .05, the table of critical values for chi-square indicates that
the critical �2 has a value of 7.81. The critical region is sketched in Figure 17.4.

Calculate the chi-square statistic. The calculation of chi-square is actually a two-stage
process. First, you must compute the expected frequencies from H0 and then calculate
the value of the chi-square statistic. For this example, the null hypothesis specifies
that one-quarter of the population (p � 25%) will be in each of the four categories.
According to this hypothesis, we should expect one-quarter of the sample to be in
each category. With a sample of n � 50 individuals, the expected frequency for each
category is

The observed frequencies and the expected frequencies are presented in Table 17.3.
Using these values, the chi-square statistic may now be calculated.

State a decision and a conclusion. The obtained chi-square value is in the 
critical region. Therefore, H0 is rejected, and the researcher may conclude that the 
four orientations are not equally likely to be preferred. Instead, there are significant
differences among the four orientations, with some selected more often and others
less often than would be expected by chance.
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Expected frequencies are 
computed and may be decimal
values. Observed frequencies 
are always whole numbers.

7.810

df = 3
 α = .05

FIGURE 17.4

For Example 17.1, the 
critical region begins at a
chi-square value of 7.81.

30991_ch17_ptg01_hr_591-632.qxd  9/3/11  2:20 AM  Page 602



IN THE LITERATURE
REPORTING THE RESULTS FOR CHI-SQUARE

APA style specifies the format for reporting the chi-square statistic in scientific
journals. For the results of Example 17.1, the report might state:

The participants showed significant preferences among the four orientations for hanging the
painting, �2(3, n � 50) � 8.08, p � .05.

Note that the form of the report is similar to that of other statistical tests we have
examined. Degrees of freedom are indicated in parentheses following the chi-square
symbol. Also contained in the parentheses is the sample size (n). This additional
information is important because the degrees of freedom value is based on the
number of categories (C), not sample size. Next, the calculated value of chi-square is
presented, followed by the probability that a Type I error has been committed.
Because we obtained an extreme, very unlikely value for the chi-square statistic, the
probability is reported as less than the alpha level. Additionally, the report may
provide the observed frequencies (fo) for each category. This information may be
presented in a simple sentence or in a table.

We began this chapter with a general discussion of the difference between parametric
tests and nonparametric tests. In this context, the chi-square test for goodness of fit is
an example of a nonparametric test; that is, it makes no assumptions about the param-
eters of the population distribution, and it does not require data from an interval or ratio
scale. In contrast, the single-sample t test introduced in Chapter 9 is an example of a
parametric test: It assumes a normal population, it tests hypotheses about the popula-
tion mean (a parameter), and it requires numerical scores that can be added, squared,
divided, and so on.

Although the chi-square test and the single-sample t are clearly distinct, they are
also very similar. In particular, both tests are intended to use the data from a single 
sample to test hypotheses about a single population.

The primary factor that determines whether you should use the chi-square test or
the t test is the type of measurement that is obtained for each participant. If the sample
data consist of numerical scores (from an interval or ratio scale), it is appropriate to
compute a sample mean and use a t test to evaluate a hypothesis about the population
mean. For example, a researcher could measure the IQ for each individual in a sample
of registered voters. A t test could then be used to evaluate a hypothesis about the mean
IQ for the entire population of registered voters. On the other hand, if the individuals in
the sample are classified into nonnumerical categories (on a nominal or ordinal scale),
then the researcher would use a chi-square test to evaluate a hypothesis about the 
population proportions. For example, a researcher could classify people according to
gender by simply counting the number of males and females in a sample of registered
voters. A chi-square test would then be appropriate to evaluate a hypothesis about the
population proportions.

GOODNESS OF FIT 
AND THE SINGLE-SAMPLE 

t TEST
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TABLE 17.3

The observed frequencies and
the expected frequencies for the
chi-square test in Example 17.1.

Top Up Bottom Left Right
(Correct) Up Side Up Side Up

18 17 7 8

12.5 12.5 12.5 12.5

Observed Frequencies

Expected Frequencies
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17.3 THE CHI-SQUARE TEST FOR INDEPENDENCE

The chi-square statistic may also be used to test whether there is a relationship between
two variables. In this situation, each individual in the sample is measured or classified on
two separate variables. For example, a group of students could be classified in terms of
personality (introvert, extrovert) and in terms of color preference (red, yellow, green, or
blue). Usually, the data from this classification are presented in the form of a matrix,
where the rows correspond to the categories of one variable and the columns correspond
to the categories of the second variable. Table 17.4 presents hypothetical data for a 
sample of n � 200 students who have been classified by personality and color preference.
The number in each box, or cell, of the matrix indicates the frequency, or number of 
individuals in that particular group. In Table 17.4, for example, there are 10 students who
were classified as introverted and who selected red as their preferred color. To obtain
these data, the researcher first selects a random sample of n � 200 students. Each student
is then given a personality test and is asked to select a preferred color from among the
four choices. Note that the classification is based on the measurements for each student;
the researcher does not assign students to categories. Also, note that the data consist 
of frequencies, not scores, from a sample. The goal is to use the frequencies from the 
sample to test a hypothesis about the population frequency distribution. Specifically, are
these data sufficient to conclude that there is a significant relationship between personality
and color preference in the population of students?

You should realize that the color preference study shown in Table 17.3 is an 
example of nonexperimental research (Chapter 1, page 17). The researcher did not 
manipulate any variable and the participants were not randomly assigned to groups or
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L E A R N I N G  C H E C K 1. For a chi-square test, the observed frequencies are always whole numbers. 
(True or false?)

2. For a chi-square test, the expected frequencies are always whole numbers. 
(True or false?)

3. A researcher has developed three different designs for a computer keyboard. 
A sample of n � 60 participants is obtained, and each individual tests all 
three keyboards and identifies his or her favorite. The frequency distribution 
of preferences is as follows:

Design A Design B Design C

23 12 25 n � 60

a. What is the df value for the chi-square statistic?

b. Assuming that the null hypothesis states that there are no preferences among
the three designs, find the expected frequencies for the chi-square test.

1. True. Observed frequencies are obtained by counting people in the sample.

2. False. Expected frequencies are computed and may be fractions or decimal values.

3. a. df � 2

b. According to the null hypothesis one-third of the population would prefer each design.
The expected frequencies should show one-third of the sample preferring each design.
The expected frequencies are all 20.

ANSWERS
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treatment conditions. However, similar data are often obtained from true experiments.
A good example is the study described in the Preview, in which Loftus and Palmer
(1974) demonstrate how eyewitness memory can be influenced by the kinds of ques-
tions that witnesses are asked. In the study, a sample of 150 students watched a film 
of an automobile accident. After watching the film, the students were separated into
three groups and questioned about the accident. The researchers manipulated the type
of question each group was asked. One group was asked to estimate the speed of the
cars when they “smashed into each other.” Another group estimated speed when the
cars “hit each other.” A third group served as a control and was not asked any question
about the speed of the two cars. A week later, the participants returned and were asked
if they remembered seeing any broken glass in the accident. (There was no broken glass
in the film.) The researchers recorded the number of Yes and No responses for each 
group (see Table 17.1, page 592). As with the color preference data, the researchers
would like to use the frequencies from the sample to test a hypothesis about the corre-
sponding frequency distribution in the population. In this case, the researchers would
like to know whether the sample data provide enough evidence to conclude that there
is a significant relationship between eyewitnesses’ memories and the questions they
were asked.

The procedure for using sample frequencies to evaluate hypotheses concerning 
relationships between variables involves another test using the chi-square statistic. In
this situation, however, the test is called the chi-square test for independence.

The chi-square test for independence uses the frequency data from a sample
to evaluate the relationship between two variables in the population. Each 
individual in the sample is classified on both of the two variables, creating a
two-dimensional frequency-distribution matrix. The frequency distribution for
the sample is then used to test hypotheses about the corresponding frequency
distribution for the population.

The null hypothesis for the chi-square test for independence states that the two variables
being measured are independent; that is, for each individual, the value obtained for one
variable is not related to (or influenced by) the value for the second variable. This general
hypothesis can be expressed in two different conceptual forms, each viewing the data 
and the test from slightly different perspectives. The data in Table 17.4 describing color
preference and personality are used to present both versions of the null hypothesis.

H0 version 1 For this version of H0, the data are viewed as a single sample with each
individual measured on two variables. The goal of the chi-square test is to evaluate the
relationship between the two variables. For the example we are considering, the goal is
to determine whether there is a consistent, predictable relationship between personality
and color preference. That is, if I know your personality, will it help me to predict your
color preference? The null hypothesis states that there is no relationship. The alterna-
tive hypothesis, H1, states that there is a relationship between the two variables.

THE NULL HYPOTHESIS 
FOR THE CHI-SQUARE TEST

FOR INDEPENDENCE

D E F I N I T I O N
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TABLE 17.4

Color preferences according 
to personality types.

Red Yellow Green Blue

Introvert 10 3 15 22 50

Extrovert 90 17 25 18 150

100 20 40 40 n � 200

30991_ch17_ptg01_hr_591-632.qxd  9/3/11  2:20 AM  Page 605



H0: For the general population of students, there is no relationship between
color preference and personality.

This version of H0 demonstrates the similarity between the chi-square test for 
independence and a correlation. In each case, the data consist of two measurements 
(X and Y) for each individual, and the goal is to evaluate the relationship between the
two variables. The correlation, however, requires numerical scores for X and Y. The
chi-square test, on the other hand, simply uses frequencies for individuals classified
into categories.

H0 version 2 For this version of H0, the data are viewed as two (or more) separate sam-
ples representing two (or more) populations or treatment conditions. The goal of the chi-
square test is to determine whether there are significant differences between the
populations. For the example we are considering, the data in Table 17.4 would be viewed
as a sample of n = 50 introverts (top row) and a separate sample of n = 150 
extroverts (bottom row). The chi-square test determines whether the distribution of color
preferences for introverts is significantly different from the distribution of color prefer-
ences for extroverts. From this perspective, the null hypothesis is stated as follows:

H0: In the population of students, the proportions in the distribution of 
color preferences for introverts are not different from the proportions in
the distribution of color preferences for extroverts. The two distributions
have the same shape (same proportions).

This version of H0 demonstrates the similarity between the chi-square test 
and an independent-measures t test (or ANOVA). In each case, the data consist of two (or
more) separate samples that are being used to test for differences between two (or more)
populations. The t test (or ANOVA) requires numerical scores to compute means and
mean differences. However, the chi-square test simply uses frequencies for individuals
classified into categories. The null hypothesis for the chi-square test states that the popu-
lations have the same proportions (same shape). The alternative hypothesis, H1, simply
states that the populations have different proportions. For the example we are consider-
ing, H1 states that the shape of the distribution of color preferences for introverts is 
different from the shape of the distribution of color preferences for extroverts.

Equivalence of H0 version 1 and H0 version 2 Although we have presented 
two different statements of the null hypothesis, these two versions are equivalent. 
The first version of H0 states that color preference is not related to personality. 
If this hypothesis is correct, then the distribution of color preferences should not 
depend on personality. In other words, the distribution of color preferences should
have the same proportions for introverts and for extroverts, which is the second 
version of H0.

For example, if we found that 60% of the introverts preferred red, then H0 would
predict that we also should find that 60% of the extroverts prefer red. In this case,
knowing that an individual prefers red does not help you predict his or her personality.
Note that finding the same proportions indicates no relationship.

On the other hand, if the proportions were different, it would suggest that there is a
relationship. For example, if red is preferred by 60% of the extroverts but only 10% of the
introverts, then there is a clear, predictable relationship between personality and color
preference. (If I know your personality, then I can predict your color preference.) Thus,
finding different proportions means that there is a relationship between the two variables.

606 CHAPTER 17 THE CHI-SQUARE STATISTIC: TESTS FOR GOODNESS OF FIT AND INDEPENDENCE
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Two variables are independent when there is no consistent, predictable
relationship between them. In this case, the frequency distribution for one
variable is not related to (or dependent on) the categories of the second
variable. As a result, when two variables are independent, the frequency
distribution for one variable has the same shape (same proportions) for all
categories of the second variable.

Thus, stating that there is no relationship between two variables (version 1 of H0)
is equivalent to stating that the distributions have equal proportions (version 2 of H0).

The chi-square test for independence uses the same basic logic that was used for 
the goodness-of-fit test. First, a sample is selected and each individual is classified or
categorized. Because the test for independence considers two variables, every individual
is classified on both variables, and the resulting frequency distribution is presented as a
two-dimensional matrix (see Table 17.4). As before, the frequencies in the sample 
distribution are called observed frequencies and are identified by the symbol fo.

The next step is to find the expected frequencies, or fe values, for this chi-square
test. As before, the expected frequencies define an ideal hypothetical distribution that is
in perfect agreement with the null hypothesis. Once the expected frequencies are 
obtained, we compute a chi-square statistic to determine how well the data (observed
frequencies) fit the null hypothesis (expected frequencies).

Although you can use either version of the null hypothesis to find the expected 
frequencies, the logic of the process is much easier when you use H0 stated in terms 
of equal proportions. For the example we are considering, the null hypothesis states

H0: The frequency distribution of color preference has the same shape
(same proportions) for both categories of personality.

To find the expected frequencies, we first determine the overall distribution of
color preferences and then apply this distribution to both categories of personality.
Table 17.5 shows an empty matrix corresponding to the data from Table 17.4. Notice
that the empty matrix includes all of the row totals and column totals from the original
sample data. The row totals and column totals are essential for computing the expected
frequencies.

The column totals for the matrix describe the overall distribution of color prefer-
ences. For these data, 100 people selected red as their preferred color. Because the total
sample consists of 200 people, the proportion selecting red is 100 out of 200, or 50%.
The complete set of color preference proportions is as follows:

100 out of 200 � 50% prefer red

20 out of 200 � 10% prefer yellow

40 out of 200 � 20% prefer green

40 out of 200 � 20% prefer blue

The row totals in the matrix define the two samples of personality types. For 
example, the matrix in Table 17.5 shows a total of 50 introverts (the top row) and a
sample of 150 extroverts (the bottom row). According to the null hypothesis, both 
personality groups should have the same proportions for color preferences. To find the
expected frequencies, we simply apply the overall distribution of color preferences to

OBSERVED AND EXPECTED
FREQUENCIES

D E F I N I T I O N
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each sample. Beginning with the sample of 50 introverts in the top row, we obtain 
expected frequencies of

50% prefer red: fe � 50% of 50 � 0.50(50) � 25
10% prefer yellow: fe � 10% of 50 � 0.10(50) � 5
20% prefer green: fe � 20% of 50 � 0.20(50) � 10
20% prefer blue: fe � 20% of 50 � 0.20(50) � 10

Using exactly the same proportions for the sample of n � 150 extroverts in the 
bottom row, we obtain expected frequencies of

50% prefer red: fe � 50% of 150 � 0.50(50) � 75
10% prefer yellow: fe � 10% of 150 � 0.10(50) � 15
20% prefer green: fe � 20% of 150 � 0.20(50) � 30
20% prefer blue: fe � 20% of 150 � 0.20(50) � 30

The complete set of expected frequencies is shown in Table 17.6. Notice that the
row totals and the column totals for the expected frequencies are the same as those for
the original data (the observed frequencies) in Table 17.3.

A simple formula for determining expected frequencies Although expected fre-
quencies are derived directly from the null hypothesis and the sample characteristics, it
is not necessary to go through extensive calculations to find fe values. In fact, there is a
simple formula that determines fe for any cell in the frequency distribution matrix:

(17.4)

where fc is the frequency total for the column (column total), fr is the frequency total
for the row (row total), and n is the number of individuals in the entire sample. To
demonstrate this formula, we compute the expected frequency for introverts 
selecting yellow in Table 17.6. First, note that this cell is located in the top row and
second column in the table. The column total is fc � 20, the row total is fr � 50, and
the sample size is n � 200. Using these values in formula 17.4, we obtain

f
f f

ne
c r� � �

20 50

200
5

( )

f
f f

ne
c r�
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TABLE 17.5

An empty frequency distribution
matrix showing only the row
totals and column totals. (These
numbers describe the basic
characteristics of the sample
from Table 17.4.)

Red Yellow Green Blue

Introvert 50

Extrovert 150

100 20 40 40

TABLE 17.6

Expected frequencies correspond-
ing to the data in Table 17.4.
(This is the distribution predicted
by the null hypothesis.)

Red Yellow Green Blue

Introvert 25 5 10 10 50

Extrovert 75 15 30 30 150

100 20 40 40
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This is identical to the expected frequency we obtained using percentages from the
overall distribution.

The chi-square test for independence uses exactly the same chi-square formula as the
test for goodness of fit:

As before, the formula measures the discrepancy between the data (fo values) and
the hypothesis (fe values). A large discrepancy produces a large value for chi-square 
and indicates that H0 should be rejected. To determine whether a particular chi-square
statistic is significantly large, you must first determine degrees of freedom (df) for 
the statistic and then consult the chi-square distribution in Appendix B. For the 
chi-square test of independence, degrees of freedom are based on the number of cells
for which you can freely choose expected frequencies. Recall that the fe values are
partially determined by the sample size (n) and by the row totals and column totals
from the original data. These various totals restrict your freedom in selecting 
expected frequencies. This point is illustrated in Table 17.7. Once three of the 
fe values have been selected, all of the other fe values in the table are also determined.
For example, the bottom number in the first column must be 75 to produce a column
total of 100. Similarly, the last number in the top row must be 10 to produce a row
total of 50. In general, the row totals and the column totals restrict the final choices
in each row and column. As a result, we may freely choose all but one fe in each row
and all but one fe in each column. If R is the number of rows and C is the number of
columns, and you remove the last column and the bottom row from the matrix, you
are left with a smaller matrix that has C – 1 columns and R – 1 rows. The number 
of cells in the smaller matrix determines the df value. Thus, the total number of 
fe values that you can freely choose is (R – 1)(C – 1), and the degrees of freedom for
the chi-square test of independence are given by the formula

df � (R – 1)(C – 1) (17.5)

Also note that once you calculate the expected frequencies to fill the smaller 
matrix, the rest of the fe values can be found by subtraction.

The following example demonstrates the complete hypothesis-testing procedure for the
chi-square test for independence.

AN EXAMPLE OF 
THE CHI-SQUARE TEST 

FOR INDEPENDENCE

χ 2

2

��
�f f

f
o e

e

( )

THE CHI-SQUARE STATISTIC
AND DEGREES OF FREEDOM
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TABLE 17.7

Degrees of freedom and 
expected frequencies. (Once
three values have been selected,
all the remaining expected 
frequencies are determined by
the row totals and the column
totals. This example has only
three free choices, so df � 3.)

Red Yellow Green Blue

25 5 10 ? 50

? ? ? ? 150

100 20 40 40
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Research has demonstrated strong gender differences in teenagers’ approaches to
dealing with mental health issues (Chandra & Minkovitz, 2006). In a typical study,
eighth-grade students are asked to report their willingness to use mental health
services in the event they were experiencing emotional or other mental health
problems. Typical data for a sample of n � 150 students are shown in Table 17.8. 
Do the data show a significant relationship between gender and willingness to seek
mental health assistance?

State the hypotheses, and select a level of significance. According to the null
hypothesis, the two variables are independent. This general hypothesis can be stated
in two different ways:

Version 1

H0: In the general population, there is no relationship between gender and
willingness to use mental health services.

This version of H0 emphasizes the similarity between the chi-square test and a
correlation. The corresponding alternative hypothesis would state:

H1: In the general population, there is a consistent, predictable relationship
between gender and willingness to use mental health services.

Version 2

H0: In the general population, the distribution of reported willingness to use
mental health services has the same proportions for males and for females.

The corresponding alternative hypothesis would state:

H1: In the general population, the distribution of reported willingness to
use mental health services for males has proportions that are different
from those in the distribution for females.

The second version of H0 emphasizes the similarity between the chi-square test
and the independent-measures t test.

Remember that the two versions for the hypotheses are equivalent. The choice
between them is largely determined by how the researcher wants to describe the
outcome. For example, a researcher may want to emphasize the relationship between
variables or the difference between groups.

For this test, we use � � .05.

Determine the degrees of freedom and locate the critical region. For the chi-square
test for independence,

df � (R – 1)(C – 1) � (2 – 1)(3 – 1) � 2

With df � 2 and � � .05, the critical value for chi-square is 5.99 
(see Table B.8, p. 711).

S T E P  2

S T E P  1

E X A M P L E  1 7 . 2
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Willingness to Use Mental Health Services

Probably Probably
No Maybe Yes

Males 17 32 11 60

Females 13 43 34 90

30 75 45 n � 150

TABLE 17.8

A frequency distribution
showing willingness to use
mental health services according
to gender for a sample of 
n � 150 students.
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Determine the expected frequencies, and compute the chi-square statistic. The
following table shows an empty matrix with the same row totals and column totals as
the original data. The expected frequencies must maintain the same row totals and
column totals, and create an ideal frequency distribution that perfectly represents the
null hypothesis. Specifically, the proportions for the group of 60 males must be the
same as the proportions for the group of 90 females.

The column totals describe the overall distribution of willingness. These totals
indicate that 30 out of 150 students reported that they would probably not use mental
health services. This proportion corresponds to �1

3
5
0
0�, or 20% of the total sample.

Similarly, �1
7
5
5
0� � 50% reported that they might use mental health services. Finally, 

�1
4
5
5
0� � 30% reported that they probably would use the services. The null hypothesis

(version 2) states that these proportions are the same for males and females.
Therefore, we simply apply the proportions to each group to obtain the expected
frequencies. For the group of 60 males (top row), we obtain

20% of 60 � 12 males who would probably not seek services

50% of 60 � 30 males who might seek services

30% of 60 � 18 males who probably would seek services

For the group of 90 females (bottom row), we expect

20% of 90 � 18 females who would probably not seek services

50% of 90 � 45 females who may seek services

30% of 90 � 27 females who probably would seek services

These expected frequencies are summarized in Table 17.9.
The chi-square statistic is now used to measure the discrepancy between the data

(the observed frequencies in Table 17.8) and the null hypothesis that was used to
generate the expected frequencies in Table 17.9.

Willingness to Use Mental Health Services

Probably Probably
No Maybe Yes

Males 60

Females 90

30 75 45 n � 150

S T E P  3
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Willingness to Use Mental Health Services

Probably Probably
No Maybe Yes

Males 12 30 18 60

Females 18 45 27 90

30 75 45

TABLE 17.9

The expected frequencies 
(fe values) of willingness to use
mental services is completely
independent of gender.
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� 2.08 	 0.13 	 2.72 	 1.39 	 0.09 	 1.82

� 8.23

Make a decision regarding the null hypothesis and the outcome of the study. The
obtained chi-square value exceeds the critical value (5.99). Therefore, the decision is
to reject the null hypothesis. In the literature, this would be reported as a significant
result with �2(2, n � 150) � 8.23, p � .05. According to version 1 of H0, this means
that we have decided there is a significant relationship between gender and
willingness to use mental health services. Expressed in terms of version 2 of H0, the
data show a significant difference between males’ and females’ attitudes toward using
mental health services. To describe the details of the significant result, you must
compare the original data (Table 17.8) with the expected frequencies in Table 17.9.
Looking at the two tables, it should be clear that males were less willing to use
mental health services and females were more willing than would be expected if the
two variables were independent.

S T E P  4
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1. A researcher would like to know which factors are most important to people who
are buying a new car. A sample of n � 200 customers between the ages of 20 and
29 are asked to identify the most important factor in the decision process:
Performance, Reliability, or Style. The researcher would like to know whether
there is a difference between the factors identified by women compared to those
identified by men. The data are as follows:

Observed Frequencies of Most 
Important factor According to Gender

Performance Reliability Style Totals

Male 21 33 26 80

Female 19 67 34 120

Totals 40 100 60

a. State the null hypotheses.

b. Determine the value for df for the chi-square test.

c. Compute the expected frequencies.

1. a. H0: In the population, the distribution of preferred factors for men has the same propor-
tions as the distribution for women.

b. df � 2

L E A R N I N G  C H E C K

ANSWERS
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c. fe values are as follows:

Expected Frequencies

Performance Reliability Style

Male 16 40 24

Female 24 60 36

17.4 MEASURING EFFECT SIZE FOR THE CHI-SQUARE TEST
FOR INDEPENDENCE

A hypothesis test, like the chi-square test for independence, evaluates the statistical sig-
nificance of the results from a research study. Specifically, the intent of the test is to 
determine whether it is likely that the patterns or relationships observed in the sample
data could have occurred without any corresponding patterns or relationships in the
population. Tests of significance are influenced not only by the size or strength of the
treatment effects but also by the size of the samples. As a result, even a small effect can
be statistically significant if it is observed in a very large sample. Because a significant
effect does not necessarily mean a large effect, it is generally recommended that the
outcome of a hypothesis test be accompanied by a measure of the effect size. This 
general recommendation also applies to the chi-square test for independence.

In Chapter 15 (p. 545), we introduced the phi-coefficient as a measure of correlation for
data consisting of two dichotomous variables (both variables have exactly two values).
This same situation exists when the data for a chi-square test for independence form a 
2 
 2 matrix (again, each variable has exactly two values). In this case, it is possible to
compute the correlation phi (�) in addition to the chi-square hypothesis test for the same
set of data. Because phi is a correlation, it measures the strength of the relationship,
rather than the significance, and thus provides a measure of effect size. The value for the
phi-coefficient can be computed directly from chi-square by the following formula:

(17.6)

The value of the phi-coefficient is determined entirely by the proportions in the 
2 
 2 data matrix and is completely independent of the absolute size of the frequencies.
The chi-square value, however, is influenced by the proportions and by the size of the
frequencies. This distinction is demonstrated in the following example.

The following data show a frequency distribution evaluating the relationship 
between gender and preference between two candidates for student president.

Candidate

A B

Male 5 10

Female 10 5

E X A M P L E  1 7 . 3

��
χ 2

n

THE PHI-COEFFICIENT 
AND CRAMÉR’S V

Caution: The value of �2 is
already a squared value. Do not
square it again.

30991_ch17_ptg01_hr_591-632.qxd  9/3/11  2:20 AM  Page 613



Note that the data show that males prefer candidate B by a 2-to-1 margin and
females prefer candidate A by 2 to 1. Also note that the sample includes a total of 
15 males and 15 females. We will not perform all the arithmetic here, but these data
produce chi-square equal to 3.33 (which is not significant) and a phi-coefficient of 0.333.

Next we keep exactly the same proportions in the data, but double all of the
frequencies. The resulting data are as follows:

Candidate

A B

Male 10 20

Female 20 10

Once again, males prefer candidate B by 2 to 1 and females prefer candidate 
A by 2 to 1. However, the sample now contains 30 males and 30 females. For these
new data, the value of chi-square is 6.66, twice as big as it was before (and now
significant with � � .05), but the value of the phi-coefficient is still 0.333.

Because the proportions are the same for the two samples, the value of the 
phi-coefficient is unchanged. However, the larger sample provides more convincing
evidence than the smaller sample, so the larger sample is more likely to produce a
significant result.

The interpretation of � follows the same standards used to evaluate a correlation
(Table 9.3, p. 299 shows the standards for squared correlations): a correlation of 
0.10 is a small effect, 0.30 is a medium effect, and 0.50 is a large effect. Occasionally,
the value of � is squared (�2) and is reported as a percentage of variance accounted for, 
exactly the same as r2.

When the chi-square test involves a matrix larger than 2 
 2, a modification of the
phi-coefficient, known as Cramér’s V, can be used to measure effect size.

V � ��
n(

�

df

2

*)
�� (17.7)

Note that the formula for Cramér’s V (17.7) is identical to the formula for the phi-
coefficient (17.6) except for the addition of df* in the denominator. The df* value is not
the same as the degrees of freedom for the chi-square test, but it is related. Recall that
the chi-square test for independence has df � (R – 1)(C – 1), where R is the number of
rows in the table and C is the number of columns. For Cramér’s V, the value of df* is
the smaller of either (R – 1) or (C – 1).

Cohen (1988) has also suggested standards for interpreting Cramér’s V that are
shown in Table 17.10. Note that when df* � 1, as in a 2 
 2 matrix, the criteria for
interpreting V are exactly the same as the criteria for interpreting a regular correlation
or a phi-coefficient.

We will use the results from Example 17.2 (p. 610) to demonstrate the calculation
of Cramér’s V. The example evaluated the relationship between gender and willingness
to use mental health services. There were two levels of gender and three levels of 
willingness producing a 2 
 3 table with a total of n � 150 participants. The data 
produced �2 � 8.23. Using these values, we obtain

V � ��
n(

�

df

2

*)
�� � ��

1
8
5
.
0
2
(
3
1)

�� � �0.055� � 0.23
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According to Cohen’s guidelines (see Table 17.10), this value indicates a small or
medium relationship.

In a research report, the measure of effect size appears immediately after the results of
the hypothesis test. For the study in Example 17.2, the results would be reported as follows:

The results showed a significant difference between males’ and females’ attitudes toward
using mental health services, �2(2, n = 50) = 8.23, p � .05, V = 0.23.

17.5 ASSUMPTIONS AND RESTRICTIONS FOR CHI-SQUARE
TESTS

To use a chi-square test for goodness of fit or a test of independence, several conditions
must be satisfied. For any statistical test, violation of assumptions and restrictions casts
doubt on the results. For example, the probability of committing a Type I error may be
distorted when assumptions of statistical tests are not satisfied. Some important 
assumptions and restrictions for using chi-square tests are the following:

1. Independence of Observations. This is not to be confused with the concept of
independence between variables, as seen in the chi-square test for independence
(Section 17.3). One consequence of independent observations is that each 
observed frequency is generated by a different individual. A chi-square test 
would be inappropriate if a person could produce responses that can be classified
in more than one category or contribute more than one frequency count to a 
single category. (See p. 254 for more information on independence.)

2. Size of Expected Frequencies. A chi-square test should not be performed
when the expected frequency of any cell is less than 5. The chi-square statistic
can be distorted when fe is very small. Consider the chi-square computations for
a single cell. Suppose that the cell has values of fe � 1 and fo � 5. Note that
there is a 4-point difference between the observed and expected frequencies.
However, the total contribution of this cell to the total chi-square value is

cell � �
(fo �

fe

fe)
2

� � �
(5 �

1
1)2

� � �
4
1

2

� � 16

Now consider another instance, in which fe � 10 and fo � 14. The difference 
between the observed and the expected frequencies is still 4, but the contribution of this
cell to the total chi-square value differs from that of the first case:

cell � �
(fo �

fe

fe)
2

� � �
(14 �

10
10)2

� � �
1
4
0

2

� � 1.6
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TABLE 17.10

Standards for interpreting
Cramér’s V as proposed by
Cohen (1988).

Small Medium Large
Effect Effect Effect

For df * � 1 0.10 0.30 0.50

For df * � 2 0.07 0.21 0.35

For df * � 3 0.06 0.17 0.29
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It should be clear that a small fe value can have a great influence on the chi-square
value. This problem becomes serious when fe values are less than 5. When fe is very
small, what would otherwise be a minor discrepancy between fo and fe results in large
chi-square values. The test is too sensitive when fe values are extremely small. One way
to avoid small expected frequencies is to use large samples.
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1. A researcher completes a chi-square test for independence and obtains �2 � 6.2
for a sample of n � 40 participants.

a. If the frequency data formed a 2 
 2 matrix, what is the phi-coefficient for
the test?

b. If the frequency data formed a 3 
 3 matrix, what is Cramér’s V for the test?

2. Explain why a very small value for an expected frequency can distort the results of
a chi-square test.

1. a. � � 0.394

b. V � 0.278

2. With a very small value for an expected frequency, even a minor discrepancy between the
observed frequency and the expected frequency can produce a large number that is added
into the chi-square statistic. This inflates the value of chi-square and can distort the outcome
of the test.

L E A R N I N G  C H E C K

ANSWERS

17.6 SPECIAL APPLICATIONS OF THE CHI-SQUARE TESTS

At the beginning of this chapter, we introduced the chi-square tests as examples of non-
parametric tests. Although nonparametric tests serve a function that is uniquely their
own, they also can be viewed as alternatives to the common parametric tests that were
examined in earlier chapters. In general, nonparametric tests are used as substitutes for
parametric tests in situations in which one of the following occurs:

1. The data do not meet the assumptions needed for a standard parametric test.

2. The data consist of nominal or ordinal measurements, so that it is impossible to
compute standard descriptive statistics such as the mean and standard deviation.

In this section, we examine some of the relationships between chi-square tests and
the parametric procedures for which they may be substituted.

The chi-square test for independence and the Pearson correlation are both statistical
techniques intended to evaluate the relationship between two variables. The type of
data obtained in a research study determines which of these two statistical procedures
is appropriate. Suppose, for example, that a researcher is interested in the 
relationship between self-esteem and academic performance for 10-year-old children.
If the researcher obtained numerical scores for both variables, then the resulting data
would be similar to the values shown in Table 17.11(a) and the researcher could use
a Pearson correlation to evaluate the relationship. On the other hand, if both variables
are classified into non-numerical categories as in Table 17.11(b), then the data con-
sist of frequencies and the relationship could be evaluated with a chi-square test for
independence.

CHI-SQUARE 
AND THE PEARSON

CORRELATION
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Once again, consider a researcher investigating the relationship between self-esteem
and academic performance for 10-year-old children. This time, suppose that the 
researcher measured academic performance by simply classifying individuals into two
categories, high and low, and then obtained a numerical score for each individual’s
self-esteem. The resulting data would be similar to the scores in Table 17.12(a), and
an independent-measures t test would be used to evaluate the mean difference between
the two groups of scores. Alternatively, the researcher could measure self-esteem by
classifying individuals into three categories: high, medium, and low. If a numerical
score is then obtained for each individual’s academic performance, the resulting 
data would look like the scores in Table 17.12(b), and an ANOVA would be used to
evaluate the mean differences among the three groups. Finally, if both variables are
classified into non-numerical categories, then the data would look like the scores
shown earlier in Table 17.11(b) and a chi-square test for independence would be used
to evaluate the difference between the two academic-performance groups or the 
differences among the three self-esteem groups.

The point of these examples is that the chi-square test for independence, the
Pearson correlation, and tests for mean differences can all be used to evaluate the rela-
tionship between two variables. One main distinction among the different statistical
procedures is the form of the data. However, another distinction is the fundamental pur-
pose of these different statistics. The chi-square test and the tests for mean differences
(t and ANOVA) evaluate the significance of the relationship; that is, they determine
whether the relationship observed in the sample provides enough evidence to conclude
that there is a corresponding relationship in the population. You can also evaluate the
significance of a Pearson correlation, however, the main purpose of a correlation is 
to measure the strength of the relationship. In particular, squaring the correlation, r2,

CHI-SQUARE AND THE
INDEPENDENT-MEASURES 

t AND ANOVA
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TABLE 17.11

Two possible data structures for
research studies examining the
relationship between self-esteem
and academic performance. In
part (a) there are numerical
scores for both variables and the
data are suitable for a correla-
tion. In part (b) both variables
are classified into categories and
the data are frequencies suitable
for a chi-square test.

Self- Academic
Esteem Performance

Participant X Y

A 13 73
B 19 88
C 10 71
D 22 96
E 20 90
F 15 82

� � �

� � �

� � �

Level of Self-Esteem

High Medium Low

High 17 32 11 60

Low 13 43 34 90

30 75 45 n � 150

Academic
Performance

(a)

(b)
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provides a measure of effect size, describing the proportion of variance in one variable
that is accounted for by its relationship with the other variable.

The median test provides a nonparametric alternative to the independent-measures t test
(or ANOVA) to determine whether there are significant differences among two or more
independent samples. The null hypothesis for the median test states that the different
samples come from populations that share a common median (no differences). The 
alternative hypothesis states that the samples come from populations that are different
and do not share a common median.

The logic behind the median test is that whenever several different samples are 
selected from the same population distribution, roughly half of the scores in each sample
should be above the population median and roughly half should be below. That is, all of
the separate samples should be distributed around the same median. On the other hand, if
the samples come from populations with different medians, then the scores in some sam-
ples will be consistently higher and the scores in other samples will be consistently lower.

The first step in conducting the median test is to combine all of the scores from
the separate samples and then find the median for the combined group (see Chapter 3,
page 83, for instructions for finding the median). Next, a matrix is constructed with 
a column for each of the separate samples and two rows: one for individuals with
scores above the median and one for individuals with scores below the median.
Finally, for each sample, count how many individuals scored above the combined 
median and how many scored below. These values are the observed frequencies that
are entered in the matrix.

The frequency-distribution matrix is evaluated using a chi-square test for independ-
ence. The expected frequencies and a value for chi-square are computed exactly as de-
scribed in Section 17.3. A significant value for chi-square indicates that the discrepancy
between the individual sample distributions is greater than would be expected by chance.

The median test is demonstrated in the following example.

The following data represent self-esteem scores obtained from a sample of 
n � 40 children. The children are then separated into three groups based on their level
of academic performance (high, medium, low). The median test evaluates whether there
is a significant relationship between self-esteem and level of academic performance.

E X A M P L E  1 7 . 4

THE MEDIAN TEST 
FOR INDEPENDENT SAMPLES
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TABLE 17.12

Data appropriate for an 
independent-measures t test 
or an ANOVA. In part (a), 
self-esteem scores are obtained
for two groups of students 
differing in level of academic
performance. In part (b), 
academic performance scores
are obtained for three groups 
of students differing in level of
self-esteem.

Academic Performance

High Low

17 13
21 15
16 14
24 20
18 17
15 14
19 12
20 19
18 16

Self-esteem

High Medium Low

94 83 80
90 76 72
85 70 81
84 81 71
89 78 77
96 88 70
91 83 78
85 80 72
88 82 75

(a) Self-esteem scores for 
two groups of students.

(b) Academic performance scores for 
three groups of students.

The median is the score that
divides the population in half,
with 50% scoring at or below
the median.
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Self-Esteem Scores for Children
at Three Levels of Academic Performance

High Medium Low

22 14 22 13 24 20 11 19
19 18 18 22 10 16 13 15
12 21 19 15 14 19 20 16
20 18 11 18 11 10 10 18
23 20 12 19 15 12 15 11

The median for the combined group of n � 40 scores is X � 17 (exactly 
20 scores are above this value and 20 are below). For the high performers, 8 out of 
10 scores are above the median. For the medium performers, 9 out of 20 are above
the median, and for the low performers, only 3 out of 10 are above the median. 
These observed frequencies are shown in the following matrix:

Academic Performance

High Medium Low

8 9 3

2 11 7

The expected frequencies for this test are as follows:

Academic Performance

High Medium Low

5 10 5

5 10 5

The chi-square statistic is

�2 � �
9
5

� 	 �
9
5

� 	 �
1
1
0
� 	 �

1
1
0
� 	 �

4
5

� 	 �
4
5

� � 5.40

With df � 2 and � � .05, the critical value for chi-square is 5.99. The obtained
chi-square of 5.40 does not fall in the critical region, so we would fail to reject the
null hypothesis. These data do not provide sufficient evidence to conclude that there
are significant differences among the self-esteem distributions for these three groups
of students.

A few words of caution are in order concerning the interpretation of the median
test. First, the median test is not a test for mean differences. Remember: The mean for
a distribution can be strongly affected by a few extreme scores. Therefore, the mean and
the median for a distribution are not necessarily the same, and they may not even be 
related. The results from a median test cannot be interpreted as indicating that there is
(or is not) a difference between means.
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Above
Median

Below
Median

Above
Median

Below
Median
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1. Chi-square tests are nonparametric techniques 
that test hypotheses about the form of the entire
frequency distribution. Two types of chi-square 
tests are the test for goodness of fit and the test for
independence. The data for these tests consist of the
frequency or number of individuals who are located
in each category.

2. The test for goodness of fit compares the frequency
distribution for a sample to the population distribution
that is predicted by H0. The test determines how well
the observed frequencies (sample data) fit the expected
frequencies (data predicted by H0).

3. The expected frequencies for the goodness-of-fit test
are determined by

expected frequency � fe � pn

where p is the hypothesized proportion (according to
H0) of observations falling into a category and n is the
size of the sample.

4. The chi-square statistic is computed by

�2 � ��
(fo �

fe

fe)
2

�

where fo is the observed frequency for a particular
category and fe is the expected frequency for that
category. Large values for �2 indicate that there is a
large discrepancy between the observed (fo) and the
expected (fe) frequencies and may warrant rejection 
of the null hypothesis.

5. Degrees of freedom for the test for goodness of fit are

df � C – 1

where C is the number of categories in the variable.
Degrees of freedom measure the number of categories
for which fe values can be freely chosen. As can be

Second, you may have noted that the median test does not directly compare the 
median from one sample with the median from another. Thus, the median test is not a
test for significant differences between medians. Instead, this test compares the distri-
bution of scores for one sample to the distribution for another sample. If the samples
are distributed evenly around a common point (the group median), then you can 
conclude that there is no significant difference. On the other hand, finding a significant
difference simply indicates that the samples are not distributed evenly around the 
common median. Thus, the best interpretation of a significant result is that there is a
difference in the distributions of the samples.
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SUMMARY

seen from the formula, all but the last fe value to be
determined are free to vary.

6. The chi-square distribution is positively skewed and
begins at the value of zero. Its exact shape is
determined by degrees of freedom.

7. The test for independence is used to assess the
relationship between two variables. The null hypothesis
states that the two variables in question are independent
of each other. That is, the frequency distribution for 
one variable does not depend on the categories of the
second variable. On the other hand, if a relationship
does exist, then the form of the distribution for one
variable depends on the categories of the other variable.

8. For the test for independence, the expected frequencies
for H0 can be directly calculated from the marginal
frequency totals,

fe � �
fc

n
fr�

where fc is the total column frequency and fr is the
total row frequency for the cell in question.

9. Degrees of freedom for the test for independence are
computed by

df � (R – 1)(C – 1)

where R is the number of row categories and C is the
number of column categories.

10. For the test for independence, a large chi-square value
means there is a large discrepancy between the fo and
fe values. Rejecting H0 in this test provides support for
a relationship between the two variables.

11. Both chi-square tests (for goodness of fit and
independence) are based on the assumption that each
observation is independent of the others. That is, each
observed frequency reflects a different individual, and
no individual can produce a response that would be
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classified in more than one category or more than one
frequency in a single category.

12. The chi-square statistic is distorted when fe values are
very small. Chi-square tests, therefore, should not be
performed when the expected frequency of any cell is
less than 5.

13. The effect size for a chi-square test for independence
is measured by computing a phi-coefficient for data

RESOURCES 621

that form a 2 
 2 matrix or computing Cramér’s V for
a matrix that is larger than 2 
 2.

phi � ��
�

n

2

�� Cramér’s V � ��
n�(

�

d�2

f�*)
��

where df* is the smaller of (R – 1) and (C – 1). Both
phi and Cramér’s V are evaluated using the criteria in 
Table 17.10.

KEY TERMS

parametric test (593)

nonparametric test (593)

chi-square test for goodness-of-fit (594)

observed frequencies (597)

expected frequencies (597)

chi-square statistic (598)

chi-square distribution (599)

chi-square test for independence (605)

phi-coefficient (613)

Cramér’s V (614)

median test (618)

RESOURCES

Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 17 on the book
companion website. The website also provides access to a workshop entitled Chi-Square
that reviews the chi-square tests presented in this chapter.

Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.

Log in to CengageBrain to access the resources your instructor requires. For this book,
you can access:

Psychology CourseMate brings course concepts to life with interactive learning,
study, and exam preparation tools that support the printed textbook. A textbook-specific
website, Psychology CourseMate includes an integrated interactive eBook and other
interactive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.
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General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to perform The Chi-Square Tests for Goodness of Fit and
for Independence that are presented in this chapter.

The Chi-Square Test for Goodness of Fit

Data Entry

1. Enter the set of observed frequencies in the first column of the SPSS data editor. 
If there are four categories, for example, enter the four observed frequencies.

2. In the second column, enter the numbers 1, 2, 3, and so on, so that there is a 
number beside each of the observed frequencies in the first column.

Data Analysis

1. Click Data on the tool bar at the top of the page and select weight cases at the
bottom of the list.

2. Click the Weight cases by circle, then highlight the label for the column containing
the observed frequencies (VAR00001) on the left and move it into the Frequency
Variable box by clicking on the arrow.

3. Click OK.
4. Click Analyze on the tool bar, select Nonparametric Tests, and click on Chi-Square.
5. Highlight the label for the column containing the digits 1, 2, 3, and move it into the

Test Variables box by clicking on the arrow.
6. To specify the expected frequencies, you can either use the all categories equal

option, which automatically computes expected frequencies, or you can enter your
own values. To enter your own expected frequencies, click on the values option,
and, one by one, enter the expected frequencies into the small box and click Add to
add each new value to the bottom of the list.

7. Click OK.

SPSS Output

The program produces a table showing the complete set of observed and expected 
frequencies. A second table provides the value for the chi-square statistic, the degrees 
of freedom, and the level of significance (the p value, or alpha level, for the test).

The Chi-Square Test for Independence

Data Entry

1. Enter the complete set of observed frequencies in one column of the SPSS data
editor (VAR00001).

2. In a second column, enter a number (1, 2, 3, etc.) that identifies the row 
corresponding to each observed frequency. For example, enter a 1 beside each
observed frequency that came from the first row.

3. In a third column, enter a number (1, 2, 3, etc.) that identifies the column corresponding
to each observed frequency. Each value from the first column gets a 1, and so on.

Data Analysis

1. Click Data on the tool bar at the top of the page and select weight cases at the
bottom of the list.

2. Click the Weight cases by circle, then highlight the label for the column containing
the observed frequencies (VAR00001) on the left and move it into the Frequency
Variable box by clicking on the arrow.
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3. Click OK.
4. Click Analyze on the tool bar at the top of the page, select Descriptive Statistics,

and click on Crosstabs.
5. Highlight the label for the column containing the rows (VAR00002) and move it

into the Rows box by clicking on the arrow.
6. Highlight the label for the column containing the columns (VAR00003) and move it

into the Columns box by clicking on the arrow.
7. Click on Statistics, select Chi-Square, and click Continue.
8. Click OK.

SPSS Output

We used SPSS to conduct the chi-square test for independence for the data in
Example 17.2, examining the relationship between gender and willingness to use
mental health services, and the output is shown in Figure 17.5. The first table in the
output simply lists the variables and is not shown in the figure. The Crosstabulation
table simply shows the matrix of observed frequencies. The final table, labeled 
Chi-Square Tests, reports the results. Focus on the top row, the Pearson 
Chi-Square, which reports the calculated chi-square value, the degrees of freedom,
and the level of significance (the p value, or the alpha level, for the test).

VAR00002*VAR00003 Crosstabulation

Chi-Square Tests

VAR00002 1.00

2.00

Total

Count

a. 0 cells (.0%) have expected count less than 5. The minimum
expected count is 12.00.

17

13

30

32 11

43

75

60

90

150

34

45

VAR00003

1.00 2.00 3.00 Total

Pearson Chi-Square

Likelihood Ratio

N of Valid Cases

Linear by Linear
Association

8.231a

8.443

8.109

150

2 .016

2

1

.015

.004

Value df Asymp.Sig.
(2-sided)

FIGURE 17.5

The SPSS output for the chi-square test for independence in Example 17.2.
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FOCUS ON PROBLEM SOLVING

1. The expected frequencies that you calculate must satisfy the constraints of the
sample. For the goodness-of-fit test, �fe � �fo � n. For the test for independence,
the row totals and column totals for the expected frequencies should be identical 
to the corresponding totals for the observed frequencies.

2. It is entirely possible to have fractional (decimal) values for expected frequencies.
Observed frequencies, however, are always whole numbers.

3. Whenever df � 1, the difference between observed and expected frequencies 
(fo � fe) is identical (the same value) for all cells. This makes the calculation of 
chi-square easier.

4. Although you are advised to compute expected frequencies for all categories (or
cells), you should realize that it is not essential to calculate all fe values separately.
Remember that df for chi-square identifies the number of fe values that are free to
vary. Once you have calculated that number of fe values, the remaining fe values 
are determined. You can get these remaining values by subtracting the calculated 
fe values from their corresponding row or column totals.

5. Remember that, unlike previous statistical tests, the degrees of freedom (df) for a
chi-square test are not determined by the sample size (n). Be careful!

DEMONSTRATION 17.1

TEST FOR INDEPENDENCE

A manufacturer of watches would like to examine preferences for digital versus 
analog watches. A sample of n � 200 people is selected, and these individuals are
classified by age and preference. The manufacturer would like to know whether 
there is a relationship between age and watch preference. The observed frequencies 
(fo) are as follows:

Digital Analog Undecided Totals

Younger than 30 90 40 10 140

30 or Older 10 40 10 60

Column totals 100 80 20 n � 200

State the hypotheses, and select an alpha level.
The null hypothesis states that there is no relationship between the two variables.

H0: Preference is independent of age. That is, the frequency distribution of 
preference has the same form for people younger than 30 as for people 30 or older.

The alternative hypothesis states that there is a relationship between the two variables.

