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ANCILLARIES

Preface

Many students in the behavioral sciences view the required statistics course as an
intimidating obstacle that has been placed in the middle of an otherwise interesting cur-
riculum. They want to learn about human behavior—not about math and science. As a
result, they see the statistics course as irrelevant to their education and career goals.
However, as long as the behavioral sciences are founded in science, knowledge of sta-
tistics will be necessary. Statistical procedures provide researchers with objective and
systematic methods for describing and interpreting their research results. Scientific
research is the system that we use to gather information, and statistics are the tools that
we use to distill the information into sensible and justified conclusions. The goal of this
book is not only to teach the methods of statistics, but also to convey the basic princi-
ples of objectivity and logic that are essential for science and valuable in everyday life.

Those familiar with previous editions of Statistics for the Behavioral Sciences will
notice that some changes have been made. These changes are summarized in the
section titled “To the Instructor.” In revising this text, our students have been foremost
in our minds. Over the years, they have provided honest and useful feedback. Their
hard work and perseverance has made our writing and teaching most rewarding. We
sincerely thank them. Students who are using this edition should please read the section
of the preface titled “To the Student.”

Ancillaries for this edition include the following:

* Study Guide: Contains chapter summaries, learning objectives, new terms and
concepts with definitions, new formulas, step-by-step procedures for problem
solving, study hints and cautions, self-tests, and review. The Study Guide
contains answers to the self-test questions.

e Instructor’s Manual with Test Bank: Contains a detailed table of contents, chap-
ter outlines, annotated learning objectives, lecture suggestions, test items, and
solutions to all end-of-chapter problems in the text. Test items are also available
as a Microsoft Word® download or for ExamView® computerized test bank
software with multiple-choice, true/false, and short-answer questions. An answer
key is provided for all questions, and each question is cross-referenced to a page
in the textbook.

* PowerLecture with ExamView: The fastest, easiest way to build powerful, cus-
tomized, media-rich lectures, PowerLecture provides a collection of book-
specific Microsoft PowerPoint® lecture and class tools to enhance the educa-
tional experience. ExamView allows you to create, deliver, and customize tests
and study guides (both print and online) in minutes.

o WebTutor™ on Blackboard and WebCT™: Jumpstart your course with
customizable, text-specific content for use within your course-management
system. Whether you want to Web-enable your class or put an entire course
online, WebTutor delivers. WebTutor offers a wide array of resources including
glossary, flashcards, quizzing, and more.

XV
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ACKNOWLEDGMENTS

TO THE INSTRUCTOR

* Psychology CourseMate®: Psychology CourseMate, with Engagement Tracker, a
first-of-its-kind tool that monitors student engagement in the course, includes:

* An interactive eBook

* Interactive teaching and learning tools including:
¢ Quizzes
* Glossary
e Flashcards

e and more

It takes a lot of good, hard-working people to produce a book. Our friends at
Wadsworth/Cengage have made enormous contributions to this textbook. We thank:
Linda Schreiber-Ganster, Publisher/Executive Editor; Timothy Matray, Acquisitions
Editor; Tangelique Williams, Managing Developmental Editor; Kelly Miller, Assistant
Editor; Lauren K. Moody, Editorial Assistant/Associate; Charlene M. Carpentier,
Content Project Manager; Mary Noel, Media Editor; and Pam Galbreath, Art Director.
Special thanks go to Liana Sarkisian, our Development Editor, and to Mike Ederer who
led us through production at Graphic World.

Reviewers play a very important role in the development of a manuscript.
Accordingly, we offer our appreciation to the following colleagues for their assistance
with the ninth edition: Patricia Case, University of Toledo; Kevin David, Northeastern
State University; Adia Garrett, University of Maryland, Baltimore County; Carrie E. Hall,
Miami University; Deletha Hardin, University of Tampa; Angela Heads, Prairie View
A&M University; Roberto Heredia, Texas A&M International University; Alisha
Janowski, University of Central Florida; Matthew Mulvaney, The College at Brockport
(SUNY); Nicholas Von Glahn, California State Polytechnic University, Pomona; and
Ronald Yockey, Fresno State University.

Those of you familiar with the previous edition of Statistics for the Behavioral Sciences
will notice a number of changes in the ninth edition. Throughout the book, research ex-
amples have been updated, real-world examples have been added, and the end-of-
chapter problems have been extensively revised. The book has been separated into five
sections to emphasize the similarities among groups of statistical methods. Each sec-
tion contains two to four chapters, and begins with an introduction and concludes with
a review, including review exercises.
Major revisions for this edition include:

1. The former Chapter 12 on Estimation has been eliminated. In its place, sections
on confidence intervals have been added to the three #-statistic chapters.

2. The former Chapter 20 covering hypothesis tests for ordinal data has been
converted into an appendix.

3. A new final chapter discusses the process of selecting the correct statistics to be
used with different categories of data and replaces the Statistics Organizer,
which appeared as an appendix in earlier editions.

Other examples of specific and noteworthy revisions include:

Chapter 1 A separate section explains how statistical methods can be classified using
the same categories that are used to group data structures and research methods. A new
heading clarifies the concept that different scales of measurement require different
statistical methods.
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Chapter 2 The discussion of histograms has been modified to differentiate discrete
and continuous variables. The section on stem-and-leaf displays has been heavily
edited to simplify.

Chapter 3 A modified definition of the median acknowledges that this value is not
algebraically defined, and that determining the median, especially for discrete vari-
ables, can be somewhat subjective. A new Box demonstrates that precisely locating the
median for a continuous variable is equivalent to using interpolation to find the 50th
percentile (as was demonstrated in Chapter 2).

Chapter 4 Alternative definitions of the range have been added, and discussion of the
interquartile range has been deleted. Greater emphasis has been placed on conceptual
definitions of standard deviation and the sum of squared deviations (SS). The section
on variance and inferential statistics has been simplified and the section comparing
measures of variability has been deleted.

Chapter 5 Relatively minor editing for clarity.

Chapter 6 The concepts of random sample and independent random sample are clar-
ified with separate definitions. A new figure helps demonstrate the process of using the
unit normal table to find proportions for negative z-scores. The section on the binomial
distribution has been shortened and simplified.

Chapter 7 Relatively minor editing for clarity.

Chapter 8 The chapter has been shortened by substantial editing that eliminated sev-
eral pages of unnecessary text, particularly in the sections on errors (Type I and II) and
power. The distinction between reporting one-tailed and two-tailed tests was clarified.

Chapter 9 The section describing how sample size and sample variance influence the
outcome of a hypothesis test has been moved so that it appears immediately after the
hypothesis test example. A new section introduces confidence intervals in the context
of describing effect size, describes how confidence intervals are reported in the litera-
ture, and discusses factors affecting the width of a confidence interval.

Chapter 10  An expanded section discusses how sample variance and sample size in-
fluence the outcome of an independent-measures hypothesis test and measures of effect
size. A new section introduces confidence intervals as an alternative for describing ef-
fect size. The relationship between a confidence interval and a hypothesis test is also
discussed. We also note that the Mann-Whitney test (presented in Appendix E) can be
used as an alternative to the independent-measures 7 test if high variance causes prob-
lems or if an assumption is violated.

Chapter 11  The description of repeated-measures and matched-subjects designs was
clarified and we increased emphasis on the concept that all calculations for the related-
samples test are done with the difference scores. A new section introduces confidence
intervals as an alternative for describing effect size and discusses the relationship be-
tween a confidence interval and a hypothesis test. We also note that the Wilcoxon test
(presented in Appendix E) can be used as an alternative to the repeated-measures ¢ test
if high variance causes problems or if an assumption is violated.

The former Chapter 12 has been deleted. The content from this chapter covering
confidence intervals has been added to Chapters 9, 10, and 11.
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Chapter 12 (former Chapter 13, introducing ANOVA) The discussion of testwise
alpha levels versus experimentwise alpha levels was moved from a Box into the text,
and definitions of the two terms were added. To emphasize the concepts of ANOVA
rather than the formulas, SSpeween treatments 15 Toutinely found by subtraction instead of
being computed directly. Two alternative equations for SSpeiween treatments Were moved
from the text into a Box. We also note that the Kruskal-Wallis test (presented in
Appendix E) can be used as an alternative to the independent-measures ANOVA if high
variance causes problems or if an assumption is violated.

Chapter 13 (former Chapter 14, introducing repeated-measures ANOVA) A new
section demonstrates the relationship between ANOVA and the ¢ test when a repeated-
measures study is comparing only two treatments. Major editing shortened the chapter
and simplified the presentation. We also note that the Friedman test (presented in
Appendix E) can be used as an alternative to the repeated-measures ANOVA if high
variance causes problems or if an assumption is violated.

Chapter 14 (formerly Chapter 15, introducing two-factor ANOVA) A new section
demonstrates how using a participant characteristic as a second factor can reduce the
variance caused by individual differences. Major editing shortened the chapter and
simplified the presentation.

Chapter 15 (formerly Chapter 16, introducing correlations) The introduction to par-
tial correlations was simplified and moved from the regression chapter into the section
discussing the Pearson correlation.

Chapter 16 (formerly Chapter 17, introducing regression) Major editing shortened
and simplified the section on multiple regression. A printout showing the results of
multiple regression from SPSS was added as a figure to illustrate the different elements
of the process.

Chapter 17 (formerly Chapter 18, introducing chi-square tests) Relatively minor
editing to shorten and clarify.

Chapter 18 (formerly Chapter 19, introducing the binomial test) Relatively minor
editing for clarity.

Chapter 19 A completely new chapter outlining the process of selecting the correct
statistical procedures to use with different sets of data.

The former Chapter 20 covering hypothesis tests for ordinal data has been substan-
tially shortened and converted into an Appendix.

Matching the Text to Your Syllabus The book chapters are organized in the se-
quence that we use for our own statistics courses. However, different instructors may
prefer different organizations and probably will choose to omit or deemphasize specific
topics. We have tried to make separate chapters, and even sections of chapters, com-
pletely self-contained, so they can be deleted or reorganized to fit the syllabus for
nearly any instructor. Some common examples are as follows:

e It is common for instructors to choose between emphasizing analysis of variance
(Chapters 12, 13, and 14) or emphasizing correlation/regression (Chapters 15
and 16). It is rare for a one-semester course to complete coverage of both topics.
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* Although we choose to complete all the hypothesis tests for means and mean
differences before introducing correlation (Chapter 15), many instructors prefer to
place correlation much earlier in the sequence of course topics. To accommodate
this, sections 15.1, 15.2, and 15.3 present the calculation and interpretation of the
Pearson correlation and can be introduced immediately following Chapter 4 (vari-
ability). Other sections of Chapter 15 refer to hypothesis testing and should be
delayed until the process of hypothesis testing (Chapter 8) has been introduced.

It is also possible for instructors to present the chi-square tests (Chapter 17)
much earlier in the sequence of course topics. Chapter 17, which presents
hypothesis tests for proportions, can be presented immediately after Chapter 8,
which introduces the process of hypothesis testing. If this is done, we also
recommend that the Pearson correlation (Sections 15.1, 15.2, and 15.3) be pre-
sented early to provide a foundation for the chi-square test for independence.

A primary goal of this book is to make the task of learning statistics as easy and pain-
less as possible. Among other things, you will notice that the book provides you with a
number of opportunities to practice the techniques you will be learning in the form of
Learning Checks, Examples, Demonstrations, and end-of-chapter problems. We en-
courage you to take advantage of these opportunities. Read the text rather than just
memorizing the formulas. We have taken care to present each statistical procedure in a
conceptual context that explains why the procedure was developed and when it should
be used. If you read this material and gain an understanding of the basic concepts un-
derlying a statistical formula, you will find that learning the formula and how to use it
will be much easier. In the “Study Hints,” that follow, we provide advice that we give
our own students. Ask your instructor for advice as well; we are sure that other
instructors will have ideas of their own.

Over the years, the students in our classes and other students using our book have
given us valuable feedback. If you have any suggestions or comments about this book,
you can write to either Professor Emeritus Frederick Gravetter or Professor Emeritus
Larry Wallnau at the Department of Psychology, SUNY College at Brockport, 350
New Campus Drive, Brockport, New York 14420. You can also contact Professor
Emeritus Gravetter directly at fgravett@brockport.edu.

Study Hints You may find some of these tips helpful, as our own students have
reported.

* The key to success in a statistics course is to keep up with the material. Each new
topic builds on previous topics. If you have learned the previous material, then
the new topic is just one small step forward. Without the proper background,
however, the new topic can be a complete mystery. If you find that you are
falling behind, get help immediately.

You will learn (and remember) much more if you study for short periods several
times per week rather than try to condense all of your studying into one long
session. For example, it is far more effective to study half an hour every night
than to have a single 3%—hour study session once a week. We cannot even work
on writing this book without frequent rest breaks.

* Do some work before class. Keep a little ahead of the instructor by reading the
appropriate sections before they are presented in class. Although you may not
fully understand what you read, you will have a general idea of the topic, which
will make the lecture easier to follow. Also, you can identify material that is
particularly confusing and then be sure the topic is clarified in class.
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Pay attention and think during class. Although this advice seems obvious, often
it is not practiced. Many students spend so much time trying to write down every
example presented or every word spoken by the instructor that they do not actu-
ally understand and process what is being said. Check with your instructor—
there may not be a need to copy every example presented in class, especially if
there are many examples like it in the text. Sometimes, we tell our students to
put their pens and pencils down for a moment and just listen.

Test yourself regularly. Do not wait until the end of the chapter or the end of the
week to check your knowledge. After each lecture, work some of the end-of-
chapter problems and do the Learning Checks. Review the Demonstration
Problems, and be sure you can define the Key Terms. If you are having trouble,
get your questions answered immediately—reread the section, go to your instruc-
tor, or ask questions in class. By doing so, you will be able to move ahead to
new material.

Do not kid yourself! Avoid denial. Many students observe their instructor solve
problems in class and think to themselves, “This looks easy, I understand it.” Do
you really understand it? Can you really do the problem on your own without
having to leaf through the pages of a chapter? Although there is nothing wrong
with using examples in the text as models for solving problems, you should try
working a problem with your book closed to test your level of mastery.

We realize that many students are embarrassed to ask for help. It is our biggest
challenge as instructors. You must find a way to overcome this aversion.
Perhaps contacting the instructor directly would be a good starting point, if ask-
ing questions in class is too anxiety-provoking. You could be pleasantly sur-
prised to find that your instructor does not yell, scold, or bite! Also, your
instructor might know of another student who can offer assistance. Peer tutoring
can be very helpful.

Frederick J Gravetter
Larry B. Wallnau
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Introduction
and Descriptive
Statistics

e have divided this book into five sections, each cover-

ing a general topic area of statistics. The first section,

consisting of Chapters 1 to 4, provides a broad overview
of statistical methods and a more focused presentation of those
methods that are classified as descriptive statistics.

By the time you finish the four chapters in this part, you
should have a good understanding of the general goals of statistics
and you should be familiar with the basic terminology and notation
used in statistics. In addition, you should be familiar with the tech-
niques of descriptive statistics that help researchers organize and
summarize the results they obtain from their research. Specifically,
you should be able to take a set of scores and present them in a
table or in a graph that provides an overall picture of the complete
set. Also, you should be able to summarize a set of scores by cal-
culating one or two values (such as the average) that describe the
entire set.

At the end of this section there is a brief summary and a set of
review problems that should help integrate the elements from the
separate chapters.
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Preview

Before we begin our discussion of statistics, we ask you to
read the following paragraph taken from the philosophy of
Wrong Shui (Candappa, 2000).

The Journey to Enlightenment
In Wrong Shui, life is seen as a cosmic journey, a
struggle to overcome unseen and unexpected obstacles
at the end of which the traveler will find illumination
and enlightenment. Replicate this quest in your home
by moving light switches away from doors and over to
the far side of each room.*

Why did we begin a statistics book with a bit of twisted
philosophy? Actually, the paragraph is an excellent (and
humorous) counterexample for the purpose of this book.
Specifically, our goal is to help you avoid stumbling
around in the dark by providing lots of easily available
light switches and plenty of illumination as you journey
through the world of statistics. To accomplish this, we try
to present sufficient background and a clear statement of
purpose as we introduce each new statistical procedure.
Remember that all statistical procedures were developed to
serve a purpose. If you understand why a new procedure is

The objectives for this first chapter are to provide an
introduction to the topic of statistics and to give you some
background for the rest of the book. We discuss the role of
statistics within the general field of scientific inquiry, and
we introduce some of the vocabulary and notation that are
necessary for the statistical methods that follow.

As you read through the following chapters, keep in
mind that the general topic of statistics follows a well-
organized, logically developed progression that leads from
basic concepts and definitions to increasingly sophisticated
techniques. Thus, the material presented in the early chap-
ters of this book serves as a foundation for the material that
follows. The content of the first nine chapters, for example,
provides an essential background and context for the statis-
tical methods presented in Chapter 10. If you turn directly
to Chapter 10 without reading the first nine chapters, you
will find the material confusing and incomprehensible.
However, if you learn and use the background material, you
will have a good frame of reference for understanding and
incorporating new concepts as they are presented.

needed, you will find it much easier to learn.

*Candappa, R. (2000). The little book of wrong shui. Kansas City:
Andrews McMeel Publishing. Reprinted by permission.

DEFINITIONS OF STATISTICS

STATISTICS, SCIENCE, AND OBSERVATIONS

By one definition, statistics consist of facts and figures such as average income, crime
rate, birth rate, baseball batting averages, and so on. These statistics are usually in-
formative and time saving because they condense large quantities of information into a
few simple figures. Later in this chapter we return to the notion of calculating statistics
(facts and figures) but, for now, we concentrate on a much broader definition of statis-
tics. Specifically, we use the term statistics to refer to a set of mathematical procedures.
In this case, we are using the term statistics as a shortened version of statistical proce-
dures. For example, you are probably using this book for a statistics course in which
you will learn about the statistical techniques that are used for research in the behav-
ioral sciences.

Research in psychology (and other fields) involves gathering information. To de-
termine, for example, whether violence on TV has any effect on children’s behavior,
you would need to gather information about children’s behaviors and the TV programs
they watch. When researchers finish the task of gathering information, they typically
find themselves with pages and pages of measurements such as IQ scores, personality
scores, reaction time scores, and so on. In this book, we present the statistics that
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researchers use to analyze and interpret the information that they gather. Specifically,
statistics serve two general purposes:

1. Statistics are used to organize and summarize the information so that the
researcher can see what happened in the research study and can communicate
the results to others.

2. Statistics help the researcher to answer the questions that initiated the research
by determining exactly what general conclusions are justified based on the
specific results that were obtained.

The term statistics refers to a set of mathematical procedures for organizing,
summarizing, and interpreting information.

Statistical procedures help to ensure that the information or observations are
presented and interpreted in an accurate and informative way. In somewhat grandiose
terms, statistics help researchers bring order out of chaos. In addition, statistics provide
researchers with a set of standardized techniques that are recognized and understood
throughout the scientific community. Thus, the statistical methods used by one researcher
are familiar to other researchers, who can accurately interpret the statistical analyses with
a full understanding of how the analysis was done and what the results signify.

POPULATIONS AND SAMPLES

Research in the behavioral sciences typically begins with a general question about a
specific group (or groups) of individuals. For example, a researcher may be interested
in the effect of divorce on the self-esteem of preteen children. Or a researcher may want
to examine the amount of time spent in the bathroom for men compared to women. In
the first example, the researcher is interested in the group of preteen children. In the
second example, the researcher wants to compare the group of men with the group of
women. In statistical terminology, the entire group that a researcher wishes to study is
called a population.

A population is the set of all the individuals of interest in a particular study.

As you can well imagine, a population can be quite large—for example, the entire
set of women on the planet Earth. A researcher might be more specific, limiting the
population for study to women who are registered voters in the United States. Perhaps
the investigator would like to study the population consisting of women who are heads
of state. Populations can obviously vary in size from extremely large to very small, de-
pending on how the researcher defines the population. The population being studied
should always be identified by the researcher. In addition, the population need not con-
sist of people—it could be a population of rats, corporations, parts produced in a fac-
tory, or anything else a researcher wants to study. In practice, populations are typically
very large, such as the population of college sophomores in the United States or the
population of small businesses.

Because populations tend to be very large, it usually is impossible for a researcher
to examine every individual in the population of interest. Therefore, researchers typically
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select a smaller, more manageable group from the population and limit their studies to
the individuals in the selected group. In statistical terms, a set of individuals selected
from a population is called a sample. A sample is intended to be representative of its pop-
ulation, and a sample should always be identified in terms of the population from which
it was selected.

A sample is a set of individuals selected from a population, usually intended to
represent the population in a research study.

Just as we saw with populations, samples can vary in size. For example, one study
might examine a sample of only 10 students in a graduate program, and another study
might use a sample of more than 1,000 registered voters representing the population of
a major city.

So far we have talked about a sample being selected from a population. However,
this is actually only half of the full relationship between a sample and its population.
Specifically, when a researcher finishes examining the sample, the goal is to generalize
the results back to the entire population. Remember that the research started with a gen-
eral question about the population. To answer the question, a researcher studies a sam-
ple and then generalizes the results from the sample to the population. The full
relationship between a sample and a population is shown in Figure 1.1.

Typically, researchers are interested in specific characteristics of the individuals in the
population (or in the sample), or they are interested in outside factors that may influ-
ence the individuals. For example, a researcher may be interested in the influence of the
weather on people’s moods. As the weather changes, do people’s moods also change?
Something that can change or have different values is called a variable.

A variable is a characteristic or condition that changes or has different values
for different individuals.

FIGURE 1.1

The relationship between a
population and a sample.

THE POPULATION
All of the individuals of interest

[\

The results The sample
from the sample is selected from

are generalized .
to the population fhe population

\ THE SAMPLE /

The individuals selected to
participate in the research study
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Once again, variables can be characteristics that differ from one individual to
another, such as height, weight, gender, or personality. Also, variables can be environ-
mental conditions that change, such as temperature, time of day, or the size of the room
in which the research is being conducted.

To demonstrate changes in variables, it is necessary to make measurements of the
variables being examined. The measurement obtained for each individual is called a
datum or, more commonly, a score or raw score. The complete set of scores is called
the data set or simply the data.

Data (plural) are measurements or observations. A data set is a collection of
measurements or observations. A datum (singular) is a single measurement or
observation and is commonly called a score or raw score.

Before we move on, we should make one more point about samples, populations, and
data. Earlier, we defined populations and samples in terms of individuals. For example,
we discussed a population of college sophomores and a sample of preschool children. Be
forewarned, however, that we will also refer to populations or samples of scores. Because
research typically involves measuring each individual to obtain a score, every sample (or
population) of individuals produces a corresponding sample (or population) of scores.

When describing data, it is necessary to distinguish whether the data come from a popu-
lation or a sample. A characteristic that describes a population—for example, the average
score for the population—is called a parameter. A characteristic that describes a sample
is called a statistic. Thus, the average score for a sample is an example of a statistic.
Typically, the research process begins with a question about a population parameter.
However, the actual data come from a sample and are used to compute sample statistics.

A parameter is a value, usually a numerical value, that describes a population.
A parameter is usually derived from measurements of the individuals in the
population.

A statistic is a value, usually a numerical value, that describes a sample. A
statistic is usually derived from measurements of the individuals in the sample.

Every population parameter has a corresponding sample statistic, and most research
studies involve using statistics from samples as the basis for answering questions about
population parameters. As a result, much of this book is concerned with the relation-
ship between sample statistics and the corresponding population parameters. In Chapter
7, for example, we examine the relationship between the mean obtained for a sample
and the mean for the population from which the sample was obtained.

Although researchers have developed a variety of different statistical procedures to or-
ganize and interpret data, these different procedures can be classified into two general
categories. The first category, descriptive statistics, consists of statistical procedures
that are used to simplify and summarize data.

Descriptive statistics are statistical procedures used to summarize, organize,
and simplify data.
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Descriptive statistics are techniques that take raw scores and organize or summarize
them in a form that is more manageable. Often the scores are organized in a table or a
graph so that it is possible to see the entire set of scores. Another common technique is
to summarize a set of scores by computing an average. Note that even if the data set has
hundreds of scores, the average provides a single descriptive value for the entire set.

The second general category of statistical techniques is called inferential statistics.
Inferential statistics are methods that use sample data to make general statements about
a population.

DEFINITION Inferential statistics consist of techniques that allow us to study samples and
then make generalizations about the populations from which they were selected.

Because populations are typically very large, it usually is not possible to measure
everyone in the population. Therefore, a sample is selected to represent the population.
By analyzing the results from the sample, we hope to make general statements about
the population. Typically, researchers use sample statistics as the basis for drawing con-
clusions about population parameters.

One problem with using samples, however, is that a sample provides only limited
information about the population. Although samples are generally representative of their
populations, a sample is not expected to give a perfectly accurate picture of the whole
population. There usually is some discrepancy between a sample statistic and the corre-
sponding population parameter. This discrepancy is called sampling error, and it creates
the fundamental problem that inferential statistics must always address (Box 1.1).

DEFINITION Sampling error is the naturally occurring discrepancy, or error, that exists
between a sample statistic and the corresponding population parameter.

The concept of sampling error is illustrated in Figure 1.2. The figure shows a pop-
ulation of 1,000 college students and two samples, each with 5 students, that have been
selected from the population. Notice that each sample contains different individuals
who have different characteristics. Because the characteristics of each sample depend
on the specific people in the sample, statistics vary from one sample to another. For
example, the five students in sample 1 have an average age of 19.8 years and the
students in sample 2 have an average age of 20.4 years.

THE MARGIN OF ERROR BETWEEN STATISTICS AND PARAMETERS

One common example of sampling error is the error The margin of error is the sampling error. In this

associated with a sample proportion. For example, in case, the percentages that are reported were obtained

newspaper articles reporting results from political polls,  from a sample and are being generalized to the whole

you frequently find statements such as this: population. As always, you do not expect the statistics
Candidate Brown leads the poll with 51% of the from a sample to be perfect. There is always some mar-
vote. Candidate Jones has 42% approval, and the gin of error when sample statistics are used to represent
remaining 7% are undecided. This poll was taken population parameters.

from a sample of registered voters and has a margin
of error of plus-or-minus 4 percentage points.
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FIGURE 1.2

A demonstration of sampling
error. Two samples are
selected from the same
population. Notice that the
sample statistics are different
from one sample to another,
and all of the sample statis-
tics are different from the
corresponding population
parameters. The natural
differences that exist, by
chance, between a sample
statistic and a population
parameter are called sam-
pling error.

It is also very unlikely that the statistics obtained for a sample are identical to the
parameters for the entire population. In Figure 1.2, for example, neither sample has sta-
tistics that are exactly the same as the population parameters. You should also realize
that Figure 1.2 shows only two of the hundreds of possible samples. Each sample would
contain different individuals and would produce different statistics. This is the basic
concept of sampling error: sample statistics vary from one sample to another and typi-
cally are different from the corresponding population parameters.

As a further demonstration of sampling error, imagine that your statistics class is
separated into two groups by drawing a line from front to back through the middle of
the room. Now imagine that you compute the average age (or height, or IQ) for each
group. Will the two groups have exactly the same average? Almost certainly they will
not. No matter what you chose to measure, you will probably find some difference
between the two groups.

However, the difference you obtain does not necessarily mean that there is a sys-
tematic difference between the two groups. For example, if the average age for students
on the right-hand side of the room is higher than the average for students on the left, it
is unlikely that some mysterious force has caused the older people to gravitate to the
right side of the room. Instead, the difference is probably the result of random factors
such as chance. The unpredictable, unsystematic differences that exist from one sample
to another are an example of sampling error.
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STATISTICS IN THE
CONTEXT OF RESEARCH

EXAMPLE 1.1

The following example shows the general stages of a research study and demonstrates
how descriptive statistics and inferential statistics are used to organize and interpret the
data. At the end of the example, note how sampling error can affect the interpretation
of experimental results, and consider why inferential statistical methods are needed to
deal with this problem.

Figure 1.3 shows an overview of a general research situation and demonstrates the
roles that descriptive and inferential statistics play. The purpose of the research study

Step 1

Experiment:
Compare two
teaching methods

Data

Population of
first-grade
children

Sample A Sample B
1ot seoresfor e Taught by Method A Taught by Method B
sample
73 75 72 79 68 70 73 71
76 77 75 77 67 72 70 71
72 75 76 78 75 68 70 71
80 74 76 78 72 74 69 72
73 77 74 8] 76 73 70 70
77 77 69
Step 2 Sample A Sample B
Descriptive
statistics: A
Organize and simplify LEEER ==
70 Tso 85 65 T75 80 85
Average Average
score =76 score =71
Step 3 The sample data show a 5-point difference
Inferential between the two teaching methods. However,
statfistics: there are two ways to interpret the results:
Interpret results 1. There actually is no difference between

FIGURE 1.3
The role of statistics in experimental research. researchers decide between the two interpretations.

the two teaching methods, and the sample
difference is due to chance (sampling error).
2. There really is a difference between
the two methods, and the sample data
accurately reflect this difference.
The goal of inferential statistics is to help
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is to evaluate the difference between two methods for teaching reading to first-grade
children. Two samples are selected from the population of first-grade children. The
children in sample A are assigned to teaching method A and the children in sample B
are assigned to method B. After 6 months, all of the students are given a standardized
reading test. At this point, the researcher has two sets of data: the scores for sample A
and the scores for sample B (see Figure 1.3). Now is the time to begin using statistics.

First, descriptive statistics are used to simplify the pages of data. For example, the
researcher could draw a graph showing the scores for each sample or compute the average
score for each sample. Note that descriptive methods provide a simplified, organized
description of the scores. In this example, the students taught by method A averaged 76
on the standardized test, and the students taught by method B averaged only 71.

Once the researcher has described the results, the next step is to interpret the
outcome. This is the role of inferential statistics. In this example, the researcher has
found a difference of 5 points between the two samples (sample A averaged 76 and
sample B averaged 71). The problem for inferential statistics is to differentiate
between the following two interpretations:

1. There is no real difference between the two teaching methods, and the 5-point
difference between the samples is just an example of sampling error (like the
samples in Figure 1.2).

2. There really is a difference between the two teaching methods, and the 5-point
difference between the samples was caused by the different methods of teaching.

In simple English, does the 5-point difference between samples provide convincing
evidence of a difference between the two teaching methods, or is the 5-point
difference just chance? The purpose of inferential statistics is to answer this question.

1. A researcher is interested in the texting habits of high school students in the
United States. If the researcher measures the number of text messages that
each individual sends each day and calculates the average number for the
entire group of high school students, the average number would be an example
of a

2. A researcher is interested in how watching a reality television show featuring
fashion models influences the eating behavior of 13-year-old girls.

a. A group of 30 13-year-old girls is selected to participate in a research study.
The group of 30 13-year-old girls is an example of a

b. In the same study, the amount of food eaten in one day is measured for each
girl and the researcher computes the average score for the 30 13-year-old girls.
The average score is an example of a

3. Statistical techniques are classified into two general categories. What are the two
categories called, and what is the general purpose for the techniques in each category?

4. Briefly define the concept of sampling error.

1. parameter

i

a. sample
b. statistic
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3. The two categories are descriptive statistics and inferential statistics. Descriptive techniques
are intended to organize, simplify, and summarize data. Inferential techniques use sample
data to reach general conclusions about populations.

4. Sampling error is the error, or discrepancy, between the value obtained for a sample statistic
and the value for the corresponding population parameter.

INDIVIDUAL VARIABLES

RELATIONSHIPS BETWEEN
VARIABLES

DATA STRUCTURES, RESEARCH METHODS,
AND STATISTICS

Some research studies are conducted simply to describe individual variables as they
exist naturally. For example, a college official may conduct a survey to describe the eat-
ing, sleeping, and study habits of a group of college students. When the results consist
of numerical scores, such as the number of hours spent studying each day, they are typ-
ically described by the statistical techniques that are presented in Chapters 3 and 4.
Non-numerical scores are typically described by computing the proportion or percent-
age in each category. For example, a recent newspaper article reported that 61% of the
adults in the United States currently drink alcohol.

Most research, however, is intended to examine relationships between two or more
variables. For example, is there a relationship between the amount of violence that chil-
dren see on television and the amount of aggressive behavior they display? Is there a
relationship between the quality of breakfast and level of academic performance for
elementary school children? Is there a relationship between the number of hours of
sleep and grade point average for college students? To establish the existence of a
relationship, researchers must make observations—that is, measurements of the two
variables. The resulting measurements can be classified into two distinct data structures
that also help to classify different research methods and different statistical techniques.
In the following section we identify and discuss these two data structures.

I. Measuring Two Variables for Each Individual: The Correlational Method
One method for examining the relationship between variables is to observe the two
variables as they exist naturally for a set of individuals. That is, simply measure the two
variables for each individual. For example, research has demonstrated a relationship
between sleep habits, especially wake-up time, and academic performance for college
students (Trockel, Barnes, and Egget, 2000). The researchers used a survey to measure
wake-up time and school records to measure academic performance for each student.
Figure 1.4 shows an example of the kind of data obtained in the study. The researchers
then look for consistent patterns in the data to provide evidence for a relationship
between variables. For example, as wake-up time changes from one student to another,
is there also a tendency for academic performance to change?

Consistent patterns in the data are often easier to see if the scores are presented in
a graph. Figure 1.4 also shows the scores for the eight students in a graph called a
scatter plot. In the scatter plot, each individual is represented by a point so that the
horizontal position corresponds to the student’s wake-up time and the vertical position
corresponds to the student’s academic performance score. The scatter plot shows a
clear relationship between wake-up time and academic performance: as wake-up time
increases, academic performance decreases.
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One of two data structures for studies evaluating the
relationship between variables. Note that there are two
separate measurements for each individual (wake-up
time and academic performance). The same scores are
shown in a table (a) and in a graph (b).

7 8 9 10 11 12
Wake-up time

DEFINITION

A research study that simply measures two different variables for each individual
and produces the kind of data shown in Figure 1.4 is an example of the correlational
method, or the correlational research strategy.

In the correlational method, two different variables are observed to determine
whether there is a relationship between them.

Limitations of the Correlational Method The results from a correlational study can
demonstrate the existence of a relationship between two variables, but they do not pro-
vide an explanation for the relationship. In particular, a correlational study cannot
demonstrate a cause-and-effect relationship. For example, the data in Figure 1.4 show
a systematic relationship between wake-up time and academic performance for a group
of college students; those who sleep late tend to have lower performance scores than
those who wake early. However, there are many possible explanations for the relation-
ship and we do not know exactly what factor (or factors) is responsible for late
sleepers having lower grades. In particular, we cannot conclude that waking students up
earlier would cause their academic performance to improve, or that studying more
would cause students to wake up earlier. To demonstrate a cause-and-effect relation-
ship between two variables, researchers must use the experimental method, which is
discussed next.

II. Comparing Two (or More) Groups of Scores: Experimental and
Nonexperimental Methods The second method for examining the relationship
between two variables involves the comparison of two or more groups of scores. In this
situation, the relationship between variables is examined by using one of the variables
to define the groups, and then measuring the second variable to obtain scores for each
group. For example, one group of elementary school children is shown a 30-minute
action/adventure television program involving numerous instances of violence, and a
second group is shown a 30-minute comedy that includes no violence. Both groups are



14 CHAPTER 1 INTRODUCTION TO STATISTICS

FIGURE 1.5

The second data structure
for studies evaluating the
relationship between vari-
ables. Note that one variable
is used to define the groups
and the second variable is
measured to obtain scores
within each group.

A second variable (aggressive behavior)
is measured to obtain scores within each group

One variable (violence/no violence) Viol ) No
is used fo define groups lolence | Violence
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Compare groups
of scores

THE EXPERIMENTAL METHOD

In more complex experiments, a
researcher may systematically
manipulate more than one
variable and may observe more
than one variable. Here we are
considering the simplest case,
in which only one variable is
manipulated and only one
variable is observed.

then observed on the playground and a researcher records the number of aggressive
acts committed by each child. An example of the resulting data is shown in Figure 1.5.
The researcher compares the scores for the violence group with the scores for the
no-violence group. A systematic difference between the two groups provides evidence
for a relationship between viewing television violence and aggressive behavior for
elementary school children.

One specific research method that involves comparing groups of scores is known as the
experimental method or the experimental research strategy. The goal of an experimen-
tal study is to demonstrate a cause-and-effect relationship between two variables.
Specifically, an experiment attempts to show that changing the value of one variable
causes changes to occur in the second variable. To accomplish this goal, the experi-
mental method has two characteristics that differentiate experiments from other types
of research studies:

1. Manipulation The researcher manipulates one variable by changing its value
from one level to another. A second variable is observed (measured) to deter-
mine whether the manipulation causes changes to occur.

2. Control The researcher must exercise control over the research situation to
ensure that other, extraneous variables do not influence the relationship being
examined.

To demonstrate these two characteristics, consider an experiment in which
researchers demonstrate the pain-killing effects of handling money (Zhou & Vohs,
2009). In the experiment, a group of college students was told that they were partici-
pating in a manual dexterity study. The researcher then manipulated the treatment con-
ditions by giving half of the students a stack of money to count and the other half a
stack of blank pieces of paper. After the counting task, the participants were asked to
dip their hands into bowls of painfully hot water (122° F) and rate how uncomfortable
it was. Participants who had counted money rated the pain significantly lower than
those who had counted paper. The structure of the experiment is shown in Figure 1.6.

To be able to say that the difference in pain is caused by the money, the researcher
must rule out any other possible explanation for the difference. That is, any other



SECTION 1.3 / DATA STRUCTURES, RESEARCH METHODS, AND STATISTICS 15

FIGURE 1.6

The structure of an experi-
ment. Participants are ran-
domly assigned to one of
two treatment conditions:
counting money or counting
blank pieces of paper. Later,
each participant is tested by
placing one hand in a bowl
of hot (122° F) water and
rating the level of pain. A
difference between the
ratings for the two groups is
attributed to the treatment
(paper versus money).

Variable #1: Counting money or
blank paper (the independent Money Paper
variable) Manipulated to create 8
two treatment conditions. 471 .

5 8

6 9

6 8
Variable #2: Pain Rating 2 ]9
(the dependent variable)

: 5 8
Measured in each of the 5 8
tfreatment conditions. 6 7
\_Compare groups_/

of scores

variables that might affect pain tolerance must be controlled. There are two general cat-
egories of variables that researchers must consider:

1. Participant Variables These are characteristics such as age, gender, and
intelligence that vary from one individual to another. Whenever an experiment
compares different groups of participants (one group in treatment A and a
different group in treatment B), researchers must ensure that participant vari-
ables do not differ from one group to another. For the experiment shown in
Figure 1.6, for example, the researchers would like to conclude that handling
money instead of plain paper causes a change in the participants’ perceptions
of pain. Suppose, however, that the participants in the money condition were
primarily females and those in the paper condition were primarily males. In
this case, there is an alternative explanation for any difference in the pain
ratings that exists between the two groups. Specifically, it is possible that the
difference in pain was caused by the money, but it also is possible that the
difference was caused by the participants’ gender (females can tolerate
more pain than males can). Whenever a research study allows more than one
explanation for the results, the study is said to be confounded because it is
impossible to reach an unambiguous conclusion.

2. Environmental Variables These are characteristics of the environment such
as lighting, time of day, and weather conditions. A researcher must ensure that
the individuals in treatment A are tested in the same environment as the indi-
viduals in treatment B. Using the money-counting experiment (see Figure 1.6)
as an example, suppose that the individuals in the money condition were all
tested in the morning and the individuals in the paper condition were all tested
in the evening. Again, this would produce a confounded experiment because the
researcher could not determine whether the differences in the pain ratings were
caused by the money or caused by the time of day.

Researchers typically use three basic techniques to control other variables. First,
the researcher could use random assignment, which means that each participant has an
equal chance of being assigned to each of the treatment conditions. The goal of random
assignment is to distribute the participant characteristics evenly between the two groups
so that neither group is noticeably smarter (or older, or faster) than the other. Random



16

CHAPTER 1 INTRODUCTION TO STATISTICS

DEFINITION

DEFINITIONS

DEFINITIONS

assignment can also be used to control environmental variables. For example, partici-
pants could be assigned randomly for testing either in the morning or in the afternoon.
Second, the researcher can use matching to ensure equivalent groups or equivalent
environments. For example, the researcher could match groups by ensuring that every
group has exactly 60% females and 40% males. Finally, the researcher can control
variables by holding them constant. For example, if an experiment uses only 10-year-
old children as participants (holding age constant), then the researcher can be certain
that one group is not noticeably older than another.

In the experimental method, one variable is manipulated while another vari-
able is observed and measured. To establish a cause-and-effect relationship
between the two variables, an experiment attempts to control all other variables
to prevent them from influencing the results.

Terminology in the Experimental Method Specific names are used for the two
variables that are studied by the experimental method. The variable that is manipulated
by the experimenter is called the independent variable. It can be identified as the treat-
ment conditions to which participants are assigned. For the example in Figure 1.6,
money versus paper is the independent variable. The variable that is observed and
measured to obtain scores within each condition is the dependent variable. For the
example in Figure 1.6, the level of pain is the dependent variable.

The independent variable is the variable that is manipulated by the researcher.
In behavioral research, the independent variable usually consists of the two (or
more) treatment conditions to which subjects are exposed. The independent
variable consists of the antecedent conditions that were manipulated prior to
observing the dependent variable.

The dependent variable is the variable that is observed to assess the effect of
the treatment.

Control conditions in an experiment An experimental study evaluates the relation-
ship between two variables by manipulating one variable (the independent variable)
and measuring one variable (the dependent variable). Note that in an experiment only
one variable is actually measured. You should realize that this is different from a cor-
relational study, in which both variables are measured and the data consist of two sep-
arate scores for each individual.

Often an experiment will include a condition in which the participants do not
receive any treatment. The scores from these individuals are then compared with scores
from participants who do receive the treatment. The goal of this type of study is to
demonstrate that the treatment has an effect by showing that the scores in the treatment
condition are substantially different from the scores in the no-treatment condition. In
this kind of research, the no-treatment condition is called the control condition, and the
treatment condition is called the experimental condition.

Individuals in a control condition do not receive the experimental treatment.
Instead, they either receive no treatment or they receive a neutral, placebo treat-
ment. The purpose of a control condition is to provide a baseline for compari-
son with the experimental condition.

Individuals in the experimental condition do receive the experimental treatment.
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Note that the independent variable always consists of at least two values.
(Something must have at least two different values before you can say that it is “vari-
able.”) For the money-counting experiment (see Figure 1.6), the independent variable is
money versus plain paper. For an experiment with an experimental group and a control
group, the independent variable is treatment versus no treatment.

In informal conversation, there is a tendency for people to use the term experiment to
refer to any kind of research study. You should realize, however, that the term only ap-
plies to studies that satisfy the specific requirements outlined earlier. In particular, a
real experiment must include manipulation of an independent variable and rigorous
control of other, extraneous variables. As a result, there are a number of other research
designs that are not true experiments but still examine the relationship between vari-
ables by comparing groups of scores. Two examples are shown in Figure 1.7 and are
discussed in the following paragraphs. This type of research study is classified as non-
experimental.

The top part of Figure 1.7 shows an example of a nonequivalent groups study
comparing boys and girls. Notice that this study involves comparing two groups of
scores (like an experiment). However, the researcher has no ability to control which

FIGURE 1.7

Two examples of nonexperi-
mental studies that involve
comparing two groups of
scores. In (a) the study uses
two preexisting groups
(boys/girls) and measures a
dependent variable (verbal
scores) in each group. In

(b) the study uses time
(before/after) to define the
two groups and measures

a dependent variable (depres-
sion) in each group.

©)
Variable #1: Subject gender
(the quasi-independent variable)
Not manipulated, but used Boys Girls
to create two groups of subjects 17 19
19 10
16 14
12 15
Variable #2: Verbal test scores 17 13
(the dependent variable) 18 12
Measured in each of the 15 11
two groups 16 13
k Any J
difference?
o)

Variable #1: Time
(the quasi-independent variable)
Not manipulated, but used

to create two groups of scores

Before
Therapy

After
Therapy

Variable #2: Depression scores
(the dependent variable)
Measured at each of the two
different fimes
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Correlational studies are also
examples of nonexperimental
research. In this section,
however, we are discussing
non-experimental studies that
compare two or more groups
of scores.
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participants go into which group—all the males must be in the boy group and all the
females must be in the girl group. Because this type of research compares preexisting
groups, the researcher cannot control the assignment of participants to groups and can-
not ensure equivalent groups. Other examples of nonequivalent group studies include
comparing 8-year-old children and 10-year-old children, people with an eating disorder
and those with no disorder, and comparing children from a single-parent home and
those from a two-parent home. Because it is impossible to use techniques like random
assignment to control participant variables and ensure equivalent groups, this type of
research is not a true experiment.

The bottom part of Figure 1.7 shows an example of a pre—post study comparing
depression scores before therapy and after therapy. The two groups of scores are
obtained by measuring the same variable (depression) twice for each participant; once
before therapy and again after therapy. In a pre—post study, however, the researcher has
no control over the passage of time. The “before” scores are always measured earlier
than the “after” scores. Although a difference between the two groups of scores may be
caused by the treatment, it is always possible that the scores simply change as time goes
by. For example, the depression scores may decrease over time in the same way that the
symptoms of a cold disappear over time. In a pre—post study, the researcher also has no
control over other variables that change with time. For example, the weather could
change from dark and gloomy before therapy to bright and sunny after therapy. In this
case, the depression scores could improve because of the weather and not because of
the therapy. Because the researcher cannot control the passage of time or other vari-
ables related to time, this study is not a true experiment.