S T E P  1
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H1: Preference is related to age. That is, the type of watch preferred depends
on a person’s age.

We set alpha to � � .05.

Locate the critical region.
Degrees of freedom for the chi-square test for independence are determined by

df � (C – 1)(R – 1)

For these data,

df � (3 – 1)(2 – 1) � 2(1) � 2

For df � 2 with � � .05, the critical chi-square value is 5.99. Thus, our obtained chi-
square must exceed 5.99 to be in the critical region and to reject H0.

Compute the test statistic. Two calculations are required: finding the expected frequencies
and calculating the chi-square statistic.

Expected frequencies, fe. For the test for independence, the expected frequencies can be
found using the column totals (fc), the row totals (fr), and the following formula:

fe � �
fc

n
fr�

For people younger than 30, we obtain the following expected frequencies:

fe � �
100

2
(
0
1
0
40)

� � �
14

2
,
0
0
0
00
� � 70 for digital

fe � �
80

2
(1
0
4
0
0)

� � �
11

2
,
0
2
0
00
� � 56 for analog

fe � �
20

2
(1
0
4
0
0)

� � �
2
2
8
0
0
0
0

� � 14 for undecided

For individuals 30 or older, the expected frequencies are as follows:

fe � �
10

2
0
0
(6
0
0)

� � �
6
2
0
0
0
0
0

� � 30 for digital

fe � �
80

2
(
0
6
0
0)

� � �
4
2
8
0
0
0
0

� � 24 for analog

fe � �
20

2
(
0
6
0
0)

� � �
1
2
2
0
0
0
0

� � 6 for undecided

The following table summarizes the expected frequencies:

Digital Analog Undecided

Younger than 30 70 56 14

30 or Older 30 24 6

S T E P  3

S T E P  2
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1. Parametric tests (such as t or ANOVA) differ from
nonparametric tests (such as chi-square) primarily in
terms of the assumptions they require and the data they
use. Explain these differences.

2. The student population at the state college consists of
55% females and 45% males.
a. The college theater department recently staged a

production of a modern musical. A researcher recorded

The chi-square statistic. The chi-square statistic is computed from the formula

The following table summarizes the calculations:

Cell fo fe (fo � fe) (fo � fe)2 (fo � fe)2/fe

Younger than 30—digital 90 70 20 400 5.71
Younger than 30—analog 40 56 �16 256 4.57
Younger than 30—undecided 10 14 �4 16 1.14
30 or Older—digital 10 30 �20 400 13.33
30 or Older—analog 40 24 16 256 10.67
30 or Older—undecided 10 6 4 16 2.67

Finally, add the values in the last column to get the chi-square statistic.

�2 � 5.71 	 4.57 	 1.14 	 13.33 	 10.67 	 2.67

� 38.09

Make a decision about H0, and state the conclusion.
The chi-square value is in the critical region. Therefore, we reject the null hypothesis.

There is a relationship between watch preference and age, �2(2, n � 200) � 38.09, p � .05.

DEMONSTRATION 17.2

EFFECT SIZE WITH CRAMÉR’S V

Because the data matrix is larger than 2 
 2, we compute Cramér’s V to measure effect
size.

Cramér’s V �

PROBLEMS

�
� � �

2 38 09

200 1
0 19 0 436

n df *

.
. .( ) ( )

S T E P  4

�2

2

��
�f f

f
o e

e

( )
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the gender of each student entering the theater and
found a total of 385 females and 215 males. Is the
gender distribution for theater goers significantly
different from the distribution for the general college?
Test at the .05 level of significance.

b. The same researcher also recorded the gender of
each student watching a men’s basketball game in
the college gym and found a total of 83 females and
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97 males. Is the gender distribution for basketball
fans significantly different from the distribution 
for the general college? Test at the .05 level of
significance.

3. A developmental psychologist would like to determine
whether infants display any color preferences. A
stimulus consisting of four color patches (red, green,
blue, and yellow) is projected onto the ceiling above a
crib. Infants are placed in the crib, one at a time, and
the psychologist records how much time each infant
spends looking at each of the four colors. The color that
receives the most attention during a 100-second test
period is identified as the preferred color for that infant.
The preferred colors for a sample of 60 infants are
shown in the following table:

Red Green Blue Yellow

20 12 18 10

a. Do the data indicate any significant preferences
among the four colors? Test at the .05 level of
significance.

b. Write a sentence demonstrating how the outcome of
the hypothesis test would appear in a research report.

4. Data from the department of motor vehicles indicate
that 80% of all licensed drivers are older than age 25.
a. In a sample of n = 60 people who recently received

speeding tickets, 38 were older than 25 years and the
other 22 were age 25 or younger. Is the age
distribution for this sample significantly different
from the distribution for the population of licensed
drivers? Use � = .05.

b. In a sample of n = 60 people who recently received
parking tickets, 43 were older than 25 years and the
other 17 were age 25 or younger. Is the age
distribution for this sample significantly different
from the distribution for the population of licensed
drivers? Use � = .05.

5. To investigate the phenomenon of “home-team
advantage,” a researcher recorded the outcomes from 
64 college football games on one Saturday in October.
Of the 64 games, 42 were won by home teams. Does
this result provide enough evidence to conclude that
home teams win significantly more than would be
expected by chance? Assume that winning and losing
are equally likely events if there is no home-team
advantage. Use � = .05.

6. Research has demonstrated that people tend to be
attracted to others who are similar to themselves. One
study demonstrated that individuals are
disproportionately more likely to marry those with
surnames that begin with the same last letter as their
own (Jones, Pelham, Carvallo, & Mirenberg, 2004).

The researchers began by looking at marriage records
and recording the surname for each groom and the
maiden name of each bride. From these records it is
possible to calculate the probability of randomly
matching a bride and a groom whose last names begin
with the same letter. Suppose that this probability is
only 6.5%. Next, a sample of n = 200 married couples
is selected and the number who shared the same last
initial at the time they were married is counted. The
resulting observed frequencies are as follows:

Same Different
Initial Initials

19 181 200

Do these data indicate that the number of couples with
the same last initial is significantly different that would
be expected if couples were matched randomly? Test
with � = .05.

7. Suppose that the researcher from the previous problem
repeated the study of married couples’ initials using
twice as many participants and obtaining observed
frequencies that exactly double the original values. The
resulting data are as follows:

Same Different
Initial Initials

38 362 400

a. Use a chi-square test to determine whether the
number of couples with the same last initial is
significantly different than would be expected if
couples were matched randomly. Test with � = .05.

b. You should find that the data lead to rejecting the
null hypothesis. However, in problem 6 the decision
was fail to reject. How do you explain the fact that
the two samples have the same proportions but lead
to different conclusions?

8. A professor in the psychology department would like to
determine whether there has been a significant change
in grading practices over the years. It is known that the
overall grade distribution for the department in 1985
had 14% As, 26% Bs, 31% Cs, 19% Ds, and 10% Fs. A
sample of n = 200 psychology students from last
semester produced the following grade distribution:

A B C D F

32 61 64 31 12

Do the data indicate a significant change in the grade
distribution? Test at the .05 level of significance.
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Design 1 Design 2 Design 3

27 20 13 60

21 34 5 60

48 54 18

9. Automobile insurance is much more expensive for
teenage drivers than for older drivers. To justify this
cost difference, insurance companies claim that the
younger drivers are much more likely to be involved 
in costly accidents. To test this claim, a researcher
obtains information about registered drivers from the
department of motor vehicles (DMV) and selects a
sample of n = 300 accident reports from the police
department. The DMV reports the percentage of
registered drivers in each age category as follows: 
16% are younger than age 20; 28% are 20 to 29 years
old; and 56% are age 30 or older. The number of
accident reports for each age group is as follows:

Under Age Age 30
age 20 20–29 or older

68 92 140

a. Do the data indicate that the distribution of accidents
for the three age groups is significantly different
from the distribution of drivers? Test with � = .05.

b. Write a sentence demonstrating how the outcome of
the hypothesis test would appear in a research report.

10. The color red is often associated with anger and male
dominance. Based on this observation, Hill and Barton
(2005) monitored the outcome of four combat sports
(boxing, tae kwan do, Greco-Roman wrestling, and
freestyle wrestling) during the 2004 Olympic games
and found that participants wearing red outfits won
significantly more often than those wearing blue.
a. In 50 wrestling matches involving red versus blue,

suppose that the red outfit won 31 times and lost 
19 times. Is this result sufficient to conclude that
red wins significantly more than would be expected
by chance? Test at the .05 level of significance.

b. In 100 matches, suppose red won 62 times and lost
38. Is this sufficient to conclude that red wins
significantly more than would be expected by
chance? Again, use � = .05.

c. Note that the winning percentage for red uniforms in
part a is identical to the percentage in part b (31 out of
50 is 62%, and 62 out of 100 is also 62%). Although
the two samples have an identical winning percentage,
one is significant and the other is not. Explain why the
two samples lead to different conclusions.

11. A communications company has developed three new
designs for a cell phone. To evaluate consumer
response, a sample of 120 college students is selected
and each student is given all three phones to use for 
1 week. At the end of the week, the students must
identify which of the three designs they prefer. The
distribution of preference is as follows:

Design 1 Design 2 Design 3

54 38 28
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Do the results indicate any significant preferences
among the three designs?

12. In problem 11, a researcher asked college students to
evaluate three new cell phone designs. However, the
researcher suspects that college students may have
criteria that are different from those used by older
adults. To test this hypothesis, the researcher repeats
the study using a sample of n = 60 older adults in
addition to a sample of n = 60 students. The
distribution of preference is as follows:

Student

Older Adult

Do the data indicate that the distribution of preferences
for older adults is significantly different from the
distribution for college students? Test with � = .05.

13. Research suggests that romantic background music
increases the likelihood that a woman will give her
phone number to a man she has just met (Guéguen &
Jacoby, 2010). In the study, women spent time in a
waiting room with background music playing. In one
condition, the music was a popular love song and for
the other condition the music was a neutral song. The
participant was then moved to another room in which
she was instructed to discuss two food products with a
young man. The men were part of the study and were
selected because they had been rated as average in
attractiveness. The experimenter returned to end 
the study and asked the pair to wait alone for a 
few minutes. During this time, the man used a
scripted line to ask the woman for her phone 
number. The following table presents data similar to
those obtained in the study, showing the number of
women who did or did not give their numbers for
each music condition.

Phone No 
Number Number

21 19 40

9 31 40

30 50

Is there a significant difference between the two types
of music? Test with � = .05

14. Mulvihill, Obuseh, and Caldwell (2008) conducted a
survey evaluating healthcare providers’ perception of a
new state children’s insurance program. One question

Romantic Music

Neutral Music
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asked the providers whether they viewed the
reimbursement from the new insurance as higher,
lower, or the same as private insurance. Another
question assessed the providers’ overall satisfaction
with the new insurance. The following table presents
observed frequencies similar to the study results.

Satisfied Not Satisfied

46 54 100

42 18 60

88 72

Do the results indicate that the providers’ satisfaction
of the new program is related to their perception of the
reimbursement rates? Test with � = .05.

15. A local county is considering a budget proposal that
would allocate extra funding toward the renovation 
of city parks. A survey is conducted to measure 
public opinion concerning the proposal. A total of 
150 individuals respond to the survey: 50 who live
within the city limits and 100 from the surrounding
suburbs. The frequency distribution is as follows:

Opinion

Favor Oppose

City 35 15 50

Suburb 55 45 100

90 60

a. Is there a significant difference in the distribution
of opinions for city residents compared to those in
the suburbs? Test at the .05 level of significance.

b. The relationship between home location and
opinion can also be evaluated using the phi-
coefficient. If the phi-coefficient were computed for
these data, what value would be obtained for phi?

16. The data from problem 15 show no significant
difference between the opinions for city residents and
those who live in the suburbs. To construct the
following data, we simply doubled the sample size
from problem 15 so that all of the individual
frequencies are twice as big. Notice that the sample
proportions have not changed.

Opinion

Favor Oppose

City 70 30 100

Suburb 110 90 200

180 120

PROBLEMS 629

a. Test for a significant difference between the 
city distribution and the suburb distribution using
� = .05. How does the decision compare with the
decision in problem 14? You should find that a
larger sample increases the likelihood of a
significant result.

b. Compute the phi-coefficient for these data and
compare it with the result from problem 15. You
should find that the sample size has no effect on the
strength of the relationship.

17. In the Preview for this chapter, we discussed a study
investigating the relationship between memory for
eyewitnesses and the questions they are asked (Loftus
& Palmer, 1974). In the study, participants watched a
film of an automobile accident and then were
questioned about the accident. One group was asked
how fast the cars were going when they “smashed
into” each other. A second group was asked about the
speed when the cars “hit” each other, and a third group
was not asked any question about the speed of the
cars. A week later, the participants returned to answer
additional questions about the accident, including
whether they recalled seeing any broken glass.
Although there was no broken glass in the film,
several students claimed to remember seeing it. The
following table shows the frequency distribution of
responses for each group.

Yes No

16 34

7 43

6 44

a. Does the proportion of participants who claim to
remember broken glass differ significantly from
group to group? Test with � = .05.

b. Compute Cramérs V to measure the size of the
treatment effect.

c. Describe how the phrasing of the question
influenced the participants’ memories.

d. Write a sentence demonstrating how the outcome of
the hypothesis test and the measure of effect size
would be reported in a journal article.

18. In a study investigating freshman weight gain, the
researchers also looked at gender differences in weight
(Kasparek, Corwin, Valois, Sargent, & Morris, 2008).
Using self-reported heights and weights, they
computed the body mass index (BMI) for each
student. Based on the BMI scores, the students were
classified as either desirable weight or overweight.
When the students were further classified by gender,

Less Reimbursement

Same or More 
Reimbursement

Verb Used to
Ask About
the Speed of
the Cars

Smashed into

Hit

Control 
(not asked)

Response to the
Question “Did You See
Any Broken Glass?”
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the researchers found results similar to the frequencies
in the following table.

Desirable Weight Overweight

Males 74 46

Females 62 18

a. Do the data indicate that the proportion of
overweight men is significantly different from the
proportion of overweight women? Test with � = .05.

b. Compute the phi-coefficient to measure the strength
of the relationship.

c. Write a sentence demonstrating how the outcome of
the hypothesis test and the measure of effect size
would be reported in a journal article.

19. Research results suggest that IQ scores for boys are
more variable than IQ scores for girls (Arden &
Plomin, 2006). A typical study looking at 10-year-old
children classifies participants by gender and by low,
average, or high IQ. Following are hypothetical data
representing the research results. Do the data indicate
a significant difference between the frequency
distributions for males and females? Test at the .05
level of significance and describe the difference.

IQ

Low Average High

Boys 18 42 20 80

Girls 12 54 14 80

n � 160

20. Gender differences in dream content are well
documented (see Winget & Kramer, 1979). Suppose a
researcher studies aggression content in the dreams of
men and women. Each participant reports his or her
most recent dream. Then each dream is judged by a
panel of experts to have low, medium, or high
aggression content. The observed frequencies are
shown in the following matrix:

Aggression Content

Low Medium High

Female 18 4 2
Gender

Male 4 17 15

Is there a relationship between gender and the
aggression content of dreams? Test with � � .01.
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21. In a study similar to one conducted by Fallon and
Rozin (1985), a psychologist prepared a set of
silhouettes showing different female body shapes
ranging from somewhat thin to somewhat heavy and
asked a group of women to indicate which body figure
they thought men would consider the most attractive.
Then a group of men were shown the same set of
profiles and asked which image they considered the
most attractive. The following hypothetical data show
the number of individuals who selected each of the
four body image profiles.
a. Do the data indicate a significant difference

between the actual preferences for the men and the
preferences predicted by the women? Test at the 
.05 level of significance.

b. Compute the phi-coefficient to measure the strength
of the relationship.

Body Image Profiles

Somewhat Slightly Slightly Somewhat 
Thin Thin Heavy Heavy

Women 29 25 18 8 80

Men 11 15 22 12 60

40 40 40 20

22. A recent study indicates that people tend to select
video game avatars with characteristics similar to
those of their creators (Bélisle & Onur, 2010).
Participants who had created avatars for a virtual
community game completed a questionnaire about
their personalities. An independent group of viewers
examined the avatars and recorded their impressions of
the avatars. One personality characteristic considered
was introverted/extroverted. The following frequency
distribution of personalities for participants and the
avatars they created.

Participant Personality

Introverted Extroverted

Introverted Avatar 22 23 45

Extroverted Avatar 16 39 55

38 62

a. Is there a significant relationship between the
personalities of the participants and the
personalities of their avatars? Test with � = .05.

b. Compute the phi-coefficient to measure the size of
the effect.

23. Research indicates that people who volunteer to
participate in research studies tend to have higher
intelligence than nonvolunteers. To test this
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phenomenon, a researcher obtains a sample of 
200 high school students. The students are given a
description of a psychological research study and
asked whether they would volunteer to participate. The
researcher also obtains an IQ score for each student
and classifies the students into high, medium, and low
IQ groups. Do the following data indicate a significant
relationship between IQ and volunteering? Test at the
.05 level of significance.

IQ

High Medium Low

Volunteer 43 73 34 150

Not Volunteer 7 27 16 50

50 100 50

24. Cialdini, Reno, and Kallgren (1990) examined how
people conform to norms concerning littering. The
researchers wanted to determine whether a person’s
tendency to litter depended on the amount of litter
already in the area. People were handed a handbill as
they entered an amusement park. The entrance area
had already been prepared with either no litter, a
small amount of litter, or a lot of litter lying on the
ground. The people were observed to determine
whether they dropped their handbills. The frequency
data are as follows:

Amount of Litter

Small Large
None Amount Amount

Littering 17 28 49

Not Littering 73 62 41

PROBLEMS 631

a. Do the data indicate that people’s tendency to litter
depends on the amount of litter already on the
ground? That is, is there a significant relationship
between littering and the amount of existing litter?
Test at the .05 level of significance.

b. Compute Cramér’s V to measure the size of the
treatment effect.

25. Although the phenomenon is not well understood, it
appears that people born during the winter months are
slightly more likely to develop schizophrenia than
people born at other times (Bradbury & Miller, 1985).
The following hypothetical data represent a sample of
50 individuals diagnosed with schizophrenia and a
sample of 100 people with no psychotic diagnosis.
Each individual is also classified according to season
in which he or she was born. Do the data indicate a
significant relationship between schizophrenia and the
season of birth? Test at the .05 level of significance.

Season of Birth

Summer Fall Winter Spring

26 24 22 28 100

9 11 18 12 50

35 35 40 40

No Disorder

Schizophrenia
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C H A P T E R

18
The Binomial
Test

Preview

18.1 Overview

18.2 The Binomial Test

18.3 The Relationship Between 
Chi-Square and the Binomial Test

18.4 The Sign Test

Summary

Focus on Problem Solving

Demonstration 18.1

Problems

Tools You Will Need
The following items are considered essential
background material for this chapter. If you
doubt your knowledge of any of these items,
you should review the appropriate chapter or
section before proceeding.

• Binomial distribution (Chapter 6)
• z-score hypothesis tests (Chapter 8)
• Chi-square test for goodness of fit

(Chapter 17)
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18.1 OVERVIEW

In Chapter 6, we introduced the concept of binomial data. You should recall that bino-
mial data exist whenever a measurement procedure classifies individuals into exactly
two distinct categories. For example, the outcomes from tossing a coin can be classi-
fied as heads and tails; people can be classified as male or female; plastic products can
be classified as recyclable or non-recyclable. In general, binomial data exist when

1. The measurement scale consists of exactly two categories.

2. Each individual observation in a sample is classified in only one of the 
two categories.

3. The sample data consist of the frequency of, or number of individuals in, each
category.

The traditional notation system for binomial data identifies the two categories as 
A and B and identifies the probability (or proportion) associated with each category as 
p and q, respectively. For example, a coin toss results in either heads (A) or tails (B),
with probabilities p � �

1
2� and q � �

1
2�.

Preview
In 1960, Gibson and Walk designed a classic piece of
apparatus to test depth perception. Their device, called a 
visual cliff, consisted of a wide board with a deep drop 
(the cliff) to one side and a shallow drop on the other side.
An infant was placed on the board and then observed to
see whether he or she crawled off the shallow side or
crawled off the cliff. Infants who moved to the deep side
actually crawled onto a sheet of heavy glass, which 
prevented them from falling. Thus, the deep side only
appeared to be a cliff—hence the name visual cliff.

Gibson and Walk reasoned that if infants are born with
the ability to perceive depth, they would recognize the deep
side and not crawl off the cliff. On the other hand, if depth
perception is a skill that develops over time through learning
and experience, then infants should not be able to perceive
any difference between the shallow and the deep sides.

Out of 27 infants who moved off the board, only 
3 ventured onto the deep side at any time during the 
experiment. The other 24 infants stayed exclusively on the
shallow side. Gibson and Walk interpreted these data as
convincing evidence that depth perception is innate. The
infants showed a systematic preference for the shallow side.

The Problem: You should notice immediately that the
data from this experiment are different from the data that
we usually encounter. There are no scores. Gibson and
Walk simply counted the number of infants who went

off the deep side and the number who went to the
shallow side. Still, we would like to use these data to
make statistical decisions. Do these sample data provide
sufficient evidence to make a confident conclusion about
depth perception in the population? Suppose that 8 of
the 27 infants had crawled to the deep side. Would you
still be convinced that there is a significant preference
for the shallow side? What about 12 out of 27?

The Solution: We are asking a question about
statistical significance and need a hypothesis test to
obtain an answer. The null hypothesis for the Gibson
and Walk study would state that infants have no 
depth perception and cannot perceive a difference
between the shallow and deep sides. In this case, their
movement should be random with half going to either
side. Notice that the data and the hypothesis both
concern frequencies or proportions. This situation is
perfect for the chi-square test introduced in Chapter 17,
and a chi-square test can be used to evaluate the data.
However, when individuals are classified into exactly
two categories (for example, shallow and deep), a
special statistical procedure exists. In this chapter, 
we introduce the binomial test, which is used to
evaluate and interpret frequency data involving 
exactly two categories of classification.

634

Data with exactly two 
categories are also known 
as dichotomous data.
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In this chapter, we examine the statistical process of using binomial data for test-
ing hypotheses about the values of p and q for the population. This type of hypothesis
test is called a binomial test.

A binomial test uses sample data to evaluate hypotheses about the values of 
p and q for a population consisting of binomial data.

Consider the following two situations:

1. In a sample of n � 34 color-blind students, 30 are male, and only 4 are female.
Does this sample indicate that color blindness is significantly more common for
males in the general population?

2. In 2005, only 10% of American families had incomes below the poverty level.
This year, in a sample of 100 families, 19 were below the poverty level. Does
this sample indicate that there has been a significant change in the population
proportions?

Notice that both of these examples have binomial data (exactly two categories).
Although the data are relatively simple, we are asking a statistical question about sig-
nificance that is appropriate for a hypothesis test: Do the sample data provide sufficient
evidence to make a conclusion about the population?

In the binomial test, the null hypothesis specifies exact values for the population pro-
portions p and q. Theoretically, you could choose any proportions for H0, but usually
there is a clear reason for the values that are selected. The null hypothesis typically falls
into one of the following two categories:

1. Just Chance. Often the null hypothesis states that the two outcomes, A and B,
occur in the population with the proportions that would be predicted simply by
chance. If you were tossing a coin, for example, the null hypothesis might 
specify p(heads) � �

1
2� and p(tails) � �

1
2�. Notice that this hypothesis states 

the usual, chance proportions for a balanced coin. Also notice that it is not
necessary to specify both proportions. Once the value of p is identified, 
the value of q is determined by 1 � p. For the coin toss example, the null 
hypothesis would simply state

H0: p � p(heads) � (The coin is balanced.)

Similarly, if you were selecting cards from a deck and trying to predict the
suit on each draw, the probability of predicting correctly would be p � �

1
4� for

any given trial. (With four suits, you have a 1-out-of-4 chance of guessing 
correctly.) In this case, the null hypothesis would state

H0: p � p(guessing correctly) � (The outcome is simply the result 
of chance.)

In each case, the null hypothesis states that there is nothing unusual about the
proportions in the population; that is, the outcomes are occurring by chance.

2. No Change or No Difference. Often you may know the proportions for one
population and want to determine whether the same proportions apply to a
different population. In this case, the null hypothesis would simply specify 
that there is no difference between the two populations. Suppose that national

HYPOTHESES FOR THE
BINOMIAL TEST

D E F I N I T I O N

SECTION 18.1 / OVERVIEW 635

1

2

1

4
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statistics indicate that 1 out of 12 drivers will be involved in a traffic accident
during the next year. Does this same proportion apply to 16-year-olds who are
driving for the first time? According to the null hypothesis,

H0: For 16-year-olds, p � p(accident) � (Not different from the 
general population)

Similarly, suppose that last year, 30% of the freshman class failed the college
writing test. This year, the college is requiring all freshmen to take a writing
course. Will the course have any effect on the number who fail the test? According
to the null hypothesis,

H0: For this year, p � p(fail) � 30% (Not different from last year’s
class)

For the binomial test, a sample of n individuals is obtained and you simply count how
many are classified in category A and how many are classified in category B. We focus 
attention on category A and use the symbol X to stand for the number of individuals clas-
sified in category A. Recall from Chapter 6 that X can have any value from 0 to n and that
each value of X has a specific probability. The distribution of probabilities for each value
of X is called the binomial distribution. Figure 18.1 shows an example of a binomial 
distribution for which X is the number of heads obtained in four tosses of a balanced coin.

As we noted in Chapter 6, when the values pn and qn are both equal to or greater than
10, the binomial distribution approximates a normal distribution. This fact is important
because it allows us to compute z-scores and use the unit normal table to answer prob-
ability questions about binomial events. In particular, when pn and qn are both at least
10, the binomial distribution has the following properties:

1. The shape of the distribution is approximately normal.

2. The mean of the distribution is μ � pn.

THE TEST STATISTIC 
FOR THE BINOMIAL TEST

THE DATA 
FOR THE 

BINOMIAL TEST
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3. The standard deviation of the distribution is

� � �npq�

With these parameters in mind, it is possible to compute a z-score corresponding
to each value of X in the binomial distribution.

z � �
X �

�

�
� � (See Equation 6.3.) (18.1)

This is the basic z-score formula that is used for the binomial test. However, the
formula can be modified slightly to make it more compatible with the logic of the 
binomial hypothesis test. The modification consists of dividing both the numerator and
the denominator of the z-score by n. (You should realize that dividing both the numer-
ator and the denominator by the same value does not change the value of the z-score.)
The resulting equation is

z � �
X

�

/n

p

�

q/n�

p
� (18.2)

For the binomial test, the values in this formula are defined as follows:

1. X/n is the proportion of individuals in the sample who are classified in 
category A.

2. p is the hypothesized value (from H0) for the proportion of individuals in the
population who are classified in category A.

3. �pq/n� is the standard error for the sampling distribution of X/n and provides a
measure of the standard distance between the sample statistic (X/n) and the
population parameter (p).

Thus, the structure of the binomial z-score (Equation 18.2) can be expressed as

sample hypothesized
proportion � population

(data) proportion
z � � 

standard error

The logic underlying the binomial test is exactly the same as we encountered with
the original z-score hypothesis test in Chapter 8. The hypothesis test involves compar-
ing the sample data with the hypothesis. If the data are consistent with the hypothesis,
then we conclude that the hypothesis is reasonable. But if there is a big discrepancy 
between the data and the hypothesis, then we reject the hypothesis. The value of the
standard error provides a benchmark for determining whether the discrepancy between
the data and the hypothesis is more than would be expected by chance. The alpha level
for the test provides a criterion for deciding whether the discrepancy is significant. The
hypothesis-testing procedure is demonstrated in the following section.

X/n � p
�
�pq/n�

X � pn
�
�npq�

SECTION 18.1 / OVERVIEW 637

1. In the Preview, we described a research study using a visual cliff. State the null
hypothesis for this study in words and as a probability value (p) that an infant will
crawl off the deep side.

2. If the visual cliff study had used a sample of n � 15 infants, would it be appropriate to
use the normal approximation to the binomial distribution? Explain why or why not.

L E A R N I N G  C H E C K
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3. If the results from the visual cliff study showed that 9 out of 36 infants crawled off
the deep side, what z-score value would be obtained using Equation 18.1? 

1. The null hypothesis states that the probability of choosing between the deep side and the
shallow side is just chance: p(deep side) � �

1
2� .

2. The normal approximation to the binomial distribution requires that both pn and qn are at
least 10. With n � 15, pn � qn � 7.5. The normal approximation should not be used.

3. With n � 36 and p � �
1
2�, the binomial distribution has � � �

1
2�(36) � 18, and 

� �  ��
1
2����

1
2���36� � �9� � 3.  X � 9 corresponds z � �9/3 � �3.00

18.2 THE BINOMIAL TEST

The binomial test follows the same four-step procedure presented earlier with other 
examples for hypothesis testing. The four steps are summarized as follows.

State the hypotheses. In the binomial test, the null hypothesis specifies values for the
population proportions p and q. Typically, H0 specifies a value only for p, the
proportion associated with category A. The value of q is directly determined from 
p by the relationship q � 1 � p. Finally, you should realize that the hypothesis, as
always, addresses the probabilities or proportions for the population. Although we use
a sample to test the hypothesis, the hypothesis itself always concerns a population.

Locate the critical region. When both values for pn and qn are greater than or equal
to 10, then the z-scores defined by Equation 18.1 or 18.2 form an approximately
normal distribution. Thus, the unit normal table can be used to find the boundaries for
the critical region. With � � .05, for example, you may recall that the critical region
is defined as z-score values greater than �1.96 or less than �1.96.

Compute the test statistic (z-score). At this time, you obtain a sample of n individuals
(or events) and count the number of times category A occurs in the sample. The
number of occurrences of A in the sample is the X value for Equation 18.1 or 18.2.
Because the two z-score equations are equivalent, you may use either one for the
hypothesis test. Usually Equation 18.1 is easier to use because it involves larger
numbers (fewer decimals) and it is less likely to be affected by rounding error.

Make a decision. If the z-score for the sample data is in the critical region, then you
reject H0 and conclude that the discrepancy between the sample proportions and the
hypothesized population proportions is significantly greater than chance. That is, the
data are not consistent with the null hypothesis, so H0 must be wrong. On the other
hand, if the z-score is not in the critical region, then you fail to reject H0.

The following example demonstrates a complete binomial test.

In the Preview section, we described the visual cliff experiment designed to examine
depth perception in infants. To summarize briefly, an infant is placed on a wide board
that appears to have a deep drop on one side and a relatively shallow drop on the

E X A M P L E  1 8 . 1

S T E P  4

S T E P  3

S T E P  2

S T E P  1
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other. An infant who is able to perceive depth should avoid the deep side and move
toward the shallow side. Without depth perception, the infant should show no
preference between the two sides. Of the 27 infants in the experiment, 24 stayed
exclusively on the shallow side and only 3 moved onto the deep side. The purpose of
the hypothesis test is to determine whether these data demonstrate that infants have a
significant preference for the shallow side.

This is a binomial hypothesis-testing situation. The two categories are

A � move onto the deep side

B � move onto the shallow side

The null hypothesis states that, for the general population of infants, there is no
preference between the deep and the shallow sides; the direction of movement is
determined by chance. In symbols,

We use � � .05.

With a sample of n � 27, pn � 13.5 and qn � 13.5. Both values are greater than 10,
so the distribution of z-scores is approximately normal. With � � .05, the critical
region is determined by boundaries of z � 	 1.96.

For this experiment, the data consist of X � 3 out of n � 27. Using Equation 18.1,
these data produce a z-score value of

To use Equation 18.2, you first compute the sample proportion, X/n � 3/27 � 0.111.
The z-score is then

Within rounding error, the two equations produce the same result.

Because the data are in the critical region, our decision is to reject H0. These data do
provide sufficient evidence to conclude that there is a significant preference for the
shallow side. Gibson and Walk (1960) interpreted these data as convincing evidence
that depth perception is innate.

In Chapter 6, we noted that a binomial distribution forms a discrete histogram
(see Figure 18.1), whereas the normal distribution is a continuous curve. 
The difference between the two distributions was illustrated in Figure 6.18,

REAL LIMITS 
AND THE BINOMIAL TEST
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which is repeated here as Figure 18.2. In the figure, note that each score in the
binomial distribution is represented by a bar in the histogram. For example, a
score of X � 6 actually corresponds to a bar that reaches from a lower real limit
of X � 5.5 to an upper real limit of 6.5.

When conducting a hypothesis test with the binomial distribution, the basic question
is whether a specific score is located in the critical region. However, because each score
actually corresponds to an interval, it is possible that part of the score is in the critical 
region and part is not. Fortunately, this is usually not an issue. When pn and qn are both
equal to or greater than 10 (the criteria for using the normal approximation), each inter-
val in the binomial distribution is extremely small and it is very unlikely that the interval
overlaps the critical boundary. For example, the experiment in Example 18.1 produced a
score of X � 3, and we computed a z-score of z � �4.04. Because this value is in the 
critical region, beyond z � �1.96, we rejected H0. If we had used the real limit bound-
aries of X � 2.5 and X � 3.5, instead of X � 3, we would have obtained z-scores of

z � �
2.5 �

2.60
13.5

� and               z � �
3.5 �

2.60
13.5

�

��4.23                                � �3.85

Thus, a score of X � 3 actually corresponds to an interval of z-scores ranging from
z � �3.85 to z � �4.23. However, this entire interval is in the critical region beyond
z � �1.96, so the decision is still to reject H0.

In most situations, if the whole number X value (in this case, X � 3) is in the crit-
ical region, then the entire interval is in the critical region and the correct decision is to
reject H0. The only exception to this general rule occurs when an X value produces a 
z-score that is barely past the boundary into the critical region. In this situation, you
should compute the z-scores corresponding to both real limits to determine whether any
part of the z-score interval is not located in the critical region. Suppose, for example,
that the researchers in Example 18.1 found that 8 out of 27 infants in the visual cliff 
experiment moved onto the deep side. A score of X � 8 corresponds to

z � �
8 �

2.60
13.5

�

z � �
�5.5
2.60

� �2.12
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X

FIGURE 18.2

The relationship between the
binomial distribution and 
the normal distribution. 
The binomial distribution is
always a discrete histogram,
and the normal distribution is
a continuous, smooth curve.
Each X value is represented
by a bar in the histogram or 
a section of the normal 
distribution.
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Because this value is beyond the � 1.96 boundary, it appears that we should reject
H0. However, this z-score is only slightly beyond the critical boundary, so it would be
wise to check both ends of the interval. For X � 8, the real-limit boundaries are 7.5 and
8.5, which correspond to z-scores of 

z � �
7.5 �

2.60
13.5

� and            z � �
8.5 �

2.60
13.5

�

� �2.31                                    � �1.92

Thus, a score of X � 8 corresponds to an interval extending from z � �1.92 to 
z � �2.31. However, the critical boundary is z � � 1.96, which means that part of the
interval (and part of the score) is not in the critical region for � � .05. Because X � 8
is not completely beyond the critical boundary, the probability of obtaining X � 8 is
greater than � � .05. Therefore, the correct decision is to fail to reject H0.

In general, it is safe to conduct a binomial test using the whole-number value for
X. However, if you obtain a z-score that is only slightly beyond the critical boundary,
you also should compute the z-scores for both real limits. If any part of the z-score 
interval is not in the critical region, the correct decision is to fail to reject H0.

IN THE LITERATURE
REPORTING THE RESULTS OF A BINOMIAL TEST

Reporting the results of the binomial test typically consists of describing the data and
reporting the z-score value and the probability that the results are caused by chance. 
It is also helpful to note that a binomial test was used because z-scores are used in
other hypothesis-testing situations (see, for example, Chapter 8). For Example 18.1,
the report might state:

Three out of 27 infants moved to the deep side of the visual cliff. A binomial test revealed
that there is a significant preference for the shallow side of the cliff, z � �4.04, p 
 .05.

Once again, p is less than .05. We have rejected the null hypothesis because it is
very unlikely, probability less than 5%, that these results are simply caused by chance.

The binomial test requires two very simple assumptions:

1. The sample must consist of independent observations (see Chapter 8, page 254).

2. The values for pn and qn must both be greater than or equal to 10 to justify
using the unit normal table for determining the critical region.

ASSUMPTIONS 
FOR THE BINOMIAL TEST

SECTION 18.2 / THE BINOMIAL TEST 641

1. For a binomial test, the null hypothesis always states that p � 1/2. (True or false?)

2. The makers of brand X beer claim that people like their beer more than the leading
brand. The basis for this claim is an experiment in which 64 beer drinkers com-
pared the two brands in a side-by-side taste test. In this sample, 40 preferred 
brand X, and 24 preferred the leading brand. 

a. If you compute the z-score for X � 40, do these data support the claim that
there is a significant preference? Test at the .05 level.

b. If you compute z-scores for the real limits for X � 40, do the data support the
claim that there is a significant preference? Test at the .05 level.

L E A R N I N G  C H E C K
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18.3 THE RELATIONSHIP BETWEEN CHI-SQUARE 
AND THE BINOMIAL TEST

You may have noticed that the binomial test evaluates the same basic hypotheses as 
the chi-square test for goodness of fit; that is, both tests evaluate how well the sample
proportions fit a hypothesis about the population proportions. When an experiment 
produces binomial data, these two tests are equivalent, and either may be used. The 
relationship between the two tests can be expressed by the equation

�2 � z2

where �2 is the statistic from the chi-square test for goodness of fit and z is the 
z-score from the binomial test.

To demonstrate the relationship between the goodness-of-fit test and the binomial
test, we reexamine the data from Example 18.1.

Hypotheses. In the visual cliff experiment from Example 18.1, the null hypothesis
states that there is no preference between the shallow side and the deep side. For the
binomial test, the null hypothesis states

The chi-square test for goodness of fit would state the same hypothesis, specifying
the population proportions as

Shallow Side Deep Side

H0:

Critical region. For the binomial test, the critical region is located by using the unit
normal table. With � � .05, the critical region consists of any z-score value beyond
	1.96. The chi-square test would have df � 1, and with � � .05, the critical region
consists of chi-square values greater than 3.84. Notice that the basic relationship, 
�2 � z2, holds:

3.84 � (1.96)2

Test statistic. For the binomial test (Example 18.1), we obtained a z-score of 
z � �4.04. For the chi-square test, the expected frequencies are

Shallow Side Deep Side

fe 13.5 13.5

S T E P  3

S T E P  2

H p p q p
0

1

2
: deep side shallow side� � � �( ) ( )

S T E P  1
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1. False.

2. a. H0: p � �
1
2

� � q, X � 38, � � 32, � � 4, z � 2.00, reject H0. Conclude that there is a
significant preference.

b. The real limits of 39.5 and 40.5 correspond to z-scores of 1.88 and 2.13. The entire
interval is not in the critical region so fail to reject H0 and conclude that there is not a
significant preference.

ANSWERS
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With observed frequencies of 24 and 3, respectively, the chi-square statistic is

�2 � �
(24 �

13.
1
5
3.5)2

� � �
(3 �

13
1
.5
3.5)2

�

� �
(1

1
0
3
.
.
5
5
)2

� � �
(�

1
1
3
0
.
.
5
5)2

�

� 8.167 � 8.167

� 16.33

With a little rounding error, the values obtained for the z-score and chi-square are
related by the equation

�2 � z2

16.33 � (�4.04)2

Decision. Because the critical values for both tests are related by the equation �2 � z2

and the test statistics are related in the same way, these two tests always result in the
same statistical conclusion.

18.4 THE SIGN TEST

Although the binomial test can be used in many different situations, there is one specific
application that merits special attention. For a repeated-measures study that compares two
conditions, it is often possible to use a binomial test to evaluate the results. You should
recall that a repeated-measures study involves measuring each individual in two different
treatment conditions or at two different points in time. When the measurements produce
numerical scores, the researcher can simply subtract to determine the difference between
the two scores and then evaluate the data using a repeated-measures t test (see Chapter
11). Occasionally, however, a researcher may record only the direction of the difference
between the two observations. For example, a clinician may observe patients before ther-
apy and after therapy and simply note whether each patient got better or worse. Note that
there is no measurement of how much change occurred; the clinician is simply recording
the direction of change. Also note that the direction of change is a binomial variable; that
is, there are only two values. In this situation it is possible to use a binomial test to eval-
uate the data. Traditionally, the two possible directions of change are coded by signs, with
a positive sign indicating an increase and a negative sign indicating a decrease. When the
binomial test is applied to signed data, it is called a sign test.

An example of signed data is shown in Table 18.1. Notice that the data can be
summarized by saying that seven out of eight patients showed a decrease in symptoms
after therapy.

The null hypothesis for the sign test states that there is no difference between the
two treatments. Therefore, any change in a participant’s score is the result of chance. In
terms of probabilities, this means that increases and decreases are equally likely, so

A complete example of a sign test follows.

�
1

2

�
1

2
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Caution: The �2 value is already
squared. Do not square it again.

p � p�increase	

q � p�decrease	
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A researcher testing the effectiveness of acupuncture for treating the symptoms of
arthritis obtains a sample of 36 people who have been diagnosed with arthritis. 
Each person’s pain level is measured before treatment starts, and measured again
after 4 months of acupuncture treatment. For this sample, 25 people experienced a
reduction in pain, and 11 people had more pain after treatment. Do these data 
indicate a significant treatment effect?

State the hypothesis. The null hypothesis states that acupuncture has no effect. Any
change in the level of pain is caused by chance, so increases and decreases are
equally likely. Expressed as probabilities, the hypotheses are

H1: p � q (Changes tend to be consistently in one direction.)

Set � � .05.

Locate the critical region. With n � 36 people, both pn and qn are greater than 10, so
the normal approximation to the binomial distribution is appropriate. With � � .05,
the critical region consists of z-scores greater than �1.96 at one extreme and z-scores
less than �1.96 at the other.

Compute the test statistic. For this sample we have X � 25 people with decreased
pain. This score corresponds to a z-score of

Because the z-score is only slightly beyond the 1.96 critical boundary, we consider
the real limits for X � 25 to be certain that the entire interval is beyond the boundary.
For X � 25, the real limits are 24.5 and 25.5, which correspond to z-scores of

z � �
24.5 �

3  
18

� and                    z � �
25.5 �

3  
18

�

� 2.17                                                 � 2.50

z
X pn

npq
�

�
�

�
� �

25 18

36
1
2

1
2

7

3
2 33

⎛
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⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
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TABLE 18.1

Hypothetical data from a 
research study evaluating the
effectiveness of a clinical 
therapy. For each patient, 
symptoms are assessed before
and after treatment and the 
data record whether there is 
an increase or a decrease in 
symptoms following therapy.

Direction of Change
Patient After Treatment

A � (decrease)
B � (decrease)
C � (decrease)
D � (increase)
E � (decrease)
F � (decrease)
G � (decrease)
H � (decrease)
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Thus, a score of X � 25 corresponds to an interval of z-scores ranging from z � 2.17
to z � 2.50. Note that this entire interval is beyond the 1.96 critical boundary.

Make a decision. Because the data are in the critical region, we reject H0 and
conclude that acupuncture treatment has a significant effect on arthritis pain, 
z � 2.33, p 
 .05.

You should notice that the null hypothesis in the sign test refers only to those individuals
who show some difference between treatment 1 versus treatment 2. The null hypothesis
states that if there is any change in an individual’s score, then the probability of an 
increase is equal to the probability of a decrease. Stated in this form, the null hypothesis
does not consider individuals who show zero difference between the two treatments. As
a result, the usual recommendation is that these individuals be discarded from the data and
the value of n be reduced accordingly. However, if the null hypothesis is interpreted more
generally, it states that there is no difference between the two treatments. Phrased this
way, it should be clear that individuals who show no difference actually are supporting
the null hypothesis and should not be discarded. Therefore, an alternative approach to the
sign test is to divide individuals who show zero differences equally between the positive
and negative categories. (With an odd number of zero differences, discard one, and divide
the rest evenly.) This alternative results in a more conservative test; that is, the test is more
likely to fail to reject the null hypothesis.

It has been demonstrated that stress or exercise causes an increase in the
concentration of certain chemicals in the brain called endorphins. Endorphins are
similar to morphine and produce a generally relaxed feeling and a sense of 
well-being. The endorphins may explain the “high” experienced by long-distance
runners. To demonstrate this phenomenon, a researcher tested pain tolerance for 
40 athletes before and after they completed a mile run. Immediately after running, the
ability to tolerate pain increased for 21 of the athletes, decreased for 12, and showed
no change for the remaining 7.

Following the standard recommendation for handling zero differences, you would
discard the 7 participants who showed no change and conduct a sign test with the
remaining n � 33 athletes. With the more conservative approach, only 1 of the 7 who
showed no difference would be discarded and the other 6 would be divided equally
between the two categories. This would result in a total sample of n � 39 athletes
with 21 � 3 � 24 in the increased-tolerance category and 12 � 3 � 15 in the
decreased-tolerance category.

In many cases, data from a repeated-measures experiment can be evaluated using either
a sign test or a repeated-measures t test. In general, you should use the t test whenever
possible. Because the t test uses the actual difference scores (not just the signs), it
makes maximum use of the available information and results in a more powerful test.
However, there are some cases in which a t test cannot or should not be used, and in
these situations, the sign test can be valuable. Four specific cases in which a t test is 
inappropriate or inconvenient are described below. 

WHEN TO USE THE SIGN TEST

E X A M P L E  1 8 . 3

ZERO DIFFERENCES 
IN THE SIGN TEST
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SECTION 18.4 / THE SIGN TEST 645

30991_ch18_ptg01_hr_633-656.qxd  9/3/11  3:07 AM  Page 645



1. When you have infinite or undetermined scores, a t test is impossible, and the
sign test is appropriate. Suppose, for example, that you are evaluating the 
effects of a sedative drug on problem-solving ability. A sample of rats is 
obtained, and each animal’s performance is measured before and after receiving
the drug. Hypothetical data are shown in the margin. Note that the third rat in
this sample failed to solve the problem after receiving the drug. Because there
is no score for this animal, it is impossible to compute a sample mean, an SS, 
or a t statistic. However, you could do a sign test because you know that the
animal made more errors (an increase) after receiving the drug.

2. Often it is possible to describe the difference between two treatment conditions
without precisely measuring a score in either condition. In a clinical setting, 
for example, a doctor can say whether a patient is improving, growing worse,
or showing no change even though the patient’s condition is not precisely
measured by a score. In this situation, the data are sufficient for a sign test, 
but you could not compute a t statistic without individual scores.

3. Often a sign test is done as a preliminary check on an experiment before serious
statistical analysis begins. For example, a researcher may predict that scores in
treatment 2 should be consistently greater than scores in treatment 1. However,
examination of the data after 1 week indicates that only 8 of 15 subjects showed
the predicted increase. On the basis of these preliminary results, the researcher
may choose to reevaluate the experiment before investing additional time.

4. Occasionally, the difference between treatments is not consistent across partici-
pants. This can create a very large variance for the difference scores. As we
have noted in the past, large variance decreases the likelihood that a t test will
produce a significant result. However, the sign test only considers the direction
of each difference score and is not influenced by the variance of the scores.

646 CHAPTER 18 THE BINOMIAL TEST

Before After Difference

20 23 �3
14 39 �25
27 Failed �??
. . .
. . .
. . .

1. A researcher used a chi-square test for goodness of fit to determine whether 
people had any preferences among three leading brands of potato chips. Could the 
researcher have used a binomial test instead of the chi-square test? Explain why 
or why not.

2. A researcher used a chi-square test to evaluate preferences between two logo 
designs for a minor-league hockey team. With a sample of n � 100 people, the
researcher obtained a chi-square of 9.00. If a binomial test had been used instead
of chi-square, what value would have been obtained for the z-score?

3. A developmental psychologist is using a behavior-modification program to help
control the disruptive behavior of 40 children in a local school. After 1 month, 
26 of the children have improved, 10 are worse, and 4 show no change in 
behavior. On the basis of these data, can the psychologist conclude that the 
program is working? Test at the .05 level.

1. No, the binomial test cannot be used when there are three categories.

2. The z-score would be �9� � 3.00.

3. Discarding the four participants who showed zero difference, X � 26 increases out of n � 36;
z � 2.67; reject H0; the program is working. If the four participants showing no change are
divided between the two groups, then X � 28 out of n � 40; z � 2.53 and H0 is still rejected.

ANSWERS

L E A R N I N G  C H E C K
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1. The binomial test is used with dichotomous data—that
is, when each individual in the sample is classified in
one of two categories. The two categories are identified
as A and B, with probabilities of 

p(A) � p and p(B) � q

2. The binomial distribution gives the probability for each
value of X, where X equals the number of occurrences
of category A in a sample of n events. For example, X
equals the number of heads in n � 10 tosses of a coin.

3. When pn and qn are both at least 10, then the binomial
distribution is closely approximated by a normal
distribution with

� � pn � � �npq�

By using this normal approximation, each value of 
X has a corresponding z-score:

z � �
X �

�

�
� � �

X

�

�

np

p

q�

n
� or z � �

X

�

/n

p

�

q/n�

p
�

4. The binomial test uses sample data to test hypotheses
about the binomial proportions, p and q, for a population.
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SUMMARY

The null hypothesis specifies p and q, and the binomial
distribution (or the normal approximation) is used to
determine the critical region.

5. Usually the z-score in a binomial test is computed using
the whole-number X value from the sample. However,
if the z-score is only marginally in the critical region,
you should compute the z-scores corresponding to both
real limits of the score. If either one of these real-limit
z-scores is not in the critical region, then the correct
decision is to fail to reject the null hypothesis.

6. One common use of the binomial distribution is for the
sign test. This test evaluates the difference between 
two treatments using the data from a repeated measures
design. The difference scores are coded as being either
increases (�) or decreases (�). Without a consistent
treatment effect, the increases and decreases should be
mixed randomly, so the null hypothesis states that

With dichotomous data and hypothesized values for p
and q, this is a binomial test.

p pincrease decrease( ) ( )� �
1

2

binomial data (634)

binomial test (635)

binomial distribution (636)

sign test (643)
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Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 18 on the

book companion website.

Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.
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Log in to CengageBrain to access the resources your instructor requires. For this book,
you can access:

Psychology CourseMate brings course concepts to life with interactive learning,
study, and exam preparation tools that support the printed textbook. A textbook-specific
website, Psychology CourseMate includes an integrated interactive eBook and other
interactive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

General instructions for using SPSS are found in Appendix D. If you are testing a null
hypothesis specifying that p � q � �

1
2�, then you can use SPSS to perform The Binomial

Test presented in this chapter. Following are detailed instructions for the test. For other
versions of the null hypothesis, use the equivalent chi-square test for goodness of fit
presented in Chapter 17 (p. 594). The chi-square test allows you to specify expected
frequencies, which is equivalent to specifying values for p and q.

Data Entry

1. Enter the category labels A and B in the first column of the SPSS data editor.
2. In the second column, enter the frequencies obtained for the two binomial categories.

For example, if 21 out of 25 people were classified in category A (and only 4 people
in category B), you would enter the values 21 and 4 in the second column.

Data Analysis

1. Click Data on the tool bar at the top of the page and select weight cases at the
bottom of the list.

2. Click the Weight cases by circle, then highlight the label for the column containing
the frequencies for the two categories and move it into the Frequency Variable
box by clicking on the arrow.

3. Click OK.
4. Click Analyze on the tool bar, select Nonparametric Tests, and click on One

Sample.
5. Select Automatically compare observed data to hypothesis.
6. Click RUN.

SPSS Output

We used SPSS to analyze the data from Example 18.1 and the output is shown in
Figure 18.3. The output reports the null hypothesis for the test and the level of 
significance, which is rounded to .000 for this example. 
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Hypothesis Test Summary

Null Hypothesis

 The categories defined by
 VAR00001 = A and B occur with
 probabilities 0.5 and 0.5.

Test

One-Sample
Binomial
Test

Sig. Decision

Reject the
null
hypothesis.

Asymptotic significances are displayed. The significance level is .05.

.000 

FIGURE 18.3

The SPSS output for 
the binomial test in 
Example 18.1.
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FOCUS ON PROBLEM SOLVING

1. For all binomial tests, the values of p and q must add up to 1.00 (or 100%).

2. Remember that both pn and qn must be at least 10 before you can use the normal
distribution to determine critical values for a binomial test.

DEMONSTRATION 18.1

THE BINOMIAL TEST

The population of students in the psychology department at State College consists of 60%
females and 40% males. Last semester, the Psychology of Gender course had a total of 
36 students, of whom 26 were female and only 10 were male. Are the proportions of females
and males in this class significantly different from what would be expected by chance from a
population with 60% females and 40% males? Test at the .05 level of significance.

State the hypotheses, and specify alpha. The null hypothesis states that the male/
female proportions for the class are not different from what is expected for a population
with these proportions. In symbols,

H0: p � p(female) � 0.60 and q � p(male) � 0.40

The alternative hypothesis is that the proportions for this class are different from what
is expected for these population proportions.

H1: p � 0.60 (and q � 0.40)

We set alpha at � � .05.

Locate the critical region. Because pn and qn are both greater than 10, we can use the
normal approximation to the binomial distribution. With � � .05, the critical region is
defined as a z-score value greater than �1.96 or less than �1.96.

Calculate the test statistic. The sample has 26 females out of 36 students, so the sam-
ple proportion is

�
X
n

� � �
2
3
6
6
� � 0.72

The corresponding z-score (using Equation 18.2) is

z � �
X

�

/n

p

�

q/n�

p
� � � �

0
0
.0
.1
8
2
16

� � 1.47

Make a decision about H0, and state a conclusion. The obtained z-score is not in 
the critical region. Therefore, we fail to reject the null hypothesis. On the basis of 
these data, you conclude that the male/female proportions in the gender class are not 
significantly different from the proportions in the psychology department as a whole.

S T E P  4

0.72 � 0.60
��

��
0.60

3
(0
6�.40)
��

S T E P  3

S T E P  2

S T E P  1
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1. To investigate the phenomenon of “home team
advantage,” a researcher recorded the outcomes from 
64 college football games on one Saturday in October.
Of the 64 games, 42 were won by home teams. Does
this result provide enough evidence to conclude that
home teams win significantly more than would be
expected by chance? Use a two-tailed test with � � .05.

2. Insurance companies charge young drivers more for
automobile insurance because they tend to have more
accidents than older drivers. To make this point, an
insurance representative first determines that only 16%
of licensed drivers are age 20 or younger. Because this
age group makes up only 16% of the drivers, it is
reasonable to predict that they should be involved in
only 16% of the accidents. In a random sample of 
100 accident reports, however, the representative finds
31 accidents that involved drivers who were 20 or
younger. Is this sample sufficient to show that younger
drivers have significantly more accidents than would
be expected from the percentage of young drivers?
Use a two-tailed test with � � .05.

3. Güven, Elaimis, Binokay, and Tan (2003) studied 
the distribution of paw preferences in rats using a
computerized food-reaching test. For a sample of 
n � 144 rats, they found 104 right-handed animals. 
Is this significantly more than would be expected if
right- and left-handed rats are equally common in the
population? Use a two-tailed test with � � .01.

4. During the 2004 Olympic Games, Hill and Barton
(2005) monitored contests in four combat sports:
Greco-Roman wrestling, freestyle wrestling, boxing,
and tae kwon do. Half of the competitors were
assigned red outfits and half were assigned blue. The
results indicate that participants wearing red won
significantly more contests. Suppose that a sample of
n � 100 contests produced 60 winners wearing red
and only 40 wearing blue.
a. Is this enough evidence to justify a conclusion that

wearing red produces significantly more wins than
would be expected by chance? Use a two-tailed test
with � � .05.

b. Because the outcome of the binomial test is a
borderline z-score, use the real limits for X � 60 to
determine if the entire z-score interval is located in
the critical region. If any part of the interval is not
in the critical region, the correct decision is to fail
to reject the null hypothesis.

5. Problem 6 in Chapter 17 cited a study showing that
people tend to choose partners who are similar to
themselves. Jones, Pelham, Carvallo, & Mirenberg,
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(2004) demonstrated that people have a tendency to
select marriage partners with surnames that begin with
the same last letter as their own. The probability of
randomly matching two last names beginning with the
same letter is only p � 0.065 (6.5%). The researchers
looked at marriage records and found that 38 out of 400
brides and grooms had surnames beginning with the
same last letter. Is this significantly more than would be
expected by chance? Use a two-tailed test with � � .05. 

6. A researcher would like to determine whether people
really can tell the difference between bottled water and
tap water. Participants are asked to taste two unlabeled
glasses of water, one bottled and one tap, and identify
the one they thought tasted better. Out of 40 people in
the sample, 28 picked the bottled water. Was the bottled
water selected significantly more often than would be
expected by chance? Use a two-tailed test with � � .05.

7. In 1985, only 8% of the students in the city school 
district were classified as being learning disabled. A
school psychologist suspects that the proportion of
learning-disabled children has changed dramatically over
the years. To demonstrate this point, a random sample 
of n � 300 students is selected. In this sample there are 
42 students who have been identified as learning-disabled.
Is this sample sufficient to indicate that there has been a
significant change in the proportion of learning-disabled
students since 1985? Use the .05 level of significance.

8. In the Preview section for Chapter 17, we discussed a
study by Loftus and Palmer (1974) examining how
different phrasing of questions can influence eyewitness
testimony. In the study, students watched a video of an
automobile accident and then were questioned about what
they had seen. One group of participants was asked to
estimate the speed of the cars when they “smashed into”
each other. Another group of was asked to estimate the
speed of the cars when they “hit” each other. Suppose
that the actual speed of the cars was 22 miles per hour.
a. For the 50 people in the “smashed-into” group, 

assume that 32 overestimated the actual speed, 
17 underestimated the speed, and 1 was exactly right. 
Is this result significantly different from what would be
expected by chance? Use a two-tailed test with � � .05.

b. For the 50 people in the “hit” group, assume that 
27 overestimated the actual speed, 22 underestimated
the speed, 1 was exactly right. Again, use a two-tailed
test with � � .05 to determine whether this result
significantly different from what would be expected
by chance. 

9. A recent survey of practicing psychotherapists revealed
that 25% of the individuals responding agreed with the
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statement, “Hypnosis can be used to recover accurate
memories of past lives” (Yapko, 1994). A researcher
would like to determine whether this same level of
belief exists in the general population. A sample of
192 adults is surveyed and 65 believe that hypnosis
can be used to recover accurate memories of past
lives. Based on these data, can you conclude that
beliefs held by the general population are significantly
different from beliefs held by psychotherapists? Test
with � � .05.

10. In 2005, Fung et al. published a study reporting that
patients prefer technical quality versus interpersonal
skills when selecting a primary care physician.
Participants were presented with report cards
describing pairs of hypothetical physicians and were
asked to select the one that they preferred. Suppose
that this study is repeated with a sample of n � 150
participants, and the results show that physicians with
greater technical skill are preferred by 92 participants
and physicians with greater interpersonal skills are
selected by 58. Are these results sufficient to conclude
that there is a significant preference for technical skill?

11. Danner and Phillips (2008) report the results from a
county-wide study showing that delaying high school
start times by one hour significantly reduced the motor
vehicle crash rate for teen drivers in the study.
Suppose that the researchers monitored 500 student
drivers for 1 year after the start time was delayed and
found that 44 were involved in automobile accidents.
Before delaying the start time, the accident rate was
12%. Use a binomial test to determine whether these
results indicate a significant change in the accident
rate following the change in school start time. Use a
two-tailed test with � � .05

12. For each of the following, assume that a two-tailed test
using the normal approximation to the binomial
distribution with � � .05 is being used to evaluate the
significance of the result.
a. For a true-false test with 20 questions, how many

would you have to get right to do significantly
better than chance? That is, what X value is needed
to produce a z-score greater than 1.96?

b. How many would you need to get right on a 
40-question true-false test?

c. How many would you need to get right on a 
100-question true-false test?

Remember that each X value corresponds to an
interval with real limits. Be sure that the entire
interval is in the critical region.

13. On a multiple-choice exam with 100 questions and 
4 possible answers for each question, you get a score
of X � 32. Is your score significantly better than
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would be expected by chance (by simply guessing for
each question)? Use a two tailed test with � � .05.

14. For each of the following, assume that a two-tailed
test using the normal approximation to the binomial
distribution with � � .05 is being used to evaluate
the significance of the result.
a. For a multiple-choice test with 48 questions, each

with 4 possible answers, how many would you
have to get right to do significantly better than
chance? That is, what X value is needed to
produce a z-score greater than 1.96?

b. How many would you need to get right on a
multiple-choice test with 192 questions to be
significantly better than chance?

Remember that each X value corresponds to an
interval with real limits. Be sure that the entire
interval is in the critical region.

15. Reed, Vernon, and Johnson (2004) examined the
relationship between brain nerve conduction velocity
and intelligence in normal adults. Brain nerve
conduction velocity was measured three separate
ways and nine different measures were used for
intelligence. The researchers then correlated each of
the three nerve velocity measures with each of the
nine intelligence measures for a total of 27 separate
correlations. Unfortunately, none of the correlations
were significant.
a. For the 186 males in the study, however, 25 of the

27 correlations were positive. Is this significantly
more than would be expected if positive and
negative correlations were equally likely? Use a
two-tailed test with � � .05.

b. For the 201 females in the study, 20 of the 27
correlations were positive. Is this significantly
more than would be expected if positive and
negative correlations were equally likely? Use a
two-tailed test with � � .05.

16. In the Preview section for Chapter 11, we presented a
study showing that swearing can help relieve pain
(Stephens, Atkins, & Kingston, 2009). In the study,
participants placed one hand in freezing cold water for
as long as they could bear the pain. In one condition,
they shouted a swear word over and over while the
hand was in the water. In the other condition, they
shouted a neutral word. Suppose that 18 of the 
25 participants tolerated the pain longer while
swearing than while shouting neutral words. Is this
result significantly different from chance? Use a 
two-tailed test with � � .01.

17. Thirty percent of the students in the local elementary
school are classified as only children (no siblings).
However, in the special program for talented and
gifted children, 43 out of 90 students are only
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children. Is the proportion of only children in the
special program significantly different from the
proportion for the school? Test at the .05 level of
significance.

18. Stressful or traumatic experiences can often worsen
other health-related problems such as asthma or
rheumatoid arthritis. However, if patients are
instructed to write about their stressful experiences, it
can often lead to improvement in health (Smyth,
Stone, Hurewitz, & Kaell, 1999). In a typical study,
patients with asthma or arthritis are asked to write
about the “most stressful event of your life.” In a
sample of n � 112 patients, suppose that 64 showed
improvement in their symptoms, 12 showed no
change, and 36 showed worsening symptoms.
a. If the 12 patients showing no change are discarded,

are these results sufficient to conclude that the
writing had a significant effect? Use a two-tailed
test with � � .05.

b. If the 12 patients who showed no change are split
between the two groups, are the results sufficient to
demonstrate a significant change? Use a two-tailed
test with � � .05.

19. Langewitz, Izakovic, and Wyler (2005) reported that
self-hypnosis can significantly reduce hay-fever
symptoms. Patients with moderate to severe allergic
reactions were trained to focus their minds on specific
locations where their allergies did not bother them, such
as a beach or a ski resort. In a sample of 64 patients
who received this training, suppose that 47 showed
reduced allergic reactions and 17 showed an increase 
in allergic reactions. Are these results sufficient to
conclude that the self-hypnosis has a significant effect?
Use a two-tailed test with � � .05.

20. Group-housed laying hens appear to prefer having
more floor space than height in their cages. Albentosa
and Cooper (2005) tested hens in groups of 10. The
birds in each group were given free choice between a
cage with a height of 38 cm (low) and a cage with a
height of 45 cm (high). The results showed a tendency
for the hens in each group to distribute themselves
evenly between the two cages, showing no preference
for either height. Suppose that a similar study tested a
sample of n � 80 hens and found that 47 preferred the
taller cage. Does this result indicate a significant
preference? Use a two-tailed test with � � .05.

21. In Problem 21 in Chapter 11, we described a study
showing that students are likely to improve their test
scores if they go back and change answers after
reconsidering some of the questions on the exam
(Johnston, 1975). In the study, one group of students
was encouraged to reconsider each question and to
change answers whenever they felt it was appropriate.
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The students were asked to record their original
answers as well as the changes. For each student, 
the exam was graded based on the original answers 
and on the changed answers. For a group of n � 40
students, suppose that 29 had higher scores for the
changed-answer version and only 11 had higher 
scores for the original-answer version. Is this result
significantly different from chance? Use a two-tailed
test with � � .01.

22. The habituation technique is one method that is used to
examine memory for infants. The procedure involves
presenting a stimulus to an infant (usually projected on
the ceiling above the crib) for a fixed time period and
recording how long the infant spends looking at the
stimulus. After a brief delay, the stimulus is presented
again. If the infant spends less time looking at the
stimulus during the second presentation, it is interpreted
as indicating that the stimulus is remembered and,
therefore, is less novel and less interesting than it was
on the first presentation. This procedure is used with a
sample of n � 30 2-week-old infants. For this sample,
22 infants spent less time looking at the stimulus during
the second presentation than during the first. Do these
data indicate a significant difference? Test at the .01
level of significance.

23. Most children and adults are able to learn the meaning of
new words by listening to sentences in which the words
appear. Shulman and Guberman (2007) tested the ability
of children to learn word meaning from syntactical cues
for three groups: children with autism, children with
specific language impairment (SLI), and children with
typical language development (TLD). Although the
researchers used relatively small samples, their results
indicate that the children with TLD and those with
autism were able to learn novel words using the
syntactical cues in sentences. The children with SLI, on
the other hand, experienced significantly more difficulty.
Suppose that a similar study is conducted in which
each child listens to a set of sentences containing a
novel word and then is given a choice of three
definitions for the word. 
a. If 25 out of 36 autistic children select the correct

definition, is this significantly more than would 
be expected if they were simply guessing? Use a 
two-tailed test with � � .05.

b. If only 16 out of 36 children with SLI select the
correct definition, is this significantly more than
would be expected if they were simply guessing?
Use a two-tailed test with � � .05.

24. A researcher is testing the effectiveness of a skills-
mastery imagery program for soccer players. A sample
of n � 25 college varsity players is selected and each
player is tested on a ball-handling obstacle course
before beginning the imagery program and again after
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completing the 5-week program. Of the 25 players, 
18 showed improved performance on the obstacle
course after the imagery program and 7 were worse.
a. Is this result sufficient to conclude that there is a

significant change in performance following the
imagery program? Use a two-tailed test with � � .05.

b. Because the outcome of the binomial test is a
borderline z-score, use the real limits for X � 18
and verify that the entire z-score interval is located
in the critical region.

25. Last year the college counseling center offered a
workshop for students who claimed to suffer from
extreme exam anxiety. Of the 45 students who
attended the workshop, 31 had higher grade-point
averages this semester than they did last year. Do
these data indicate a significant difference from what
would be expected by chance? Test at the .01 level of
significance.

26. Trying to fight a drug-resistant bacteria, a researcher
tries an experimental drug on infected subjects. Out of

PROBLEMS 653

70 monkeys, 42 showed improvement, 22 got worse,
and 6 showed no change. Is this researcher working
in the right direction? Is there a significant effect of
the drug on the infection? Use a two-tailed test at the
.05 level of significance.

27. Biofeedback training is often used to help people
who suffer migraine headaches. A recent study
found that 29 out of 50 participants reported a
decrease in the frequency and severity of their
headaches after receiving biofeedback training. Of
the remaining participants in this study, 10 reported
that their headaches were worse, and 11 reported no
change.
a. Discard the zero-difference participants, and use

a sign test with � � .05 to determine whether the
biofeedback produced a significant difference.

b. Divide the zero-difference participants between
the two groups, and use a sign test to evaluate the
effect of biofeedback training.

Improve your statistical skills with 

ample practice exercises and detailed 

explanations on every question. Purchase

www.aplia.com/statistics
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After completing this part, you should be able to calculate
and interpret correlations, find linear regression equations,
conduct the chi-square tests for goodness of fit and for 
independence, and do a binomial test.

The most commonly used correlation is the Pearson cor-
relation, which measures the direction and degree of linear
relationship between two variables (X and Y) that have been
measured on interval or ratio scales (numerical scores). 
The regression equation determines the best fitting line to 
describe the relationship between X and Y, and to compute
predicted Y values for each value of X. A partial correlation
can be used to reveal the underlying relationship between X
and Y when the influence of a third variable is eliminated.

The Pearson formula is also used in a variety of other
situations to compute special correlations. The Spearman
correlation uses the Pearson formula when X and Y are both
measured on ordinal scales (ranks). The Spearman correla-
tion measures the direction and the degree to which the rela-
tionship is consistently one directional. When one of the
variables consists of numerical scores and the other has only
two values, the two values of the dichotomous variable can
be coded as 0 and 1, and the Pearson formula can be used to
find the point-biserial correlation. The point-biserial correla-
tion measures the strength of the relationship between X and
Y, and can be squared to produce the same r2 value that is
used to measure effect size for the independent-measures 
t test. When both variables are dichotomous, they can both
be coded as 0 and 1, and the Pearson formula can be used to
find the phi-coefficient. As a correlation, the phi-coefficient
measures the strength of the relationship and is often used as
a measure of effect size to accompany a chi-square test for
independence for a 2 
 2 data matrix.

The chi-square test for goodness of fit uses the fre-
quency distribution from a sample to evaluate a hypothesis
about the corresponding population distribution. The null
hypothesis for the goodness-of-fit test typically falls into
one of two categories:

1. Equal proportions: The null hypothesis states that the
population is equally distributed across the set of 
categories.

2. No difference: The null hypothesis states that the
distribution for one population is not different from
the known distribution for another population.

The chi-square test for independence uses frequency
data from a sample to evaluate a hypothesis about the
relationship between two variables in the population.
The null hypothesis for this test can be phrased two
different ways:

P A R T V
REVIEW

1. No relationship: The null hypothesis states that 
there is no relationship between the two variables in
the population.

2. No difference: One variable is viewed as defining a
set of different populations. The null hypothesis states
that the frequency distribution for the second variable
has the same shape (same proportions) for all the 
different populations.

The binomial test uses the frequencies or proportions from a
sample to test a hypothesis about the corresponding population
proportions for a binomial variable in the population. Because
the binomial distribution approximates the normal distribution
when pn and qn are both at least 10, it uses z-scores and pro-
portions from the unit normal table for the test.

REVIEW PROBLEMS

1. The following scores are related by the equation 
Y � X2. Note that this is not a linear relationship, but
every time X increases, Y also increases.

X Y

2 4
4 16
6 36
8 64

10 100

a. Compute the Pearson correlation between X and
Y. You should find a positive, but not perfect,
correlation.

b. Convert the scores to ranks and compute the
Spearman correlation. You should find a perfect,
positive correlation.

2. It is well known that similarity in attitudes, 
beliefs, and interests plays an important role in
interpersonal attraction (see Byrne, 1971, for 
example). Thus, correlations for attitudes between
married couples should be strong. Suppose that a
researcher developed a questionnaire that measures
how liberal or conservative one’s attitudes are.
Low scores indicate that the person has 
liberal attitudes, whereas high scores indicate 
conservatism. The following hypothetical data 
are scores for married couples.

654
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Specifically, type A people, who are competitive,
driven, pressured, and impatient, are more prone to
heart disease. On the other hand, type B individuals,
who are less competitive and more relaxed, are less
likely to have heart disease. Suppose that an investi-
gator would like to examine the relationship between
personality type and disease. For a random sample 
of individuals, personality type is assessed with a 
standardized test. These individuals are then exam-
ined and categorized as to whether they have a heart
disorder. The observed frequencies are as follows:

No Heart Disease Heart Disease

Type A 32 18 50

Type B 128 22 150

160 40

a. Is there a relationship between personality and
disorder? Test at the .05 level of significance.

b. Compute the phi-coefficient to measure the
strength of the relationship.

5. One of the original methods for testing ESP
(extrasensory perception) used Zener cards, which
were designed specifically for the testing process.
Each card shows one of five symbols (square, circle,
star, wavy lines, cross). The person being tested must
predict the symbol before the card is turned over.
Chance performance on this task would produce 1 out
of 5 (20%) correct predictions. Use a binomial test to
determine whether 27 correct predictions out of 
100 attempts is significantly different from chance
performance? Use a two-tailed test with � � .05.

Couple Wife Husband

A 11 14
B 6 7
C 16 15
D 4 7
E 1 3
F 10 9
G 5 9
H 3 8

a. Compute the Pearson correlation for these data.
b. Find the regression equation for predicting the

husband’s score from the wife’s.

3. A researcher is investigating the physical characteris-
tics that influence whether a person’s face is judged as
beautiful. The researcher selects a photograph of a
woman and then creates two modifications of the 
photo by (1) moving the eyes slightly farther apart 
and (2) moving the eyes slightly closer together. The
original photograph and the two modifications are then
shown to a sample of n � 150 college students, and
each student is asked to select the “most beautiful” of
the three faces. The distribution of responses was as
follows:

Original Eyes Eyes 
Photo Moved Apart Moved Together

51 72 27

Do the data indicate any significant preferences
among the three versions of the photograph? Test at
the .05 level of significance.

4. Friedman and Rosenman (1974) have suggested that
personality type is related to heart disease.
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C H A P T E R

19
Choosing 
the Right
Statistics

Preview

19.1 Three Basic Data Structures

19.2 Statistical Procedures for Data from
a Single Group of Participants with
One Score per Participant

19.3 Statistical Procedures for Data from
a Single Group of Participants with
Two (or More) Variables Measured
for Each Participant

19.4 Statistical Procedures for Data
Consisting of Two (or More)
Groups of Scores with Each Score
a Measurement of the Same
Variable 

Problems

Tools You Will Need
This chapter provides an organized overview
for most of the statistical procedures pre-
sented in this book. The following items are
considered background material for this
chapter. If you doubt your knowledge of any
of these items, you should review the appro-
priate chapter or section before proceeding.

• Descriptive statistics
• Mean (Chapter 3)
• Standard deviation (Chapter 4)
• Correlation (Chapter 15)
• Inferential Statistics (Chapters 9, 10, 11,

12, 13, 14, 15, 16, 17, 18)
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19.1 THREE BASIC DATA STRUCTURES

Most research data can be classified in one of three basic categories.

Category 1: A single group of participants with one score per participant.

Category 2: A single group of participants with two (or more) variables measured
for each participant.

Category 3: Two (or more) groups of scores with each score a measurement of
the same variable.

In this section, we present examples of each structure. Once you match your own
data to one of the examples, you can proceed to the section of the chapter in which we
describe the statistical procedures that apply to that example.

Before we begin discussion of the three categories of data, there is one other 
factor that differentiates data within each category and helps to determine which 
statistics are appropriate. In Chapter 1, we introduced four scales of measurement
and noted that different measurement scales allow different kinds of mathematical
manipulation, which result in different statistics. For most statistical applications,
however, ratio and interval scales are equivalent so we group them together for 
the following review.

Ratio scales and interval scales produce numerical scores that are compatible
with the full range of mathematical manipulation. Examples include measure-
ments of height in inches, weight in pounds, the number of errors on a task, and
IQ scores.

Ordinal scales consist of ranks or ordered categories. Examples include classify-
ing cups of coffee as small, medium, and large or ranking job applicants as 1st,
2nd, and 3rd.

Nominal scales consist of named categories. Examples include gender 
(male/female), academic major, or occupation.

Within each category of data, we present examples representing these three meas-
urement scales and discuss the statistics that apply to each.

SCALES OF MEASUREMENT

Preview
After students have completed a statistics course, they
occasionally are confronted with situations in which 
they have to apply the statistics they have learned. For
example, in the context of a research methods course, 
or while working as a research assistant, students are
presented with the results from a study and asked to do
the appropriate statistical analysis. The problem is that
many of these students have no idea where to begin.
Although they have learned the individual statistics, they
cannot match the statistical procedures to a specific set

of data. Our goal for this chapter is to provide some help
with the problem.

We assume that you know (or can anticipate) what
your data look like. Therefore, we begin by presenting
some basic categories of data so you can find that 
one that matches your own data. For each data category,
we then present the potential statistical procedures 
and identify the factors that determine which are 
appropriate for you based on the specific characteristics
of your data.

658
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This type of data often exists in research studies that are conducted simply to describe
individual variables as they exist naturally. For example, a recent news report stated
that half of American teenagers, ages 12 through 17, send 50 or more text messages a
day. To get this number, the researchers had to measure the number of text messages
for each individual in a large sample of teenagers. The resulting data consist of one
score per participant for a single group.

It is also possible that the data are a portion of the results from a larger study 
examining several variables. For example, a college administrator may conduct a 
survey to obtain information describing the eating, sleeping, and study habits of the 
college’s students. Although several variables are being measured, the intent is to look
at them one at a time. For example, the administrator will look at the number of hours
each week that each student spends studying. These data consist of one score for each
individual in a single group. The administrator will then shift attention to the number
of hours per day that each student spends sleeping. Again, the data consist of one score
for each person in a single group. The identifying feature for this type of research (and
this type of data) is that there is no attempt to examine relationships between different
variables. Instead, the goal is to describe individual variables, one at a time.

Table 19.1 presents three examples of data in this category. Note that the three data
sets differ in terms of the scale of measurement used to obtain the scores. The first set
(a) shows numerical scores measured on an interval or ratio scale. The second set (b)
consists of ordinal, or rank ordered categories, and the third set shows nominal meas-
urements. The statistics used for data in this category are discussed in Section 19.2.

These research studies are specifically intended to examine relationships between vari-
ables. Note that different variables are being measured, so each participant has two or
more scores, each representing a different variable. Typically, there is no attempt to 
manipulate or control the variables; they are simply observed and recorded as they 
exist naturally.

Although several variables may be measured, researchers usually select pairs of
variables to evaluate specific relationships. Therefore, we present examples showing
pairs of variables. Table 19.2 presents four examples of data in this category. Once
again, the four data sets differ in terms of the scales of measurement that are used. The
first set of data (a) shows numerical scores for each set of measurements. For the 
second set (b), we have ranked the scores from the first set and show the resulting ranks.
The third data set (c) shows numerical scores for one variable and nominal scores for
the second variable. In the fourth set (d), both scores are measured on a nominal scale

CATEGORY 2: A SINGLE
GROUP OF PARTICIPANTS

WITH TWO (OR MORE)
VARIABLES MEASURED 

FOR EACH PARTICIPANT

CATEGORY 1: A SINGLE
GROUP OF PARTICIPANTS

WITH ONE SCORE PER
PARTICIPANT

SECTION 19.1 / THREE BASIC DATA STRUCTURES 659

(a) Number of Text Messages Sent (b) Rank in Class for (c) Got a Flu 
in Past 24 Hours High School Graduation Shot Last Season

X X X

6 23rd No
13 18th No
28 5th Yes
11 38th No
9 17th Yes

31 42nd No
18 32nd No

TABLE 19.1

Three examples of data with 
one score per participant for 
one group of participants.
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of measurement. The appropriate statistical analyses for these data are discussed in
Section 19.3.

A second method for examining relationships between variables is to use the categories
of one variable to define different groups and then measure a second variable to obtain
a set of scores within each group. The first variable, defining the groups, usually falls
into one of the following general categories:

a. Participant characteristic: For example, gender or age.

b. Time: For example, before versus after treatment.

c. Treatment conditions: For example, with caffeine versus without caffeine.

If the scores in one group are consistently different from the scores in another
group, then the data indicate a relationship between variables. For example, if the per-
formance scores for a group of females are consistently higher than the scores for a
group of males, then there is a relationship between performance and gender.

Another factor that differentiates data sets in this category is the distinction 
between independent-measures and repeated-measures designs. Independent-measures
designs were introduced in Chapters 10 and 12, and repeated-measures designs were
presented in Chapters 11 and 13. You should recall that an independent-measures 
design, also known as a between-subjects design, requires a separate group of partici-
pants for each group of scores. For example, a study comparing scores for males with
scores for females would require two groups of participants. On the other hand, 
a repeated-measures design, also known as a within-subjects design, obtains several

CATEGORY 3: TWO OR MORE
GROUPS OF SCORES 

WITH EACH SCORE 
A MEASUREMENT 

OF THE SAME VARIABLE

660 CHAPTER 19 CHOOSING THE RIGHT STATISTICS

(a) SAT Score (X) and (b) Ranks for the 
College Freshman GPA (Y) Scores in Set (a)

X Y X Y

620 3.90 7 8
540 3.12 3 2
590 3.45 6 5
480 2.75 1 1
510 3.20 2 3
660 3.85 8 7
570 3.50 5 6
560 3.24 4 4

(c) Age (X) and Wrist (d) Gender (X) and 
Watch Preference (Y) Academic Major (Y)

X Y X Y

27 digital M Sciences
43 analog M Humanities
19 digital F Arts
34 digital M Professions
37 digital F Professions
49 analog F Humanities
22 digital F Arts
65 analog M Sciences
46 digital F Humanities

TABLE 19.2

Examples of data with 
two scores for each participant
for one group of participants.
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groups of scores from the same group of participants. A common example of a 
repeated-measures design is a before/after study in which one group of individuals is
measured before a treatment and then measured again after the treatment.

Examples of data sets in this category are presented in Table 19.3. The table 
includes a sampling of independent-measures and repeated-measures designs as well as
examples representing measurements from several different scales of measurement. The
appropriate statistical analyses for data in this category are discussed in Section 19.4.

19.2 STATISTICAL PROCEDURES FOR DATA 
FROM A SINGLE GROUP OF PARTICIPANTS 
WITH ONE SCORE PER PARTICIPANT

One feature of this data category is that the researcher typically does not want to 
examine a relationship between variables but rather simply intends to describe indi-
vidual variables as they exist naturally. Therefore, the most commonly used statistical
procedures for these data are descriptive statistics that are used to summarize and
describe the group of scores.

We should note that the same descriptive statistics used to describe a single group
are also used to describe groups of scores that are a part of more complex data sets. For
example, a researcher may want to compare a set of scores for males with a set of scores

SECTION 19.2 / STATISTICAL PROCEDURES FOR DATA FROM A SINGLE GROUP OF PARTICIPANTS WITH ONE SCORE PER PARTICIPANT 661

(a) Attractiveness Ratings for a  (b) Performance Scores Before and 
Woman in a Photograph Shown  After 24 Hours of Sleep Deprivation
on a Red or a White Background

White Red Participant Before After

5 7 A 9 7
4 5 B 7 6
4 4 C 7 5
3 5 D 8 8
4 6 E 5 4
3 4 F 9 8
4 5 G 8 5

(c) Success or Failure on a  (d) Amount of Time Spent on 
Task for Participants Working Facebook (Small, Medium, Large) 
Alone or in a Group for Students from Each High School Class

Alone Group Freshman Sophomore Junior Senior

Fail Succeed med small med large
Succeed Succeed small large large med
Succeed Succeed small med large med
Succeed Succeed med med large large
Fail Fail small med med large
Fail Succeed large large med large
Succeed Succeed med large small med
Fail Succeed small med large large

TABLE 19.3

Examples of data comparing 
two or more groups of scores
with all scores measuring the
same variable.
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for females (data from category 3). However, the statistics used to describe the group
of males would be the same as the descriptive statistics that would be used if the males
were the only group in the study.

When the data consist of numerical values from interval or ratio scales, there are several
options for descriptive and inferential statistics. We consider the most likely statistics
and mention some alternatives.

Descriptive Statistics The most often used descriptive statistics for numerical scores
are the mean (Chapter 3) and the standard deviation (Chapter 4). If there are a few 
extreme scores or the distribution is strongly skewed, the median (Chapter 3) may be
better than the mean as a measure of central tendency.

Inferential Statistics If there is a basis for a null hypothesis concerning the mean of
the population from which the scores were obtained, a single-sample t test (Chapter 9)
can be used to evaluate the hypothesis. Some potential sources for a null hypothesis are
as follows:

1. If the scores are from a measurement scale with a well-defined neutral point,
then the t test can be used to determine whether the sample mean is significantly
different from (higher than or lower than) the neutral point. On a 7-point rating
scale, for example, a score of X = 4 is often identified as neutral. The null 
hypothesis would state that the population mean is equal to (greater than or 
less than) � = 4.

2. If the mean is known for a comparison population, then the t test can be used
to determine whether the sample mean is significantly different from (higher
than or lower than) the known value. For example, it may be known that 
the average score on a standardized reading achievement test for children 
finishing first grade is � = 20. If the sample consists of test scores for 
first grade children who are all the only child in the household, the null 
hypothesis would state that the mean for children in this population is also
equal to 20. The known mean could also be from an earlier time, for example
10 years ago. The hypothesis test would then determine whether a sample
from today’s population indicates a significant change in the mean during the 
past 10 years.

The single-sample t test evaluates the statistical significance of the results. A sig-
nificant result means that the data are very unlikely (p � �) to have been produced by
random, chance factors. However, the test does not measure the size or strength of the
effect. Therefore, a t test should be accompanied by a measure of effect size such as
Cohen’s d or the percentage of variance accounted for, r2.

Descriptive Statistics Occasionally, the original scores are measurements on an
ordinal scale. It is also possible that the original numerical scores have been trans-
formed into ranks or ordinal categories (for example, small, medium, and large). 
In either case, the median is appropriate for describing central tendency for ordinal
measurements and proportions can be used to describe the distribution of individ-
uals across categories. For example, a researcher might report that 60% of the 
students were in the high self-esteem category, 30% in the moderate self-esteem 
category, and only 10% in the low self-esteem category.

SCORES FROM ORDINAL
SCALES: RANKS 

OR ORDERED CATEGORIES

SCORES FROM RATIO 
OR INTERVAL SCALES:

NUMERICAL SCORES

662 CHAPTER 19 CHOOSING THE RIGHT STATISTICS
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Inferential Statistics If there is a basis for a null hypothesis specifying the 
proportions in each ordinal category for the population from which the scores were 
obtained, then a chi-square test for goodness of fit (Chapter 17) can be used to eval-
uate the hypothesis. With only two categories, the binomial test (Chapter 18) also
can be used. For example, it may be reasonable to hypothesize that the categories
occur equally often (equal proportions) in the population and the test would 
determine whether the sample proportions are significantly different. If the original
data were converted from numerical values into ordered categories using z-score
values to define the category boundaries, then the null hypothesis could state that
the population distribution is normal, using proportions obtained from the unit 
normal table. A chi-square test for goodness of fit would determine whether 
the shape of the sample distribution is significantly different from a normal distri-
bution. For example, the null hypothesis would state that the distribution has 
the following proportions, which describe a normal distribution according to the
unit normal table:

z � �1.5 �1.5 � z � �0.5 �0.5 � z � 0.5 0.5 � z � 1.5 z � 1.50

6.68% 24.17% 38.30% 24.17% 6.68%

For these data, the scores simply indicate the nominal category for each individual. 
For example, individuals could be classified as male/female or grouped into different
occupational categories.

Descriptive Statistics The only descriptive statistics available for these data are the
mode (Chapter 3) for describing central tendency or using proportions (or percentages)
to describe the distribution across categories.

Inferential Statistics If there is a basis for a null hypothesis specifying the pro-
portions in each category for the population from which the scores were obtained,
then a chi-square test for goodness of fit (Chapter 17) can be used to evaluate the 
hypothesis. With only two categories, the binomial test (Chapter 18) also can be used.
For example, it may be reasonable to hypothesize that the categories occur equally
often (equal proportions) in the population. If proportions are known for a compari-
son population or for a previous time, the null hypothesis could specify that the 
proportions are the same for the population from which the scores were obtained. 
For example, if it is known that 35% of the adults in the United States get a flu shot
each season, then a researcher could select a sample of college students and count
how many got a shot and how many did not [see the data in Table 19.1(c)]. 
The null hypothesis for a chi-square test or a binomial test would state that the 
distribution for college students is not different from the distribution for the general
population. For the chi-square test

Flu Shot No Flu Shot

H0: 35% 65%

For the binomial test, H0: p = p(shot) = 0.35 and q = p(no shot) = 0.65
Figure 19.1 summarizes the statistical procedures used for data in category 1.

SCORES FROM 
A NOMINAL SCALE
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19.3 STATISTICAL PROCEDURES FOR DATA FROM A SINGLE
GROUP OF PARTICIPANTS WITH TWO (OR MORE)
VARIABLES MEASURED FOR EACH PARTICIPANT 

The goal of the statistical analysis for data in this category is to describe and evaluate
the relationships between variables, typically focusing on two variables at a time. With
only two variables, the appropriate statistics are correlations (Chapter 15), linear 
regression (Chapter 16), and the chi-square test for independence (Chapter 17). With
three or more variables, the applicable statistics are partial correlation (Chapter 15) and
multiple regression (Chapter 16).

The Pearson correlation measures the degree and direction of linear relationship 
between the two variables (see Example 15.3 on p. 517). Linear regression deter-
mines the equation for the straight line that gives the best fit to the data points. For
each X value in the data, the equation produces a predicted Y value on the line so

TWO NUMERICAL 
VARIABLES FROM INTERVAL

OR RATIO SCALES

664 CHAPTER 19 CHOOSING THE RIGHT STATISTICS

Numerical scores from
interval or ratio scales

Nominal Scores
(Named categories)

Ordinal scores
(Ranks or ordered

categories)

Mean (chapter 3) and
standard deviation
(chapter 4)

Proportions or Percentages
to describe the distribution
across categories

Median (chapter 3)

Proportions or Percentages
to describe the distribution
across categories

Mode (chapter 3)

Proportions or Percentages
to describe the distribution
across categories

Single-sample t test
(chapter 9). Use the sample
mean to test a hypothesis
about the population mean

Chi-square test for
goodness of fit (chapter 17).
Use the sample frequencies
to test a hypothesis about
the proportions in the
population.

Chi-square test for
goodness of fit (chapter 17).
Use the sample frequencies
to test a hypothesis about
the proportions in the
population.

Chi-square test for
goodness of fit (chapter 17).
Use the sample frequencies
to test a hypothesis about
the proportions in the
population.

DESCRIPTIVE
STATISTICS

INFERENTIAL
STATISTICS

FIGURE 19.1

Statistics for Category 1 data. A single group of participants with one score per participant. The goal is to describe
the variable as it exists naturally.
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that the squared distances between the actual Y values and the predicted Y values are
minimized.

Descriptive Statistics The Pearson correlation serves as its own descriptive 
statistic. Specifically, the sign and magnitude of the correlation describe the linear
relationship between the two variables. The squared correlation is often used to 
describe the strength of the relationship. The linear regression equation provides 
a mathematical description of the relationship between X values and Y. The slope
constant describes the amount that Y changes each time the X value is increased 
by 1 point. The constant (Y intercept) value describes the value of Y when X is equal
to zero.

Inferential Statistics The statistical significance of the Pearson correlation is evalu-
ated by comparing the sample correlation with critical values listed in Table B6. A sig-
nificant correlation means that it is very unlikely (p � �) that the sample correlation
would occur without a corresponding relationship in the population. Analysis of regres-
sion is a hypothesis-testing procedure that evaluates the significance of the regression
equation. Statistical significance means that the equation predicts more of the variance
in the Y scores than would be reasonable to expect if there were not a real underlying 
relationship between X and Y.

The Spearman correlation is used when both variables are measured on ordinal scales
(ranks). If one or both variables consist of numerical scores from an interval or ratio scale,
then the numerical values can be transformed to ranks and the Spearman correlation can
be computed.

Descriptive Statistics The Spearman correlation describes the degree and direction
of monotonic relationship; that is the degree to which the relationship is consistently
one directional.

Inferential Statistics The statistical significance of the Spearman correlation is eval-
uated by comparing the sample correlation with critical values listed in Table B7. 
A significant correlation means that it is very unlikely (p � �) that the sample correla-
tion would occur without a corresponding relationship in the population.

The point-biserial correlation measures the relationship between a numerical variable
and a dichotomous variable. The two categories of the dichotomous variable are coded
as numerical values, typically 0 and 1, to calculate the correlation.

Descriptive Statistics Because the point-biserial correlation uses arbitrary numerical
codes, the direction of relationship is meaningless. However, the size of the correlation,
or the squared correlation, describes the degree of relationship.

Inferential Statistics The data for a point-biserial correlation can be regrouped
into a format suitable for an independent-measures t hypothesis test, or the t value
can be computed directly from the point-biserial correlation (see the example on
pages 542–544). The t value from the hypothesis test determines the significance of
the relationship.

The phi-coefficient is used when both variables are dichotomous. For each variable, the
two categories are numerically coded, typically as 0 and 1, to calculate the correlation.

TWO DICHOTOMOUS
VARIABLES

ONE NUMERICAL VARIABLE
AND ONE DICHOTOMOUS

VARIABLE (A VARIABLE 
WITH EXACTLY 2 VALUES)

TWO ORDINAL 
VARIABLES (RANKS 

OR ORDERED CATEGORIES)
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Descriptive Statistics Because the phi-coefficient uses arbitrary numerical codes, the
direction of relationship is meaningless. However, the size of the correlation, or the
squared correlation, describes the degree of relationship.

Inferential Statistics The data from a phi-coefficient can be regrouped into a format
suitable for a 2 � 2 chi-square test for independence, or the chi-square value can 
be computed directly from the phi-coefficient (see Example 17.3 on p. 613). The 
chi-square value determines the significance of the relationship.

The chi-square test for independence (Chapter 17) provides an alternative to correlations
for evaluating the relationship between two variables. For the chi-square test, each of the
two variables can be measured on any scale, provided that the number of categories is rea-
sonably small. For numerical scores covering a wide range of value, the scores can be
grouped into a smaller number of ordinal intervals. For example, IQ scores ranging from
93 to 137 could be grouped into three categories described as high, medium, and low IQ.

For the chi-square test, the two variables are used to create a matrix showing the
frequency distribution for the data. The categories for one variable define the rows
of the matrix and the categories of the second variable define the columns. Each 
cell of the matrix contains the frequency or number of individuals whose scores 
correspond to the row and column of the cell. For example, the gender and academic
major scores in Table 19.2(d) could be reorganized in a matrix as follows:

Arts Humanities Sciences Professions

Female

Male

The value in each cell is the number of students with the gender and major identi-
fied by the cell’s row and column. The null hypothesis for the chi-square test would
state that there is no relationship between gender and academic major.

Descriptive Statistics The chi-square test is an inferential procedure that does not 
include the calculation of descriptive statistics. However, it is customary to describe the
data by listing or showing the complete matrix of observed frequencies. Occasionally
researchers describe the results by pointing out cells that have exceptionally large dis-
crepancies. For example, in the Preview for Chapter 17 we described a study investi-
gating eyewitness memory. Participants watched a video of an automobile accident and
were questioned about what they saw. One group was asked to estimate the speed of
the cars when they “smashed into” each other and another group was asked to estimate
speed when the cars “hit” each other. A week later, they were asked additional ques-
tions, including whether they recalled seeing broken glass. Part of the description of the
results focuses on cells reporting “Yes” responses. Specifically, the “smashed into”
group had more than twice as many “Yes” responses than the “hit” group.

Inferential Statistics The chi-square test evaluates the significance of the relation-
ship between the two variables. A significant result means that the distribution of fre-
quencies in the data is very unlikely to occur (p � �) if there is no underlying
relationship between variables in the population. As with most hypothesis tests, a sig-
nificant result does not provide information about the size or strength of the relation-
ship. Therefore, either a phi-coefficient or Cramér’s V is used to measure effect size.

TWO VARIABLES FROM ANY
MEASUREMENT SCALES

666 CHAPTER 19 CHOOSING THE RIGHT STATISTICS

30991_ch19_ptg01_hr_657-676.qxd  9/3/11  2:27 AM  Page 666



To evaluate the relationship among three variables, the appropriate statistics are partial 
correlation (Chapter 15) and multiple regression (Chapter 16). A partial correlation meas-
ures the relationship between two variables while controlling the third variable. Multiple 
regression determines the linear equation that gives the best fit to the data points. For each
pair of X values in the data, the equation produces a predicted Y value so that the squared
distances between the actual Y values and the predicted Y values are minimized.

Descriptive Statistics A partial correlation describes the direction and degree of 
linear relationship between two variables while the influence of a third variable is 
controlled. This technique determines the degree to which the third variable is respon-
sible for what appears to be a relationship between the first two. The multiple regres-
sion equation provides a mathematical description of the relationship between the 
two X values and Y. Each of the two slope constants describes the amount that 
Y changes each time the corresponding X value is increased by 1 point. The constant
value describes the value of Y when both X values are equal to zero.

Inferential Statistics The statistical significance of a partial correlation is evaluated
by comparing the sample correlation with critical values listed in Table B6 using df = n
– 3 instead of the n – 2 value that is used for a routine Pearson correlation. A significant
correlation means that it is very unlikely ( p � �) that the sample correlation would occur
without a corresponding relationship in the population. Analysis of regression evaluates
the significance of the multiple regression equation. Statistical significance means that
the equation predicts more of the variance in the Y scores than would be reasonable to
expect if there were not a real underlying relationship between the two Xs and Y.

Partial correlation (Chapter 15) and multiple regression (Chapter 16) can also be used
to evaluate the relationship among three variables, including one or more dichotomous
variables. For each dichotomous variable, the two categories are numerically coded,
typically as 0 and 1, before the partial correlation or multiple regression is done. The
descriptive statistics and the inferential statistics for the two statistical procedures are
identical to those for numerical scores except that direction of relationship (or sign of
the slope constant) is meaningless for the dichotomous variables.

Figure 19.2 summarizes the statistical procedures used for data in category 2.