Terminology in nonexperimental research Although the two research studies
shown in Figure 1.7 are not true experiments, you should notice that they produce the
same kind of data that are found in an experiment (see Figure 1.6). In each case, one
variable is used to create groups, and a second variable is measured to obtain scores
within each group. In an experiment, the groups are created by manipulation of the
independent variable, and the participants’ scores are the dependent variable. The same
terminology is often used to identify the two variables in nonexperimental studies. That
is, the variable that is used to create groups is the independent variable and the scores
are the dependent variable. For example, the top part of Figure 1.7, gender (boy/girl),
is the independent variable and the verbal test scores are the dependent variable.
However, you should realize that gender (boy/girl) is not a true independent variable
because it is not manipulated. For this reason, the “independent variable” in a non-
experimental study is often called a quasi-independent variable.

In a nonexperimental study, the “independent variable” that is used to create the
different groups of scores is often called the quasi-independent variable.

The two general data structures that we used to classify research methods can also be
used to classify statistical methods.

I. One Group with Two Variables Measured for each Individual Recall that the
data from a correlational study consist of two scores, representing two different vari-
ables, for each individual. The scores can be listed in a table or displayed in a scatter
plot as in Figure 1.5. The relationship between the two variables is usually measured
and described using a statistic called a correlation. Correlations and the correlational
method are discussed in detail in Chapters15 and 16.
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Correlational data consisting of
non-numerical scores. Note that
there are two measurements for
each individual: gender and cell
phone preference. The numbers
indicate how many people are in
each category. For example, out
of the 50 males, 30 prefer text
over talk.
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Occasionally, the measurement process used for a correlational study simply classi-
fies individuals into categories that do not correspond to numerical values. For example,
a researcher could classify a group of college students by gender (male or female) and
by cell-phone preference (talk or text). Note that the researcher has two scores for each
individual but neither of the scores is a numerical value. This type of data is typically
summarized in a table showing how many individuals are classified into each of the pos-
sible categories. Table 1.1 shows an example of this kind of summary table. The table
shows, for example, that 30 of the males in the sample preferred texting to talking. This
type of data can be coded with numbers (for example, male = 0 and female = 1) so that
it is possible to compute a correlation. However, the relationship between variables for
non-numerical data, such as the data in Table 1.1, is usually evaluated using a statistical
technique known as a chi-square test. Chi-square tests are presented in Chapter 17.

II. Comparing Two or More Groups of Scores Most of the statistical procedures
presented in this book are designed for research studies that compare groups of scores,
like the experimental study in Figure 1.6 and the nonexperimental studies in Figure 1.7.
Specifically, we examine descriptive statistics that summarize and describe the scores
in each group, and we examine inferential statistics that allow us to use the groups, or
samples, to generalize to the entire population.

When the measurement procedure produces numerical scores, the statistical evalu-
ation typically involves computing the average score for each group and then comparing
the averages. The process of computing averages is presented in Chapter 3, and a vari-
ety of statistical techniques for comparing averages are presented in Chapters 8—14.
If the measurement process simply classifies individuals into non-numerical categories,
the statistical evaluation usually consists of computing proportions for each group and
then comparing proportions. In Table 1.1 we present an example of non-numerical data
examining the relationship between gender and cell-phone preference. The same data
can be used to compare the proportions for males with the proportions for females. For
example, using text is preferred by 60% of the males compared to 50% of the
females. As mentioned before, these data are evaluated using a chi-square test, which is
presented in Chapter 17.

Cell Phone Preference

Text Talk
Males 30 20 50
Females 25 25 50

m 1. Researchers have observed that high school students who watched educational

television programs as young children tend to have higher grades than their peers
who did not watch educational television. Is this study an example of an experi-
ment? Explain why or why not.

2. What two elements are necessary for a research study to be an experiment?

3. Loftus and Palmer (1974) conducted an experiment in which participants were
shown a video of an automobile accident. After the video, some participants were
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asked to estimate the speed of the cars when they “smashed into” each other.
Others were asked to estimate the speed when the cars “hit” each other. The
“smashed into” group produced significantly higher estimates than the “hit” group.
Identify the independent and dependent variables for this study.

1. This study could be correlational or nonexperimental, but it is definitely not an example of a
true experiment. The researcher is simply observing, not manipulating, the amount of educa-
tional television.

2. First, the researcher must manipulate one of the two variables being studied. Second, all
other variables that might influence the results must be controlled.

3. The independent variable is the phrasing of the question and the dependent variable is the
speed estimated by each participant.

m VARIABLES AND MEASUREMENT

CONSTRUCTS AND
OPERATIONAL DEFINITIONS

DEFINITIONS

The scores that make up the data from a research study are the result of observing and
measuring variables. For example, a researcher may finish a study with a set of IQ
scores, personality scores, or reaction-time scores. In this section, we take a closer look
at the variables that are being measured and the process of measurement.

Some variables, such as height, weight, and eye color are well-defined, concrete enti-
ties that can be observed and measured directly. On the other hand, many variables
studied by behavioral scientists are internal characteristics that people use to help
describe and explain behavior. For example, we say that a student does well in school
because he or she is infelligent. Or we say that someone is anxious in social situations,
or that someone seems to be hungry. Variables like intelligence, anxiety, and hunger
are called constructs, and because they are intangible and cannot be directly observed,
they are often called hypothetical constructs.

Although constructs such as intelligence are internal characteristics that cannot be
directly observed, it is possible to observe and measure behaviors that are representa-
tive of the construct. For example, we cannot “see” intelligence but we can see exam-
ples of intelligent behavior. The external behaviors can then be used to create an
operational definition for the construct. An operational definition defines a construct in
terms of external behaviors that can be observed and measured. For example, your in-
telligence is measured and defined by your performance on an IQ test, or hunger can be
measured and defined by the number of hours since last eating.

Constructs are internal attributes or characteristics that cannot be directly
observed but are useful for describing and explaining behavior.

An operational definition identifies a measurement procedure (a set of opera-
tions) for measuring an external behavior and uses the resulting measurements
as a definition and a measurement of a hypothetical construct. Note that an
operational definition has two components: First, it describes a set of operations
for measuring a construct. Second, it defines the construct in terms of the result-
ing measurements.
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The variables in a study can be characterized by the type of values that can be assigned
to them. A discrete variable consists of separate, indivisible categories. For this type of
variable, there are no intermediate values between two adjacent categories. Consider
the values displayed when dice are rolled. Between neighboring values—for example,
five dots and six dots—no other values can ever be observed.

A discrete variable consists of separate, indivisible categories. No values can
exist between two neighboring categories.

Discrete variables are commonly restricted to whole, countable numbers—for
example, the number of children in a family or the number of students attending class.
If you observe class attendance from day to day, you may count 18 students one day
and 19 students the next day. However, it is impossible ever to observe a value between
18 and 19. A discrete variable may also consist of observations that differ qualitatively.
For example, people can be classified by gender (male or female), by occupation
(nurse, teacher, lawyer, etc.), and college students can be classified by academic major
(art, biology, chemistry, etc.). In each case, the variable is discrete because it consists
of separate, indivisible categories.

On the other hand, many variables are not discrete. Variables such as time, height,
and weight are not limited to a fixed set of separate, indivisible categories. You can
measure time, for example, in hours, minutes, seconds, or fractions of seconds. These
variables are called continuous because they can be divided into an infinite number of
fractional parts.

For a continuous variable, there are an infinite number of possible values that
fall between any two observed values. A continuous variable is divisible into an
infinite number of fractional parts.

Suppose, for example, that a researcher is measuring weights for a group of indi-
viduals participating in a diet study. Because weight is a continuous variable, it can be
pictured as a continuous line (Figure 1.8). Note that there are an infinite number of pos-
sible points on the line without any gaps or separations between neighboring points. For

FIGURE 1.8

When measuring weight to
the nearest whole pound,
149.6 and 150.3 are assigned
the value of 150 (top). Any
value in the interval between
149.5 and 150.5 is given the
value of 150.

149.6 150.3
L I\ L / | L L
149 151 152
150
149.5 150.5
| | | |
149 150 151 152
148.5 149.5 150.5 151.5 152.5
Real limits
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Technical Note: Students often
ask whether a value of exactly
150.5 should be assigned to the
X = 150 interval or the X = 151
interval. The answer is that
150.5 is the boundary between
the two intervals and is not
necessarily in one or the other.
Instead, the placement of 150.5
depends on the rule that you are
using for rounding numbers. If
you are rounding up, then 150.5
goes in the higher interval

(X = 151) but if you are
rounding down, then it goes in
the lower interval (X = 150).

INTRODUCTION TO STATISTICS

any two different points on the line, it is always possible to find a third value that is
between the two points.
Two other factors apply to continuous variables:

1. When measuring a continuous variable, it should be very rare to obtain identi-
cal measurements for two different individuals. Because a continuous variable
has an infinite number of possible values, it should be almost impossible for
two people to have exactly the same score. If the data show a substantial num-
ber of tied scores, then you should suspect that the measurement procedure is
very crude or that the variable is not really continuous.

2. When measuring a continuous variable, each measurement category is actually
an interval that must be defined by boundaries. For example, two people who
both claim to weigh 150 pounds are probably not exactly the same weight.
However, they are both around 150 pounds. One person may actually weigh
149.6 and the other 150.3. Thus, a score of 150 is not a specific point on the
scale but instead is an interval (see Figure 1.8). To differentiate a score of
150 from a score of 149 or 151, we must set up boundaries on the scale of
measurement. These boundaries are called real limits and are positioned exactly
halfway between adjacent scores. Thus, a score of X = 150 pounds is actually
an interval bounded by a lower real limit of 149.5 at the bottom and an upper
real limit of 150.5 at the top. Any individual whose weight falls between these
real limits will be assigned a score of X = 150.

Real limits are the boundaries of intervals for scores that are represented on a
continuous number line. The real limit separating two adjacent scores is located
exactly halfway between the scores. Each score has two real limits. The upper
real limit is at the top of the interval, and the lower real limit is at the bottom.

The concept of real limits applies to any measurement of a continuous variable, even
when the score categories are not whole numbers. For example, if you were measuring
time to the nearest tenth of a second, the measurement categories would be 31.0, 31.1, 31.2,
and so on. Each of these categories represents an interval on the scale that is bounded by
real limits. For example, a score of X = 31.1 seconds indicates that the actual measurement
is in an interval bounded by a lower real limit of 31.05 and an upper real limit of 31.15.
Remember that the real limits are always halfway between adjacent categories.

Later in this book, real limits are used for constructing graphs and for various cal-
culations with continuous scales. For now, however, you should realize that real limits
are a necessity whenever you make measurements of a continuous variable.

Finally, we should warn you that the terms continuous and discrete apply to the
variables that are being measured and not to the scores that are obtained from the meas-
urement. For example, measuring people’s heights to the nearest inch produces scores
of 60, 61, 62, and so on. Although the scores may appear to be discrete numbers, the
underlying variable is continuous. One key to determining whether a variable is con-
tinuous or discrete is that a continuous variable can be divided into any number of frac-
tional parts. Height can be measured to the nearest inch, the nearest 0.5 inch, or the
nearest 0.1 inch. Similarly, a professor evaluating students’ knowledge could use a
pass/fail system that classifies students into two broad categories. However, the pro-
fessor could choose to use a 10-point quiz that divides student knowledge into 11 cat-
egories corresponding to quiz scores from 0 to 10. Or the professor could use a
100-point exam that potentially divides student knowledge into 101 categories from
0 to 100. Whenever you are free to choose the degree of precision or the number of
categories for measuring a variable, the variable must be continuous.
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It should be obvious by now that data collection requires that we make measurements of
our observations. Measurement involves assigning individuals or events to categories. The
categories can simply be names such as male/female or employed/unemployed, or they can
be numerical values such as 68 inches or 175 pounds. The categories used to measure a
variable make up a scale of measurement, and the relationships between the categories de-
termine different types of scales. The distinctions among the scales are important because
they identify the limitations of certain types of measurements and because certain statisti-
cal procedures are appropriate for scores that have been measured on some scales but not
on others. If you were interested in people’s heights, for example, you could measure a
group of individuals by simply classifying them into three categories: tall, medium, and
short. However, this simple classification would not tell you much about the actual heights
of the individuals, and these measurements would not give you enough information to cal-
culate an average height for the group. Although the simple classification would be ade-
quate for some purposes, you would need more sophisticated measurements before you
could answer more detailed questions. In this section, we examine four different scales of
measurement, beginning with the simplest and moving to the most sophisticated.

The word nominal means “having to do with names.” Measurement on a nominal scale
involves classifying individuals into categories that have different names but are not
related to each other in any systematic way. For example, if you were measuring the
academic majors for a group of college students, the categories would be art, biology,
business, chemistry, and so on. Each student would be classified in one category accord-
ing to his or her major. The measurements from a nominal scale allow us to determine
whether two individuals are different, but they do not identify either the direction or the
size of the difference. If one student is an art major and another is a biology major we can
say that they are different, but we cannot say that art is “more than” or “less than” biol-
ogy and we cannot specify how much difference there is between art and biology. Other
examples of nominal scales include classifying people by race, gender, or occupation.

A nominal scale consists of a set of categories that have different names.
Measurements on a nominal scale label and categorize observations, but do not
make any quantitative distinctions between observations.

Although the categories on a nominal scale are not quantitative values, they are
occasionally represented by numbers. For example, the rooms or offices in a building may
be identified by numbers. You should realize that the room numbers are simply names
and do not reflect any quantitative information. Room 109 is not necessarily bigger than
Room 100 and certainly not 9 points bigger. It also is fairly common to use numerical val-
ues as a code for nominal categories when data are entered into computer programs. For
example, the data from a survey may code males with a 0 and females with a 1. Again,
the numerical values are simply names and do not represent any quantitative difference.
The scales that follow do reflect an attempt to make quantitative distinctions.

The categories that make up an ordinal scale not only have different names (as in a
nominal scale) but also are organized in a fixed order corresponding to differences of
magnitude.

An ordinal scale consists of a set of categories that are organized in an ordered
sequence. Measurements on an ordinal scale rank observations in terms of size
or magnitude.
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Often, an ordinal scale consists of a series of ranks (first, second, third, and so on)
like the order of finish in a horse race. Occasionally, the categories are identified by
verbal labels like small, medium, and large drink sizes at a fast-food restaurant. In
either case, the fact that the categories form an ordered sequence means that there is a
directional relationship between categories. With measurements from an ordinal scale,
you can determine whether two individuals are different and you can determine the
direction of difference. However, ordinal measurements do not allow you to determine
the size of the difference between two individuals. For example, if Billy is placed in
the low-reading group and Tim is placed in the high-reading group, you know that Tim
is a better reader, but you do not know how much better. Other examples of ordinal
scales include socioeconomic class (upper, middle, lower) and T-shirt sizes (small,
medium, large). In addition, ordinal scales are often used to measure variables for
which it is difficult to assign numerical scores. For example, people can rank their
food preferences but might have trouble explaining “how much” they prefer chocolate
ice cream to steak.

Both an interval scale and a ratio scale consist of a series of ordered categories (like an
ordinal scale) with the additional requirement that the categories form a series of inter-
vals that are all exactly the same size. Thus, the scale of measurement consists of a
series of equal intervals, such as inches on a ruler. Other examples of interval and ratio
scales are the measurement of time in seconds, weight in pounds, and temperature in
degrees Fahrenheit. Note that, in each case, one interval (1 inch, 1 second, 1 pound,
1 degree) is the same size, no matter where it is located on the scale. The fact that the
intervals are all the same size makes it possible to determine both the size and the
direction of the difference between two measurements. For example, you know that a
measurement of 80° Fahrenheit is higher than a measure of 60°, and you know that it
is exactly 20° higher.

The factor that differentiates an interval scale from a ratio scale is the nature of
the zero point. An interval scale has an arbitrary zero point. That is, the value O is
assigned to a particular location on the scale simply as a matter of convenience or ref-
erence. In particular, a value of zero does not indicate a total absence of the variable
being measured. For example a temperature of 0° Fahrenheit does not mean that there
is no temperature, and it does not prohibit the temperature from going even lower.
Interval scales with an arbitrary zero point are relatively rare. The two most common
examples are the Fahrenheit and Celsius temperature scales. Other examples include
golf scores (above and below par) and relative measures such as above and below
average rainfall.

A ratio scale is anchored by a zero point that is not arbitrary but rather is a mean-
ingful value representing none (a complete absence) of the variable being measured.
The existence of an absolute, nonarbitrary zero point means that we can measure the
absolute amount of the variable; that is, we can measure the distance from 0. This
makes it possible to compare measurements in terms of ratios. For example, an indi-
vidual who requires 10 seconds to solve a problem (10 more than 0) has taken twice
as much time as an individual who finishes in only 5 seconds (5 more than 0). With
a ratio scale, we can measure the direction and the size of the difference between two
measurements and we can describe the difference in terms of a ratio. Ratio scales are
quite common and include physical measures such as height and weight, as well as
variables such as reaction time or the number of errors on a test. The distinction
between an interval scale and a ratio scale is demonstrated in Example 1.2.
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An interval scale consists of ordered categories that are all intervals of exactly
the same size. Equal differences between numbers on a scale reflect equal
differences in magnitude. However, the zero point on an interval scale is
arbitrary and does not indicate a zero amount of the variable being measured.

A ratio scale is an interval scale with the additional feature of an absolute zero
point. With a ratio scale, ratios of numbers do reflect ratios of magnitude.

A researcher obtains measurements of height for a group of 8-year-old boys.
Initially, the researcher simply records each child’s height in inches, obtaining values
such as 44, 51, 49, and so on. These initial measurements constitute a ratio scale. A
value of zero represents no height (absolute zero). Also, it is possible to use these
measurements to form ratios. For example, a child who is 60 inches tall is one-and-
a-half times taller than a child who is 40 inches tall.

Now suppose that the researcher converts the initial measurement into a new
scale by calculating the difference between each child’s actual height and the average
height for this age group. A child who is 1 inch taller than average now gets a score
of +1; a child 4 inches taller than average gets a score of +4. Similarly, a child who
is 2 inches shorter than average gets a score of —2. On this scale, a score of zero
corresponds to average height. Because zero no longer indicates a complete absence
of height, the new scores constitute an interval scale of measurement.

Notice that original scores and the converted scores both involve measurement in
inches, and you can compute differences, or distances, on either scale. For example,
there is a 6-inch difference in height between two boys who measure 57 and 51
inches tall on the first scale. Likewise, there is a 6-inch difference between two boys
who measure +9 and +3 on the second scale. However, you should also notice that
ratio comparisons are not possible on the second scale. For example, a boy who
measures +9 is not three times taller than a boy who measures +3.

For our purposes, scales of measurement are important because they influence the
kind of statistics that can and cannot be used. For example, if you measure IQ scores
for a group of students, it is possible to add the scores together and calculate a mean
score for the group. On the other hand, if you measure the academic major for each
student, you cannot compute the mean. (What is the mean of three psychology ma-
jors, an English major, and two chemistry majors?) The vast majority of the statisti-
cal techniques presented in this book are designed for numerical scores from an
interval or a ratio scale. For most statistical applications, the distinction between an
interval scale and a ratio scale is not important because both scales produce numeri-
cal values that permit us to compute differences between scores, to add scores, and to
calculate mean scores. On the other hand, measurements from nominal or ordinal
scales are typically not numerical values and are not compatible with many basic
arithmetic operations. Therefore, alternative statistical techniques are necessary for
data from nominal or ordinal scales of measurement (for example, the median and the
mode in Chapter 3, the Spearman correlation in Chapter 15, and the chi-square tests
in Chapter 17). Additional statistical methods for measurements from ordinal scales
are presented in Appendix E.
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1. A survey asks people to identify their age, annual income, and marital status
(single, married, divorced, etc.). For each of these three variables, identify the
scale of measurement that probably is used and identify whether the variable is
continuous or discrete.

2. An English professor uses letter grades (A, B, C, D, and F) to evaluate a set of
student essays. What kind of scale is being used to measure the quality of the
essays?

3. The teacher in a communications class asks students to identify their favorite real-
ity television show. The different television shows make up a scale of
measurement.

4. A researcher studies the factors that determine the number of children that couples
decide to have. The variable, number of children, is a
(discrete/continuous) variable.

5. a. When measuring height to the nearest inch, what are the real limits for a score
of 68 inches?

b. When measuring height to the nearest half inch, what are the real limits for a
score of 68 inches?

o

. Age and annual income are measured on ratio scales and are both continuous variables.
Marital status is measured on a nominal scale and is a discrete variable.

. ordinal
. nominal
. discrete

a. 67.5 and 68.5
b. 67.75 and 68.25

[ RN

STATISTICAL NOTATION

The measurements obtained in research studies provide the data for statistical analysis.
Most of the statistical analyses use the same general mathematical operations, notation,
and basic arithmetic that you have learned during previous years of school. In case you
are unsure of your mathematical skills, there is a mathematics review section in
Appendix A at the back of this book. The appendix also includes a skills-assessment
exam (p. 678) to help you determine whether you need the basic mathematics review.
In this section, we introduce some of the specialized notation that is used for statistical
calculations. In later chapters, additional statistical notation is introduced as it is
needed.

Measuring a variable in a research study typically yields a value or a score for each
individual. Raw scores are the original, unchanged scores obtained in the study. Scores
for a particular variable are represented by the letter X. For example, if performance in
your statistics course is measured by tests and you obtain a 35 on the first test, then we
could state that X = 35. A set of scores can be presented in a column that is headed by
X. For example, a list of quiz scores from your class might be presented as shown in the
margin (the single column on the left).



Scores

X X Y

37 72 165
35 68 151
35 67 160
30 67 160
25 68 146
17 70 160
16 66 133

SUMMATION NOTATION

More information on the order

of operations for mathematics is

available in the Math Review
appendix, page 679.
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When observations are made for two variables, there will be two scores for each
individual. The data can be presented as two lists labeled X and Y for the two variables.
For example, observations for people’s height in inches (variable X) and weight in
pounds (variable Y) can be presented as shown in the double column in the margin.
Each pair X, Y represents the observations made of a single participant.

The letter N is used to specify how many scores are in a set. An uppercase letter
N identifies the number of scores in a population and a lowercase letter n identifies
the number of scores in a sample. Throughout the remainder of the book you will
notice that we often use notational differences to distinguish between samples and
populations. For the height and weight data in the preceding table, n = 7 for both
variables. Note that by using a lowercase letter n, we are implying that these data are
a sample.

Many of the computations required in statistics involve adding a set of scores. Because
this procedure is used so frequently, a special notation is used to refer to the sum of a
set of scores. The Greek letter sigma, or 2, is used to stand for summation. The
expression XX means to add all the scores for variable X. The summation sign, 3, can
be read as “the sum of.” Thus, 2.X is read “the sum of the scores.” For the following set
of quiz scores,

10, 6, 7, 4
SX=27and N = 4.

To use summation notation correctly, keep in mind the following two points:

1. The summation sign, 3, is always followed by a symbol or mathematical
expression. The symbol or expression identifies exactly which values are to be
added. To compute %X, for example, the symbol following the summation sign
is X, and the task is to find the sum of the X values. On the other hand, to
compute (X — 1), the summation sign is followed by a relatively complex
mathematical expression, so your first task is to calculate all of the (X — 1)*
values and then add the results.

2. The summation process is often included with several other mathematical
operations, such as multiplication or squaring. To obtain the correct answer, it is
essential that the different operations be done in the correct sequence. Following
is a list showing the correct order of operations for performing mathematical
operations. Most of this list should be familiar, but you should note that we have
inserted the summation process as the fourth operation in the list.

Order of Mathematical Operations
1. Any calculation contained within parentheses is done first.
2. Squaring (or raising to other exponents) is done second.

3. Multiplying and/or dividing is done third. A series of multiplication and/or
division operations should be done in order from left to right.

4. Summation using the 2, notation is done next.
5. Finally, any other addition and/or subtraction is done.

The following examples demonstrate how summation notation is used in most of
the calculations and formulas we present in this book.



28

CHAPTER 1 INTRODUCTION TO STATISTICS

EXAMPLE 1.3

X X2
3 9
1 1
7 49
4 16

EXAMPLE 1.4

A set of four scores consists of values 3, 1, 7, and 4. We will compute %X, X2, and
(2X)? for these scores. To help demonstrate the calculations, we will use a
computational table showing the original scores (the X values) in the first column.
Additional columns can then be added to show additional steps in the series of
operations. You should notice that the first three operations in the list (parentheses,
squaring, and multiplying) all create a new column of values. The last two operations,
however, produce a single value corresponding to the sum.

The table to the left shows the original scores (the X values) and the squared
scores (the X? values) that are needed to compute >X2.

The first calculation, 2X, does not include any parentheses, squaring, or
multiplication, so we go directly to the summation operation. The X values are listed
in the first column of the table, and we simply add the values in this column:

3X=3+1+7+4=15

To compute 3 X, the correct order of operations is to square each score and then
find the sum of the squared values. The computational table shows the original scores
and the results obtained from squaring (the first step in the calculation). The second
step is to find the sum of the squared values, so we simply add the numbers in the X>
column.

SX2=94+1+49 +16=75

The final calculation, (2X)?, includes parentheses, so the first step is to perform
the calculation inside the parentheses. Thus, we first find 2X and then square this
sum. Earlier, we computed 2X = 15, so

(EX)? = (15)* = 225

Use the same set of four scores from Example 1.3 and compute %(X — 1) and
3(X — 1)% The following computational table will help demonstrate the calculations.

2
X x-1 x-1 The first column lists the
3 2 4 original scores. A second
1 0 0 column lists the (X — 1)
7 6 36 values, and a third column
4 3 9 shows the (X — 1)? values.

To compute (X — 1), the first step is to perform the operation inside the parentheses.
Thus, we begin by subtracting one point from each of the X values. The resulting
values are listed in the middle column of the table. The next step is to add the (X — 1)
values.

SX-1)=2+0+6+3+=11

The calculation of 3(X + 1)* requires three steps. The first step (inside parentheses)
is to subtract 1 point from each X value. The results from this step are shown in the
middle column of the computational table. The second step is to square each of the
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EXAMPLE 1.6
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(X — 1) values. The results from this step are shown in the third column of the table.
The final step is to add the (X — 1)? values to obtain

SX—12=4+0+36+9=49

Notice that this calculation requires squaring before adding. A common mistake
is to add the (X — 1) values and then square the total. Be careful!

In both of the preceding examples, and in many other situations, the summation
operation is the last step in the calculation. According to the order of operations,
parentheses, exponents, and multiplication all come before summation. However,
there are situations in which extra addition and subtraction are completed after the
summation. For this example, use the same scores that appeared in the previous two
examples, and compute 32X — 1.

With no parentheses, exponents, or multiplication, the first step is the summation.
Thus, we begin by computing 3X. Earlier we found 3X = 15. The next step is to
subtract one point from the total. For these data,

3X-1=15-1=14

For this example, each individual has two scores. The first score is identified as X,
and the second score is Y. With the help of the following computational table,
compute %X, XY, and 2XY.

Person X Y XY
A 3 5 15
B 1 3 3
C 7 4 28
D 4 2 8

To find X, simply add the values in the X column.
3X=3+1+7+4=15

Similarly, 2Y is the sum of the Y values.
SY=5+3+4+2=14

To compute %XV, the first step is to multiply X times Y for each individual. The
resulting products (XY values) are listed in the third column of the table. Finally,
we add the products to obtain

SXY=15+3+28 +8 =54
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1. Calculate each value requested for the following scores: 6, 2, 4, 2.

a. XX

b. 3X*

c. X

d (X -2
e. (X —2)?

1

ANSWERS 1. 14
60
196
6

20

oo TP

2. a. Square each score.
b. Add the scores.

3.a. S(X +4)

b. (2X)*
c. 3X°

Identify the first step in each of the following calculations.

a. 3X> b. CX)* ¢ (X —2)

3. Use summation notation to express each of the following.
a. Add 4 points to each score and then add the resulting values.
b. Add the scores and then square the total.
¢. Square each score, then add the squared values.

c¢. Subtract 2 points from each score.

1. The term statistics is used to refer to methods for
organizing, summarizing, and interpreting data.

2. Scientific questions usually concern a population,
which is the entire set of individuals one wishes to
study. Usually, populations are so large that it is
impossible to examine every individual, so most
research is conducted with samples. A sample is a
group selected from a population, usually for purposes
of a research study.

3. A characteristic that describes a sample is called a
statistic, and a characteristic that describes a population
is called a parameter. Although sample statistics are
usually representative of corresponding population
parameters, there is typically some discrepancy between
a statistic and a parameter. The naturally occurring
difference between a statistic and a parameter is called
sampling error.

. Statistical methods can be classified into two broad

categories: descriptive statistics, which organize and
summarize data, and inferential statistics, which use
sample data to draw inferences about populations.

. The correlational method examines relationships

between variables by measuring two different variables
for each individual. This method allows researchers to
measure and describe relationships, but cannot produce
a cause-and-effect explanation for the relationship.

. The experimental method examines relationships

between variables by manipulating an independent
variable to create different treatment conditions and
then measuring a dependent variable to obtain a group
of scores in each condition. The groups of scores are
then compared. A systematic difference between
groups provides evidence that changing the
independent variable from one condition to another



also caused a change in the dependent variable. All
other variables are controlled to prevent them from
influencing the relationship. The intent of the
experimental method is to demonstrate a cause-and-
effect relationship between variables.

7. Nonexperimental studies also examine relationships

between variables by comparing groups of scores, but

they do not have the rigor of true experiments and

cannot produce cause-and-effect explanations. Instead
of manipulating a variable to create different groups, a

nonexperimental study uses a preexisting participant

characteristic (such as male/female) or the passage of
time (before/after) to create the groups being compared.

8. A measurement scale consists of a set of categories

that are used to classify individuals. A nominal scale
consists of categories that differ only in name and are
not differentiated in terms of magnitude or direction.

In an ordinal scale, the categories are differentiated
in terms of direction, forming an ordered series. An
interval scale consists of an ordered series of
categories that are all equal-sized intervals. With an
interval scale, it is possible to differentiate direction
and magnitude (or distance) between categories.

KEY TERMS

10.

11.
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Finally, a ratio scale is an interval scale for which the
zero point indicates none of the variable being
measured. With a ratio scale, ratios of measurements
reflect ratios of magnitude.

A discrete variable consists of indivisible categories,
often whole numbers that vary in countable steps. A
continuous variable consists of categories that are
infinitely divisible and each score corresponds to an
interval on the scale. The boundaries that separate
intervals are called real limits and are located exactly
halfway between adjacent scores.

The letter X is used to represent scores for a variable.
If a second variable is used, Y represents its scores.
The letter N is used as the symbol for the number of
scores in a population; n is the symbol for a number
of scores in a sample.

The Greek letter sigma () is used to stand for
summation. Therefore, the expression X is read “the
sum of the scores.” Summation is a mathematical
operation (like addition or multiplication) and must be
performed in its proper place in the order of operations;
summation occurs after parentheses, exponents, and
multiplying/dividing have been completed.

statistics (5)
population (5)
sample (6)
variable (6)
data (7)

data set (7)
datum (7)
raw score (7)
parameter (7)
statistic (7)

descriptive statistics (7)

inferential statistics (8)
sampling error (8)

correlational method (13)
experimental method (14)
independent variable (16)
dependent variable (16)

control condition (16)
experimental condition (16)
nonequivalent groups study (17)
pre—post study (18)

quasi-independent variable (18)

construct (20)

operational definition (20)
discrete variable (21)
continuous variable (21)
real limits (22)

upper real limit (22)
lower real limit (22)
nominal scale (23)
ordinal scale (23)

interval scale (25)

ratio scale (25)

Book Companion Website: www.cengage.com/psychology/gravetter

You can find practice quizzes and other learning aids for every chapter in this book
on the book companion website, as well as a series of workshops and other resources
corresponding to the main topic areas. In the left-hand column are a variety of learning
exercises for Chapter 1, including a tutorial quiz. Also in the left-hand column, under
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Book Resources, is a link to the workshops. For Chapter 1, there is a workshop that
reviews the scales of measurement. To get there, click on the Workshop link, then click
on Scales of Measurement. To find materials for other chapters, begin by selecting the
desired chapter at the top of the page. Note that the workshops were not developed
specifically for this book but are used by several different books written by different
authors. As a result, you may find that some of the notation or terminology is different
from that which you learned in this text.

At the end of each chapter we remind you about the Web resources. Again, there is
a tutorial quiz for every chapter, and we notify you whenever there is a workshop that is
related to the chapter content.

aplia
Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.
CENGAGEDbrain

Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific web-
site, Psychology CourseMate includes an integrated interactive eBook and other interac-
tive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

The Statistical Package for the Social Sciences, known as SPSS, is a computer program
that performs most of the statistical calculations that are presented in this book, and is
commonly available on college and university computer systems. Appendix D contains a
general introduction to SPSS. In the Resource section at the end of each chapter for
which SPSS is applicable, there are step-by-step instructions for using SPSS to perform
the statistical operations presented in the chapter.

FOCUS ON PROBLEM SOLVING

It may help to simplify summation notation if you observe that the summation sign is
always followed by a symbol or symbolic expression—for example, 2X or 2(X + 3). This
symbol specifies which values you are to add. If you use the symbol as a column heading
and list all the appropriate values in the column, your task is simply to add up the
numbers in the column. To find (X + 3) for example, start a column headed with (X + 3)
next to the column of Xs. List all the (X + 3) values; then find the total for the column.
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Often, summation notation is part of a relatively complex mathematical expression that
requires several steps of calculation. The series of steps must be performed according to
the order of mathematical operations (see page 27). The best procedure is to use a compu-
tational table that begins with the original X values listed in the first column. Except for
summation, each step in the calculation creates a new column of values. For example,
computing 3(X + 1)* involves three steps and produces a computational table with three
columns. The final step is to add the values in the third column (see Example 1.4).

DEMONSTRATION 1.1

SUMMATION NOTATION

A set of scores consists of the following values:
73 9 5 4
For these scores, compute each of the following:

X
Xy
X
SX+5
(X —2)

Compute >X To compute 3X, we simply add all of the scores in the group.
3X=7+3+9+5+4=28

Compute (2X)* The first step, inside the parentheses, is to compute 3X. The second
step is to square the value for 2X.

3X =28 and (3X)* = (28)* = 784

Compute >X?  The first step is to square each score. The second step is to add the

X X?
squared scores. The computational table shows the scores and squared scores. To compute
7 49 3X? we add the values in the X* column.
3 9
9 81 3X> =49+ 9 + 81 + 25+ 16 = 180
5 25
4 16 Compute >X + 5 The first step is to compute 2X. The second step is to add 5 points

to the total.

SX=28and XX +5=28+5=33

Compute (X — 2) The first step, inside parentheses, is to subtract 2 points from

X — each score. The second step is to add the resulting values. The computational table shows
7 5 the scores and the (X — 2) values. To compute %(X — 2), add the values in the (X — 2)

3 1 column

9 7

5 3 SX—2)=5+14+7+3+2=18

4 2
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PROBLEMS

*1. A researcher is investigating the effectiveness of a researcher then records the level of activity for each

treatment for adolescent boys who are taking
medication for depression. A group of 30 boys is
selected and half receive the new treatment in addition
to their medication and the other half continue to take
their medication without any treatment. For this study,
a. Identify the population.

b. Identify the sample.

. Define the terms parameter and statistic. Be sure that
the concepts of population and sample are included in
your definitions.

. Statistical methods are classified into two major categories:
descriptive and inferential. Describe the general purpose
for the statistical methods in each category.

. A researcher plans to compare two treatment

conditions by measuring one sample in treatment 1

and a second sample in treatment 2. The researcher

then compares the scores for the two treatments and

finds a difference between the two groups.

a. Briefly explain how the difference may have been
caused by the treatments.

b. Briefly explain how the difference simply may be
sampling error.

. Describe the data for a correlational research study.
Explain how these data are different from the data
obtained in experimental and nonexperimental studies,
which also evaluate relationships between two variables.

. Describe how the goal of an experimental research
study is different from the goal for nonexperimental or
correlational research. Identify the two elements that
are necessary for an experiment to achieve its goal.

. Strack, Martin, and Stepper (1988) found that people
rated cartoons as funnier when holding a pen in their
teeth (which forced them to smile) than when holding
a pen in their lips (which forced them to frown). For
this study, identify the independent variable and the
dependent variable.

. Judge and Cable (2010) found that thin women had
higher incomes than heavier women. Is this an example
of an experimental or a nonexperimental study?

. Two researchers are both interested in the relationship

between caffeine consumption and activity level for

elementary school children. Each obtains a sample of

n = 20 children.

a. The first researcher interviews each child to
determine the level of caffeine consumption. The

*Solutions for odd-numbered problems are provided in Appendix C.

10.

11.

12.

13.

child during a 30-minute session on the playground.
Is this an experimental or a nonexperimental study?
Explain your answer.

b. The second researcher separates the children into
two roughly equivalent groups. The children in one
group are given a drink containing 300 mg of
caffeine and the other group gets a drink with no
caffeine. The researcher then records the level of
activity for each child during a 30-minute session
on the playground. Is this an experimental or a
nonexperimental study? Explain your answer.

A researcher would like to evaluate the claim that

large doses of vitamin C can help prevent the common

cold. One group of participants is given a large dose of

the vitamin (500 mg per day), and a second group is

given a placebo (sugar pill). The researcher records the

number of colds each individual experiences during

the 3-month winter season.

a. Identify the dependent variable for this study.

b. Is the dependent variable discrete or continuous?

¢. What scale of measurement (nominal, ordinal,
interval, or ratio) is used to measure the dependent
variable?

A research study comparing alcohol use for college
students in the United States and Canada reports that
more Canadian students drink but American students
drink more (Kuo, Adlaf, Lee, Gliksman, Demers, and
Wechsler, 2002). Is this study an example of an
experiment? Explain why or why not.

Oxytocin is a naturally occurring brain chemical that is
nicknamed the “love hormone” because it seems to
play a role in the formation of social relationships such
as mating pairs and parent-child bonding. A recent
study demonstrated that oxytocin appears to increase
people’s tendency to trust others (Kosfeld, Heinrichs,
Zak, Fischbacher, and Fehr, 2005). Using an
investment game, the study demonstrated that people
who inhaled oxytocin were more likely to give their
money to a trustee compared to people who inhaled an
inactive placebo. For this experimental study, identify
the independent variable and the dependent variable.

For each of the following, determine whether the

variable being measured is discrete or continuous

and explain your answer.

a. Social networking (number of daily minutes on
Facebook)

b. Family size (number of siblings)



14.

15.

16.

17.

18.

c. Preference between digital or analog watch
d. Number of correct answers on a statistics quiz

Four scales of measurement were introduced in this

chapter: nominal, ordinal, interval, and ratio.

a. What additional information is obtained from
measurements on an ordinal scale compared to
measurements on a nominal scale?

b. What additional information is obtained from
measurements on an interval scale compared to
measurements on an ordinal scale?

¢. What additional information is obtained from
measurements on a ratio scale compared to
measurements on an interval scale?

In an experiment examining the effects of humor on

memory, Schmidt (1994) showed participants a list of

sentences, half of which were humorous and half were

nonhumorous. The participants consistently recalled

more of the humorous sentences than the

nonhumorous sentences.

a. Identify the independent variable for this study.

b. What scale of measurement is used for the
independent variable?

c. Identify the dependent variable for this study.

d. What scale of measurement is used for the
dependent variable?

Explain why shyness is a hypothetical construct instead
of a concrete variable. Describe how shyness might be
measured and defined using an operational definition.

Ford and Torok (2008) found that motivational signs
were effective in increasing physical activity on a
college campus. Signs such as “Step up to a healthier
lifestyle” and “An average person burns 10 calories a
minute walking up the stairs” were posted by the
elevators and stairs in a college building. Students and
faculty increased their use of the stairs during times
that the signs were posted compared to times when
there were no signs.
a. Identify the independent and dependent variables
for this study.
b. What scale of measurement is used for the
independent variable?

For the following scores, find the value of each
expression:
a. 2X

b. 3X*

c. (2X)?

d 32X -1

19.

20.

21.

22,

23.
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For the following set of scores, find the value of each
expression:
a. XX I

X
b. 3X* A
. 2(X+1) 4
d SX + 1)? 6

0

3

2
For the following set of scores, find the value of each
expression:
a. 2X -
b. SX X
c. XX+ 4) —4

-2

0

-1

-1
Two scores, X and Y, are recorded for each of n = 4
subjects. For these scores, find the value of each
expression.
::: ?JY( Subject X Y
c. 2XY A 6 4

B 0 10

C 3 8

D 2 3
Use summation notation to express each of the

following calculations:

a. Add 1 point to each score, then add the resulting
values.

b. Add 1 point to each score and square the result,
then add the squared values.

c. Add the scores and square the sum, then subtract
3 points from the squared value.

For the following set of scores, find the value of each
expression:
a. 3X°

b. (3X)°

c. 2(X—2)
d. 3(X -2y
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Preview

If at first you don’t succeed, you are probably not
related to the boss.

Did we make you chuckle or, at least, smile a little?
The use of humor is a common technique to capture
attention and to communicate ideas. Advertisers, for
example, often try to make a commercial funny so that
people notice it and, perhaps, remember the product.
After-dinner speakers always put a few jokes into the
speech in an effort to maintain the audience’s interest.
Although humor seems to capture our attention, does it
actually affect our memory?

In an attempt to answer this question, Stephen
Schmidt (1994) conducted a series of experiments
examining the effects of humor on memory for sentences.
Humorous sentences were collected from a variety of
sources and then a nonhumorous version was constructed
for each sentence. For example, the nonhumorous version
of our opening sentence was:

People who are related to the boss often succeed the
very first time.

Participants were then presented with a list containing
half humorous and half nonhumorous sentences. Later, each
person was asked to recall as many sentences as possible.
The researcher measured the number of humorous sentences
and the number of nonhumorous sentences recalled by each
participant. Data similar to the results obtained by Schmidt
are shown in Table 2.1.

TABLE 2.1

Memory scores for a sample of 16 participants. The scores
represent the number of sentences recalled from each category.

Humorous Nonhumorous
Sentences Sentences
4 5 2 4 5 2 4 2
6 7 6 6 2 3 1 6
2 5 4 3 32 3 3
1 3 5 5 4 1 5 3

The Problem: It is difficult to see any clear pattern
simply by looking at the list of numbers. Can you tell
whether the memory scores for one type of sentence are
generally higher than those for the other type?

The Solution: A frequency distribution provides an
overview of the entire group of scores making it easy to
see the general level of performance for each type of
sentence. For example, the same memory scores that are
shown in Table 2.1 have been organized in a frequency
distribution graph in Figure 2.1. In the figure, each indi-
vidual is represented by a block that is placed above that
individual’s score. The resulting pile of blocks shows a
picture of how the individual scores are distributed. For
this example, it is now easy to see that the scores for the
humorous sentences are generally higher than the scores
for the nonhumorous sentences; on average, participants
recalled around 5 humorous sentences but only about 3
of the nonhumorous sentences.

In this chapter we present techniques for organizing
data into tables and graphs so that an entire set of scores
can be presented in a relatively simple display or illus-
tration.

Humorous
sentences

[ |
o 1 2 3 4 5 6 7 8
Number of sentences recalled

Nonhumorous
sentences

o 1 2 3 4 5 6 7 8
Numiber of sentences recalled

FIGURE 2.1

Hypothetical data showing the number of humorous
sentences and the number of nonhumorous sentences
recalled by participants in a memory experiment.
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DEFINITION

It is customary to list

categories from highest to
lowest, but this is an arbitrary
arrangement. Many computer
programs list categories from
lowest to highest.

EXAMPLE 2.1
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INTRODUCTION TO FREQUENCY DISTRIBUTIONS

The results from a research study usually consist of pages of numbers corresponding to
the measurements, or scores, collected during the study. The immediate problem for the
researcher is to organize the scores into some comprehensible form so that any patterns
in the data can be seen easily and communicated to others. This is the job of descriptive
statistics: to simplify the organization and presentation of data. One of the most common
procedures for organizing a set of data is to place the scores in a frequency distribution.

A frequency distribution is an organized tabulation of the number of individu-
als located in each category on the scale of measurement.

A frequency distribution takes a disorganized set of scores and places them in order
from highest to lowest, grouping together individuals who all have the same score. If
the highest score is X = 10, for example, the frequency distribution groups together all
the 10s, then all the 9s, then the 8s, and so on. Thus, a frequency distribution allows the
researcher to see “at a glance” the entire set of scores. It shows whether the scores are
generally high or low, whether they are concentrated in one area or spread out across
the entire scale, and generally provides an organized picture of the data. In addition to
providing a picture of the entire set of scores, a frequency distribution allows you to see
the location of any individual score relative to all of the other scores in the set.

A frequency distribution can be structured either as a table or as a graph, but in
either case, the distribution presents the same two elements:

1. The set of categories that make up the original measurement scale.
2. A record of the frequency, or number of individuals in each category.

Thus, a frequency distribution presents a picture of how the individual scores are
distributed on the measurement scale—hence the name frequency distribution.

FREQUENCY DISTRIBUTION TABLES

The simplest frequency distribution table presents the measurement scale by listing the
different measurement categories (X values) in a column from highest to lowest. Beside
each X value, we indicate the frequency, or the number of times that particular meas-
urement occurred in the data. It is customary to use an X as the column heading for the
scores and an f as the column heading for the frequencies. An example of a frequency
distribution table follows.

The following set of N = 20 scores was obtained from a 10-point statistics quiz. We
organize these scores by constructing a frequency distribution table. Scores:

8 9, 8§ 7, 10, 9, 6, 4, 9, 8,
7, 8 10, 9, 8 6, 9, 7, 8, 8

1. The highest score is X = 10, and the lowest score is X = 4. Therefore, the first
column of the table lists the categories that make up the scale of measurement
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(X values) from 10 down to 4. Notice that all of the possible values are listed in
the table. For example, no one had a score of X = 5, but this value is included.
With an ordinal, interval, or ratio scale, the categories are listed in order (usually
highest to lowest). For a nominal scale, the categories can be listed in any order.

2. The frequency associated with each score is recorded in the second column. For
example, two people had scores of X = 10, so there is a 2 in the f column
beside X = 10.

Because the table organizes the scores, it is possible to see the general quiz
results very quickly. For example, there were only two perfect scores, but most of the
class had high grades (8s and 9s). With one exception (the score of X = 4), it appears
that the class has learned the material fairly well.

Notice that the X values in a frequency distribution table represent the scale of
measurement, not the actual set of scores. For example, the X column lists the value
10 only one time, but the frequency column indicates that there are actually two
values of X = 10. Also, the X column lists a value of X = 5, but the frequency
column indicates that no one actually had a score of X = 5.

You also should notice that the frequencies can be used to find the total number
of scores in the distribution. By adding up the frequencies, you obtain the total
number of individuals:

Sf=N

There may be times when you need to compute the sum of the scores, X, or perform
other computations for a set of scores that has been organized into a frequency distri-
bution table. To complete these calculations correctly, you must use all the information
presented in the table. That is, it is essential to use the information in the f column as
well as the X column to obtain the full set of scores.

When it is necessary to perform calculations for scores that have been organized
into a frequency distribution table, the safest procedure is to take the individual scores
out of the table before you begin any computations. This process is demonstrated in the
following example.

Consider the frequency distribution table shown in the margin. The table shows

that the distribution has one 5, two 4s, three 3s, three 2s, and one 1, for a total of

10 scores. If you simply list all 10 scores, you can safely proceed with calculations
such as finding 2X or 2X?. For example, to compute X you must add all 10 scores:

SX=54+4+4+3+3+3+2+2+2+1

For the distribution in this table, you should obtain £X = 29. Try it yourself. Similarly,
to compute 2X” you square each of the 10 scores and then add the squared values.

X =544+ 42+ +3+3F+22+22+22 417

This time you should obtain 3X* = 97.

An alternative way to get %X from a frequency distribution table is to multi-
ply each X value by its frequency and then add these products. This sum may be
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expressed in symbols as 3fX. The computation is summarized as follows for the data
in Example 2.2:

X f X

5 1 5 (the one 5 totals 5)

4 2 8 (the two 4s total 8)

3 3 9 (the three 3s total 9)

2 3 6 (the three 2s total 6)

1 1 1 (the one 1 totals 1)
3X =129

No matter which method you use to find %X, the important point is that you must use
the information given in the frequency column in addition to the information in the X
column.

In addition to the two basic columns of a frequency distribution, there are other meas-
ures that describe the distribution of scores and can be incorporated into the table. The
two most common are proportion and percentage.

Proportion measures the fraction of the total group that is associated with
each score. In Example 2.2, there were two individuals with X = 4. Thus, 2 out of
10 people had X = 4, so the proportion would be % = 0.20. In general, the proportion
associated with each score is

. f
proportion = p = N
Because proportions describe the frequency (f) in relation to the total number (N),
they often are called relative frequencies. Although proportions can be expressed as
fractions (for example, % ), they more commonly appear as decimals. A column of pro-
portions, headed with a p, can be added to the basic frequency distribution table (see
Example 2.3).
In addition to using frequencies (f) and proportions (p), researchers often describe
a distribution of scores with percentages. For example, an instructor might describe the
results of an exam by saying that 15% of the class earned As, 23% earned Bs, and so
on. To compute the percentage associated with each score, you first find the proportion

(p) and then multiply by 100:

s

N
Percentages can be included in a frequency distribution table by adding a column

headed with % (see Example 2.3).

percentage = p(100) = -—(100)

The frequency distribution table from Example 2.2 is repeated here. This time we
have added columns showing the proportion (p) and the percentage (%) associated
with each score.

X f p=fIN % = p(100)
5 1 1/10 = 0.10 10%
4 2 2/10 = 0.20 20%
3 3 3/10 = 0.30 30%
2 3 3/10 = 0.30 30%
1 1 1/10 = 0.10 10%
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ANSWERS

1. Construct a frequency distribution table for the following set of scores.
Scores: 3, 2, 3, 2, 4, 1, 3, 3, 5

2. Find each of the following values for the sample in the following frequency
distribution table.

a.n X f
b. =X |
2
C. EX 4 2
3 2
2 4
1 1
1. X f
5 1
4 1
3 4
2 2
1 1

2.a.2=10 b.3X=28 ¢ SX>°=92 (square then add all 10 scores)

GROUPED FREQUENCY
DISTRIBUTION TABLES

When the scores are whole
numbers, the total number of
rows for a regular table can

be obtained by finding the
difference between the highest
and the lowest scores and
adding 1:

rows = highest — lowest + 1

GUIDELINE 1

When a set of data covers a wide range of values, it is unreasonable to list all the indi-
vidual scores in a frequency distribution table. Consider, for example, a set of exam
scores that range from a low of X = 41 to a high of X = 96. These scores cover a range
of more than 50 points.

If we were to list all of the individual scores from X = 96 down to X = 41, it would
take 56 rows to complete the frequency distribution table. Although this would organ-
ize the data, the table would be long and cumbersome. Remember: The purpose for con-
structing a table is to obtain a relatively simple, organized picture of the data. This can
be accomplished by grouping the scores into intervals and then listing the intervals in
the table instead of listing each individual score. For example, we could construct a
table showing the number of students who had scores in the 90s, the number with scores
in the 80s, and so on. The result is called a grouped frequency distribution table because
we are presenting groups of scores rather than individual values. The groups, or inter-
vals, are called class intervals.

There are several guidelines that help guide you in the construction of a grouped
frequency distribution table. Note that these are simply guidelines, rather than absolute
requirements, but they do help produce a simple, well-organized, and easily understood
table.

The grouped frequency distribution table should have about 10 class intervals. If a table
has many more than 10 intervals, it becomes cumbersome and defeats the purpose of a
frequency distribution table. On the other hand, if you have too few intervals, you begin
to lose information about the distribution of the scores. At the extreme, with only one
interval, the table would not tell you anything about how the scores are distributed.
Remember that the purpose of a frequency distribution is to help a researcher see the
data. With too few or too many intervals, the table will not provide a clear picture. You



GUIDELINE 2

GUIDELINE 3

GUIDELINE 4

EXAMPLE 2.4

Remember, when the scores are
whole numbers, the number of
rows is determined by

highest — lowest + 1

Because the bottom interval
usually extends below the lowest
score and the top interval extends
beyond the highest score, you
often need slightly more than the
computed number of intervals.
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should note that 10 intervals is a general guide. If you are constructing a table on a
blackboard, for example, you probably want only 5 or 6 intervals. If the table is to be
printed in a scientific report, you may want 12 or 15 intervals. In each case, your goal is
to present a table that is relatively easy to see and understand.

The width of each interval should be a relatively simple number. For example, 2, 5,
10, or 20 would be a good choice for the interval width. Notice that it is easy to count
by 5s or 10s. These numbers are easy to understand and make it possible for someone
to see quickly how you have divided the range of scores.

The bottom score in each class interval should be a multiple of the width. If you are
using a width of 10 points, for example, the intervals should start with 10, 20, 30, 40,
and so on. Again, this makes it easier for someone to understand how the table has
been constructed.

All intervals should be the same width. They should cover the range of scores
completely with no gaps and no overlaps, so that any particular score belongs in
exactly one interval.

The application of these rules is demonstrated in Example 2.4.

An instructor has obtained the set of N = 25 exam scores shown here. To help organize
these scores, we will place them in a frequency distribution table. The scores are:

82, 75, 88, 93, 53, 84, 87, 58, 72, 94, 69, 84, 6l,
91, 64, 87, 84, 70, 76, &9, 75, 80, 73, 78, 60

The first step is to determine the range of scores. For these data, the smallest
score is X = 53 and the largest score is X = 94, so a total of 42 rows would be
needed for a table that lists each individual score. Because 42 rows would not provide
a simple table, we have to group the scores into class intervals.

The best method for finding a good interval width is a systematic trial-and-error
approach that uses guidelines 1 and 2 simultaneously. Specifically, we want about
10 intervals and we want the interval width to be a simple number. For this example,
the scores cover a range of 42 points, so we will try several different interval widths
to see how many intervals are needed to cover this range. For example, if each
interval is 2 points wide, it would take 21 intervals to cover a range of 42 points. This
is too many, so we move on to an interval width of 5 or 10 points. The following
table shows how many intervals would be needed for these possible widths:

Number of Intervals
Needed to Cover a

Width Range of 42 Points
2 21 (too many)
5 9 (OK)
10 5 (too few)

Notice that an interval width of 5 will result in about 10 intervals, which is
exactly what we want.

The next step is to actually identify the intervals. The lowest score for these data
is X = 53, so the lowest interval should contain this value. Because the interval
should have a multiple of 5 as its bottom score, the interval should begin at 50. The
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REAL LIMITS AND
FREQUENCY DISTRIBUTIONS

TABLE 2.2

This grouped frequency
distribution table shows the data
from Example 2.4. The original
scores range from a high of

X =94 to alow of X = 53. This
range has been divided into

9 intervals with each interval
exactly 5 points wide. The
frequency column (f) lists the
number of individuals with scores
in each of the class intervals.

interval has a width of 5, so it should contain 5 values: 50, 51, 52, 53, and 54. Thus,
the bottom interval is 50-54. The next interval would start at 55 and go to 59. Note
that this interval also has a bottom score that is a multiple of 5, and contains exactly
5 scores (55, 56, 57, 58, and 59). The complete frequency distribution table showing
all of the class intervals is presented in Table 2.2.

Once the class intervals are listed, you complete the table by adding a column of
frequencies. The values in the frequency column indicate the number of individuals
who have scores located in that class interval. For this example, there were three
students with scores in the 60—64 interval, so the frequency for this class interval is
f = 3 (see Table 2.2). The basic table can be extended by adding columns showing
the proportion and percentage associated with each class interval.

Finally, you should note that after the scores have been placed in a grouped table,
you lose information about the specific value for any individual score. For example,
Table 2.2 shows that one person had a score between 65 and 69, but the table does
not identify the exact value for the score. In general, the wider the class intervals are,
the more information is lost. In Table 2.2 the interval width is 5 points, and the table
shows that there are three people with scores in the lower 60s and one person with a
score in the upper 60s. This information would be lost if the interval width were
increased to 10 points. With an interval width of 10, all of the 60s would be grouped
together into one interval labeled 60-69. The table would show a frequency of four
people in the 60—69 interval, but it would not tell whether the scores were in the
upper 60s or the lower 60s.

Recall from Chapter 1 that a continuous variable has an infinite number of possible val-
ues and can be represented by a number line that is continuous and contains an infinite
number of points. However, when a continuous variable is measured, the resulting
measurements correspond to infervals on the number line rather than single points. If
you are measuring time in seconds, for example, a score of X = 8 seconds actually
represents an interval bounded by the real limits 7.5 seconds and 8.5 seconds. Thus, a
frequency distribution table showing a frequency of f = 3 individuals all assigned a
score of X = 8 does not mean that all three individuals had exactly the same measure-
ment. Instead, you should realize that the three measurements are simply located in the
same interval between 7.5 and 8.5.

The concept of real limits also applies to the class intervals of a grouped frequency
distribution table. For example, a class interval of 40-49 contains scores from X = 40
to X = 49. These values are called the apparent limits of the interval because it appears

X
-

90-94
85-89
80-84
75-79
70-74
65-69
60-64
55-59
50-54
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that they form the upper and lower boundaries for the class interval. If you are meas-
uring a continuous variable, however, a score of X = 40 is actually an interval from
39.5 to 40.5. Similarly, X = 49 is an interval from 48.5 to 49.5. Therefore, the real
limits of the interval are 39.5 (the lower real limit) and 49.5 (the upper real limit). Notice
that the next higher class interval is 50-59, which has a lower real limit of 49.5. Thus,
the two intervals meet at the real limit 49.5, so there are no gaps in the scale. You also
should notice that the width of each class interval becomes easier to understand when
you consider the real limits of an interval. For example, the interval 50-59 has real
limits of 49.5 and 59.5. The distance between these two real limits (10 points) is the
width of the interval.

1. For each of the following situations, determine what interval width is most
appropriate for a grouped frequency distribution and identify the apparent limits
of the bottom interval.

a. Scores range from X = 7 to X = 21.
b. Scores range from X = 52 to X = 98.
c¢. Scores range from X = 16 to X = 93.

2. Using only the frequency distribution table presented in Table 2.2, how many
individuals had a score of X = 73?

1. a. A width of 2 points would require 8 intervals. Bottom interval is 6—7.
b. A width of 5 points would require 10 intervals. Bottom interval is 50—54.
c. A width of 10 points would require 9 intervals. Bottom interval is 10—19.
3. After a set of scores has been summarized in a grouped table, you cannot determine the

frequency for any specific score. There is no way to determine how many individuals had
X = 73 from the table alone. (You can say that at most three people had X = 73.)

GRAPHS FOR INTERVAL
OR RATIO DATA

FREQUENCY DISTRIBUTION GRAPHS

A frequency distribution graph is basically a picture of the information available in a
frequency distribution table. We consider several different types of graphs, but all start
with two perpendicular lines called axes. The horizontal line is the X-axis, or the
abscissa (ab-SIS-uh). The vertical line is the Y-axis, or the ordinate. The measurement
scale (set of X values) is listed along the X-axis with values increasing from left to right.
The frequencies are listed on the Y-axis with values increasing from bottom to top. As
a general rule, the point where the two axes intersect should have a value of zero for
both the scores and the frequencies. A final general rule is that the graph should be
constructed so that its height (Y-axis) is approximately two-thirds to three-quarters of
its length (X-axis). Violating these guidelines can result in graphs that give a mislead-
ing picture of the data (see Box 2.1).

When the data consist of numerical scores that have been measured on an interval or
ratio scale, there are two options for constructing a frequency distribution graph. The
two types of graphs are called histograms and polygons.
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Histograms To construct a histogram, you first list the numerical scores (the categories
of measurement) along the X-axis. Then you draw a bar above each X value so that

a. The height of the bar corresponds to the frequency for that category.

b. For continuous variables, the width of the bar extends to the real limits of the
category. For discrete variables, each bar extends exactly half the distance to
the adjacent category on each side.

For both continuous and discrete variables, each bar in a histogram extends to the
midpoint between adjacent categories. As a result, adjacent bars touch and there are no
spaces or gaps between bars. An example of a histogram is shown in Figure 2.2.

When data have been grouped into class intervals, you can construct a frequency
distribution histogram by drawing a bar above each interval so that the width of the bar
extends exactly half the distance to the adjacent category on each side. This process is
demonstrated in Figure 2.3.

For the two histograms shown in Figures 2.2 and 2.3, notice that the values on both
the vertical and horizontal axes are clearly marked and that both axes are labeled. Also
note that, whenever possible, the units of measurement are specified; for example,
Figure 2.3 shows a distribution of heights measured in inches. Finally, notice that the
horizontal axis in Figure 2.3 does not list all of the possible heights starting from zero
and going up to 48 inches. Instead, the graph clearly shows a break between zero and
30, indicating that some scores have been omitted.

A modified histogram A slight modification to the traditional histogram produces a
very easy to draw and simple to understand sketch of a frequency distribution. Instead

FIGURE 2.2 4 X f
An example of a frequency 3 5 2
distribution histogram. The % 3 4 3
same set of quiz scores is > 3 4
presented in a frequency 8 2 2 2
distribution table and in a w 1 1
histogram. 1
1 2 3 4 5
Quiz scores (number correct)
FIGURE 2.3 6
An example of a frequency X  f
distribution histogram for o 5 44-45 1
grouped data. The same set S 4 42-43 2
of children’s heights is 3 3 40-41 4
presented in a frequency ,_?’f) 5 38-39 6
distribution table and in a 36-37 2
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7/ 30-31 2
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FIGURE 2.4

A frequency distribution in
which each individual is
represented by a block
placed directly above the
individual’s score. For
example, three people had
scores of X = 2.

GRAPHS FOR NOMINAL
OR ORDINAL DATA

of drawing a bar above each score, the modification consists of drawing a stack of
blocks. Each block represents one individual, so the number of blocks above each score
corresponds to the frequency for that score. An example is shown in Figure 2.4.

Note that the number of blocks in each stack makes it very easy to see the absolute
frequency for each category. In addition, it is easy to see the exact difference in fre-
quency from one category to another. In Figure 2.4, for example, there are exactly two
more people with scores of X = 2 than with scores of X = 1. Because the frequencies
are clearly displayed by the number of blocks, this type of display eliminates the need
for a vertical line (the Y-axis) showing frequencies. In general, this kind of graph pro-
vides a simple and concrete picture of the distribution for a sample of scores. Note that
we often use this kind of graph to show sample data throughout the rest of the book. You
should also note, however, that this kind of display simply provides a sketch of the dis-
tribution and is not a substitute for an accurately drawn histogram with two labeled axes.

Polygons The second option for graphing a distribution of numerical scores from an
interval or ratio scale of measurement is called a polygon. To construct a polygon, you
begin by listing the numerical scores (the categories of measurement) along the X-axis.
Then,

a. A dot is centered above each score so that the vertical position of the dot
corresponds to the frequency for the category.

b. A continuous line is drawn from dot to dot to connect the series of dots.

c. The graph is completed by drawing a line down to the X-axis (zero frequency)
at each end of the range of scores. The final lines are usually drawn so that they
reach the X-axis at a point that is one category below the lowest score on the
left side and one category above the highest score on the right side. An example
of a polygon is shown in Figure 2.5.

A polygon also can be used with data that have been grouped into class intervals.
For a grouped distribution, you position each dot directly above the midpoint of the
class interval. The midpoint can be found by averaging the highest and the lowest
scores in the interval. For example, a class interval that is listed as 20-29 would have a
midpoint of 24.5.

midpoint = 22722 _ 39 _ 545
2 2
An example of a frequency distribution polygon with grouped data is shown in

Figure 2.6.

When the scores are measured on a nominal or ordinal scale (usually non-numerical
values), the frequency distribution can be displayed in a bar graph.
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GRAPHS FOR POPULATION
DISTRIBUTIONS

Bar graphs A bar graph is essentially the same as a histogram, except that spaces are
left between adjacent bars. For a nominal scale, the space between bars emphasizes that
the scale consists of separate, distinct categories. For ordinal scales, separate bars are
used because you cannot assume that the categories are all the same size.

To construct a bar graph, list the categories of measurement along the X-axis and
then draw a bar above each category so that the height of the bar equals the frequency
for the category. An example of a bar graph is shown in Figure 2.7.

When you can obtain an exact frequency for each score in a population, you can con-
struct frequency distribution graphs that are exactly the same as the histograms, poly-
gons, and bar graphs that are typically used for samples. For example, if a population
is defined as a specific group of N = 50 people, we could easily determine how many
have IQs of X = 110. However, if we are interested in the entire population of adults



FIGURE 2.7

A bar graph showing the
distribution of personality
types in a sample of college
students. Because personality
type is a discrete variable
measured on a nominal scale,
the graph is drawn with
space between the bars.
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in the United States, it would be impossible to obtain an exact count of the number of
people with an 1Q of 110. Although it is still possible to construct graphs showing fre-
quency distributions for extremely large populations, the graphs usually involve two
special features: relative frequencies and smooth curves.

Relative frequencies Although you usually cannot find the absolute frequency for
each score in a population, you very often can obtain relative frequencies. For exam-
ple, you may not know exactly how many fish are in the lake, but after years of fishing
you do know that there are twice as many bluegill as there are bass. You can represent
these relative frequencies in a bar graph by making the bar above bluegill two times
taller than the bar above bass (Figure 2.8). Notice that the graph does not show the
absolute number of fish. Instead, it shows the relative number of bluegill and bass.

Smooth curves When a population consists of numerical scores from an interval or a
ratio scale, it is customary to draw the distribution with a smooth curve instead of the
jagged, step-wise shapes that occur with histograms and polygons. The smooth curve
indicates that you are not connecting a series of dots (real frequencies) but instead are
showing the relative changes that occur from one score to the next. One commonly
occurring population distribution is the normal curve. The word normal refers to a spe-
cific shape that can be precisely defined by an equation. Less precisely, we can describe

FIGURE 2.8

A frequency distribution
showing the relative
frequency for two types

of fish. Notice that the
exact number of fish is not
reported; the graph simply
says that there are twice as
many bluegill as there are
bass.

Relative frequency

Bluegill  Bass

Type of fish
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DEFINITIONS

a normal distribution as being symmetrical, with the greatest frequency in the middle and
relatively smaller frequencies as you move toward either extreme. A good example of a nor-
mal distribution is the population distribution for IQ scores shown in Figure 2.9. Because
normal-shaped distributions occur commonly and because this shape is mathematically
guaranteed in certain situations, we give it extensive attention throughout this book.

In the future, we will be referring to distributions of scores. Whenever the term
distribution appears, you should conjure up an image of a frequency distribution graph.
The graph provides a picture showing exactly where the individual scores are located.
To make this concept more concrete, you might find it useful to think of the graph as
showing a pile of individuals just like we showed a pile of blocks in Figure 2.4. For the
population of IQ scores shown in Figure 2.9, the pile is highest at an IQ score around
100 because most people have average 1Qs. There are only a few individuals piled up
at an IQ of 130; it must be lonely at the top.

THE SHAPE OF A FREQUENCY DISTRIBUTION

Rather than drawing a complete frequency distribution graph, researchers often simply
describe a distribution by listing its characteristics. There are three characteristics that
completely describe any distribution: shape, central tendency, and variability. In sim-
ple terms, central tendency measures where the center of the distribution is located.
Variability tells whether the scores are spread over a wide range or are clustered
together. Central tendency and variability will be covered in detail in Chapters 3 and 4.
Technically, the shape of a distribution is defined by an equation that prescribes the
exact relationship between each X and Y value on the graph. However, we rely on a few
less-precise terms that serve to describe the shape of most distributions.
Nearly all distributions can be classified as being either symmetrical or skewed.

In a symmetrical distribution, it is possible to draw a vertical line through the
middle so that one side of the distribution is a mirror image of the other (Figure 2.11).

In a skewed distribution, the scores tend to pile up toward one end of the scale
and taper off gradually at the other end (see Figure 2.11).

FIGURE 2.9

The population distribution
of 1Q scores: an example of a
normal distribution.

Relative frequency

70 85 100 115 130
|1Q scores
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THE USE AND MISUSE OF GRAPHS

Although graphs are intended to provide an accurate
picture of a set of data, they can be used to exaggerate or
misrepresent a set of scores. These misrepresentations
generally result from failing to follow the basic rules for
graph construction. The following example demonstrates
how the same set of data can be presented in two entirely
different ways by manipulating the structure of a graph.

For the past several years, the city has kept records
of the number of homicides. The data are summarized
as follows:

Year Number of Homicides
2007 42
2008 44
2009 47
2010 49

These data are shown in two different graphs in
Figure 2.10. In the first graph, we have exaggerated the
height and started numbering the Y-axis at 40 rather
than at zero. As a result, the graph seems to indicate a
rapid rise in the number of homicides over the 4-year
period. In the second graph, we have stretched out the
X-axis and used zero as the starting point for the Y-axis.
The result is a graph that shows little change in the
homicide rate over the 4-year period.

Which graph is correct? The answer is that neither
one is very good. Remember that the purpose of a graph
is to provide an accurate display of the data. The first
graph in Figure 2.10 exaggerates the differences
between years, and the second graph conceals the
differences. Some compromise is needed. Also note
that in some cases a graph may not be the best way
to display information. For these data, for example,
showing the numbers in a table would be better than
either graph.
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FIGURE 2.10

Two graphs showing the number of homicides in a city
over a 4-year period. Both graphs show exactly the same
data. However, the first graph gives the appearance that
the homicide rate is high and rising rapidly. The second
graph gives the impression that homicides rate is low
and has not changed over the 4-year period.

The section where the scores taper off toward one end of a distribution is called

the tail of the distribution.

A skewed distribution with the tail on the right-hand side is positively skewed
because the tail points toward the positive (above-zero) end of the X-axis. If the
tail points to the left, the distribution is negatively skewed (see Figure 2.11).
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FIGURE 2.11

Examples of different shapes
for distributions.

Symmetrical distributions

Skewed distributions

Positive skew Negative skew

For a very difficult exam, most scores tend to be low, with only a few individuals
earning high scores. This produces a positively skewed distribution. Similarly, a very
easy exam tends to produce a negatively skewed distribution, with most of the students
earning high scores and only a few with low values.

1. Sketch a frequency distribution histogram and a frequency distribution polygon for
the data in the following table:

X f
5 4
4 6
3 3
2 1
1 1

2. Describe the shape of the distribution in Exercise 1.

3. A researcher records the gender and academic major for each student at a college
basketball game. If the distribution of majors is shown in a frequency distribution
graph, what type of graph should be used?

4. If the results from a research study are presented in a frequency distribution
histogram, would it also be appropriate to show the same results in a polygon?
Explain your answer.

5. A college reports that the youngest registered student is 17 years old, and 20% of
the registered students are older than 25. What is the shape of the distribution of
ages for registered students?
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. The graphs are shown in Figure 2.12.
. The distribution is negatively skewed.
. A bar graph is used for nominal data.

. Yes. Histograms and polygons are both used for data from interval or ratio scales.

n A W N =

. It is positively skewed with most of the distribution around 17-21 and a few scores
scattered at 25 and higher.

DEFINITIONS

PERCENTILES, PERCENTILE RANKS,
AND INTERPOLATION

Although the primary purpose of a frequency distribution is to provide a description of
an entire set of scores, it also can be used to describe the position of an individual within
the set. Individual scores, or X values, are called raw scores. By themselves, raw scores
do not provide much information. For example, if you are told that your score on an
exam is X = 43, you cannot tell how well you did relative to other students in the class.
To evaluate your score, you need more information, such as the average score or the
number of people who had scores above and below you. With this additional informa-
tion, you would be able to determine your relative position in the class. Because
raw scores do not provide much information, it is desirable to transform them into a
more meaningful form. One transformation that we consider changes raw scores into
percentiles.

The rank or percentile rank of a particular score is defined as the percentage
of individuals in the distribution with scores equal to or less than the particular
value.

When a score is identified by its percentile rank, the score is called a
percentile.

Suppose, for example, that you have a score of X = 43 on an exam and that you
know that exactly 60% of the class had scores of 43 or lower. Then your score
X = 43 has a percentile rank of 60%, and your score would be called the 60th
percentile. Notice that percentile rank refers to a percentage and that percentile
refers to a score. Also notice that your rank or percentile describes your exact posi-
tion within the distribution.

FIGURE 2.12

Answer to the Learning
Check Exercise 1.

Exercise 1: histogram Exercise 1: polygon

Frequency
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CUMULATIVE FREQUENCY
AND CUMULATIVE
PERCENTAGE

EXAMPLE 2.5

EXAMPLE 2.6

To determine percentiles or percentile ranks, the first step is to find the number of
individuals who are located at or below each point in the distribution. This can be done
most easily with a frequency distribution table by simply counting the number who are
in or below each category on the scale. The resulting values are called cumulative
frequencies because they represent the accumulation of individuals as you move up the
scale.

In the following frequency distribution table, we have included a cumulative
frequency column headed by cf. For each row, the cumulative frequency value is
obtained by adding up the frequencies in and below that category. For example, the
score X = 3 has a cumulative frequency of 14 because exactly 14 individuals had
scores of X = 3 or less.

X f cf
5 1 20
4 5 19
3 8 14
2 4 6
1 2 2

The cumulative frequencies show the number of individuals located at or below
each score. To find percentiles, we must convert these frequencies into percentages.
The resulting values are called cumulative percentages because they show the percent-
age of individuals who are accumulated as you move up the scale.

This time we have added a cumulative percentage column (c%) to the frequency
distribution table from Example 2.5. The values in this column represent the percentage
of individuals who are located in and below each category. For example, 70% of the
individuals (14 out of 20) had scores of X = 3 or lower. Cumulative percentages can
be computed by

%=L (100%)
N

X f cf %

5 1 20 100%
4 5 19 95%
3 8 14 70%
2 4 6 30%
1 2 2 10%

The cumulative percentages in a frequency distribution table give the percentage
of individuals with scores at or below each X value. However, you must remember that
the X values in the table are usually measurements of a continuous variable and, there-
fore, represent intervals on the scale of measurement (see page 22). A score of X = 2,
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for example, means that the measurement was somewhere between the real limits of 1.5
and 2.5. Thus, when a table shows that a score of X = 2 has a cumulative percentage
of 30%, you should interpret this as meaning that 30% of the individuals have been
accumulated by the time you reach the top of the interval for X = 2. Notice that each
cumulative percentage value is associated with the upper real limit of its interval. This
point is demonstrated in Figure 2.13, which shows the same data that were used in
Example 2.6. Figure 2.13 shows that two people, or 10%, had scores of X = 1; that is,
two people had scores between 0.5 and 1.5. You cannot be sure that both individuals
have been accumulated until you reach 1.5, the upper real limit of the interval.
Similarly, a cumulative percentage of 30% is reached at 2.5 on the scale, a percentage
of 70% is reached at 3.5, and so on.

It is possible to determine some percentiles and percentile ranks directly from a
frequency distribution table, provided that the percentiles are upper real limits and
the ranks are percentages that appear in the table. Using the table in Example 2.6, for
example, you should be able to answer the following questions:

1. What is the 95th percentile? (Answer: X = 4.5.)
2. What is the percentile rank for X = 3.5? (Answer: 70%.)

However, there are many values that do not appear directly in the table, and it is
impossible to determine these values precisely. Referring to the table in Example 2.6
again,

1. What is the 50th percentile?
2. What is the percentile rank for X = 4?

Because these values are not specifically reported in the table, you cannot answer
the questions. However, it is possible to estimate these intermediate values by using a
standard procedure known as interpolation.

Before we apply the process of interpolation to percentiles and percentile ranks, we
use a simple, commonsense example to introduce this method. Suppose that Bob walks

FIGURE 2.13

The relationship between
cumulative frequencies

(cf values) and upper real
limits. Notice that two people
have scores of X = 1. These
two individuals are located
between the real limits of
0.5 and 1.5. Although their
exact locations are not
known, you can be certain
that both had scores below
the upper limit of 1.

cf =20 €—
cf=19 «+—
cf= 14 4—
cf=6 4—
Cf=2 4—
cf=0e4— X=1 X=2 X=3 X=4 X=5
f=2 f=4 f=8 f=5 f=1
0.5 1.5 2.5 3.5 4.5 5.5
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to work each day. The total distance is 2 miles and the trip takes Bob 40 minutes. What
is your estimate of how far Bob has walked after 20 minutes? To help, we have created
a table showing the time and distance for the start and finish of Bob’s trip.

Time Distance
Start 0 0
Finish 40 2

If you estimated that Bob walked 1 mile in 20 minutes, you have done interpola-
tion. You probably went through the following logical steps:

1. The total time is 40 minutes.

2. 20 minutes represents half of the total time.

3. Assuming that Bob walks at a steady pace, he should walk half of the total
distance in half of the total time.

4. The total distance is 2 miles and half of the total distance is 1.

The process of interpolation is pictured in Figure 2.14. In the figure, the top line
shows the time for Bob’s walk, from 0 to 40 minutes, and the bottom line shows the
time, from O to 2 miles. The middle line shows different fractions along the way. Using
the figure, try answering the following questions about time and distance.

Start Finish
0 10 20 30 40 Time (in minutes)
% % % Fraction
0 05 1 15 2 Distance (in miles)
Known Estimated Known
values values values

FIGURE 2.14

A graphic representation of the process of interpolation. The
same interval is shown on two separate scales, time and
distance. Only the endpoints of the scales are known—

Bob starts at O for both time and distance, and he ends at

40 minutes and 2 miles. Interpolation is used to estimate
values within the interval by assuming that fractional portions
of one scale correspond to the same fractional portions of the
other. For example, it is assumed that halfway through the
time scale corresponds to halfway through the distance scale.




You may notice that in each

of these problems we use
interpolation working from the
top of the interval. However,
this choice is arbitrary, and you
should realize that interpolation
can be done just as easily
working from the bottom of
the interval.

EXAMPLE 2.7
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1. How much time does it take for Bob to walk 1.5 miles?
2. How far has Bob walked after 10 minutes?

If you got answers of 30 minutes and zlmile, you have mastered the process of
interpolation.

Notice that interpolation provides a method for finding intermediate values—that
is, values that are located between two specified numbers. This is exactly the problem
we faced with percentiles and percentile ranks. Some values are given in the table, but
others are not. Also notice that interpolation only estimates the intermediate values. The
basic assumption underlying interpolation is that there is a constant rate of change from
one end of the interval to the other. In Bob’s walking example, we assume that he is
walking at a constant rate for the entire trip. Because interpolation is based on this
assumption, the values that we calculate are only estimates. The general process of
interpolation can be summarized as follows:

1. A single interval is measured on two separate scales (for example, time and
distance). The endpoints of the interval are known for each scale.

2. You are given an intermediate value on one of the scales. The problem is to
find the corresponding intermediate value on the other scale.

3. The interpolation process requires four steps:
a. Find the width of the interval on both scales.

b. Locate the position of the intermediate value in the interval. This position
corresponds to a fraction of the whole interval:

distance from the top of the interval

fraction = ; p
interval width

c¢. Use the same fraction to determine the corresponding position on the other
scale. First, determine the distance from the top of the interval:

distance = (fraction) X (width)
d. Use the distance from the top to determine the position on the other scale.

The following examples demonstrate the process of interpolation as it is applied to
percentiles and percentile ranks. The key to success in solving these problems is that
each cumulative percentage in the table is associated with the upper real limit of its
score interval.

Using the following distribution of scores, we will find the percentile rank
corresponding to X = 7.0:

X f cf %

10 2 25 100%
9 8 23 92%
8 4 15 60%
7 6 11 44%
6 4 20%
5 1 1 4%
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Notice that X = 7.0 is located in the interval bounded by the real limits of 6.5 and
7.5. The cumulative percentages corresponding to these real limits are 20% and 44%,
respectively. These values are shown in the following table:

Scores (X) Percentages

Top 7.5 44%
Intermediate value 7.0 ?
Bottom 6.5 20%

For interpolation problems, it is always helpful to create a table showing the range
on both scales.

STEP 1 For the scores, the width of the interval is 1 point (from 6.5 to 7.5). For the
percentages, the width is 24 points (from 20% to 44%).

STEP 2 Our particular score is located 0.5 point from the top of the interval. This is exactly
halfway down in the interval.

STEP 3 On the percentage scale, halfway down is

% (24 points) = 12 points

STEP 4 For the percentages, the top of the interval is 44%, so 12 points down would be
44% - 12% = 32%

This is the answer. A score of X = 7.0 corresponds to a percentile rank of 32%

This same interpolation procedure can be used with data that have been grouped
into class intervals. Once again, you must remember that the cumulative percentage
values are associated with the upper real limits of each interval. The following exam-
ple demonstrates the calculation of percentiles and percentile ranks using data in a
grouped frequency distribution.

EXAMPLE 2.8 Using the following distribution of scores, we can use interpolation to find the 50th

percentile:

X f cf %
20-24 2 20 100%
15-19 3 18 90%
10-14 3 15 75%

5-9 10 12 60%
04 2 2 10%

A percentage value of 50% is not given in the table; however, it is located between
10% and 60%, which are given. These two percentage values are associated with the
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upper real limits of 4.5 and 9.5, respectively. These values are shown in the following

table:
Scores (X) Percentages
Top 9.5 60%
? 50% Intermediate value
Bottom 4.5 10%

STEP 1 For the scores, the width of the interval is 5 points. For the percentages, the width is
50 points.

STEP 2 The value of 50% is located 10 points from the top of the percentage interval. As a
fraction of the whole interval, this is 10 out of 50, or %of the total interval.

STEP 3 Using this same fraction for the scores, we obtain a distance of
% (5 points) = 1 point
The location we want is 1 point down from the top of the score interval.

STEP 4 Because the top of the interval is 9.5, the position we want is
95-1=285
This is the answer. The 50th percentile is X = 8.5.

m 1. On a statistics exam, would you rather score at the 80th percentile or at the 20th

percentile?

2. For the distribution of scores presented in the following table,
a. Find the 70th percentile.
b. Find the percentile rank for X = 9.5.

X f cf %
20-24 1 20 100%
15-19 5 19 95%
10-14 8 14 70%

5-9 4 6 20%
04 2 2 10%

3. Using the distribution of scores from Exercise 2 and interpolation,
a. Find the 15th percentile.
b. Find the percentile rank for X = 13.

ANSWERS 1. The 80th percentile is the higher score.
2. a. X = 14.5 is the 70th percentile. b. X = 9.5 has a rank of 20%.

3. a. Because 15% is between the values of 10% and 20% in the table, you must use
interpolation. The score corresponding to a rank of 15% is X = 7.

b. Because X = 13 is between the real limits of 9.5 and 14.5, you must use interpolation.
The percentile rank for X = 13 is 55%.
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COMPARING STEM AND
LEAF DISPLAYS WITH
FREQUENCY DISTRIBUTIONS

TABLE 2.3

A set of N = 24 scores
presented as raw data and
organized in a stem and leaf
display.

STEM AND LEAF DISPLAYS

In 1977, J.W. Tukey presented a technique for organizing data that provides a simple
alternative to a grouped frequency distribution table or graph (Tukey, 1977). This tech-
nique, called a stem and leaf display, requires that each score be separated into two
parts: The first digit (or digits) is called the stem, and the last digit is called the leaf. For
example, X = 85 would be separated into a stem of 8 and a leaf of 5. Similarly, X = 42
would have a stem of 4 and a leaf of 2. To construct a stem and leaf display for a set of
data, the first step is to list all the stems in a column. For the data in Table 2.3, for
example, the lowest scores are in the 30s and the highest scores are in the 90s, so the
list of stems would be

Stems

O 0 3 N L W

The next step is to go through the data, one score at a time, and write the leaf for
each score beside its stem. For the data in Table 2.3, the first score is X = 83, so you
would write 3 in the leaf column beside the 8 in the column of stems. This process is
continued for the entire set of scores. The complete stem and leaf display is shown with
the original data in Table 2.3.

Notice that the stem and leaf display is very similar to a grouped frequency distribution.
Each of the stem values corresponds to a class interval. For example, the stem 3 repre-
sents all scores in the 30s—that is, all scores in the interval 30-39. The number of
leaves in the display shows the frequency associated with each stem. It also should be
clear that the stem and leaf display has one important advantage over a traditional
grouped frequency distribution. Specifically, the stem and leaf display allows you to
identify every individual score in the data. In the display shown in Table 2.3, for
example, you know that there were three scores in the 60s and that the specific values
were 62, 68, and 63. A frequency distribution would tell you only the frequency, not

Data Stem and Leaf Display
83 82 63 3|23
62 93 78 4126
71 68 33 516279
76 52 97 6| 283
85 42 46 7 | 1643846
32 57 59 8| 3521
56 73 74 9137

74 81 76
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the specific values. This advantage can be very valuable, especially if you need to do
any calculations with the original scores. For example, if you need to add all the scores,
you can recover the actual values from the stem and leaf display and compute the total.
With a grouped frequency distribution, however, the individual scores are not available.

m 1. Use a stem and leaf display to organize the following set of scores:

ANSWERS 1.

74, 103, 95, 98, 81, 117, 105, 99, 63, 86, 94, 107
96, 100, 98, 118, 107, 82, 84, 71, 91, 107, &4, 77

. Explain how a stem and leaf display contains more information than a grouped

frequency distribution.

The stem and leaf display for these data is as follows:
613
7| 417
8 | 16244
9 | 5894681
10 | 357077
11178

. A grouped frequency distribution table tells only the number of scores in each interval; it

does not identify the exact value for each score. The stem and leaf display identifies the
individual scores as well as the number of scores in each interval.

SUMMARY

1. The goal of descriptive statistics is to simplify the 3. It is recommended that a frequency distribution table
organization and presentation of data. One descriptive have a maximum of 10 to 15 rows to keep it simple.
technique is to place the data in a frequency distribution If the scores cover a range that is wider than this
table or graph that shows exactly how many individuals suggested maximum, it is customary to divide the range
(or scores) are located in each category on the scale of into sections called class intervals. These intervals are
measurement. then listed in the frequency distribution table along with

2. A frequency distribution table lists the categories that
make up the scale of measurement (the X values) in one
column. Beside each X value, in a second column, is the
frequency or number of individuals in that category.
The table may include a proportion column showing the
relative frequency for each category:

the frequency or number of individuals with scores in

each interval. The result is called a grouped frequency

distribution. The guidelines for constructing a grouped

frequency distribution table are as follows:

a. There should be about 10 intervals.

b. The width of each interval should be a simple
number (e.g., 2, 5, or 10).

proportion = p = ! ¢. The bottom score in each interval should be a
n multiple of the width.
The table may include a percentage column showing d. All intervals should be the same Wldth, and they
the percentage associated with each X value: should cover the range of scores with no gaps.
percentage = p(100) = f(lOO)

n
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4. A frequency distribution graph lists scores on the the distribution. The cumulative percentage values are
horizontal axis and frequencies on the vertical axis. The associated with the upper real limits of the
type of graph used to display a distribution depends on the corresponding scores or intervals.

scale of measurement used. For interval or ratio scales,
you should use a histogram or a polygon. For a histogram,
a bar is drawn above each score so that the height of the
bar corresponds to the frequency. Each bar extends to the
real limits of the score, so that adjacent bars touch. For a
polygon, a dot is placed above the midpoint of each score

7. Percentiles and percentile ranks are used to describe the
position of individual scores within a distribution.
Percentile rank gives the cumulative percentage
associated with a particular score. A score that is
identified by its rank is called a percentile.

or class interval so that the height of the dot corresponds to 8. When a desired percentile or percentile rank is located
the frequency; then lines are drawn to connect the dots. between two known values, it is possible to estimate the
Bar graphs are used with nominal or ordinal scales. Bar desired value using the process of interpolation.

graphs are similar to histograms except that gaps are left Interpolation assumes a regular linear change between
between adjacent bars. the two known values.

5. Shape is one of the basic characteristics used to 9. A stem and leaf display is an alternative procedure for
describe a distribution of scores. Most distributions can organizing data. Each score is separated into a stem (the
be classified as either symmetrical or skewed. A first digit or digits) and a leaf (the last digit or digits).
skewed distribution with the tail on the right is said to The display consists of the stems listed in a column
be positively skewed. If it has the tail on the left, it is with the leaf for each score written beside its stem. A
negatively skewed. stem and leaf display combines the characteristics of a

table and a graph and produces a concise, well-

6. The cumulative percentage is the percentage of . :
P g p g organized picture of the data.

individuals with scores at or below a particular point in

KEY TERMS

frequency distribution (39) bar graph (48) percentile (53)

range (42) relative frequency (49) cumulative frequency (cf) (54)
grouped frequency distribution (42) symmetrical distribution (50) cumulative percentage (c%) (54)
class interval (42) tail(s) of a distribution (51) interpolation (55)

apparent limits (44) positively skewed distribution (51) stem and leaf display (60)
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polygon (47) percentile rank (53)
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General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to produce Frequency Distribution Tables or Graphs.

Frequency Distribution Tables
Data Entry

1. Enter all the scores in one column of the data editor, probably VARO00OI.
Data Analysis

1. Click Analyze on the tool bar, select Descriptive Statistics, and click on
Frequencies.

2. Highlight the column label for the set of scores (VARO000O1) in the left box and
click the arrow to move it into the Variable box.

3. Be sure that the option to Display Frequency Table is selected.

4. Click OK.

SPSS Output

The frequency distribution table lists the score values in a column from smallest to
largest, with the percentage and cumulative percentage also listed for each score. Score
values that do not occur (zero frequencies) are not included in the table, and the program
does not group scores into class intervals (all values are listed).

Frequency Distribution Histograms or Bar Graphs
Data Entry

1. Enter all the scores in one column of the data editor, probably VARO00OI.
Data Analysis

1. Click Analyze on the tool bar, select Descriptive Statistics, and click on
Frequencies.

2. Highlight the column label for the set of scores (VARO00001) in the left box and

click the arrow to move it into the Variable box.

Click Charts.

Select either Bar Graphs or Histogram.

Click Continue.

6. Click OK.

SPSS Output

s w

After a brief delay, SPSS displays a frequency distribution table and a graph. Note that
SPSS often produces a histogram that groups the scores in unpredictable intervals. A bar
graph usually produces a clearer picture of the actual frequency associated with each score.
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FOCUS ON PROBLEM SOLVING

1. The reason for constructing frequency distributions is to put a disorganized set
of raw data into a comprehensible, organized format. Because several different
types of frequency distribution tables and graphs are available, one problem
is deciding which type to use. Tables have the advantage of being easier to
construct, but graphs generally give a better picture of the data and are easier
to understand.
To help you decide which type of frequency distribution is best, consider the

following points:

a. What is the range of scores? With a wide range, you need to group the scores
into class intervals.

b. What is the scale of measurement? With an interval or a ratio scale, you can use
a polygon or a histogram. With a nominal or an ordinal scale, you must use a bar
graph.