19.4 STATISTICAL PROCEDURES FOR DATA CONSISTING 
OF TWO (OR MORE) GROUPS OF SCORES WITH EACH
SCORE A MEASUREMENT OF THE SAME VARIABLE

Data in this category includes single-factor and two-factor designs. In a single-
factor study, the values of one variable are used to define different groups and a 
second variable (the dependent variable) is measured to obtain a set of scores in each
group. For a two-factor design, two variables are used to construct a matrix with the
values of one variable defining the rows and the values of the second variable defin-
ing the columns. A third variable (the dependent variable) is measured to obtain a
set of scores in each cell of the matrix. To simplify discussion, we focus on single-
factor designs now and address two-factor designs in a separate section at the end 
of this chapter.

THREE VARIABLES INCLUDING
NUMERICAL VALUES 
AND DICHOTOMOUS

VARIABLES

THREE NUMERICAL
VARIABLES FROM INTERVAL 

OR RATIO SCALES
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The goal for a single-factor research design is to demonstrate a relationship 
between the two variables by showing consistent differences between groups. The scores
in each group can be numerical values measured on interval or ratio scales, ordinal 
values (ranks), or simply categories on a nominal scale. The different measurement
scales permit different types of mathematics and result in different statistical analyses.

Descriptive Statistics When the scores in each group are numerical values, the stan-
dard procedure is to compute the mean (Chapter 3) and the standard deviation
(Chapter 4) as descriptive statistics to summarize and describe each group. For a 
repeated-measures study comparing exactly two groups, it also is common to compute
the difference between the two scores for each participant and then report the mean
and the standard deviation for the difference scores.

Inferential Statistics Analysis of variance (ANOVA) and t tests are used to eval-
uate the statistical significance of the mean differences between the groups of

SCORES FROM INTERVAL 
OR RATIO SCALES:

NUMERICAL SCORES
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Two
Variables

Both variables measured
on interval or ratio scales
(numerical scores)

DESCRIPTIVE STATISTICS INFERENTIAL STATISTICS

Both variables measured
on ordinal scales (ranks or
ordered categories)

The critical values in
Table B-6 determine
significance of the
Pearson correlation

Analysis of regression
(Chapter  16) determines
the significance of the
regression equation

The critical values in
Table B-7 determine
the significance of the
Spearman correlation

The data can be
grouped to be suitable
for an independent-
measures t test (see
Table 15.4)

The data can be
evaluated with a
2x2 chi-square test
for independence

The chi-square test for
independence (Chapter 17)
evaluates the relationship
between variables

The Pearson correlation
(Chapter 15) describes
the degree and direction
of linear relationship

The regression equation
(Chapter 16) identifies the
slope and Y-intercept
for the best-fitting line

The Spearman correlation
(Chapter 15) describes
the degree and direction
of monotonic relationship

The point-biserial
correlation (Chapter 15)
describes the strength
of the relationship

The phi-coefficient (Chapter 15)
describes the strength of the
relationship

Regroup the data as a
frequency distribution matrix
The frequencies or proportions
describe the data

Numerical scores for one variable
and two values for the second
(a dichotomous variable coded
as 0 and 1)

Two values for both variables
(two dichotomous variables,
each coded as 0 and 1)

Any measurement scales but
a small number of categories
for each variable

FIGURE 19.2

Statistics for Category 2 data. One group of participants with two (or more) variables measured for each participant. 
The goal is to describe and evaluate the relationship between variables.
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scores. With only two groups, the two tests are equivalent and either may be used.
With more than two groups, mean differences are evaluated with an ANOVA. 
For independent-measures designs (between-subjects designs), the independent-
measures t (Chapter 10) and independent-measures ANOVA (Chapter 12) are 
appropriate. For repeated-measures designs, the repeated-measures t (Chapter 11)
and repeated-measures ANOVA (Chapter 13) are used. For all tests, a significant 
result indicates that the sample mean differences in the data are very unlikely 
(p � �) to occur if there are not corresponding mean differences in the population.
For an ANOVA comparing more than two means, a significant F-ratio indicates 
that post tests such as Scheffé or Tukey (Chapter 12) are necessary to determine 
exactly which sample means are significantly different. Significant results from a 
t test should be accompanied by a measure of effect size such as Cohen’s d or r2. 
For ANOVA, effect size is measured by computing the percentage of variance 
accounted for, �2.

For scores that are rank ordered, there are hypothesis tests developed specifically for
ordinal data to determine whether there are significant differences in the ranks from 
one group to another. Also, if the scores are limited to a relatively small number of 
ordinal categories, then a chi-square test for independence can be used to determine
whether there are significant differences in proportions from one group to another.

Descriptive Statistics Ordinal scores can be described by the set of ranks or ordinal
categories within each group. For example, the ranks in one group may be consistently

SCORES FROM ORDINAL
SCALES: RANKS 

OR ORDERED CATEGORIES

SECTION 19.4 / STATISTICAL PROCEDURES FOR DATA CONSISTING OF TWO (OR MORE) GROUPS 669

Three
Variables

All variables measures
on interval or ratio scales
(numerical scores)

Numerical values and
dichotomous variables
coded as 0 and 1

Partial correlation (Chapter 15)
describes the direction and
degree of linear relationship
betweenn two variables
while controlling the third.

The multiple regression equation
(Chapter 16) describes the
relationship between two
predictor variables and the
variable being predicted.

Partial correlation (Chapter 15)
describes the dgree of linear
relationship between 2 variables while
controlling the third. The direction
is meaningless for coded variables.

The multiple regression equation
(Chapter 16) describes
the relationship between two
predictor variables and the variable
being predicted. Slopes are
meaningless for coded variables.

The partial correlation
can be evaluated using
the critical values in
Table B-6 and df = n -3

Analysis of regression
(Chapter 16) determines
the significance of the
regression equation

The partical correlation
can be evaluated using
the critical values in
Table B-6 and df = n - 3

Analysis of regression
(Chapter 16) determines
the significance of the
regression equation

FIGURE 19.2—Cont’d
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larger (or smaller) than ranks in another group. Or, the “large” ratings may be concen-
trated in one group and the “small” ratings in another.

Inferential Statistics Appendix E presents a set of hypothesis tests developed for
evaluating differences between groups of ordinal data.

1. The Mann-Whitney U test evaluates the difference between two groups of
scores from an independent-measures design. The scores are the ranks obtained
by combining the two groups and rank ordering the entire set of participants
from smallest to largest.

2. The Wilcoxon signed ranks test evaluates the difference between two groups of
scores from a repeated-measures design. The scores are the ranks obtained by
rank ordering the magnitude of the differences, independent of sign (	 or �).

3. The Kruskal-Wallis test evaluates differences between three or more groups
from an independent-measures design. The scores are the ranks obtained by
combining all of the groups and rank ordering the entire set of participants from
smallest to largest.

4. The Friedman test evaluates differences among three or more groups from a
repeated-measures design. The scores are the ranks obtained by rank ordering
the scores for each participant. With three conditions, for example, each partici-
pant is measured three times and would receive ranks of 1, 2, and 3.

For all tests, a significant result indicates that the differences between groups are very
unlikely (p � �) to have occurred unless there are consistent differences in the population.

A chi-square test for independence (Chapter 17) can be used to evaluate differences
between groups for an independent-measures design with a relatively small number of 
ordinal categories for the dependent variable. In this case, the data can be displayed as a
frequency distribution matrix with the groups defining the rows and the ordinal categories
defining the columns. For example, a researcher could group high school students by class
(Freshman, Sophomore, Junior, Senior) and measure the amount of time each student
spends on Facebook by classifying students into three ordinal categories (small, medium,
large). An example of the resulting data is shown in Table 19.3(d). However, the same data
could be regrouped into a frequency-distribution matrix as follows:

Amount of Time Spent on Facebook

Small Medium Large

Freshman

Sophomore

Junior

Senior

The value in each cell is the number of students, with the high school class 
and amount of Facebook time identified by the cell’s row and column. A chi-square test
for independence would evaluate the differences between groups. A significant result
indicates that the frequencies (proportions) in the sample data would be very unlikely 
(p � �) to occur unless the proportions for the population distributions are different
from one group to another.

670 CHAPTER 19 CHOOSING THE RIGHT STATISTICS
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Descriptive Statistics As with ordinal data, data from nominal scales are usually 
described by the distribution of individuals across categories. For example, the scores
in one group may be clustered in one category or set of categories and the scores in 
another group may be clustered in different categories.

Inferential Statistics With a relatively small number of nominal categories, the data
can be displayed as a frequency-distribution matrix with the groups defining the rows
and the nominal categories defining the columns. The number in each cell is the 
frequency, or number of individuals in the group, identified by the cell’s row, with
scores corresponding to the cell’s column. For example, the data in Table 19.3(c) show
success or failure on a task for participants who are working alone or working in a
group. These data could be regrouped as follows:

Success Failure

Work Alone

Work in a Group

A chi-square test for independence (Chapter 17) can be used to evaluate differ-
ences between groups. A significant result indicates that the two sample distributions
would be very unlikely (p � �) to occur if the two population distributions have the
same proportions (same shape).

Research designs with two independent (or quasi-independent) variables are known as
two-factor designs. These designs can be presented as a matrix with the levels of one
factor defining the rows and the levels of the second factor defining the columns. A
third variable (the dependent variable) is measured to obtain a group of scores in each
cell of the matrix (see Example 14.1 on page 477).

Descriptive Statistics When the scores in each group are numerical values, the 
standard procedure is to compute the mean (Chapter 3) and the standard deviation
(Chapter 4) as descriptive statistics to summarize and describe each group.

Inferential Statistics A two-factor ANOVA is used to evaluate the significance of
the mean differences between cells. The ANOVA separates the mean differences into
three categories and conducts three separate hypothesis tests:

1. The main effect for factor A evaluates the overall mean differences for the first
factor; that is, the mean differences between rows in the data matrix.

2. The main effect for factor B evaluates the overall mean differences for the 
second factor; that is, the mean differences between columns in the data matrix.

3. The interaction between factors evaluates the mean differences between cells
that are not accounted for by the main effects.

For each test, a significant result indicates that the sample mean differences in the
data are very unlikely (p � �) to occur if there are not corresponding mean differences
in the population. For each of the three tests, effect size is measured by computing the
percentage of variance accounted for, �2.

Figure 19.3 summarizes the statistical procedures used for data in category 3.

TWO-FACTOR DESIGNS 
WITH SCORES FROM

INTERVAL OR RATIO SCALES

SCORES FROM 
A NOMINAL SCALE

SECTION 19.4 / STATISTICAL PROCEDURES FOR DATA CONSISTING OF TWO (OR MORE) GROUPS 671
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DESCRIPTIVE STATISTICS INFERENTIAL STATISTICS

Data from interval
or ratio scales
(numerical scores)

Chi-square test for
independence (Chapter 17)
evaluates the group
differences

Mann-Whitney U test
(Appendix E) evaluates
the group difference

Median
(Chapter 3)

Wilcoxon signed ranks test
(Appendix E) evaluates
the group difference

Median
(Chapter 3)

Kruskal-Wallis test
(Appendix E) evaluates
the group differences

Median
(Chapter 3)

Median
(Chapter 3)

Friedman test (Appendix E)
evaluates the group
differences

Proportion
in each category

Independent-
measures

Two groups

More than
two groups

Two or more
groups

Repeated-measures ANOVA
(Chapter 13) evaluates the
mean differences

independent-measures ANOVA
(Chapter 12) evaluates the
mean differences

Means (Chapter 3) and
Standard deviations
(Chapter 4)

Means (Chapter 3) and
Standard deviations
(Chapter 4)

Independent-
measures

Repeated-
measures

Two or more
groups

Means (Chapter 3) and
Standard deviations
(Chapter 4)

Independent-measures t test
(Chapter 10) evaluates the
mean difference

Repeated-measures t test
(Chapter 11) evaluates the
mean difference

Means (Chapter 3) and
Standard deviations
(Chapter 4)

Independent-
measures

Repeated-
measures

Two groups

Independent-
measures

Repeated-
measures

Independent-
measures

Repeated-
measures

Ordinal data
(Rank or ordered
categories)

Ordinal or nominal
data with few
categories

FIGURE 19.3

Statistics for Category 3 data. Two or more groups of scores with one score per participant. The goal is to describe and 
evaluate differences between groups of scores.
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Each problem describes a research situation and the
data it produces. Identify the statistical procedures that
are appropriate for the data. When possible, identify
descriptive statistics, inferential statistics, and a
measure of effect size.

1. Research suggests that the antioxidants in foods such
as blueberries can reduce and even reverse age-related
declines in cognitive functioning (Joseph et al., 1999).
To test this phenomenon, a researcher selects a sample
of n = 25 adults aged 70 to 75 and administers a
cognitive function test to each participant. The
participants then drink a blueberry supplement every
day for 4 months before they are tested again. The
researcher compares the scores before treatment with
the scores after treatment to see if there is any change
in cognitive function.

2. Recent budget cuts forced the city school district to
increase class size in the elementary schools. To

PROBLEMS 673

determine student reaction to the change, the district
administered a survey to students asking whether the
larger classes were “better, worse, or not different”
from the classes the previous year. The results from the
survey will be used to describe the students’ attitude.

3. Last fall, the college introduced a peer-mentor
program in which a sample of n = 75 freshmen was
each assigned an upperclassman mentor. To evaluate
the success of the program, the administration looked
at the number of students who returned to the college
to begin their second year. The data showed that 88%
of the students in the peer-mentor program returned,
compared to 72% for freshmen who were not in the
program.

4. To examine the relationship between alcohol
consumption and birth weight, a researcher selects a
sample of n = 20 pregnant rats and mixes alcohol 
with their food for 2 weeks before the pups are born.

RESOURCES

Book Companion Website: www.cengage.com/psychology/gravettter
You can find a tutorial quiz and other learning exercises for Chapter 19 on the

book companion website.

Improve your understanding of statistics with Aplia’s auto-graded problem sets 
and immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.

Log in to CengageBrain to access the resources your instructor requires. For this book,
you can access:

Psychology CourseMate brings course concepts to life with interactive learning,
study, and exam preparation tools that support the printed textbook. A textbook-specific
website, Psychology CourseMate includes an integrated interactive eBook and other
interactive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.
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One newborn pup is randomly selected from each
subject’s litter and the average birth weight for the 
n = 20 pups is recorded. It is known that the average
birth weight for regular rats (without exposure to
alcohol) is � = 5.6 grams.

5. To examine the relationship between texting and
driving skill, a researcher uses orange cones to set up a
driving circuit in the high school parking lot. A group
of students is then tested on the circuit, once while
receiving and sending text messages and once without
texting. For each student, the researcher records the
number of orange cones hit while driving each circuit.

6. Childhood participation in sports, cultural groups, 
and youth groups appears to be related to improved 
self-esteem for adolescents (McGee, Williams,
Howden-Chapman, Martin, & Kawachi, 2006). In 
a representative study, a researcher compares scores
on a standardized self-esteem questionnaire for a
sample of n = 100 adolescents with a history of group
participation and a separate sample of n = 100 who
have no history of group participation.

7. There is some evidence indicating that people with
visible tattoos are viewed more negatively than people
without visible tattoos (Resenhoeft, Villa, & Wiseman,
2008). In a similar study, a researcher showed male
college students photographs of women and asked the
students to rate the attractiveness of each woman using
a 7-point scale. One of the women was selected as the
target. For one group of participants, the target was
photographed with a large tattoo on her shoulder and
for a second group her photograph showed no tattoo.
The researcher plans to compare the target’s ratings
for the two groups to determine whether the tattoo had
any effect on perceived attractiveness.

8. A researcher investigated different combinations 
of temperature and humidity to examine how heat
affects performance. The researcher compared 
three temperature conditions (70º, 80º, and 90º) with
a high humidity and a low humidity condition for
each temperature. A separate group of participants
was tested in each of the six different conditions.
For each participant, the researcher recorded the
number of errors on a problem-solving task. 
The researcher would like to know how different
combinations of temperature and humidity 
influence performance.

9. Hallam, Price, and Katsarou (2002) investigated the
influence of background noise on classroom
performance for children aged 10 to 12. In a similar
study, students in one classroom worked on an
arithmetic task with calming music in the background.
Students in a second classroom heard aggressive,
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exciting music, and students in a third room had no
music at all. The researchers measured the number of
problems answered correctly for each student to
determine whether the music conditions had any effect
on performance.

10. A researcher is investigating the relationship between
personality and birth order position. A sample of
college students is classified into four birth-order
categories (1st, 2nd, 3rd, 4th or later) and classified as
being either extroverted or introverted.

11. A researcher is investigating the relationship between
personality and birth order position. A sample of
college students is classified into four birth-order
categories (1st, 2nd, 3rd, 4th or later) and given a
personality test that measures the degree of
extroversion on a 50-point scale.

12. A survey of female high school seniors includes 
one question asking for the amount of time spent on
clothes, hair, and makeup each morning before school.
The researcher plans to use the results as part of a
general description of today’s high school students.

13. Brunt, Rhee, and Zhong (2008) surveyed 
557 undergraduate college students to examine their
weight status, health behaviors, and diet. In a similar
study, researchers used body mass index (BMI) to
classify a group of students into four categories:
underweight, healthy weight, overweight, and obese.
The students were also surveyed to determine the
number of fatty and/or sugary snacks they eat each
day. The researchers would like to use to data to
determine whether there is a relationship between
weight status and diet.

14. A researcher would like to determine whether infants,
age 2 to 3 months, show any evidence of color
preference. The babies are positioned in front of a
screen on which a set of four colored patches is
presented. The four colors are red, green, blue, and
yellow. The researcher measures the amount of time
each infant looks at each of the four colors during a 
30 second test period. The color with the greatest time
is identified as the preferred color for the child.

15. A researcher administers a survey to graduating
seniors, asking them to rate their optimism about the
current job market on a 7-point scale. The researcher
plans to use the results as part of a description of
today’s graduating seniors.

16. Standardized measures seem to indicate that the
average level of anxiety has increased gradually over
the past 50 years (Twenge, 2000). In the 1950s, the
average score on the Child Manifest Anxiety Scale
was � = 15.1. A researcher administers the same test
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to a sample of n = 50 of today’s children to determine
whether there has been a significant change in the
average anxiety level.

17. Belsky, Weinraub, Owen, and Kelly (2001) reported
on the effects of preschool childcare on the
development of young children. One result suggests
that children who spend more time away from their
mothers are more likely to show behavioral problems
in kindergarten. Suppose that a kindergarten teacher is
asked rank order the degree of disruptive behavior for
the n = 20 children in the class.
a. Researchers then separate the students into two

groups: children with a history of preschool and
children with little or no experience in preschool.
The researchers plan to compare the ranks for the
two groups.

b. The researchers interview each child’s parents to
determine how much time the child spent in
preschool. The children are then ranked according
to the amount of preschool experience. The
researchers plan to use the data to determine
whether there is a relationship between preschool
experience and disruptive behavior.

18. McGee and Shevlin (2009) found that an individual’s
sense of humor had a significant effect on how
attractive the individual was perceived to be by
others. In a similar study, female college students
were given brief descriptions of three potential
romantic partners. One was identified as the target
and was described positively as being single,
ambitious, and having good job prospects. For half of
the participants, the description also said that he had
a great sense of humor. For another half, it said that
he has no sense of humor. After reading the three
descriptions, the participants were asked to rank the
three men 1st, 2nd, and 3rd in terms of attractiveness.
For each of the two groups, the researchers recorded
the number of times the target was placed in each
ordinal position.

19. Numerous studies have found that males report
higher self-esteem than females, especially for
adolescents (Kling, Hyde, Showers, & Buswell,
1999). A recent study found that males scored an
average of 8 points higher than females on a
standardized questionnaire measuring self-esteem.
The researcher would like to know whether this is a
significant difference.

20. Research has demonstrated that IQ scores have been
increasing, generation by generation, for years (Flynn,
1999). A researcher would like to determine whether
this trend can be described by a linear equation
showing the relationship between age and IQ scores.
The same IQ test is given to a sample of 100 adults
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who range in age from 20 to 85 years.  The age and IQ
score are recorded for each person.  

21. A researcher is investigating the effectiveness of
acupuncture treatment for chronic back pain. A sample
of n = 20 participants is obtained from a pain clinic.
Each individual rates the current level of pain and then
begins a 6-week program of acupuncture treatment. At
the end of the program, the pain level is rated again
and the researcher records whether the pain has
increased or decreased for each participant.

22. Research results indicate that physically attractive
people are also perceived as being more intelligent
(Eagly, Ashmore, Makhijani, & Longo, 1991). As a
demonstration of this phenomenon, a researcher
obtained a set of n = 25 photographs of male college
students. The photographs were shown to a sample 
of female college students who used a 7-point scale 
to rate several characteristics, including intelligence 
and attractiveness, for the person in each photo. The
average attractiveness rating and the average
intelligence rating were computed for each
photograph. The researcher plans to use the averages
to determine whether there is relationship between
perceived attractiveness and perceived intelligence.

23. Research has shown that people are more likely to
show dishonest and self-interested behaviors in
darkness than in a well-lit environment (Zhong,
Bohns, & Gino, 2010). In a related experiment,
students were given a quiz and then asked to grade
their own papers while the teacher read the correct
answers. One group of students was tested in a 
well-lit room and another group was tested in a
dimly-lit room. The researchers recorded the 
number of correct answers reported by each student 
to determine whether there was a significant
difference between the two groups.

24. There is some evidence suggesting that you are likely
to improve your test score if you rethink and change
answers on a multiple-choice exam (Johnston, 1975).
To examine this phenomenon, a teacher encouraged
students to reconsider their answers before turning in
exams. Students were asked to record their original
answers and the changes that they made. When 
the exams were collected, the teacher found that 
18 students improved their grades by changing
answers and only 7 students had lower grades with 
the changes. The teacher would like to know if this 
is a statistically significant result.

25. A researcher is evaluating customer satisfaction with
the service and coverage of three phone carriers. Each
individual in a sample of n = 25 uses one carrier for 
2 weeks, then switches to another for 2 weeks, and
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finally switches to the third for 2 weeks. Each
participant then rates the three carriers.
a. Assume that each carrier was rated on a 10-point

scale.
b. Assume that each participant ranked the three

carriers 1st, 2nd and 3rd.
c. Assume the each participant simply identified the

most preferred carrier of the three.

26. There is some research indicating that college students
who use Facebook while studying tend to have lower
grades than non-users (Kirschner & Karpinski, 2010).
A representative study surveys students to determine
the amount of Facebook use during the time they are
studying or doing homework. Based on the amount of
time spent on Facebook, students are classified into
three groups (high, medium, and low time) and their
grade point averages are recorded. The researcher
would like to examine the relationship between grades
and amount of time on Facebook.

27. To examine the effect of sleep deprivation on motor-
skills performance, a sample of n = 10 participants
was tested on a motor-skills task after 24 hours of
sleep deprivation, tested again after 36 hours, and
tested once more after 48 hours. The dependent
variable is the number of errors made on the 
motor-skills task.

28. Ryan and Hemmes (2005) examined how homework
assignments are related to learning. The participants
were college students enrolled in a class with weekly
homework assignments and quizzes. For some weeks,
the homework was required and counted toward the
student’s grade. Other weeks, the homework was
optional and did not count toward the student’s grade.
Predictably, most students completed the required
homework assignments and did not do the optional
assignments. For each student, the researchers
recorded the average quiz grade for weeks with
required homework and the average grade for weeks
with optional homework to determine whether the
grades were significantly higher when homework was
required and actually done.

29. Ford and Torok (2008) found that motivational signs
were effective in increasing physical activity on a
college campus. In a similar study, researchers first
counted the number of students and faculty who used
the stairs and the number who used the elevators in a
college building during a 30-minute observation
period. The following week, signs such as “Step up 
to a healthier lifestyle” and “An average person 
burns 10 calories a minute walking up the stairs” were
posted by the elevators and stairs and the researchers
once again counted people to determine whether the
signs had a significant effect on behavior.

30991_ch19_ptg01_hr_657-676.qxd  9/3/11  2:27 AM  Page 676

www.aplia.com/statistics


677

Basic Mathematics ReviewAPPENDIX A

Preview

A.1 Symbols and Notation

A.2 Proportions: Fractions, Decimals, and Percentages

A.3 Negative Numbers

A.4 Basic Algebra: Solving Equations

A.5 Exponents and Square Roots

Preview
This appendix reviews some of the basic math skills that are
necessary for the statistical calculations presented in this
book. Many students already will know some or all of this
material. Others will need to do extensive work and 
review. To help you assess your own skills, we include a
skills assessment exam here. You should allow approxi-
mately 30 minutes to complete the test. When you finish,
grade your test using the answer key on page 697.

Notice that the test is divided into five sections. If
you miss more than three questions in any section of the
test, you probably need help in that area. Turn to the 
section of this appendix that corresponds to your problem

area. In each section, you will find a general review, 
examples, and additional practice problems. After 
reviewing the appropriate section and doing the practice
problems, turn to the end of the appendix. You will find
another version of the skills assessment exam. If you still
miss more than three questions in any section of the exam,
continue studying. Get assistance from an instructor or a
tutor if necessary. At the end of this appendix is a list of
recommended books for individuals who need a more
extensive review than can be provided here. We stress 
that mastering this material now will make the rest of 
the course much easier.
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678 APPENDIX A BASIC MATHEMATICS REVIEW

SECTION 1
(corresponding to Section A.1 of this appendix)

1. 3 � 2 � 7 � ?

2. (3 � 2) � 7 � ?

3. 3 � 22 � 1 � ?

4. (3 � 2)2 � 1 � ?

5. 12/4 � 2 � ?

6. 12/(4 � 2) � ?

7. 12/(4 � 2)2 � ?

8. 2 � (8 � 22) � ?

9. 2 � (8 � 2)2 � ?

10. 3 � 2 � 8 � 1 � 6 � ?

11. 3 � (2 � 8) � 1 � 6 � ?

12. 3 � 2 � (8 � 1) � 6 � ?

SECTION 2
(corresponding to Section A.2 of this appendix)

1. The fraction �
3
4� corresponds to a percentage of
.

2. Express 30% as a fraction.

3. Convert �
1
4
2
0� to a decimal.

4. �1
2
3� � �1

8
3� � ?

5. 1.375 � 0.25 � ?

6. �
2
5� � �

1
4� � ?

7. �
1
8� � �

2
3� � ?

8. 3.5 � 0.4 � ?

9. �
1
5� � �

3
4� � ?

10. 3.75/0.5 � ?

11. In a group of 80 students, 20% are psychology majors.
How many psychology majors are in this group?

12. A company reports that two-fifths of its employees are
women. If there are 90 employees, how many are
women?

SECTION 3
(corresponding to Section A.3 of this appendix)

1. 3 � (�2) � (�1) � 4 � ?

2. 6 � (�2) � ?

3. �2 � (�4) � ?

4. 6 � (�1) � 3 � (�2) � (�5) � ?

5. 4 � (�3) � ?

SKILLS ASSESSMENT PREVIEW EXAM

6. �2 � (�6) � ?

7. �3 � 5 � ?

8. �2 � (�4) � (�3) � ?

9. 12 � (�3) � ?

10. �18 � (�6) � ?

11. �16 � 8 � ?

12. �100 � (�4) � ?

SECTION 4
(corresponding to Section A.4 of this appendix)

For each equation, find the value of X.

1. X � 6 � 13

2. X � 14 � 15

3. 5 � X � 4

4. 3X � 12

5. 72 � 3X

6. X/5 � 3

7. 10 � X/8

8. 3X � 5 � �4

9. 24 � 2X � 2

10. (X � 3)/2 � 14

11. (X � 5)/3 � 2

12. 17 � 4X � 11

SECTION 5
(corresponding to Section A.5 of this appendix)

1. 43 � ?

2. �25 � 9� � ?

3. If X � 2 and Y � 3, then XY3 � ?

4. If X � 2 and Y � 3, then (X � Y)2 � ?

5. If a � 3 and b � 2, then a2 � b2 � ?

6. (�3)3 � ?

7. (�4)4 � ?

8. �4� � 4 � ?

9. 36/�9� � ?

10. (9 � 2)2 � ?

11. 52 � 23 � ?

12. If a � 3 and b � �1, then a2b3 � ?

The answers to the skills assessment exam are at the
end of the appendix (pages 697�698).
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A.1 SYMBOLS AND NOTATION

Table A.1 presents the basic mathematical symbols that you should know, along with
examples of their use. Statistical symbols and notation are introduced and explained
throughout this book as they are needed. Notation for exponents and square roots is
covered separately at the end of this appendix.

Parentheses are a useful notation because they specify and control the order of
computations. Everything inside the parentheses is calculated first. For example,

(5 � 3) � 2 � 8 � 2 � 16

Changing the placement of the parentheses also changes the order of calculations.
For example,

5 � (3 � 2) � 5 � 6 � 11

Often a formula or a mathematical expression will involve several different arithmetic
operations, such as adding, multiplying, squaring, and so on. When you encounter
these situations, you must perform the different operations in the correct sequence.
Following is a list of mathematical operations, showing the order in which they are to
be performed.

1. Any calculation contained within parentheses is done first.

2. Squaring (or raising to other exponents) is done second.

3. Multiplying and/or dividing is done third. A series of multiplication and/or
division operations should be done in order from left to right.

4. Adding and/or subtracting is done fourth.

The following examples demonstrate how this sequence of operations is applied in
different situations.

To evaluate the expression

(3 � 1)2 � 4 � 7/2

first, perform the calculation within parentheses:

(4)2 � 4 � 7/2

Next, square the value as indicated:

16 � 4 � 7/2

ORDER OF OPERATIONS

TABLE A.1 Symbol Meaning Example

� Addition 5 � 7 � 12
� Subtraction 8 � 3 � 5

�, ( ) Multiplication 3 � 9 � 27, 3(9) � 27
�, / Division 15 � 3 � 5, 15/3 � 5, �

1
3
5
� � 5

� Greater than 20 � 10
	 Less than 7 	 11

 Not equal to 5 
 6
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Then perform the multiplication and division:

16 � 14

Finally, do the subtraction:

16 � 14 � 2

A sequence of operations involving multiplication and division should be performed
in order from left to right. For example, to compute 12/2 � 3, you divide 12 by 2 and
then multiply the result by 3:

12/2 � 3 � 6 � 3 � 18

Notice that violating the left-to-right sequence can change the result. For this 
example, if you multiply before dividing, you will obtain

12/2 � 3 � 12/6 � 2 (This is wrong.)

A sequence of operations involving only addition and subtraction can be per-
formed in any order. For example, to compute 3 � 8 � 5, you can add 3 and 8 and
then subtract 5:

(3 � 8) � 5 � 11 � 5 � 6

or you can subtract 5 from 8 and then add the result to 3:

3 � (8 � 5) � 3 � 3 � 6

A mathematical expression or formula is simply a concise way to write a set of 
instructions. When you evaluate an expression by performing the calculation, you 
simply follow the instructions. For example, assume you are given these instructions:

1. First, add 3 and 8.

2. Next, square the result.

3. Next, multiply the resulting value by 6.

4. Finally, subtract 50 from the value you have obtained.

You can write these instructions as a mathematical expression.

1. The first step involves addition. Because addition is normally done last, use
parentheses to give this operation priority in the sequence of calculations:

(3 � 8)

2. The instruction to square a value is noted by using the exponent 2 beside the
value to be squared:

(3 � 8)2

3. Because squaring has priority over multiplication, you can simply introduce the
multiplication into the expression:

6 � (3 � 8)2

680 APPENDIX A BASIC MATHEMATICS REVIEW
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4. Addition and subtraction are done last, so simply write in the requested 
subtraction:

6 � (3 � 8)2 � 50

To calculate the value of the expression, you work through the sequence of opera-
tions in the proper order:

6 � (3 � 8)2 � 50 � 6 � (11)2 � 50

� 6 � (121) � 50

� 726 � 50

� 676

As a final note, you should realize that the operation of squaring (or raising to any 
exponent) applies only to the value that immediately precedes the exponent. For example,

2 � 32 � 2 � 9 � 18 (Only the 3 is squared.)

If the instructions require multiplying values and then squaring the product, you
must use parentheses to give the multiplication priority over squaring. For example, to
multiply 2 times 3 and then square the product, you would write

(2 � 3)2 � (6)2 � 36

1. Evaluate each of the following expressions:

a. 4 � 8/22

b. 4 � (8/2)2

c. 100 � 3 � 12/(6 � 4)2

d. (4 � 6) � (3 � 1)2

e. (8 � 2)/(9 � 8)2

f. 6 � (4 � 1)2 � 3 _ 42

g. 4 � (8 � 3) � 8 � 3

1. a. 8 b. 64 c. 91 d. 40 e. 6 f. �33 g. 25

L E A R N I N G  C H E C K

ANSWERS

A.2 PROPORTIONS: FRACTIONS, DECIMALS, AND PERCENTAGES

A proportion is a part of a whole and can be expressed as a fraction, a decimal, or a 
percentage. For example, in a class of 40 students, only 3 failed the final exam.

The proportion of the class that failed can be expressed as a fraction

fraction � �
4
3
0
�

or as a decimal value

decimal � 0.075
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or as a percentage

percentage � 7.5%

In a fraction, such as �
3
4�, the bottom value (the denominator) indicates the number

of equal pieces into which the whole is split. Here the “pie” is split into 4 equal pieces:

If the denominator has a larger value—say, 8—then each piece of the whole pie is
smaller:

A larger denominator indicates a smaller fraction of the whole.
The value on top of the fraction (the numerator) indicates how many pieces of the

whole are being considered. Thus, the fraction �
3
4� indicates that the whole is split evenly

into 4 pieces and that 3 of them are being used:

A fraction is simply a concise way of stating a proportion: “Three out of four” is
equivalent to �

3
4�. To convert the fraction to a decimal, you divide the numerator by the

denominator:

�
3
4

� � 3 � 4 � 0.75

To convert the decimal to a percentage, simply multiply by 100, and place a
percent sign (%) after the answer:

0.75 � 100 � 75%

The U.S. money system is a convenient way of illustrating the relationship between
fractions and decimals. “One quarter,” for example, is one-fourth ��

1
4�� of a dollar, and its

decimal equivalent is 0.25. Other familiar equivalencies are as follows:

Dime Quarter 50 Cents 75 Cents

Fraction �1
1
0� �

1
4� �

1
2� �

3
4�

Decimal 0.10 0.25 0.50 0.75
Percentage 10% 25% 50% 75%
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1. Finding Equivalent Fractions. The same proportional value can be expressed
by many equivalent fractions. For example,

�
1
2

� � �
2
4

� � �
1
2
0
0
� � �

1
5
0
0
0

�

To create equivalent fractions, you can multiply the numerator and denominator by
the same value. As long as both the numerator and the denominator of the fraction are
multiplied by the same value, the new fraction will be equivalent to the original. For
example,

�
1
3
0
� � �

3
9
0
�

because both the numerator and the denominator of the original fraction have been
multiplied by 3. Dividing the numerator and denominator of a fraction by the same value
will also result in an equivalent fraction. By using division, you can reduce a fraction to
a simpler form. For example,

�
1
4
0
0
0

� � �
2
5

�

because both the numerator and the denominator of the original fraction have been
divided by 20.

You can use these rules to find specific equivalent fractions. For example, find the
fraction that has a denominator of 100 and is equivalent to �

3
4�. That is,

�
3
4

� � �
10

?
0

�

Notice that the denominator of the original fraction must be multiplied by 25 to
produce the denominator of the desired fraction. For the two fractions to be equal, both
the numerator and the denominator must be multiplied by the same number. Therefore,
we also multiply the top of the original fraction by 25 and obtain

�
3
4

�

�

2
2
5
5

� � �
1
7
0
5
0

�

2. Multiplying Fractions. To multiply two fractions, you first multiply the 
numerators and then multiply the denominators. For example,

�
3
4

� � �
5
7

� � �
3
4

�

�

5
7

� � �
1
2
5
8
�

3. Dividing Fractions. To divide one fraction by another, you invert the second
fraction and then multiply. For example,

�
1
2

� � �
1
4

� � �
1
2

� � �
4
1

� � �
1
2

�

�

4
1

� � �
4
2

� � �
2
1

� � 2

4. Adding and Subtracting Fractions. Fractions must have the same denominator
before you can add or subtract them. If the two fractions already have a common
denominator, you simply add (or subtract as the case may be) only the values in
the numerators. For example,

�
2
5

� � �
1
5

� � �
3
5

�

FRACTIONS
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Suppose you divided a pie into five equal pieces (fifths). If you first ate two-fifths of
the pie and then another one-fifth, the total amount eaten would be three-fifths of the pie:

If the two fractions do not have the same denominator, you must first find equiva-
lent fractions with a common denominator before you can add or subtract. The product
of the two denominators will always work as a common denominator for equivalent
fractions (although it may not be the lowest common denominator). For example,

�
2
3

� � �
1
1
0
� � ?

Because these two fractions have different denominators, it is necessary to 
convert each into an equivalent fraction and find a common denominator. We will use
3 � 10 � 30 as the common denominator. Thus, the equivalent fraction of each is

�
2
3

� � �
2
3
0
0
� and �

1
1
0
� � �

3
3
0
�

Now the two fractions can be added:

�
2
3
0
0
� � �

3
3
0
� � �

2
3

3
0
�

5. Comparing the Size of Fractions. When comparing the size of two fractions
with the same denominator, the larger fraction will have the larger numerator.
For example,

�
5
8

� � �
3
8

�

The denominators are the same, so the whole is partitioned into pieces of the same
size. Five of these pieces are more than three of them:

When two fractions have different denominators, you must first convert them to
fractions with a common denominator to determine which is larger. Consider the fol-
lowing fractions:

�
3
8

� and �
1
7
6
�

�

� �
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If the numerator and denominator of �
3
8� are multiplied by 2, the resulting equivalent

fraction will have a denominator of 16:

�
3
8

� � �
3
8

�

�

2
2

� � �
1
6
6
�

Now a comparison can be made between the two fractions:

�
1
6
6
� 	 �

1
7
6
�

Therefore,

�
3
8

� 	 �
1
7
6
�

1. Converting Decimals to Fractions. Like a fraction, a decimal represents part
of the whole. The first decimal place to the right of the decimal point indicates
how many tenths are used. For example,

0.1 � �
1
1
0
� 0.7 � �

1
7
0
�

The next decimal place represents �1
1
00�, the next �10

1
00�, the next �10,

1
000�, and so on. To

change a decimal to a fraction, just use the number without the decimal point for the
numerator. Use the denominator that the last (on the right) decimal place represents.
For example,

0.32 � �
1
3
0
2
0

� 0.5333 � �
1
5
0
3
,0
3
0
3
0

� 0.05 � �
1
5
00
� 0.001 � �

10
1
00
�

2. Adding and Subtracting Decimals. To add and subtract decimals, the only
rule is that you must keep the decimal points in a straight vertical line. For
example,

0.27 3.595
�1.326 �0.67

1.596 2.925

3. Multiplying Decimals. To multiply two decimal values, you first multiply the
two numbers, ignoring the decimal points. Then you position the decimal point
in the answer so that the number of digits to the right of the decimal point is
equal to the total number of decimal places in the two numbers being multi-
plied. For example,

1.73 (two decimal places) 0.25 (two decimal places)
�0.251 (three decimal places) �0.005 (three decimal places)

173 125
865 00

346 00

0.43423 (five decimal places) 0.00125 (five decimal places)

DECIMALS
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4. Dividing Decimals. The simplest procedure for dividing decimals is based on
the fact that dividing two numbers is identical to expressing them as a fraction:

0.25 � 1.6 is identical to �
0
1
.2
.6
5

�

You now can multiply both the numerator and the denominator of the fraction by
10, 100, 1000, or whatever number is necessary to remove the decimal places.
Remember that multiplying both the numerator and the denominator of a fraction by the
same value will create an equivalent fraction. Therefore,

�
0
1
.2
.6
5

� � �
0
1
.2
.6
5

�

�

1
1
0
0
0
0

� � �
1
2
6
5
0

� � �
3
5
2
�

The result is a division problem without any decimal places in the two numbers.

1. Converting a Percentage to a Fraction or a Decimal. To convert a percentage
to a fraction, remove the percent sign, place the number in the numerator, and
use 100 for the denominator. For example,

52% � �
1
5
0
2
0

� 5% � �
1
5
00
�

To convert a percentage to a decimal, remove the percent sign and divide by 100,
or simply move the decimal point two places to the left. For example,

83% � 83. � 0.83

14.5% � 14.5 � 0.145

5% � 5. � 0.05

2. Performing Arithmetic Operations with Percentages. There are situations 
in which it is best to express percent values as decimals in order to perform
certain arithmetic operations. For example, what is 45% of 60? This question
may be stated as

45% � 60 � ?

The 45% should be converted to decimal form to find the solution to this question.
Therefore,

0.45 � 60 � 27

PERCENTAGES

686 APPENDIX A BASIC MATHEMATICS REVIEW

1. Convert �2
3
5� to a decimal.

2. Convert �
3
8� to a percentage.

3. Next to each set of fractions, write “True” if they are equivalent and “False” if
they are not:

a. �
3
8� � �2

9
4� b. �

7
9� � �

1
1

7
9�

c. �
2
7� � �1

4
4�

L E A R N I N G  C H E C K
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A.3 NEGATIVE NUMBERS

Negative numbers are used to represent values less than zero. Negative numbers may
occur when you are measuring the difference between two scores. For example, a re-
searcher may want to evaluate the effectiveness of a propaganda film by measuring
people’s attitudes with a test both before and after viewing the film:

Before After Amount of Change

Person A 23 27 �4
Person B 18 15 �3
Person C 21 16 �5

Notice that the negative sign provides information about the direction of the 
difference: A plus sign indicates an increase in value, and a minus sign indicates a
decrease.

Because negative numbers are frequently encountered, you should be comfortable
working with these values. This section reviews basic arithmetic operations using 
negative numbers. You should also note that any number without a sign (� or �) is 
assumed to be positive.

1. Adding Negative Numbers. When adding numbers that include negative val-
ues, simply interpret the negative sign as subtraction. For example,

3 � (�2) � 5 � 3 � 2 � 5 � 6

When adding a long string of numbers, it often is easier to add all the positive values
to obtain the positive sum and then to add all of the negative values to obtain the negative
sum. Finally, you subtract the negative sum from the positive sum. For example,

�1 � 3 � (�4) � 3 � (�6) � (�2)

positive sum � 6 negative sum � 13

Answer: 6 � 13 � �7

APPENDIX A BASIC MATHEMATICS REVIEW 687

4. Compute the following:

a. �
1
6� � �1

7
0� b. �

7
8� � �

1
2� c. �1

9
0� � �

2
3� d. �2

7
2� � �

2
3�

5. Identify the larger fraction of each pair:

a. �1
7
0�, �1

2
0
1
0� b. �

3
4�, �1

7
2� c. �

2
3
2
�, �

1
3
9
�

6. Convert the following decimals into fractions:

a. 0.012 b. 0.77 c. 0.005

7. 2.59 � 0.015 � ?

8. 1.8 � 0.02 � ?

9. What is 28% of 45?

1. 0.12 2. 37.5% 3. a. True b. False c. True

4. a. 6
7
0� b. �

3
8� c. �

2
2

7
0� d. �

6
6

5
6� 5. a. �1

7
0� b. �

3
4� c. �

2
3
2
�

6. a. �1
1
0
2
00� � �2

3
50� b. �1

7
0
7
0� c. �10

5
00� � �2

1
00� 7. 0.03885 8. 90 9. 12.6

ANSWERS
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2. Subtracting Negative Numbers. To subtract a negative number, change it to a
positive number, and add. For example,

4 � (�3) � 4 � 3 � 7

This rule is easier to understand if you think of positive numbers as financial gains
and negative numbers as financial losses. In this context, taking away a debt is equiva-
lent to a financial gain. In mathematical terms, taking away a negative number is equiv-
alent to adding a positive number. For example, suppose you are meeting a friend for
lunch. You have $7, but you owe your friend $3. Thus, you really have only $4 to spend
for lunch. But your friend forgives (takes away) the $3 debt. The result is that you now
have $7 to spend. Expressed as an equation,

$4 minus a $3 debt � $7

4 � (�3) � 4 � 3 � 7

3. Multiplying and Dividing Negative Numbers. When the two numbers being
multiplied (or divided) have the same sign, the result is a positive number.
When the two numbers have different signs, the result is negative. For example,

3 � (�2) � �6

�4 � (�2) � �8

The first example is easy to explain by thinking of multiplication as repeated 
addition. In this case,

3 � (�2) � (�2) � (�2) � (�2) � �6

You add three negative 2s, which results in a total of negative 6. In the second 
example, we are multiplying by a negative number. This amounts to repeated subtraction.
That is,

�4 � (�2) � �(�2) � (�2) � (�2) � (�2)

� 2 � 2 � 2 � 2 � 8

By using the same rule for both multiplication and division, we ensure that these
two operations are compatible. For example,

�6 � 3 � �2

which is compatible with

3 � (�2) � �6

Also,

8 � (�4) � �2

which is compatible with

�4 � (�2) � �8
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A.4 BASIC ALGEBRA: SOLVING EQUATIONS

An equation is a mathematical statement that indicates two quantities are identical.
For example,

12 � 8 � 4

Often an equation will contain an unknown (or variable) quantity that is identified
with a letter or symbol, rather than a number. For example,

12 � 8 � X

In this event, your task is to find the value of X that makes the equation “true,” or
balanced. For this example, an X value of 4 will make a true equation. Finding the value
of X is usually called solving the equation.

To solve an equation, there are two points to keep in mind:

1. Your goal is to have the unknown value (X) isolated on one side of the equation.
This means that you need to remove all of the other numbers and symbols that
appear on the same side of the equation as the X.

2. The equation remains balanced, provided you treat both sides exactly the 
same. For example, you could add 10 points to both sides, and the solution 
(the X value) for the equation would be unchanged.

We will consider four basic types of equations and the operations needed to solve them.

1. When X Has a Value Added to It. An example of this type of equation is

X � 3 � 7

FINDING THE SOLUTION 
FOR AN EQUATION
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1. Complete the following calculations:

a. 3 � (�8) � 5 � 7 � (�1) � (�3)

b. 5 � (�9) � 2 � (�3) � (�1)

c. 3 � 7 � (�21) � (�5) � (�9)

d. 4 � (�6) � 3 � 11 � 14

e. 9 � 8 � 2 � 1 � (�6)

f. 9 � (�3)

g. �7 � (�4)

h. �6 � (�2) � (�3)

i. �12 � (�3)

j. 18 � (�6)

1. a. 3 b. 20 c. 21 d. 4 e. 20

f. �27 g. 28 h. �36 i. 4 j. �3

ANSWERS

L E A R N I N G  C H E C K
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Your goal is to isolate X on one side of the equation. Thus, you must remove the
�3 on the left-hand side. The solution is obtained by subtracting 3 from both sides of
the equation:

X � 3 � 3 � 7 � 3

X � 4

The solution is X � 4. You should always check your solution by returning to the
original equation and replacing X with the value you obtained for the solution. For this
example,

X � 3 � 7

4 � 3 � 7

7 � 7

2. When X Has a Value Subtracted From It. An example of this type of
equation is

X � 8 � 12

In this example, you must remove the �8 from the left-hand side. Thus, the 
solution is obtained by adding 8 to both sides of the equation:

X � 8 � 8 � 12 � 8

X � 20

Check the solution:

X � 8 � 12

20 � 8 � 12

12 � 12

3. When X Is Multiplied by a Value. An example of this type of equation is

4X � 24

In this instance, it is necessary to remove the 4 that is multiplied by X. This may
be accomplished by dividing both sides of the equation by 4:

�
4
4
X
� � �

2
4
4
�

X � 6

Check the solution:

4X � 24

4(6) � 24

24 � 24

4. When X Is Divided by a Value. An example of this type of equation is

�
X
3

� � 9

690 APPENDIX A BASIC MATHEMATICS REVIEW

30991_appA_ptg01_hr_677-698.qxd  9/3/11  1:44 AM  Page 690



Now the X is divided by 3, so the solution is obtained by multiplying by 3.
Multiplying both sides yields

3��
X
3

�� � 9(3)

X � 27

For the check,

�
X
3

� � 9

�
2
3
7
� � 9

9 � 9

More complex equations can be solved by using a combination of the preceding simple
operations. Remember that at each stage you are trying to isolate X on one side of the
equation. For example,

3X � 7 � 22

3X � 7 � 7 � 22 � 7 (Remove �7 by subtracting 7 from both sides.)

3X � 15

�
3
3
X
� � �

1
3
5
� (Remove 3 by dividing both sides by 3.)