2. When using a grouped frequency distribution table, a common mistake is to
calculate the interval width by using the highest and lowest values that define each
interval. For example, some students are tricked into thinking that an interval
identified as 20-24 is only 4 points wide. To determine the correct interval width,
you can:

a. Count the individual scores in the interval. For this example, the scores are 20,
21, 22, 23, and 24, for a total of 5 values. Thus, the interval width is 5 points.

b. Use the real limits to determine the real width of the interval. For example, an
interval identified as 20-24 has a lower real limit of 19.5 and an upper real limit
of 24.5 (halfway to the next score). Using the real limits, the interval width is

24.5 - 19.5 = 5 points

3. Percentiles and percentile ranks are intended to identify specific locations within a
distribution of scores. When solving percentile problems, especially with
interpolation, it is helpful to sketch a frequency distribution graph. Use the graph to
make a preliminary estimate of the answer before you begin any calculations. For
example, to find the 60th percentile, draw a vertical line through the graph so that
slightly more than half (60%) of the distribution is on the left-hand side of the line.
Locating this position in your sketch gives you a rough estimate of what the final
answer should be. When doing interpolation problems, you should keep several
points in mind:

a. Remember that the cumulative percentage values correspond to the upper real
limits of each score or interval.

b. You should always identify the interval with which you are working. The easiest
way to do this is to create a table showing the endpoints on both scales (scores
and cumulative percentages). This is illustrated in Example 2.7 on pages 57-58.

c. The word interpolation means between two poles. Remember: Your goal is to
find an intermediate value between the two ends of the interval. Check your
answer to be sure that it is located between the two endpoints. If it is not, then
check your calculations.
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STEP 1

STEP 2

DEMONSTRATION 2.2

A GROUPED FREQUENCY DISTRIBUTION TABLE

For the following set of N = 20 scores, construct a grouped frequency distribution table
using an interval width of 5 points. The scores are:

14, 8, 27, 16, 10, 22, 9, 13, 16, 12,
10, 9, 15, 17, 6, 14, 11, 18, 14, 11

Set up the class intervals.

The largest score in this distribution is X = 27, and the lowest is X = 6. Therefore, a
frequency distribution table for these data would have 22 rows and would be too large. A
grouped frequency distribution table would be better. We have asked specifically for an
interval width of 5 points, and the resulting table has five rows.

X

25-29
20-24
15-19
10-14
5-9

Remember that the interval width is determined by the real limits of the interval. For
example, the class interval 25-29 has an upper real limit of 29.5 and a lower real limit of
24.5. The difference between these two values is the width of the interval—namely, 5.

Determine the frequencies for each interval.

Examine the scores, and count how many fall into the class interval of 25-29. Cross
out each score that you have already counted. Record the frequency for this class interval.
Now repeat this process for the remaining intervals. The result is the following table:

X f
25-29 1 (the score X = 27)
20-24 1 X =22
15-19 5 (the scores X = 16, 16, 15, 17, and 18)
10-14 9 (X =14,10,13, 12,10, 14, 11, 14, and 11)
5-9 4 (X=28,9,9,and 6)

STEP 1

USING INTERPOLATION TO FIND PERCENTILES AND PERCENTILE RANKS

Find the 50th percentile for the set of scores in the grouped frequency distribution table
that was constructed in Demonstration 2.1.

Find the cumulative frequency (cf) and cumulative percentage values, and add these
values to the basic frequency distribution table.
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STEP 2

STEP 3

STEP 4

Cumulative frequencies indicate the number of individuals located in or below each
category (class interval). To find these frequencies, begin with the bottom interval, and
then accumulate the frequencies as you move up the scale.

Cumulative percentages are determined from the cumulative frequencies by the
relationship

c%= (i)IOO%
N

For example, the ¢f column shows that 4 individuals (out of the total set of N = 20) have
scores in or below the 5-9 interval. The corresponding cumulative percentage is

c% = 4 100% = 1 100% = 20%
20 5

The complete set of cumulative frequencies and cumulative percentages is shown in the
following table:

X f cf %
25-29 1 20 100%
20-24 1 19 95%
15-19 5 18 90%
10-14 9 13 65%

5-9 4 4 20%

Locate the interval that contains the value that you want to calculate.

We are looking for the 50th percentile, which is located between the values of 20% and
65% in the table. The scores (upper real limits) corresponding to these two percentages
are 9.5 and 14.5, respectively. The interval, measured in terms of scores and percentages,
is shown in the following table:

X %

145 65%
7 50%
9.5 20%

Locate the intermediate value as a fraction of the total interval.

Our intermediate value is 50%, which is located in the interval between 65% and 20%.
The total width of the interval is 45 points (65 — 20 = 45), and the value of 50% is located
15 points down from the top of the interval. As a fraction, the 50th percentile is located
% = % down from the top of the interval.

Use the fraction to determine the corresponding location on the other scale.

Our intermediate value, 50%, is located % of the way down from the top of the
interval. Our goal is to find the score, the X value, that also is located % of the way
down from the top of the interval.

On the score (X) side of the interval, the top value is 14.5, and the bottom value is 9.5,
so the total interval width is 5 points (14.5 — 9.5 = 5). The position we are seeking is % of
the way from the top of the interval. One-third of the total interval is

1 =§=1.67 points
3 3
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To find this location, begin at the top of the interval, and come down 1.67 points:

14.5-1.67 = 12.83

This is our answer. The 50th percentile is X = 12.83.

PROBLEMS

1. Place the following sample of n = 20 scores in a
frequency distribution table.

6, 9, 9, 10, 8 9, 4, 7, 10, 9
5, 8 10, 6, 9, 6, 8 8 7, 9

2. Construct a frequency distribution table for the
following set of scores. Include columns for proportion
and percentage in your table.

Scores: 5, 7, 8, 4, 7, 9, 6, 6, 5, 3
9, 6, 4, 7, 7, 8 6, 7, 8, 5

3. Find each value requested for the distribution of scores
in the following table.
a. n
b. =X
c. 3X°

— N W ks | X
—_— = W N

4. Find each value requested for the distribution of scores
in the following table.

a. n

b. 32X

c. 3X?
X f
5 1
4 2
3 3
2 5
1 3

5. For the following scores, the smallest value is X = 8
and the largest value is X = 29. Place the scores in a
grouped frequency distribution table
a. using an interval width of 2 points.

b. using an interval width of 5 points.

24, 19, 23, 10, 25, 27, 22, 26
25, 20, 8, 24, 29, 21, 24, 13
23, 27, 24, 16, 22, 18, 26, 25

6. The following scores are the ages for a random sample
of n = 30 drivers who were issued speeding tickets in
New York during 2008. Determine the best interval
width and place the scores in a grouped frequency
distribution table. From looking at your table, does it
appear that tickets are issued equally across age
groups?

17, 30, 45, 20, 39, 53, 28, 19,
24, 21, 34, 38, 22, 29, 64,
22, 44, 36, 16, 56, 20, 23, 58,
32, 25, 28, 22, 51, 26, 43

7. For each of the following samples, determine the
interval width that is most appropriate for a grouped
frequency distribution and identify the approximate
number of intervals needed to cover the range of
scores.

a. Sample scores range from X = 24 to X = 41
b. Sample scores range from X = 46 to X = 103
c. Sample scores range from X = 46 to X = 133

8. What information can you obtain about the scores in a
regular frequency distribution table that is not
available from a grouped table?

9. Describe the difference in appearance between a bar
graph and a histogram and describe the circumstances
in which each type of graph is used.

10. For the following set of quiz scores:

3, 5 4, 6, 2, 3, 4 1, 4 3
7, 7, 3, 4,5 8, 2 4 7 10
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11.

12.

13.

14.
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a. Construct a frequency distribution table to organize
the scores.

b. Draw a frequency distribution histogram for these
data.

Sketch a histogram and a polygon showing the
distribution of scores presented in the following table:

f

N OW R L | X
— A~ N W = =

A survey given to a sample of 200 college students

contained questions about the following variables. For

each variable, identify the kind of graph that should be

used to display the distribution of scores (histogram,

polygon, or bar graph).

a. number of pizzas consumed during the previous
week

. size of T-shirt worn (S, M, L, XL)

. gender (male/female)

. grade point average for the previous semester

. college class (freshman, sophomore, junior, senior)

- =2

Each year the college gives away T-shirts to new
students during freshman orientation. The students are
allowed to pick the shirt sizes that they want. To
determine how many of each size shirt they should
order, college officials look at the distribution from

last year. The following table shows the distribution of

shirt sizes selected last year.

Size f
S 27
M 48
L 136
XL 120
XXL 39

a. What kind of graph would be appropriate for
showing this distribution?
b. Sketch the frequency distribution graph.

A report from the college dean indicates that for the
previous semester, the grade distribution for the
Department of Psychology included 135 As, 158 Bs,
140 Cs, 94 Ds, and 53 Fs. Determine what kind of
graph would be appropriate for showing this

15.

16.

17.

18.

distribution and sketch the frequency distribution
graph.

For the following set of scores

Scores: 5, 8, 5, 7,

6, 6, 5 7 4 6
6, 9, 5 5, 5 7, 5

4,6, 17, 5 1T,

a. Place the scores in a frequency distribution table.
b. Identify the shape of the distribution.

Place the following scores in a frequency distribution
table. Based on the frequencies, what is the shape of
the distribution?

5, 6, 4 7, 7, 6, 8 2, 5 6
3, 1, 7, 4, 6, 8 2, 6, 5 17

s bl

For the following set of scores:

3, 7, 6, 5,5 9, 6, 4 6, 8
10, 2, 7, 4, 9, 5, 6, 3, 8

. Construct a frequency distribution table.

. Sketch a polygon showing the distribution.

c. Describe the distribution using the following

characteristics:

(1) What is the shape of the distribution?

(2) What score best identifies the center (average)
for the distribution?

(3) Are the scores clustered together, or are they
spread out across the scale?

o

Fowler and Christakis (2008) report that personal
happiness tends to be associated with having a social
network including many other happy friends. To test
this claim, a researcher obtains a sample of n = 16
adults who claim to be happy people and a similar
sample of n = 16 adults who describe themselves as
neutral or unhappy. Each individual is then asked to
identify the number of their close friends whom they
consider to be happy people. The scores are as
follows:

Happy:

8, 7, 4, 10, 6, 6, 8, 9, 8, 8,
7, 5, 6, 9, 8, 9

Unhappy:

5 8 4, 6, 6, 7, 9, 6, 2, 8§,
5, 6, 4, 7, 5, 6

Sketch a polygon showing the frequency distribution
for the happy people. In the same graph, sketch a
polygon for the unhappy people. (Use two different
colors, or use a solid line for one polygon and a
dashed line for the other.) Does one group seem to
have more happy friends?
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20.

21.

Complete the final two columns in the following
frequency distribution table and then find the
percentiles and percentile ranks requested.

f cf %

N WA LN | X
— kO N W N

a. What is the percentile rank for X = 2.5?
b. What is the percentile rank for X = 6.5?
c. What is the 20th percentile?
d. What is the 80th percentile?

Complete the final two columns in the following
frequency distribution table and then find the
percentiles and percentile ranks requested.

X f cf %

50-59
4049
30-39
20-29
10-19
0-9

N W L N W =

a. What is the percentile rank for X = 9.5?
b. What is the percentile rank for X = 39.5?
c. What is the 25th percentile?

d. What is the 50th percentile?

Complete the final two columns in the following
frequency distribution table and then use interpolation
to find the percentiles and percentile ranks requested.

X f cf %
10 2
9 5
8 8
7 15
6 10
5 6
4 4

a. What is the percentile rank for X = 6?
b. What is the percentile rank for X = 9?
c. What is the 25th percentile?
d. What is the 90th percentile?

22,

23.

24.
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Find the requested percentiles and percentile ranks for
the following distribution of quiz scores for a class of
N = 40 students.

X f cf %

20 2 40  100.0
19 4 38 95.0
18 6 34 85.0
17 13 28 70.0
16 6 15 37.5
15 4 9 22.5
14 3 5 12.5
13 2 2 5.0

a. What is the percentile rank for X = 15?
b. What is the percentile rank for X = 18?
c. What is the 15th percentile?
d. What is the 90th percentile?

Use interpolation to find the requested percentiles and
percentile ranks requested for the following
distribution of scores.

X f cf %
14-15 3 50 100
12-13 6 47 94
10-11 8 41 82

8-9 18 33 66

6-7 10 15 30
4-5 4 5 10
2-3 1 1 2

. What is the percentile rank for X = 5?
. What is the percentile rank for X = 127
. What is the 25th percentile?

. What is the 70th percentile?

0 T

The following frequency distribution presents a set of
exam scores for a class of N = 20 students.

X f cf %
90-99 4 20 100
80-89 7 16 80
70-79 4 9 45
60-69 3 5 25
50-59 2 2 10

a. Find the 30th percentile.
b. Find the 88th percentile.
c. What is the percentile rank for X = 77?
d. What is the percentile rank for X = 90?
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25. Construct a stem and leaf display for the data in 27. Use a stem and leaf display to organize the following
problem 6 using one stem for the scores in the 60s, distribution of scores. Use seven stems with each stem
one for scores in the 50s, and so on. corresponding to a 10-point interval.

26. A set of scores has been organized into the following Scores:
stem and leaf display. For this set of scores: 28, 54, 65, 53, 81
a. How many scores are in the 70s? 45, 44, 51, 72, 34
b. Identify the individual scores in the 70s. 43, 59, 65, 39, 20
c¢. How many scores are in the 40s? 53, 74, 24, 30, 49
d. Identify the individual scores in the 40s. 36, 58, 60, 27, 47

22, 52, 46, 39, 65
318
4160
5734
6 | 81469
72184
8 1247

Improve your statistical skills with
ample practice exercises and detailed
explanations on every question. Purchase
www.aplia.com/statistics
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CHAPTER Central

Tendency

Tools You Will Need Preview

The following items are considered essential 3.1 Overview
background material for this chapter. If you
doubt your knowledge of any of these 3.2 The Mean

items, you should review the appropriate 3.3 The Median
chapter or section before proceeding.

3.4 The Mode

3.5 Selecting a Measure of Central
Tendency

3.6 Central Tendency and the Shape
of the Distribution

Summary

¢ Summation notation (Chapter 1)
¢ Frequency distributions (Chapter 2)

Focus on Problem Solving
Demonstration 3.1
Problems




Preview

Research has now confirmed what you already

suspected to be true—alcohol consumption increases

the attractiveness of opposite-sex individuals (Jones,
Jones, Thomas, & Piper, 2003). In the study, college-age
participants were recruited from bars and restaurants near
campus and asked to participate in a “market research”
study. During the introductory conversation, they were
asked to report their alcohol consumption for the day and
were told that moderate consumption would not prevent
them from taking part in the study. Participants were then
shown a series of photographs of male and female faces
and asked to rate the attractiveness of each face on a scale
from 1 to 7. Figure 3.1 shows the general pattern of results
obtained in the study. The two polygons in the figure show
the distributions of attractiveness ratings for one female
photograph obtained from two groups of males: those
who had no alcohol and those with moderate alcohol
consumption. Note that the attractiveness ratings from the
alcohol group are noticeably higher than the ratings from
the no-alcohol group. Incidentally, the same pattern of
results was obtained for the female’s ratings of male
photographs.

The Problem: Although it seems obvious that the
moderate-alcohol ratings are noticeably higher than the
no-alcohol ratings, this conclusion is based on a general
impression, or a subjective interpretation, of the figure.
In fact, this conclusion is not always true. For example,
there is overlap between the two groups so that some of
the no-alcohol males actually rate the photograph as
more attractive than some of the moderate-alcohol
males. What we need is a method to summarize each
group as a whole so that we can objectively describe
how much difference exists between the two groups.

The Solution: A measure of central tendency
identifies the average, or typical, score to serve as a
representative value for each group. Then we can use
the two averages to describe the two groups and to
measure the difference between them. The results
should show that average attractiveness rating from
males consuming alcohol really is higher than the
average rating from males who have not consumed
alcohol.

No alcohol Moderate alcohol
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FIGURE 3.1

Frequency distributions for ratings of attractiveness of a
female face shown in a photograph for two groups of
male participants: those who had consumed no alcohol
and those who had consumed moderate amounts of
alcohol.

m OVERVIEW

The general purpose of descriptive statistical methods is to organize and summarize a
set of scores. Perhaps the most common method for summarizing and describing a dis-
tribution is to find a single value that defines the average score and can serve as a
representative for the entire distribution. In statistics, the concept of an average, or rep-
resentative, score is called central tendency. The goal in measuring central tendency is
to describe a distribution of scores by determining a single value that identifies the
center of the distribution. Ideally, this central value is the score that is the best repre-

sentative value for all of the individuals in the distribution.

72
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DEFINITION Central tendency is a statistical measure to determine a single score that
defines the center of a distribution. The goal of central tendency is to find the
single score that is most typical or most representative of the entire group.

In everyday language, central tendency attempts to identify the “average” or “typ-
ical” individual. This average value can then be used to provide a simple description of
an entire population or a sample. In addition to describing an entire distribution, meas-
ures of central tendency are also useful for making comparisons between groups of
individuals or between sets of figures. For example, weather data indicate that for
Seattle, Washington, the average yearly temperature is 53° and the average annual pre-
cipitation is 34 inches. By comparison, the average temperature in Phoenix, Arizona, is
71° and the average precipitation is 7.4 inches. The point of these examples is to
demonstrate the great advantage of being able to describe a large set of data with a
single, representative number. Central tendency characterizes what is typical for a large
population and, in doing so, makes large amounts of data more digestible. Statisticians
sometimes use the expression number crunching to illustrate this aspect of data
description. That is, we take a distribution consisting of many scores and “crunch” them
down to a single value that describes them all.

Unfortunately, there is no single, standard procedure for determining central ten-
dency. The problem is that no single measure produces a central, representative value
in every situation. The three distributions shown in Figure 3.2 should help demonstrate
this fact. Before we discuss the three distributions, take a moment to look at the figure
and try to identify the center or the most representative score for each distribution.

1. The first distribution [Figure 3.2(a)] is symmetrical, with the scores forming a
distinct pile centered around X = 5. For this type of distribution, it is easy to
identify the center, and most people would agree that the value X = 5 is an
appropriate measure of central tendency.

2. In the second distribution [Figure 3.2(b)], however, problems begin to appear.
Now the scores form a negatively skewed distribution, piling up at the high
end of the scale around X = 8, but tapering off to the left all the way down to
X = 1. Where is the center in this case? Some people might select X = 8 as
the center because more individuals had this score than any other single value.
However, X = 8 is clearly not in the middle of the distribution. In fact, the
majority of the scores (10 out of 16) have values less than 8, so it seems rea-
sonable that the center should be defined by a value that is less than 8.

3. Now consider the third distribution [Figure 3.2(c)]. Again, the distribution is
symmetrical, but now there are two distinct piles of scores. Because the distri-
bution is symmetrical with X = 5 as the midpoint, you may choose X = 5 as
the center. However, none of the scores is located at X = 5 (or even close), so
this value is not particularly good as a representative score. On the other hand,
because there are two separate piles of scores with one group centered at X = 2
and the other centered at X = 8, it is tempting to say that this distribution has
two centers. But can one distribution have two centers?

Clearly, there can be problems defining the center of a distribution. Occasionally,
you will find a nice, neat distribution like the one shown in Figure 3.2(a), for which
everyone agrees on the center. But you should realize that other distributions are pos-
sible and that there may be different opinions concerning the definition of the center.
To deal with these problems, statisticians have developed three different methods for
measuring central tendency: the mean, the median, and the mode. They are computed
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(@ ®)
f f
1 2 3 4 5 6 7 8 9 X 1 2 3 4 5 6 7 8 9 X
©
f
FIGURE 3.2
Three distributions demonstrating the difficulty of
defining central tendency. In each case, try to locate 1 2 3 4 5 6 7 8 9 X
the “center” of the distribution.

DEFINITION

differently and have different characteristics. To decide which of the three measures is
best for any particular distribution, you should keep in mind that the general purpose of
central tendency is to find the single most representative score. Each of the three meas-
ures we present has been developed to work best in a specific situation. We examine
this issue in more detail after we introduce the three measures.

THE MEAN

The mean, also known as the arithmetic average, is computed by adding all the scores
in the distribution and dividing by the number of scores. The mean for a population is
identified by the Greek letter mu, p. (pronounced “mew”), and the mean for a sample is
identified by M or X (read “x-bar”). B

The convention in many statistics textbooks is to use X to represent the mean for
a sample. However, in manuscripts and in published research reports the letter M is the
standard notation for a sample mean. Because you will encounter the letter M when
reading research reports and because you should use the letter M when writing research
reports, we have decided to use the same notation in this text. Keep in mind that the X
notation is still appropriate for identifying a sample mean, and you may find it used on
occasion, especially in textbooks.

The mean for a distribution is the sum of the scores divided by the number of
scores.
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ALTERNATIVE DEFINITIONS
FOR THE MEAN

EXAMPLE 3.2
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The formula for the population mean is
XX 3.1)
n== :

First, add all the scores in the population, and then divide by N. For a sample, the
computation is exactly the same, but the formula for the sample mean uses symbols that
signify sample values:

Y x

n

sample mean = M = (3.2)

In general, we use Greek letters to identify characteristics of a population (param-
eters) and letters of our own alphabet to stand for sample values (statistics). If a mean
is identified with the symbol M, you should realize that we are dealing with a sample.
Also note that the equation for the sample mean uses a lowercase n as the symbol for
the number of scores in the sample.

For a population of N = 4 scores,

3, 7, 4, 6
the mean is
XX 2
_XX_20_,
N 4

Although the procedure of adding the scores and dividing by the number of scores pro-
vides a useful definition of the mean, there are two alternative definitions that may give
you a better understanding of this important measure of central tendency.

Dividing the total equally The first alternative is to think of the mean as the amount
each individual receives when the total (2X) is divided equally among all of the indi-
viduals (V) in the distribution. This somewhat socialistic viewpoint is particularly use-
ful in problems for which you know the mean and must find the total. Consider the
following example.

A group of n = 6 boys buys a box of baseball cards at a garage sale and discovers
that the box contains a total of 180 cards. If the boys divide the cards equally

among themselves, how many cards will each boy get? You should recognize that
this problem represents the standard procedure for computing the mean. Specifically,
the total (2X) is divided by the number (1) to produce the mean, % = 30 cards for

each boy.

The previous example demonstrates that it is possible to define the mean as
the amount that each individual gets when the total is distributed equally. This new
definition can be useful for some problems involving the mean. Consider the following
example.
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EXAMPLE 3.3

Now suppose that the 6 boys from Example 3.2 decide to sell their baseball cards on
eBay. If they make an average of M = $5 per boy, what is the total amount of money
for the whole group? Although you do not know exactly how much money each boy
has, the new definition of the mean tells you that if they pool their money together and
then distribute the total equally, each boy will get $5. For each of n = 6 boys to get
$5, the total must be 6($5) = $30. To check this answer, use the formula for the mean:

The mean as a balance point The second alternative definition of the mean
describes the mean as a balance point for the distribution. Consider a population con-
sisting of N = 5 scores (1, 2, 6, 6, 10). For this population, 2X = 25 and p. = 2?5 = 5.
Figure 3.3 shows this population drawn as a histogram, with each score represented as
a box that is sitting on a seesaw. If the seesaw is positioned so that it pivots at a point
equal to the mean, then it will be balanced and will rest level.

The reason that the seesaw is balanced over the mean becomes clear when we
measures the distance of each box (score) from the mean:

Score Distance from the Mean
X=1 4 points below the mean
X=2 3 points below the mean
X=6 1 point above the mean
X = 1 point above the mean
X =10 5 points above the mean

Notice that the mean balances the distances. That is, the total distance below the
mean is the same as the total distance above the mean:

below the mean: 4 + 3 = 7 points
above the mean: 1 + 1 + 5 = 7 points

Because the mean serves as a balance point, the value of the mean is always
located somewhere between the highest score and the lowest score; that is, the mean
can never be outside the range of scores. If the lowest score in a distribution is X = 8
and the highest is X = 15, then the mean must be between 8 and 15. If you calculate a
value that is outside this range, then you have made an error.

FIGURE 3.3

The frequency distribution
shown as a seesaw balanced
at the mean.

(Based on G. H. Weinberg,

J. A. Schumaker, & D. Oltman
(1981). Statistics: An Intuitive
Approach (p. 14). Belmont,
Calif.: Wadsworth.
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The image of a seesaw with the mean at the balance point is also useful for deter-
mining how a distribution is affected if a new score is added or if an existing score is
removed. For the distribution in Figure 3.3, for example, what would happen to the
mean (balance point) if a new score were added at X = 10?

Often it is necessary to combine two sets of scores and then find the overall mean for
the combined group. Suppose that we begin with two separate samples. The first sam-
ple has n = 12 scores and a mean of M = 6. The second sample has n = § and M = 7.
If the two samples are combined, what is the mean for the total group?

To calculate the overall mean, we need two values:

1. the overall sum of the scores for the combined group (2X), and

2. the total number of scores in the combined group (n).

The total number of scores in the combined group can be found easily by adding
the number of scores in the first sample () and the number in the second sample (7,).
In this case, there are 12 + 8 = 20 scores in the combined group. Similarly, the over-
all sum for the combined group can be found by adding the sum for the first sample
(2X,) and the sum for the second sample (2X,). With these two values, we can com-
pute the mean using the basic equation

3.X (overall sum for the combined group)

overall mean = M = - -
n (total number in the combined group)

_3X, +3X,
n, +n,

To find the sum of the scores for each sample, remember that the mean can be
defined as the amount each person receives when the total (2X) is distributed equally.
The first sample has n = 12 and M = 6. (Expressed in dollars instead of scores, this
sample has n = 12 people and each person gets $6 when the total is divided equally.)
For each of 12 people to get M = 6, the total must be X = 12 X 6 = 72. In the same
way, the second sample has n = 8 and M = 7 so the total must be X = 8 X 7 = 56.
Using these values, we obtain an overall mean of

3X, +3X, 72+56 128
overall mean = M = = =—=064
n, +n, 12 +8 20

The following table summarizes the calculations.

First Sample Second Sample Combined Sample
n=12 n=38 n=20(2+ 8)
3X =172 3X =56 3X = 128 (72 + 56)
M=6 M =1 M =64

Note that the overall mean is not halfway between the original two sample means.
Because the samples are not the same size, one makes a larger contribution to the total
group and, therefore, carries more weight in determining the overall mean. For this rea-
son, the overall mean we have calculated is called the weighted mean. In this example,
the overall mean of M = 6.4 is closer to the value of M = 6 (the larger sample) than it
is to M = 7 (the smaller sample). An alternative method for finding the weighted mean
is presented in Box 3.1.
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AN ALTERNATIVE PROCEDURE FOR FINDING THE WEIGHTED MEAN

In the text, the weighted mean was obtained by first
determining the total number of scores () for the two
combined samples and then determining the overall sum
(2X) for the two combined samples. The following
example demonstrates how the same result can be
obtained using a slightly different conceptual approach.
We begin with the same two samples that were
used in the text: One sample has M = 6 forn = 12
students, and the second sample has M = 7 for n = 8
students. The goal is to determine the mean for the
overall group when the two samples are combined.
Logically, when these two samples are combined,
the larger sample (with n = 12 scores) will make a
greater contribution to the combined group than the
smaller sample (with n = 8 scores). Thus, the larger
sample will carry more weight in determining the mean
for the combined group. We accommodate this fact by
assigning a weight to each sample mean so that the
weight is determined by the size of the sample. To deter-
mine how much weight should be assigned to each sam-
ple mean, you simply consider the sample’s contribution

to the combined group. When the two samples are
combined, the resulting group will have a total of

20 scores (n = 12 from the first sample and n = 8 from
the second). The first sample contributes 12 out of

20 scores and, therefore, is assigned a weight of %. The
second sample contributes 8 out of 20 scores, and its
weight is %. Each sample mean is then multiplied by its
weight, and the results are added to find the weighted
mean for the combined sample. For this example,

weighted mean = (%](6)+ (%Jﬁ)
72 56
:_+_
20 20
=3.6+2.8
=64

Note that this is the same result obtained using the
method described in the text.

COMPUTING THE MEAN
FROM A FREQUENCY
DISTRIBUTION TABLE

When a set of scores has been organized in a frequency distribution table, the calcula-
tion of the mean is usually easier if you first remove the individual scores from the table.
Table 3.1 shows a distribution of scores organized in a frequency distribution table. To

compute the mean for this distribution you must be careful to use both the X values in
the first column and the frequencies in the second column. The values in the table show
that the distribution consists of one 10, two 9s, four 8s, and one 6, for a total of n = 8
scores. Remember that you can determine the number of scores by adding the frequen-
cies, n = 2f. To find the sum of the scores, you must be careful to add all eight scores:

SX=10+9+9+8+8+8+8+6=66

Note that you can also find the sum of the scores by computing 2fX as we demon-
strated in Chapter 2 (pp. 40-41). Once you have found %X and n, you compute the
mean as usual. For these data,

= 2_ = @ =825
n 8

TABLE 3.1 Quiz Score (X) f X
Statistics quiz scores for a

sample of n = 8 students. 10 1 10

9 2 18

8 4 32

7 0 0

6 1 6
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1. Find the mean for the following sample of n = 5 scores: 1, 8,7, 5,9

2. A sample of n = 6 scores has a mean of M = 8. What is the value of 2X for this
sample?
3. One sample has n = 5 scores with a mean of M = 4. A second sample has n = 3

scores with a mean of M = 10. If the two samples are combined, what is the mean
for the combined sample?

4. A sample of n = 6 scores has a mean of M = 40. One new score is added to the
sample and the new mean is found to be M = 35. What can you conclude about
the value of the new score?

a. It must be greater 40.
b. It must be less than 40.

5. Find the values for n, 2X, and M for the sample that is summarized in the follow-
ing frequency distribution table.

X f

—_ N W A W
—_ W N =

3X=30and M =6

3X =48

The combined sample has n = § scores that total %X = 50. The mean is M = 6.25.
b

For this sample, n = 12, 2X = 33, and M = % = 2.75.

ok W=

CHARACTERISTICS
OF THE MEAN

The mean has many characteristics that will be important in future discussions. In
general, these characteristics result from the fact that every score in the distribution
contributes to the value of the mean. Specifically, every score adds to the total (2X)
and every score contributes one point to the number of scores (n). These two values
(2X and n) determine the value of the mean. We now discuss four of the more impor-
tant characteristics of the mean.

Changing a score Changing the value of any score changes the mean. For example,
a sample of quiz scores for a psychology lab section consists of 9, 8, 7, 5, and 1. Note
that the sample consists of n = 5 scores with %X = 30. The mean for this sample is

Now suppose that the score of X = 1 is changed to X = 8. Note that we have added
7 points to this individual’s score, which also adds 7 points to the total (2X). After
changing the score, the new distribution consists of

9, 8 7, 5 8
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There are still n = 5 scores, but now the total is X = 37. Thus, the new mean is

Notice that changing a single score in the sample has produced a new mean. You
should recognize that changing any score also changes the value of 2X (the sum of the
scores), and, thus, always changes the value of the mean.

Introducing a new score or removing a score Adding a new score to a distribu-
tion, or removing an existing score, usually changes the mean. The exception is when
the new score (or the removed score) is exactly equal to the mean. It is easy to visual-
ize the effect of adding or removing a score if you remember that the mean is defined
as the balance point for the distribution. Figure 3.4 shows a distribution of scores rep-
resented as boxes on a seesaw that is balanced at the mean, p = 7. Imagine what
would happen if we added a new score (a new box) at X = 10. Clearly, the seesaw
would tip to the right and we would need to move the pivot point (the mean) to the
right to restore balance.

Now imagine what would happen if we removed the score (the box) at X = 9. This
time the seesaw would tip to the left and, once again, we would need to change the
mean to restore balance.

Finally, consider what would happen if we added a new score of X = 7, exactly
equal to the mean. It should be clear that the seesaw would not tilt in either direction,
so the mean would stay in exactly the same place. Also note that if we removed the new
score at X = 7, the seesaw would remain balanced and the mean would not change. In
general, adding a new score or removing an existing score causes the mean to change
unless the that score is located exactly at the mean.

The following example demonstrates exactly how the new mean is computed when
a new score is added to an existing sample.

Adding a score (or removing a score) has the same effect on the mean whether the
original set of scores is a sample or a population. To demonstrate the calculation of
the new mean, we will use the set of scores that is shown in Figure 3.4. This time,
however, we will treat the scores as a sample with n = 5 and M = 7. Note that this
sample must have 2X = 35. What happens to the mean if a new score of X = 13 is
added to the sample?

To find the new sample mean, we must determine how the values for n and X are
be changed by a new score. We begin with the original sample and then consider the
effect of adding the new score. The original sample had n = 5 scores, so adding one
new score produces n = 6. Similarly, the original sample had 2X = 35. Adding a score

FIGURE 3.4

A distribution of N = 5
scores that is balanced with a
mean of p = 7.

1 2 3 4 &5 6 7 8 9 10 11 12 13




TABLE 3.2

Number of sentences recalled
for humorous and nonhumorous
sentences.
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of X = 13 increases the sum by 13 points, producing a new sum of 2X = 35 + 13 = 48.
Finally, the new mean is computed using the new values for n and 2.X.

The entire process can be summarized as follows:

Original New Sample,

Sample Adding X = 13
n=>5 n==6
3X =35 3X =48

M=35/5=17 M = 48/6 = 8

Adding or subtracting a constant from each score If a constant value is added to
every score in a distribution, the same constant is added to the mean. Similarly, if you
subtract a constant from every score, the same constant is subtracted from the mean.

As mentioned in Chapter 2 (p. 38), Schmidt (1994) conducted a set of experi-
ments examining how humor influences memory. In one study, participants were
shown lists of sentences, of which half were humorous (I got a bill for my surgery—
now I know why those doctors were wearing masks.) and half were nonhumorous
(I got a bill for my surgery—those doctors were like robbers with the prices they
charged.). The results showed that people consistently recalled more of the humor-
ous sentences.

Table 3.2 shows the results for a sample of n = 6 participants. The first column
shows their memory scores for nonhumorous sentences. Note that the total number of
sentences recalled is 2X = 17 for a sample of n = 6 participants, so the mean is
M = %7 = 2.83. Now suppose that the effect of humor is to add a constant amount
(2 points) to each individual’s memory score. The resulting scores for humorous sen-
tences are shown in the second column of the table. For these scores, the 6 participants
recalled a total of X = 29 sentences, so the mean is M = % = 4.83. Adding 2 points
to each score has also added 2 points to the mean, from M = 2.83 to M = 4.83. (It is
important to note that experimental effects are usually not as simple as adding or sub-
tracting a constant amount. Nonetheless, the concept of adding a constant to every score
is important and will be addressed in later chapters when we are using statistics to eval-
uate the effects of experimental manipulations.)

Nonhumorous Humorous
Participant Sentences Sentences
A 4 6
B 2 4
C 3 5
D 3 5
E 2 4
F 3 5
3X =17 3X =29

M =283 M =483
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Multiplying or dividing each score by a constant If every score in a distribution is
multiplied by (or divided by) a constant value, the mean changes in the same way.

Multiplying (or dividing) each score by a constant value is a common method for
changing the unit of measurement. To change a set of measurements from minutes to
seconds, for example, you multiply by 60; to change from inches to feet, you divide by
12. One common task for researchers is converting measurements into metric units to
conform to international standards. For example, publication guidelines of the
American Psychological Association call for metric equivalents to be reported in paren-
theses when most nonmetric units are used. Table 3.3 shows how a sample of n = 5
scores measured in inches would be transformed to a set of scores measured in cen-
timeters. (Note that 1 inch equals 2.54 centimeters.) The first column shows the origi-
nal scores that total 2X = 50 with M = 10 inches. In the second column, each of the
original scores has been multiplied by 2.54 (to convert from inches to centimeters) and
the resulting values total XX = 127, with M = 25.4. Multiplying each score by 2.54
has also caused the mean to be multiplied by 2.54. You should realize, however, that
although the numerical values for the individual scores and the sample mean have
changed, the actual measurements have not changed.

1. Adding a new score to a distribution always changes the mean. (True or false?)

2. Changing the value of a score in a distribution always changes the mean. (True or
false?)

3. A population has a mean of . = 40.
a. If 5 points were added to every score, what would be the value for the new mean?
b. If every score were multiplied by 3, what would be the value for the new mean?

4. A sample of n = 4 scores has a mean of 9. If one person with a score of X = 3 is
removed from the sample, what is the value for the new sample mean?

1. False. If the score is equal to the mean, it does not change the mean.
2. True.

3. a. The new mean would be 45. b. The new mean would be 120.
4

. The original sample has n = 4 and 3X = 36. The new sample has n = 3 scores that total
X = 33. The new mean is M = 11.

TABLE 3.3

Measurements converted from
inches to centimeters.

Conversion to

Original Measurement Centimeters
in Inches (Multiply by 2.54)
10 25.40
9 22.86
12 30.48
8 20.32
11 27.94
3X =50 X = 127.00

M =10 M = 2540
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THE MEDIAN

The second measure of central tendency we consider is called the median. The goal of
the median is to locate the midpoint of the distribution. Unlike the mean, there are no
specific symbols or notation to identify the median. Instead, the median is simply iden-
tified by the word median. In addition, the definition and the computations for the
median are identical for a sample and for a population.

If the scores in a distribution are listed in order from smallest to largest, the
median is the midpoint of the list. More specifically, the median is the point on
the measurement scale below which 50% of the scores in the distribution are
located.

Defining the median as the midpoint of a distribution means that the scores are divided
into two equal-sized groups. We are not locating the midpoint between the highest and
lowest X values. To find the median, list the scores in order from smallest to largest.
Begin with the smallest score and count the scores as you move up the list. The median
is the first point you reach that is greater than 50% of the scores in the distribution. The
median can be equal to a score in the list or it can be a point between two scores. Notice
that the median is not algebraically defined (there is no equation for computing the
median), which means that there is a degree of subjectivity in determining the exact
value. However, the following two examples demonstrate the process of finding the
median for most distributions.

This example demonstrates the calculation of the median when 7 is an odd number.
With an odd number of scores, you list the scores in order (lowest to highest), and the
median is the middle score in the list. Consider the following set of N = 5 scores,
which have been listed in order:

3, 5,8 10, 11

The middle score is X = 8§, so the median is equal to 8. Using the counting
method, with N = 5 scores, the 50% point would be 2—;— scores. Starting with the
smallest scores, we must count the 3, the 5, and the 8 before we reach the target of
at least 50%. Again, for this distribution, the median is the middle score, X = 8.

This example demonstrates the calculation of the median when 7 is an even number.
With an even number of scores in the distribution, you list the scores in order (lowest
to highest) and then locate the median by finding the average of the middle two
scores. Consider the following population:

L 1, 4 5 7, 38

Now we select the middle pair of scores (4 and 5), add them together, and divide
by 2:

median = = 2 =45
2
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FINDING THE PRECISE
MEDIAN FOR
A CONTINUOUS VARIABLE

EXAMPLE 3.7

Using the counting procedure, with N = 6 scores, the 50% point is 3 scores.
Starting with the smallest scores, we must count the first 1, the second 1, and the
4 before we reach the target of at least 50%. Again, the median for this distribution is
4.5, which is the first point on the scale beyond X = 4. For this distribution, exactly
3 scores (50%) are located below 4.5. Note: If there is a gap between the middle
two scores, the convention is to define the median as the midpoint between the two
scores. For example, if the middle two scores are X = 4 and X = 6, the median would
be defined as 5.

The simple technique of listing and counting scores is sufficient to determine the
median for most distributions and is always appropriate for discrete variables. Notice
that this technique always produces a median that is either a whole number or is
halfway between two whole numbers. With a continuous variable, however, it is possi-
ble to divide a distribution precisely in half so that exactly 50% of the distribution is
located below (and above) a specific point. The procedure for locating the precise
median is discussed in the following section.

Recall from Chapter 1 that a continuous variable consists of categories that can be split
into an infinite number of fractional parts. For example, time can be measured in
seconds, tenths of a second, hundredths of a second, and so on. When the scores in a
distribution are measurements of a continuous variable, it is possible to split one of the
categories into fractional parts and find the median by locating the precise point that
separates the bottom 50% of the distribution from the top 50%. The following example
demonstrates this process.

For this example, we will find the precise median for the following sample of n = 8
scores: 1,2,3,4,4,4,4,6

The frequency distribution for this sample is shown in Figure 3.5(a). With an even
number of scores, you normally would compute the average of the middle two scores
to find the median. This process produces a median of X = 4. For a discrete variable,

FIGURE 3.5

A distribution with several
scores clustered at the
median. The median for this
distribution is positioned so
that each of the four boxes
above X = 4 is divided into
two sections, with AlTof each
box below the median (to the
left) and %of each box above
the median (to the right).

As a result, there are exactly
four boxes, 50% of the
distribution, on each side

of the median.
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X = 4 is the correct value for the median. Recall from Chapter 1 that a discrete variable
consists of indivisible categories, such as the number of children in a family. Some
families have 4 children and some have 5, but none have 4.31 children. For a discrete
variable, the category X = 4 cannot be divided and the whole number 4 is the median.

However, if you look at the distribution histogram, the value X = 4 does not
appear to be the exact midpoint. The problem comes from the tendency to interpret a
score of X = 4 as meaning exactly 4.00. However, if the scores are measurements of
a continuous variable, then the score X = 4 actually corresponds to an interval from
3.5 to 4.5, and the median corresponds to a point within this interval.

To find the precise median, we first observe that the distribution contains n = 8
scores represented by 8 boxes in the graph. The median is the point that has exactly
4 boxes (50%) on each side. Starting at the left-hand side and moving up the scale of
measurement, we accumulate a total of 3 boxes when we reach a value of 3.5 on the
X-axis [see Figure 3.5(a)]. What is needed is 1 more box to reach the goal of 4 boxes
(50%). The problem is that the next interval contains four boxes. The solution is to
take a fraction of each box so that the fractions combine to give you one box. For this
example, if we take f‘—of each box, the four quarters will combine to make one whole
box. This solution is shown in Figure 3.5(b). The fraction is determined by the
number of boxes needed to reach 50% and the number that exists in the interval.

. number needed to reach 50%
fraction =

number in the interval

For this example, we needed 1 out of the 4 boxes in the interval, so the fraction
is }‘—. To obtain one-fourth of each box, the median is the point that is located exactly
one-fourth of the way into the interval. The interval for X = 4 extends from 3.5 to
4.5. The interval width is 1 point, so one-fourth of the interval corresponds to 0.25
points. Starting at the bottom of the interval and moving up 0.25 points produces a
value of 3.50 + 0.25 = 3.75. This is the median, with exactly 50% of the distribution
(4 boxes) on each side.

You may recognize that the process used to find the precise median in Example 3.7
is equivalent to the process of interpolation that was introduced in Chapter 2
(pp- 55-59). Specifically, the precise median is identical to the 50th percentile for a dis-
tribution, and interpolation can be used to locate the 50th percentile. The process of
using interpolation is demonstrated in Box 3.2 using the same scores that were used in
Example 3.7.

Remember, finding the precise midpoint by dividing scores into fractional parts is
sensible for a continuous variable, however, it is not appropriate for a discrete variable.
For example, a median time of 3.75 seconds is reasonable, but a median family size of
3.75 children is not.

Earlier, we defined the mean as the “balance point” for a distribution because the dis-
tances above the mean must have the same total as the distances below the mean. One
consequence of this definition is that the mean is always located inside the group of
scores, somewhere between the smallest score and the largest score. You should notice,
however, that the concept of a balance point focuses on distances rather than scores. In
particular, it is possible to have a distribution in which the vast majority of the scores
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USING INTERPOLATION TO LOCATE THE 50TH PERCENTILE (THE MEDIAN)

The precise median and the 50th percentile are both
defined as the point that separates the top 50% of a
distribution from the bottom 50%. In Chapter 2, we
introduced interpolation as a technique for finding
specific percentiles. We now use that same process to
find the 50th percentile for the scores in Example 3.7.

Looking at the distribution of scores shown in
Figure 3.5, exactly 3 of the n = 8 scores, or 37.5%, are
located below the real limit of 3.5. Also, 7 of the n = 8
scores (87.5%) are located below the real limit of 4.5.
This interval of scores and percentages is shown in the
following table. Note that the median, the 50th per-
centile, is located within this interval.

We will find the 50th percentile (the median) using
the 4-step interpolation process that was introduced in
Chapter 2.

1. For the scores, the width of the interval is 1 point.
For the percentages, the width is 50 points.

2. The value of 50% is located 37.5 points down
from the top of the percentage interval. As a fraction
of the whole interval, this is 37.5 out of 50, or 0.75
of the total interval.

3. For the scores, the interval width is 1 point and
0.75 of the interval corresponds to a distance of
0.75(1) = 0.75 points.

4. Because the top of the interval is 4.5, the position we
want is 4.5 — 0.75 = 3.75

Scores (X)  Percentages
Top 45 87.5% For. this distribution, the 50% point (the 50th
9 50% « Intermediate value  Percentile) corresponds to a score of X = 3.75. Note
Bottom 35 37.5% that this is exactly the same value that we obtained for
the median in Example 3.7.

are located on one side of the mean. Figure 3.6 shows a distribution of N = 6 scores in
which 5 out of 6 scores have values less than the mean. In this figure, the total of the
distances above the mean is 8 points and the total of the distances below the mean is
8 points. Thus, the mean is located in the middle of the distribution if you use the
concept of distance to define the middle. However, you should realize that the mean is
not necessarily located at the exact center of the group of scores.