X � 5

To check this solution, return to the original equation, and substitute 5 in place of X:

3X � 7 � 22

3(5) � 7 � 22

15 � 7 � 22

22 � 22

Following is another type of complex equation frequently encountered in statistics:

�
X �

4
3

� � 2

First, remove the 4 by multiplying both sides by 4:

4��X �

4
3

�� � 2(4)

X � 3 � 8

Now remove the �3 by subtracting 3 from both sides:

X � 3 � 3 � 8 � 3

X � 5

SOLUTIONS FOR MORE
COMPLEX EQUATIONS
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To check this solution, return to the original equation, and substitute 5 in place of X:

�
X �

4
3

� � 2

�
5 �

4
3

� � 2

�
8
4

� � 2

2 � 2
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1. Solve for X, and check the solutions:

a. 3X � 18 b. X � 7 � 9 c. X � 4 � 18 d. 5X � 8 � 12

e. �
X
9

� � 5 f. �
X �

6
1

� � 4 g. X � 2 � �5 h. �
X
5

� � �5

i. �
2
3
X
� � 12 j. �

X
3

� � 1 � 3

1. a. X � 6 b. X � 2 c. X � 22 d. X � 4 e. X � 45

f. X � 23 g. X � �7 h. X � �25 i. X � 18 j. X � 6

L E A R N I N G  C H E C K

ANSWERS

A.5 EXPONENTS AND SQUARE ROOTS

A simplified notation is used whenever a number is being multiplied by itself. The 
notation consists of placing a value, called an exponent, on the right-hand side of 
and raised above another number, called a base. For example,

73�exponent

�

base

The exponent indicates how many times the base is used as a factor in multiplication.
Following are some examples:

73 � 7(7)(7) (Read “7 cubed” or “7 raised to the third power”)
52 � 5(5) (Read “5 squared”)
25 � 2(2)(2)(2)(2) (Read “2 raised to the fifth power”)

There are a few basic rules about exponents that you will need to know for this
course. They are outlined here.

1. Numbers Raised to One or Zero. Any number raised to the first power equals
itself. For example,

61 � 6

EXPONENTIAL NOTATION
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Any number (except zero) raised to the zero power equals 1. For example,

90 � 1

2. Exponents for Multiple Terms. The exponent applies only to the base that is
just in front of it. For example,

XY2 � XYY

a2b3 � aabbb

3. Negative Bases Raised to an Exponent. If a negative number is raised to a
power, then the result will be positive for exponents that are even and negative
for exponents that are odd. For example,

(�4)3 � �4(�4)(�4)

� 16(�4)

� �64

and

(�3)4 � �3(�3)(�3)(�3)

� 9(�3)(�3)

� 9(9)

� 81

Note: The parentheses are used to ensure that the exponent applies to the entire
negative number, including the sign. Without the parentheses there is some ambiguity
as to how the exponent should be applied. For example, the expression �32 could have
two interpretations:

�32 � (�3)(�3) � 9 or �32 � �(3)(3) � �9

4. Exponents and Parentheses. If an exponent is present outside of parentheses,
then the computations within the parentheses are done first, and the exponential
computation is done last:

(3 � 5)2 � 82 � 64

Notice that the meaning of the expression is changed when each term in the
parentheses is raised to the exponent individually:

32 � 52 � 9 � 25 � 34

Therefore,

X2 � Y2 � (X � Y)2

5. Fractions Raised to a Power. If the numerator and denominator of a fraction
are each raised to the same exponent, then the entire fraction can be raised to
that exponent. That is,

�
a
b

2

2� � ��
a
b

��2
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For example,

�
3
4

2

2� � ��
3
4

��2

�
1
9
6
� � �

3
4

���
3
4

��
�
1
9
6
� � �

1
9
6
�

The square root of a value equals a number that when multiplied by itself yields the
original value. For example, the square root of 16 equals 4 because 4 times 4 equals 16.
The symbol for the square root is called a radical, ��. The square root is taken for
the number under the radical. For example,

�16� � 4

Finding the square root is the inverse of raising a number to the second power
(squaring). Thus,

�a2� � a

For example,

�32� � �9� � 3

Also,

(�b�)2 � b

For example,

(�64�)2 � 82 � 64

Computations under the same radical are performed before the square root is taken.
For example,

�9 � 16� � �25� � 5

Note that with addition (or subtraction), separate radicals yield a different result:

�9� � �16� � 3 � 4 � 7

Therefore,

�X� � �Y� 
 �X � Y�

�X� � �Y� 
 �X � Y�

SQUARE ROOTS
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If the numerator and denominator of a fraction each have a radical, then the entire
fraction can be placed under a single radical:

�
�

�

1

4�

6�
� � ��

1
4
6
��

�
4
2

� � �4�

2 � 2

Therefore,

�
�

�

X�

Y�
� � ��

X
Y

��
Also, if the square root of one number is multiplied by the square root of another

number, then the same result would be obtained by taking the square root of the prod-
uct of both numbers. For example,

�9� � �16� � �9 � 16�

3 � 4 � �144�

12 � 12

Therefore,

�a� � �b� � �ab�

APPENDIX A BASIC MATHEMATICS REVIEW 695

1. Perform the following computations:

a. (�6)3

b. (3 � 7)2

c. a3b2 when a � 2 and b � �5

d. a4b3 when a � 2 and b � 3

e. (XY)2 when X � 3 and Y � 5

f. X2 � Y2 when X � 3 and Y � 5

g. (X � Y)2 when X � 3 and Y � 5

h. �5 � 4�

i. (�9�)2

j. �
�

�

1

4�

6�
�

1. a. �216 b. 100 c. 200 d. 432 e. 225

f. 34 g. 64 h. 3 i. 9 j. 2

ANSWERS

L E A R N I N G  C H E C K

30991_appA_ptg01_hr_677-698.qxd  9/3/11  1:44 AM  Page 695
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1. 50/(10 � 8) � ?

2. (2 � 3)2 � ?

3. 20/10 � 3 � ?

4. 12 � 4 � 2 � 6/3 � ?

5. 24/(12 � 4) � 2 � (6 � 3) � ?

6. Convert �2
7
0� to a decimal.

7. Express �2
9
5� as a percentage.

8. Convert 0.91 to a fraction.

9. Express 0.0031 as a fraction.

10. Next to each set of fractions, write “True” if they are
equivalent and “False” if they are not:

a. �
10

4
00
� � �

1
2
00
�

b. �
5
6

� � �
5
6
2
2
�

c. �
1
8

� � �
5
7
6
�

11. Perform the following calculations:

a. �
4
5

� � �
2
3

� � ? b. �
7
9

� � �
2
3

� � ?

c. �
3
8

� � �
1
5

� � ? d. �
1
5
8
� � �

1
6

� � ?

12. 2.51 � 0.017 � ?

13. 3.88 � 0.0002 � ?

14. 3.17 � 17.0132 � ?

15. 5.55 � 10.7 � 0.711 � 3.33 � 0.031 � ?

16. 2.04 � 0.2 � ?

17. 0.36 � 0.4 � ?

18. 5 � 3 � 6 � 4 � 3 � ?

19. 9 � (�1) � 17 � 3 � (�4) � 5 � ?

20. 5 � 3 � (�8) � (�1) � (�3) � 4 � 10 � ?

21. 8 � (�3) � ?

22. �22 � (�2) � ?

23. �2(�4) _ (�3) � ?

24. 84 � (�4) � ?

Solve the equations in problems 25�32 for X.

25. X � 7 � �2 26. 9 � X � 3

27. �
X
4

� � 11 28. �3 � �
X
3

�

29. �
X �

5
3

� � 2 30. �
X �

3
1

� � �8

31. 6X � 1 � 11 32. 2X � 3 � �11

33. (�5)2 � ? 34. (�5)3 � ?

35. If a � 4 and b � 3, then a2 � b4 � ?

36. If a � �1 and b � 4, then (a � b)2 � ?

37. If a � �1 and b � 5, then ab2 � ?

38. �
�

18

4�
� � ?

39. ��
2
5
0
�� � ?

SKILLS ASSESSMENT FINAL EXAM

SECTION 1
1. 4 � 8/4 � ? 2. (4 � 8)/4 � ?

3. 4 � 32 � ? 4. (4 � 3)2 � ?

5. 10/5 � 2 � ? 6. 10/(5 � 2) � ?

7. 40 � 10 � 4/2 � ? 8. (5 � 1)2/2 � ?

9. 3 � 6 � 32 � ? 10. 2 � (6 � 3)2 � ?

11. 4 � 3 � 1 � 8 � 2 � ?

12. 4 � (3 � 1 � 8) � 2 � ?

SECTION 2
1. Express �

1
8
4
0� as a decimal.

2. Convert �2
6
5� to a percentage.

3. Convert 18% to a fraction.

4. �
3
5� � �

2
3� � ? 5. �2

5
4� � �

5
6� � ?

6. �1
7
2� � �

5
6� � ? 7. �

5
9� � �

1
3� � ?

8. 6.11 � 0.22 � ?

9. 0.18 � 0.9 � ?

10. 8.742 � 0.76 � ?

11. In a statistics class of 72 students, three-eighths of the
students received a B on the first test. How many Bs
were earned?

12. What is 15% of 64?
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SECTION 3
1. 3 � 1 � 3 � 5 � 2 � 6 � ?

2. �8 � (�6) � ?

3. 2 � (�7) � 3 � (�11) � 20 � ?

4. �8 � 3 � (�1) � 2 � 1 � ?

5. 8(�2) � ? 6. �7(�7) � ?

7. �3(�2)(�5) � ? 8. �3(5)(�3) � ?

9. �24 � (�4) � ? 10. 36 � (�6) � ?

11. �56/7 � ? 12. �7/(�1) � ?

SECTION 4
Solve for X.

1. X � 5 � 12 2. X � 11 � 3

3. 10 � X � 4 4. 4X � 20

5. �
X
2

� � 15 6. 18 � 9X

7. �
X
5

� � 35 8. 2X � 8 � 4

APPENDIX A BASIC MATHEMATICS REVIEW 697

9. �
X �

3
1

� � 6 10. 4X � 3 � �13

11. �
X �

3
3

� � �7 12. 23 � 2X � 5

SECTION 5
1. 53 � ? 2. (�4)3 � ?

3. (�2)5 � ? 4. (�2)6 � ?

5. If a � 4 and b � 2, then ab2 � ?

6. If a � 4 and b � 2, then (a � b)3 � ?

7. If a � 4 and b � 2, then a2 � b2 � ?

8. (11 � 4)2 � ?

9. �72� � ?

10. If a � 36 and b � 64, then �a � b� � ?

11. �
�

25

25�
� � ? � ?

12. If a � �1 and b � 2, then a3b4 � ?

ANSWER KEY Skills Assessment Exams

PREVIEW EXAM

SECTION 1
1. 17 2. 35 3. 6

4. 24 5. 5 6. 2

7. �
1
3

� 8. 8 9. 72

10. 8 11. 24 12. 48

SECTION 2

1. 75% 2.
1
3
0
0
0

�, or �
1
3
0
� 3. 0.3

4. �
1
1
0
3
� 5. 1.625 6. �

2
2
0
�, or �

1
1
0
�

7. �
1
2
9
4
� 8. 1.4 9. �

1
4
5
�

10. 7.5 11. 16 12. 36

SECTION 3
1. 4 2. 8 3. 2

4. 9 5. �12 6. 12

7. �15 8. �24 9. �4

10. 3 11. �2 12. 25

FINAL EXAM

SECTION 1
1. 6 2. 3 3. 36

4. 144 5. 4 6. 1

7. 20 8. 8 9. 9

10. 18 11. 27 12. 80

SECTION 2
1. 0.175 2. 24% 3. �

1
1
0
8
0

�, or �
5
9
0
�

4.
1
6
5
�, or �

2
5

� 5. �
2
2
5
4
� 6. �

4
6
2
0
�, or �

1
7
0
�

7. �
2
9

� 8. 1.3442 9. 0.2

10. 9.502 11. 27 12. 9.6

SECTION 3
1. 8 2. �2 3. �25

4. �13 5. �16 6. 49

7. �30 8. 45 9. 6

10. �6 11. �8 12. 7
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PREVIEW EXAM

SECTION 4
1. X � 7 2. X � 29 3. X � 9

4. X � 4 5. X � 24 6. X � 15

7. X � 80 8. X � �3 9. X � 11

10. X � 25 11. X � 11 12. X � 7

SECTION 5
1. 64 2. 4 3. 54

4. 25 5. 13 6. �27

7. 256 8. 8 9. 12

10. 121 11. 33 12. �9

698 APPENDIX A BASIC MATHEMATICS REVIEW

FINAL EXAM

SECTION 4
1. X � 7 2. X � 14 3. X � 6

4. X � 5 5. X � 30 6. X � 2

7. X � 175 8. X � �2 9. X � 17

10. X � �4 11. X � �24 12. X � 14

SECTION 5
1. 125 2. �64 3. �32

4. 64 5. 16 6. 216

7. 20 8. 225 9. 7

10. 10 11. 5 12. �16

SOLUTIONS TO SELECTED PROBLEMS FOR APPENDIX A Basic Mathematics Review

1. 25 3. 6

5. 21 6. 0.35

7. 36% 9. �
10

3
,0
1
00

�

10. b. False

11. a. �
1
8
5
� b. �

2
1
1
8
� c. �

2
4
3
0
�

12. 0.04267 14. 20.1832

17. 0.9 19. 5

21. �24 22. 11

25. X � 5 28. X � �9

30. X � �25 31. X � 2

34. �125 36. 9

37. �25 39. 2

SUGGESTED REVIEW BOOKS

There are many basic mathematics books available if 
you need a more extensive review than this appendix can
provide. Several are probably available in your library. 
The following books are but a few of the many that you
may find helpful:
Gustafson, R. D., Karr, R., & Massey, M. (2011).

Beginning Algebra (9th ed.). Belmont, CA:
Brooks/Cole.

Lial, M. L., Salzman, S.A., & Hestwood, D.L. (2006).
Basic College Mathematics (7th ed). Reading MA:
Addison-Wesley.

McKeague, C. P. (2010). Basic College Mathematics: A
Text/Workbook. (7th ed.). Belmont, CA: Brooks/Cole.
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699

Statistical TablesAPPENDIX B

TABLE B.1 THE UNIT NORMAL TABLE*

*Column A lists z-score values. A vertical line drawn through a normal distribution at a z-score location divides the distri-
bution into two sections.
Column B identifies the proportion in the larger section, called the body. 
Column C identifies the proportion in the smaller section, called the tail. 
Column D identifies the proportion between the mean and the z-score.
Note: Because the normal distribution is symmetrical, the proportions for negative z-scores are the same as those for 
positive z-scores.

+z0

B

Tail Tail

Body

−z 0

B

Body

C

z0

D

C

0.00 .5000 .5000 .0000
0.01 .5040 .4960 .0040
0.02 .5080 .4920 .0080
0.03 .5120 .4880 .0120
0.04 .5160 .4840 .0160

0.05 .5199 .4801 .0199
0.06 .5239 .4761 .0239
0.07 .5279 .4721 .0279
0.08 .5319 .4681 .0319
0.09 .5359 .4641 .0359

0.10 .5398 .4602 .0398
0.11 .5438 .4562 .0438
0.12 .5478 .4522 .0478
0.13 .5517 .4483 .0517
0.14 .5557 .4443 .0557

0.15 .5596 .4404 .0596
0.16 .5636 .4364 .0636
0.17 .5675 .4325 .0675
0.18 .5714 .4286 .0714
0.19 .5753 .4247 .0753

0.20 .5793 .4207 .0793
0.21 .5832 .4168 .0832
0.22 .5871 .4129 .0871
0.23 .5910 .4090 .0910
0.24 .5948 .4052 .0948

0.25 .5987 .4013 .0987
0.26 .6026 .3974 .1026
0.27 .6064 .3936 .1064
0.28 .6103 .3897 .1103
0.29 .6141 .3859 .1141

0.30 .6179 .3821 .1179
0.31 .6217 .3783 .1217
0.32 .6255 .3745 .1255
0.33 .6293 .3707 .1293
0.34 .6331 .3669 .1331

0.35 .6368 .3632 .1368
0.36 .6406 .3594 .1406
0.37 .6443 .3557 .1443
0.38 .6480 .3520 .1480
0.39 .6517 .3483 .1517

0.40 .6554 .3446 .1554
0.41 .6591 .3409 .1591
0.42 .6628 .3372 .1628
0.43 .6664 .3336 .1664
0.44 .6700 .3300 .1700

0.45 .6736 .3264 .1736
0.46 .6772 .3228 .1772
0.47 .6808 .3192 .1808
0.48 .6844 .3156 .1844
0.49 .6879 .3121 .1879

(A) (B) (C) (D) (A) (B) (C) (D)
Proportion Proportion Proportion Proportion Proportion Proportion

z in Body in Tail Between Mean and z z in Body in Tail Between Mean and z
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0.50 .6915 .3085 .1915
0.51 .6950 .3050 .1950
0.52 .6985 .3015 .1985
0.53 .7019 .2981 .2019
0.54 .7054 .2946 .2054

0.55 .7088 .2912 .2088
0.56 .7123 .2877 .2123
0.57 .7157 .2843 .2157
0.58 .7190 .2810 .2190
0.59 .7224 .2776 .2224

0.60 .7257 .2743 .2257
0.61 .7291 .2709 .2291
0.62 .7324 .2676 .2324
0.63 .7357 .2643 .2357
0.64 .7389 .2611 .2389

0.65 .7422 .2578 .2422
0.66 .7454 .2546 .2454
0.67 .7486 .2514 .2486
0.68 .7517 .2483 .2517
0.69 .7549 .2451 .2549

0.70 .7580 .2420 .2580
0.71 .7611 .2389 .2611
0.72 .7642 .2358 .2642
0.73 .7673 .2327 .2673
0.74 .7704 .2296 .2704

0.75 .7734 .2266 .2734
0.76 .7764 .2236 .2764
0.77 .7794 .2206 .2794
0.78 .7823 .2177 .2823
0.79 .7852 .2148 .2852

0.80 .7881 .2119 .2881
0.81 .7910 .2090 .2910
0.82 .7939 .2061 .2939
0.83 .7967 .2033 .2967
0.84 .7995 .2005 .2995

0.85 .8023 .1977 .3023
0.86 .8051 .1949 .3051
0.87 .8078 .1922 .3078
0.88 .8106 .1894 .3106
0.89 .8133 .1867 .3133

0.90 .8159 .1841 .3159
0.91 .8186 .1814 .3186
0.92 .8212 .1788 .3212
0.93 .8238 .1762 .3238
0.94 .8264 .1736 .3264

0.95 .8289 .1711 .3289
0.96 .8315 .1685 .3315
0.97 .8340 .1660 .3340
0.98 .8365 .1635 .3365
0.99 .8389 .1611 .3389

1.00 .8413 .1587 .3413
1.01 .8438 .1562 .3438
1.02 .8461 .1539 .3461
1.03 .8485 .1515 .3485
1.04 .8508 .1492 .3508

1.05 .8531 .1469 .3531
1.06 .8554 .1446 .3554
1.07 .8577 .1423 .3577
1.08 .8599 .1401 .3599
1.09 .8621 .1379 .3621

1.10 .8643 .1357 .3643
1.11 .8665 .1335 .3665
1.12 .8686 .1314 .3686
1.13 .8708 .1292 .3708
1.14 .8729 .1271 .3729

1.15 .8749 .1251 .3749
1.16 .8770 .1230 .3770
1.17 .8790 .1210 .3790
1.18 .8810 .1190 .3810
1.19 .8830 .1170 .3830

1.20 .8849 .1151 .3849
1.21 .8869 .1131 .3869
1.22 .8888 .1112 .3888
1.23 .8907 .1093 .3907
1.24 .8925 .1075 .3925

1.25 .8944 .1056 .3944
1.26 .8962 .1038 .3962
1.27 .8980 .1020 .3980
1.28 .8997 .1003 .3997
1.29 .9015 .0985 .4015

1.30 .9032 .0968 .4032
1.31 .9049 .0951 .4049
1.32 .9066 .0934 .4066
1.33 .9082 .0918 .4082
1.34 .9099 .0901 .4099

1.35 .9115 .0885 .4115
1.36 .9131 .0869 .4131
1.37 .9147 .0853 .4147
1.38 .9162 .0838 .4162
1.39 .9177 .0823 .4177

1.40 .9192 .0808 .4192
1.41 .9207 .0793 .4207
1.42 .9222 .0778 .4222
1.43 .9236 .0764 .4236
1.44 .9251 .0749 .4251

1.45 .9265 .0735 .4265
1.46 .9279 .0721 .4279
1.47 .9292 .0708 .4292
1.48 .9306 .0694 .4306
1.49 .9319 .0681 .4319

(A) (B) (C) (D) (A) (B) (C) (D)
Proportion Proportion Proportion Proportion Proportion Proportion

z in Body in Tail Between Mean and z z in Body in Tail Between Mean and z
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1.50 .9332 .0668 .4332
1.51 .9345 .0655 .4345
1.52 .9357 .0643 .4357
1.53 .9370 .0630 .4370
1.54 .9382 .0618 .4382

1.55 .9394 .0606 .4394
1.56 .9406 .0594 .4406
1.57 .9418 .0582 .4418
1.58 .9429 .0571 .4429
1.59 .9441 .0559 .4441

1.60 .9452 .0548 .4452
1.61 .9463 .0537 .4463
1.62 .9474 .0526 .4474
1.63 .9484 .0516 .4484
1.64 .9495 .0505 .4495

1.65 .9505 .0495 .4505
1.66 .9515 .0485 .4515
1.67 .9525 .0475 .4525
1.68 .9535 .0465 .4535
1.69 .9545 .0455 .4545

1.70 .9554 .0446 .4554
1.71 .9564 .0436 .4564
1.72 .9573 .0427 .4573
1.73 .9582 .0418 .4582
1.74 .9591 .0409 .4591

1.75 .9599 .0401 .4599
1.76 .9608 .0392 .4608
1.77 .9616 .0384 .4616
1.78 .9625 .0375 .4625
1.79 .9633 .0367 .4633

1.80 .9641 .0359 .4641
1.81 .9649 .0351 .4649
1.82 .9656 .0344 .4656
1.83 .9664 .0336 .4664
1.84 .9671 .0329 .4671

1.85 .9678 .0322 .4678
1.86 .9686 .0314 .4686
1.87 .9693 .0307 .4693
1.88 .9699 .0301 .4699
1.89 .9706 .0294 .4706

1.90 .9713 .0287 .4713
1.91 .9719 .0281 .4719
1.92 .9726 .0274 .4726
1.93 .9732 .0268 .4732
1.94 .9738 .0262 .4738

1.95 .9744 .0256 .4744
1.96 .9750 .0250 .4750
1.97 .9756 .0244 .4756
1.98 .9761 .0239 .4761
1.99 .9767 .0233 .4767

2.00 .9772 .0228 .4772
2.01 .9778 .0222 .4778
2.02 .9783 .0217 .4783
2.03 .9788 .0212 .4788
2.04 .9793 .0207 .4793

2.05 .9798 .0202 .4798
2.06 .9803 .0197 .4803
2.07 .9808 .0192 .4808
2.08 .9812 .0188 .4812
2.09 .9817 .0183 .4817

2.10 .9821 .0179 .4821
2.11 .9826 .0174 .4826
2.12 .9830 .0170 .4830
2.13 .9834 .0166 .4834
2.14 .9838 .0162 .4838

2.15 .9842 .0158 .4842
2.16 .9846 .0154 .4846
2.17 .9850 .0150 .4850
2.18 .9854 .0146 .4854
2.19 .9857 .0143 .4857

2.20 .9861 .0139 .4861
2.21 .9864 .0136 .4864
2.22 .9868 .0132 .4868
2.23 .9871 .0129 .4871
2.24 .9875 .0125 .4875

2.25 .9878 .0122 .4878
2.26 .9881 .0119 .4881
2.27 .9884 .0116 .4884
2.28 .9887 .0113 .4887
2.29 .9890 .0110 .4890

2.30 .9893 .0107 .4893
2.31 .9896 .0104 .4896
2.32 .9898 .0102 .4898
2.33 .9901 .0099 .4901
2.34 .9904 .0096 .4904

2.35 .9906 .0094 .4906
2.36 .9909 .0091 .4909
2.37 .9911 .0089 .4911
2.38 .9913 .0087 .4913
2.39 .9916 .0084 .4916

2.40 .9918 .0082 .4918
2.41 .9920 .0080 .4920
2.42 .9922 .0078 .4922
2.43 .9925 .0075 .4925
2.44 .9927 .0073 .4927

2.45 .9929 .0071 .4929
2.46 .9931 .0069 .4931
2.47 .9932 .0068 .4932
2.48 .9934 .0066 .4934
2.49 .9936 .0064 .4936

(A) (B) (C) (D) (A) (B) (C) (D)
Proportion Proportion Proportion Proportion Proportion Proportion

z in Body in Tail Between Mean and z z in Body in Tail Between Mean and z
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2.50 .9938 .0062 .4938
2.51 .9940 .0060 .4940
2.52 .9941 .0059 .4941
2.53 .9943 .0057 .4943
2.54 .9945 .0055 .4945

2.55 .9946 .0054 .4946
2.56 .9948 .0052 .4948
2.57 .9949 .0051 .4949
2.58 .9951 .0049 .4951
2.59 .9952 .0048 .4952

2.60 .9953 .0047 .4953
2.61 .9955 .0045 .4955
2.62 .9956 .0044 .4956
2.63 .9957 .0043 .4957
2.64 .9959 .0041 .4959

2.65 .9960 .0040 .4960
2.66 .9961 .0039 .4961
2.67 .9962 .0038 .4962
2.68 .9963 .0037 .4963
2.69 .9964 .0036 .4964

2.70 .9965 .0035 .4965
2.71 .9966 .0034 .4966
2.72 .9967 .0033 .4967
2.73 .9968 .0032 .4968
2.74 .9969 .0031 .4969

2.75 .9970 .0030 .4970
2.76 .9971 .0029 .4971
2.77 .9972 .0028 .4972
2.78 .9973 .0027 .4973
2.79 .9974 .0026 .4974

2.80 .9974 .0026 .4974
2.81 .9975 .0025 .4975
2.82 .9976 .0024 .4976
2.83 .9977 .0023 .4977
2.84 .9977 .0023 .4977

2.85 .9978 .0022 .4978
2.86 .9979 .0021 .4979
2.87 .9979 .0021 .4979
2.88 .9980 .0020 .4980
2.89 .9981 .0019 .4981

2.90 .9981 .0019 .4981
2.91 .9982 .0018 .4982
2.92 .9982 .0018 .4982
2.93 .9983 .0017 .4983
2.94 .9984 .0016 .4984

2.95 .9984 .0016 .4984
2.96 .9985 .0015 .4985
2.97 .9985 .0015 .4985
2.98 .9986 .0014 .4986
2.99 .9986 .0014 .4986

3.00 .9987 .0013 .4987
3.01 .9987 .0013 .4987
3.02 .9987 .0013 .4987
3.03 .9988 .0012 .4988
3.04 .9988 .0012 .4988

3.05 .9989 .0011 .4989
3.06 .9989 .0011 .4989
3.07 .9989 .0011 .4989
3.08 .9990 .0010 .4990
3.09 .9990 .0010 .4990

3.10 .9990 .0010 .4990
3.11 .9991 .0009 .4991
3.12 .9991 .0009 .4991
3.13 .9991 .0009 .4991
3.14 .9992 .0008 .4992

3.15 .9992 .0008 .4992
3.16 .9992 .0008 .4992
3.17 .9992 .0008 .4992
3.18 .9993 .0007 .4993
3.19 .9993 .0007 .4993

3.20 .9993 .0007 .4993
3.21 .9993 .0007 .4993
3.22 .9994 .0006 .4994
3.23 .9994 .0006 .4994
3.24 .9994 .0006 .4994

3.30 .9995 .0005 .4995
3.40 .9997 .0003 .4997
3.50 .9998 .0002 .4998
3.60 .9998 .0002 .4998
3.70 .9999 .0001 .4999

3.80 .99993 .00007 .49993
3.90 .99995 .00005 .49995
4.00 .99997 .00003 .49997

(A) (B) (C) (D) (A) (B) (C) (D)
Proportion Proportion Proportion Proportion Proportion Proportion

z in Body in Tail Between Mean and z z in Body in Tail Between Mean and z
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TABLE B.2 THE t DISTRIBUTION

Table entries are values of t corresponding to proportions in one tail or in two tails combined.

One tail
(either right or left)

Two tails
combined

Proportion in One Tail
0.25 0.10 0.05 0.025 0.01 0.005

Proportion in Two Tails Combined
df 0.50 0.20 0.10 0.05 0.02 0.01

1 1.000 3.078 6.314 12.706 31.821 63.657
2 0.816 1.886 2.920 4.303 6.965 9.925
3 0.765 1.638 2.353 3.182 4.541 5.841
4 0.741 1.533 2.132 2.776 3.747 4.604
5 0.727 1.476 2.015 2.571 3.365 4.032
6 0.718 1.440 1.943 2.447 3.143 3.707
7 0.711 1.415 1.895 2.365 2.998 3.499
8 0.706 1.397 1.860 2.306 2.896 3.355
9 0.703 1.383 1.833 2.262 2.821 3.250

10 0.700 1.372 1.812 2.228 2.764 3.169
11 0.697 1.363 1.796 2.201 2.718 3.106
12 0.695 1.356 1.782 2.179 2.681 3.055
13 0.694 1.350 1.771 2.160 2.650 3.012
14 0.692 1.345 1.761 2.145 2.624 2.977
15 0.691 1.341 1.753 2.131 2.602 2.947
16 0.690 1.337 1.746 2.120 2.583 2.921
17 0.689 1.333 1.740 2.110 2.567 2.898
18 0.688 1.330 1.734 2.101 2.552 2.878
19 0.688 1.328 1.729 2.093 2.539 2.861
20 0.687 1.325 1.725 2.086 2.528 2.845
21 0.686 1.323 1.721 2.080 2.518 2.831
22 0.686 1.321 1.717 2.074 2.508 2.819
23 0.685 1.319 1.714 2.069 2.500 2.807
24 0.685 1.318 1.711 2.064 2.492 2.797
25 0.684 1.316 1.708 2.060 2.485 2.787
26 0.684 1.315 1.706 2.056 2.479 2.779
27 0.684 1.314 1.703 2.052 2.473 2.771
28 0.683 1.313 1.701 2.048 2.467 2.763
29 0.683 1.311 1.699 2.045 2.462 2.756
30 0.683 1.310 1.697 2.042 2.457 2.750
40 0.681 1.303 1.684 2.021 2.423 2.704
60 0.679 1.296 1.671 2.000 2.390 2.660

120 0.677 1.289 1.658 1.980 2.358 2.617
� 0.674 1.282 1.645 1.960 2.326 2.576

Table III of R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research, 6th ed. London: Longman Group Ltd.,
1974 (previously published by Oliver and Boyd Ltd., Edinburgh). Copyright ©1963 R. A. Fisher and F. Yates. Adapted and reprinted with permission
of Pearson Education Limited.
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TABLE B.3 CRITICAL VALUES FOR THE F -MAX STATISTIC*

*The critical values for � = .05 are in lightface type, and for � = .01, they are in boldface type.

k � Number of Samples
n � 1 2 3 4 5 6 7 8 9 10 11 12

4 9.60 15.5 20.6 25.2 29.5 33.6 37.5 41.4 44.6 48.0 51.4
23.2 37. 49. 59. 69. 79. 89. 97. 106. 113. 120.

5 7.15 10.8 13.7 16.3 18.7 20.8 22.9 24.7 26.5 28.2 29.9
14.9 22. 28. 33. 38. 42. 46. 50. 54. 57. 60.

6 5.82 8.38 10.4 12.1 13.7 15.0 16.3 17.5 18.6 19.7 20.7
11.1 15.5 19.1 22. 25. 27. 30. 32. 34. 36. 37.

7 4.99 6.94 8.44 9.70 10.8 11.8 12.7 13.5 14.3 15.1 15.8
8.89 12.1 14.5 16.5 18.4 20. 22. 23. 24. 26. 27.

8 4.43 6.00 7.18 8.12 9.03 9.78 10.5 11.1 11.7 12.2 12.7
7.50 9.9 11.7 13.2 14.5 15.8 16.9 17.9 18.9 19.8 21.

9 4.03 5.34 6.31 7.11 7.80 8.41 8.95 9.45 9.91 10.3 10.7
6.54 8.5 9.9 11.1 12.1 13.1 13.9 14.7 15.3 16.0 16.6

10 3.72 4.85 5.67 6.34 6.92 7.42 7.87 8.28 8.66 9.01 9.34
5.85 7.4 8.6 9.6 10.4 11.1 11.8 12.4 12.9 13.4 13.9

12 3.28 4.16 4.79 5.30 5.72 6.09 6.42 6.72 7.00 7.25 7.48
4.91 6.1 6.9 7.6 8.2 8.7 9.1 9.5 9.9 10.2 10.6

15 2.86 3.54 4.01 4.37 4.68 4.95 5.19 5.40 5.59 5.77 5.93
4.07 4.9 5.5 6.0 6.4 6.7 7.1 7.3 7.5 7.8 8.0

20 2.46 2.95 3.29 3.54 3.76 3.94 4.10 4.24 4.37 4.49 4.59
3.32 3.8 4.3 4.6 4.9 5.1 5.3 5.5 5.6 5.8 5.9

30 2.07 2.40 2.61 2.78 2.91 3.02 3.12 3.21 3.29 3.36 3.39
2.63 3.0 3.3 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2

60 1.67 1.85 1.96 2.04 2.11 2.17 2.22 2.26 2.30 2.33 2.36
1.96 2.2 2.3 2.4 2.4 2.5 2.5 2.6 2.6 2.7 2.7

Table 31 of E. Pearson and H.O. Hartley, Biometrika Tables for Statisticians, 2nd ed. New York: Cambridge University Press, 1958. Adapted and
reprinted with permission of the Biometrika trustees.
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Degrees of Degrees of Freedom: Numerator
Freedom:

Denominator 1 2 3 4 5 6 7 8 9 10 11 12 14 16 20

1 161 200 216 225 230 234 237 239 241 242 243 244 245 246 248
4052 4999 5403 5625 5764 5859 5928 5981 6022 6056 6082 6106 6142 6169 6208

2 18.51 19.00 19.16 19.25 19.30 19.33 19.36 19.37 19.38 19.39 19.40 19.41 19.42 19.43 19.44
98.49 99.00 99.17 99.25 99.30 99.33 99.34 99.36 99.38 99.40 99.41 99.42 99.43 99.44 99.45

3 10.13 9.55 9.28 9.12 9.01 8.94 8.88 8.84 8.81 8.78 8.76 8.74 8.71 8.69 8.66
34.12 30.92 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 27.13 27.05 26.92 26.83 26.69

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.93 5.91 5.87 5.84 5.80
21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.54 14.45 14.37 14.24 14.15 14.02

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.78 4.74 4.70 4.68 4.64 4.60 4.56
16.26 13.27 12.06 11.39 10.97 10.67 10.45 10.27 10.15 10.05 9.96 9.89 9.77 9.68 9.55

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 3.96 3.92 3.87
13.74 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79 7.72 7.60 7.52 7.39

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.63 3.60 3.57 3.52 3.49 3.44
12.25 9.55 8.45 7.85 7.46 7.19 7.00 6.84 6.71 6.62 6.54 6.47 6.35 6.27 6.15

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.34 3.31 3.28 3.23 3.20 3.15
11.26 8.65 7.59 7.01 6.63 6.37 6.19 6.03 5.91 5.82 5.74 5.67 5.56 5.48 5.36

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.13 3.10 3.07 3.02 2.98 2.93
10.56 8.02 6.99 6.42 6.06 5.80 5.62 5.47 5.35 5.26 5.18 5.11 5.00 4.92 4.80

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.97 2.94 2.91 2.86 2.82 2.77
10.04 7.56 6.55 5.99 5.64 5.39 5.21 5.06 4.95 4.85 4.78 4.71 4.60 4.52 4.41

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.86 2.82 2.79 2.74 2.70 2.65
9.65 7.20 6.22 5.67 5.32 5.07 4.88 4.74 4.63 4.54 4.46 4.40 4.29 4.21 4.10

12 4.75 3.88 3.49 3.26 3.11 3.00 2.92 2.85 2.80 2.76 2.72 2.69 2.64 2.60 2.54
9.33 6.93 5.95 5.41 5.06 4.82 4.65 4.50 4.39 4.30 4.22 4.16 4.05 3.98 3.86

13 4.67 3.80 3.41 3.18 3.02 2.92 2.84 2.77 2.72 2.67 2.63 2.60 2.55 2.51 2.46
9.07 6.70 5.74 5.20 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96 3.85 3.78 3.67

14 4.60 3.74 3.34 3.11 2.96 2.85 2.77 2.70 2.65 2.60 2.56 2.53 2.48 2.44 2.39
8.86 6.51 5.56 5.03 4.69 4.46 4.28 4.14 4.03 3.94 3.86 3.80 3.70 3.62 3.51

15 4.54 3.68 3.29 3.06 2.90 2.79 2.70 2.64 2.59 2.55 2.51 2.48 2.43 2.39 2.33
8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67 3.56 3.48 3.36

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.45 2.42 2.37 2.33 2.28
8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.61 3.55 3.45 3.37 3.25

TABLE B.4 THE F DISTRIBUTION*

*Table entries in lightface type are critical values for the .05 level of significance. 
Boldface type values are for the .01 level of significance.

Critical
F
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17 4.45 3.59 3.20 2.96 2.81 2.70 2.62 2.55 2.50 2.45 2.41 2.38 2.33 2.29 2.23
8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52 3.45 3.35 3.27 3.16

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34 2.29 2.25 2.19
8.28 6.01 5.09 4.58 4.25 4.01 3.85 3.71 3.60 3.51 3.44 3.37 3.27 3.19 3.07

19 4.38 3.52 3.13 2.90 2.74 2.63 2.55 2.48 2.43 2.38 2.34 2.31 2.26 2.21 2.15
8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36 3.30 3.19 3.12 3.00

20 4.35 3.49 3.10 2.87 2.71 2.60 2.52 2.45 2.40 2.35 2.31 2.28 2.23 2.18 2.12
8.10 5.85 4.94 4.43 4.10 3.87 3.71 3.56 3.45 3.37 3.30 3.23 3.13 3.05 2.94

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.28 2.25 2.20 2.15 2.09
8.02 5.78 4.87 4.37 4.04 3.81 3.65 3.51 3.40 3.31 3.24 3.17 3.07 2.99 2.88

22 4.30 3.44 3.05 2.82 2.66 2.55 2.47 2.40 2.35 2.30 2.26 2.23 2.18 2.13 2.07
7.94 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18 3.12 3.02 2.94 2.83

23 4.28 3.42 3.03 2.80 2.64 2.53 2.45 2.38 2.32 2.28 2.24 2.20 2.14 2.10 2.04
7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.14 3.07 2.97 2.89 2.78

24 4.26 3.40 3.01 2.78 2.62 2.51 2.43 2.36 2.30 2.26 2.22 2.18 2.13 2.09 2.02
7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.25 3.17 3.09 3.03 2.93 2.85 2.74

25 4.24 3.38 2.99 2.76 2.60 2.49 2.41 2.34 2.28 2.24 2.20 2.16 2.11 2.06 2.00
7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.21 3.13 3.05 2.99 2.89 2.81 2.70

26 4.22 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15 2.10 2.05 1.99
7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.17 3.09 3.02 2.96 2.86 2.77 2.66

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.30 2.25 2.20 2.16 2.13 2.08 2.03 1.97
7.68 5.49 4.60 4.11 3.79 3.56 3.39 3.26 3.14 3.06 2.98 2.93 2.83 2.74 2.63

28 4.20 3.34 2.95 2.71 2.56 2.44 2.36 2.29 2.24 2.19 2.15 2.12 2.06 2.02 1.96
7.64 5.45 4.57 4.07 3.76 3.53 3.36 3.23 3.11 3.03 2.95 2.90 2.80 2.71 2.60

29 4.18 3.33 2.93 2.70 2.54 2.43 2.35 2.28 2.22 2.18 2.14 2.10 2.05 2.00 1.94
7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.08 3.00 2.92 2.87 2.77 2.68 2.57

30 4.17 3.32 2.92 2.69 2.53 2.42 2.34 2.27 2.21 2.16 2.12 2.09 2.04 1.99 1.93
7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.06 2.98 2.90 2.84 2.74 2.66 2.55

32 4.15 3.30 2.90 2.67 2.51 2.40 2.32 2.25 2.19 2.14 2.10 2.07 2.02 1.97 1.91
7.50 5.34 4.46 3.97 3.66 3.42 3.25 3.12 3.01 2.94 2.86 2.80 2.70 2.62 2.51

34 4.13 3.28 2.88 2.65 2.49 2.38 2.30 2.23 2.17 2.12 2.08 2.05 2.00 1.95 1.89
7.44 5.29 4.42 3.93 3.61 3.38 3.21 3.08 2.97 2.89 2.82 2.76 2.66 2.58 2.47

36 4.11 3.26 2.86 2.63 2.48 2.36 2.28 2.21 2.15 2.10 2.06 2.03 1.98 1.93 1.87
7.39 5.25 4.38 3.89 3.58 3.35 3.18 3.04 2.94 2.86 2.78 2.72 2.62 2.54 2.43

38 4.10 3.25 2.85 2.62 2.46 2.35 2.26 2.19 2.14 2.09 2.05 2.02 1.96 1.92 1.85
7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02 2.91 2.82 2.75 2.69 2.59 2.51 2.40

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.07 2.04 2.00 1.95 1.90 1.84
7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.88 2.80 2.73 2.66 2.56 2.49 2.37

TABLE B.4 (continued)

Degrees of Degrees of Freedom: Numerator
Freedom:

Denominator 1 2 3 4 5 6 7 8 9 10 11 12 14 16 20
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42 4.07 3.22 2.83 2.59 2.44 2.32 2.24 2.17 2.11 2.06 2.02 1.99 1.94 1.89 1.82
7.27 5.15 4.29 3.80 3.49 3.26 3.10 2.96 2.86 2.77 2.70 2.64 2.54 2.46 2.35

44 4.06 3.21 2.82 2.58 2.43 2.31 2.23 2.16 2.10 2.05 2.01 1.98 1.92 1.88 1.81
7.24 5.12 4.26 3.78 3.46 3.24 3.07 2.94 2.84 2.75 2.68 2.62 2.52 2.44 2.32

46 4.05 3.20 2.81 2.57 2.42 2.30 2.22 2.14 2.09 2.04 2.00 1.97 1.91 1.87 1.80
7.21 5.10 4.24 3.76 3.44 3.22 3.05 2.92 2.82 2.73 2.66 2.60 2.50 2.42 2.30

48 4.04 3.19 2.80 2.56 2.41 2.30 2.21 2.14 2.08 2.03 1.99 1.96 1.90 1.86 1.79
7.19 5.08 4.22 3.74 3.42 3.20 3.04 2.90 2.80 2.71 2.64 2.58 2.48 2.40 2.28

50 4.03 3.18 2.79 2.56 2.40 2.29 2.20 2.13 2.07 2.02 1.98 1.95 1.90 1.85 1.78
7.17 5.06 4.20 3.72 3.41 3.18 3.02 2.88 2.78 2.70 2.62 2.56 2.46 2.39 2.26

55 4.02 3.17 2.78 2.54 2.38 2.27 2.18 2.11 2.05 2.00 1.97 1.93 1.88 1.83 1.76
7.12 5.01 4.16 3.68 3.37 3.15 2.98 2.85 2.75 2.66 2.59 2.53 2.43 2.35 2.23

60 4.00 3.15 2.76 2.52 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92 1.86 1.81 1.75
7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50 2.40 2.32 2.20

65 3.99 3.14 2.75 2.51 2.36 2.24 2.15 2.08 2.02 1.98 1.94 1.90 1.85 1.80 1.73
7.04 4.95 4.10 3.62 3.31 3.09 2.93 2.79 2.70 2.61 2.54 2.47 2.37 2.30 2.18

70 3.98 3.13 2.74 2.50 2.35 2.23 2.14 2.07 2.01 1.97 1.93 1.89 1.84 1.79 1.72
7.01 4.92 4.08 3.60 3.29 3.07 2.91 2.77 2.67 2.59 2.51 2.45 2.35 2.28 2.15

80 3.96 3.11 2.72 2.48 2.33 2.21 2.12 2.05 1.99 1.95 1.91 1.88 1.82 1.77 1.70
6.96 4.88 4.04 3.56 3.25 3.04 2.87 2.74 2.64 2.55 2.48 2.41 2.32 2.24 2.11

100 3.94 3.09 2.70 2.46 2.30 2.19 2.10 2.03 1.97 1.92 1.88 1.85 1.79 1.75 1.68
6.90 4.82 3.98 3.51 3.20 2.99 2.82 2.69 2.59 2.51 2.43 2.36 2.26 2.19 2.06

125 3.92 3.07 2.68 2.44 2.29 2.17 2.08 2.01 1.95 1.90 1.86 1.83 1.77 1.72 1.65
6.84 4.78 3.94 3.47 3.17 2.95 2.79 2.65 2.56 2.47 2.40 2.33 2.23 2.15 2.03

150 3.91 3.06 2.67 2.43 2.27 2.16 2.07 2.00 1.94 1.89 1.85 1.82 1.76 1.71 1.64
6.81 4.75 3.91 3.44 3.14 2.92 2.76 2.62 2.53 2.44 2.37 2.30 2.20 2.12 2.00

200 3.89 3.04 2.65 2.41 2.26 2.14 2.05 1.98 1.92 1.87 1.83 1.80 1.74 1.69 1.62
6.76 4.71 3.88 3.41 3.11 2.90 2.73 2.60 2.50 2.41 2.34 2.28 2.17 2.09 1.97

400 3.86 3.02 2.62 2.39 2.23 2.12 2.03 1.96 1.90 1.85 1.81 1.78 1.72 1.67 1.60
6.70 4.66 3.83 3.36 3.06 2.85 2.69 2.55 2.46 2.37 2.29 2.23 2.12 2.04 1.92

1000 3.85 3.00 2.61 2.38 2.22 2.10 2.02 1.95 1.89 1.84 1.80 1.76 1.70 1.65 1.58
6.66 4.62 3.80 3.34 3.04 2.82 2.66 2.53 2.43 2.34 2.26 2.20 2.09 2.01 1.89

� 3.84 2.99 2.60 2.37 2.21 2.09 2.01 1.94 1.88 1.83 1.79 1.75 1.69 1.64 1.57
6.64 4.60 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.24 2.18 2.07 1.99 1.87

Table A14 of Statistical Methods, 7th ed. by George W. Snedecor and William G. Cochran. Copyright © 1980 by the Iowa State University Press,
2121 South State Avenue, Ames, Iowa 50010. Reprinted with permission of the Iowa State University Press.