The median, on the other hand, defines the middle of the distribution in terms of
scores. In particular, the median is located so that half of the scores are on one side and
half are on the other side. For the distribution in Figure 3.6, for example, the median is
located at X = 2.5, with exactly 3 scores above this value and exactly 3 scores below.
Thus, it is possible to claim that the median is located in the middle of the distribution,
provided that the term middle is defined by the number of scores.

FIGURE 3.6 u=4
. > 3 |
A population of N = 6 scores 8 :
with a mean of @ = 4. % 2 |
Notice that the mean does o |
not necessarily divide the ,_?Lf 1 !
scores into two equal groups. !
In this example, 5 out of the ! X
6 scores have values less 1 2 3 4 S 6 7 8 9 10 11 12 13

than the mean.
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In summary, the mean and the median are both methods for defining and measur-
ing central tendency. Although they both define the middle of the distribution, they use
different definitions of the term middle.

1. Find the median for each distribution of scores:
a. 3,4,6,7,9, 10, 11
b. 8, 10, 11, 12, 14, 15

2. If you have a score of 52 on an 80-point exam, then you definitely scored above
the median. (True or false?)

3. The following is a distribution of measurements for a continuous variable. Find the
precise median that divides the distribution exactly in half.

Scores: 1, 2, 2, 3, 4, 4, 4, 4, 4, 5

1. a. The medianis X = 7. b. The medianis X = 11.5.
2. False. The value of the median would depend on where all of the scores are located.

3. The median is 3.70 (one-fifth of the way into the interval from 3.5 to 4.5).

DEFINITION

TABLE 3.4

Favorite restaurants named by

a sample of n = 100 students.
Caution: The mode is a score or
category, not a frequency. For
this example, the mode is
Luigi’s, not f = 42.

THE MODE

The final measure of central tendency that we consider is called the mode. In its com-
mon usage, the word mode means “the customary fashion” or “a popular style.” The
statistical definition is similar in that the mode is the most common observation among
a group of scores.

In a frequency distribution, the mode is the score or category that has the great-
est frequency.

As with the median, there are no symbols or special notation used to identify the
mode or to differentiate between a sample mode and a population mode. In addition,
the definition of the mode is the same for a population and for a sample distribution.

The mode is a useful measure of central tendency because it can be used to deter-
mine the typical or average value for any scale of measurement, including a nominal
scale (see Chapter 1). Consider, for example, the data shown in Table 3.4. These data
were obtained by asking a sample of 100 students to name their favorite restaurants in

Restaurant f
College Grill 5
George & Harry’s 16
Luigi’s 42
Oasis Diner 18
Roxbury Inn 7

Sutter’s Mill 12
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town. The result is a sample of n = 100 scores with each score corresponding to the
restaurant that the student named.

For these data, the mode is Luigi’s, the restaurant (score) that was named most fre-
quently as a favorite place. Although we can identify a modal response for these data,
you should notice that it would be impossible to compute a mean or a median. For
example, you cannot add the scores to determine a mean (How much is 5 College Grills
plus 42 Luigi’s?). Also, it is impossible to list the scores in order because the restau-
rants do not form any natural order. For example, the College Grill is not “more than”
or “less than” the Oasis Diner, they are simply two different restaurants. Thus, it is
impossible to obtain the median by finding the midpoint of the list. In general, the mode
is the only measure of central tendency that can be used with data from a nominal scale
of measurement.

The mode also can be useful because it is the only measure of central tendency that
corresponds to an actual score in the data; by definition, the mode is the most frequently
occurring score. The mean and the median, on the other hand, are both calculated
values and often produce an answer that does not equal any score in the distribution.
For example, in Figure 3.6 (p. 86) we presented a distribution with a mean of 4 and a
median of 2.5. Note that none of the scores is equal to 4 and none of the scores is equal
to 2.5. However, the mode for this distribution is X = 2; there are three individuals who
actually have scores of X = 2.

In a frequency distribution graph, the greatest frequency appears as the tallest part
of the figure. To find the mode, you simply identify the score located directly beneath
the highest point in the distribution.

Although a distribution has only one mean and only one median, it is possible to
have more than one mode. Specifically, it is possible to have two or more scores that
have the same highest frequency. In a frequency distribution graph, the different modes
correspond to distinct, equally high peaks. A distribution with two modes is said to be
bimodal, and a distribution with more than two modes is called multimodal.
Occasionally, a distribution with several equally high points is said to have no mode.

Incidentally, a bimodal distribution is often an indication that two separate and dis-
tinct groups of individuals exist within the same population (or sample). For example,
if you measured height for each person in a set of 100 college students, the resulting
distribution would probably have two modes, one corresponding primarily to the males
in the group and one corresponding primarily to the females.

Technically, the mode is the score with the absolute highest frequency. However,
the term mode is often used more casually to refer to scores with relatively high
frequencies—that is, scores that correspond to peaks in a distribution even though the
peaks are not the absolute highest points. For example, Athos, et al. (2007) asked peo-
ple to identify the pitch for both pure tones and piano tones. Participants were presented
with a series of tones and had to name the note corresponding to each tone. Nearly half
the participants (44%) had extraordinary pitch-naming ability (absolute pitch), and
were able to identify most of the tones correctly. Most of the other participants per-
formed around chance level, apparently guessing the pitch names randomly. Figure 3.7
shows a distribution of scores that is consistent with the results of the study. There are
two distinct peaks in the distribution, one located at X = 2 (chance performance) and
the other located at X = 10 (perfect performance). Each of these values is a mode in the
distribution. Note, however, that the two modes do not have identical frequencies. Eight
people scored at X = 2 and only seven had scores of X = 10. Nonetheless, both of these
points are called modes. When two modes have unequal frequencies, researchers occa-
sionally differentiate the two values by calling the taller peak the major mode, and the
shorter one the minor mode.
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FIGURE 3.7
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LEARNING CHECK 1. During the month of October, an instructor recorded the number of absences for

ANSWERS

each student in a class of n = 20 and obtained the following distribution.

Number of
Absences f

5 1
4 2
3 7
2 5
1 3
0 2

a. Using the mean, what is the average number of absences for the class?
b. Using the median, what is the average number of absences for the class?
c. Using the mode, what is the average number of absences for the class?

1.
a. The mean is 47/20 = 2.35.
b. The median is 2.5.
c. The mode is 3.

SELECTING A MEASURE OF CENTRAL TENDENCY

How do you decide which measure of central tendency to use? The answer to this ques-
tion depends on several factors. Before we discuss these factors, however, note that you
usually can compute two or even three measures of central tendency for the same set of
data. Although the three measures often produce similar results, there are situations in
which they are very different (see Section 3.6). Also note that the mean is usually the
preferred measure of central tendency. Because the mean uses every score in the dis-
tribution, it typically produces a good representative value. Remember that the goal of
central tendency is to find the single value that best represents the entire distribution.
Besides being a good representative, the mean has the added advantage of being closely
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related to variance and standard deviation, the most common measures of variability
(Chapter 4). This relationship makes the mean a valuable measure for purposes of
inferential statistics. For these reasons, and others, the mean generally is considered to
be the best of the three measures of central tendency. But there are specific situations
in which it is impossible to compute a mean or in which the mean is not particularly
representative. It is in these situations that the mode and the median are used.

We consider four situations in which the median serves as a valuable alternative to the
mean. In the first three cases, the data consist of numerical values (interval or ratio
scales) for which you would normally compute the mean. However, each case also
involves a special problem so that it is either impossible to compute the mean, or the
calculation of the mean produces a value that is not central or not representative of the
distribution. The fourth situation involves measuring central tendency for ordinal data.

Extreme scores or skewed distributions When a distribution has a few extreme
scores, scores that are very different in value from most of the others, then the mean
may not be a good representative of the majority of the distribution. The problem comes
from the fact that one or two extreme values can have a large influence and cause the
mean to be displaced. In this situation, the fact that the mean uses all of the scores
equally can be a disadvantage. Consider, for example, the distribution of n = 10 scores
in Figure 3.8. For this sample, the mean is

Notice that the mean is not very representative of any score in this distribution.
Although most of the scores are clustered between 10 and 13, the extreme score of
X = 100 inflates the value of X and distorts the mean.

FIGURE 3.8

Frequency distribution of
errors committed before
reaching learning criterion.
Notice that the graph shows
two breaks in the X-axis.
Rather than listing all the
scores from 0 to 100, the
graph jumps directly to the
first score, which is X = 10,
and then jumps directly from
X =15to0 X = 100. The
breaks shown in the X-axis
are the conventional way of
notifying the reader that
some values have been
omitted.
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TABLE 3.5

Number of minutes needed to

assemble a wooden puzzle.

Number of
Pizzas (X) f
5 or more 3
4 2
3 2
2 3
1 6
0 4
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The median, on the other hand, is not easily affected by extreme scores. For this
sample, n = 10, so there should be five scores on either side of the median. The
median is 11.50. Notice that this is a very representative value. Also note that the
median would be unchanged even if the extreme score were 1000 instead of only 100.
Because it is relatively unaffected by extreme scores, the median commonly is used
when reporting the average value for a skewed distribution. For example, the distribu-
tion of personal incomes is very skewed, with a small segment of the population earn-
ing incomes that are astronomical. These extreme values distort the mean, so that it is
not very representative of the salaries that most of us earn. The median is the preferred
measure of central tendency when extreme scores exist.

Undetermined values Occasionally, you encounter a situation in which an individ-
ual has an unknown or undetermined score. In psychology, this often occurs in learn-
ing experiments in which you are measuring the number of errors (or amount of time)
required for an individual to solve a particular problem. For example, suppose that
participants are asked to assemble a wooden puzzle as quickly as possible. The exper-
imenter records how long (in minutes) it takes each individual to arrange all of the
pieces to complete the puzzle. Table 3.5 presents results for a sample of n = 6 people.

Person Time (Min.)
1 8
2 11
3 12
4 13
5 17
6 Never finished

Notice that person 6 never completed the puzzle. After an hour, this person still
showed no sign of solving the puzzle, so the experimenter stopped him or her. This per-
son has an undetermined score. (There are two important points to be noted. First, the
experimenter should not throw out this individual’s score. The whole purpose for using
a sample is to gain a picture of the population, and this individual tells us that part of
the population cannot solve the puzzle. Second, this person should not be given a score
of X = 60 minutes. Even though the experimenter stopped the individual after 1 hour,
the person did not finish the puzzle. The score that is recorded is the amount of time
needed to finish. For this individual, we do not know how long this is.)

It is impossible to compute the mean for these data because of the undetermined
value. We cannot calculate the 2X part of the formula for the mean. However, it is pos-
sible to determine the median. For these data, the median is 12.5. Three scores are below
the median, and three scores (including the undetermined value) are above the median.

Open-ended distributions A distribution is said to be open-ended when there is no
upper limit (or lower limit) for one of the categories. The table in the margin provides
an example of an open-ended distribution, showing the number of pizzas eaten during
a 1 month period for a sample of n = 20 high school students. The top category in this
distribution shows that three of the students consumed “5 or more” pizzas. This is an
open-ended category. Notice that it is impossible to compute a mean for these data
because you cannot find 2X (the total number of pizzas for all 20 students). However,
you can find the median. Listing the 20 scores in order produces X = 1 and X = 2 as
the middle two scores. For these data, the median is 1.5.
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Ordinal scale Many researchers believe that it is not appropriate to use the mean to
describe central tendency for ordinal data. When scores are measured on an ordinal scale,
the median is always appropriate and is usually the preferred measure of central tendency.

You should recall that ordinal measurements allow you to determine direction
(greater than or less than) but do not allow you to determine distance. The median is
compatible with this type of measurement because it is defined by direction: half of the
scores are above the median and half are below the median. The mean, on the other
hand, defines central tendency in terms of distance. Remember that the mean is the
balance point for the distribution, so that the distances above the mean are exactly
balanced by the distances below the mean. Because the mean is defined in terms of
distances, and because ordinal scales do not measure distance, it is not appropriate to
compute a mean for scores from an ordinal scale.

We consider three situations in which the mode is commonly used as an alternative to
the mean, or is used in conjunction with the mean to describe central tendency.

Nominal scales The primary advantage of the mode is that it can be used to measure
and describe central tendency for data that are measured on a nominal scale. Recall that
the categories that make up a nominal scale are differentiated only by name. Because
nominal scales do not measure quantity (distance or direction), it is impossible to com-
pute a mean or a median for data from a nominal scale. Therefore, the mode is the only
option for describing central tendency for nominal data.

Discrete variables Recall that discrete variables are those that exist only in whole,
indivisible categories. Often, discrete variables are numerical values, such as the num-
ber of children in a family or the number of rooms in a house. When these variables
produce numerical scores, it is possible to calculate means. In this situation, the calcu-
lated means are usually fractional values that cannot actually exist. For example, com-
puting means generates results such as “the average family has 2.4 children and a house
with 5.33 rooms.” On the other hand, the mode always identifies the most typical case
and, therefore, it produces more sensible measures of central tendency. Using the mode,
our conclusion would be “the typical, or modal, family has 2 children and a house with
5 rooms.” In many situations, especially with discrete variables, people are more com-
fortable using the realistic, whole-number values produced by the mode.

Describing shape Because the mode requires little or no calculation, it is often
included as a supplementary measure along with the mean or median as a no-cost extra.
The value of the mode (or modes) in this situation is that it gives an indication of the
shape of the distribution as well as a measure of central tendency. Remember that the
mode identifies the location of the peak (or peaks) in the frequency distribution graph.
For example, if you are told that a set of exam scores has a mean of 72 and a mode of
80, you should have a better picture of the distribution than would be available from the
mean alone (see Section 3.6).

IN THE LITERATURE
REPORTING MEASURES OF CENTRAL TENDENCY

Measures of central tendency are commonly used in the behavioral sciences to
summarize and describe the results of a research study. For example, a researcher
may report the sample means from two different treatments or the median score for a
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The mean number of errors
made on the task for treatment
and control groups, divided by
gender.
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large sample. These values may be reported in verbal descriptions of the results, in
tables, or in graphs.

In reporting results, many behavioral science journals use guidelines adopted by
the American Psychological Association (APA), as outlined in the Publication
Manual of the American Psychological Association (2010). We refer to the APA
manual from time to time in describing how data and research results are reported in
the scientific literature. The APA style uses the letter M as the symbol for the sample
mean. Thus, a study might state:

The treatment group showed fewer errors (M = 2.56) on the task than the control
group (M = 11.76).

When there are many means to report, tables with headings provide an organized
and more easily understood presentation. Table 3.6 illustrates this point.

The median can be reported using the abbreviation Mdn, as in “Mdn = 8.5
errors,” or it can simply be reported in narrative text, as follows:

The median number of errors for the treatment group was 8.5, compared to a median
of 13 for the control group.

There is no special symbol or convention for reporting the mode. If mentioned at
all, the mode is usually just reported in narrative text.

PRESENTING MEANS AND MEDIANS IN GRAPHS

Graphs also can be used to report and compare measures of central tendency. Usually,
graphs are used to display values obtained for sample means, but occasionally sample
medians are reported in graphs (modes are rarely, if ever, shown in a graph). The
value of a graph is that it allows several means (or medians) to be shown
simultaneously, so it is possible to make quick comparisons between groups or
treatment conditions. When preparing a graph, it is customary to list the different
groups or treatment conditions on the horizontal axis. Typically, these are the
different values that make up the independent variable or the quasi-independent
variable. Values for the dependent variable (the scores) are listed on the vertical axis.
The means (or medians) are then displayed using a line graph, a histogram, or a bar
graph, depending on the scale of measurement used for the independent variable.

Figure 3.9 shows an example of a line graph displaying the relationship between
drug dose (the independent variable) and food consumption (the dependent variable).
In this study, there were five different drug doses (treatment conditions) and they are
listed along the horizontal axis. The five means appear as points in the graph. To
construct this graph, a point was placed above each treatment condition so that the
vertical position of the point corresponds to the mean score for the treatment
condition. The points are then connected with straight lines. A line graph is used
when the values on the horizontal axis are measured on an interval or a ratio scale.
An alternative to the line graph is a histogram. For this example, the histogram would
show a bar above each drug dose so that the height of each bar corresponds to the
mean food consumption for that group, with no space between adjacent bars.

Treatment Control
Females 1.45 8.36
Males 3.83 14.77
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FIGURE 3.9 30
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Figure 3.10 shows a bar graph displaying the median selling price for single-
family homes in different regions of the United States. Bar graphs are used to present
means (or medians) when the groups or treatments shown on the horizontal axis are
measured on a nominal or an ordinal scale. To construct a bar graph, you simply draw
a bar directly above each group or treatment so that the height of the bar corresponds
to the mean (or median) for that group or treatment. For a bar graph, a space is left
between adjacent bars to indicate that the scale of measurement is nominal or ordinal.

When constructing graphs of any type, you should recall the basic rules that we
introduced in Chapter 2:

1. The height of a graph should be approximately two-thirds to three-quarters of
its length.

2. Normally, you start numbering both the X-axis and the Y-axis with zero at the
point where the two axes intersect. However, when a value of zero is part of the

FIGURE 3.10
Median cost of a new, single- 160
family hi b ion.
amily home by region Median 125
new 100
house
cost 75
@in $1000s)
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Region of the United States




SYMMETRICAL
DISTRIBUTIONS

SKEWED DISTRIBUTIONS

The positions of the mean,
median, and mode are not as
consistently predictable in
distributions of discrete variables
(see Von Hippel, 2005).
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data, it is common to move the zero point away from the intersection so that the
graph does not overlap the axes (see Figure 3.9).

Following these rules helps to produce a graph that provides an accurate
presentation of the information in a set of data. Although it is possible to construct
graphs that distort the results of a study (see Box 2.1), researchers have an ethical
responsibility to present an honest and accurate report of their research results. 1

CENTRAL TENDENCY AND THE SHAPE
OF THE DISTRIBUTION

We have identified three different measures of central tendency, and often a researcher
calculates all three for a single set of data. Because the mean, the median, and the mode
are all trying to measure the same thing, it is reasonable to expect that these three
values should be related. In fact, there are some consistent and predictable relationships
among the three measures of central tendency. Specifically, there are situations in
which all three measures have exactly the same value. On the other hand, there are
situations in which the three measures are guaranteed to be different. In part, the
relationships among the mean, median, and mode are determined by the shape of the
distribution. We consider two general types of distributions.

For a symmetrical distribution, the right-hand side of the graph is a mirror image of
the left-hand side. If a distribution is perfectly symmetrical, the median is exactly
at the center because exactly half of the area in the graph is on either side of the
center. The mean also is exactly at the center of a perfectly symmetrical distribution
because each score on the left side of the distribution is balanced by a corresponding
score (the mirror image) on the right side. As a result, the mean (the balance point)
is located at the center of the distribution. Thus, for a perfectly symmetrical distribu-
tion, the mean and the median are the same (Figure 3.11). If a distribution is roughly
symmetrical, but not perfect, the mean and median are close together in the center of
the distribution.

If a symmetrical distribution has only one mode, it is also in the center of the dis-
tribution. Thus, for a perfectly symmetrical distribution with one mode, all three meas-
ures of central tendency, the mean, the median, and the mode, have the same value. For
a roughly symmetrical distribution, the three measures are clustered together in the
center of the distribution. On the other hand, a bimodal distribution that is symmetrical
[see Figure 3.11(b)] has the mean and median together in the center with the modes on
each side. A rectangular distribution [see Figure 3.11(c)] has no mode because all X val-
ues occur with the same frequency. Still, the mean and the median are in the center of
the distribution.

In skewed distributions, especially distributions for continuous variables, there is a
strong tendency for the mean, median, and mode to be located in predictably differ-
ent positions. Figure 3.12(a), for example, shows a positively skewed distribution
with the peak (highest frequency) on the left-hand side. This is the position of the
mode. However, it should be clear that the vertical line drawn at the mode does not
divide the distribution into two equal parts. To have exactly 50% of the distribution
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FIGURE 3.11

Measures of central tendency
for three symmetrical
distributions: normal,
bimodal, and rectangular.
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on each side, the median must be located to the right of the mode. Finally, the mean
is located to the right of the median because it is the measure influenced most by the
extreme scores in the tail and is displaced farthest to the right toward the tail of
the distribution. Therefore, in a positively skewed distribution, the order of the three
measures of central tendency from smallest to largest (left to right) is the mode, the
median, and the mean.

Negatively skewed distributions are lopsided in the opposite direction, with the
scores piling up on the right-hand side and the tail tapering off to the left. The grades
on an easy exam, for example, tend to form a negatively skewed distribution [see
Figure 3.12(b)]. For a distribution with negative skew, the mode is on the right-hand
side (with the peak), whereas the mean is displaced toward the left by the extreme
scores in the tail. As before, the median is located between the mean and the mode.
In order from smallest value to largest value (left to right), the three measures of
central tendency for a negatively skewed distribution are the mean, the median, and
the mode.
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Measures of central tendency for skewed distributions.
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Which measure of central tendency is most affected if one extremely large score is
added to a distribution? (mean, median, mode)

Why is it usually considered inappropriate to compute a mean for scores measured

In a perfectly symmetrical distribution, the mean, the median, and the mode will
all have the same value. (True or false?)

A distribution with a mean of 70 and a median of 75 is probably positively

2. The definition of the mean is based on distances (the mean balances the distances) and
ordinal scales do not measure distance.

3. False, if the distribution is bimodal.

4. False. The mean is displaced toward the tail on the left-hand side.

1. The purpose of central tendency is to determine the 4.

single value that identifies the center of the distribution
and best represents the entire set of scores. The three
standard measures of central tendency are the mode, the
median, and the mean.

2. The mean is the arithmetic average. It is computed by
adding all of the scores and then dividing by the
number of scores. Conceptually, the mean is obtained
by dividing the total (2X) equally among the number of

individuals (N or n). The mean can also be defined as S.

the balance point for the distribution. The distances
above the mean are exactly balanced by the distances
below the mean. Although the calculation is the same
for a population or a sample mean, a population mean
is identified by the symbol p, and a sample mean is
identified by M. In most situations with numerical
scores from an interval or a ratio scale, the mean is
the preferred measure of central tendency.

3. Changing any score in the distribution causes the mean
to be changed. When a constant value is added to (or
subtracted from) every score in a distribution, the same
constant value is added to (or subtracted from) the
mean. If every score is multiplied by a constant, the
mean is multiplied by the same constant.

SUMMARY

The median is the midpoint of a distribution of scores.
The median is the preferred measure of central
tendency when a distribution has a few extreme scores
that displace the value of the mean. The median also
is used for open-ended distributions and when there
are undetermined (infinite) scores that make it
impossible to compute a mean. Finally, the median

is the preferred measure of central tendency for

data from an ordinal scale.

The mode is the most frequently occurring score in a
distribution. It is easily located by finding the peak in a
frequency distribution graph. For data measured on a
nominal scale, the mode is the appropriate measure of
central tendency. It is possible for a distribution to have
more than one mode.

. For symmetrical distributions, the mean is equal to the

median. If there is only one mode, then it has the same
value, too.

. For skewed distributions, the mode is located toward

the side where the scores pile up, and the mean is
pulled toward the extreme scores in the tail. The median
is usually located between these two values.
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KEY TERMS

central tendency (73)
population mean () (75)
sample mean (M) (75)
weighted mean (77)
median (83)

mode (87) line graph (93)

bimodal (88) symmetrical distribution (95)
multimodal (88) skewed distribution (95)
major mode (88) positive skew (95)

minor mode (88) negative skew (96)

Book Companion Website: www.cengage.com/psychology/gravetter

You can find a tutorial quiz and other learning exercises for Chapter 3 on the book
companion website. The website also includes a workshop entitled Central Tendency
and Variability that reviews the basic concept of the mean and introduces the concept
of variability that is presented in Chapter 4.

aplia
Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.
CENGAGEbrain

Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific web-
site, Psychology CourseMate includes an integrated interactive eBook and other interac-
tive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to compute the Mean and 2.X for a set of scores.

Data Entry
1. Enter all of the scores in one column of the data editor, probably VAR000O1.


www.cengage.com/psychology/gravetter
www.aplia.com/statistics
www.cengagebrain.com
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Data Analysis

1. Click Analyze on the tool bar, select Descriptive Statistics, and click on
Descriptives.

2. Highlight the column label for the set of scores (VAR000O1) in the left box and
click the arrow to move it into the Variable box.

3. If you want 2X as well as the mean, click on the Options box, select Sum, then
click Continue.

4. Click OK.

SPSS Output

SPSS produces a summary table listing the number of scores (), the maximum and
minimum scores, the sum of the scores (if you selected this option), the mean, and the
standard deviation. Note: The standard deviation is a measure of variability that is
presented in Chapter 4.

FOCUS ON PROBLEM SOLVING

1. Although the three measures of central tendency appear to be very simple to
calculate, there is always a chance for errors. The most common sources of error
are listed next.

a. Many students find it very difficult to compute the mean for data presented in

X f a frequency distribution table. They tend to ignore the frequencies in the table

4 1 and simply average the score values listed in the X column. You must use the

3 4 frequencies and the scores! Remember that the number of scores is found by

2 3 N = 3, and the sum of all N scores is found by 2fX. For the distribution shown
1 2 in the margin, the mean is 2 _ 2.40.

b. The median is the midpoint of the distribution of scores, not the midpoint of
the scale of measurement. For a 100-point test, for example, many students
incorrectly assume that the median must be X = 50. To find the median, you
must have the complete set of individual scores. The median separates the
individuals into two equal-sized groups.

¢. The most common error with the mode is for students to report the highest
frequency in a distribution rather than the score with the highest frequency.
Remember that the purpose of central tendency is to find the most representative
score. For the distribution in the margin, the mode is X = 3, not f = 4.

DEMONSTRATION 3.1

COMPUTING MEASURES OF CENTRAL TENDENCY

For the following sample, find the mean, the median, and the mode. The scores are:

5, 6, 9, 11, 5, 11, 8, 14, 2, 11
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Compute the mean The calculation of the mean requires two pieces of information:
the sum of the scores, 2X; and the number of scores, n. For this sample, n = 10 and
SX=54+6+9+11+5+11+8+14+2+11=282

Therefore, the sample mean is

Find the median To find the median, first list the scores in order from smallest to
largest. With an even number of scores, the median is the average of the middle two
scores in the list. Listed in order, the scores are:

2, 5 5 6,8 9, 11, 11, 11, 14

The middle two scores are 8 and 9, and the median is 8.5.

Find the mode For this sample, X = 11 is the score that occurs most frequently.
The mode is X = 11.

PROBLEMS
1. What general purpose is served by a good measure of 6. Find the mean, median, and mode for the scores in the
central tendency? following frequency distribution table:
2. Why is it necessary to have more than one method for X f

measuring central tendency?

3. Find the mean, median, and mode for the following
sample of scores:

6, 2, 4, 1, 2, 2, 3, 4, 3, 2

4. Find the mean, median, and mode for the following
sample of scores:

8,7, 88,49 10,7,8,8,9, 8

LD AN N 0 O
N AW W N =

7. For the following sample

5. Find the mean, mediar'l, an rpode for 'the scores in the a. Assume that the scores are measurements of a
following frequency distribution table: continuous variable and find the median by locating
the precise midpoint of the distribution.
X f b. Assume that the scores are measurements of a
3 1 discrete variable and find the median.
7 4 Scores: 1, 2, 3, 3, 3, 4
6 2 8. A sample of n = 7 scores has a mean of M = 9. What
i i is the value of XX for this sample?
3 1 9. A population with a mean of w = 10 has 32X = 250.

How many scores are in the population?




10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A sample of n = 8 scores has a mean of M = 10. If
one new person with a score of X = 1 is added to the
sample, what is the value for the new mean?

A sample of n = 5 scores has a mean of M = 12. If
one person with a score of X = 8 is removed from the
sample, what is the value for the new mean?

A sample of n = 11 scores has a mean of M = 4. One
person with a score of X = 16 is added to the sample.
What is the value for the new sample mean?

A sample of n = 9 scores has a mean of M = 10. One
person with a score of X = 2 is removed from the
sample. What is the value for the new sample mean?

A population of N = 20 scores has a mean of . = 15.
One score in the population is changed from X = 8 to
X = 28. What is the value for the new population mean?

A sample of n = 7 scores has a mean of M = 9. One
score in the sample is changed from X = 19 to X = 5.
What is the value for the new sample mean?

A sample of n = 7 scores has a mean of M = 5. After
one new score is added to the sample, the new mean is
found to be M = 6. What is the value of the new
score? (Hint: Compare the values for %X before and
after the score was added.)

A population of N = 16 scores has a mean of p = 20.
After one score is removed from the population, the
new mean is found to be . = 19. What is the value
of the score that was removed? (Hint: Compare the
values for 2X before and after the score was removed.)

One sample has a mean of M = 4 and a second sample
has a mean of M = 8. The two samples are combined
into a single set of scores.
a. What is the mean for the combined set if both of
the original samples have n = 7 scores?
b. What is the mean for the combined set if the
first sample has n = 3 and the second sample has
n="177
c. What is the mean for the combined set if the
first sample has n = 7 and the second sample has
n =37

One sample has a mean of M = 5 and a second sample

has a mean of M = 10. The two samples are combined

into a single set of scores.

a. What is the mean for the combined set if both of
the original samples have n = 5 scores?

20.

21.

22,

23.

PROBLEMS 101

b. What is the mean for the combined set if the first
sample has n = 4 scores and the second sample has
n =067

c. What is the mean for the combined set if the first
sample has n = 6 scores and the second sample has
n =47

Explain why the mean is often not a good measure of
central tendency for a skewed distribution.

Identify the circumstances in which the median rather
than the mean is the preferred measure of central
tendency.

For each of the following situations, identify the

measure of central tendency (mean, median, or mode)

that would provide the best description of the average
score:

a. A news reporter interviewed people shopping in a
local mall and asked how much they spent on
summer vacations. Most people traveled locally and
reported modest amounts but one couple had flown
to Paris for a month and paid a small fortune.

b. A marketing researcher asked consumers to select
their favorite from a set of four designs for a new
product logo.

¢. A driving instructor recorded the number of orange
cones that each student ran over during the first
attempt at parallel parking.

One question on a student survey asks: In a typical
week, how many times do you eat at a fast-food
restaurant? The following frequency distribution
table summarizes the results for a sample of n = 20
students.

Number of
times per week f
5 or more 2
4 2
3 3
2 6
1 4
0 3

a. Find the mode for this distribution.

b. Find the median for the distribution.

c. Explain why you cannot compute the mean using
the data in the table.
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A nutritionist studying weight gain for college
freshmen obtains a sample of n = 20 first-year
students at the state college. Each student is weighed
on the first day of school and again on the last day of
the semester. The following scores measure the change
in weight, in pounds, for each student. A positive
score indicates a weight gain during the semester.

+5, +6, +3, +1, +8, +5, +4, +4, +3, -1
+2, +7, +1, +5, +8, 0, +4, +6, +5, +3

a. Sketch a histogram showing the distribution of
weight-change scores.

b. Calculate the mean weight-change score for this
sample.

c. Does there appear to be a consistent trend in weight
change during the semester?

Does it ever seem to you that the weather is nice
during the work week, but lousy on the weekend?
Cerveny and Balling (1998) have confirmed that this is
not your imagination—pollution accumulating during
the work week most likely spoils the weekend weather
for people on the Atlantic coast. Consider the
following hypothetical data showing the daily amount
of rainfall for 10 weeks during the summer.

Average Daily

Average Daily

Rainfall on Rainfall on

Weekdays Weekends

Week (Mon.Fri.) (Sat.-Sun.)
1 1.2 1.5
2 0.6 2.0
3 0.0 1.8
4 1.6 1.5
5 0.8 22
6 2.1 24
7 0.2 0.8
8 0.9 1.6
9 1.1 1.2
10 1.4 1.7

a. Calculate the average daily rainfall (the mean)

during the week, and the average daily rainfall for

weekends.

pattern in the data?

Improve your statistical skills with
ample practice exercises and detailed
explanations on every question. Purchase
www.aplia.com/statistics

. Based on the two means, does there appear to be a
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CHAPTER Variability

Tools You Will Need Preview

The following items are considered essential 4.1 Overview
background material for this chapter. If you
doubt your knowledge of any of these

4.2 The Range

items, you should review the appropriate 4.3 Standard Deviation and Variance
chapter or section before proceeding. for a Population
* Summation notation (Chapter 1) 4.4  Standard Deviation and Variance
¢ Central tendency (Chapter 3) for Samples

* Mean

e Median 4.5 More about Variance and

Standard Deviation
Summary

Focus on Problem Solving
Demonstration 4.1
Problems




Preview

Although measures of central tendency, such as the mean
and median, are handy ways to summarize large sets of
data, these measures do not tell the whole story.
Specifically, not everyone is average. Many people may
perform near average, but others demonstrate performance
that is far above (or below) average. In simple terms,
people are different.

The differences that exist from one person to another
are often called diversity. Researchers comparing cognitive
skills for younger adults and older adults typically find that
differences between people tend to increase as people age.
For example, Morse (1993) reviewed hundreds of research
studies published in Psychology and Aging and in the
Journal of Gerontology from 1986 to 1990, and found
increased diversity in older adults on measures of reaction
time, memory, and some measures of intelligence. One
possible explanation for the increased diversity is that
different people respond differently to the aging process; some
are essentially unchanged and others show a rapid decline. As
a result, the differences from one person to another are larger
for older people than for those who are younger.

It also is possible to measure differences in performance
for the same person. These differences provide a measure of

consistency. Often, large differences from trial to trial for
the same person are viewed as evidence of poor performance.
For example, the ability to consistently hit a target is

an indication of skilled performance in many sports,
whereas inconsistent performance indicates a lack of skill.
Researchers in the field of aging have also found that older
participants tend to have larger differences from trial to trial
than younger participants. That is, older people seem to

lose the ability to perform consistently on many tasks. For
example, in a study comparing older and younger women,
Wegesin and Stern (2004) found lower consistency for older
women on a recognition memory task.

The Problem: To study phenomena such as diversity
and consistency, it is necessary to devise a method to
measure and objectively describe the differences that
exist from one score to another within a distribution.

The Solution: A measure of variability provides an
objective description of the differences between the
scores in a distribution by measuring the degree to which
the scores are spread out or are clustered together.

OVERVIEW

104

DEFINITION

The term variability has much the same meaning in statistics as it has in everyday
language; to say that things are variable means that they are not all the same. In sta-
tistics, our goal is to measure the amount of variability for a particular set of scores,
a distribution. In simple terms, if the scores in a distribution are all the same, then
there is no variability. If there are small differences between scores, then the vari-
ability is small, and if there are large differences between scores, then the variability
is large.

Variability provides a quantitative measure of the differences between scores
in a distribution and describes the degree to which the scores are spread out or
clustered together.

Figure 4.1 shows two distributions of familiar values for the population of adult
males: Part (a) shows the distribution of men’s heights (in inches), and part (b) shows
the distribution of men’s weights (in pounds). Notice that the two distributions differ in
terms of central tendency. The mean height is 70 inches (5 feet, 10 inches) and the mean
weight is 170 pounds. In addition, notice that the distributions differ in terms of vari-
ability. For example, most heights are clustered close together, within 5 or 6 inches of
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FIGURE 4.1
Population distributions of adult heights and adult weights.

the mean. On the other hand, weights are spread over a much wider range. In the weight
distribution it is not unusual to find individuals who are located more than 30 pounds
away from the mean, and it would not be surprising to find two individuals whose
weights differ by more than 30 or 40 pounds. The purpose for measuring variability is
to obtain an objective measure of how the scores are spread out in a distribution. In gen-
eral, a good measure of variability serves two purposes:

1. Variability describes the distribution. Specifically, it tells whether the scores
are clustered close together or are spread out over a large distance. Usually,
variability is defined in terms of distance. It tells how much distance to expect
between one score and another, or how much distance to expect between an
individual score and the mean. For example, we know that the heights for most
adult males are clustered close together, within 5 or 6 inches of the average.
Although more extreme heights exist, they are relatively rare.

2. Variability measures how well an individual score (or group of scores) repre-
sents the entire distribution. This aspect of variability is very important for
inferential statistics, in which relatively small samples are used to answer
questions about populations. For example, suppose that you selected a sample
of one person to represent the entire population. Because most adult males
have heights that are within a few inches of the population average (the dis-
tances are small), there is a very good chance that you would select someone
whose height is within 6 inches of the population mean. On the other hand, the
scores are much more spread out (greater distances) in the distribution of
weights. In this case, you probably would not obtain someone whose weight
was within 6 pounds of the population mean. Thus, variability provides infor-
mation about how much error to expect if you are using a sample to represent
a population.

In this chapter, we consider three different measures of variability: the range, stan-
dard deviation, and the variance. Of these three, the standard deviation and the related
measure of variance are by far the most important.
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Continuous and discrete
variables were discussed in
Chapter 1 on pages 21-22.

THE RANGE

The range is the distance covered by the scores in a distribution, from the smallest score
to the largest score. When the scores are measurements of a continuous variable, the
range can be defined as the difference between the upper real limit (URL) for the largest
score (X,.x) and the lower real limit (LRL) for the smallest score (X in)-

range = URL for X,,.x — LRL for X,;,

If the scores have values from 1 to 5, for example, the range is 5.5 — 0.5 = 5 points.
When the scores are whole numbers, the range is also a measure of the number of meas-
urement categories. If every individual is classified as either 1, 2, 3, 4, or 5, then there
are five measurement categories and the range is 5 points.

Defining the range as the number of measurement categories also works for dis-
crete variables that are measured with numerical scores. For example, if you are meas-
uring the number of children in a family and the data produce values from O to 4, then
there are five measurement categories (0, 1, 2, 3, and 4) and the range is 5 points. By
this definition, when the scores are all whole numbers, the range can be obtained by

Xmax - Xmin + L

A commonly used alternative definition of the range simply measures the differ-
ence between the largest score (X,.x) and the smallest score (X;,,;,), without any refer-
ence to real limits.

range = Xmax - Xmax

By this definition, scores having values from 1 to 5 cover a range of only 4 points. Many
computer programs, such as SPSS, use this definition. For discrete variables, which do not
have real limits, this definition is often considered more appropriate. Also, this definition
works well for variables with precisely defined upper and lower boundaries. For example, if
you are measuring proportions of an object, like pieces of a pizza, you can obtain values such
as %, %, %, %, and so on. Expressed as decimal values, the proportions range from 0 to 1. You
can never have a value less than 0 (none of the pizza) and you can never have a value greater
than 1 (all of the pizza). Thus, the complete set of proportions is bounded by 0 at one end and
by 1 at the other. As a result, the proportions cover a range of 1 point.

Using either definition, the range is probably the most obvious way to describe
how spread out the scores are—simply find the distance between the maximum and the
minimum scores. The problem with using the range as a measure of variability is that
it is completely determined by the two extreme values and ignores the other scores in
the distribution. Thus, a distribution with one unusually large (or small) score has a
large range even if the other scores are all clustered close together.

Because the range does not consider all of the scores in the distribution, it often does
not give an accurate description of the variability for the entire distribution. For this rea-
son, the range is considered to be a crude and unreliable measure of variability. Therefore,
in most situations, it does not matter which definition you use to determine the range.

STANDARD DEVIATION AND VARIANCE
FOR A POPULATION

The standard deviation is the most commonly used and the most important measure of
variability. Standard deviation uses the mean of the distribution as a reference point and
measures variability by considering the distance between each score and the mean.
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DEFINITION

A deviation score is often
represented by a lowercase

letter x.

STEP 2

EXAMPLE 4.1
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In simple terms, the standard deviation provides a measure of the standard, or
average, distance from the mean, and describes whether the scores are clustered closely
around the mean or are widely scattered. The fundamental definition of the standard
deviation is the same for both samples and populations, but the calculations differ
slightly. We look first at the standard deviation as it is computed for a population, and
then turn our attention to samples in Section 4.4.

Although the concept of standard deviation is straightforward, the actual equations
appear complex. Therefore, we begin by looking at the logic that leads to these equa-
tions. If you remember that our goal is to measure the standard, or typical, distance from
the mean, then this logic and the equations that follow should be easier to remember.

The first step in finding the standard distance from the mean is to determine the devia-
tion, or distance from the mean, for each individual score. By definition, the deviation
for each score is the difference between the score and the mean.

Deviation is distance from the mean:

deviation score = X —

For a distribution of scores with w = 50, if your score is X = 53, then your
deviation score 18

X-w=53-50=3
If your score is X = 45, then your deviation score is
X-—wn=45-50=-5

Notice that there are two parts to a deviation score: the sign (+ or —) and the num-
ber. The sign tells the direction from the mean—that is, whether the score is located
above (+) or below (—) the mean. The number gives the actual distance from the mean.
For example, a deviation score of —6 corresponds to a score that is below the mean by
a distance of 6 points.

Because our goal is to compute a measure of the standard distance from the mean, the
obvious next step is to calculate the mean of the deviation scores. To compute this
mean, you first add up the deviation scores and then divide by N. This process is
demonstrated in the following example.

We start with the following set of N = 4 scores. These scores add up to 2X = 12, so
the mean is p. = 14—2 = 3. For each score, we have computed the deviation.

X X—w

8 +5

1 -2

3 0

0 -3
0=SX-p)

Note that the deviation scores add up to zero. This should not be surprising if you
remember that the mean serves as a balance point for the distribution. The total of the
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STEP 3

DEFINITION

STEP 4

DEFINITION

distances above the mean is exactly equal to the total of the distances below the mean
(see page 76). Thus, the total for the positive deviations is exactly equal to the total for
the negative deviations, and the complete set of deviations always adds up to zero.

Because the sum of the deviations is always zero, the mean of the deviations is also
zero and is of no value as a measure of variability. The mean of the deviations is zero
if the scores are closely clustered and it is zero if the scores are widely scattered. (You
should note, however, that the constant value of zero can be useful in other ways.
Whenever you are working with deviation scores, you can check your calculations by
making sure that the deviation scores add up to zero.)

The average of the deviation scores does not work as a measure of variability because
it is always zero. Clearly, this problem results from the positive and negative values
canceling each other out. The solution is to get rid of the signs (+ and —). The standard
procedure for accomplishing this is to square each deviation score. Using the squared
values, you then compute the mean squared deviation, which is called variance.

Population variance equals the mean squared deviation. Variance is the aver-
age squared distance from the mean.

Note that the process of squaring deviation scores does more than simply get rid of plus
and minus signs. It results in a measure of variability based on squared distances. Although
variance is valuable for some of the inferential statistical methods covered later, the concept
of squared distance is not an intuitive or easy to understand descriptive measure. For exam-
ple, it is not particularly useful to know that the squared distance from New York City to
Boston is 26,244 miles squared. The squared value becomes meaningful, however, if you
take the square root. Therefore, we continue the process with one more step.

Remember that our goal is to compute a measure of the standard distance from the
mean. Variance, which measures the average squared distance from the mean, is not
exactly what we want. The final step simply takes the square root of the variance to
obtain the standard deviation, which measures the standard distance from the mean.

Standard deviation is the square root of the variance and provides a measure
of the standard, or average, distance from the mean.

Standard deviation =+/ variance

Figure 4.2 shows the overall process of computing variance and standard deviation.
Remember that our goal is to measure variability by finding the standard distance from
the mean. However, we cannot simply calculate the average of the distances because
this value will always be zero. Therefore, we begin by squaring each distance, then we
find the average of the squared distances, and finally we take the square root to obtain
a measure of the standard distance. Technically, the standard deviation is the square
root of the average squared deviation. Conceptually, however, the standard deviation
provides a measure of the average distance from the mean.

Because the standard deviation and variance are defined in terms of distance from the
mean, these measures of variability are used only with numerical scores that are obtained
from measurements on an interval or a ratio scale. Recall from Chapter 1 (p. 24) that these
two scales are the only ones that provide information about distance; nominal and
ordinal scales do not. Also, recall from Chapter 3 (p. 92) that it is inappropriate to
compute a mean for ordinal data and impossible to compute a mean for nominal
data. Because the mean is a critical component in the calculation of standard deviation
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FIGURE 4.2

The calculation of variance
and standard deviation.

DEAD END
This value is always 0

<
«<

EXAMPLE 4.2

and variance, the same restrictions that apply to the mean also apply to these two meas-
ures of variability. Specifically, the mean, the standard deviation, and the variance should
be used only with numerical scores from interval or ordinal scales of measurement.

Although we still have not presented any formulas for variance or standard devia-
tion, you should be able to compute these two statistical values from their definitions.
The following example demonstrates this process.

We will calculate the variance and standard deviation for the following population of
N = 5 scores:

1, 9, 5 8 7

Remember that the purpose of standard deviation is to measure the standard
distance from the mean, so we begin by computing the population mean. These five
scores add up to 2X = 30 so the mean is . = 35—0 = 6. Next, we find the deviation,
(distance from the mean) for each score and then square the deviations. Using the
population mean p. = 6, these calculations are shown in the following table.

Squared

Score Deviation Deviation

X X-n (X - w)?

1 -5 25

9 3 9

5 -1 1

8 2 4

7 1 1

40 = the sum of the squared deviations
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ANSWERS

For this set of N = 5 scores, the squared deviations add up to 40. The mean of the
squared deviations, the variance, is % = 8, and the standard deviation is V8 = 2.83.