TABLE B.4 (continued)

Degrees of Degrees of Freedom: Numerator
Freedom:

Denominator 1 2 3 4 5 6 7 8 9 10 11 12 14 16 20
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TABLE B.5 THE STUDENTIZED RANGE STATISTIC (q)*

*The critical values for q corresponding to � � .05 (lightface type) and � � .01 (boldface type).

k � Number of Treatments

df for
Error Term 2 3 4 5 6 7 8 9 10 11 12

5 3.64 4.60 5.22 5.67 6.03 6.33 6.58 6.80 6.99 7.17 7.32
5.70 6.98 7.80 8.42 8.91 9.32 9.67 9.97 10.24 10.48 10.70

6 3.46 4.34 4.90 5.30 5.63 5.90 6.12 6.32 6.49 6.65 6.79
5.24 6.33 7.03 7.56 7.97 8.32 8.61 8.87 9.10 9.30 9.48

7 3.34 4.16 4.68 5.06 5.36 5.61 5.82 6.00 6.16 6.30 6.43
4.95 5.92 6.54 7.01 7.37 7.68 7.94 8.17 8.37 8.55 8.71

8 3.26 4.04 4.53 4.89 5.17 5.40 5.60 5.77 5.92 6.05 6.18
4.75 5.64 6.20 6.62 6.96 7.24 7.47 7.68 7.86 8.03 8.18

9 3.20 3.95 4.41 4.76 5.02 5.24 5.43 5.59 5.74 5.87 5.98
4.60 5.43 5.96 6.35 6.66 6.91 7.13 7.33 7.49 7.65 7.78

10 3.15 3.88 4.33 4.65 4.91 5.12 5.30 5.46 5.60 5.72 5.83
4.48 5.27 5.77 6.14 6.43 6.67 6.87 7.05 7.21 7.36 7.49

11 3.11 3.82 4.26 4.57 4.82 5.03 5.20 5.35 5.49 5.61 5.71
4.39 5.15 5.62 5.97 6.25 6.48 6.67 6.84 6.99 7.13 7.25

12 3.08 3.77 4.20 4.51 4.75 4.95 5.12 5.27 5.39 5.51 5.61
4.32 5.05 5.50 5.84 6.10 6.32 6.51 6.67 6.81 6.94 7.06

13 3.06 3.73 4.15 4.45 4.69 4.88 5.05 5.19 5.32 5.43 5.53
4.26 4.96 5.40 5.73 5.98 6.19 6.37 6.53 6.67 6.79 6.90

14 3.03 3.70 4.11 4.41 4.64 4.83 4.99 5.13 5.25 5.36 5.46
4.21 4.89 5.32 5.63 5.88 6.08 6.26 6.41 6.54 6.66 6.77

15 3.01 3.67 4.08 4.37 4.59 4.78 4.94 5.08 5.20 5.31 5.40
4.17 4.84 5.25 5.56 5.80 5.99 6.16 6.31 6.44 6.55 6.66

16 3.00 3.65 4.05 4.33 4.56 4.74 4.90 5.03 5.15 5.26 5.35
4.13 4.79 5.19 5.49 5.72 5.92 6.08 6.22 6.35 6.46 6.56

17 2.98 3.63 4.02 4.30 4.52 4.70 4.86 4.99 5.11 5.21 5.31
4.10 4.74 5.14 5.43 5.66 5.85 6.01 6.15 6.27 6.38 6.48

18 2.97 3.61 4.00 4.28 4.49 4.67 4.82 4.96 5.07 5.17 5.27
4.07 4.70 5.09 5.38 5.60 5.79 5.94 6.08 6.20 6.31 6.41

19 2.96 3.59 3.98 4.25 4.47 4.65 4.79 4.92 5.04 5.14 5.23
4.05 4.67 5.05 5.33 5.55 5.73 5.89 6.02 6.14 6.25 6.34

20 2.95 3.58 3.96 4.23 4.45 4.62 4.77 4.90 5.01 5.11 5.20
4.02 4.64 5.02 5.29 5.51 5.69 5.84 5.97 6.09 6.19 6.28

24 2.92 3.53 3.90 4.17 4.37 4.54 4.68 4.81 4.92 5.01 5.10
3.96 4.55 4.91 5.17 5.37 5.54 5.69 5.81 5.92 6.02 6.11

30 2.89 3.49 3.85 4.10 4.30 4.46 4.60 4.72 4.82 4.92 5.00
3.89 4.45 4.80 5.05 5.24 5.40 5.54 5.65 5.76 5.85 5.93

40 2.86 3.44 3.79 4.04 4.23 4.39 4.52 4.63 4.73 4.82 4.90
3.82 4.37 4.70 4.93 5.11 5.26 5.39 5.50 5.60 5.69 5.76

60 2.83 3.40 3.74 3.98 4.16 4.31 4.44 4.55 4.65 4.73 4.81
3.76 4.28 4.59 4.82 4.99 5.13 5.25 5.36 5.45 5.53 5.60

120 2.80 3.36 3.68 3.92 4.10 4.24 4.36 4.47 4.56 4.64 4.71
3.70 4.20 4.50 4.71 4.87 5.01 5.12 5.21 5.30 5.37 5.44

� 2.77 3.31 3.63 3.86 4.03 4.17 4.28 4.39 4.47 4.55 4.62
3.64 4.12 4.40 4.60 4.76 4.88 4.99 5.08 5.16 5.23 5.29

Table 29 of E. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, 2nd ed. New York: Cambridge University Press, 1958. Adapted and
reprinted with permission of the Biometrika trustees.
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TABLE B.6 CRITICAL VALUES FOR THE PEARSON CORRELATION*

*To be significant, the sample correlation, r, must be greater than or equal to the critical value in the table.

Level of Significance for
One-Tailed Test

.05 .025 .01 .005

Level of Significance for
Two-Tailed Test

df � n � 2 .10 .05 .02 .01

1 .988 .997 .9995 .9999
2 .900 .950 .980 .990
3 .805 .878 .934 .959
4 .729 .811 .882 .917
5 .669 .754 .833 .874

6 .622 .707 .789 .834
7 .582 .666 .750 .798
8 .549 .632 .716 .765
9 .521 .602 .685 .735

10 .497 .576 .658 .708

11 .476 .553 .634 .684
12 .458 .532 .612 .661
13 .441 .514 .592 .641
14 .426 .497 .574 .623
15 .412 .482 .558 .606

16 .400 .468 .542 .590
17 .389 .456 .528 .575
18 .378 .444 .516 .561
19 .369 .433 .503 .549
20 .360 .423 .492 .537

21 .352 .413 .482 .526
22 .344 .404 .472 .515
23 .337 .396 .462 .505
24 .330 .388 .453 .496
25 .323 .381 .445 .487

26 .317 .374 .437 .479
27 .311 .367 .430 .471
28 .306 .361 .423 .463
29 .301 .355 .416 .456
30 .296 .349 .409 .449

35 .275 .325 .381 .418
40 .257 .304 .358 .393
45 .243 .288 .338 .372
50 .231 .273 .322 .354
60 .211 .250 .295 .325

70 .195 .232 .274 .302
80 .183 .217 .256 .283
90 .173 .205 .242 .267

100 .164 .195 .230 .254

Table VI of R. A. Fisher and F. Yates, Statistical Tables for Biological,
Agricultural and Medical Research, 6th ed. London: Longman Group Ltd.,
1974 (previously published by Oliver and Boyd Ltd., Edinburgh). Copyright
©1963 R. A. Fisher and F. Yates. Adapted and reprinted with permission of
Pearson Education Limited.

30991_appB_ptg01_hr_699-714.qxd  9/3/11  1:48 AM  Page 709



710 APPENDIX B STATISTICAL TABLES

TABLE B.7 CRITICAL VALUES FOR THE SPEARMAN CORRELATION*

*To be significant, the sample correlation, rs, must be greater than or equal to the critical value in the table.

Level of Significance for
One-Tailed Test

.05 .025 .01 .005

Level of Significance for
Two-Tailed Test

n .10 .05 .02 .01

4 1.000
5 0.900 1.000 1.000

6 0.829 0.886 0.943 1.000
7 0.714 0.786 0.893 0.929
8 0.643 0.738 0.833 0.881
9 0.600 0.700 0.783 0.833

10 0.564 0.648 0.745 0.794

11 0.536 0.618 0.709 0.755
12 0.503 0.587 0.671 0.727
13 0.484 0.560 0.648 0.703
14 0.464 0.538 0.622 0.675
15 0.443 0.521 0.604 0.654

16 0.429 0.503 0.582 0.635
17 0.414 0.485 0.566 0.615
18 0.401 0.472 0.550 0.600
19 0.391 0.460 0.535 0.584
20 0.380 0.447 0.520 0.570

21 0.370 0.435 0.508 0.556
22 0.361 0.425 0.496 0.544
23 0.353 0.415 0.486 0.532
24 0.344 0.406 0.476 0.521
25 0.337 0.398 0.466 0.511

26 0.331 0.390 0.457 0.501
27 0.324 0.382 0.448 0.491
28 0.317 0.375 0.440 0.483
29 0.312 0.368 0.433 0.475
30 0.306 0.362 0.425 0.467

35 0.283 0.335 0.394 0.433
40 0.264 0.313 0.368 0.405
45 0.248 0.294 0.347 0.382
50 0.235 0.279 0.329 0.363
60 0.214 0.255 0.300 0.331

70 0.190 0.235 0.278 0.307
80 0.185 0.220 0.260 0.287
90 0.174 0.207 0.245 0.271

100 0.165 0.197 0.233 0.257

Zar, J. H. (1972). Significance testing of the Spearman rank correlation
coefficient. Journal of the American Statistical Association, 67, 578–580.
Reprinted with permission from the Journal of the American Statistical
Association. Copyright © 1972 by the American Statistical Association. All
rights reserved.
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TABLE B.8 THE CHI-SQUARE DISTRIBUTION*

*The table entries are critical values of �2.

Proportion in Critical Region
df 0.10 0.05 0.025 0.01 0.005

1 2.71 3.84 5.02 6.63 7.88
2 4.61 5.99 7.38 9.21 10.60
3 6.25 7.81 9.35 11.34 12.84
4 7.78 9.49 11.14 13.28 14.86
5 9.24 11.07 12.83 15.09 16.75
6 10.64 12.59 14.45 16.81 18.55
7 12.02 14.07 16.01 18.48 20.28
8 13.36 15.51 17.53 20.09 21.96
9 14.68 16.92 19.02 21.67 23.59

10 15.99 18.31 20.48 23.21 25.19

11 17.28 19.68 21.92 24.72 26.76
12 18.55 21.03 23.34 26.22 28.30
13 19.81 22.36 24.74 27.69 29.82
14 21.06 23.68 26.12 29.14 31.32
15 22.31 25.00 27.49 30.58 32.80
16 23.54 26.30 28.85 32.00 34.27
17 24.77 27.59 30.19 33.41 35.72
18 25.99 28.87 31.53 34.81 37.16
19 27.20 30.14 32.85 36.19 38.58
20 28.41 31.41 34.17 37.57 40.00

21 29.62 32.67 35.48 38.93 41.40
22 30.81 33.92 36.78 40.29 42.80
23 32.01 35.17 38.08 41.64 44.18
24 33.20 36.42 39.36 42.98 45.56
25 34.38 37.65 40.65 44.31 46.93
26 35.56 38.89 41.92 45.64 48.29
27 36.74 40.11 43.19 46.96 49.64
28 37.92 41.34 44.46 48.28 50.99
29 39.09 42.56 45.72 49.59 52.34
30 40.26 43.77 46.98 50.89 53.67

40 51.81 55.76 59.34 63.69 66.77
50 63.17 67.50 71.42 76.15 79.49
60 74.40 79.08 83.30 88.38 91.95
70 85.53 90.53 95.02 100.42 104.22
80 96.58 101.88 106.63 112.33 116.32
90 107.56 113.14 118.14 124.12 128.30

100 118.50 124.34 129.56 135.81 140.17

Table 8 of E. Pearson and H. O. Hartley, Biometrika Tables for Statisticians, 3rd ed. New York:
Cambridge University Press, 1966. Adapted and reprinted with permission of the Biometrika
trustees.

Critical
�2
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TABLE B.9A CRITICAL VALUES OF THE MANN-WHITNEY U FOR � � .05*

*Critical values are provided for a one-tailed test at � � .05 (lightface type) and for a two-tailed test at � � .05 (boldface
type). To be significant for any given nA and nB, the obtained U must be equal to or less than the critical value in the 
table. Dashes (—) in the body of the table indicate that no decision is possible at the stated level of significance and values
of nA and nB.

nA
nB 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 — — — — — — — — — — — — — — — — — — 0 0
— — — — — — — — — — — — — — — — — — — —

2 — — — — 0 0 0 1 1 1 1 2 2 2 3 3 3 4 4 4
— — — — — — — 0 0 0 0 1 1 1 1 1 2 2 2 2

3 — — 0 0 1 2 2 3 3 4 5 5 6 7 7 8 9 9 10 11
— — — — 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8

4 — — 0 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18
— — — 0 1 2 3 4 4 5 6 7 8 9 10 11 11 12 13 13

5 — 0 1 2 4 5 6 8 9 11 12 13 15 16 18 19 20 22 23 25
— — 0 1 2 3 5 6 7 8 9 11 12 13 14 15 17 18 19 20

6 — 0 2 3 5 7 8 10 12 14 16 17 19 21 23 25 26 28 30 32
— — 1 2 3 5 6 8 10 11 13 14 16 17 19 21 22 24 25 27

7 — 0 2 4 6 8 11 13 15 17 19 21 24 26 28 30 33 35 37 39
— — 1 3 5 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

8 — 1 3 5 8 10 13 15 18 20 23 26 28 31 33 36 39 41 44 47
— 0 2 4 6 8 10 13 15 17 19 22 24 26 29 31 34 36 38 41

9 — 1 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54
— 0 2 4 7 10 12 15 17 20 23 26 28 31 34 37 39 42 45 48

10 — 1 4 7 11 14 17 20 24 27 31 34 37 41 44 48 51 55 58 62
— 0 3 5 8 11 14 17 20 23 26 29 33 36 39 42 45 48 52 55

11 — 1 5 8 12 16 19 23 27 31 34 38 42 46 50 54 57 61 65 69
— 0 3 6 9 13 16 19 23 26 30 33 37 40 44 47 51 55 58 62

12 — 2 5 9 13 17 21 26 30 34 38 42 47 51 55 60 64 68 72 77
— 1 4 7 11 14 18 22 26 29 33 37 41 45 49 53 57 61 65 69

13 — 2 6 10 15 19 24 28 33 37 42 47 51 56 61 65 79 75 80 84
— 1 4 8 12 16 20 24 28 33 37 41 45 50 54 59 63 67 72 76

14 — 2 7 11 16 21 26 31 36 41 46 51 56 61 66 71 77 82 87 92
— 1 5 9 13 17 22 26 31 36 40 45 50 55 59 64 67 74 78 83

15 — 3 7 12 18 23 28 33 39 44 50 55 61 66 72 77 83 88 94 100
— 1 5 10 14 19 24 29 34 39 44 49 54 59 64 70 75 80 85 90

16 — 3 8 14 19 25 30 36 42 48 54 60 65 71 77 83 89 95 101 107
— 1 6 11 15 21 26 31 37 42 47 53 59 64 70 75 81 86 92 98

17 — 3 9 15 20 26 33 39 45 51 57 64 70 77 83 89 96 102 109 115
— 2 6 11 17 22 28 34 39 45 51 57 63 67 75 81 87 93 99 105

18 — 4 9 16 22 28 35 41 48 55 61 68 75 82 88 95 102 109 116 123
— 2 7 12 18 24 30 36 42 48 55 61 67 74 80 86 93 99 106 112

19 0 4 10 17 23 30 37 44 51 58 65 72 80 87 94 101 109 116 123 130
— 2 7 13 19 25 32 38 45 52 58 65 72 78 85 92 99 106 113 119

20 0 4 11 18 25 32 39 47 54 62 69 77 84 92 100 107 115 123 130 138
— 2 8 13 20 27 34 41 48 55 62 69 76 83 90 98 105 112 119 127
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TABLE B.9B CRITICAL VALUES OF THE MANN-WHITNEY U FOR � � .01*

*Critical values are provided for a one-tailed test at � � .01 (lightface type) and for a two-tailed test at � � .01 (boldface type).
To be significant for any given nA and nB, the obtained U must be equal to or less than the critical value in the table. 
Dashes (—) in the body of the table indicate that no decision is possible at the stated level of significance and values of nA

and nB.

nA
nB 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 — — — — — — — — — — — — — — — — — — — —

2 — — — — — — — — — — — — 0 0 0 0 0 0 1 1
— — — — — — — — — — — — — — — — — — 0 0

3 — — — — — — 0 0 1 1 1 2 2 2 3 3 4 4 4 5
— — — — — — — — 0 0 0 1 1 1 2 2 2 2 3 3

4 — — — — 0 1 1 2 3 3 4 5 5 6 7 7 8 9 9 10
— — — — — 0 0 1 1 2 2 3 3 4 5 5 6 6 7 8

5 — — — 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
— — — — 0 1 1 2 3 4 5 6 7 7 8 9 10 11 12 13

6 — — — 1 2 3 4 6 7 8 9 11 12 13 15 16 18 19 20 22
— — — 0 1 2 3 4 5 6 7 9 10 11 12 13 15 16 17 18

7 — — 0 1 3 4 6 7 9 11 12 14 16 17 19 21 23 24 26 28
— — — 0 1 3 4 6 7 9 10 12 13 15 16 18 19 21 22 24

8 — — 0 2 4 6 7 9 11 13 15 17 20 22 24 26 28 30 32 34
— — — 1 2 4 6 7 9 11 13 15 17 18 20 22 24 26 28 30

9 — — 1 3 5 7 9 11 14 16 18 21 23 26 28 31 33 36 38 40
— — 0 1 3 5 7 9 11 13 16 18 20 22 24 27 29 31 33 36

10 — — 1 3 6 8 11 13 16 19 22 24 27 30 33 36 38 41 44 47
— — 0 2 4 6 9 11 13 16 18 21 24 26 29 31 34 37 39 42

11 — — 1 4 7 9 12 15 18 22 25 28 31 34 37 41 44 47 50 53
— — 0 2 5 7 10 13 16 18 21 24 27 30 33 36 39 42 45 48

12 — — 2 5 8 11 14 17 21 24 28 31 35 38 42 46 49 53 56 60
— — 1 3 6 9 12 15 18 21 24 27 31 34 37 41 44 47 51 54

13 — 0 2 5 9 12 16 2 23 27 31 35 39 43 47 51 55 59 63 67
— — 1 3 7 10 13 17 20 24 27 31 34 38 42 45 49 53 56 60

14 — 0 2 6 10 13 17 22 26 30 34 38 43 47 51 56 60 65 69 73
— — 1 4 7 11 15 18 22 26 30 34 38 42 46 50 54 58 63 67

15 — 0 3 7 11 15 19 24 28 33 37 42 47 51 56 61 66 70 75 80
— — 2 5 8 12 16 20 24 29 33 37 42 46 51 55 60 64 69 73

16 — 0 3 7 12 16 21 26 31 36 41 46 51 56 61 66 71 76 82 87
— — 2 5 9 13 18 22 27 31 36 41 45 50 55 60 65 70 74 79

17 — 0 4 8 13 18 23 28 33 38 44 49 55 60 66 71 77 82 88 93
— — 2 6 10 15 19 24 29 34 39 44 49 54 60 65 70 75 81 86

18 — 0 4 9 14 19 24 30 36 41 47 53 59 65 70 76 82 88 94 100
— — 2 6 11 16 21 26 31 37 42 47 53 58 64 70 75 81 87 92

19 — 1 4 9 15 20 26 32 38 44 50 56 63 69 75 82 88 94 101 107
— 0 3 7 12 17 22 28 33 39 45 51 56 63 69 74 81 87 93 99

20 — 1 5 10 16 22 28 34 40 47 53 60 67 73 80 87 93 100 107 114
— 0 3 8 13 18 24 30 36 42 48 54 60 67 73 79 86 92 99 105
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TABLE B.10 CRITICAL VALUES OF T FOR THE WILCOXON SIGNED-RANKS TEST*

*To be significant, the obtained T must be equal to or less than the critical value. Dashes (—) in the columns indicate that no
decision is possible for the stated � and n.

Level of Significance for
One-Tailed Test

.05 .025 .01 .005

Level of Significance for
Two-Tailed Test

n .10 .05 .02 .01

5 0 — — —
6 2 0 — —
7 3 2 0 —
8 5 3 1 0
9 8 5 3 1

10 10 8 5 3
11 13 10 7 5
12 17 13 9 7
13 21 17 12 9
14 25 21 15 12

15 30 25 19 15
16 35 29 23 19
17 41 34 27 23
18 47 40 32 27
19 53 46 37 32

20 60 52 43 37
21 67 58 49 42
22 75 65 55 48
23 83 73 62 54
24 91 81 69 61

25 100 89 76 68
26 110 98 84 75
27 119 107 92 83
28 130 116 101 91
29 140 126 110 100

Level of Significance for
One-Tailed Test

.05 .025 .01 .005

Level of Significance for
Two-Tailed Test

n .10 .05 .02 .01

30 151 137 120 109
31 163 147 130 118
32 175 159 140 128
33 187 170 151 138
34 200 182 162 148

35 213 195 173 159
36 227 208 185 171
37 241 221 198 182
38 256 235 211 194
39 271 249 224 207

40 286 264 238 220
41 302 279 252 233
42 319 294 266 247
43 336 310 281 261
44 353 327 296 276

45 371 343 312 291
46 389 361 328 307
47 407 378 345 322
48 426 396 362 339
49 446 415 379 355

50 466 434 397 373

Adapted from F. Wilcoxon, S. K. Katti, and R. A. Wilcox, Critical Values and Probability Levels of the Wilcoxon
Rank-Sum Test and the Wilcoxon Signed-Ranks Test. Wayne, NJ: American Cyanamid Company, 1963. Adapted
and reprinted with permission of the American Cyanamid Company.
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Solutions for Odd-Numbered
Problems in the Text

APPENDIX C

Note: Many of the problems in the text require several
stages of computation. At each stage there is an opportu-
nity for rounding answers. Depending on the exact 
sequence of operations used to solve a problem, different
individuals will round their answers at different times and

CHAPTER 1: INTRODUCTION TO STATISTICS

in different ways. As a result, you may obtain answers
that are slightly different from those presented here. To
help minimize this problem, we have tried to include the
numerical values obtained at different stages of complex
problems rather than presenting a single final answer.

1. a. The population is the entire set of adolescent boys
who are taking medication for depression.

b. The sample is the group of 30 boys who were
tested in the study.

3. Descriptive statistics are used to simplify and summa-
rize data. Inferential statistics use sample data to make 
general conclusions about populations.

5. A correlational study has only one group of individu-
als and measures two (or more) different variables for
each individual. Other research methods evaluating
relationships between variables compare two (or more)
different groups of scores.

7. The independent variable is holding a pen in your
teeth versus holding the pen in your lips. The depend-
ent variable is the rating given to each cartoon.

9. a. This is a nonexperimental study. The researcher is
simply observing, not manipulating, two variables.

b. This is an experiment. The researcher is manipulat-
ing the type of drink and should control other 
variables by beginning with equivalent groups of
participants. 

11. This is not an experiment because there is no manipu-
lation. Instead, the study is comparing two preexisting
groups (American and Canadian students). 

13. a. continuous. Time is infinitely divisible.
b. discrete. Family size consists of whole-number

categories that cannot be divided.
c. discrete. There are two separate and distinct 

categories (analog and digital).

d. continuous. The variable is knowledge of statis-
tics, which is measured with quiz scores. It could
be a 5-point quiz, a 10-point quiz, or a 50-point
quiz, which indicates that knowledge can be 
divided indefinitely.

15. a. The independent variable is humorous versus 
nonhumorous.

b. The independent variable is measured on a nominal
scale.

c. The dependent variable is the number of sentences
recalled.

d. The dependent variable is measured on a ratio scale.

17. a. The independent variable is whether or not the 
motivational signs were posted, and the dependent
variable is amount of use of the stairs.

b. Posting versus not posting is measured on a 
nominal scale.

19. a. �X � 15
b. �X2 � 65
c. �(X � 1) � 20
d. �(X � 1)2 � 100

21. a. �X � 11
b. �Y � 25
c. �XY � 54

23. a. �X2 � 30
b. (�X)2 � 64
c. �(X � 2) � 0
d. �(X � 2)2 � 14

715
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1. X f

10 3
9 6
8 4
7 2
6 3
5 1
4 1

3. a. n  � 12
b. �X � 40
c. �X 2 � 148

5. a. X f b. X f

28-29 1 25-29 8
26-27 4 20-24 10
24-25 7 15-19 3
22-23 4 10-14 2
20-21 2 5-9 1
18-19 2
16-17 1
14-15 0
12-13 1
10-11 1

8-9 1

7. a. 2 points wide and around 8 intervals
b. 5 points wide and around 12 intervals or 10 points

wide and around 6 intervals
c. 10 points wide and around 9 intervals

9. A bar graph leaves a space between adjacent bars and
is used with data from nominal or ordinal scales. In a
histogram, adjacent bars touch at the real limits.
Histograms are used to display data from interval or
ratio scales.

11.

716 APPENDIX C SOLUTIONS FOR ODD-NUMBERED PROBLEMS IN THE TEXT

13. a. A bar graph should be used for measurements from
an ordinal scale. 

b. 

CHAPTER 2: FREQUENCY DISTRIBUTIONS

f

7
6
5
4
3
2
1

2 3 4 5 6 7 2

7
6
5
4
3
2
1

3 4 5 6 7

140

120

100

80

60

40

20

S M L

T-shirt Size

f

XL XXL

15. a. X f

9 1
8 1
7 4
6 5
5 7
4 2

b. positively skewed
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17. a. X f

10 1
9 2
8 2
7 2
6 4
5 3
4 2
3 2
2 1

b.

APPENDIX C SOLUTIONS FOR ODD-NUMBERED PROBLEMS IN THE TEXT 717

21. X f cf c%

10 2 50 100
9 5 48 96
8 8 43 86
7 15 35 70
6 10 20 40
5 6 10 20
4 4 4 8

a. The percentile rank for X � 6 is 30%.
b. The percentile rank for X � 9 is 91%.
c. The 25th percentile is X � 5.75.
d. The 90th percentile is X � 8.9.

23. a. The percentile rank for X � 5 is 8%.
b. The percentile rank for X � 12 is 85%.
c. The 25th percentile is X � 7.
d. The 70th percentile is X � 10.

25.

1 796
2 0841292035826
3 094862
4 543
5 3681
6 4

27.

2 80472 
3 49069
4 543976
5 4319382
6 5505
7 24 
8 1

4

3

2

1

1 2 3 4 5 6 7 8 9 10
X

f

c. It is a fairly symmetrical distribution centered at 
X = 6. The scores are scattered across the scale.  

19. X f cf c%

7 2 24 100
6 3 23 92
5 6 20 80
4 9 14 56
3 4 5 20
2 1 1 4

a. The percentile rank for X � 2.5 is 4%
b. The percentile rank for X � 6.5 is 92%
c. The 20th percentile is X � 3.5.
d. The 80th percentile is X � 5.5.

1. The purpose of central tendency is to identify a single
score that serves as the best representative for an entire
distribution, usually a score from the center of the
distribution.

3. The mean is 
29
�
10 � 2.9, the median is 2.5, and the mode

is 2.

5. The mean is 69�
12

� 5.75, the median is 6, and the mode 
is 7.

7. a. Median � 2.83 (2.5 � 0.33)
b. Median � 3

9. N � 25

11. The original sample has n � 5 and �X � 60. The 
new sample has n � 4 and �X � 52. The new mean 
is M � 13.

13. After the score is removed, n � 8, �X � 88, and 
M � 11.

15. After the score is changed, n � 7, �X � 49, and 
M � 7.

17. The original sample has n � 16 and �X � 320. The new
sample has n � 15 and �X � 285. The score that was
removed must be X � 35.

19. a. The new mean is 75�
10

� 7.5.

CHAPTER 3: CENTRAL TENDENCY
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b. The new mean is (20 � 60)/10 � 8
c. The new mean is (30 � 40)/10 � 7

21. The median is used instead of the mean when there is
a skewed distribution (a few extreme scores), an
open-ended distribution, undetermined scores, or an
ordinal scale.

23. a. Mode � 2
b. Median � 2

718 APPENDIX C SOLUTIONS FOR ODD-NUMBERED PROBLEMS IN THE TEXT

2

1

1 2 3 4 5 6 7 8 9
X

f

M = 5

c. You cannot find the total number of fast-food visits
(�X) for this sample.

25. a. For weekdays M � 0.99 inches and for weekend
days is M � 1.67 inches. 

b. There does appear to be more rain on weekend days
than there is on weekdays.

15. a. The mean is M � 4 and the standard deviation is 
s � ���

9 � 3.
b. The new mean is M � 6 and the new standard devia-

tion is ����
49 � 7. 

c. Changing one score changes both the mean and the
standard deviation.

17. SS � 32, the population variance is 4, and the standard
deviation is 2.

19. SS � 36, the sample variance is 9, and the standard
deviation is 3.

21. a.

1. a. The goal for descriptive statistics is to simplify, 
organize, and summarize data so that it is easier for
researchers to see patterns.

b. A frequency distribution provides an organized 
summary of the complete set of scores.

CHAPTER 4: VARIABILITY

1. a. SS is the sum of squared deviation scores.
b. Variance is the mean squared deviation.
c. Standard deviation is the square root of the vari-

ance. It provides a measure of the standard distance
from the mean.

3. Standard deviation and variance are measures of dis-
tance and are always greater than or equal to zero.

5. Without some correction, the sample variance underes-
timates the variance for the population. Changing the
formula for sample variance (using n � 1 instead of N)
is the necessary correction. 

7. a. s � 2 is better (you are above the mean by 
3 standard deviations).

b. s � 10 is better (you are below the mean by less
than half a standard deviation).

9. a. The original mean is M � 80 and the standard 
deviation is s � 8.

b. The original mean is M � 12 and the standard 
deviation is s � 3.

11. a. The range is either 11 or 12, and the standard 
deviation is � � 4.

b. After adding 2 points to each score, the range is
still either 11 or 12, and the standard deviation is
still � � 4. Adding a constant to every score does
not affect measures of variability.

13. For sample A the mean is M � 4.50, so the computa-
tional formula would be easier. For this sample, 
SS � 25. For sample B the mean is M � 4 and the
definitional formula would be easier. For this sample,
SS � 42.

b. The mean is 35
��

7
� 5. The two scores of X � 5 are

exactly equal to the mean. The scores X � 2 
and X � 8 are farthest from the mean (3 points). 
The standard deviation should be between 0 and 
3 points. 

c. SS � 24, s2 � 4, s � 2, which agrees with the 
estimate.

23. a. For the younger woman, the variance is s2 � 0.786.
For the older woman, the variance is s2 � 1.696.

b. The variance for the younger woman is only half as
large as for the older woman. The younger
woman’s scores are much more consistent.

SECTION I REVIEW

c. A measure of central tendency summarizes an entire
set of scores with a single value that is representative
of the whole set.

d. A measure of variability provides a single number that
describes the differences that exist from one score to
another.
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1. The sign of the z-score tells whether the location is
above (�) or below (�) the mean, and the magnitude
tells the distance from the mean in terms of the num-
ber of standard deviations.

3. a. above the mean by 12 points
b. above the mean by 3 points
c. below the mean by 12 points
d. below the mean by 3 points

5.

7. a.

b.

9.

APPENDIX C SOLUTIONS FOR ODD-NUMBERED PROBLEMS IN THE TEXT 719

2. a. The original rats appear to make far more errors
that the seventh-generation maze-bright rats

b. The original rats made an average of M � 12.43
errors compared to an average of only M � 7.33
for the maze-bright rats. On average, the original
rats made far more errors.

c. For the original rats, SS � 427.14, the variance is 
s2 � 21.36 and the standard deviation is s � 4.62.
For the maze-bright rats, SS � 54.67, the variance
is s2 � 2.73 and the standard deviation is s � 1.65.
The error scores for the original rats are much more
spread out. The seventh generation rats are a much
more homogeneous group.

6

5

4f

3

2

1

3 44 55 66 7 8 99 10 11 12 13 14 15 16 17 18 19 20 21 22

Original

Number of Errors

Maze bright

X z

45 0.71
30 �1.43

X z

51 1.57
25 �2.14

X z

41 0.14
38 �0.29

X z

44 0.50
34 �0.75

X z

50 1.25
28 �1.50

X z

52 �1.50
64 3.00

X z

46 0.75
38 �0.25

X z

52 1.50
36 �0.50

X z

24 �2.00
50 1.25

X z

88 0.80
76 �0.40

X z

92 1.20
74 ��0.60

X z

100 2.00
62 �1.80

CHAPTER 5: z-SCORES

11. a. X � 41
b. X � 42
c. X � 43
d. X � 45

13. � � 4

15. M � 50

17. � � 4

19. 	 � 61 and � � 3. The distance between the two scores
is 3 points which is equal to 1.0 standard deviation.

21. a. � � 4
b. � � 8

23. a. X � 95 (z � �0.25)
b. X � 80 (z � �1.00)
c. X � 125 (z � 1.25)
d. X � 110 (z � 0.50)

25. a. 	 � 5 and � � 4
b. and c.

Original X z-score Transformed X

0 1.25 75
6 0.25 105
4 �0.25 95
3 �0.50 90

12 1.75 135
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1. a. p �
1

�
50

� 0.02

b. p �
10
�
50

� 0.20

c. p �
20
�
50

� 0.40

3. The two requirements for a random sample are: (1) each
individual has an equal chance of being selected, 
and (2) if more than one individual is selected, the
probabilities must stay constant for all selections.

5. a. tail to the right, p � 0.0228
b. tail to the right, p � 0.2743
c. tail to the left, p � 0.0968
d. tail to the left, p � 0.3821

7. a. p(z 
 0.25) � 0.4013
b. p(z 
 �0.75) � 0.7734
c. p(z � 1.20) � 0.8849
d. p(z � �1.20) � 0.1151

9. a. p � 0.1974
b. p � 0.9544
c. p � 0.4592
d. p � 0.4931

11. a. z � �0.25
b. z � �0.67
c. z � �1.96
d. z � �2.58

13. a. tail to the right, p � 0.4013
b. tail to the left, p � 0.3085
c. tail to the right, p � 0.0668
d. tail to the left, p � 0.1587

15. a. z � 2.00, p � 0.0228
b. z � 0.50, p � 0.3085
c. z � 1.28, X � 628
d. z � �0.25, X � 475 

720 APPENDIX C SOLUTIONS FOR ODD-NUMBERED PROBLEMS IN THE TEXT

17. a. p(z 
 1.50) � 0.0668
b. p(z � �2.00) � 0.0228

19. a. z � 0.60, p � 0.2743
b. z � �1.40, p � 0.0808
c. z � 0.84, X � $206 or more

21. p(X 
 36) � p(z 
 2.17) � 0.0150 or 1.50%

23. a. p � �
1
2

�

b. 	 � 20
c. 	 � �10�� � 3.16 and for X � 25.5, z � 1.74, and 

p � 0.0409
d. For X � 24.5, z � 1.42, and p � 0.0778

25. a. With five options, p � �
1
5

� for each trial, 	 � 20, and 
� � 4; for X � 20, z � �0.13 and p � 0.1034.

b. For X � 30.5, z � 2.63 and p � 0.0043.
c. 	 � 40 and � � 5.66; for X � 49.5, z � 1.68 and 

p � 0.0465

27. a. With n � 50 and p � q � �
1
2

�, you may use the 
normal approximation with 	 � 25 and � � 3.54.
Using the upper real limit of 30.5, p(X 
 30.5) 
� p(z 
 1.55) � 0.0606.

b. The normal approximation has 	 � 50 and � � 5.
Using the upper real limit of 60.5, p(X 
 60.5) 
� p(z 
 2.10) � 0.0179.

c. Getting 60% heads with a balanced coin is an
unusual event for a large sample. Although you
might get 60% heads with a small sample, you
should get very close to a 50-50 distribution as 
the sample gets larger. With a larger sample, it
becomes very unlikely to get 60% heads.

1. a. The distribution of sample means consists of the 
sample means for all the possible random samples
of a specific size (n) from a specific population.

b. The expected value of M is the mean of the 
distribution of sample means (	).

c. The standard error of M is the standard deviation of
the distribution of sample means (�M � ).

3. a. The expected value is 	 � 40 and �M � � 4.

b. The expected value is 	 � 40 and �M � � 2.

5. a. Standard error � � 15 points

b. Standard error � � 6 points

c. Standard error � � 3 points30
100

30
25

30

4

8

16

8
4

�
n

7. a. n 
 16
b. n 
 100
c. n 
 400

9. a. � � 50
b. � � 25
c. � � 10

11. a. �M � 5 points and z � �1.00
b. �M � 10 points and z � �0.50
c. �M � 20 points and z � �0.25

13. a. With a standard error of 4, M � 33 corresponds to 
z � 0.75, which is not extreme.

CHAPTER 6: PROBABILITY

CHAPTER 7: THE DISTRIBUTION OF SAMPLE MEANS
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b With a standard error of 1, M � 33 corresponds to 
z � 3.00, which is extreme.

15. a. z � 0.50 and p � 0.6915
b. �M � 5, z � 1.00 and p � 0.8413
c. �M � 2, z � 2.50 and p � 0.9938

17. a. z � �0.50 and p � 0.3830
b. �M � 5, z � �1.00 and p � 0.6826
c. �M � 2.5, z � �2.00 and p � 0.9544

19. a. p(z � �0.50) � 0.3085
b. p(z � �1.00) � 0.1587

21. a. With a standard error of 3.58 this sample mean
corresponds to a z-score of z � 1.28. A z-score this
large (or larger) has a probability of p � 0.1003.

b. A sample mean this large should occur only 1 out of
10 times. This is not a very representative sample.

23.

Expected

Lo
o

ki
n

g
 T

im
e

(in
 s

e
c

o
n

d
s)

2

4

6

8

10

Unexpected

CHAPTER 8: INTRODUCTION TO HYPOTHESIS TESTING

1. a. M � 	 measures the difference between the sample
mean and the hypothesized population mean.

b. A sample mean is not expected to be identical to
the population mean. The standard error measures
how much difference, on average, is reasonable to
expect between M and 	.

3. The alpha level is a small probability value that defines
the concept of “very unlikely.” The critical region con-
sists of outcomes that are very unlikely to occur if the
null hypothesis is true, where “very unlikely” is defined
by the alpha level.

5. a. The null hypothesis states that the herb has no
effect on memory scores.

b. H0: 	 � 80 (even with the herbs, the mean is 
still 80). H1: 	 � 80 (the mean has changed)

c. The critical region consists of z-scores beyond �1.96. 
d. For these data, the standard error is 3 and 

z � �
4
3

� � 1.33. 
e. Fail to reject the null hypothesis. The herbal 

supplements do not have a significant effect on
memory scores.

7. a. H0 	 � 80. With � � 12, the sample mean corre-
sponds to z � ��

4
3

� � �1.33. This is not sufficient
to reject the null hypothesis. You cannot conclude
that the course has a significant effect.

b. H0 	 � 80. With � � 6, the sample mean corre-
sponds to z � �

4
��
1.5

� �2.67. This is sufficient to
reject the null hypothesis and conclude that the
course does have a significant effect.

c. There is a 4 point difference between the sample
and the hypothesis. In part a, the standard error is 

3 points and the 4-point difference is not signifi-
cant. However, in part b, the standard error is only
1.5 points and the 4-point difference is now signifi-
cantly more than is expected by chance. In general,
a larger standard deviation produces a larger stan-
dard error, which reduces the likelihood of rejecting
the null hypothesis.

9. a. With � � 18, the standard error is 3, and 
z � ��

8
3

� � �2.67. Reject H0.
b. With � � 30, the standard error is 5, and 

z � ��
8
5

� � �1.60. Fail to reject H0.
c. Larger variability reduces the likelihood of 

rejecting H0.

11. a. With a 2-point treatment effect, for the z-score to
be greater than 1.96, the standard error must be
smaller than 1.02. The sample size must be greater
than 96.12; a sample of n � 97 or larger is needed.

b. With a 1-point treatment effect, for the z-score to be
greater than 1.96, the standard error must be smaller
than 0.51. The sample size must be greater than
384.47; a sample of n � 385 or larger is needed.

13. a. H0: 	 � 4.9 and the critical values are �1.96. The
standard error is 0.21 and z � �3.33. Reject the
null hypothesis. 

b. Cohen’s d � �
0.7

0.84
���� � 0.833 or 83.3%

c. The results indicate that the presence of a tattoo has
a significant effect on the judged attractiveness of a
woman, z � �3.33, p � .01, d � 0.833. 

15. a. H0: 	 � 50 (endurance is not increased). The criti-
cal region consists of z-scores beyond z � �1.65.
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For these data, �M � 1.70 and z � 1.76. Reject 
H0 and conclude that endurance scores are signifi-
cantly higher with the sports drink.

b. H0: 	 � 50 (no change in endurance). The critical
region consists of z-scores beyond z � �1.96.
Again, �M � 1.70 and z � 1.76. Fail to reject H0

and conclude that the sports drink does not signifi-
cantly affect endurance scores.

c. The two-tailed test requires a larger z-score for the
sample to be in the critical region.

17. H0: 	 � 12 (no increase during hot weather). H1: 	 

12 (there is an increase). The critical region consists of 
z-score values greater than �1.65. For these data, the
standard error is 1.50, and z � 2.33 which is in the
critical region so we reject the null hypothesis and
conclude that there is a significant increase in the
average number of hit players during hot weather.

19. a. With no treatment effect the distribution of sample
means is centered at 	 � 75 with a standard error 
of 1.90 points. The critical boundary of z � 1.96
corresponds to a sample mean of M � 78.72. With a
4-point treatment effect, the distribution of sample
means is centered at 	 � 79. In this distribution a
mean of M � 78.72 corresponds to z � �0.15. The
power for the test is the probability of obtaining a 
z-score greater than �0.15, which is p � 0.5596.
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b. With a one-tailed test, critical boundary of z � 1.65
corresponds to a sample mean of M � 78.14. With 
a 4-point treatment effect, the distribution of sample
means is centered at 	 � 79. In this distribution a
mean of M � 78.14 corresponds to z � �0.45. The
power for the test is the probability of obtaining a 
z-score greater than �0.45, which is p � 0.6736.

21. a. Increasing alpha increases power.
b. Changing from one- to two-tailed decreases power.

23. a. For a sample of n � 16 the standard error would be
5 points, and the critical boundary for z � 1.96
corresponds to a sample mean of M � 89.8. With a
12-point effect, the distribution of sample means
would be centered at 	 � 92. In this distribution,
the critical boundary of M � 89.8 corresponds to 
z � �0.44. The power for the test is p(z 
 �0.44)
� 0.6700 or 67%.

b. For a sample of n � 25 the standard error would be 
4 points, and the critical boundary for z � 1.96 
corresponds to a sample mean of M � 87.84. With a
12-point effect, the distribution of sample means
would be centered at 	 � 92. In this distribution, 
the critical boundary of M � 87.84 corresponds to 
z � �1.04. The power for the test is p(z 
 �1.04)
� 0.8508 or 85.08%.

SECTION II REVIEW

1. a. z � 1.50
b. X � 36
c. If the entire population of X values is transformed

into z-scores, the set of z-scores will have a mean
of 0 and a standard deviation of 1.00.

d. The standard error is 4 points and z � 0.50.
e. The standard error is 2 points and z � 1.00.

2. a. p(X 
 40) � p(z 
 0.36) � 0.3594 or 35.94%.
b. p(X � 10) � p(z � �1.79) � 0.0367 or 3.67%.
c. The standard error is 2 points and z � �2.50. The

probability is p � 0.0062.
3. a. The null hypothesis states that the overweight 

students are no different from the overall population,

	 � 4.22. The standard error is 0.10 and the z-score
for this sample is z � 2.60. Reject the null hypothe-
sis. The number of snacks eaten by overweight 
students is significantly different from the number 
for the general population.

b. The null hypothesis states that the healthy-weight
students do not eat fewer snacks than the overall
population, H0: 	 
 4.22. The standard error is 0.12
and the z-score for this sample is z � �1.75. For a
one-tailed test, the critical value is z � �1.65. Reject
the null hypothesis. The number of snacks eaten by
healthy-weight students is significantly less than the
number for the general population. 

CHAPTER 9: INTRODUCTION TO THE t STATISTIC

1. A z-score is used when the population standard devia-
tion (or variance) is known. The t statistic is used
when the population variance or standard deviation is

unknown. The t statistic uses the sample variance or
standard deviation in place of the unknown population
values. 
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standard error is 1.50, and t � 7
��
1.50

� 4.67. Reject
the null hypothesis and conclude that there has been
a significant change in the average IQ score.

b. Using df � 60, the t values for 80% confidence are
�1.296, and the interval extends from 105.056 to
108.944.

17. a. The estimated standard error is 1.50, and 
t � 7.7

���
1.50

� 5.13. For a one-tailed test, the critical
value is 2.602. Reject the null hypothesis, children
with a history of day care have significantly more
behavioral problems.

b. The percentage of variance accounted for is 
r2 � 26.32���

41.32
� 0.637 or 63.7%. 

c. The results show that kindergarten children with a
history of day care have significantly more behav-
ioral problems than other kindergarten children, 
t(15) � 5.13, p � .01, r2 � 0.637.

19. a. Cohen’s d �
3

�
6

� 0.50. With s � 6, the estimated
standard error is 1.2 and t � 3

��
1.2

� 2.50. 
r2 �

6.25
���
30.25

� 0.207.
b. Cohen’s d �

3
�
15

� 0.20. With s � 15, the estimated
standard error is 3 and t �

3
�
3

� 1.00. r2 � 1.00���
25.00

� 0.04.
c. Measures of effect size tend to decrease as sample

variance increases.

21. a. The estimated standard error is 0.20 and 
t �

2.2
��
0.2

� 11.00. The t value is well beyond the
critical value of 2.492. Reject the null hypothesis.

b. Cohen’s d �
2.2
��
1

� 2.20 and r2 �
121
���
145 � 0.8345.

23. a. H0: µ � 40. With df � 8 the critical values are 
t � �2.306. For these data, M � 44, SS � 162, 
s2 � 20.25, the standard error is 1.50, and t � 2.67.
Reject H0 and conclude that depression for the
elderly is significantly different from depression for
the general population.

b. Cohen’s d � 4��
4.5 � 0.889.

c. The results indicate that depression scores for 
the elderly are significantly different from scores 
for the general population, t(8) � 2.67, p � .05, 
d � 0.889.

3. a. The sample variance is 16 and the estimated stan-
dard error is 2.

b. The sample variance is 54 and the estimated 
standard error is 3.

c. The sample variance is 12 and the estimated 
standard error is 1.

5. a. t � �2.571
b. t � �2.201
c. t � �2.069

7. a. M � 5 and s � �20���� 4.47
b. sM � 2.

9. a. With s � 9, sM � 3 and t � ��
7
3

� � �2.33. This is 
beyond the critical boundaries of �2.306, so we
reject the null hypothesis and conclude that there is
a significant treatment effect.

b. With s � 15, sM � 5 and t � ��
7
5

� � �1.40. This
value is not beyond the critical boundaries, so there
is no significant effect.

c. As the sample variability increases, the likelihood
of rejecting the null hypothesis decreases.

11. a. With a two tailed test, the critical boundaries are
�2.306 and the obtained value of t � 3.3

��
1.5

� 2.20 is
not sufficient to reject the null hypothesis.

b. For the one-tailed test the critical value is 1.860, so
we reject the null hypothesis and conclude that
participants significantly overestimated the number
who noticed. 

13. a. With df � 15, the critical values are �2.947. For
these data, the sample variance is 16, the estimated
standard error is 1, and t �

8.2
��
1

� 8.20. Reject the
null hypothesis and conclude that there has been a
significant change in the level of anxiety. 

b. With df � 15, the t values for 90% confidence are
�1.753, and the interval extends from 21.547 to
25.053.

c. The data indicate a significant change in the level
of anxiety, t(16) � 8.20, p � .01, 95% CI [21.547,
25.053].

15. a. With df � 63, the critical values are �2.660 (using
df � 60 in the table). For these data, the estimated

CHAPTER 10: THE t TEST FOR TWO INDEPENDENT SAMPLES

There are several possible solutions to the matchstick prob-
lem in the Chapter 10 Preview but all involve destroying two
of the existing squares. One square is destroyed by removing
two matchsticks from one of the corners and a second square
is destroyed by removing one matchstick. The three removed

matchsticks are then used to build a new square using a line
that already exists in the figure as the fourth side. One solu-
tion is shown in the following figure. Arrows indicate the
three matchsticks to be removed from the original pattern
and their locations in the new pattern.

30991_appC_ptg01_hr_715-736.qxd  9/2/11  11:46 PM  Page 723



1. An independent-measures study uses a separate 
sample for each of the treatments or populations
being compared. 

3. a. The size of the two samples influences the 
magnitude of the estimated standard error in the
denominator of the t statistic. As sample size
increases, the value of t also increases (moves
farther from zero), and the likelihood of rejecting
H0 also increases.

b. The variability of the scores influences the esti-
mated standard error in the denominator. As the
variability of the scores increases, the value of 
t decreases (becomes closer to zero), and the 
likelihood of rejecting H0 decreases.

5. a. The first sample has s2 � 12 and the second has 
s2 � 8. The pooled variance is �

80
8
��� � 10 (halfway

between).
b. The first sample has s2 � 12 and the second has 

s2 � 4. The pooled variance is �
80
12

��� � 6.67 (closer to
the variance for the larger sample).

7. a. The pooled variance is 6 and the estimated standard
error is 1.50.

b. The pooled variance is 24 and the estimated standard
error is 3.

c. Larger variability produces a larger standard error.
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9. a. The pooled variance is 90.
b. The estimated standard error is 5.
c. A mean difference of 10 points produces t � 2.00.

With critical boundaries of �2.160, fail to reject H0.
d. A mean difference of 13 points produces t � 2.60.

With critical boundaries of �2.160, reject H0

11. a. The pooled variance is 60 and the estimated standard
error is 5. 

b. The pooled variance is 240 and the estimated
standard error is 10.

c. Increasing the sample variance produces an 
increase in the standard error.

13. a. Using df � 30, because 34 is not listed in the table,
and � � .05, the critical region consists of t values
beyond �2.042. The pooled variance is 81, the
estimated standard error is 3, and t(34) � 7.6

3
��� � 2.53.

The t statistic is in the critical region. Reject H0 and
conclude that there is a significant difference.

b. For 90% confidence, the t values are �1.697 (using
df � 30), and the interval extends from 2.509 to
12.691 points higher with the calming music.

c. Classroom performance was significantly better with
background music, t(34) � 2.53, p � .05, 95% CI
[2.509, 12.691].

15. a. For the offensive linemen, the standard error is 0.97
and t � 4.54. For a one-tailed test with df � 16, the
critical value is 2.583. Reject the null hypothesis.
The offensive linemen are significantly above the
criterion for BMI.

b. For the defensive linemen, the standard error is
0.80 and t � 2.375. For a one-tailed test with 
df � 18, the critical value is 2.552. Fail to reject the
null hypothesis. The defensive linemen are not
significantly above the criterion for BMI.

c. For the independent-measures t, the pooled variance
is 14.01, the estimated standard error is 1.25, and
t(34) � 2.00. For a two-tailed test using df � 30
(because 34 is not listed), the critical value is 2.750.
Fail to reject the null hypothesis. There is no signifi-
cant difference between the two groups.