You should note that a standard deviation of 2.83 is a sensible answer for this dis-
tribution. The five scores in the population are shown in a histogram in Figure 4.3 so
that you can see the distances more clearly. Note that the scores closest to the mean are
only 1 point away. Also, the score farthest from the mean is 5 points away. For this dis-
tribution, the largest distance from the mean is 5 points and the smallest distance is
1 point. Thus, the standard distance should be somewhere between 1 and 5. By looking
at a distribution in this way, you should be able to make a rough estimate of the stan-
dard deviation. In this case, the standard deviation should be between 1 and 5, proba-
bly around 3 points. The value we calculated for the standard deviation is in excellent
agreement with this estimate.

Making a quick estimate of the standard deviation can help you avoid errors in
calculation. For example, if you calculated the standard deviation for the scores in
Figure 4.3 and obtained a value of 12, you should realize immediately that you have
made an error. (If the biggest deviation is only 5 points, then it is impossible for the
standard deviation to be 12.)

1. Briefly explain what is measured by the standard deviation and what is measured
by the variance.

1

The deviation scores are calculated for each individual in a population of N = 4.
The first three individuals have deviations of +2, +4, and —1. What is the devia-
tion for the fourth individual?

3. What is the standard deviation for the following set of N = 5 scores: 10, 10, 10,
10, and 10? (Note: You should be able to answer this question directly from the
definition of standard deviation, without doing any calculations.)

4. Calculate the variance for the following population of N = 5 scores: 4, 0, 7, 1, 3.

1. Standard deviation measures the standard distance from the mean and variance measures the
average squared distance from the mean.

2. The deviation scores for the entire set must add up to zero. The first four deviations add to
+5 so the fifth deviation must be -5.

3. Because there is no variability (the scores are all the same), the standard deviation is zero.

4. For these scores, the sum of the squared deviations is 30 and the variance is 30/5 = 6.

FORMULAS FOR POPULATION
VARIANCE AND STANDARD
DEVIATION

The concepts of standard deviation and variance are the same for both samples and
populations. However, the details of the calculations differ slightly, depending on
whether you have data from a sample or from a complete population. We first consider
the formulas for populations and then look at samples in Section 4.4.
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A frequency distribution
histogram for a population of
N = 5 scores. The mean for
this population is p = 6. The
smallest distance from the
mean is 1 point, and the
largest distance is 5 points.
The standard distance (or
standard deviation) should be
between 1 and 5 points.
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The sum of squared deviations (SS) Recall that variance is defined as the mean of
the squared deviations. This mean is computed in exactly the same way you compute
any mean: First find the sum, and then divide by the number of scores.

sum of squared deviations

variance = mean squared deviation =
number of scores

The value in the numerator of this equation, the sum of the squared deviations, is
a basic component of variability, and we focus on it. To simplify things, it is identified
by the notation SS (for sum of squared deviations), and it generally is referred to as the
sum of squares.

SS, or sum of squares, is the sum of the squared deviation scores.

You need to know two formulas to compute SS. These formulas are algebraically
equivalent (they always produce the same answer), but they look different and are used
in different situations.

The first of these formulas is called the definitional formula because the symbols
in the formula literally define the process of adding up the squared deviations:

Definitional formula: S§ = 3(X — w)? 4.1)

To find the sum of the squared deviations, the formula instructs you to perform the
following sequence of calculations:
1. Find each deviation score (X — ).
2. Square each deviation score (X — w>.
3. Add the squared deviations.

The result is SS, the sum of the squared deviations. The following example demon-
strates using this formula.

We compute SS for the following set of N = 4 scores. These scores have a sum of

SX = 8, so the mean is w = & = 2. The following table shows the deviation and the

squared deviation for each score. The sum of the squared deviation is S§ = 22.



112

CHAPTER 4 VARIABILITY

EXAMPLE 4.4

Squared
Score Deviation Deviation
X X—p X-w?
1 -1 1 3X =38
0 -2 4 w =
6 +4 16
1 -1 1
22 =3(X - p)?

Although the definitional formula is the most direct method for computing SS,
it can be awkward to use. In particular, when the mean is not a whole number, the
deviations all contain decimals or fractions, and the calculations become difficult. In
addition, calculations with decimal values introduce the opportunity for rounding error,
which can make the result less accurate. For these reasons, an alternative formula has
been developed for computing SS. The alternative, known as the computational
formula, performs calculations with the scores (not the deviations) and therefore
minimizes the complications of decimals and fractions.

cX)*

N (4.2)

computational formula: S§ = 3X* —

The first part of this formula directs you to square each score and then add the

squared values, 3.X2. In the second part of the formula, you find the sum of the scores,

3X, then square this total and divide the result by N. Finally, subtract the second part

from the first. The use of this formula is shown in Example 4.4 with the same scores
that we used to demonstrate the definitional formula.

The computational formula can be used to calculate SS for the same set of N = 4
scores we used in Example 4.3. Note that the formula requires the calculation of
two sums: first, compute 2.X, and then square each score and compute 3X?. These
calculations are shown in the following table. The two sums are used in the formula
to compute SS.

2

X 1% ss = sx? - GX°

N
1 1 5
o0 ewew

6 36
! : =38—%
EX:8 2X2:38 =38 — 16
=22

Note that the two formulas produce exactly the same value for SS. Although the
formulas look different, they are in fact equivalent. The definitional formula provides
the most direct representation of the concept of SS; however, this formula can be awk-
ward to use, especially if the mean includes a fraction or decimal value. If you have a
small group of scores and the mean is a whole number, then the definitional formula is
fine; otherwise the computational formula is usually easier to use.



FINAL FORMULAS
AND NOTATION

In the same way that sum of
squares, or SS, is used to refer to
the sum of squared deviations,
the term mean square, or MS, is
often used to refer to variance,
which is the mean squared
deviation.
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With the definition and calculation of SS behind you, the equations for variance and
standard deviation become relatively simple. Remember that variance is defined as the
mean squared deviation. The mean is the sum of the squared deviations divided by N,
so the equation for the population variance is

. SS
variance = —
N

Standard deviation is the square root of variance, so the equation for the popula-
tion standard deviation is

standard deviation = /S—Af

There is one final bit of notation before we work completely through an example
computing SS, variance, and standard deviation. Like the mean (), variance and stan-
dard deviation are parameters of a population and are identified by Greek letters. To
identify the standard deviation, we use the Greek letter sigma (the Greek letter s, stand-
ing for standard deviation). The capital letter sigma (%) has been used already, so we
now use the lowercase sigma, o, as the symbol for the population standard deviation.
To emphasize the relationship between standard deviation and variance, we use o~ as
the symbol for population variance (standard deviation is the square root of the vari-

ance). Thus,

opulation standard deviation = o = \/; EN 4.3)
pop N

> _ 5SS

population variance = o~ = N (4.4)

Earlier, in Examples 4.3 and 4.4, we computed the sum of squared deviations for

a simple population of N = 4 scores (1, 0, 6, 1) and obtained SS = 22. For this popu-
lation, the variance is

and the standard deviation is 0 =v5.50 =2.345

m 1. Find the sum of the squared deviations, SS, for each of the following populations.

Note that the definitional formula works well for one population but the computa-
tional formula is better for the other.

Population1: 3, 1, 5, 1
Population 2: 6, 4, 2, 0, 9, 3

il s

2. a. Sketch a histogram showing the frequency distribution for the following popu-
lation of N = 6 scores: 12, 0, 1, 7, 4, 6. Locate the mean in your sketch, and
estimate the value of the standard deviation.

b. Calculate SS, variance, and the standard deviation for these scores. How well
does your estimate compare with the actual standard deviation?
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ANSWERS

1. For population 1, the mean is not a whole number (M = 2.5) and the computational formula
is better and produces SS = 11. The mean is a whole number (M = 4) and definitional
formula works well for population 2, which has SS = 50.

2. a. Your sketch should show a mean of w = 5. The scores closest to the mean are X = 4 and
X = 6, both of which are only 1 point away. The score farthest from the mean is X = 12,
which is 7 points away. The standard deviation should have a value between 1 and 7,
probably around 4 points.

b. For these scores, SS = 96, the variance is 96/6 = 16, and the standard deviation is o = 4.

A sample statistic is said to
be biased if, on average, it
consistently overestimates
or underestimates the
corresponding population

par.

ameter.

STANDARD DEVIATION AND VARIANCE FOR SAMPLES

The goal of inferential statistics is to use the limited information from samples to draw
general conclusions about populations. The basic assumption of this process is that
samples should be representative of the populations from which they come. This
assumption poses a special problem for variability because samples consistently tend to
be less variable than their populations. An example of this general tendency is shown in
Figure 4.4. Notice that a few extreme scores in the population tend to make the popula-
tion variability relatively large. However, these extreme values are unlikely to be
obtained when you are selecting a sample, which means that the sample variability is
relatively small. The fact that a sample tends to be less variable than its population
means that sample variability gives a biased estimate of population variability. This bias
is in the direction of underestimating the population value rather than being right on the
mark. (The concept of a biased statistic is discussed in more detail in Section 4.5.)
Fortunately, the bias in sample variability is consistent and predictable, which
means it can be corrected. For example, if the speedometer in your car consistently
shows speeds that are 5 mph slower than you are actually going, it does not mean that

FIGURE 4.4

The population of adult
heights forms a normal
distribution. If you select a
sample from this population,
you are most likely to obtain
individuals who are near
average in height. As a
result, the scores in the
sample are less variable
(spread out) than the

scores in the population.

Population
variability

Population
distribution

| Sample




Remember, sample variability
tends to underestimate
population variability unless
some correction is made.
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the speedometer is useless. It simply means that you must make an adjustment to the
speedometer reading to get an accurate speed. In the same way, we make an adjustment
in the calculation of sample variance. The purpose of the adjustment is to make the
resulting value for sample variance an accurate and unbiased representative of the pop-
ulation variance.

The calculations of variance and standard deviation for a sample follow the same
steps that were used to find population variance and standard deviation. Except for
minor changes in notation, the first three steps in this process are exactly the same for
a sample as they were for a population. That is, calculating the sum of the squared
deviations, SS, is the same for a sample as it is for a population. The changes in nota-
tion involve using M for the sample mean instead of ., and using n (instead of N) for
the number of scores. Thus, to find the SS for a sample

1. Find the deviation from the mean for each score: deviation = X — M
2. Square each deviation: squared deviation = (X — M)*
3. Add the squared deviations: SS = 3(X — M)*

These three steps can be summarized in a definitional formula for SS:
Definitional formula: SS = 3(X — M)? 4.5)

The value of SS also can be obtained using a computational formula. Except for one
minor difference in notation (using n in place of N), the computational formula for SS
is the same for a sample as it was for a population (see Equation 4.2). Using sample
notation, this formula is:

Computational formula: S§ = SX? —

2
GX) (4.6)
n

Again, calculating SS for a sample is exactly the same as for a population, except
for minor changes in notation. After you compute SS, however, it becomes critical to
differentiate between samples and populations. To correct for the bias in sample vari-
ability, it is necessary to make an adjustment in the formulas for sample variance and
standard deviation. With this in mind, sample variance (identified by the symbol s?) is
defined as

. 2 SS
sample variance = s~ =

4.7
p— 4.7)

Sample standard deviation (identified by the symbol s) is simply the square root of
the variance.

sample standard deviation = s = \Vs? = % (4.8)
Notice that the sample formulas divide by n — 1, unlike the population formulas,
which divide by N (see Equations 4.3 and 4.4). This is the adjustment that is necessary
to correct for the bias in sample variability. The effect of the adjustment is to increase
the value that you obtain. Dividing by a smaller number (n — 1 instead of n) produces
a larger result and makes sample variance an accurate and unbiased estimator of popu-
lation variance. The following example demonstrates the calculation of variance and
standard deviation for a sample.
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We have selected a sample of n = 7 scores from a population. The scores are 1, 6, 4,
3, 8,7, 6. The frequency distribution histogram for this sample is shown in Figure 4.5.
Before we begin any calculations, you should be able to look at the sample distribution
and make a preliminary estimate of the outcome. Remember that standard deviation
measures the standard distance from the mean. For this sample, the mean is M = 375 = 5.
The scores closest to the mean are X = 4 and X = 6, both of which are exactly 1 point
away. The score farthest from the mean is X = 1, which is 4 points away. With the
smallest distance from the mean equal to 1 and the largest distance equal to 4, we
should obtain a standard distance somewhere between 1 and 4, probably around 2.5.

We begin the calculations by finding the value of SS for this sample. Because
there are only a few scores and the mean is a whole number (M = 5), the definitional
formula is easy to use. The scores, the deviations, and the squared deviations are
shown in the following table.

Deviation
X -m)y

Deviation
X-M

Squared
Score X

16

NN WA —
|
)

A O A~ = —

1
36 =SS = (X - M)?

The sum of squared deviations for this sample is SS = 36. Continuing the
calculations,

. 2 _ _
sample variance =s" =——=——-=6

Finally, the standard deviation is

s=vls? =\J6=2.45

Note that the value we obtained is in excellent agreement with our preliminary
prediction (see Figure 4.5).

FIGURE 4.5

The frequency distribution
histogram for a sample of

n = 7 scores. The sample
mean is M = 5. The smallest
distance from the mean is

1 point, and the largest
distance from the mean is

4 points. The standard
distance (standard deviation)
should be between 1 and 4
points, or about 2.5.

N

Frequency

p—




SAMPLE VARIABILITY AND
DEGREES OF FREEDOM

EXAMPLE 4.6
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Remember that the formulas for sample variance and standard deviation were con-
structed so that the sample variability would provide a good estimate of population
variability. For this reason, the sample variance is often called estimated population
variance, and the sample standard deviation is called estimated population standard
deviation. When you have only a sample to work with, the variance and standard devi-
ation for the sample provide the best possible estimates of the population variability.

Although the concept of a deviation score and the calculation of SS are almost exactly
the same for samples and populations, the minor differences in notation are really very
important. Specifically, with a population, you find the deviation for each score by
measuring its distance from the population mean, . With a sample, on the other hand,
the value of p is unknown and you must measure distances from the sample mean.
Because the value of the sample mean varies from one sample to another, you must first
compute the sample mean before you can begin to compute deviations. However,
calculating the value of M places a restriction on the variability of the scores in the
sample. This restriction is demonstrated in the following example.

Suppose we select a sample of n = 3 scores and compute a mean of M = 5. The first
two scores in the sample have no restrictions; they are independent of each other and
they can have any values. For this demonstration, we assume that we obtained X = 2
for the first score and X = 9 for the second. At this point, however, the third score in
the sample is restricted.

A sample of n = 3 scores with a mean of M = 5.

X
2
9

— < What is the third score?

For this example, the third score must be X = 4. The reason that the third score is
restricted to X = 4 is that the entire sample of n = 3 scores has a mean of M = 5. For
3 scores to have a mean of 5, the scores must have a total of XX = 15. Because the
first two scores add up to 11 (9 + 2), the third score must be X = 4.

In Example 4.6, the first two out of three scores were free to have any values, but
the final score was dependent on the values chosen for the first two. In general, with a
sample of n scores, the first n — 1 scores are free to vary, but the final score is restricted.
As a result, the sample is said to have n — 1 degrees of freedom.

For a sample of n scores, the degrees of freedom, or df, for the sample vari-
ance are defined as df = n — 1. The degrees of freedom determine the number
of scores in the sample that are independent and free to vary.

The n — 1 degrees of freedom for a sample is the same n — 1 that is used in the for-
mulas for sample variance and standard deviation. Remember that variance is defined
as the mean squared deviation. As always, this mean is computed by finding the sum
and dividing by the number of scores:

sum

mean = ————
number
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LEARNING CHECK

ANSWERS

To calculate sample variance (mean squared deviation), we find the sum of the
squared deviations (SS) and divide by the number of scores that are free to vary. This
number is n — 1 = df. Thus, the formula for sample variance is

§2 — _sum of squared deviations _ SS _ SS

number of scores free to vary  df n—1

Later in this book, we use the concept of degrees of freedom in other situations.
For now, remember that knowing the sample mean places a restriction on sample vari-
ability. Only n — 1 of the scores are free to vary; df = n— 1.

1. a. Sketch a histogram showing the frequency distribution for the following sample
of n = 5 scores: 3, 1, 9, 4, 3. Locate the mean in your sketch, and estimate the
value of the sample standard deviation.

b. Calculate SS, variance, and standard deviation for this sample. How well does
your estimate from part a compare with the real standard deviation?

2. For the following set of scores: 1, 5,7, 3, 4

a. Assume that this is a population of N = 5 scores and compute SS and variance
for the population.

b. Assume that this is a sample of n = 5 scores and compute SS and variance for
the sample.

3. Explain why the formula for sample variance divides SS by n — 1 instead of
dividing by n.

1. a. Your graph should show a sample mean of M = 4. The score farthest from the mean is
X = 9 (which is 5 points away), and the closest score is X = 4 (which is 0 points away).
You should estimate the standard deviation to be between 1 and 5 points, probably
around 3 points.
b. For this sample, SS = 36; the sample variance is 36/4 = 9; the sample standard devia-

tionis V9 = 3.

2. a. SS = 20 and the population variance is 20/5 = 4.
b. SS = 20 and the sample variance is 20/4 = 5.
3. Without some correction, sample variability consistently underestimates the population

variability. Dividing by a smaller number (n — 1 instead of n) increases the value of the
sample variance and makes it an unbiased estimate of the population variance.

PRESENTING THE MEAN
AND STANDARD DEVIATION
IN A FREQUENCY
DISTRIBUTION GRAPH

MORE ABOUT VARIANCE AND STANDARD DEVIATION

In frequency distribution graphs, we identify the position of the mean by drawing a ver-
tical line and labeling it with w or M. Because the standard deviation measures distance
from the mean, it is represented by a line or an arrow drawn from the mean outward for
a distance equal to the standard deviation and labeled with a o or an s. Figure 4.6(a)
shows an example of a population distribution with a mean of p = 80 and a standard
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FIGURE 4.6

Showing means and standard deviations in frequency
distribution graphs. (a) A population distribution with a
mean of u = 80 and a standard deviation of o = 8. (b) A
sample with a mean of M = 16 and a standard deviation

of s = 2.

u =280

SAMPLE VARIANCE AS AN
UNBIASED STATISTIC

DEFINITIONS

deviation of o = 8, and Figure 4.6(b) shows the frequency distribution for a sample
with a mean of M = 16 and a standard deviation of s = 2. For rough sketches, you can
identify the mean with a vertical line in the middle of the distribution. The standard
deviation line should extend approximately halfway from the mean to the most extreme
score. [Note: In Figure 4.6(a) we show the standard deviation as a line to the right of
the mean. You should realize that we could have drawn the line pointing to the left, or
we could have drawn two lines (or arrows), with one pointing to the right and one point-
ing to the left, as in Figure 4.6(b). In each case, the goal is to show the standard
distance from the mean.]

Earlier we noted that sample variability tends to underestimate the variability in the cor-
responding population. To correct for this problem we adjusted the formula for sample
variance by dividing by n — 1 instead of dividing by n. The result of the adjustment is
that sample variance provides a much more accurate representation of the population
variance. Specifically, dividing by n — 1 produces a sample variance that provides an
unbiased estimate of the corresponding population variance. This does not mean that
each individual sample variance is exactly equal to its population variance. In fact,
some sample variances overestimate the population value and some underestimate it.
However, the average of all the sample variances produces an accurate estimate of the
population variance. This is the idea behind the concept of an unbiased statistic.

A sample statistic is unbiased if the average value of the statistic is equal to the
population parameter. (The average value of the statistic is obtained from all the
possible samples for a specific sample size, n.)

A sample statistic is biased if the average value of the statistic either underesti-
mates or overestimates the corresponding population parameter.

The following example demonstrates the concept of biased and unbiased statistics.
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EXAMPLE 4.7

We have structured this
example to mimic “sampling
with replacement,” which is
covered in Chapter 6.

TABLE 4.1

The set of all the possible
samples for n = 2 selected from
the population described in
Example 4.7. The mean is
computed for each sample, and
the variance is computed two
different ways: (1) dividing

by n, which is incorrect and
produces a biased statistic; and
(2) dividing by n — 1, which

is correct and produces an
unbiased statistic.

We begin with a population that consists of exactly N = 6 scores: 0, 0, 3, 3,9, 9.
With a few calculations you should be able to verify that this population has a mean
of w = 4 and a variance of o> = 14.

Next, we select samples of n = 2 scores from this population. In fact, we obtain
every single possible sample with n = 2. The complete set of samples is listed in
Table 4.1. Notice that the samples are listed systematically to ensure that every
possible sample is included. We begin by listing all the samples that have X = 0 as
the first score, then all the samples with X = 3 as the first score, and so on. Notice
that the table shows a total of 9 samples.

Finally, we have computed the mean and the variance for each sample. Note that
the sample variance has been computed two different ways. First, we examine what
happens if there is no correction for bias and the sample variance is computed by
simply dividing SS by n. Second, we examine the correct sample variances for which
SS is divided by n — 1 to produce an unbiased measure of variance. You should verify
our calculations by computing one or two of the values for yourself. The complete set
of sample means and sample variances is presented in Table 4.1.

First, consider the column of biased sample variances, which were calculated by
dividing by n. These 9 sample variances add up to a total of 63, which produces an
average value of % = 7. The original population variance, however, is 0> = 14. Note
that the average of the sample variances is not equal to the population variance. If the
sample variance is computed by dividing by 7, the resulting values do not produce an
accurate estimate of the population variance. On average, these sample variances
underestimate the population variance and, therefore, are biased statistics.

Next, consider the column of sample variances that are computed using n — 1.
Although the population has a variance of o> = 14, you should notice that none of
the samples has a variance exactly equal to 14. However, if you consider the
complete set of sample variances, you will find that the 9 values add up to a total of
126, which produces an average value of ]% = 14. Thus, the average of the sample
variances is exactly equal to the original population variance. On average, the sample
variance (computed using n — 1) produces an accurate, unbiased estimate of the
population variance.

Finally, direct your attention to the column of sample means. For this example,
the original population has a mean of w = 4. Although none of the samples has a

Sample Statistics
Biased Unbiased
First Second Mean Variance Variance
Sample Score Score M (Using n) (Usingn-1)

1 0 0 0.00 0.00 0.00
2 0 3 1.50 2.25 4.50
3 0 9 4.50 20.25 40.50
4 3 0 1.50 2.25 4.50
5 3 3 3.00 0.00 0.00
6 3 9 6.00 9.00 18.00
7 9 0 4.50 20.25 40.50
8 9 3 6.00 9.00 18.00
9 9 9 9.00 0.00 0.00
Totals 36.00 63.00 126.00
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mean exactly equal to 4, if you consider the complete set of sample means, you will
find that the 9 sample means add up to a total of 36, so the average of the sample
means is % = 4. Note that the average of the sample means is exactly equal to the
population mean. Again, this is what is meant by the concept of an unbiased statistic.
On average, the sample values provide an accurate representation of the population.
In this example, the average of the 9 sample means is exactly equal to the population
mean.

In summary, both the sample mean and the sample variance (using n — 1) are
examples of unbiased statistics. This fact makes the sample mean and sample
variance extremely valuable for use as inferential statistics. Although no individual
sample is likely to have a mean and variance exactly equal to the population values,
both the sample mean and the sample variance, on average, do provide accurate
estimates of the corresponding population values.

Because standard deviation requires extensive calculations, there is a tendency to get
lost in the arithmetic and forget what standard deviation is and why it is important.
Standard deviation is primarily a descriptive measure; it describes how variable, or how
spread out, the scores are in a distribution. Behavioral scientists must deal with the vari-
ability that comes from studying people and animals. People are not all the same; they
have different attitudes, opinions, talents, IQs, and personalities. Although we can cal-
culate the average value for any of these variables, it is equally important to describe
the variability. Standard deviation describes variability by measuring distance from the
mean. In any distribution, some individuals are close to the mean, and others are rela-
tively far from the mean. Standard deviation provides a measure of the typical, or stan-
dard, distance from the mean.

Describing an entire distribution Rather than listing all of the individual scores in
a distribution, research reports typically summarize the data by reporting only the mean
and the standard deviation. When you are given these two descriptive statistics, how-
ever, you should be able to visualize the entire set of data. For example, consider a sam-
ple with a mean of M = 36 and a standard deviation of s = 4. Although there are several
different ways to picture the data, one simple technique is to imagine (or sketch) a his-
togram in which each score is represented by a box in the graph. For this sample, the
data can be pictured as a pile of boxes (scores) with the center of the pile located at a
value of M = 36. The individual scores, or boxes, are scattered on both sides of the
mean with some of the boxes relatively close to the mean and some farther away. As a
rule of thumb, roughly 70% of the scores in a distribution are located within a distance
of one standard deviation from the mean, and almost all of the scores (roughly 95%)
are within two standard deviations of the mean. In this example, the standard distance
from the mean is s = 4 points, so your image should have most of the boxes within 4
points of the mean, and nearly all of the boxes within 8 points. One possibility for the
resulting image is shown in Figure 4.7.

Describing the location of individual scores Notice that Figure 4.7 not only shows
the mean and the standard deviation, but also uses these two values to reconstruct the
underlying scale of measurement (the X values along the horizontal line). The scale of
measurement helps to complete the picture of the entire distribution and relate each
individual score to the rest of the group. In this example, you should realize that a score
of X = 34 is located near the center of the distribution, only slightly below the mean.
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FIGURE 4.7

A sample of n = 20 scores with a mean of M = 36 and a standard deviation of s = 4.
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On the other hand, a score of X = 45 is an extremely high score, located far out in the
right-hand tail of the distribution.

Notice that the relative position of a score depends in part on the size of the stan-
dard deviation. In Figure 4.6 (p. 119), for example, we show a population distribution
with a mean of . = 80 and a standard deviation of ¢ = 8, and a sample distribution
with a mean of M = 16 and a standard deviation of s = 2. In the population distribu-
tion, a score that is 4 points above the mean is slightly above average but is certainly
not an extreme value. In the sample distribution, however, a score that is 4 points above
the mean is an extremely high score. In each case, the relative position of the score
depends on the size of the standard deviation. For the population, a deviation of 4 points
from the mean is relatively small, corresponding to only half of the standard deviation.
For the sample, on the other hand, a 4-point deviation is very large, twice the size of
the standard deviation.

The general point of this discussion is that the mean and standard deviation are not
simply abstract concepts or mathematical equations. Instead, these two values should
be concrete and meaningful, especially in the context of a set of scores. The mean and
standard deviation are central concepts for most of the statistics that are presented in the
following chapters. A good understanding of these two statistics will help you with the
more complex procedures that follow. (Box 4.1.)

Occasionally a set of scores is transformed by adding a constant to each score or by mul-
tiplying each score by a constant value. This happens, for example, when exposure to a
treatment adds a fixed amount to each participant’s score or when you want to change the
unit of measurement (to convert from minutes to seconds, multiply each score by 60).
What happens to the standard deviation when the scores are transformed in this manner?

The easiest way to determine the effect of a transformation is to remember that the
standard deviation is a measure of distance. If you select any two scores and see what
happens to the distance between them, you also find out what happens to the standard
deviation.

1. Adding a constant to each score does not change the standard deviation If you
begin with a distribution that has w = 40 and ¢ = 10, what happens to ¢ if you add
5 points to every score? Consider any two scores in this distribution: Suppose, for
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AN ANALOGY FOR THE MEAN AND THE STANDARD DEVIATION

Although the basic concepts of the mean and the
standard deviation are not overly complex, the following
analogy often helps students gain a more complete
understanding of these two statistical measures.

In our local community, the site for a new high
school was selected because it provides a central
location. An alternative site on the western edge of the
community was considered, but this site was rejected
because it would require extensive busing for students
living on the east side. In this example, the location of
the high school is analogous to the concept of the mean;
just as the high school is located in the center of the

community, the mean is located in the center of the
distribution of scores.

For each student in the community, it is possible to
measure the distance between home and the new high
school. Some students live only a few blocks from the
new school and others live as much as 3 miles away.
The average distance that a student must travel to
school was calculated to be 0.80 miles. The average
distance from the school is analogous to the concept of
the standard deviation; that is, the standard deviation
measures the standard distance from an individual score
to the mean.

example, that these are exam scores and that you had a score of X = 41 and your friend
had X = 43. The distance between these two scores is 43 —41 = 2 points. After adding
the constant, 5 points, to each score, your score would be X = 46, and your friend
would have X = 48. The distance between scores is still 2 points. Adding a constant to
every score does not affect any of the distances and, therefore, does not change the stan-
dard deviation. This fact can be seen clearly if you imagine a frequency distribution
graph. If, for example, you add 10 points to each score, then every score in the graph is
moved 10 points to the right. The result is that the entire distribution is shifted to a new
position 10 points up the scale. Note that the mean moves along with the scores and is
increased by 10 points. However, the variability does not change because each of the
deviation scores (X — ) does not change.

2. Multiplying each score by a constant causes the standard deviation to be multi-
plied by the same constant Consider the same distribution of exam scores we looked
at earlier. If o = 40 and o = 10, what would happen to o if each score were multiplied
by 2?7 Again, we look at two scores, X = 41 and X = 43, with a distance between them
equal to 2 points. After all of the scores have been multiplied by 2, these scores become
X = 82 and X = 86. Now the distance between scores is 4 points, twice the original
distance. Multiplying each score causes each distance to be multiplied, so the standard
deviation also is multiplied by the same amount.

IN THE LITERATURE
REPORTING THE STANDARD DEVIATION

In reporting the results of a study, the researcher often provides descriptive
information for both central tendency and variability. The dependent variables in
psychology research are often numerical values obtained from measurements on
interval or ratio scales. With numerical scores, the most common descriptive statistics
are the mean (central tendency) and the standard deviation (variability), which are
usually reported together. In many journals, especially those following APA style,
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TABLE 4.2

The number of aggressive
responses in male and female
children after viewing cartoons.

VARIANCE AND
INFERENTIAL STATISTICS

EXAMPLE 4.8

the symbol SD is used for the sample standard deviation. For example, the results
might state:

Children who viewed the violent cartoon displayed more aggressive responses
(M = 12.45, SD = 3.7) than those who viewed the control cartoon (M = 4.22,
SD = 1.04).

When reporting the descriptive measures for several groups, the findings may be
summarized in a table. Table 4.2 illustrates the results of hypothetical data.

Type of Cartoon

Violent Control
Males M =15.72 M = 6.94
SD = 443 SD = 2.26
Females M= 347 M = 2.61
SD = 1.12 SD = 0.98

Sometimes the table also indicates the sample size, n, for each group. You should
remember that the purpose of the table is to present the data in an organized, concise,
and accurate manner. d

In very general terms, the goal of inferential statistics is to detect meaningful and sig-
nificant patterns in research results. The basic question is whether the patterns observed
in the sample data reflect corresponding patterns that exist in the population, or are sim-
ply random fluctuations that occur by chance. Variability plays an important role in the
inferential process because the variability in the data influences how easy it is to see
patterns. In general, low variability means that existing patterns can be seen clearly,
whereas high variability tends to obscure any patterns that might exist. The following
example provides a simple demonstration of how variance can influence the perception
of patterns.

In most research studies the goal is to compare means for two (or more) sets of data.
For example:

Is the mean level of depression lower after therapy than it was before therapy?
Is the mean attitude score for men different from the mean score for women?

Is the mean reading achievement score higher for students in a special program
than for students in regular classrooms?

In each of these situations, the goal is to find a clear difference between two means
that would demonstrate a significant, meaningful pattern in the results. Variability plays
an important role in determining whether a clear pattern exists. Consider the following
data representing hypothetical results from two experiments, each comparing two
treatment conditions. For both experiments, your task is to determine whether there
appears to be any consistent difference between the scores in treatment 1 and the scores
in treatment 2.
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Experiment A Experiment B
Treatment 1 Treatment 2 Treatment 1 Treatment 2
35 39 31 46
34 40 15 21
36 41 57 61
35 40 37 32

For each experiment, the data have been constructed so that there is a 5-point mean
difference between the two treatments: On average, the scores in treatment 2 are

5 points higher than the scores in treatment 1. The 5-point difference is relatively
easy to see in experiment A, where the variability is low, but the same 5-point
difference is difficult to see in experiment B, where the variability is large. Again,
high variability tends to obscure any patterns in the data. This general fact is perhaps
even more convincing when the data are presented in a graph. Figure 4.8 shows the
two sets of data from experiments A and B. Notice that the results from experiment
A clearly show the 5-point difference between treatments. One group of scores piles
up around 35 and the second group piles up around 40. On the other hand, the scores
from experiment B [Figure 4.8(b)] seem to be mixed together randomly with no clear
difference between the two treatments.

In the context of inferential statistics, the variance that exists in a set of sample data
is often classified as error variance. This term is used to indicate that the sample vari-
ance represents unexplained and uncontrolled differences between scores. As the error
variance increases, it becomes more difficult to see any systematic differences or
patterns that might exist in the data. An analogy is to think of variance as the static that
appears on a radio station or a cell phone when you enter an area of poor reception. In
general, variance makes it difficult to get a clear signal from the data. High variance
can make it difficult or impossible to see a mean difference between two sets of scores,
or to see any other meaningful patterns in the results from a research study.

Data from Experiment A Data from Experiment B
|:| Treatment 1 M= 35 |:| Treatment1 M =35
|:| Treatment2 M =40 5 |:| Treatment2 M =40
f2 — ] f2
1 1
|||||||||||||X ||_||_| I_I_II_I'I_I'I_II_IX
33 34 35 36 37 38 39 40 41 42 10 20 30 40 50 60

FIGURE 4.8

Graphs showing the results from two experiments. In experiment A, the variability is small and it
is easy to see the 5-point mean difference between the two treatments. In experiment B, however,
the 5-point mean difference between treatments is obscured by the large variability.
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LEARNING CHECK 1. Explain the difference between a biased and an unbiased statistic.

2. In a population with a mean of w = 50 and a standard deviation of o = 10, would
a score of X = 58 be considered an extreme value (far out in the tail of the distri-
bution)? What if the standard deviation were o = 3?

3. A population has a mean of w = 70 and a standard deviation of o = 5.
a. If 10 points were added to every score in the population, what would be the
new values for the population mean and standard deviation?
b. If every score in the population were multiplied by 2, what would be the new
values for the population mean and standard deviation?

ANSWERS 1. If a statistic is biased, it means that the average value of the statistic does not accurately
represent the corresponding population parameter. Instead, the average value of the statistic
either overestimates or underestimates the parameter. If a statistic is unbiased, it means that
the average value of the statistic is an accurate representation of the corresponding popula-
tion parameter.

2. With o = 10, a score of X = 58 would be located in the central section of the distribution
(within one standard deviation). With o = 3, a score of X = 58 would be an extreme value,
located more than two standard deviations above the mean.

3. a. The new mean would be . = 80 but the standard deviation would still be o = 5.

b. The new mean would be p = 140 and the new standard deviation would be o = 10.

1. The purpose of variability is to measure and describe 2. To calculate variance or standard deviation, you first
the degree to which the scores in a distribution are need to find the sum of the squared deviations, SS.
spread out or clustered together. There are three basic Except for minor changes in notation, the calculation of
measures of variability: the range, the variance, and the SS is identical for samples and populations. There are
standard deviation. two methods for calculating SS:

The range is the distance covered by the set of I. By definition, you can find SS using the following
scores, from the smallest score to the largest score. The steps:
range is completely determined by the two extreme a. Find the deviation (X — ) for each score.
scores and is considered to be a relatively crude b. Square each deviation.
measure of variability. ¢. Add the squared deviations.

Standard deviation and variance are the most This process can be summarized in a formula as
commonly used measures of variability. Both of these follows:
measures are based on the idea that each score can be
described in terms of its deviation, or distance, from the Definitional formula: SS = 3(X — lJ~)2

mean. The variance is the mean of the squared
deviations. The standard deviation is the square root of
the variance and provides a measure of the standard
distance from the mean.

II. The sum of the squared deviations can also be found
using a computational formula, which is especially
useful when the mean is not a whole number:

2
Computational formula: S§ = 3X? — (E%)



3. Variance is the mean squared deviation and is obtained

by finding the sum of the squared deviations and then
dividing by the number of scores. For a population,
variance is
62258
N

For a sample, only n — 1 of the scores are free to
vary (degrees of freedom or df = n — 1), so sample
variance is

Using n — 1 in the sample formula makes the sample
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4. Standard deviation is the square root of the variance.

For a population, this is

_[ss

N

Sample standard deviation is

_ | S8 _ |58
SNt \ar

5. Adding a constant value to every score in a distribution

does not change the standard deviation. Multiplying
every score by a constant, however, causes the standard
deviation to be multiplied by the same constant.

variance an accurate and unbiased estimate of the
population variance.
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General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to compute the Range, Standard Deviation, and Variance
for a sample of scores.

Data Entry
1. Enter all of the scores in one column of the data editor, probably VAR000O01.
Data Analysis

1. Click Analyze on the tool bar, select Descriptive Statistics, and click on
Descriptives.

2. Highlight the column label for the set of scores (VAR00001) in the left box and
click the arrow to move it into the Variable box.

3. If you want the variance and/or the range reported along with the standard devia-
tion, click on the Options box, select Variance and/or Range, then click Continue.

4. Click OK.

SPSS Output

The SPSS output is shown in Figure 4.9. The summary table lists the number of scores,
the maximum and minimum scores, the mean, the range, the standard deviation, and
the variance. Note that the range and variance are included because these values were
selected using the Options box during data analysis. Caution: SPSS computes the sample
standard deviation and sample variance using n — 1. If your scores are intended to be
a population, you can multiply the sample standard deviation by the square root of
(n — 1)/n to obtain the population standard deviation.

Note: You can also obtain the mean and standard deviation for a sample if you use
SPSS to display the scores in a frequency distribution histogram (see the SPSS section at
the end of Chapter 2). The mean and standard deviation are displayed beside the graph.

FOCUS ON PROBLEM SOLVING

1. The purpose of variability is to provide a measure of how spread out the scores in
a distribution are. Usually this is described by the standard deviation. Because the
calculations are relatively complicated, it is wise to make a preliminary estimate of

Descriptive Statistics

N | Range | Minimum | Maximum | Mean | Std. Deviation | Variance

VAR00001 7 7.00 1.00 8.00 | 5.0000 2.44949 6.000
Valid N (listwise)| 7

FIGURE 4.9

The SPSS summary table showing descriptive statistics for a sample of n =7 scores.
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the standard deviation before you begin. Remember that standard deviation provides
a measure of the typical, or standard, distance from the mean. Therefore, the
standard deviation must have a value somewhere between the largest and the
smallest deviation scores. As a rule of thumb, the standard deviation should be
about one-fourth of the range.

2. Rather than trying to memorize all of the formulas for SS, variance, and standard
deviation, you should focus on the definitions of these values and the logic that
relates them to each other:

SS is the sum of squared deviations.
Variance is the mean squared deviation.
Standard deviation is the square root of variance.
The only formula you should need to memorize is the computational formula for SS.
3. A common error is to use n — 1 in the computational formula for SS when you have
scores from a sample. Remember that the SS formula always uses n (or N). After

you compute SS for a sample, you must correct for the sample bias by using n — 1
in the formulas for variance and standard deviation.

STEP 1

STEP 2

STEP 3

COMPUTING MEASURES OF VARIABILITY

For the following sample data, compute the variance and standard deviation. The scores are:

10, 7, 6, 10, 6, 15

Compute SS, the sum of squared deviations We use the computational formula. For
this sample, n = 6 and

SX=10+7+6+10+6+ 15=54
SX2 =102+ 7>+ 6>+ 10*> + 6> + 15% = 546

S§ =3Xx* - Cx)° _ 546 — 54
N 6

=546 — 486

=60

Compute the sample variance For sample variance, SS is divided by the degrees of
freedom, df = n — 1

Compute the sample standard deviation Standard deviation is simply the square
root of the variance.
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PROBLEMS
1. In words, explain what is measured by each of the 10. A student was asked to compute the mean and
following: standard deviation for the following sample of n = 5
a. S scores: 81, 87, 89, 86, and 87. To simplify the

b. Variance
c. Standard deviation

. Can SS ever have a value less than zero? Explain your

answer.

. Is it possible to obtain a negative value for the

variance or the standard deviation?

. What does it mean for a sample to have a standard

deviation of zero? Describe the scores in such a
sample.

. Explain why the formulas for sample variance and

population variance are different.

. A population has a mean of . = 80 and a standard

deviation of o = 20.

a. Would a score of X = 70 be considered an extreme
value (out in the tail) in this sample?

b. If the standard deviation were o = 5, would a score
of X = 70 be considered an extreme value?

. On an exam with a mean of M = 78, you obtain a

score of X = 84.

a. Would you prefer a standard deviation of s = 2 or
s = 10? (Hint: Sketch each distribution and find the
location of your score.)

b. If your score were X = 72, would you prefer s = 2
or s = 10? Explain your answer.

. A population has a mean of p = 30 and a standard

deviation of ¢ = 5.

a. If 5 points were added to every score in the
population, what would be the new values for the
mean and standard deviation?

b. If every score in the population were multiplied by
3 what would be the new values for the mean and
standard deviation?

a. After 3 points have been added to every score in a
sample, the mean is found to be M = 83 and the
standard deviation is s = 8. What were the values
for the mean and standard deviation for the original
sample?

b. After every score in a sample has been multiplied
by 4, the mean is found to be M = 48 and the
standard deviation is s = 12. What were the values
for the mean and standard deviation for the original
sample?

11.

12.

13.

14.

arithmetic, the student first subtracted 80 points from
each score to obtain a new sample consisting of 1, 7,
9, 6, and 7. The mean and standard deviation for the

new sample were then calculated to be M = 6 and

s = 3. What are the values of the mean and standard

deviation for the original sample?

For the following population of N = 6 scores:
11, 0, 2, 9, 9, 5

a. Calculate the range and the standard deviation.
(Use either definition for the range.)

b. Add 2 points to each score and compute the range
and standard deviation again. Describe how adding
a constant to each score influences measures of
variability.

There are two different formulas or methods that can

be used to calculate SS.

a. Under what circumstances is the definitional
formula easy to use?

b. Under what circumstances is the computational
formula preferred?

Calculate the mean and SS (sum of squared deviations)
for each of the following samples. Based on the value
for the mean, you should be able to decide which SS
formula is better to use.

Sample A: 1, 4, 8, 5
Sample B: 3, 0, 9, 4

The range is completely determined by the two

extreme scores in a distribution. The standard

deviation, on the other hand, uses every score.

a. Compute the range (choose either definition) and
the standard deviation for the following sample of
n = 5 scores. Note that there are three scores
clustered around the mean in the center of the
distribution, and two extreme values.

Scores: 0, 6, 7, 8, 14.

b. Now we break up the cluster in the center of the
distribution by moving two of the central scores out
to the extremes. Once again compute the range and
the standard deviation.

New scores: 0, 0, 7, 14, 14.

¢. According to the range, how do the two
distributions compare in variability? How do they
compare according to the standard deviation?



15.

16.

17.

18.

19.

20.

21.

For the data in the following sample:
8, 1, 5 1, 5

a. Find the mean and the standard deviation.

b. Now change the score of X = 8§ to X = 18, and find
the new mean and standard deviation.

c. Describe how one extreme score influences the
mean and standard deviation.

Calculate SS, variance, and standard deviation for the
following sample of n = 4 scores: 7, 4, 2, 1. (Note:
The computational formula works well with these
scores.)

Calculate SS, variance, and standard deviation for the
following population of N = 8 scores: 0, 0, 5, 0, 3, 0,
0, 4. (Note: The computational formula works well
with these scores.)

Calculate SS, variance, and standard deviation for the
following population of N = 7 scores: 8, 1, 4, 3, 5,
3, 4. (Note: The definitional formula works well with
these scores.)

Calculate SS, variance, and standard deviation for the
following sample of n = 5 scores: 9, 6, 2, 2, 6. (Note:
The definitional formula works well with these
scores.)

For the following population of N = 6 scores:
3, 1, 4, 3, 3, 4

a. Sketch a histogram showing the population
distribution.

b. Locate the value of the population mean in your
sketch, and make an estimate of the standard
deviation (as done in Example 4.2).

¢. Compute SS, variance, and standard deviation for
the population. (How well does your estimate
compare with the actual value of ¢?)

For the following sample of n = 7 scores:
8 6, 5 2 6, 3 5

a. Sketch a histogram showing the sample
distribution.

b. Locate the value of the sample mean in your sketch,
and make an estimate of the standard deviation (as
done in Example 4.5).

c. Compute SS, variance, and standard deviation for
the sample. (How well does your estimate compare
with the actual value of s?)
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22. In an extensive study involving thousands of British

23.

children, Arden and Plomin (2006) found significantly

higher variance in the intelligence scores for males

than for females. Following are hypothetical data,

similar to the results obtained in the study. Note that

the scores are not regular 1Q scores but have been

standardized so that the entire sample has a mean of

M = 10 and a standard deviation of s = 2.

a. Calculate the mean and the standard deviation for
the sample of n = 8 females and for the sample of
n = 8 males.

b. Based on the means and the standard deviations,
describe the differences in intelligence scores for
males and females.

Female Male
9 8
11 10
10 11
13 12
8 6
9 10
11 14
9 9

In the Preview section at the beginning of this chapter

we reported a study by Wegesin and Stern (2004) that

found greater consistency (less variability) in the

memory performance scores for younger women than

for older women. The following data represent

memory scores obtained for two women, one older

and one younger, over a series of memory trials.

a. Calculate the variance of the scores for each
woman.

b. Are the scores for the younger woman more
consistent (less variable)?

Younger Older
8 7
6 5
6 8
7 5
8 7
7 6
8 8
8 5
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REVIEW

By completing this part, you should understand and be
able to perform basic descriptive statistical procedures.
These include:

1. Familiarity with statistical terminology and notation
(Chapter 1).

2. The ability to organize a set of scores in a frequency
distribution table or a frequency distribution graph
(Chapter 2).

3. The ability to summarize and describe a distribution of
scores by computing a measure of central tendency
(Chapter 3).

4. The ability to summarize and describe a distribution
of scores by computing a measure of variability
(Chapter 4).

The general goal of descriptive statistics is to simplify a set
of data by organizing or summarizing a large set of scores.
A frequency distribution table or graph organizes the entire
set of scores so that it is possible to see the complete distri-
bution all at once. Measures of central tendency describe
the distribution by identifying its center. They also summa-
rize the distribution by condensing all of the individual
scores into one value that represents the entire group.
Measures of variability describe whether the scores in a dis-
tribution are widely scattered or closely clustered.
Variability also provides an indication of how accurately a
measure of central tendency represents the entire group.

Of the basic skills presented in this part, the most com-
monly used are calculating the mean and standard deviation
for a sample of numerical scores. The following exercises
should provide an opportunity to use and reinforce these
statistical skills.

REVIEW EXERCISES

What is the general goal for descriptive statistics?

b. How is the goal served by putting scores in a fre-
quency distribution?

c. How is the goal served by computing a measure of
central tendency?

d. How is the goal served by computing a measure of

variability?

In a classic study examining the relationship between
heredity and intelligence, Robert Tryon (1940) used a
selective breeding program to develop separate strains
of “smart rats” and “dumb rats.” Tryon started with a
large sample of laboratory rats and tested each animal
on a maze-learning problem. Based on their error scores
for the maze, Tryon selected the brightest rats and the
dullest rats from the sample. The brightest males were
mated with the brightest females. Similarly, the dullest
rats were interbred. This process of testing and selective
breeding was continued for several generations until
Tryon had established a line of maze-bright rats and a
separate line of maze-dull rats. The following data rep-
resent results similar to those obtained by Tryon. The
data consist of maze-learning error scores for the origi-
nal sample of laboratory rats and the seventh generation
of the maze-bright rats.

Errors Before Solving Maze

Original Rats Seventh Generation
Maze-Bright Rats
10 14 7 5 8 7
17 13 12 8 8 6
11 9 20 6 10 4
13 6 15 6 9 8
4 18 10 5 7 9
13 21 6 10 8 6
17 11 14 9 7 8

a. Sketch a polygon showing the distribution of error

scores for the sample of original rats. On the same
graph, sketch a polygon for the sample of maze-
bright rats. (Use two different colors or use a
dashed line for one group and a solid line for the
other.) Based on the appearance of your graph,
describe the differences between the two samples.

b. Calculate the mean error score for each sample.

Does the mean difference support your descrip-
tion from part a?

c. Calculate the variance and standard deviation for
each sample. Based on the measures of variability,
is one group more diverse than the other? Is one
group more homogeneous than the other?
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Chapter 5  z-Scores: Location of
Scores and Standardized
Distributions 137

Chapter 6  Probability 163

Chapter 7 Probability and
Samples: The Distribution
of Sample Means 199

Chapter 8 Introduction to
Hypothesis Testing 231

Foundations
of Inferential
Statistics

ou should recall from Chapter 1 that statistical methods are

-1 classified into two general categories: descriptive statistics,

which attempt to organize and summarize data, and infer-

ential statistics, which use the limited information from samples to

answer general questions about populations. In most research situ-

ations, both kinds of statistics are used to gain a complete under-

standing of the research results. In Part I of this book we

introduced the techniques of descriptive statistics. We now are
ready to turn our attention to inferential statistics.

Before we proceed with inferential statistics, however, it is
necessary to present some additional information about samples.
We know that it is possible to obtain hundreds or even thousands
of different samples from the same population. We need to deter-
mine how all the different samples are related to each other and
how individual samples are related to the population from which
they were obtained. Finally, we need a system for designating
which samples are representative of their populations and which
are not.

In the next four chapters we develop the concepts and skills
that form the foundation for inferential statistics. In general, these
chapters establish formal, quantitative relationships between sam-
ples and populations and introduce a standardized procedure for
determining whether the data from a sample justify a conclusion
about the population. After we have developed this foundation, we
will be prepared to begin inferential statistics. That is, we can
begin to look at statistical techniques that use the sample data
obtained in research studies as the basis for answering questions
about populations.
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Tools You Will Need

The following items are considered essential
background material for this chapter. If you
doubt your knowledge of any of these
items, you should review the appropriate
chapter and section before proceeding.

e The mean (Chapter 3)
e The standard deviation (Chapter 4)
e Basic algebra (math review, Appendix A)

Z-SCores:
Location of
Scores and
Standardized
Distributions

Preview

5.1 Introduction to z-Scores

5.2 z-Scores and Location in a
Distribution

5.3 Using z-Scores to Standardize a
Distribution

5.4 Other Standardized Distributions
Based on z-Scores

5.5 Computing z-Scores for a Sample

5.6 Looking Ahead to Inferential
Statistics

Summary

Focus on Problem Solving

Demonstrations 5.1 and 5.2

Problems



Preview

A common test of cognitive ability requires participants to
search through a visual display and respond to specific
targets as quickly as possible. This kind of test is called a
perceptual-speed test. Measures of perceptual speed are
commonly used for predicting performance on jobs that
demand a high level of speed and accuracy. Although
many different tests are used, a typical example is shown
in Figure 5.1. This task requires the participant to search
through the display of digit pairs as quickly as possible and
circle each pair that adds up 10. Your score is determined
by the amount of time required to complete the task with a
correction for the number of errors that you make. One
complaint about this kind of paper-and-pencil test is that it
is tedious and time consuming to score because a
researcher must also search through the entire display to

identify errors to determine the participant’s level of
accuracy. An alternative, proposed by Ackerman and
Beier (2007), is a computerized version of the task. The
computer version presents a series of digit pairs and
participants respond on a touch-sensitive monitor. The
computerized test is very reliable and the scores are
equivalent to the paper-and-pencil tests in terms of
assessing cognitive skill. The advantage of the
computerized test is that the computer produces a test
score immediately when a participant finishes the test.

Suppose that you took Ackerman and Beier’s test and
your combined time and errors produced a score of 92.
How did you do? Are you faster than average, fairly
normal in perceptual speed, or does your score indicate
a serious deficit in cognitive skill?

FIGURE 5.1 Circle every pair of adjacent numbers that add up to 10.

An example of a perceptual

speed task. The participant is 64 23 19 31 19 46 31 91 83 82 82 46 19 87

foled 0 seareh fhroueh (e 11 42 94 87 64 44 19 55 82 46 57 98 39 46

isplay as quickly as possible

and circle each pair of digits 78 73 72 66 63 71 67 42 62 73 45 22 62 99

that add up to 10.
73 91 52 37 55 97 91 51 44 23 46 64 97 62
97 31 21 49 93 91 89 46 73 82 55 98 12 56
73 82 37 55 89 83 73 27 83 82 73 46 97 062
57 96 46 55 46 19 13 67 73 26 58 64 32 73
23 94 66 55 91 73 67 73 82 55 64 62 46 39
87 11 99 73 56 73 63 73 91 82 63 33 16 88
19 42 62 91 12 82 32 92 73 46 68 19 11 64
93 91 32 82 63 91 46 46 36 55 19 92 62 71

The Problem: Without any frame of reference, a
simple raw score provides relatively little information.
Specifically, you have no idea how your test score of
92 compares with others who took the same test.

The Solution: Transforming your test score into a
z-score will identify exactly where you are located in
the distribution of scores. In this case, the distribution

of scores has a mean of 86.75 and a standard deviation
of 10.50. With this additional information, you should
realize that your score (X = 92) is somewhat higher
than average but not extreme. The z-score combines

all of this information (your score, the mean, and the
standard deviation) into a single number that precisely
describes your location relative to the other scores in the
distribution.
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INTRODUCTION TO z-SCORES

In the previous two chapters, we introduced the concepts of the mean and the standard
deviation as methods for describing an entire distribution of scores. Now we shift
attention to the individual scores within a distribution. In this chapter, we introduce a
statistical technique that uses the mean and the standard deviation to transform each
score (X value) into a z-score, or a standard score. The purpose of z-scores, or standard
scores, is to identify and describe the exact location of each score in a distribution.

The following example demonstrates why z-scores are useful and introduces the
general concept of transforming X values into z-scores.

Suppose you received a score of X = 76 on a statistics exam. How did you do? It
should be clear that you need more information to predict your grade. Your score of
X =76 could be one of the best scores in the class, or it might be the lowest score in
the distribution. To find the location of your score, you must have information about
the other scores in the distribution. It would be useful, for example, to know the mean
for the class. If the mean were w = 70, you would be in a much better position than if
the mean were w = 85. Obviously, your position relative to the rest of the class
depends on the mean. However, the mean by itself is not sufficient to tell you the
exact location of your score. Suppose you know that the mean for the statistics exam
is w = 70 and your score is X = 76. At this point, you know that your score is

6 points above the mean, but you still do not know exactly where it is located.

Six points may be a relatively big distance and you may have one of the highest
scores in the class, or 6 points may be a relatively small distance and you may be
only slightly above the average. Figure 5.2 shows two possible distributions of exam
scores. Both distributions have a mean of . = 70, but for one distribution, the
standard deviation is ¢ = 3, and for the other, ¢ = 12. The location of X = 76 is
highlighted in each of the two distributions. When the standard deviation is ¢ = 3,
your score of X = 76 is in the extreme right-hand tail, the highest score in the
distribution. However, in the other distribution, where o = 12, your score is only
slightly above average. Thus, the relative location of your score within the
distribution depends on the standard deviation as well as the mean.

The purpose of the preceding example is to demonstrate that a score by itself does
not necessarily provide much information about its position within a distribution. These
original, unchanged scores that are the direct result of measurement are called raw
scores. To make raw scores more meaningful, they are often transformed into new
values that contain more information. This transformation is one purpose for z-scores.
In particular, we transform X values into z-scores so that the resulting z-scores tell
exactly where the original scores are located.

A second purpose for z-scores is to standardize an entire distribution. A common
example of a standardized distribution is the distribution of 1Q scores. Although there
are several different tests for measuring 1Q, the tests usually are standardized so that
they have a mean of 100 and a standard deviation of 15. Because all the different tests
are standardized, it is possible to understand and compare 1Q scores even though they
come from different tests. For example, we all understand that an 1Q score of 95 is a
little below average, no matter which 1Q test was used. Similarly, an 1Q of 145 is
extremely high, no matter which 1Q test was used. In general terms, the process of
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FIGURE 5.2

Exam scores t
X=76

Two distributions of exam scores. For both distributions, w = 70, but for one distribution, o = 3,
and for the other, o = 12. The relative position of X = 76 is very different for the two

distributions.

standardizing takes different distributions and makes them equivalent. The advantage
of this process is that it is possible to compare distributions even though they may have
been quite different before standardization.

In summary, the process of transforming X values into z-scores serves two useful
purposes:

1. Each z-score tells the exact location of the original X value within the
distribution.




DEFINITION

Whenever you are working with
z-scores, you should imagine

or draw a picture similar to
Figure 5.3. Although you
should realize that not all
distributions are normal,

we use the normal shape as

an example when showing
z-scores for populations.
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2. The z-scores form a standardized distribution that can be directly compared to
other distributions that also have been transformed into z-scores.

Each of these purposes is discussed in the following sections.

z-SCORES AND LOCATION IN A DISTRIBUTION

One of the primary purposes of a z-score is to describe the exact location of a score
within a distribution. The z-score accomplishes this goal by transforming each X value
into a signed number (+ or —) so that

1. The sign tells whether the score is located above (+) or below (-) the
mean, and

2. The number tells the distance between the score and the mean in terms of the
number of standard deviations.

Thus, in a distribution of IQ scores with i = 100 and ¢ = 15, a score of X = 130
would be transformed into z = +2.00. The z value indicates that the score is located
above the mean (+) by a distance of 2 standard deviations (30 points).

A z-score specifies the precise location of each X value within a distribution.
The sign of the z-score (+ or —) signifies whether the score is above the mean
(positive) or below the mean (negative). The numerical value of the z-score
specifies the distance from the mean by counting the number of standard
deviations between X and .

Notice that a z-score always consists of two parts: a sign (+ or —) and a magnitude.
Both parts are necessary to describe completely where a raw score is located within a
distribution.

Figure 5.3 shows a population distribution with various positions identified by
their z-score values. Notice that all z-scores above the mean are positive and all z-scores
below the mean are negative. The sign of a z-score tells you immediately whether the
score is located above or below the mean. Also, note that a z-score of z = +1.00
corresponds to a position exactly 1 standard deviation above the mean. A z-score of

FIGURE 5.3

The relationship between
z-score values and locations
in a population distribution.

-2 -1 0 +1 +2
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ANSWERS

z = +2.00 is always located exactly 2 standard deviations above the mean. The
numerical value of the z-score tells you the number of standard deviations it is from
the mean. Finally, you should notice that Figure 5.3 does not give any specific values
for the population mean or the standard deviation. The locations identified by z-scores
are the same for all distributions, no matter what mean or standard deviation the
distributions may have.

Now we can return to the two distributions shown in Figure 5.2 and use a z-score
to describe the position of X = 76 within each distribution as follows:

In Figure 5.2(a), with a standard deviation of ¢ = 3, the score X = 76 corresponds
to a z-score of z = +2.00. That is, the score is located above the mean by exactly
2 standard deviations.

In Figure 5.2(b), with o = 12, the score X = 76 corresponds to a z-score of
z = +0.50. In this distribution, the score is located above the mean by exactly %
standard deviation.

1. Identify the z-score value corresponding to each of the following locations in a
distribution.

a. Below the mean by 2 standard deviations.
b. Above the mean by 4 standard deviation.
c. Below the mean by 1.50 standard deviations.

2. Describe the location in the distribution for each of the following z-scores. (For
example, z = +1.00 is located above the mean by 1 standard deviation.)
a. z=—1.50 b. z=10.25 c. z=—250 d. z=10.50

3. For a population with w = 30 and o = 8, find the z-score for each of the following
scores:
a. X =32 b. X =26 c. X=42

4. For a population with i = 50 and o = 12, find the X value corresponding to each
of the following z-scores:
a. z=-0.25 b. z=2.00 c. =050

. z=-2.00 b. z = +0.50 c. z=-1.50
. Below the mean by 1% standard deviations.

. Above the mean by % standard deviation.
Below the mean by 2% standard deviations.

. Above the mean by % standard deviation.

. z=4025 b. z =-0.50 c. z=+150
X =47 b. X =74 c. X =156

® P a0 Ty P

THE z-SCORE FORMULA

The z-score definition is adequate for transforming back and forth from X values to
z-scores as long as the arithmetic is easy to do in your head. For more complicated
values, it is best to have an equation to help structure the calculations. Fortunately, the
relationship between X values and z-scores is easily expressed in a formula. The
formula for transforming scores into z-scores is

7=— (5.1



EXAMPLE 5.2

EXAMPLE 5.3

DETERMINING A RAW SCORE
(X) FROM A z-SCORE
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The numerator of the equation, X — ., is a deviation score (Chapter 4, page 107);
it measures the distance in points between X and w and indicates whether X is located
above or below the mean. The deviation score is then divided by o because we want
the z-score to measure distance in terms of standard deviation units. The formula
performs exactly the same arithmetic that is used with the z-score definition, and it
provides a structured equation to organize the calculations when the numbers are more
difficult. The following examples demonstrate the use of the z-score formula.

A distribution of scores has a mean of i = 100 and a standard deviation of o = 10.
What z-score corresponds to a score of X = 130 in this distribution?
According to the definition, the z-score has a value of +3 because the score is
located above the mean by exactly 3 standard deviations. Using the z-score formula,
we obtain

_X-u_130-100_30
c 1010

The formula produces exactly the same result that is obtained using the z-score
definition.

=3.00

A distribution of scores has a mean of i = 86 and a standard deviation of ¢ = 7.
What z-score corresponds to a score of X = 95 in this distribution?

Note that this problem is not particularly easy, especially if you try to use the
z-score definition and perform the calculations in your head. However, the z-score
formula organizes the numbers and allows you to finish the final arithmetic with
your calculator. Using the formula, we obtain

According to the formula, a score of X = 95 corresponds to z = 1.29. The
z-score indicates a location that is above the mean (positive) by slightly more than
1 standard deviation.

When you use the z-score formula, it can be useful to pay attention to the defini-
tion of a z-score as well. For example, we used the formula in Example 5.3 to calculate
the z-score corresponding to X = 95, and obtained z = 1.29. Using the z-score defini-
tion, we note that X = 95 is located above the mean by 9 points, which is slightly more
than one standard deviation (o = 7). Therefore, the z-score should be positive and have
a value slightly greater than 1.00. In this case, the answer predicted by the definition is
in perfect agreement with the calculation. However, if the calculations produce a dif-
ferent value, for example z = 0.78, you should realize that this answer is not consistent
with the definition of a z-score. In this case, an error has been made and you should
double check the calculations.

Although the z-score equation (Formula 5.1) works well for transforming X values into
z-scores, it can be awkward when you are trying to work in the opposite direction and
change z-scores back into X values. In general it is easier to use the definition of a
z-score, rather than a formula, when you are changing z-scores into X values. Remember,
the z-score describes exactly where the score is located by identifying the direction and
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OTHER RELATIONSHIPS
BETWEEN z, X, p, AND o

EXAMPLE 5.4

EXAMPLE 5.5

distance from the mean. It is possible, however, to express this definition as a formula,
and we use a sample problem to demonstrate how the formula can be created.

For a distribution with a mean of w = 60 and o = 5, what X value corresponds to
a z-score of z = -3.00?

To solve this problem, we use the z-score definition and carefully monitor the step-
by-step process. The value of the z-score indicates that X is located below the mean by
a distance equal to 3 standard deviations. Thus, the first step in the calculation is to
determine the distance corresponding to 3 standard deviations. For this problem, the
standard deviation is ¢ = 5 points, so 3 standard deviations is 3(5) = 15 points. The
next step is to find the value of X that is located below the mean by 15 points. With a
mean of p = 60, the score is

X=p-15=60-15=45
The two steps can be combined to form a single formula:

X=pn+zo (5.2)

In the formula, the value of zo is the deviation of X and determines both the direc-
tion and the size of the distance from the mean. In this problem, zo = (-3)(5) = -15,
or 15 points below the mean. Formula 5.2 simply combines the mean and the deviation
from the mean to determine the exact value of X.

Finally, you should realize that Formula 5.1 and Formula 5.2 are actually two dif-
ferent versions of the same equation. If you begin with either formula and use algebra
to shuffle the terms around, you soon end up with the other formula. We leave this as
an exercise for those who want to try it.

In most cases, we simply transform scores (X values) into z-scores, or change
z-scores back into X values. However, you should realize that a z-score establishes
a relationship between the score, the mean, and the standard deviation. This rela-
tionship can be used to answer a variety of different questions about scores and the
distributions in which they are located. The following two examples demonstrate
some possibilities.

In a population with a mean of w = 65, a score of X = 59 corresponds to z = —2.00.
What is the standard deviation for the population?

To answer the question, we begin with the z-score value. A z-score of —2.00
indicates that the corresponding score is located below the mean by a distance of
2 standard deviations. You also can determine that the score (X = 59) is located
below the mean (. = 65) by a distance of 6 points. Thus, 2 standard deviations
correspond to a distance of 6 points, which means that 1 standard deviation must
be o = 3 points.

In a population with a standard deviation of o = 4, a score of X = 33 corresponds to
z = +1.50. What is the mean for the population?

Again, we begin with the z-score value. In this case, a z-score of +1.50 indicates
that the score is located above the mean by a distance corresponding to 1.50 standard
deviations. With a standard deviation of o = 4, this distance is (1.50)(4) = 6 points.
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Thus, the score is located 6 points above the mean. The score is X = 33, so the mean
must be @ = 27.

Many students find problems like those in Examples 5.4 and 5.5 easier to under-
stand if they draw a picture showing all of the information presented in the problem.
For the problem in Example 5.4, the picture would begin with a distribution that has a
mean of w = 65 (we use a normal distribution, which is shown in Figure 5.4). The value
of the standard deviation is unknown, but you can add arrows to the sketch pointing
outward from the mean for a distance corresponding to 1 standard deviation. Finally,
use standard deviation arrows to identify the location of z = —2.00 (2 standard devia-
tions below the mean) and add X = 59 at that location. All of these factors are shown
in Figure 5.4. In the figure, it is easy to see that X = 59 is located 6 points below the
mean, and that the 6-point distance corresponds to exactly 2 standard deviations. Again,
if 2 standard deviations equal 6 points, then 1 standard deviation must be ¢ = 3 points.

1. For a distribution with w = 40 and o = 12, find the z-score for each of the follow-
ing scores.

a.X=36 b.X=46 c X=56

2. For a distribution with @ = 40 and o = 12, find the X value corresponding to each
of the following z-scores.
a.z=150 b.z=-125 cz=1%

3. In a distribution with . = 50, a score of X = 42 corresponds to z = —2.00. What
is the standard deviation for this distribution?

4. In a distribution with o = 12, a score of X = 56 corresponds to z = —0.25. What
is the mean for this distribution?

ANSWERS 1. a. z=-033(or—4)  b.z=050 ¢ z=133(+13

2. a. X=1758 b. X =25 c. X=44

3.o=4

4. p=159
FIGURE 5.4
A visual presentation of the
question in Example 5.4.
If 2 standard deviations | |
correspond to a 6-point | o o
distance, then 1 standard i |
deviation must equal
3 points. : :

I
59 65
L — 6 points — —
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USING z-SCORES TO STANDARDIZE A DISTRIBUTION

It is possible to transform every X value in a distribution into a corresponding z-score.
The result of this process is that the entire distribution of X values is transformed into
a distribution of z-scores (Figure 5.5). The new distribution of z-scores has characteris-
tics that make the z-score transformation a very useful tool. Specifically, if every
X value is transformed into a z-score, then the distribution of z-scores will have the
following properties:

1. Shape. The distribution of z-scores will have exactly the same shape as the origi-
nal distribution of scores. If the original distribution is negatively skewed, for example,
then the z-score distribution will also be negatively skewed. If the original distribution
is normal, the distribution of z-scores will also be normal. Transforming raw scores into
z-scores does not change anyone’s position in the distribution. For example, any raw
score that is above the mean by 1 standard deviation will be transformed to a z-score of
+1.00, which is still above the mean by 1 standard deviation. Transforming a distribu-
tion from X values to z values does not move scores from one position to another; the
procedure simply relabels each score (see Figure 5.5). Because each individual score
stays in its same position within the distribution, the overall shape of the distribution
does not change.

2. The mean. The z-score distribution will always have a mean of zero. In Figure 5.5,
the original distribution of X values has a mean of p. = 100. When this value, X = 100,
is transformed into a z-score, the result is

Z:X—MZIOO—IOOZ
c 10

Thus, the original population mean is transformed into a value of zero in the
z-score distribution. The fact that the z-score distribution has a mean of zero makes
the mean a convenient reference point. Recall from the definition of z-scores that all

0

Population of scores Population of z-scores

(X values) (zvalues)
Transform Xto z

80

FIGURE 5.5

An entire population of scores is transformed into z-scores. The transformation does not change
the shape of the population, but the mean is transformed into a value of 0 and the standard
deviation is transformed to a value of 1.

90

100

110 120 -2 -1 0 +1 +2
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positive z-scores are above the mean and all negative z-scores are below the mean. In
other words, for z-scores, w = 0.

3. The standard deviation. The distribution of z-scores will always have a standard
deviation of 1. In Figure 5.5, the original distribution of X values has p = 100 and
o = 10. In this distribution, a value of X = 110 is above the mean by exactly 10 points
or 1 standard deviation. When X = 110 is transformed, it becomes z = +1.00, which
is above the mean by exactly 1 point in the z-score distribution. Thus, the standard de-
viation corresponds to a 10-point distance in the X distribution and is transformed into
a 1-point distance in the z-score distribution. The advantage of having a standard devi-
ation of 1 is that the numerical value of a z-score is exactly the same as the number of
standard deviations from the mean. For example, a z-score of z = 1.50 is exactly 1.50
standard deviations from the mean.

In Figure 5.5, we showed the z-score transformation as a process that changed a dis-
tribution of X values into a new distribution of z-scores. In fact, there is no need to create
a whole new distribution. Instead, you can think of the z-score transformation as simply
relabeling the values along the X-axis. That is, after a z-score transformation, you still have
the same distribution, but now each individual is labeled with a z-score instead of an
X value. Figure 5.6 demonstrates this concept with a single distribution that has two sets of
labels: the X values along one line and the corresponding z-scores along another line.
Notice that the mean for the distribution of z-scores is zero and the standard deviation is 1.

When any distribution (with any mean or standard deviation) is transformed into
z-scores, the resulting distribution will always have a mean of w = 0 and a standard
deviation of ¢ = 1. Because all z-score distributions have the same mean and the same
standard deviation, the z-score distribution is called a standardized distribution.

A standardized distribution is composed of scores that have been transformed
to create predetermined values for w and o. Standardized distributions are used
to make dissimilar distributions comparable.

FIGURE 5.6

Following a z-score
transformation, the X-axis
is relabeled in z-score
units. The distance that is
equivalent to 1 standard
deviation on the X-axis

(o =10 points in this
example) corresponds to

1 point on the z-score scale.

80 90 100 110 120

[e—— 0 —>
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DEMONSTRATION OF A
z-SCORE TRANSFORMATION

EXAMPLE 5.6

A z-score distribution is an example of a standardized distribution with . = 0 and
o = 1. That is, when any distribution (with any mean or standard deviation) is trans-
formed into z-scores, the transformed distribution will always have . = 0 and o = 1.

Although the basic characteristics of a z-score distribution have been explained logi-
cally, the following example provides a concrete demonstration that a z-score transfor-
mation creates a new distribution with a mean of zero, a standard deviation of 1, and
the same shape as the original population.

We begin with a population of N = 6 scores consisting of the following values: 0, 6,
5, 2, 3, 2. This population has a mean of p. = % = 3 and a standard deviation of
o = 2 (check the calculations for yourself).

Each of the X values in the original population is then transformed into a z-score
as summarized in the following table.

X=0 Below the mean by 1% standard deviations z=-1.50
X=6 Above the mean by 1% standard deviations z= +1.50
X=5 Above the mean by 1 standard deviation z= +1.00
X=2 Below the mean by % standard deviation z=-0.50
X=3 Exactly equal to the mean—zero deviation z=0

X=2 Below the mean by % standard deviation z=-0.50

The frequency distribution for the original population of X values is shown
in Figure 5.7(a) and the corresponding distribution for the z-scores is shown in
Figure 5.7(b). A simple comparison of the two distributions demonstrates the results
of a z-score transformation.

FIGURE 5.7

Transforming a distribution
of raw scores (a) into
z-scores (b) will not change
the shape of the distribution.
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USING z-SCORES TO MAKE
COMPARISONS
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1. The two distributions have exactly the same shape. Each individual has exactly
the same relative position in the X distribution and in the z-score distribution.

2. After the transformation to z-scores, the mean of the distribution becomes
w = 0. For these z-scores values, N = 6 and 2z = —1.50 + 1.50 + 1.00 + —0.50
+ 0 4+ —0.50 = 0. Thus, the mean for the z-scores is @ = 2z/N = 0/6 = 0.

Note that the individual with a score of X = 3 is located exactly at the mean in
the X distribution and this individual is transformed into z = 0, exactly at the
mean in the z-distribution.

3. After the transformation, the standard deviation becomes o = 1. For these
z-scores, 2z = 0 and

3722 = (=1.50)* + (1.50)® + (1.00)> + (=0.50)> + (0)*> + (=0.50)*
=225+225+1.00+ 025+ 0+ 025

= 6.00
Using the computational formula for SS, substituting z in place of X, we obtain
o2 G2 (02
SS = 2z N 6 6 6.00
. ., SS e
For these z-scores, the variance is ¢ :W =—=1.00 and the standard deviation is

6=+1.00=1.00

Note that the individual with X = 5 is located above the mean by 2 points, which
is exactly one standard deviation in the X distribution. After transformation, this
individual has a z-score that is located above the mean by 1 point, which is exactly
one standard deviation in the z-score distribution.

One advantage of standardizing distributions is that it makes it possible to compare dif-
ferent scores or different individuals even though they come from completely different
distributions. Normally, if two scores come from different distributions, it is impossi-
ble to make any direct comparison between them. Suppose, for example, Dave received
a score of X = 60 on a psychology exam and a score of X = 56 on a biology test. For
which course should Dave expect the better grade?

Because the scores come from two different distributions, you cannot make any
direct comparison. Without additional information, it is even impossible to determine
whether Dave is above or below the mean in either distribution. Before you can begin
to make comparisons, you must know the values for the mean and standard deviation
for each distribution. Suppose the biology scores had w = 48 and o = 4, and the psy-
chology scores had . = 50 and o = 10. With this new information, you could sketch
the two distributions, locate Dave’s score in each distribution, and compare the two
locations.

Instead of drawing the two distributions to determine where Dave’s two scores
are located, we simply can compute the two z-scores to find the two locations. For
psychology, Dave’s z-score is
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Be sure to use the . and
o values for the distribution
to which X belongs.

LEARNING CHECK

ANSWERS

For biology, Dave’s z-score is

Note that Dave’s z-score for biology is +2.0, which means that his test score is 2
standard deviations above the class mean. On the other hand, his z-score is +1.0 for
psychology, or 1 standard deviation above the mean. In terms of relative class standing,
Dave is doing much better in the biology class.

Notice that we cannot compare Dave’s two exam scores (X = 60 and X = 56)
because the scores come from different distributions with different means and standard
deviations. However, we can compare the two z-scores because all distributions of
z-scores have the same mean (. = 0) and the same standard deviation (o = 1).

1. A normal-shaped distribution with i = 40 and o = 8 is transformed into z-scores.
Describe the shape, the mean, and the standard deviation for the resulting distribu-
tion of z-scores.

2. What is the advantage of having a mean of w = 0 for a distribution of z-scores?

3. A distribution of English exam scores has . = 70 and o = 4. A distribution of
history exam scores has p. = 60 and o = 20. For which exam would a score of
X = 78 have a higher standing? Explain your answer.

4. A distribution of English exam scores has w = 50 and o = 12. A distribution of
history exam scores has . = 58 and o = 4. For which exam would a score of
X = 62 have a higher standing? Explain your answer.

1. The z-score distribution would be normal with a mean of 0 and a standard deviation of 1.

2. With a mean of zero, all positive scores are above the mean and all negative scores are
below the mean.

3. For the English exam, X = 78 corresponds to z = 2.00, which is a higher standing than
z = 0.90 for the history exam.

4. The score X = 62 corresponds to z = +1.00 in both distributions. The score has exactly the
same standing for both exams.

TRANSFORMING z-SCORES TO
A DISTRIBUTION WITH A
PREDETERMINED p. AND o

OTHER STANDARDIZED DISTRIBUTIONS
BASED ON z-SCORES

Although z-score distributions have distinct advantages, many people find them cum-
bersome because they contain negative values and decimals. For this reason, it is com-
mon to standardize a distribution by transforming the scores into a new distribution
with a predetermined mean and standard deviation that are whole round numbers. The
goal is to create a new (standardized) distribution that has “simple” values for the mean
and standard deviation but does not change any individual’s location within the distri-
bution. Standardized scores of this type are frequently used in psychological or educa-
tional testing. For example, raw scores of the Scholastic Aptitude Test (SAT) are
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transformed to a standardized distribution that has w = 500 and ¢ = 100. For intelli-
gence tests, raw scores are frequently converted to standard scores that have a mean of
100 and a standard deviation of 15. Because most 1Q tests are standardized so that they
have the same mean and standard deviation, it is possible to compare 1Q scores even
though they may come from different tests.

The procedure for standardizing a distribution to create new values for . and o
involves two-steps:

1. The original raw scores are transformed into z-scores.

2. The z-scores are then transformed into new X values so that the specific . and
o are attained.

This procedure ensures that each individual has exactly the same z-score location
in the new distribution as in the original distribution. The following example demon-
strates the standardization procedure.

An instructor gives an exam to a psychology class. For this exam, the distribution of
raw scores has a mean of w = 57 with ¢ = 14. The instructor would like to simplify
the distribution by transforming all scores into a new, standardized distribution with

w = 50 and o = 10. To demonstrate this process, we consider what happens to two

specific students: Maria, who has a raw score of X = 64 in the original distribution;

and Joe, whose original raw score is X = 43.

Transform each of the original raw scores into z-scores. For Maria, X = 64, so her
z-score is

_X-p_64-57_ s
c 14
For Joe, X = 43, and his z-score is
_X-p_43-57_
c 14

Remember: The values of w and o are for the distribution from which X was taken.

Change each z-score into an X value in the new standardized distribution that has a
mean of p = 50 and a standard deviation of ¢ = 10.

Maria’s z-score, z = +0.50, indicates that she is located above the mean by %
standard deviation. In the new, standardized distribution, this location corresponds to
X = 55 (above the mean by 5 points).

Joe’s z-score, z = —1.00, indicates that he is located below the mean by exactly
1 standard deviation. In the new distribution, this location corresponds to X = 40
(below the mean by 10 points).

The results of this two-step transformation process are summarized in Table 5.1.
Note that Joe, for example, has exactly the same z-score (z = —1.00) in both the
original distribution and the new standardized distribution. This means that Joe’s
position relative to the other students in the class has not changed.

Figure 5.8 provides another demonstration of the concept that standardizing a
distribution does not change the individual positions within the distribution. The figure
shows the original exam scores from Example 5.7, with a mean of p = 57 and a
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TABLE 5.1

A demonstration of how
two individual scores are
changed when a distribution is
standardized. See Example 5.7.

Original Scores z-Score Standardized Scores
w=>57and o = 14 Location w=50and o =10
Maria X =064 — z=+0.50 — X=55
Joe X =43 — z=-1.00 — X=40

X <= Originalscores (i =57 and o = 14)

29 43 57 71 85
! ! ! ! ! z <= zScores(w=0ando =1)
-2 =1 0 +1 +2
1 1 1 1 1 X <= Standardized scores (u = 50 and o = 10)
30 40 50 60 70
Joe
FIGURE 5.8

The distribution of exam scores from Example 5.7. The original distribution was standardized to
produce a new distribution with w = 50 or o = 10. Note that each individual is identified by an
original score, a z-score, and a new, standardized score. For example, Joe has an original score of
43, a z-score of —1.00, and a standardized score of 40.

LEARNING CHECK

standard deviation of o = 14. In the original distribution, Joe is located at a score of
X = 43. In addition to the original scores, we have included a second scale showing the
z-score value for each location in the distribution. In terms of z-scores, Joe is located at
a value of z = —1.00. Finally, we have added a third scale showing the standardized
scores, for which the mean is . = 50 and the standard deviation is ¢ = 10. For the stan-
dardized scores, Joe is located at X = 40. Note that Joe is always in the same place in
the distribution. The only thing that changes is the number that is assigned to Joe: For
the original scores, Joe is at 43; for the z-scores, Joe is at —1.00; and for the standard-
ized scores, Joe is at 40.

1. A population of scores has w = 73 and o = 8. If the distribution is standardized to
create a new distribution with . = 100 and o = 20, what are the new values for
each of the following scores from the original distribution?

a. X=2065 b. X=171 c. X =281 d. X =83

2. A population with a mean of p = 44 and a standard deviation of o = 6 is stan-
dardized to create a new distribution with w = 50 and o = 10.
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a. What is the new standardized value for a score of X = 47 from the original
distribution?

b. One individual has a new standardized score of X = 65. What was this person’s
score in the original distribution?

1. a. z=-1.00, X = 80 b. z=-025X=95
c. z=1.00,X=120 d.z=125X=125
2. a. X = 47 corresponds to z = +0.50 in the original distribution. In the new distribution, the
corresponding score is X = 55.

b. In the new distribution, X = 65 corresponds to z = +1.50. The corresponding score in
the original distribution is X = 53.

See the population equations
(5.1 and 5.2) on pages 142
and 144 for comparison.

EXAMPLE 5.8

COMPUTING z-SCORES FOR A SAMPLE

Although z-scores are most commonly used in the context of a population, the same
principles can be used to identify individual locations within a sample. The definition
of a z-score is the same for a sample as for a population, provided that you use the
sample mean and the sample standard deviation to specify each z-score location. Thus,
for a sample, each X value is transformed into a z-score so that

1. The sign of the z-score indicates whether the X value is above (+) or below (-)
the sample mean, and
2. The numerical value of the z-score identifies the distance from the sample mean

by measuring the number of sample standard deviations between the score (X)
and the sample mean (M).

Expressed as a formula, each X value in a sample can be transformed into a z-score
as follows:

X-M
z= (5.3)
K
Similarly, each z-score can be transformed back into an X value, as follows:
X=M+ zs 5.4)

In a sample with a mean of M = 40 and a standard deviation of s = 10, what is the

z-score corresponding to X = 35 and what is the X value corresponding to z = +2.00?
The score, X = 35, is located below the mean by 5 points, which is exactly half

of the standard deviation. Therefore, the corresponding z-score is z = —0.50. The

z-score, z = +2.00, corresponds to a location above the mean by 2 standard

deviations. With a standard deviation of s = 10, this is distance of 20 points.

The score that is located 20 points above the mean is X = 60. Note that it is

possible to find these answers using either the z-score definition or one of the

equations (5.3 or 5.4).




154 CHAPTER 5 2z-SCORES: LOCATION OF SCORES AND STANDARDIZED DISTRIBUTIONS

STANDARDIZING A SAMPLE
DISTRIBUTION

EXAMPLE 5.9

Notice that the set of z-scores
is considered to be a sample
and the variance is computed
using the sample formula with
df =n-1.

If all the scores in a sample are transformed into z-scores, the result is a sample of
z-scores. The transformed distribution of z-scores will have the same properties that
exist when a population of X values is transformed into z-scores. Specifically,

1. The sample of z-scores will have the same shape as the original sample of
scores.

2. The sample of z-scores will have a mean of M, = 0.

3. The sample of z-scores will have a standard deviation of s, = 1.

Note that the set of z-scores is still considered to be a sample (just like the set of
X values) and the sample formulas must be used to compute variance and standard
deviation. The following example demonstrates the process of transforming the scores
from a sample into z-scores.

We begin with a sample of n = 5 scores: 0, 2, 4, 4, 5. With a few simple calculations,
you should be able to verify that the sample mean is M = 3, the sample variance is

s> = 4, and the sample standard deviation is s = 2. Using the sample mean and
sample standard deviation, we can convert each X value into a z-score. For example,
X = 5 is located above the mean by 2 points. Thus, X = 5 is above the mean by
exactly 1 standard deviation and has a z-score of z = +1.00. The z-scores for the
entire sample are shown in the following table.

X z

0 —1.50
2 —0.50
4 +0.50
4 +0.50
5 +1.00

Again, a few simple calculations demonstrate that the sum of the z-score values
is oz = 0, so the mean is M, = 0.

Because the mean is zero, each z-score value is its own deviation from the
mean. Therefore, the sum of the squared deviations is simply the sum of the
squared z-scores. For this sample of z-scores,

8§ = 377 = (-1.50)* + (-0.50)> + (+0.50)> + (0.50)> + (+1.00)
=225+ 0.25+0.25 + 0.25 + 1.00
= 4.00

The variance for the sample of z-scores is

Finally, the standard deviation for the sample of z-scores is. sz2 =+/1.00 =1.00.
As always, the distribution of z-scores has a mean of 0 and a standard deviation of 1.
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LOOKING AHEAD TO INFERENTIAL STATISTICS

Recall that inferential statistics are techniques that use the information from samples to
answer questions about populations. In later chapters, we use inferential statistics to help
interpret the results from research studies. A typical research study begins with a question
about how a treatment will affect the individuals in a population. Because it is usually
impossible to study an entire population, the researcher selects a sample and administers
the treatment to the individuals in the sample. This general research situation is shown in
Figure 5.9. To evaluate the effect of the treatment, the researcher simply compares the
treated sample with the original population. If the individuals in the sample are noticeably
different from the individuals in the original population, the researcher has evidence that
the treatment has had an effect. On the other hand, if the sample is not noticeably differ-
ent from the original population, it would appear that the treatment has had no effect.

Notice that the interpretation of the research results depends on whether the sample
is noticeably different from the population. One technique for deciding whether a sam-
ple is noticeably different is to use z-scores. For example, an individual with a z-score
near 0 is located in the center of the population and would be considered to be a fairly
typical or representative individual. However, an individual with an extreme z-score,
beyond +2.00 or —2.00 for example, would be considered noticeably different from most
of the individuals in the population. Thus, we can use z-scores to help decide whether the
treatment has caused a change. Specifically, if the individuals who receive the treatment
in a research study tend to have extreme z-scores, we can conclude that the treatment does
appear to have an effect. The following example demonstrates this process.

A researcher is evaluating the effect of a new growth hormone. It is known
that regular adult rats weigh an average of w = 400 grams. The weights vary
from rat to rat, and the distribution of weights is normal with a standard deviation

FIGURE 5.9

A diagram of a research
study. The goal of the

study is to evaluate the
effect of a treatment. A
sample is selected from the
population and the treatment
is administered to the
sample. If, after treatment,
the individuals in the sample
are noticeably different from
the individuals in the original
population, then we have
evidence that the treatment
does have an effect.

Original
population

(Without treatment)

Treated
sample
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FIGURE 5.10 Representative
The distribution of weights individuals
(znear 0)

for the population of adult

rats. Note that individuals

with z-scores near 0 are

typical or representative.

However, individuals with Extreme
z-scores beyond +2.00 individuals
or —2.00 are extreme and (zbeyond —2.00)
noticeably different from
most of the others in the

Extreme
individuals
(zbeyond +2.00)

Population
of
nontreated rats

distribution. ]
— S~——_
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X =418 X = 450

of o = 20 grams. The population distribution is shown in Figure 5.10. The researcher
selects one newborn rat and injects the rat with the growth hormone. When the rat
reaches maturity, it is weighed to determine whether there is any evidence that the
hormone has an effect.

First, assume that the hormone-injected rat weighs X = 418 grams. Although this
is more than the average nontreated rat (w = 400 grams), is it convincing evidence
that the hormone has an effect? If you look at the distribution in Figure 5.10, you
should realize that a rat weighing 418 grams is not noticeably different from the
regular rats that did not receive any hormone injection. Specifically, our injected rat
would be located near the center of the distribution for regular rats with a z-score of

ZzX—u _418-400 =§=0'90
c 20 20

Because the injected rat still looks the same as a regular, nontreated rat, the
conclusion is that the hormone does not appear to have an effect.

Now, assume that our injected rat weighs X = 450 grams. In the distribution
of regular rats (see Figure 5.10), this animal would have a z-score of

,_X-p_450-400_50

=—=250
c 20 20
In this case, the hormone-injected rat is substantially bigger than most ordinary
rats, and it would be reasonable to conclude that the hormone does have an effect on
weight.

In the preceding example, we used z-scores to help interpret the results obtained
from a sample. Specifically, if the individuals who receive the treatment in a research
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study have extreme z-scores compared to those who do not receive the treatment, we
can conclude that the treatment does appear to have an effect. The example, however,
used an arbitrary definition to determine which z-score values are noticeably different.
Although it is reasonable to describe individuals with z-scores near O as “highly
representative” of the population, and individuals with z-scores beyond +2.00 as
“extreme,” you should realize that these z-score boundaries were not determined by any
mathematical rule. In the following chapter we introduce probability, which gives us a
rationale for deciding exactly where to set the boundaries.

1.

. For a sample with a mean of M = 40 and a standard deviation of s = 12, find the

z-score corresponding to each of the following X values.
X =43 X =158 X=49
X =134 X =28 X=16

. For a sample with a mean of M = 80 and a standard deviation of s = 20, find the

X value corresponding to each of the following z-scores.
z=-1.00 z=-0.50 z=-0.20
z=150 z=0.80 z=1.40

. For a sample with a mean of M = 85, a score of X = 80 corresponds to

z = —0.50. What is the standard deviation for the sample?

. For a sample with a standard deviation of s = 12, a score of X = 83 corresponds

to z = 0.50. What is the mean for the sample?

. A sample has a mean of M = 30 and a standard deviation of s = 8.

a. Would a score of X = 36 be considered a central score or an extreme score in
the sample?

b. If the standard deviation were s = 2, would X = 36 be central or extreme?

z=10.25 z=1.50 z=10.75
z=—0.50 z=—1.00 z=—2.00
. X =60 X=170 X =176
X =110 X =96 X =108
s =10
. M=1T1
. a. X = 36 is a central score corresponding to z = 0.75.

b. X = 36 would be an extreme score corresponding to z = 3.00.
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1. Each X value can be transformed into a z-score that
specifies the exact location of X within the distribution.
The sign of the z-score indicates whether the location is
above (positive) or below (negative) the mean. The
numerical value of the z-score specifies the number of
standard deviations between X and .