17. a. The research prediction is that participants who 
hear the verb “smashed into” will estimate higher
speeds than those who hear the verb “hit.” For these
data, the pooled variance is 33, the estimated stan-
dard error is 2.10, and t(28) � 3.24. With df � 28
and � � .01, the critical value is t � 2.467. The
sample mean difference is in the right direction and
is large enough to be significant. Reject H0.

b. The estimated Cohen’s d � � 1.18.
c. The results show that participants who heard the

verb “smashed into” estimated significantly higher
speeds than those who heard the verb “hit,” 
t(28) � 3.24, p � .01, d � 1.18.

6 8
33
.

Original pattern with 5 squares

New pattern with 4 squares

30991_appC_ptg01_hr_715-736.qxd  9/2/11  11:46 PM  Page 724



APPENDIX C SOLUTIONS FOR ODD-NUMBERED PROBLEMS IN THE TEXT 725

19. a. The null hypothesis states that there is no differ-
ence between the two sets of instructions, H0: 
	1 � 	2 � 0. With df � 6 and � � .05, the critical
region consists of t values beyond �2.447. For the
first set, M � 6 and SS � 16. For the second set, 
M � 10 with SS � 32. For these data, the pooled
variance is 8, the estimated standard error is 2, and
t(6) � 2.00. Fail to reject H0. The data are not
sufficient to conclude that there is a significant
difference between the two sets of instructions.

b. For these data, the estimated d � � 1.41 

(a very large effect) and r2 � �
4

10
��� � 0.40 (40%). 

21. The humorous sentences produced a mean of M � 4.25
with SS � 35, and the non-humorous sentences had 
M � 4.00 with SS � 26. The pooled variance is 2.03,

4
8

the estimated standard error is 0.504, and t � 0.496.
With df � 30, the critical value is 2.042. Fail to reject
the null hypothesis and conclude that there is no signif-
icant difference in memory for the two types of sen-
tences.

23. a. The null hypothesis states that the lighting in the
room does not affect behavior. For the well-lit room
the mean is M � 7.55 with SS � 42.22. For the
dimly-lit room, M � 11.33 with SS � 38. The
pooled variance is 5.01, the standard error is 1.06,
and t(16) � 3.57. With df � 16 the critical values
are �2.921. Reject the null hypothesis and conclude
that the lighting did have an effect on behavior. 

b. d �
3.78
2.24
������ � 1.69.

CHAPTER 11: THE t TEST FOR TWO RELATED SAMPLES

1. a. This is an independent-measures experiment with
two separate samples.

b. This is repeated-measures. The same individuals
are measured twice.

c. This is repeated-measures. The same individuals
are measured twice.

3. For a repeated-measures design the same subjects 
are used in both treatment conditions. In a matched-
subjects design, two different sets of subjects are used.
However, in a matched-subjects design, each subject 
in one condition is matched with respect to a specific
variable with a subject in the second condition so that
the two separate samples are equivalent with respect to
the matching variable.

5. a. The standard deviation is 5 points and measures the
average distance between an individual score and
the sample mean.

b. The estimated standard error is 1.67 points and
measures the average distance between a sample
mean and the population mean.

7. a. The estimated standard error is 2 points and 
t(8) � 1.50. With a critical boundary of �2.306, 
fail to reject the null hypothesis.

b. With MD � 12, t(8) � 6.00. With a critical 
boundary of �2.306, reject the null hypothesis.

c. The larger the mean difference, the greater the
likelihood of finding a significant difference.

9. The sample variance is 9, the estimated standard error
is 0.75, and t(15) � 4.33. With critical boundaries of
�2.131, reject H0

11. a. The null hypothesis says that there is no difference
in judgments for smiling versus frowning. For these

data, the sample variance is 6.25, the estimated
standard error is 0.5, and t � 1.6

��
0.5

� 3.20. For a 
one-tailed test with df � 24, the critical value is
2.492. Reject the null hypothesis.

b. r2 � 10.24
���
34.24

� 0.299 (29.9%)
c. The cartoons were rated significantly funnier 

when people held a pen in their teeth compared to
holding a pen in their lips, t(24) � 3.20, p � .01, 
one tailed, r2 � 0.299. 

13. The null hypothesis states that there is no difference in
the perceived intelligence between attractive and unat-
tractive photos. For these data, the estimated standard
error is 0.4 and t � 

2.7
��
0.4 � 6.75. With df � 24, the

critical value is 2.064. Reject the null hypothesis.

15. a. The difference scores are 3, 7, 3, and 3. MD � 4.
b. SS � 12, sample variance is 4, and the estimated

standard error is 1.
c. With df � 3 and � � .05, the critical values are 

t � �3.182. For these data, t � 4.00. Reject H0.
There is a significant treatment effect.

17. The null hypothesis states that the images have no
effect on performance. For these data, the sample
variance is 12.6, the estimated standard error is 1.45,
and t(5) � 2.97. With df � 5 and � � .05, the critical
values are t � �2.571. Reject the null hypothesis, the
images have a significant effect.

19. a. The pooled variance is 6.4 and the estimated
standard error is 1.46.

b. For the difference scores the variance is 24, the
estimated standard error is 2.

21. a. The null hypothesis says that changing answers has no
effect, H0: 	D � 0. With df � 8 and � � .05, the
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23. The null hypothesis says that there is no difference
between shots fired during versus between heart beats,
H0: 	D � 0. With � � .05, the critical region consists
of t values beyond �2.365. For these data, MD � 3,
SS � 36, s2 � 5.14, the standard error is 0.80, and 
t(7) � 3.75. Reject H0 and conclude that the timing of
the shot has a significant effect on the marksmen’s
scores.

critical values are t � �2.306. For these data, 
MD � 7, SS � 288, the standard error is 2, and 
t(8) � 3.50. Reject H0 and conclude that changing
answers has a significant effect on exam performance.

b. For 95% confidence use t � �2.306. The interval
extends from 2.388 to 11.612.

c. Changing answers resulted in significantly higher
exam scores, t(8) � 3.50, p � .05, 95% CI [2.388,
11.612].

SECTION III REVIEW

1. a. For these data, the mean is M � 23 and the stan-
dard deviation is s � 3.

b. H0: µ � 20. With df � 8, the critical region con-
sists of t values greater than 1.860. For these data,
the standard error is 1, and t(8) � 3.00. Reject H0

and conclude that participation in the interview
significantly increases life satisfaction. 

c. Cohen’s d � �
3
3

� � 1.00.
d. The 90% confidence interval is 	 � 23 � 1.86 and

extends from 21.14 to 24.86.

2. a. The pooled variance is 1.2, the standard error is
0.40, and t(28) � 0.7

��
0.4

� 1.75. With a critical value 

of 2.048, the decision is to fail to reject the null 
hypothesis. 

b. For these data, r2 �
3.06

���
31.06 � 0.099 or 9.9%.

c. The presence of a tattoo did not have a significant
effect on the attractiveness ratings, t(28) � 1.75, 
p 
 .05, r2 � 0.099.

3. a. The estimated standard error is 2.5 and t(19) �
1.92. With a critical value of 1.729, reject the null
hypothesis and conclude that attention span is 
significantly longer with the medication. 

b. The 80% confidence interval is 	D � 4.8 �
1.328(2.5) and extends from 1.48 to 8.12.

CHAPTER 12: INTRODUCTION TO ANALYSIS OF VARIANCE

1. When there is no treatment effect, the numerator and
the denominator of the F-ratio are both measuring the
same sources of variability (random, unsystematic
differences from sampling error). In this case, the 
F-ratio is balanced and should have a value near 1.00.

3. a. As the differences between sample means increase,
MSbetween also increases, and the F-ratio increases. 

b. Increases in sample variability cause MSwithin to
increase and, thereby, decrease the F-ratio.

5. a. Posttests are used to determine exactly which treat-
ment conditions are significantly different.

b. If there are only two treatments, then there is no
question as to which two treatments are different.

c. If the decision is to fail to reject H0, then there are
no significant differences.

7. a. 

Source SS df MS

Between treatments 84 2 42 F(2, 15) � 6.00
Within treatments 105 15 7
Total 189 17

With � � .05, the critical value is F � 3.68. Reject the
null hypothesis and conclude that there are significant
differences among the three treatments.
b. �2 � 84

��
189

� 0.444.
c. Analysis of variance showed significant mean differ-

ences among the three treatments, F(2, 15) � 6.00, 
p � .05, �2 � 0.444.

9. a. The sample variances are 4, 5, and 6.
b.

Source SS df MS

Between treatments 90 2 45 F(2, 12) � 9.00
Within treatments 60 12 5
Total 150 14

With � � .05, the critical value is F � 3.68. Reject the
null hypothesis and conclude that there are significant
differences among the three treatments.
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11. a.

Source SS df MS

Between treatments 70 2 35 F(2, 12) � 17.50
Within treatments 24 12 2
Total 94 14

With � � .05, the critical value is F � 3.68. Reject the
null hypothesis and conclude that there are significant
differences among the three treatments.
b. �2 �

70
��
94

� 0.745.
c. Analysis of variance showed significant mean

differences in perfectionism related to parental
criticism among the three groups of students, 
F(2, 15) � 6.00, p � .05, �2 � 0.745.

13. a. k � 3 treatment conditions.
b. The study used a total of N � 57 participants.

15. 

Source SS df MS

Between treatments 30 2 15 F � 5
Within treatments 63 21 3
Total 93 23

17. 

Source SS df MS

Between treatments 20 2 10 F � 2.50
Within treatments 180 45 4
Total 200 47

19. a. The pooled variance is 6, the estimated standard
error is 1.50 and t(10) � 4.00. With df � 10, the
critical value is 2.228. Reject the null hypothesis.

b.

Source SS df MS

Between treatments 96 1 96 F(1, 10) � 16
Within treatments 60 10 6
Total 156 11

With df � 1, 10, the critical value is 4.96. Reject the
null hypothesis. Note that F � t2.

21. a.

Source SS df MS

Between treatments 252 2 126 F(2, 15) � 19.30
Within treatments 98 15 6.53
Total 350 17

With df � 2, 15 the critical value is 3.68. Reject the null
hypothesis. 
b. The percentage of variance explained by the mean

differences is �2 � 0.72 or 72%.
c. The analysis of variance shows significant differ-

ences in average brain size among the three groups
of birds, F(2, 15) � 19.30, p � .01, �2 � 0.72.

d. With k � 3 groups and df � 15, q � 3.67. The
HSD � 3.83. The non-migrating birds are signifi-
cantly different from either other group, but there is
no significant difference between the short- and
long-distance migrants.

23. a. The means and standard deviations are

Little Moderate Substantial

M � 4.00 M � 5.00 M � 6.50
s � 2.11 s � 2.00 s � 1.51

Source SS df MS

Between treatments 31.67 2 15.83 F(2, 27) � 4.25
Within treatments 100.50 27 3.72
Total 132.17 29

With df � 2, 27 the critical value is 3.35. Reject the null
hypothesis. 
b. �2 �

31.67
���
132.17 � 0.240. 

c. Tukey’s HSD � 3.49(0.610) � 2.13 (using 
df � 30). The only significant mean difference is 
between those who watch little or no TV and those
whose viewing is substantial. 

CHAPTER 13: REPEATED-MEASURES ANOVA

1. For an independent measures design, the variability
within treatments is the appropriate error term. For
repeated measures, however, you must subtract out
variability due to individual differences from the vari-
ability within treatments to obtain a measure of error.

3. a. A total of 30 participants is needed; three separate
samples, each with n � 10. The F-ratio has 
df � 2, 27.

b. One sample of n � 10 is needed. The F-ratio has 
df � 2, 18.
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5. a. 3 treatments
b. 16 participants

7. 

Source SS df MS

Between treatments 28 2 14 F(2, 10) � 7.78
Within treatments 28 15

Between subjects 10 5
Error 18 10 1.8

Total 56 17

With df � 2, 10, the critical value is 4.10. Reject H0.
There are significant differences among the three
treatments.

9. a. The null hypothesis states that there are no differ-
ences among the three treatments. With df � 2, 8,
the critical value is 4.46.

Source SS df MS

Between treatments 70 2 35 F(2, 8) � 35
Within treatments 26 12

Between subjects 18 4
Error 8 8 1

Total 96 14

Reject H0. There are significant differences among the
three treatments.
b. For these data, �2 � 70

��
78

� 0.897.
c. The analysis of variance shows significant 

mean differences among the three treatments, 
F(2, 8) � 35.00, p � .05, �2 � 0.897.

11. The null hypothesis states that there are no differences
among the three treatments, H0: 	1 � 	2 � 	3. With
df � 2, 6, the critical value is 5.14.

Source SS df MS

Between treatments 8 2 4 F(2, 6) � 6.00
Within treatments 94 9

Between subjects 90 3
Error 4 6 0.67

Total 102 11

Reject H0. There are significant differences among the
three treatments.

13. a. For the independent-measures ANOVA, we obtain:

Source SS df MS

Between treatments 48 2 24 F(2, 15) � 3.46
Within treatments 104 15 6.93
Total 152 17
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With a critical value of 3.68 for � � .05, fail to reject
the null hypothesis.
b. For the repeated-measures ANOVA,

Source SS df MS

Between treatments 48 2 24 F(2, 10) � 12.00
Within treatments 104 15

Between subjects 84 5
Error 20 10 2

Total 152 17

With a critical value of 4.10 for � � .05, reject the null
hypothesis.
c. The repeated-measures ANOVA reduces the error

variance by removing individual differences. This
increases the likelihood that the ANOVA will find
significant differences.

15.

Source SS df MS

Between treatments 2 1 2 F(1, 24) � 4.00
Within treatment 21 48

Between subjects 9 24
Error 12 24 0.5

Total 23 49

17.

Source SS df MS

Between treatments 54 3 18 F(3, 33) � 6.00
Within treatments 140 44

Between subjects 41 11
Error 99 33 3

Total 194 47

19. a. The null hypothesis states that there is no difference
between the two treatments, H0: 	D � 0. The critical
region consists of t values beyond �3.182. The
mean difference is MD � �4. SS for the difference
scores is 48, and t(3) � 2.00. Fail to reject H0.

b. The null hypothesis states that there is no mean
difference between treatments, H0: 	1 � 	2. The
critical value is F � 10.13. 

Source SS df MS

Between treatments 32 1 32 F(1, 3) � 4.00
Within treatments 36 6

Between subjects 12 3
Error 24 3 8

Total 68 7
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Fail to reject H0. Note that F � t2.

21. The means and standard deviations for the five delay
periods are as follows:

1 month 6 months 1 year 2 years 5 years

M � 866.67 M � 816.67 M � 766.67 M � 700.00 M � 583.33

S � 81.65 s � 81.65 s � 81.65 s � 70.71 s � 60.55

Source SS df MS

Between 291,333.3 4 72,833.3 F(4, 20) � 56.75
treatments
Within 143,333.3 25
treatments

Between 117,666.7 5
subjects
Error 25,666.7 20 1,283.3

Total 434,666.7 29

With � � .01, the critical value is 4.43. There are significant
differences.

1. a. In analysis of variance, an independent variable (or
a quasi-independent variable) is called a factor.

b. The values of a factor that are used to create the
different groups or treatment conditions are called
the levels of the factor.

c. A research study with two independent (or quasi-
independent) variables is called a two-factor study. 

3. During the second stage of the two-factor ANOVA the
mean differences between treatments are analyzed into
differences from each of the two main effects and
differences from the interaction.

5. a. M � 10
b. M � 30
c. M � 50

7. a. The scores in treatment 1 are consistently higher
than the scores in treatment 2. There is a main
effect for treatment.

b. The overall mean is around M � 15 for all three
age groups. There is no main effect for age.

c. The two lines are not parallel. Instead, the differ-
ence between the treatments increases as the partic-
ipants get older. Yes, there is an interaction.

9. a.

Source SS df MS

Between treatments 100 3
A 10 1 10 F(1,36) � 2
B 90 1 90 F(1,36) � 18.00
A � B 0 1 0 F(1,36) � 0

Within treatments 180 36 5
Total 280 39

All F-ratios have df � 1, 36 and the critical value is 
F � 4.11. The main effect for factor B is significant,
but factor A and the interaction are not.
b. For factor A, �2 � 10

���
190

� 0.053, for factor B, 
�2 � 90

���
270

� 0.333, and for the interaction, �2 � 0.

11. a. df � 1, 66
b. df � 2, 66
c. df � 2, 66

13. a.

Source SS df MS

Between treatments 340 5
Pouring 60 1 60 F(1,54) � 10.00
Temperature 280 2 140 F(2,54) � 23.33
Interaction 0 2 0 F(2,42) � 0

Within treatments 324 54 6
Total 664 59

b. Temperature and pouring method both have signifi-
cant effects on the bubbles in the wine. However,
the effects are independent, there is no interaction.

15.

Source SS df MS

Between treatments 144 8
A 36 2 18 F(2,72) � 6.00
B 24 2 12 F(2,72) � 4.00
A � B 84 4 21 F(4,72) � 7.00

Within treatments 216 72 3
Total 360 80

CHAPTER 14: TWO-FACTOR ANOVA
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17.

Source SS df MS

Between treatments 116 5
A 28 1 28 F(1,24) � 7.00
B 64 2 32 F(1,24) � 8.00
A � B 24 2 12 F(1,24) � 3.00

Within treatments 240 60 4
Total 356 65

19. a.

Source SS df MS

Between treatments 360 5
Gender 72 1 72 F(1, 12) � 9.00

Treatments 252 2 126 F(1, 12) � 15.75
Gender � treatment 36 2 18 F(1, 12) � 2.25
Within treatments 96 12 8

Total 456 17

With df � 1, 12, the critical value for the gender
main effect is 4.75. The main effect for gender is
significant. With df � 2, 12, the critical value for 
the treatment main effect and the interaction is 3.88.
The main effect for treatments is significant but the
interaction is not.
b. For treatment I, F � 0; for treatment II, 

F � �
54
8
�� � 6.75; and for treatment III, F � �

54
8
�� � 6.75.

With df � 1, 12, the critical value for all three tests
is 4.75. The results indicate a significant difference
between males and females in treatments II and III,
but not in treatment I. 

21. a. The means for the six groups are as follows:

Middle School High School College

Non-User 4.00 4.00 4.00
User 3.00 2.00 1.00

730 APPENDIX C SOLUTIONS FOR ODD-NUMBERED PROBLEMS IN THE TEXT

Source SS df MS

Between treatments 32 5
Use 24 1 24 F(1, 18) � 14.4
School level 4 2 2 F(2, 18) � 1.2
Interaction 4 2 2 F(2, 18) � 1.2

Within treatments 30 18 1.67
Total 62 23

For df � 1, 18 the critical value is 4.41 and for 
df � 2, 18 it is 3.55. The main effect for Facebook
use is significant but the other main effect and the
interaction are not. 
b. Grades are significantly lower for Facebook users.

A difference exists for all three grade levels but
appears to increase as the students get older
although there is no significant interaction.

23. a.

Source SS df MS

Between treatments 216 3
Self-esteem 96 1 96 F(1, 20) � 22.33
Audience 96 1 96 F(1, 20) � 22.33
Interaction 24 1 24 F(1, 20) � 5.58

Within treatments 86 20 4.3
Total 300 23

With df � 1, 20 the critical value is 4.35 for all 
three tests. Both main effects and the interaction are
significant. Overall, there are fewer errors for the high
self-esteem participants and for those working alone.
The audience condition has very little effect on the
high self-esteem participants but a very large effect on
those with low self-esteem.
b. For both main effects, �2 �

96
���
182 � 0.527. For the 

interaction, �2 �
24

���
110 � 0.218.

SECTION IV REVIEW

1. a.

Source SS df MS

Between treatments 40 3 13.33 F(3, 12) � 7.98
Within treatments 20 12 1.67
Total 60 15

With � � .05, the critical value is F � 3.49. Reject the
null hypothesis.

b. �2 �
40

��
60 � 0.67

c. The results show significant differences among the
four levels of severity, F(3, 12) � 7.98, p � .05,
�2 � 0.67.

2. a. The null hypothesis states that there are no 
differences in quality of life among the three time
periods.
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Source SS df MS

Between treatments 56 2 28 F(2, 6) � 10.49
Within treatments 28 9

Between subjects 12 3
Error 16 6 2.67

Total 84 11

With df � 2, 6, the critical value is 5.14. Reject H0. 
b. For these data, �2 �

56
��
72 � 0.778.

c. The results indicate significant changes in life satis-
faction across the three time periods, F(2, 6) � 10.49,
p � .05, �2 � 0.778.

3. An interaction indicates that the effect of one factor
depends on the levels of the other factor. Alternatively,
it indicates that the main effects for one factor are not
consistent across the levels of the other factor.
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4.

Source SS df MS

Between treatments 148 3
A (safety) 98 1 98 F(1,28) � 13.52
B (skill) 32 1 32 F(1,28) � 4.41
A � B 18 1 18 F(1,28) � 2.48

Within treatments 203 28 7.25
Total 351 31

All F-ratios have df � 1, 28 and the critical value is 
F � 4.20. With � � .05 both main effects are signifi-
cant but the interaction is not. Overall driving risk was
significantly higher for those drivers who rated them-
selves as highly skilled compared to those with low
ratings. Also, drivers rated low in safety had signifi-
cantly more risk than those rated high. 

CHAPTER 15: CORRELATION

1. A positive correlation indicates that X and Y change in
the same direction: As X increases, Y also increases. 
A negative correlation indicates that X and Y tend 
to change in opposite directions: As X increases, 
Y decreases.

3. SP � 15

5. a. The scatter plot shows points widely scattered
around a line sloping up to the right.

b. The correlation is small but positive; around 
0.4 to 0.6.

c. For these scores, SSX � 32, SSY � 8, and SP � 8.
The correlation is r �

8
��
16 � 0.50.

7. a. The scatter plot shows points moderately scattered
around a line sloping down to the right.

b. SSX � 10, SSY � 40, and SP � �13. The correla-
tion is r � �

13
��
20 � �0.65.

9. a. The scatter plot shows points clustered around a
line sloping up to the right.

b. SSX � 18, SSY � 18, and SP � 5. The correlation
is r � 

5
��
18 � 0.278.

11. a. For the children, SS � 32 and for the birth parents,
SS � 14. SP � 15. The correlation is r � 0.709.

b. For the children, SS � 32 and for the adoptive
parents SS � 16. SP � 3. The correlation is 
r � 0.133.

c. The children’s behavior is strongly related to 
their birth parents and only weakly related to 

their adoptive parents. The data suggest that the
behavior is inherited rather than learned.

13. a. For the men’s weights, SS � 18 and for their 
incomes, SS � 13,060. SP � 281. The correlation
is r � 0.580.

b. With n � 8, df � 6 and the critical value is 0.707.
The correlation is not significant.

15. a. r � 0.707
b. r � 0.468
c. r � 0.374

17. a. rXY-Z � 0.38��
0.57

� 0.667

b. rXZ-Y � 0.04��
0.428

� 0.093

19. a. rS � �0.907
b. With n � 11, the critical value is 0.618. The corre-

lation is significant. 

21. a. rS � �0.985
b. For n � 10, the critical values are 0.648 and 0.794

for 5 and 0.1, respectively. The correlation is 
significant at either level.

23. Using the eating concern scores as the X variable and
coding males as 1 and females as 0 for the Y variable
produces SSX � 1875.6, SSY � 3.6, and SP � �50.4.
The point-biserial correlation is r � �0.613.
(Reversing the codes for males and females will
change the sign of the correlation.)
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c. F � 20.23 with df � 1, 7. The equation accounts
for a significant portion of the variance.

15. a. The standard error of estimate is �36/16������ � 1.50.
b. The standard error of estimate is �36/36������ � 1.00.

17. a. df � 1, 23
b. n � 20 pairs of scores

19. a. F �
2.2
���
1.04 � 2.11. With df � 2, 15, the critical value is

3.68. The equation does not account for a significant
portion of the variance.

b. F �
2.2

����
3.12 � 0.705. The equation is not significant.

21. a. SSchurches � 390, SSpopulation � 10, and SScrime � 390.
SP for churches and population is 60, SP for churches
and crime is 363, and SP for population and crime 
is 60. The regression equation is. Ŷ � 0.1X1 �
5.4X2 � 2.7.

b. R2 � 0.924 or 92.4%
c. Population by itself predicts 92.4% of the variance.

Nothing is gained by adding churches as a second
variable.

23. Using the biological parents as a single predictor 
accounts for r2 � 0.503 or 50.3% of the variance. The
multiple regression equation accounts for R2 � 58.7%
(see problem 22). The extra variance predicted by
adding the adoptive parents as a second predictor is
58.7 � 50.3 � 8.4% and has df � 1. The residual
from the multiple regression is 1 � R2 � 41.3% and
has df � 6. The F-ratio is 8.4/(41.3/6) � 1.22. With 
df � 1, 6 the F-ratio is not significant.

25. n � 39

CHAPTER 17: CHI-SQUARE TESTS

1. Nonparametric tests make few if any assumptions
about the populations from which the data are 
obtained. For example, the populations do not need to
form normal distributions, nor is it required that differ-
ent populations in the same study have equal variances
(homogeneity of variance assumption). Parametric
tests require data measured on an interval or ratio
scale. For nonparametric tests, any scale of measure-
ment is acceptable.

3. a. The null hypothesis states that there is no prefer-
ence among the four colors; p �

1
�
4 for all cate-

gories. The expected frequencies are fe � 15 for all
categories, and chi-square � 4.53. With df � 3, the
critical value is 7.81. Fail to reject H0 and conclude
that there are no significant preferences.

b. The results indicate that there are no significant
preferences among the four colors, �2(3, N � 60)
� 4.53, p 
 .05.

5. The null hypothesis states that wins and loses are
equally likely. With 64 games, the expected frequen-
cies are 32 wins and 32 losses. With df � 1 the critical
value is 3.84, and the data produce a chi-square of
6.25. Reject the null hypothesis and conclude that
home team wins are significantly more common than
would be expected by chance. 

7. a. The null hypothesis states that couples with the
same initial do not occur more often than would 
be expected by chance. For a sample of 400, the
expected frequencies are 26 with the same initial
and 374 with different initials. With df � 1 the

CHAPTER 16: INTRODUCTION TO REGRESSION

1
x

Y

0

6

4

2

2 3 4 5 6

Y � �2X � 4 Y � X � 4

 7

3. a. r � 0.80
b. Ŷ � 2X � 8

5. The standard error of estimate is a measure of the
average distance between the predicted Y points 
from the regression equation and the actual Y points 
in the data.

7. SSX � 32, SSY � 8, SP � 8. The regression equation 
is Ŷ � X � 3 

9. SSregression � r2SSY � 90.02 with df � 1. MSresidual

� 18
��
1

� 4.5. F �
90.02
�����
4.5 � 20.00. With df � 1, 4, the 

F-ratio is significant with � � .05.

11. a. SSweight � 20, SSincome � 7430, SP � �359. 
Ŷ � �17.95X � 119.85

b. r � �0.931 and r2 � 0.867
c. F � 52.15 with df � 1, 8. The regression 

equation is significant with � � .05 or � � .01.

13. a. Ŷ � 1.38X � 7.34
b. r2 � 0.743 or 74.3%
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critical value is 3.84, and the data produce a 
chi-square of 5.92. Reject the null hypothesis.

b. A larger sample should be more representative of
the population. If the sample continues to be differ-
ent from the hypothesis as the sample size increases,
eventually the difference will be significant.

9. a. H0 states that the distribution of automobile acci-
dents is the same as the distribution of registered
drivers: 16% under age 20, 28% age 20 to 29, and
56% age 30 or older. With df � 2, the critical value
is 5.99. The expected frequencies for these three
categories are 48, 84, and 168. Chi-square � 13.76.
Reject H0 and conclude that the distribution of auto-
mobile accidents is not identical to the distribution of
registered drivers. 

b. The chi-square test shows that the age distribution
for people in automobile accidents is significantly
different from the age distribution of licensed
drivers, �2(3, N � 180) � 13.76, p � .05.

11. The null hypothesis states that there are no preferences
among the three designs; p �

1
�
3 for all categories. 

With df � 2, the critical value is 5.99. The expected
frequencies are fe � 40 for all categories, and chi-square
� 8.60. Reject H0 and conclude that there are signifi-
cant preferences.

13. The null hypothesis states that there is no relationship
between the type of music and whether the women
give their phone numbers. With df � 1, the critical
value is 3.84. The expected frequencies are:

Phone Number No Number

Romantic Music 15 25 40

Neutral Music 15 25 40

30 50

Chi-square � 7.68. Reject H0.

15. a. The null hypothesis states that the distribution of
opinions is the same for those who live in the city
and those who live in the suburbs. For df � 1 and 
� � .05, the critical value for chi-square is 3.84.
The expected frequencies are:

Favor Oppose

City 30 20

Suburb 60 40

For these data, chi-square � 3.12. Fail to reject H0 and
conclude that opinions in the city are not different from
those in the suburbs.
b. The phi coefficient is 0.144.

17. a. The null hypothesis states that the proportion who
falsely recall seeing broken glass should be the
same for all three groups. The expected frequency
of saying yes is 9.67 for all groups, and the 
expected frequency for saying no is 40.33 for all
groups. With df � 2, the critical value is 5.99. For
these data, chi-square � 7.78. Reject the null 
hypothesis and conclude that the likelihood of
recalling broken glass depends on the question that
the participants were asked.

b. Cramérs V � 0.228.
c. Participants who were asked about the speed of 

the cars that “smashed into” each other were more
than two times more likely to falsely recall seeing 
broken glass.

d. The results of the chi-square test indicate that the
phrasing of the question had a significant effect 
on the participants’ recall of the accident, 
�2(2, N � 150) � 7.78, p � .05, V � 0.228.

19. The null hypothesis states that IQ and gender are inde-
pendent. The distribution of IQ scores for boys should
be the same as the distribution for girls. With df � 2
and and � � .05, the critical value is 5.99. The 
expected frequencies are 15 low IQ, 48 medium, and
17 high for both boys and girls. For these data, 
chi-square is 3.76. Fail to reject the null hypothesis.
These data do not provide evidence for a significant
relationship between IQ and gender.

21. The null hypothesis states that there is no difference
between the distribution of preferences predicted by
women and the actual distribution for men. With 
df � 3 and � � .05, the critical value is 7.81. The
expected frequencies are:

Somewhat Slightly Slightly Somewhat 
Thin Thin Heavy Heavy

Women 22.9 22.9 22.9 11.4

Men 17.1 17.1 17.1 8.6

Chi-square � 9.13. Reject H0 and conclude that there is
a significant difference in the preferences predicted by
women and the actual preferences expressed by men.

23. a. The null hypothesis states that there is no relation-
ship between IQ and volunteering. With df � 2 and
� � .05, the critical value is 5.99. The expected
frequencies are:

High IQ Medium IQ Low IQ

Volunteer 37.5 75 37.5

Not Volunteer 12.5 25 12.5
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The chi-square statistic is 4.75. Fail to reject H0 with 
� � .05 and df � 2.

25. The null hypothesis states that there is no relationship
between the season of birth and schizophrenia. With 
df � 3 and � � .05, the critical value is 7.81. The
expected frequencies are:

Summer Fall Winter Spring

No Disorder 23.33 23.33 26.67 26.67

Schizophrenia 11.67 11.67 13.33 13.33
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Chi-square � 3.62. Fail to reject H0 and conclude that
these data do not provide enough evidence to conclude
that there is a significant relationship between the
season of birth and schizophrenia.

CHAPTER 18: THE BINOMIAL TEST

1. H0: p(home team win) � .50 (no preference). The
critical boundaries are z � �1.96. With X � 42, 
	 � 32, and � � 4, we obtain z � 2.50. Reject H0 and
conclude that there is a significant difference. Home
teams win significantly more than would be expected
by chance. 

3. H0: p � q � �
1
2

� (right and left are equally common).
The critical boundaries are z � �2.58. With X � 104,
	 � 72, and � � 6, we obtain z � 5.33. Reject H0 and
conclude that right- and left-handed rats are not
equally common. 

5. H0: p � 0.065 (just chance). The critical boundaries are
z � �1.96. With X � 38, 	 � 26, and � � 4.93, we
obtain z � 2.43. Reject H0. The initials of spouses are
significantly different from what would be expected by
chance.

7. H0: p � .08 (still 8% learning disabled). The critical
boundaries are z � �1.96. With X � 42, 	 � 24, and
� � 4.70, we obtain z � 3.83. Reject H0 and conclude
that there has been a significant change in the propor-
tion of students classified as learning disabled.

9. H0: p � .25 (the general population has the same pro-
portion of belief as the psychotherapists). The critical
boundaries are z � �1.96. With X � 65, 	 � 48, and 
� � 6, we obtain z � 2.83. Reject H0 and conclude that
the proportion of belief is significantly different for the
general population and for psychotherapists. 

11. H0: p(accident) � 0.12 (no change). The critical
boundaries are z � �1.96. With X � 44, 	 � 60, and
� � 7.27, we obtain z � �2.20. Reject H0, there has
been a significant change in the accident rate.

13. H0: p �
1

�
4 � p(guessing correctly). The critical 

boundaries are z � �1.96. With X � 32, 	 � 25, and
� � 4.33, we obtain z � 1.62. Fail to reject H0 and
conclude that this level of performance is not signifi-
cantly different from chance.

15. a. H0: p � q � �
1
2

� (positive and negative correlations
are equally likely). The critical boundaries are 
z � �1.96. With X � 25, 	 � 13.5, and � � 2.60,
we obtain z � 4.42. Reject H0, positive and nega-
tive correlations are not equally likely.

b. The critical boundaries are z � �1.96. With 
X � 20, 	 � 13.5, and � � 2.60, we obtain 
z �2.50. Reject H0, positive and negative correla-
tions are not equally likely.

17. H0: p � .30 and q � .70 (proportions for the special
program are the same as in the population). The critical
boundaries are z � �1.96. The binomial distribution
has 	 � 27 and � � 4.35. With X � 43 we obtain 
z � 3.68. Reject H0 and conclude that there is a signifi-
cant difference between special program students and
the general population.

19. H0: p �
1

�
2 � p(reduced reactions). The critical bound-

aries are z � �1.96. The binomial distribution has 
	 � 32 and � � 4. With X � 47 we obtain 
z � 3.75. Reject H0 and conclude that there is evi-
dence of significantly reduced allergic reactions. 

21. H0: p � q �
1

�
2 (higher and lower grades are equally

likely). The critical boundaries are z � �2.58. The
binomial distribution has 	 � 20 and � � 3.16. With
X � 29 we obtain z � 2.85. Reject H0 and conclude
that there are significantly more higher grades than
would be expected by chance.

23. a. H0: p �
1

�
3 and q �

2
�
3 (just guessing). The 

critical boundaries are z � �1.96. The binomial
distribution has 	 � 12 and � � 2.83. With 
X � 25 we obtain z � 4.59. Reject H0 and con-
clude that the children with autism are performing
significantly better than chance.

b. H0: p �
1

�
3 and q �

2
�
3 (just guessing). The 

critical boundaries are z � �1.96. The binomial
distribution has 	 � 12 and � � 2.83. With 
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X � 16 we obtain z � 1.41. Fail to reject H0

and conclude that the children with SLI are not
performing significantly better than chance.

25. H0: p � q �
1

�
2 (any change in grade point average is

due to chance). The critical boundaries are z � �2.58.
The binomial distribution has 	 � 22.5 and � � 3.35.
With X � 31 we obtain z � 2.54. Fail to reject H0 and
conclude that there is no significant change in grade
point average after the workshop.

27. a. H0: p � q �
1

�
2 (the training has no effect). The critical

boundaries are z � �1.96. Discarding the 11 people
who showed no change, the binomial distribution has
	 � 19.5 and � � 3.12. With X � 29 we obtain 
z � 3.05. Reject H0 and conclude that biofeedback
training has a significant effect.

b. Discarding only 1 participant and dividing the other
10 equally, the binomial distribution has 	 � 24.5
and � � 3.50. With X � 34 we obtain z � 2.71.
Reject H0.

SECTION V REVIEW

1. a. SSX � 40, SSY � 5984, SP � 480, and the Pearson
correlation is r � 0.981.

b. The Spearman correlation is rS � 1.00.

2. a. For these data, SSwife � 172, SShusband � 106, and
SP � 122. The Pearson correlation is r � 0.904. 

b. b �
122

���
172 � 0.709 and a � 9 � 0.709(7) � 4.037.

Ŷ � 0.709X � 4.037.

3. The null hypothesis states that there is no preference
among the three photographs; p �

1
�
3 for all

categories. The expected frequencies are fe � 50 for
all categories, and chi-square � 20.28. With df � 2,
the critical value is 5.99. Reject H0 and conclude that
there are significant preferences

4. a. The null hypothesis states that there is no relationship
between personality and heart disease. For df � 1 and

� � .05, the critical value for chi-square is 3.84. The
expected frequencies are:

No Disease Heart Disease

Type A 40 10

Type B 120 30

For these data, chi-square � 10.67. Reject H0 and
conclude that there is a significant relationship between
personality and heart disease. 
b. � � 0.231

5. H0: p � 0.20 (correct predictions are just chance). The
critical boundaries are z � �1.96. With X � 27, 	 � 20,
and � � 4, we obtain z � 1.75. Fail to reject H0 and con-
clude that this level of performance is not significantly
better than chance.

CHAPTER 19: CHOOSING THE RIGHT STATISTICS

1. The mean and standard deviation could be used to
describe the set of scores before treatment and the set
of scores after treatment. Or a difference score could
be computed for each participant and the results could
be described with the mean and standard deviation for
the set of difference scores. A repeated-measures t test
would evaluate the significance of the mean difference
and effect size would be measured by Cohen’s d or r2.

3. The data would form a 2 � 2 frequency distribution
matrix and the proportion in each cell would describe
the result. A chi-square test for independence would
determine whether the proportions for the peer mentor
group are significantly different from the proportions
for other freshmen. Effect size would be measured
with a phi-coefficient.

5. The mean and standard deviation could be used to
describe the set of scores with texting and the set of

scores without texting. Or a difference score could be
computed for each participant and the results could be
described with the mean and standard deviation for the
set of difference scores. A repeated-measures t test
would evaluate the significance of the mean difference
and effect size would be measured by Cohen’s d or r2.

7. The mean and standard deviation could be used to
describe the set of scores for each condition. An
independent-measures t test would evaluate the 
significance of the mean difference, and effect size
would be measured by Cohen’s d or r2.

9. The mean and standard deviation could be used to
describe the set of scores for each condition. An
independent-measures ANOVA would evaluate the
significance of the mean differences and effect size
would be measured by �2.
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11. The mean and standard deviation could be used to
describe the set of scores for each of the four birth
order groups. An independent-measures ANOVA
would evaluate the significance of the mean differ-
ences and effect size would be measured by �2.

13. The mean and standard deviation could be used to
describe the set of scores for each of the four weight
groups. An independent-measures ANOVA would
evaluate the significance of the mean differences and
effect size would be measured by �2.

15. The mean and standard deviation rating could be used
to describe the group. If the rating scale has a neutral
point, a single-sample t test could be used to determine
whether the mean optimism level is significantly dif-
ferent from neutral.

17. a. The data could be described by how the higher and
lower ranks are clustered in the two groups. A
Mann-Whitney test could determine whether there
is a significant difference between the groups.

b. With two ordinal scores for each child, a Spearman
correlation could measure and describe the relation-
ship between variables. The significance of the
correlation could be determined by comparing 
the sample value with the critical values listed 
in Table B7.

19. The mean and standard deviation could be used 
to describe the set of scores for each group. An 
independent-measures t test would evaluate the 
significance of the mean difference, and effect size
would be measured by Cohen’s d or r2.

21. The proportion or percentage showing decreased pain
could be used to describe the results. A binomial sign
test would evaluate the significance of the treatment.

23. The mean and standard deviation could be used 
to describe the set of scores for each group. An 
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independent-measures t test would evaluate the signifi-
cance of the mean difference, and effect size would be
measured by Cohen’s d or r2.

25. a. The mean and standard deviation could be used to
describe the set of scores for each carrier. A repeated-
measures ANOVA would evaluate the significance 
of the mean differences, and effect size would be
measured by �2.

b. The data would form a 3 � 3 frequency distribution
matrix and the proportion in each cell would de-
scribe the results. A chi-square test for independ-
ence would determine whether the proportions of
1st-, 2nd-, and 3rd-place ratings are significantly
different from one carrier to another. Effect size
would be measured with Cramér’s V. Alternatively,
the data form three sets of scores, one for each
phone. The scores are the rankings given by the
participants. A Friedman test could evaluate the
significance of the difference between carriers.

c. The three proportions would describe the relative
preference for the carriers. A chi-square test for
goodness of fit would determine whether there are
significant preferences among the three carriers.

27. The mean and standard deviation could be used to
describe the three deprivation conditions. A repeated-
measures ANOVA would evaluate the significance of
the mean differences, and effect size would be meas-
ured by �2.

29. The data would form a 2 � 2 frequency distribution
matrix, and the proportion in each cell would describe
the results. A chi-square test for independence would
determine whether the proportions using the stairs and
elevators are significantly different from one condition
to the other. Effect size would be measured with a phi-
coefficient.
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General Instructions 
for Using SPSS

APPENDIX D

The Statistical Package for the Social Sciences, commonly known as SPSS, is a 
computer program that performs statistical calculations, and is widely available on
college campuses. Detailed instructions for using SPSS for specific statistical calcu-
lations (such as computing sample variance or performing an independent-measures
t test) are presented at the end of the appropriate chapter in the text. Look for the
SPSS logo in the Resources section at the end of each chapter. In this appendix, we
provide a general overview of the SPSS program. 

SPSS consists of two basic components: A data editor and a set of statistical com-
mands. The data editor is a huge matrix of numbered rows and columns. To begin any
analysis, you must type your data into the data editor. Typically, the scores are entered
into columns of the editor. Before scores are entered, each of the columns is labeled
“var.” After scores are entered, the first column becomes VAR00001, the second 
column becomes VAR00002, and so on. To enter data into the editor, the Data View
tab must be set at the bottom left of the screen. If you want to name a column (instead
of using VAR00001), click on the Variable View tab at the bottom of the data editor.
You will get a description of each variable in the editor, including a box for the name.
You may type in a new name using up to 8 lowercase characters (no spaces, no 
hyphens). Click the Data View tab to go back to the data editor.

The statistical commands are listed in menus that are made available by clicking
on Analyze in the tool bar at the top of the screen. When you select a statistical com-
mand, SPSS typically asks you to identify exactly where the scores are located and 
exactly what other options you want to use. This is accomplished by identifying the
column(s) in the data editor that contain the needed information. Typically, you are
presented with a display similar to the following figure. On the left is a box that lists
all of the columns in the data editor that contain information. In this example, we have
typed values into columns 1, 2, 3, and 4. On the right is an empty box that is waiting
for you to identify the correct column. For example, suppose that you wanted to do a
statistical calculation using the scores in column 3. You should highlight VAR00003
by clicking on it in the left-hand box, then click the arrow to move the column label
into the right hand box. (If you make a mistake, you can highlight the variable in the
right-hand box, which will reverse the arrow so that you can move the variable back
to the left-hand box.)
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SPSS DATA FORMATS

The SPSS program uses two basic formats for entering scores into the data matrix. Each
is described and demonstrated as follows:

1. The first format is used when the data consist of several scores (more than one)
for each individual. This includes data from a repeated-measures study, in
which each person is measured in all of the different treatment conditions, and
data from a correlational study where there are two scores, X and Y, for each
individual. Table D1 illustrates this kind of data and shows how the scores
would appear in the SPSS data matrix. Note that the scores in the data matrix
have exactly the same structure as the scores in the original data. Specifically,
each row of the data matrix contains the scores for an individual participant,
and each column contains the scores for one treatment condition. 

VAR00001
VAR00002
VAR00003
VAR00004

Variable(s)

TABLE D1

Data for a repeated-measures or correlational study with several scores for each individ-
ual. The left half of the table (a) shows the original data, with three scores for each
person; and the right half (b) shows the scores as they would be entered into the SPSS
data matrix. Note: SPSS automatically adds the two decimal points for each score. For
example, you type in 10 and it appears as 10.00 in the matrix.

(a) Original data

Treatments

Person I II III

A 10 14 19
B 9 11 15
C 12 15 22
D 7 10 18
E 13 18 20

(b) Data as entered into the SPSS data matrix

VAR0001 VAR0002 VAR0003 var

1 10.00 14.00 19.00

2 9.00 11.00 15.00

3 12.00 15.00 22.00

4 7.00 10.00 18.00

5 13.00 18.00 20.00

30991_appD_ptg01_hr_737-740.qxd  9/2/11  11:46 PM  Page 738



APPENDIX D GENERAL INSTRUCTIONS FOR USING SPSS 739

2. The second format is used for data from an independent-measures study using a
separate group of participants for each treatment condition. This kind of data is
entered into the data matrix in a stacked format. Instead of having the scores
from different treatments in different columns, all of the scores from all of the
treatment conditions are entered into a single column so that the scores from
one treatment condition are literally stacked on top of the scores from another
treatment condition. A code number is then entered into a second column 
beside each score to tell the computer which treatment condition corresponds 
to each score. For example, you could enter a value of 1 beside each score from
treatment #1, enter a 2 beside each score from treatment #2, and so on. Table D2
illustrates this kind of data and shows how the scores would be entered into the
SPSS data matrix.

TABLE D2

Data for an independent-measures study with a different group of participants in each
treatment condition. The left half of the table shows the original data, with three separate
groups, each with five participants, and the right half shows the scores as they would be
entered into the SPSS data matrix. Note that the data matrix lists all 15 scores in the
same column, then uses code numbers in a second column to indicate the treatment
condition corresponding to each score.

(a) Original data

Treatments

I II III

10 14 19
9 11 15

12 15 22
7 10 18

13 18 20

(b) Data as entered into the SPSS data matrix

VAR0001 VAR0002 var

1 10.00 1.00

2 9.00 1.00

3 12.00 1.00

4 7.00 1.00

5 13.00 1.00

6 14.00 2.00

7 11.00 2.00

8 15.00 2.00

9 10.00 2.00

10 18.00 2.00

11 19.00 3.00

12 15.00 3.00

13 22.00 3.00

14 18.00 3.00

15 20.00 3.00
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E.1 DATA FROM AN ORDINAL SCALE

Occasionally, a research study generates data that consist of measurements on an ordi-
nal scale. Recall from Chapter 1 that an ordinal scale simply produces a rank ordering
for the individuals being measured. For example, a kindergarten teacher may rank chil-
dren in terms of their maturity, or a business manager may classify job applicants as
outstanding, good, and average.  

In addition to obtaining measurements from an ordinal scale, a researcher may begin
with a set of numerical measurements and convert these scores into ranks. For exam-
ple, if you had a listing of the actual heights for a group of individuals, you could
arrange the numbers in order from greatest to least. This process converts data from
an interval or a ratio scale into ordinal measurements. In Chapter 17 (page 593), we
identify several reasons for converting numerical scores into nominal categories.
These same reasons also provide justification for transforming scores into ranks. The
following list should give you an idea of why there can be an advantage to using ranks
instead of scores.

1. Ranks are simpler. If someone asks you how tall your sister is, you could 
reply with a specific numerical value, such as 5 feet 73—

4 inches tall. Or you
could answer, “She is a little taller than I am.” For many situations, the relative 
answer would be better.

2. The original scores may violate some of the basic assumptions that underlie certain
statistical procedures. For example, the t tests and ANOVA assume that the data
come from normal distributions. Also, the independent-measures tests assume that
the different populations all have the same variance (the homogeneity-of-variance
assumption). If a researcher suspects that the data do not satisfy these assumptions,
it may be safer to convert the scores to ranks and use a statistical technique 
designed for ranks.

3. The original scores may have unusually high variance. Variance is a major com-
ponent of the standard error in the denominator of t statistics and the error term
in the denominator of F-ratios. Thus, large variance can greatly reduce the likeli-
hood that these parametric tests will find significant differences. Converting the
scores to ranks essentially eliminates the variance. For example, 10 scores have
ranks from 1 to 10 no matter how variable the original scores are.

4. Occasionally, an experiment produces an undetermined, or infinite, score. For
example, a rat may show no sign of solving a particular maze after hundreds of
trials. This animal has an infinite, or undetermined, score. Although there is no
absolute score that can be assigned, you can say that this rat has the highest
score for the sample and then rank the rest of the scores by their numerical
values.

Whenever you are transforming numerical scores into ranks, you may find two or more
scores that have exactly the same value. Because the scores are tied, the transformation
process should produce ranks that are also tied. The procedure for converting tied
scores into tied ranks was presented in Chapter 15 (page 539) when we introduced the
Spearman correlation, and is repeated briefly here. First, you list the scores in order, 
including tied values. Second, you assign each position in the list a rank (1st, 2nd, and

RANKING TIED SCORES

RANKING NUMERICAL
SCORES
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so on). Finally, for any scores that are tied, you compute the mean of the tied ranks, and
use the mean value as the final rank. The following set of scores demonstrates this
process for a set of n � 8 scores.

Original scores: 3 4 4 7 9 9 9 12
Position ranks: 1 2 3 4 5 6 7 8
Final ranks: 1 2.5 2.5 4 6 6 6 8

You should recall from Chapter 1 that ordinal values tell you only the direction from
one score to another, but provide no information about the distance between scores.
Thus, you know that first place is better than second or third, but you do not know
how much better. Because the concept of distance is not well defined with ordinal
data, it generally is considered unwise to use traditional statistics such as t tests and
analysis of variance with scores consisting of ranks or ordered categories. Therefore,
statisticians have developed special techniques that are designed specifically for use
with ordinal data.

In this chapter we introduce four hypothesis-testing procedures that are used
with ordinal data. Each of the new tests can be viewed as an alternative for a com-
monly used parametric test. The four tests and the situations in which they are used
are as follows:

1. The Mann-Whitney test uses data from two separate samples to evaluate the
difference between two treatment conditions or two populations. The Mann-
Whitney test can be viewed as an alternative to the independent-measures 
t hypothesis test introduced in Chapter 10.

2. The Wilcoxon test uses data from a repeated-measures design to evaluate the
difference between two treatment conditions. This test is an alternative to the
repeated-measures t test from Chapter 11.

3. The Kruskal-Wallis test uses data from three or more separate samples to 
evaluate the differences between three or more treatment conditions (or 
populations). The Kruskal-Wallis test is an alternative to the single-factor,
independent-measures ANOVA introduced in Chapter 12.

4. The Friedman test uses data from a repeated-measures design to compare the
differences between three or more treatment conditions. This test is an alterna-
tive to the repeated-measures ANOVA from Chapter 13.

In each case, you should realize that the new, ordinal-data tests are back-up proce-
dures that are available in situations in which the standard, parametric tests cannot be
used. In general, if the data are appropriate for an ANOVA or one of the t tests, then
the standard test is preferred to its ordinal-data alternative.

E.2
THE MANN-WHITNEY U-TEST: AN ALTERNATIVE TO THE
INDEPENDENT-MEASURES t TEST

Recall that a study using two separate samples is called an independent-measures study
or a between-subjects study. The Mann-Whitney test is designed to use the data 
from two separate samples to evaluate the difference between two treatments (or 
two populations). The calculations for this test require that the individual scores in the

STATISTICS FOR ORDINAL
DATA
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two samples be rank-ordered. The mathematics of the Mann-Whitney test are based on
the following simple observation:

A real difference between the two treatments should cause the scores in one sample to be 
generally larger than the scores in the other sample. If the two samples are combined and all
the scores are ranked, then the larger ranks should be concentrated in one sample and the
smaller ranks should be concentrated in the other sample.

Because the Mann-Whitney test compares two distributions (rather than two means),
the hypotheses tend to be somewhat vague. We state the hypotheses in terms of a con-
sistent, systematic difference between the two treatments being compared.

H0: There is no difference between the two treatments. Therefore, there is
no tendency for the ranks in one treatment condition to be systemati-
cally higher (or lower) than the ranks in the other treatment condition.

H1: There is a difference between the two treatments. Therefore, the ranks
in one treatment condition are systematically higher (or lower) than the
ranks in the other treatment condition.

Again, we begin by combining all the individuals from the two samples and then rank
ordering the entire set. If you have a numerical score for each individual, combine the
two sets of scores and rank order them. The Mann-Whitney U is then computed as if
the two samples were two teams of athletes competing in a sports event. Each individ-
ual in sample A (the A team) gets one point whenever he or she is ranked ahead of an
individual from sample B. The total number of points accumulated for sample A is
called UA. In the same way, a U value, or team total, is computed for sample B. The
final Mann-Whitney U is the smaller of these two values. This process is demonstrated
in the following example.

We begin with two separate samples with n � 6 scores in each.

Sample A (treatment 1): 27 2 9 48 6 15
Sample B (treatment 2): 71 63 18 68 94 8

Next, the two samples are combined, and all 12 scores are ranked. 

Ranks for Sample A 7 1 4 8 2 5
Ranks for Sample B 11 9 6 10 12 3

Each individual in sample A is assigned 1 point for every score in sample B that
has a higher rank. UA � 4 � 6 � 5  � 4 � 6 � 5  � 30. Similarly, UB � 0 � 0 �
2 � 0 � 0 � 4  � 6.

Thus, the Mann-Whitney U is 6. As a simple check on your arithmetic, note that
UA � UB � nAnB. For these data, 30 � 6 � 6(6).  

Because the process of counting points to determine the Mann-Whitney U can be 
tedious, especially with large samples, there is a formula that will generate the U value
for each sample. To use this formula, you combine the samples and rank-order all 
the individuals as before. Then you must find �RA, which is the sum of the ranks for

COMPUTING U FOR LARGE
SAMPLES

E X A M P L E  E . 1

CALCULATING 
THE MANN-WHITNEY U

THE NULL HYPOTHESIS 
FOR THE MANN-WHITNEY

TEST
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individuals in sample A, and the corresponding �RB for sample B. The U value for each
sample is then computed as follows: For sample A,

and for sample B,

These formulas are demonstrated using the data from Example E.1. For sample A,
the sum of the ranks is

�RA � 1 � 2 � 4 � 5 � 7 � 8 � 27

For sample B, the sum of the ranks is

�RB � 3 � 6 � 9 � 10 � 11 � 12 � 51

By using the special formula, for sample A,

For sample B,

Notice that these are the same U values we obtained in Example E.1 using the
counting method. The Mann-Whitney U value is the smaller of these two, U � 6

Table B9 in Appendix B lists critical value of U for � � .05 and � � .01. The null 
hypothesis is rejected when the sample data produce a U that is less than or equal to
the table value.

In Example E.1 both samples have n � 6 scores, and the table shows a critical
value of U � 5 for a two-tailed test with � � .05. This means that a value of U � 5 or
smaller is very unlikely to occur (probability less than .05) if the null hypothesis is true.
The data actually produced U � 6, which is not in the critical region. Therefore, we fail
to reject H0 because the data do not provide enough evidence to conclude that there is
a significant difference between the two treatments.

There are no strict rules for reporting the outcome of a Mann-Whitney U-test.
However, APA guidelines suggest that the report include a summary of the data 
(including such information as the sample size and the sum of the ranks) and the 
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obtained statistic and p value. For the study presented in Example E.1, the results could
be reported as follows:

The original scores were ranked ordered and a Mann-Whitney U-test was used to compare the
ranks for the n � 6 participants in treatment A and the n � 6 participants in treatment B. The
results indicate no significant difference between treatments, U � 6, p � .05, with the sum of
the ranks equal to 27 for treatment A and 51 for treatment B.

When the two samples are both large (about n � 20) and the null hypothesis is true, the
distribution of the Mann-Whitney U statistic tends to approximate a normal shape. In
this case, the Mann-Whitney hypotheses can be evaluated using a z-score statistic and
the unit normal distribution. The procedure for this normal approximation is as follows:

1. Find the U values for sample A and sample B as before. The Mann-Whitney 
U is the smaller of these two values.

2. When both samples are relatively large (around n � 20 or more), the distribu-
tion of the Mann-Whitney U statistic tends to form a normal distribution with

The Mann-Whitney U obtained from the sample data can be located in this
distribution using a z-score:

3. Use the unit normal table to establish the critical region for this z-score. For
example, with � � .05, the critical values would be ±1.96.

Usually the normal approximation is used with samples of n � 20 or larger; how-
ever, we will demonstrate the formulas with the data that were used in Example E.1. This
study compared two treatments, A and B, using a separate sample of n � 6 for each treat-
ment. The data produced a value of U � 6. The z-score corresponding to U � 6 is
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With � � .05, the critical value is z � 
1.96. Our computed z-score, z � �1.92, is
not in the critical region, so the decision is to fail to reject H0. Note that we reached the
same conclusion for the original test using the critical values in the Mann-Whitney U table.

E.3
THE WILCOXON SIGNED-RANKS TEST: AN ALTERNATIVE
TO THE REPEATED-MEASURES t TEST

The Wilcoxon test is designed to evaluate the difference between two treatments, using the
data from a repeated-measures experiment. Recall that a repeated-measures study involves
only one sample, with each individual in the sample being measured twice. The difference
between the two measurements for each individual is recorded as the score for that indi-
vidual. The Wilcoxon test requires that the differences be rank-ordered from smallest to
largest in terms of their absolute magnitude, without regard for sign or direction. For 
example, Table E.1 shows differences scores and ranks for a sample of n � 8 participants. 

TABLE E.1

Ranking difference scores. Note
that the differences are ranked
by magnitude, independent of
direction. 

Difference from 
Participant Treatment 1 to Treatment 2 Rank

A �4 1
B �14 5
C �5 2
D �20 7
E �6 3
F �16 6
G �8 4
H �24 8

For the Wilcoxon test, there are two possibilities for tied scores:

1. A participant may have the same score in treatment 1 and in treatment 2, result-
ing in a difference score of zero.

2. Two (or more) participants may have identical difference scores (ignoring the
sign of the difference).

When the data include individuals with difference scores of zero, one strategy is to
discard these individuals from the analysis and reduce the sample size (n). However, this
procedure ignores the fact that a difference score of zero is evidence for retaining the null
hypothesis. A better procedure is to divide the zero differences evenly between the 
positives and negatives. (With an odd number of zero differences, discard one and 
divide the rest evenly.) When there are ties among the difference scores, each of the tied
scores should be assigned the average of the tied ranks. This procedure was presented in
detail in an earlier section of this appendix (see page 742).

The null hypothesis for the Wilcoxon test simply states that there is no consistent, sys-
tematic difference between the two treatments.

If the null hypothesis is true, any differences that exist in the sample data must be
due to chance. Therefore, we would expect positive and negative differences to be 
intermixed evenly. On the other hand, a consistent difference between the two treatments
should cause the scores in one treatment to be consistently larger than the scores in 

HYPOTHESES FOR THE
WILCOXON TEST

ZERO DIFFERENCES AND TIED
SCORES
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the other. This should produce difference scores that tend to be consistently positive or
consistently negative. The Wilcoxon test uses the signs and the ranks of the difference
scores to decide whether there is a significant difference between the two treatments.

H0: There is no difference between the two treatments. Therefore, in the
general population there is no tendency for the difference scores to be
either systematically positive or systematically negative.

H1: There is a difference between the two treatments. Therefore, in the
general population the difference scores are systematically positive or
systematically negative.

After ranking the absolute values of the difference scores, the ranks are separated into
two groups: those associated with positive differences (increases) and those associated
with negative differences (decreases). Next, the sum of the ranks is computed for each
group. The smaller of the two sums is the test statistic for the Wilcoxon test and is iden-
tified by the letter T. For the difference scores in Table E.1, the positive differences
have ranks of 1 and 2, which add to �R � 3 and the negative difference scores have
ranks of 5, 7, 3, 6, 4, and 8, which add up to �R � 33. For these scores, T � 3.

Table B10 in Appendix B lists critical values of T for � � .05 and � � .01. The
null hypothesis is rejected when the sample data produce a T that is less than or
equal to the table value. With n � 8 and � � .05 for a two-tailed test, the table lists
a critical value of 3. For the data in Table E.1, we obtained T � 3 so we would 
reject the null hypothesis and conclude that there is a significant difference between
the two treatments.

As with the Mann-Whitney U-test, there is no specified format for reporting the 
results of a Wilcoxon T-test. It is suggested, however, that the report include a summary
of the data and the value obtained for the test statistic as well as the p value. If there are
zero-difference scores in the data, it is also recommended that the report describe how
they were treated. For the data in Table E.1, the report could be as follows:

The eight participants were rank ordered by the magnitude of their difference scores and a
Wilcoxon T was used to evaluate the significance of the difference between treatments. The
results showed a significant difference, T � 3, p < .05, with the positive ranks totaling 3 and
the negative ranks totaling 33. 

When a sample is relatively large, the values for the Wilcoxon T statistic tend to form
a normal distribution. In this situation, it is possible to perform the test using a z-score
statistic and the normal distribution rather than looking up a T value in the Wilcoxon
table. When the sample size is greater than 20, the normal approximation is very accu-
rate and can be used. For samples larger than n � 50, the Wilcoxon table typically does
not provide any critical values, so the normal approximation must be used. The proce-
dure for the normal approximation for the Wilcoxon T is as follows:

1. Find the total for the positive ranks and the total for the negative ranks as 
before. The Wilcoxon T is the smaller of the two values.

2. With n greater than 20, the Wilcoxon T values form a normal distribution with
a mean of

� �
( 1)

4

n n +

NORMAL APPROXIMATION
FOR THE WILCOXON T-TEST

CALCULATION 
AND INTERPRETATION 

OF THE WILCOXON T
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and a standard deviation of

The Wilcoxon T from the sample data corresponds to a z-score in this distribution
defined by

3. The unit normal table is used to determine the critical region for the z-score.
For example, the critical values are ±1.96 for � � .05.

Although the normal approximation is intended for samples with at least n � 20
individuals, we will demonstrate the calculations with the data in Table E.1. These data
have n � 8 and produced T � 3. Using the normal approximation, these values produce

With these values, the obtained T � 3 corresponds to a z-score of

With critical boundaries of ±1.96, the obtained z-score is close to the boundary, but
it is enough to be significant at the .05 level. Note that this is exactly the same conclu-
sion we reached using the Wilcoxon T table.

E.4
THE KRUSKAL-WALLIS TEST: AN ALTERNATIVE 
TO THE INDEPENDENT-MEASURES ANOVA

The Kruskal-Wallis test is used to evaluate differences among three or more treatment
conditions (or populations) using ordinal data from an independent-measures design.
You should recognize that this test is an alternative to the single-factor ANOVA intro-
duced in Chapter 12. However, the ANOVA requires numerical scores that can be used
to calculate means and variances. The Kruskal-Wallis test, on the other hand, simply
requires that you are able to rank-order the individuals for the variable being measured.
You also should recognize that the Kruskal-Wallis test is similar to the Mann-Whitney
test introduced earlier in this chapter. However, the Mann-Whitney test is limited to

z
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comparing only two treatments, whereas the Kruskal-Wallis test is used to compare
three or more treatments.

The Kruskal-Wallis test requires three or more separate samples. The samples can repre-
sent different treatment conditions or they can represent different preexisting populations.
For example, a researcher may want to examine how social input affects creativity.
Children are asked to draw pictures under three different conditions: (1) working alone
without supervision, (2) working in groups where the children are encouraged to exam-
ine and criticize each other’s work, and (3) working alone but with frequent supervision
and comments from a teacher. Three separate samples are used to represent the three
treatment conditions with n � 6 children in each condition. At the end of the study, the 
researcher collects the drawings from all 18 children and rank-orders the complete set of
drawings in terms of creativity. The purpose for the study is to determine whether one
treatment condition produces drawings that are ranked consistently higher (or lower) than
another condition. Notice that the researcher does not need to determine an absolute 
creativity score for each painting. Instead, the data consist of relative measures; that is,
the researcher must decide which painting shows the most creativity, which shows the
second most creativity, and so on.

The creativity study that was just described is an example of a research study com-
paring different treatment conditions. It also is possible that the three groups could be
defined by a subject variable so that the three samples represent different populations.
For example, a researcher could obtain drawings from a sample of 5-year-old children,
a sample of 6-year-old children, and a third sample of 7-year-old children. Again, the
Kruskal-Wallis test would begin by rank-ordering all of the drawings to determine
whether one age group showed significantly more (or less) creativity than another.

Finally, the Kruskal-Wallis test can be used if the original, numerical data are con-
verted into ordinal values. The following example demonstrates how a set of numerical
scores is transformed into ranks to be used in a Kruskal-Wallis analysis.

Table E.2(a) shows the original data from an independent-measures study comparing
three treatment conditions. To prepare the data for a Kruskal-Wallis test, the
complete set of original scores is rank-ordered using the standard procedure for
ranking tied scores. Each of the original scores is then replaced by its rank to create
the transformed data in Table E.2(b) that are used for the Kruskal-Wallis test.

As with the other tests for ordinal data, the null hypothesis for the Kruskal-Wallis test
tends to be somewhat vague. In general, the null hypothesis states that there are no dif-
ferences among the treatments being compared. Somewhat more specifically, H0 states
that there is no tendency for the ranks in one treatment condition to be systematically
higher (or lower) than the ranks in any other condition. Generally, we use the concept
of “systematic differences” to phrase the statement of H0 and H1. Thus, the hypotheses
for the Kruskal-Wallis test are phrased as follows:

H0: There is no tendency for the ranks in any treatment condition to 
be systematically higher or lower than the ranks in any other treatment 
condition. There are no differences between treatments.

H1: The ranks in at least one treatment condition are systematically 
higher (or lower) than the ranks in another treatment condition. There
are differences between treatments.

THE NULL HYPOTHESIS 
FOR THE KRUSKAL-WALLIS

TEST

E X A M P L E  E . 2

THE DATA FOR A KRUSKAL-
WALLIS TEST
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TABLE E.2

Preparing a set of data for 
analysis using the Kruskal-
Wallis test. The original data
consisting of numerical scores
are shown in table (a). The
original scores are combined 
into one group and rank ordered
using the standard procedure for
ranking tied scores. The ranks
are then substituted for the origi-
nal scores to create the set of
ordinal data shown in table (b).

(a) Original Numerical Scores

I II III

14 2 26 N � 15
3 14 8

21 9 14
5 12 19

16 5 20
n1 � 5 n2 � 5 n3 � 5

(b) Ordinal Data (Ranks)

I II III

9 1 15 N � 15
2 9 5

14 6 9
3.5 7 12
11 3.5 13

T1 � 39.5 T2 � 26.5 T3 � 54
n1 � 5 n2 � 5 n3 � 5

Table E.2(b) presents the notation that is used in the Kruskal-Wallis formula along
with the ranks. The notation is relatively simple and involves the following values:

1. The ranks in each treatment are added to obtain a total or T value for that treat-
ment condition. The T values are used in the Kruskal-Wallis formula.

2. The number of subjects in each treatment condition is identified by a lowercase n.

3. The total number of subjects in the entire study is identified by an uppercase N.

The Kruskal-Wallis formula produces a statistic that is usually identified with the
letter H and has approximately the same distribution as chi-square, with degrees of
freedom defined by the number of treatment conditions minus one. For the data in
Table E.2(b), there are 3 treatment conditions, so the formula produces a chi-square
value with df � 2. The formula for the Kruskal-Wallis statistic is

Using the data in Table E.2(b), the Kruskal-Wallis formula produces a chi-square
value of

� 0.05(312.05 � 140.45 � 583.2) � 48

� 0.05(1035.7) � 48 

� 51.785 � 48

� 3.785

H
15( )
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5

26.5 54
� � �  �
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2 2 2⎛
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With df � 2, the chi-square table lists a critical value of 5.99 for � � .05. Because
the obtained chi-square value (3.785) is not greater than the critical value, our statisti-
cal decision is to fail to reject H0. The data do not provide sufficient evidence to con-
clude that there are significant differences among the three treatments.

As with the Mann-Whitney and the Wilcoxon tests, there is no standard format for
reporting the outcome of a Kruskal-Wallis test. However, the report should provide a
summary of the data, the value obtained for the chi-square statistic, as well as the value
of df, N, and the p value. For the Kruskal-Wallis test that we just completed, the results
could be reported as follows:

After ranking the individual scores, a Kruskal-Wallis test was used to evaluate differences
among the three treatments. The outcome of the test indicated no significant differences
among the treatment conditions, H � 3.785 (2, N � 15), p � .05.

There is one assumption for the Kruskal-Wallis test that is necessary to justify
using the chi-square distribution to identify critical values for H. Specifically, each of
the treatment conditions must contain at least five scores. 

E.5
THE FRIEDMAN TEST: AN ALTERNATIVE 
TO THE REPEATED-MEASURES ANOVA

The Friedman test is used to evaluate the differences between three or more treatment
conditions using data from a repeated-measures design. This test is an alternative to the
repeated-measures ANOVA that was introduced in Chapter 13. However, the ANOVA
requires numerical scores that can be used to compute means and variances. The
Friedman test simply requires ordinal data. The Friedman test is also similar to the
Wilcoxon test that was introduced earlier in this chapter. However, the Wilcoxon test
is limited to comparing only two treatments, whereas the Friedman test is used to com-
pare three or more treatments.

The Friedman test requires only one sample, with each individual participating in all of
the different treatment conditions. The treatment conditions must be rank-ordered for
each individual participant. For example, a researcher could observe a group of children
diagnosed with ADHD in three different environments: at home, at school, and during
unstructured play time. For each child, the researcher observes the degree to which the
disorder interferes with normal activity in each environment, and then ranks the three
environments from most disruptive to least disruptive. In this case, the ranks are 
obtained by comparing the individual’s behavior across the three conditions. It is also
possible for each individual to produce his or her own rankings. For example, each 
individual could be asked to evaluate three different designs for a new smart phone.
Each person practices with each phone and then ranks them, 1st, 2nd, and 3rd in terms
of ease of use.

Finally, the Friedman test can be used if the original data consist of numerical
scores. However, the scores must be converted to ranks before the Friedman test is
used. The following example demonstrates how a set of numerical scores is trans-
formed into ranks for the Friedman test.

THE DATA 
FOR A FRIEDMAN TEST
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To demonstrate the Friedman test, we will use the same data that were used to 
introduce the repeated-measures ANOVA in Chapter 13 (see page 440–441). The 
data are reproduced in Table E.3(a) and consist of ratings of four television-viewing
distances for a sample of n � 5 participants. To convert the data for the Friedman test,
the four scores for each participant are replaced with ranks 1, 2, 3, and 4, corresponding
to the size of the original scores. As usual, tied scores are assigned the mean of the tied
ranks. The complete set of ranks is shown in part (b) of the table.

In general terms, the null hypothesis for the Friedman test states that there are no differ-
ences between the treatment conditions being compared so the ranks in one treatment
should not be systematically higher (or lower) than the ranks in any other treatment con-
dition. Thus, the hypotheses for the Friedman test can be phrased as follows:

H0: There is no difference between treatments. Thus, the ranks in one treat-
ment condition are not systematically higher or lower than the ranks in
any other treatment condition.

H1: There are differences between treatments. Thus, the ranks in at least
one treatment condition are systematically higher or lower than the
ranks in another treatment condition.

The first step in the Friedman test is to compute the sum of the ranks for each treatment
condition. The �R values are shown in Table E.3(b). In addition to the �R values, the
calculations for the Friedman test require the number of individuals in the sample (n)
and the number of treatment conditions (k). For the data in Table E.3(b), n � 5 and 

NOTATION 
AND CALCULATION 

FOR THE FRIEDMAN TEST

THE HYPOTHESES 
FOR THE FRIEDMAN TEST

E X A M P L E  E . 3

TABLE E.3

Results from a repeated-measures
study comparing four television-
viewing distances. Part (a) shows
the original rating score for each
of the distances. In part (b), the
four distances are rank-ordered
according to the preferences for
each participant. The original
data appear in Table 13.2 
(page 441) and were used to
demonstrate the repeated-
measures ANOVA.

(a) The original rating scores.

Person 9 Feet 12 Feet 15 Feet 18 Feet

A 3 4 7 6
B 0 3 6 3
C 2 1 5 4
D 0 1 4 3
E 0 1 3 4

(b) The ranks of the treatment conditions for each participant

Person 9 Feet 9 Feet 9 Feet 9 Feet

A 1 2 4 3
B 1 2.5 4 2.5
C 2 1 4 3
D 1 2 4 3
E 1 2 3 4

�R1 � 6 �R2 � 9.5 �R3 � 19 �R4 � 15.5
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k � 4. The Friedman test evaluates the differences between treatments by computing
the following test statistic:

Note that the statistic is identified as chi-square (�2) with a subscript r, and 
corresponds to a chi-square statistic for ranks. This chi-square statistic has degrees of 
freedom determined by df � k � 1, and is evaluated using the critical values in the 
chi-square distribution shown in Table B8 in Appendix B.

For the data in Table E.3(b), the statistic is

� 0.12(727.5) � 75

� 12.3

With df � k � 1 � 3, the critical value of chi-square is 9.35. Therefore, the deci-
sion is to reject the null hypothesis and conclude that there are significant differences
among the four treatment conditions. 

As with most of the tests for ordinal data, there is no standard format for reporting
the results from a Friedman test. However, the report should provide the value obtained
for the chi-square statistic as well as the values for df, n, and p. For the data that were
used to demonstrate the Friedman test, the results would be reported as follows:

After ranking the original scores, a Friedman test was used to evaluate the differences among
the four treatment conditions. The outcome indicated that there are significant differences, 
�2

r � 12.3 (3, n � 5), p � .05.

�
r
2 (6 9.5 15.5 19 )2 2 2 2� � � � �

12

5 4 5( )( )
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100
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eta squared (�2)
ANOVA, 409, 423
repeated-measures ANOVA, 446, 447
two-factor ANOVA, 484

Expected frequencies, 597, 607–609
Expected value of M, 206
Experimental condition, 16
Experimental method, 14–17
Experimental research strategy, 14
Experimentwise alpha level, 391, 416
Exponential notation, 692
Exponents, 692–694
Expository method, 316

F distribution, 705–707
F distribution table, 403–405
F-max test, 338–339, 704
F-ratio

ANOVA, 393–394, 402, 403, 412
multiple regression, 578, 582
regression, 570, 571

30991_indx_ptg01_hr_761-768.qxd  9/3/11  12:01 AM  Page 762



INDEX 763

repeated-measures ANOVA, 436, 437,
439, 445

two-factor ANOVA, 476, 492
Factor, 388
Factor A, 492
Factor B, 492
Factorial design, 467. See also Two-factor

ANOVA
50th percentile, 86. See also Median
Flynn effect, 312
Fractions, 682–685, 693–694
Frequency distribution, 37–70

bar graph, 48
defined, 39
elements, 39
graphs, 45–50
grouped table, 42
histogram, 46–47
interpolation, 55–59
polygon, 47
probability, 168–169
real limits, 44–45
shape, 50–52
SPSS, 63
stem and leaf display, 60–61
symmetrical/skewed distribution, 50–52
tables, 39–45

Frequency distribution graphs, 45
Frequency distribution tables, 39–45
Friedman test, 448, 670, 752–754
Functional food, 348

Goodness-of-fit test. See Chi-square test for
goodness of fit

Graph
bar, 48
frequency distribution, 45–50
general guidelines, 94–95
mean/median, 93–95
two-factor ANOVA, 473
use/misuse, 51

Grouped frequency distribution table, 42

H0, 236
H1, 236
Habituation technique, 652
Hartley’s F-max test, 338–339, 491, 704
Histogram, 46–47, 93
Homogeneity of variance, 337–338
Hot math, 502
Hypothesis testing, 231–277

alpha level, 237, 238, 245, 246–247,
267–268

alternative hypothesis, 236
analogy, 241–242
ANOVA, 405–408
assumptions, 253–255
Cohen’s d, 262–264
critical region, 238, 239
defined, 233
effect size, 259–264, 267–268

example test, 248–251
factors to consider, 252–253
independent-measures t test, 359–360
independent observations, 254
level of significance, 237, 238
In the Literature, 251–252
normal sampling distribution, 255
null hypothesis, 236
number of scores in sample, 253
one-tailed test, 256–259
one-tailed/two-tailed test, compared,

258–259
power, 265–269
random sampling, 253
repeated-measures ANOVA, 439–447
repeated-measures t test, 359–360
sample in research study, 234–235
significant/statistically significant, 251
step 1 (state the hypothesis), 236–237
step 2 (set criteria for a decision),

237–239
step 3 (collect data/compute sample

statistics), 240
step 4 (make a decision), 240–241
t statistic, 291–295
test statistic, 242
two-factor ANOVA, 476–489
two-tailed test, 256, 258, 259
Type I error, 244–245
Type II error, 245–246
underlying logic, 233, 260
unknown population, 234
value of standard error unchanged,

254–255
variability of scores, 253
z-score statistic, 242–243

Hypothetical construct, 20

In the Literature, See also Research studies
ANOVA, 409
central tendency, 92–93
correlation, 530
goodness-of-fit test, 603
hypothesis testing, 251–252
independent-measures t test, 332–333
repeated-measures ANOVA, 447
repeated-measures t test, 363
standard deviation, 123–124
standard error, 218–219
t test, 302–303
two-factor ANOVA, 484–485

Independent-measures ANOVA. See
ANOVA; Two-factor ANOVA

Independent-measures t test, 315–349
alternative to pooled variance, 339
confidence interval, 330–332
defined, 318
degrees of freedom, 324
effect size, 328–330
estimated standard error, 319–321, 324
final formula, 324

Hartley’s F-max test, 338–339, 491
hypotheses, 318
hypothesis test, 326–328
In the Literature, 332–333
one-tailed test, 334–335
overall t formula, 319
overview, 316
pooled variance, 321–323
repeated-measures design, contrasted, 353,

366–368
sample size, 335
sample variance, 335
single-sample t statistic, compared, 

324, 325
SPSS, 342–343
underlying assumptions, 337–338
variability of difference scores, 321

Independent random sample, 167
Independent variable, 16, 387
Individual differences

repeated-measures ANOVA, 437,
450–452

repeated-measures t test, 367–368
Individual variable, 12
Inferential statistics, 8, 155
Interaction, 470–473, 474–475
Interpolation, 55–59, 86
Interpolation process, 57
Interval scale, 24, 25

Kruskal-Wallis test, 413, 670, 749–752

Law of large numbers, 207
Leaf, 60
Learning by memorization, 316
Learning by understanding, 316
Least-squared-error solution, 562
Level of significance, 237, 238
Levels, 388
Line graph, 93, 94
Linear equation, 559
Linear relationship, 559
Lower real limit, 22

Main effects, 468–470, 474–475, 486–489
Major mode, 88
Mann-Whitney U test, 337, 670, 743–747

calculation of, 744
evaluating the significance of U, 745–746
large samples, 744–745
normal approximation, 746–747
null hypothesis, 744
statistical tables, 712, 713

Margin of error, 8
Matched samples design, 353
Matched subjects, 353
Matched-subjects design, 353, 354
Matching, 16
Mathematics, 677–698

algebra, 689–692
decimals, 685–686
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exponents, 692–694
fractions, 682–685, 693–694
negative numbers, 687–688
percentages, 686
proportions, 681–687
skills assessment review exam, 678
solving equations, 689–692
square roots, 694–695
symbols and notation, 679

Matrix, 467
Mean, 74–82

adding/subtracting constant, 81
alternate definitions, 75–77
analogy, 123
balance point, as, 76–77
changing a score, 79–80
defined, 74
distribution of sample means, 206
frequency distribution table, 78
graphs, 93–95
multiplying/dividing each score by 

constant, 82
new score, 80
population, 75
removing a score, 80
sample, 75
sample vs. population, 284
SPSS, 98–99
weighted, 77, 78
z-score distribution, 146

Mean square (MS)
ANOVA, 401, 422
multiple regression, 578
regression, 570, 571
repeated-measures ANOVA, 444
two-factor ANOVA, 477, 481–482

Mean squared deviation, 108. See also
Variance

Measurement scales. See Scales of 
measurement

Median
continuous variable, 84–85
defined, 83
graphs, 93–95
interpolation, 86
middle, 85–87
when to use, 90–92

Median test, 618–620
Middle, 85–87
Minor mode, 88
Mode, 87–88, 92
Modified histogram, 46–47
Monotonic relationship, 538
MS. See Mean square (MS)
MSbetween, 412
MSWithin, 412
Multimodal distribution, 88
Multiple regression

analysis of regression, 578–579
contribution of each collector variable,

579–580

defined, 572
F-ratio, 578, 582
partial correlation, 581
R2, 576–577
regression equation, 573–575
standard error of estimate, 578

Negative correlation, 512
Negative numbers, 687–688
Negatively skewed distribution, 51, 52, 96
Nominal scale, 23
Nonequivalent groups, 17–18
Nonexperimental methods, 17–18
Nonparametric tests, 593, 616
Normal approximation to binomial distribution,

187–189
Normal curve, 49
Normal distribution, 50, 170–172, 640
Noticeably different, 155, 220
Null hypothesis (H0), 236
Number crunching, 73
Numerator, 682

Observed frequency, 597, 607
Odd-numbered problems, solutions, 715–736
One-sample t test. See t statistic
One-tailed test

critical region, 257, 305
defined, 256
example test, 304–305
independent-measures t test, 334–335
repeated-measures t test, 364–366
two-tailed test, compared, 258–259

Open-ended distribution, 91
Operational definition, 20
Order effects, 368–369
Order of mathematical operations, 27
Ordinal data tests, 743–754

Friedman test, 752–754
Kruskal-Wallis test, 749–752
Mann-Whitney U. See Mann-Whitney 

U test
Wilcoxon signed-ranks test, 747–749

Ordinal scale, 23–24, 741–472
Ordinate, 45
Outliers, 523
Overall mean, 77

Pairwise comparison, 416
Parameter, 7
Parametric tests, 593
Partial correlation, 531, 544, 581
Partial eta squared, 446
Participant variable, 15
Pearson correlation, 709

alternatives to, 535–546
calculation of, 517
chi-square test, 617
defined, 514
degrees of freedom, 529
hypothesis testing, 527–529

regression, 572
SPSS, 548–549
z-score, 518

Percentage, 41, 686
Percentage of variance (r2), 296–299,

328–329, 361
Percentile, 53, 179
Percentile rank, 53, 179
Perceptual speed test, 138
Perfect correlation, 513
Perfectly symmetrical distribution, 95
Phi-coefficient, 545–546, 549–550
Point-biserial correlation, 542–545, 594
Polygon, 47
Pooled variance, 321–323, 413
Population, 5
Population mean, 75
Population standard deviation, 113
Population variance, 108, 113
Positive correlation, 512
Positively skewed distribution, 51, 52, 95–96
Post hoc test, 416–419
Posttest, 416
Power, 265–269
Pre-post study, 18
Predicted variability, 568, 569
Prediction, 519, 564–565
Probability, 163–198

binomial distribution, 184–189
defined, 165
distribution of sample means, 202,

211–215
frequency distribution, 168–169
inferential statistics, 165, 189–191
normal approximation to binomial distri-

bution, 187–189
normal distribution, 170–172
proportion problem, as, 192
random sampling, 167–168
scores from normal distribution, 178–183
unit normal table, 172–174
z-score, 175–177

Probability values, 166
Programming language. See SPSS
Proportion, 41, 681–687

Quasi-independent variable, 18, 387

r. See Pearson correlation
R2, 576–577
r2

coefficient of determination, 524, 525,
568

percentage of variance explained,
296–299, 328–329, 361

Radical, 694
Random assignment, 15
Random sample, 167
Random sampling with replacement, 168
Random sampling without replacement, 168
Range, 106

30991_indx_ptg01_hr_761-768.qxd  9/3/11  12:01 AM  Page 764



INDEX 765

Rank, 53
Ranking numerical scores, 742
Ranking tied scores, 742–743
Ratio scale, 24, 25
Raw score, 7, 53, 139
Real limits, 22, 44–45
Regression, 557–589

analysis. See Analysis of regression
defined, 561
least-squared-error solution, 562
multiple. See Multiple regression
predicted/unpredicted variability, 568
prediction, 564–565
purpose, 561
standard error of estimate, 566–569, 578
standardized form, 565
testing the significance, 570–572

Regression equation for Y, 563
Regression line, 561
Regression toward the mean, 526
Related-samples design, 353
Relative frequency, 41, 49
Reliability, 222, 520, 521
Repeated-measures ANOVA, 433–464

advantages/disadvantages, 449–450
alternative hypothesis, 436
assumptions, 448
between-treatments variance, 438
dferror, 444
effect size, 446–447
error variance, 438–439, 440
eta squared (�2), 446, 447
F-ratio, 436, 437, 439, 445
formulas, 455
individual differences, 437–450–452
In the Literature, 447
MS values, 444
notation, 440–441
null hypothesis, 436
overall structure, 440
post hoc tests, 447
purpose, 437
repeated-measures t test, compared,

452–454
SPSS, 456–457
SSbetween subjects/SSbetween treatments, 443
stage 1, 441–442
stage 2, 442–444
treatment effects, 450–452
two-stage process, 439–440
uses, 435

Repeated-measures t statistic, 356–358
Repeated-measures t test, 352–379

analogies for H0 and H1, 356
assumptions, 369
confidence interval, 360–361
counterbalancing, 368
defined, 352
descriptive statistics, 363
difference scores, 354–355
effect size, 360–362

estimated standard error, 357, 358
hypotheses, 355–356
hypothesis test, 359, 360
independent-measures design, contrasted,

353, 366–368
individual differences, 367–368
In the Literature, 363
number of subjects, 367
one-tailed test, 364–366
order effects, 368–369
repeated-measures ANOVA, compared,

452–454
SPSS, 371–372
study changes over time, 367
t statistic, 356–358
time-related factors, 368–369
variability/treatment effect, 363–364

Research studies, 313. See also In the
Literature

alcohol use/college students, 34
antidepressant medication/severity of

depression, 505
anxiety level/last 50 years, 312, 674
attitude towards food/gender, 347
attractiveness/alcohol consumption, 72
attractiveness/body image profiles, 630
attractiveness/intelligence, 376, 675
attractiveness/red, 359, 503
attractiveness/sense of humor, 313, 675
attractiveness/tattoo, 276, 674
background noise/classroom performance,

347, 674
baseball (beanball)/temperature, 277
binge drinking/perfectionism, 429
birds/brain size, 431
brain nerve conduction velocity/

intelligence, 651
carbohydrate-electrolyte drink/sports

performance, 229
cartoons/smiling vs. frowning, 376
cheating/perception of teacher, 430
cognitive ability/social status, 555
cognitive functioning/aging, 235, 376
crime rate/temperature, 535
depth perception/visual cliff, 634, 639
diversity/older adults, 104, 131
dream content/gender, 630
driving behavior/self-reported measures,

506
early retirement/memory decline, 587
8-month-old infants/probability, 200
energy drink consumption/gender, 275
eye-spot pattern/birds, 284, 312
eyewitness memory/language, 348, 592,

629
football players/BMI, 347
functional food/college students, 348
happiness/social network, 68
healthcare providers/perception of insur-

ance program, 628–629
hens/cage space, 652

heredity/intelligence, 133
high school start times/motor vehicle

crash rate, 651
homework assignments/learning, 676
honesty/lighting, 349, 675
humor/memory, 35, 38, 349, 375
hypnosis/memories of past lives, 651
infant monkeys/attachment to “mother,”

312
intelligence scores/gender, 131, 630
IQ scores/increases generation by 

generation, 675
learning by memorization/learning by

understanding, 316
littering/amount of litter in area, 631
marriage partners/surnames, 627, 650
math word problems/primary-grade

children, 502
mathematics achievement/assignments,

276
mean recall/level of processing, 386
motivational signs/physical activity, 35,

676
multiple-choice exam/rethink answers,

378, 652, 675
negative event/your reaction vs. others’

reaction, 376
newborns/face preference, 292, 296
Olympic marksmen/accuracy, 378
oxytocin/trust, 34
pain threshold/pregnancy, 463–464
paw preferences/rats, 650
personality type/heart disease, 655
physician/technical quality vs. interper-

sonal skills, 651
preschool childcare/child development,

313, 674
preschool childcare/scholastic achieve-

ment, 313
reading/memory, 386
recognition memory task/consistency, 104
red/combat sports, 628, 650
romantic background music/woman’s

phone number, 628
SAT scores/predictor of college perform-

ance, 558
schizophrenia/season of birth, 631
self-esteem/audience, 466
self-esteem/gender, 348, 675
self-esteem/group participation, 275
self-esteem/participation in sports, 673
self-hypnosis/hay-fever symptoms, 652
sexual content on TV/sexual behavior,

534
sleep/task performance, 349, 376
soccer players/neurological deficits, 349,

500
staring/aversiveness, 284
stressful experiences/health-related 

problems, 652
student weight gain/gender, 629–630
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swearing/response to pain, 352, 651
TV viewing habits/health concerns, 432
TV viewing habits/high school perform-

ance, 326, 328
using Facebook while studying/grades,

432, 503, 675
video game avatar/characteristics of

creator, 630
visual images/visual perception, 377
weekend weather/pollution, 102
weight gain/diet, 674
weight/income, 553–554
word meaning/syntactical cues, 652

Residual variance, 440
Restricted range, 522–523
�, 518
�s, 541
Right statistics. See Choosing the right 

statistics
Rock-Paper-Scissors, 189

Sample, 6
Sample mean, 75
Sample size

independent-measures ANOVA, 412,
413–415

independent-measures t test, 335
law of large numbers, 207
power, 268
standard error, 207
t statistic, 294–295

Sample standard deviation, 115, 285
Sample variance, 115, 285
Sampling distribution, 202
Sampling error, 8, 201, 216
Sampling with replacement, 168
Scales of measurement

choosing the right statistic, 658
interval scale, 24, 25
nominal scale, 23
ordinal scale, 23–24
ratio scale, 24, 25

Scheffé test, 418–419
Scientific (alternative) hypothesis (H1), 236
Score, 7
Sign test, 643–646
Significance levels, 193
Significant, 251
Simple main effects, 486–489
Single-factor, independent-measures

ANOVA. See ANOVA
Single-sample t statistic, 319. See also t

statistic
Sketching distributions, 177
Skewed distribution, 50–52, 95–96
Slope, 559
Smooth curves, 49
Software. See SPSS
Solution (odd-numbered problems), 715–736
Solving equations, 689–692
SP, 515, 516

Spearman correlation, 535–542, 710
defined, 535
ranking tied scores, 539
special formula, 539–540
SPSS, 549
testing the significance, 541
when used, 538

Spotlight effect, 311
SPSS, 32, 737–739

ANOVA, 424–425
bar graph, 63
binomial test, 648
chi-square tests, 622–623
data formats, 738–739
frequency distribution tables, 63
histogram, 63
independent-measures t test, 342–343
mean, 98–99
Pearson correlation, 548–549
phi-coefficient, 549–550
point-biserial correlation, 594
range, 128
repeated-measures ANOVA, 456–457
repeated-measures t test, 371–372
Spearman correlation, 549
t test, 308
two-factor ANOVA, 493–494
variance, 128
z-score, 159

Square root, 694–695
SS. See Sum of squares (SS)
SSbetween, 399
SSbetween subjects

repeated-measures ANOVA, 442–443
SSbetween treatments, and, 443

SSbetween treatments

alternative formulas, 399
ANOVA, 398
repeated-measures ANOVA, 442, 443
two-factor ANOVA, 479–480

SSregression, 568, 569
SSresidual, 567–569
SStotal, 397–398
SSwithin treatments

ANOVA, 398
repeated-measures ANOVA, 442
two-factor ANOVA, 479

Standard deviation, 106–107
analogy, 123
calculation of, 107–108, 109
defined, 108
descriptive statistics, 121–122
estimated population, 117
In the Literature, 123–124
population, 113
purposes, 206
sample, 115, 118, 285
SPSS, 128
standard error, contrasted, 214
z-score distribution, 147

Standard error, 215–218, 284–285

defined, 207
distribution of sample means, 206
estimated, 285, 286
hypothesis testing, 254–255
In the Literature, 218–219
measure of reliability, as, 222–223
population standard deviation, 207–209
sample size, 207
standard deviation, contrasted, 214

Standard error of estimate
multiple regression, 578
regression, 566–569

Standard/standardized score, 139, 152. 
See also z-score

Standardized distribution, 147
Statistic, 7
Statistical notation, 26–27
Statistical Package for the Social Sciences.

See SPSS
Statistical power, 265–269
Statistical tables, 699–714

chi-square distribution, 711
F distribution, 705–707
F-max, 704
Mann-Whitney U, 712, 713
Pearson correlation, 709
Spearman correlation, 710
studentized range statistic (q), 708
t distribution, 703
unit normal table, 699–702
Wilcoxon signed-ranks test, 714

Statistically significant, 251
Statistics

defined, 5
descriptive, 7, 8
experimental research, and, 10
inferential, 8
purposes, 5
research, and, 10
scales of measurement, and, 25
what to use. See Choosing the right

statistics
Stem, 60
Stem and leaf display, 60–61
Studentized range statistic, 417
Studentized range statistic (q), 708
Sum of products (SP), 515, 516
Sum of squares (SS)

ANOVA, 397–399
computational formula, 112
defined, 111, 397–399
how to find, 115
SP, compared, 516

Summation notation, 27
Summation sign (�), 27
Symmetrical distribution, 50, 52, 95

t distribution, 287–290, 703
t statistic

confidence interval, 299–302
defined, 286
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degrees of freedom, 287
effect size, 295–302
estimated d, 295–296
goodness of fit, 603
hypothesis test, 291–295
independent-measures t statistic, 

compared, 324, 325
In the Literature, 302–303
r2, 296–299
sample size, 294–295
sample variance, 294
SPSS, 308
z-score, contrasted, 287

t test
between-subjects design. See Independent-

measures t test
one sample. See t statistic
within-subjects design. See Repeated-

measures t test
t test for independent samples. See

Independent-measures t test
t test for two related samples. See Repeated-

measures t test
Tables. See Statistical tables
Tail, 51, 173
Test for independence. See Chi-square test for

independence
Test statistic, 242
Testing hypothesis. See Hypothesis testing
Testwise alpha level, 391
Theory verification, 520
Tone identification, 88, 89
Total degrees of freedom (dftotal), 399
Total sum of squares (SStotal), 397–398
Transformations of scale, 122–123
Transforming scores into categories, 593–594
Treatment effects, 393
Tukey, J. W., 60
Tukey’s HSD test, 417
Two-factor ANOVA, 465–503

assumptions, 491
effect size, 484
eta squared (�2), 484
F-ratio, 476, 492
graph, 473
hypothesis tests, 476
interaction, 470–473, 474–475
interpreting the result, 485–486
In the Literature, 484–485
main effects, 468–470, 474–475, 486–489
matrix, 467
MS values, 477, 481–482
notation, 476, 492
overall structure, 477
purpose, 492
reducing variance caused by individual

differences, 489–491
simple main effects, 486–489
SPSS, 493–494
stage 1, 478–480
stage 2, 480–482

Two-tailed test, 256, 258, 259
Type I error

hypothesis test, 244–245
independent-measures ANOVA, 391,

416–417
Type II error, 245–246

Unbiased statistic, 119
Unit normal table, 172–174, 699–702
Unpredicted variability, 568, 569
Upper real limit, 22
Uses. See Choosing the right statistics

Validity, 520
Variability, 103–131

bias/unbiased, 119
defined, 104
degrees of freedom, 117
population standard deviation, 113
population variance, 108, 113
purposes, 105
range, 106
sample standard deviation, 115
sample variance, 115, 118
SPSS, 128
standard deviation. See Standard deviation
sum of squares (SS), 111–112, 115
transformations of scale, 122–123
variance. See Variance

Variable
binomial, 542
continuous, 21
defined, 6
dependent, 16
dichotomous, 542
discrete, 21
environmental, 15
independent, 16, 387
participant, 15
quasi-independent, 18, 387
relationships between, 12–18

Variance
between-treatments, 392–303. 438
bias/unbiased, 119
calculation of, 109
defined, 108, 111
error, 125, 438–439, 440
estimated population, 117
inferential statistics, 124
population, 108, 113
sample, 115, 285
SPSS, 128
standard error of estimate, 567
within-treatments, 393

Vertical-horizontal illusion, 313
Visual cliff, 634

Weighted mean, 77, 78
Wilcoxon signed-ranks test, 369, 670, 

714, 747–749
Wilkinson, L., 262

Wisconsin card sorting test, 235
Within-subjects design, 352, 660. See also

Repeated-measures ANOVA; Repeated-
measures t test

Within-treatment variance, 393
Within-treatments degrees of freedom

(dfwithin), 400
Within-treatments sum of squares. See

SSwithin treatments

Wrong Shui, 4

X, 26, 27
X-axis, 45

Y, 27
Y-axis, 45
Y intercept, 559
Yerkes-Dodson law, 477

z-score, 137–162
binomial test, 640–641
comparisons, 149–150
computing, from samples, 153–154
defined, 141
distribution of sample means, 212–213
formula, 142–143
inferential statistics, 155–157
location in a distribution, 141–142
new distribution with predetermined

mean/standard deviation, 150–153
Pearson correlation, 518
probability, 175–177
purposes, 139–141
raw score, and, 143–145
shortcoming, 285
SPSS, 159
standardizing a distribution, 146–149
standardizing a sample distribution, 154
t statistic, contrasted, 287
whether sample noticeably different, 155

z-score distribution, 146–149
z-score formula, 142–143, 242–243
z-score statistic, 242–243
z-score transformation, 146–149
Zener cards, 198
Zero-effect hypothesis, 236
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