2. The z-score formula is used to transform X values into
z-scores. For a population:

For a sample:

7=
N

bl

To transform z-scores back into X values, it usually
is easier to use the z-score definition rather than a
formula. However, the z-score formula can be
transformed into a new equation. For a population:

X=wm+zo

For a sample: X = M + zs

gl

When an entire distribution of X values is transformed
into z-scores, the result is a distribution of z-scores. The

KEY TERMS

raw score (139)
z-score (139)

deviation score (143)

z-score transformation (146)

z-score distribution will have the same shape as the
distribution of raw scores, and it always will have a
mean of 0 and a standard deviation of 1.

When comparing raw scores from different
distributions, it is necessary to standardize

the distributions with a z-score transformation. The
distributions will then be comparable because they will
have the same parameters (u = 0, o = 1). In practice,
it is necessary to transform only those raw scores that
are being compared.

In certain situations, such as psychological testing, a
distribution may be standardized by converting the
original X values into z-scores and then converting the
z-scores into a new distribution of scores with
predetermined values for the mean and the standard
deviation.

In inferential statistics, z-scores provide an objective
method for determining how well a specific score
represents its population. A z-score near 0 indicates that
the score is close to the population mean and, therefore,
is representative. A z-score beyond +2.00 (or —2.00)
indicates that the score is extreme and is noticeably
different from the other scores in the distribution.

standardized distribution (147)
standardized score (152)

Book Companion Website: www.cengage.com/psychology/gravetter

You can find a tutorial quiz and other learning exercises for Chapter 5 on the
book companion website. The website also includes a workshop entitled z-Scores
that examines the basic concepts and calculations underlying z-scores.

aplia

Improve your understanding of statistics with Aplia’s auto-graded problem sets and immedi-
ate, detailed explanations for every question. To learn more, visit www.aplia.com/statistics.
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Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific web-
site, Psychology CourseMate includes an integrated interactive eBook and other interac-
tive learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

General instructions for using SPSS are presented in Appendix D. Following are detailed
instructions for using SPSS to Transform X Values into z-Scores for a Sample.

Data Entry
1. Enter all of the scores in one column of the data editor, probably VARO00OI.
Data Analysis

1. Click Analyze on the tool bar, select Descriptive Statistics, and click on
Descriptives.

2. Highlight the column label for the set of scores (VAR0001) in the left box and click
the arrow to move it into the Variable box.

3. Click the box to Save standardized values as variables at the bottom of the
Descriptives screen.

4. Click OK.

SPSS Output

The program produces the usual output display listing the number of scores (N), the
maximum and minimum scores, the mean, and the standard deviation. However, if you
go back to the Data Editor (use the tool bar at the bottom of the screen), you can see that
SPSS has produced a new column showing the z-score corresponding to each of the
original X values.

Caution: The SPSS program computes the z-scores using the sample standard
deviation instead of the population standard deviation. If your set of scores is intended
to be a population, SPSS does not produce the correct z-score values. You can convert
the SPSS values into population z-scores by multiplying each z-score value by the square
root of n/(n - 1).

FOCUS ON PROBLEM SOLVING

1. When you are converting an X value to a z-score (or vice versa), do not rely entirely
on the formula. You can avoid careless mistakes if you use the definition of a
z-score (sign and numerical value) to make a preliminary estimate of the answer
before you begin computations. For example, a z-score of z = —0.85 identifies a
score located below the mean by almost 1 standard deviation. When computing the
X value for this z-score, be sure that your answer is smaller than the mean, and
check that the distance between X and p is slightly less than the standard deviation.
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DEMONSTRATION 5.1

2. When comparing scores from distributions that have different standard deviations, it
is important to be sure that you use the correct value for o in the z-score formula.
Use the o value for the distribution from which the raw score in question was taken.

3. Remember that a z-score specifies a relative position within the context of a specific
distribution. A z-score is a relative value, not an absolute value. For example, a
z-score of z = —2.0 does not necessarily suggest a very low raw score—it simply
means that the raw score is among the lowest within that specific group.

STEP 1

STEP 2

STEP 3

STEP 4

DEMONSTRATION 5.2

TRANSFORMING X VALUES INTO z-SCORES

A distribution of scores has a mean of p. = 60 with o = 12. Find the z-score for X = 75.

Determine the sign of the z-score. First, determine whether X is above or below the
mean. This determines the sign of the z-score. For this demonstration, X is larger than
(above) ., so the z-score is positive.

Convert the distance between X and p into standard deviation units. For X = 75
and p = 60, the distance between X and . is 15 points. With ¢ = 12 points, this distance
corresponds to 15 = 1.25 standard deviations.

Combine the sign from step 1 with the numerical value from step 2. The score is
above the mean (+) by a distance of 1.25 standard deviations. Thus, z = +1.25.

Confirm the answer using the z-score formula. For this example, X = 75, p = 60,
and o = 12.

z=ﬁ=w=£=+l.25

STEP 1

STEP 2

STEP 3

CONVERTING z-SCORES TO X VALUES

For a population with o = 60 and o = 12, what is the X value corresponding to
z =-0.50?

Locate X in relation to the mean. A z-score of —0.50 indicates a location below the
mean by half of a standard deviation.

Convert the distance from standard deviation units to points. With o = 12, half
of a standard deviation is 6 points.

Identify the X value. The value we want is located below the mean by 6 points. The
mean is p = 60, so the score must be X = 54.
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1. What information is provided by the sign (+/-) of a
z-score? What information is provided by the
numerical value of the z-score?

. A distribution has a standard deviation of ¢ = 12.
Find the z-score for each of the following locations
in the distribution.

a. Above the mean by 3 points.

b. Above the mean by 12 points.
c. Below the mean by 24 points.
d. Below the mean by 18 points.

. A distribution has a standard deviation of o = 6.
Describe the location of each of the following z-scores
in terms of position relative to the mean. For example,
z = +1.00 is a location that is 6 points above the
mean.

a. z = 1+2.00
b. z = +0.50
c. z=-2.00
d. z =-0.50

4. For a population with p = 50 and o = 8,

a. Find the z-score for each of the following X values.
(Note: You should be able to find these values
using the definition of a z-score. You should not
need to use a formula or do any serious
calculations.)

X =54
X =42

X =062
X =48

X =52
X =134

b. Find the score (X value) that corresponds to each of
the following z-scores. (Again, you should be able
to find these values without any formula or serious
calculations.)

z=1.00
z = -0.50

z=10.75
z =-0.25

z=1.50
z=-1.50

5. For a population with . = 40 and ¢ = 7, find the

z-score for each of the following X values. (Note: You
probably will need to use a formula and a calculator to
find these values.)

X =45
X =30

X =51
X=125

X =41
X =38
. For a population with a mean of w = 100 and a

standard deviation of o = 12,
a. Find the z-score for each of the following X values.

X =106 X =115 X =130
X =091 X =288 X =64

7.

10.

11.

12.

13.

b. Find the score (X value) that corresponds to each of
the following z-scores.

z=-1.00 z=-0.50
z=0.75 z =150

z = 2.00
z =-1.25

A population has a mean of p = 40 and a standard

deviation of 0 = 8.

a. For this population, find the z-score for each of the
following X values.

X =44 X =50
X =34 X =128

X =752
X =064

b. For the same population, find the score (X value)
that corresponds to each of the following z-scores.

z=10.75 z=1.50 z=-2.00
z=-0.25 z=-0.50 z=125

. A sample has a mean of M = 40 and a standard

deviation of s = 6. Find the z-score for each of the
following X values from this sample.

X = 46
X =37

X =44
X =28

X =42
X =50

. A sample has a mean of M = 80 and a standard

deviation of s = 10. For this sample, find the X value
corresponding to each of the following z-scores.

z=0.80 z=1.20 z=2.00
z =-0.40 z = -0.60 z=-1.80

Find the z-score corresponding to a score of X = 60
for each of the following distributions.

a. . =50and o = 20

b. p =50 and o = 10

c. p.=50ando =5

d. p=50and o =2

Find the X value corresponding to z = 0.25 for each of
the following distributions.

a. pn=40and o =4

b. p. =40 and 0 = 8§

c. p.=40and o = 12

d. p =40and o = 20

A score that is 6 points below the mean corresponds to
a z-score of z = —0.50. What is the population
standard deviation?

A score that is 12 points above the mean corresponds
to a z-score of z = 3.00. What is the population
standard deviation?
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14.

15.

16.

17.

18.

19.

20.

21.

22,
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For a population with a standard deviation of ¢ = §, a
score of X = 44 corresponds to z = —0.50. What is the
population mean?

For a sample with a standard deviation of s = 10, a
score of X = 65 corresponds to z = 1.50. What is the
sample mean?

For a sample with a mean of w = 45, a score of
X = 59 corresponds to z = 2.00. What is the sample
standard deviation?

For a population with a mean of w = 70, a score of
X = 62 corresponds to z = —2.00. What is the
population standard deviation?

In a population of exam scores, a score of X = 48
corresponds to z = +1.00 and a score of X = 36
corresponds to z = —0.50. Find the mean and standard
deviation for the population. (Hint: Sketch the
distribution and locate the two scores on your sketch.)

In a distribution of scores, X = 64 corresponds to
z = 1.00, and X = 67 corresponds to z = 2.00. Find
the mean and standard deviation for the distribution.

For each of the following populations, would a score
of X = 50 be considered a central score (near the
middle of the distribution) or an extreme score (far out
in the tail of the distribution)?

a. w=45and o = 10

b. w=45andoc =2

c. . =90and o =20

d. p. =60 and o = 20

A distribution of exam scores has a mean of p = 80.

a. If your score is X = 86, which standard deviation
would give you a better grade: 0 = 4 o = 8?

b. If your score is X = 74, which standard deviation
would give you a better grade: 0 = 4 or ¢ = 8?

For each of the following, identify the exam score that
should lead to the better grade. In each case, explain
your answer.
a. A score of X = 56, on an exam with w = 50 and

o = 4; or a score of X = 60 on an exam with

= 50and o = 20.

23.

24.

25.

26.

b. A score of X = 40, on an exam with p = 45 and
o = 2; or a score of X = 60 on an exam with
=70 and o = 20.

c. A score of X = 62, on an exam with p = 50 and
o = 8; or a score of X = 23 on an exam with
p=20and o = 2.

A distribution with a mean of p = 62 and a standard
deviation of o = 8 is transformed into a standardized
distribution with p = 100 and o = 20. Find the new,
standardized score for each of the following values
from the original population.

a. X =060
b. X =54
c. X=172
d. X =66

A distribution with a mean of u = 56 and a standard
deviation of ¢ = 20 is transformed into a standardized
distribution with p = 50 and o = 10. Find the new,
standardized score for each of the following values
from the original population.

a. X =46
b. X =76
c. X=40
d. X =280

A population consists of the following N = 5 scores:
0, 6,4, 3, and 12.
a. Compute p and o for the population.
b. Find the z-score for each score in the population.
c¢. Transform the original population into a new
population of N = 5 scores with a mean of
= 100 and a standard deviation of o = 20.

A sample consists of the following n = 6 scores: 2, 7,

4,6,4,and 7.

a. Compute the mean and standard deviation for the
sample.

b. Find the z-score for each score in the sample.

c. Transform the original sample into a new sample
with a mean of M = 50 and s = 10.

Improve your statistical skills with

ample practice exercises and detailed
explanations on every question. Purchase
www.aplia.com/statistics
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Preview

Background: If you open a dictionary and randomly
pick one word, which are you more likely to select:

1. A word beginning with the letter K?
2. A word with a K as its third letter?

If you think about this question and answer honestly, you
probably will decide that words beginning with a K are
more probable.

A similar question was asked a group of participants in
an experiment reported by Tversky and Kahneman (1973).
Their participants estimated that words beginning with K
are twice as likely as words with a K as the third letter. In
truth, the relationship is just the opposite. There are more
than twice as many words with a K in the third position as
there are words beginning with a K. How can people be so
wrong? Do they completely misunderstand probability?

When you were deciding which type of K words are
more likely, you probably searched your memory and tried
to estimate which words are more common. How many
words can you think of that start with the letter K? How
many words can you think of that have a K as the third
letter? Because you have had years of practice alphabetiz-
ing words according to their first letter, you should find it
much easier to search your memory for words beginning
with a K than to search for words with a K in the third

position. Consequently, you are likely to conclude that
first-letter K words are more common.

If you had searched for words in a dictionary (instead
of those in your memory), you would have found more
third-letter K words, and you would have concluded (cor-
rectly) that these words are more common.

The Problem: If you open a dictionary and randomly
pick one word, it is impossible to predict exactly which
word you will get. In the same way, when researchers
recruit people to participate in research studies, it is
impossible to predict exactly which individuals will be
obtained.

The Solution: Although it is impossible to predict
exactly which word will be picked from a dictionary, or
which person will participate in a research study, you
can use probability to demonstrate that some outcomes
are more likely than others. For example, it is more
likely that you will pick a third-letter K word than a
first-letter K word. Similarly, it is more likely that you
will obtain a person with an IQ around 100 than a
person with an IQ around 150.
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INTRODUCTION TO PROBABILITY

In Chapter 1, we introduced the idea that research studies begin with a general question
about an entire population, but the actual research is conducted using a sample. In this
situation, the role of inferential statistics is to use the sample data as the basis for
answering questions about the population. To accomplish this goal, inferential proce-
dures are typically built around the concept of probability. Specifically, the relation-
ships between samples and populations are usually defined in terms of probability.
Suppose, for example, that you are selecting a single marble from a jar that con-
tains 50 black and 50 white marbles. (In this example, the jar of marbles is the popula-
tion and the single marble to be selected is the sample.) Although you cannot guarantee
the exact outcome of your sample, it is possible to talk about the potential outcomes in
terms of probabilities. In this case, you have a 50-50 chance of getting either color.
Now consider another jar (population) that has 90 black and only 10 white marbles.
Again, you cannot predict the exact outcome of a sample, but now you know that the
sample probably will be a black marble. By knowing the makeup of a population, we
can determine the probability of obtaining specific samples. In this way, probability
gives us a connection between populations and samples, and this connection is the
foundation for the inferential statistics that are presented in the chapters that follow.
You may have noticed that the preceding examples begin with a population and
then use probability to describe the samples that could be obtained. This is exactly
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backward from what we want to do with inferential statistics. Remember that the goal
of inferential statistics is to begin with a sample and then answer a general question
about the population. We reach this goal in a two-stage process. In the first stage, we
develop probability as a bridge from populations to samples. This stage involves iden-
tifying the types of samples that probably would be obtained from a specific popula-
tion. Once this bridge is established, we simply reverse the probability rules to allow us
to move from samples to populations (Figure 6.1). The process of reversing the proba-
bility relationship can be demonstrated by considering again the two jars of marbles we
looked at earlier. (Jar 1 has 50 black and 50 white marbles; jar 2 has 90 black and only
10 white marbles.) This time, suppose you are blindfolded when the sample is selected,
so you do not know which jar is being used. Your task is to look at the sample that you
obtain and then decide which jar is most likely. If you select a sample of n = 4 marbles
and all are black, which jar would you choose? It should be clear that it would be rela-
tively unlikely (low probability) to obtain this sample from jar 1; in four draws, you
almost certainly would get at least 1 white marble. On the other hand, this sample
would have a high probability of coming from jar 2, where nearly all of the marbles are
black. Your decision, therefore, is that the sample probably came from jar 2. Note that
you now are using the sample to make an inference about the population.

Probability is a huge topic that extends far beyond the limits of introductory statistics,
and we do not attempt to examine it all here. Instead, we concentrate on the few con-
cepts and definitions that are needed for an introduction to inferential statistics. We
begin with a relatively simple definition of probability.

For a situation in which several different outcomes are possible, the probability
for any specific outcome is defined as a fraction or a proportion of all the possible
outcomes. If the possible outcomes are identified as A, B, C, D, and so on, then

number of outcomes classified as A
total number of possible outcomes

probability of A =

FIGURE 6.1

The role of probability in
inferential statistics. Probability
is used to predict what kind
of samples are likely to be
obtained from a population.
Thus, probability establishes

a connection between samples
and populations. Inferential
statistics rely on this
connection when they use
sample data as the basis for
making conclusions about
populations.

INFERENTIAL STATISTICS

Population Sample

PROBABILITY
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If you are unsure how to convert
from fractions to decimals or
percentages, you should review
the section on proportions in the
math review, Appendix A.

For example, if you are selecting a card from a complete deck, there are 52 possi-
ble outcomes. The probability of selecting the king of hearts is p = 5% The probability
of selecting an ace is p = 35 because there are 4 aces in the deck.

To simplify the discussion of probability, we use a notation system that eliminates
a lot of the words. The probability of a specific outcome is expressed with a p (for prob-
ability) followed by the specific outcome in parentheses. For example, the probability of
selecting a king from a deck of cards is written as p(king). The probability of obtaining
heads for a coin toss is written as p(heads).

Note that probability is defined as a proportion, or a part of the whole. This definition
makes it possible to restate any probability problem as a proportion problem. For example,
the probability problem “What is the probability of selecting a king from a deck of cards?”
can be restated as “What proportion of the whole deck consists of kings?”” In each case, the
answer is %, or “4 out of 52.” This translation from probability to proportion may seem
trivial now, but it is a great aid when the probability problems become more complex. In
most situations, we are concerned with the probability of obtaining a particular sample
from a population. The terminology of sample and population do change the basic defini-
tion of probability. For example, the whole deck of cards can be considered as a popula-
tion, and the single card we select is the sample.

Probability values The definition we are using identifies probability as a fraction or a
proportion. If you work directly from this definition, the probability values you obtain
are expressed as fractions. For example, if you are selecting a card at random,
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de) = =
p(spade) 4

Of if you are tossing a coin,
(heads) = 1
P 2

You should be aware that these fractions can be expressed equally well as either
decimals or percentages:

p=—=025=25%

p=—=0.50=50%
By convention, probability values most often are expressed as decimal values. But you
should realize that any of these three forms is acceptable.

You also should note that all of the possible probability values are contained in a
limited range. At one extreme, when an event never occurs, the probability is zero, or
0% (Box 6.1). At the other extreme, when an event always occurs, the probability is 1,
or 100%. Thus, all probability values are contained in a range from O to 1. For example,
suppose that you have a jar containing 10 white marbles. The probability of randomly
selecting a black marble is

0
black) = — =10
p(black) =~
The probability of selecting a white marble is

. 10
hite) = — =1
p(white) = -
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For the preceding definition of probability to be accurate, it is necessary that the outcomes
be obtained by a process called random sampling.

A random sample requires that each individual in the population has an equal
chance of being selected.

A second requirement, necessary for many statistical formulas, states that if more than
one individual is being selected, the probabilities must stay constant from one selection to
the next. Adding this second requirement produces what is called independent random
sampling. The term independent refers to the fact that the probability of selecting any par-
ticular individual is independent of those individuals who have already been selected for
the sample. For example, the probability that you will be selected is constant and does not
change even when other individuals are selected before you are.

An independent random sample requires that each individual has an equal chance
of being selected and that the probability of being selected stays constant from one
selection to the next if more than one individual is selected.

Because independent random sample is a required component for most statistical
applications, we always assume that this is the sampling method being used. To sim-
plify discussion, we typically omit the word “independent” and simply refer to this
sampling technique as random sampling. However, you should always assume that
both requirements (equal chance and constant probability) are part of the process.

Each of the two requirements for random sampling has some interesting conse-
quences. The first assures that there is no bias in the selection process. For a population
with N individuals, each individual must have the same probability, p = % of being
selected. This means, for example, that you would not get a random sample of people in
your city by selecting names from a yacht-club membership list. Similarly, you would not
get a random sample of college students by selecting individuals from your psychology
classes. You also should note that the first requirement of random sampling prohibits you
from applying the definition of probability to situations in which the possible outcomes
are not equally likely. Consider, for example, the question of whether you will win a mil-
lion dollars in the lottery tomorrow. There are only two possible alternatives.

1. You will win.

2. You will not win.

According to our simple definition, the probability of winning would be one out of
two, or p = % However, the two alternatives are not equally likely, so the simple defi-
nition of probability does not apply.

The second requirement also is more interesting than may be apparent at first glance.
Consider, for example, the selection of n = 2 cards from a complete deck. For the first
draw, the probability of obtaining the jack of diamonds is

1
jack of di ds) = —
p(jack of diamonds) 5

After selecting one card for the sample, you are ready to draw the second card.
What is the probability of obtaining the jack of diamonds this time? Assuming that you
still are holding the first card, there are two possibilities:
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p(jack of diamonds) = i if the first card was not the jack of diamonds

or
p(jack of diamonds) = 0 if the first card was the jack of diamonds

In either case, the probability is different from its value for the first draw. This con-
tradicts the requirement for random sampling, which says that the probability must stay
constant. To keep the probabilities from changing from one selection to the next, it is
necessary to return each individual to the population before you make the next selection.
This process is called sampling with replacement. The second requirement for random
samples (constant probability) demands that you sample with replacement.

(Note: We are using a definition of random sampling that requires equal chance
of selection and constant probabilities. This kind of sampling is also known as inde-
pendent random sampling, and often is called random sampling with replacement.
Many of the statistics we encounter later are founded on this kind of sampling.
However, you should realize that other definitions exist for the concept of random sam-
pling. In particular, it is very common to define random sampling without the require-
ment of constant probabilities—that is, random sampling without replacement. In
addition, there are many different sampling techniques that are used when researchers
are selecting individuals to participate in research studies.)

The situations in which we are concerned with probability usually involve a population
of scores that can be displayed in a frequency distribution graph. If you think of the
graph as representing the entire population, then different proportions of the graph rep-
resent different proportions of the population. Because probabilities and proportions are
equivalent, a particular proportion of the graph corresponds to a particular probability
in the population. Thus, whenever a population is presented in a frequency distribution
graph, it is possible to represent probabilities as proportions of the graph. The relation-
ship between graphs and probabilities is demonstrated in the following example.

We use a very simple population that contains only N = 10 scores with values 1, 1,
2,3,3,4,4,4,5, 6. This population is shown in the frequency distribution graph in
Figure 6.2. If you are taking a random sample of n = 1 score from this population,

FIGURE 6.2

A frequency distribution
histogram for a population
that consists of N = 10
scores. The shaded part of
the figure indicates the
portion of the whole
population that corresponds
to scores greater than X = 4.
The shaded portion is
two-tenths (p = %) of

the whole distribution.
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what is the probability of obtaining an individual with a score greater than 4? In
probability notation,

pX>4)="7

Using the definition of probability, there are 2 scores that meet this criterion out of
the total group of N = 10 scores, so the answer would be p = % This answer can be
obtained directly from the frequency distribution graph if you recall that probability
and proportion measure the same thing. Looking at the graph (see Figure 6.2), what
proportion of the population consists of scores greater than 4? The answer is the
shaded part of the distribution—that is, 2 squares out of the total of 10 squares in the
distribution. Notice that we now are defining probability as a proportion of area in the
frequency distribution graph. This provides a very concrete and graphic way of
representing probability.

Using the same population once again, what is the probability of selecting an
individual with a score less than 5? In symbols,

PX<5) =2

Going directly to the distribution in Figure 6.2, we now want to know what part
of the graph is not shaded. The unshaded portion consists of 8 out of the 10 blocks
(eight-tenths of the area of the graph), so the answer is p = %

1. A survey of the students in a psychology class revealed that there were 19 females
and 8 males. Of the 19 females, only 4 had no brothers or sisters, and 3 of the
males were also the only child in the household. If a student is randomly selected
from this class,

a. What is the probability of obtaining a male?

b. What is the probability of selecting a student who has at least one brother or
sister?

c¢. What is the probability of selecting a female who has no siblings?

2. A jar contains 10 red marbles and 30 blue marbles.
a. If you randomly select 1 marble from the jar, what is the probability of obtain-
ing a red marble?

b. If you take a random sample of n = 3 marbles from the jar and the first two
marbles are both blue, what is the probability that the third marble will be red?

3. Suppose that you are going to select a random sample of n = 1 score from the
distribution in Figure 6.2. Find the following probabilities:

a. p(X>2)
b. p(X > 5)
c. p(X<3)

8
1. a p =5
b.p=%

_ 4
C.pff
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10

2. a. p=y4,=025

b. p= % = (0.25. Remember that random sampling requires sampling with replacement.
3.a. p=15=070

b. p =15 =0.10

c. p=15=030

m PROBABILITY AND THE NORMAL DISTRIBUTION

The normal distribution was first introduced in Chapter 2 as an example of a commonly
occurring shape for population distributions. An example of a normal distribution is
shown in Figure 6.3.

Note that the normal distribution is symmetrical, with the highest frequency in the
middle and frequencies tapering off as you move toward either extreme. Although the
exact shape for the normal distribution is defined by an equation (see Figure 6.3), the nor-
mal shape can also be described by the proportions of area contained in each section of
the distribution. Statisticians often identify sections of a normal distribution by using
z-scores. Figure 6.4 shows a normal distribution with several sections marked in z-score
units. You should recall that z-scores measure positions in a distribution in terms of stan-
dard deviations from the mean. (Thus, z = +1 is 1 standard deviation above the mean,
z = +2 is 2 standard deviations above the mean, and so on.) The graph shows the per-
centage of scores that fall in each of these sections. For example, the section between the
mean (z = 0) and the point that is 1 standard deviation above the mean (z = 1) contains
34.13% of the scores. Similarly, 13.59% of the scores are located in the section between

FIGURE 6.3

The normal distribution. The
exact shape of the normal
distribution is specified by
an equation relating each

X value (score) with each

Y value (frequency). The
equation is

1 —(X—w)’2e”
Y = T
2o

(7 and e are mathematical
constants). In simpler terms,
the normal distribution is
symmetrical with a single
mode in the middle. The X
frequency tapers off as
you move farther from the
middle in either direction.
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FIGURE 6.4

The normal distribution
following a z-score
transformation.

\— 34.13%

—13.59%
\)
2.28%
Y
| | z
-2 -1 0 +1 +2
n

EXAMPLE 6.2

1 and 2 standard deviations above the mean. In this way it is possible to define a normal
distribution in terms of its proportions; that is, a distribution is normal if and only if it has
all the right proportions.

There are two additional points to be made about the distribution shown in
Figure 6.4. First, you should realize that the sections on the left side of the distribu-
tion have exactly the same areas as the corresponding sections on the right side
because the normal distribution is symmetrical. Second, because the locations in the
distribution are identified by z-scores, the percentages shown in the figure apply
to any normal distribution regardless of the values for the mean and the standard
deviation. Remember: When any distribution is transformed into z-scores, the mean
becomes zero and the standard deviation becomes one.

Because the normal distribution is a good model for many naturally occurring dis-
tributions and because this shape is guaranteed in some circumstances (as we see in
Chapter 7), we devote considerable attention to this particular distribution. The process
of answering probability questions about a normal distribution is introduced in the fol-
lowing example.

The population distribution of SAT scores is normal with a mean of u = 500 and a
standard deviation of o = 100. Given this information about the population and the
known proportions for a normal distribution (see Figure 6.4), we can determine the
probabilities associated with specific samples. For example, what is the probability of
randomly selecting an individual from this population who has an SAT score greater
than 700?

Restating this question in probability notation, we get

p(X >1700) = ?
We follow a step-by-step process to find the answer to this question.

1. First, the probability question is translated into a proportion question: Out of all
possible SAT scores, what proportion is greater than 700?
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2. The set of “all possible SAT scores” is simply the population distribution. This
population is shown in Figure 6.5. The mean is p = 500, so the score X = 700
is to the right of the mean. Because we are interested in all scores greater than
700, we shade in the area to the right of 700. This area represents the propor-
tion we are trying to determine.

3. Identify the exact position of X = 700 by computing a z-score. For this
example,

,_X-p_700-500_200

= =2.00
o) 100 100

That is, an SAT score of X = 700 is exactly 2 standard deviations above the
mean and corresponds to a z-score of z = +2.00. We have also located this
z-score in Figure 6.5.

4. The proportion we are trying to determine may now be expressed in terms of its
Z-score:

p(z>2.00) = ?

According to the proportions shown in Figure 6.4, all normal distributions,
regardless of the values for u and o, have 2.28% of the scores in the tail beyond
z = +2.00. Thus, for the population of SAT scores,

(X > 700) = p(z > +2.00) = 2.28%

Before we attempt any more probability questions, we must introduce a more useful
tool than the graph of the normal distribution shown in Figure 6.4. The graph shows
proportions for only a few selected z-score values. A more complete listing of z-scores
and proportions is provided in the unit normal table. This table lists proportions of the
normal distribution for a full range of possible z-score values.

The complete unit normal table is provided in Appendix B Table B.1, and part of
the table is reproduced in Figure 6.6. Notice that the table is structured in a four-column

FIGURE 6.5

The distribution of SAT
scores described in
Example 6.2.

o =100

0 2.00
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FIGURE 6.6

A portion of the unit normal table. This table lists proportions of the normal distribution
corresponding to each z-score value. Column A of the table lists z-scores. Column B
lists the proportion in the body of the normal distribution up to the z-score value.
Column C lists the proportion of the normal distribution that is located in the tail of the
distribution beyond the z-score value. Column D lists the proportion between the mean

and the z-score value.

format. The first column (A) lists z-score values corresponding to different positions in
a normal distribution. If you imagine a vertical line drawn through a normal distribution,
then the exact location of the line can be described by one of the z-score values listed
in column A. You should also realize that a vertical line separates the distribution into
two sections: a larger section called the body and a smaller section called the tail.
Columns B and C in the table identify the proportion of the distribution in each of the
two sections. Column B presents the proportion in the body (the larger portion), and
column C presents the proportion in the tail. Finally, we have added a fourth column,
column D, that identifies the proportion of the distribution that is located between the
mean and the z-score.

We use the distribution in Figure 6.7(a) to help introduce the unit normal table. The
figure shows a normal distribution with a vertical line drawn at z = +0.25. Using the
portion of the table shown in Figure 6.6, find the row in the table that contains z = 0.25
in column A. Reading across the row, you should find that the line drawn z = + 0.25
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separates the distribution into two sections with the larger section containing 0.5987
(59.87%) of the distribution and the smaller section containing 0.4013 (40.13%) of the
distribution. Also, there is exactly 0.0987 (9.87%) of the distribution between the mean
and z = +0.25.

PROBABILITIES,
PROPORTIONS, AND

To make full use of the unit normal table, there are a few facts to keep in mind:

1. The body always corresponds to the larger part of the distribution whether it is

on the right-hand side or the left-hand side. Similarly, the fail is always the
smaller section whether it is on the right or the left.

. Because the normal distribution is symmetrical, the proportions on the right-

hand side are exactly the same as the corresponding proportions on the left-
hand side. Earlier, for example, we used the unit normal table to obtain
proportions for z = +0.25. Figure 6.7(b) shows the same proportions for

z = —0.25. For a negative z-score, however, notice that the tail of the distribu-
tion is on the left side and the body is on the right. For a positive z-score
[Figure 6.7(a)], the positions are reversed. However, the proportions in each
section are exactly the same, with 0.55987 in the body and 0.4013 in the tail.
Once again, the table does not list negative z-score values. To find proportions
for negative z-scores, you must look up the corresponding proportions for the
positive value of z.

. Although the z-score values change signs (+ and —) from one side to the other,

the proportions are always positive. Thus, column C in the table always lists the
proportion in the tail whether it is the right-hand tail or the left-hand tail.

The unit normal table lists relationships between z-score locations and proportions in a
normal distribution. For any z-score location, you can use the table to look up the cor-

Z-SCORES  responding proportions. Similarly, if you know the proportions, you can use the table
to find the specific z-score location. Because we have defined probability as equivalent
to proportion, you can also use the unit normal table to look up probabilities for normal
distributions. The following examples demonstrate a variety of different ways that the
unit normal table can be used.

@ > ©
Body Tail Body
0.5987 ) 0.4013 0.5987
Tail
04013
z z
0 -0.25 -0250
FIGURE 6.7
Proportions of a normal distribution corresponding to z = +0.25 (a) and —0.25 (b).
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EXAMPLE 6.3C

Moving to the left on the X-axis
results in smaller X values and
smaller z-scores. Thus, a z-score
of —3.00 reflects a smaller value
than a z-score of —1.
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Finding proportions or probabilities for specific z-score values For each of the
following examples, we begin with a specific z-score value and then use the unit nor-
mal table to find probabilities or proportions associated with the z-score.

What proportion of the normal distribution corresponds to z-score values greater than
z = 1.00? First, you should sketch the distribution and shade in the area you are
trying to determine. This is shown in Figure 6.8(a). In this case, the shaded portion is
the tail of the distribution beyond z = 1.00. To find this shaded area, you simply look
for z = 1.00 in column A to find the appropriate row in the unit normal table. Then
scan across the row to column C (tail) to find the proportion. Using the table in
Appendix B, you should find that the answer is 0.1587.

You also should notice that this same problem could have been phrased as a
probability question. Specifically, we could have asked, “For a normal distribution,
what is the probability of selecting a z-score value greater than z = +1.007” Again,
the answer is p(z > 1.00) = 0.1587 (or 15.87%).

For a normal distribution, what is the probability of selecting a z-score less than

z = 1.50? In symbols, p(z < 1.50) = ? Our goal is to determine what proportion of
the normal distribution corresponds to z-scores less than 1.50. A normal distribution
is shown in Figure 6.8(b) and z = 1.50 is marked in the distribution. Notice that we
have shaded all the values to the left of (less than) z = 1.50. This is the portion we
are trying to find. Clearly the shaded portion is more than 50%, so it corresponds to
the body of the distribution. Therefore, find z = 1.50 in column A of the unit normal
table and read across the row to obtain the proportion from column B. The answer is
p(z < 1.50) = 0.9332 (or 93.32%).

Many problems require that you find proportions for negative z-scores. For example,
what proportion of the normal distribution is contained in the tail beyond z = —0.50?
That is, p(z < —0.50). This portion has been shaded in Figure 6.8(c). To answer questions
with negative z-scores, simply remember that the normal distribution is symmetrical

with a z-score of zero at the mean, positive values to the right, and negative values to

the left. The proportion in the left tail beyond z = —0.50 is identical to the proportion

(@ ®) ©
z z Zz
0 1.00 0 1.50 -050
u u u
FIGURE 6.8
The distribution for Examples 6.3A to 6.3C.
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EXAMPLE 6.4A

EXAMPLE 6.4B

in the right tail beyond z = +0.50. To find this proportion, look up z = 0.50 in column A,
and read across the row to find the proportion in column C (tail). You should get an
answer of 0.3085 (30.85%).

Finding the z-score location that corresponds to specific proportions The preced-
ing examples all involved using a z-score value in column A to look up proportions in
column B or C. You should realize, however, that the table also allows you to begin
with a known proportion and then look up the corresponding z-score. The following
examples demonstrate this process.

For a normal distribution, what z-score separates the top 10% from the remainder
of the distribution? To answer this question, we have sketched a normal distribution
[Figure 6.9(a)] and drawn a vertical line that separates the highest 10% (approxi-
mately) from the rest. The problem is to locate the exact position of this line. For
this distribution, we know that the tail contains 0.1000 (10%) and the body contains
0.9000 (90%). To find the z-score value, you simply locate the row in the unit normal
table that has 0.1000 in column C or 0.9000 in column B. For example, you can scan
down the values in column C (tail) until you find a proportion of 0.1000. Note that
you probably will not find the exact proportion, but you can use the closest value
listed in the table. For this example, a proportion of 0.1000 is not listed in column C
but you can use 0.1003, which is listed. Once you have found the correct proportion
in the table, simply read across the row to find the corresponding z-score value in
column A.

For this example, the z-score that separates the extreme 10% in the tail is z = 1.28.
At this point you must be careful because the table does not differentiate between the
right-hand tail and the left-hand tail of the distribution. Specifically, the final answer
could be either z = +1.28, which separates 10% in the right-hand tail, or z = —1.28,
which separates 10% in the left-hand tail. For this problem we want the right-hand tail
(the highest 10%), so the z-score value is z = +1.28.

For a normal distribution, what z-score values form the boundaries that separate the
middle 60% of the distribution from the rest of the scores?

Again, we have sketched a normal distribution [Figure 6.9(b)] and drawn vertical
lines so that roughly 60% of the distribution in the central section, with the remainder

FIGURE 6.9

The distribution for
Examples 6.4A and 6.4B.
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split equally between the two tails. The problem is to find the z-score values that
define the exact locations for the lines. To find the z-score values, we begin with
the known proportions: 0.6000 in the center and 0.4000 divided equally between
the two tails. Although these proportions can be used in several different ways,

this example provides an opportunity to demonstrate how column D in the table
can be used to solve problems. For this problem, the 0.6000 in the center can be
divided in half with exactly 0.3000 to the right of the mean and exactly 0.3000 to
the left. Each of these sections corresponds to the proportion listed in column D.
Begin by scanning down column D, looking for a value of 0.3000. Again, this exact
proportion is not in the table, but the closest value is 0.2995. Reading across the
row to column A, you should find a z-score value of z = 0.84. Looking again at the
sketch [Figure 6.9(b)], the right-hand line is located at z = +0.84 and the left-hand
line is located at z =—0.84.

You may have noticed that we have sketched distributions for each of the preced-
ing problems. As a general rule, you should always sketch a distribution, locate the
mean with a vertical line, and shade in the portion that you are trying to determine.
Look at your sketch. It will help you to determine which columns to use in the unit nor-
mal table. If you make a habit of drawing sketches, you will avoid careless errors when
using the table.

1. Find the proportion of a normal distribution that corresponds to each of the follow-
ing sections:
a. 7<0.25
b. z>0.80
c. z<-1.50
d. z>-0.75

2. For a normal distribution, find the z-score location that divides the distribution as
follows:

a. Separate the top 20% from the rest.
b. Separate the top 60% from the rest.
c. Separate the middle 70% from the rest.

3. The tail will be on the right-hand side of a normal distribution for any positive
z-score. (True or false?)

1. a. p = 0.5987
b. p = 02119
c. p = 0.06638
d. p =0.7734

2. a.z=084
b. z=-0.25

c. z= —1.04 and + 1.04
3. True
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Caution: The unit normal
table can be used only with
normal-shaped distributions.
If a distribution is not normal,
transforming to z-scores does
not make it normal.

EXAMPLE 6.5

PROBABILITIES AND PROPORTIONS FOR SCORES FROM
A NORMAL DISTRIBUTION

In the preceding section, we used the unit normal table to find probabilities and pro-
portions corresponding to specific z-score values. In most situations, however, it is nec-
essary to find probabilities for specific X values. Consider the following example:

It is known that IQ scores form a normal distribution with p = 100 and o = 15. Given this
information, what is the probability of randomly selecting an individual with an IQ score less
than 120?

This problem is asking for a specific probability or proportion of a normal distri-
bution. However, before we can look up the answer in the unit normal table, we must
first transform the 1Q scores (X values) into z-scores. Thus, to solve this new kind of
probability problem, we must add one new step to the process. Specifically, to answer
probability questions about scores (X values) from a normal distribution, you must use
the following two-step procedure:

1. Transform the X values into z-scores.

2. Use the unit normal table to look up the proportions corresponding to the
z-score values.

This process is demonstrated in the following examples. Once again, we suggest
that you sketch the distribution and shade the portion you are trying to find to avoid
careless mistakes.

We now answer the probability question about IQ scores that we presented earlier.
Specifically, what is the probability of randomly selecting an individual with an IQ
score less than 1207 Restated in terms of proportions, we want to find the proportion
of the IQ distribution that corresponds to scores less than 120. The distribution is
drawn in Figure 6.10, and the portion we want has been shaded.

The first step is to change the X values into z-scores. In particular, the score of
X = 120 is changed to

Z=X—p“=120—1002@=1‘33
T 15 15

FIGURE 6.10

The distribution of 1Q
scores. The problem is

to find the probability or
proportion of the distribution
corresponding to scores less
than 120.




EXAMPLE 6.6

SECTION 6.3 / PROBABILITIES AND PROPORTIONS FOR SCORES FROM A NORMAL DISTRIBUTION 179

Thus, an 1Q score of X = 120 corresponds to a z-score of z = 1.33, and 1Q scores
less than 120 correspond to z-scores less than 1.33.

Next, look up the z-score value in the unit normal table. Because we want the
proportion of the distribution in the body to the left of X = 120 (see Figure 6.10), the
answer is in column B. Consulting the table, we see that a z-score of 1.33 corresponds
to a proportion of 0.9082. The probability of randomly selecting an individual with an
1Q less than 120 is p = 0.9082. In symbols,

(X < 120) = p(z < 1.33) = 0.9082 (or 90.82%)

Finally, notice that we phrased this question in terms of a probability. Specifi-
cally, we asked, “What is the probability of selecting an individual with an IQ less
than 120?” However, the same question can be phrased in terms of a proportion:
“What proportion of all of the individuals in the population have 1Q scores less
than 120?” Both versions ask exactly the same question and produce exactly the
same answer. A third alternative for presenting the same question is introduced in
Box 6.1.

Finding proportions/probabilities located between two scores The next example
demonstrates the process of finding the probability of selecting a score that is located
between two specific values. Although these problems can be solved using the propor-
tions of columns B and C (body and tail), they are often easier to solve with the pro-
portions listed in column D.

The highway department conducted a study measuring driving speeds on a local
section of interstate highway. They found an average speed of u = 58 miles per hour

with a standard deviation of o = 10. The distribution was approximately normal.

PROBABILITIES, PROPORTIONS, AND PERCENTILE RANKS

Thus far we have discussed parts of distributions in
terms of proportions and probabilities. However, there is
another set of terminology that deals with many of the
same concepts. Specifically, in Chapter 2 we defined the
percentile rank for a specific score as the percentage of
the individuals in the distribution who have scores that
are less than or equal to the specific score. For example,
if 70% of the individuals have scores of X = 45 or lower,
then X = 45 has a percentile rank of 70%. When a score
is referred to by its percentile rank, the score is called a
percentile. For example, a score with a percentile rank of
70% is called the 70th percentile.

Using this terminology, it is possible to rephrase
some of the probability problems that we have been

working. In Example 6.5, the problem is presented

as “What is the probability of randomly selecting an
individual with an IQ of less than 120?” Exactly the
same question could be phrased as “What is the per-
centile rank for an IQ score of 120?” In each case,

we are drawing a line at X = 120 and looking for the
proportion of the distribution on the left-hand side of
the line. Similarly, Example 6.8 asks “How much time
do you have to spend commuting each day to be in the
highest 10% nationwide?” Because this score separates
the top 10% from the bottom 90%, the same question
could be rephrased as “What is the 90th percentile for
the distribution of commuting times?”’
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EXAMPLE 6.7

Given this information, what proportion of the cars are traveling between 55 and
65 miles per hour? Using probability notation, we can express the problem as

p(55 < X < 65) =?

The distribution of driving speeds is shown in Figure 6.11 with the appropriate
area shaded. The first step is to determine the z-score corresponding to the X value at
each end of the interval.

For X=55z=—=———=—=-0.30
o 10 10

ForX=65:z=u=ﬂ=l=0.7O
o 10 10

Looking again at Figure 6.11, we see that the proportion we are seeking can
be divided into two sections: (1) the area left of the mean, and (2) the area right of
the mean. The first area is the proportion between the mean and z = —0.30, and the
second is the proportion between the mean and z = +0.70. Using column D of the
unit normal table, these two proportions are 0.1179 and 0.2580. The total proportion
is obtained by adding these two sections:

p(55 <X <65) = p(-0.30 <z< +0.70) = 0.1179 + 0.2580 = 0.3759

Using the same distribution of driving speeds from the previous example, what
proportion of cars are traveling between 65 and 75 miles per hour?

P65 <X <75) =72

The distribution is shown in Figure 6.12 with the appropriate area shaded. Again,
we start by determining the z-score corresponding to each end of the interval.

_X-—p_75-58 17 _

For X =175: z 1.70
o 10 10
X—u 65-58 7
For X = 65: = = =—=10.70
o TS 10 10
FIGURE 6.11 ]
The distribution for
Example 6.6. =10
55 65 X
= 58
T V4

-30 0 .70
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FIGURE 6.12
The distribution for
Example 6.7. o = 10\
p =58 65 75
1 1 1
0 .70 1.70
There are several different ways to use the unit normal table to find the proportion
between these two z-scores. For this example, we use the proportions in the tail of the
distribution (column C). According to column C in the unit normal table, the proportion
in the tail beyond z = 0.70 is p = 0.2420. Note that this proportion includes the section
that we want, but it also includes an extra, unwanted section located in the tail beyond
z = 1.70. Locating z = 1.70 in the table, and reading across the row to column C, we
see that the unwanted section is p = 0.0446. To obtain the correct answer, we subtract
the unwanted portion from the total proportion in the tail beyond z = 0.70.
p65 < X <75) = p(0.70 < z < 1.70) = 0.2420 — 0.0446 = 0.1974
Finding scores corresponding to specific proportions or probabilities In the previ-
ous three examples, the problem was to find the proportion or probability corresponding
to specific X values. The two-step process for finding these proportions is shown in
Figure 6.13. Thus far, we have only considered examples that move in a clockwise
direction around the triangle shown in the figure; that is, we start with an X value that
is transformed into a z-score, and then we use the unit normal table to look up the
FIGURE 6.13 z-score formula
X z-score
Determining probabilities \\\
or proportions for a normal N
distribution is shown as a AN
two-step process with AN unit
z-scores as an intermediate \\\ normal
stop along the way. Note that N table
you cannot move directly AN
along the dashed line between \\\
X values and probabilities and AN
proportions. Instead, you must AN
follow the solid lines around Proportions
the corner. or
probabilities
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EXAMPLE 6.8

appropriate proportion. You should realize, however, that it is possible to reverse this
two-step process so that we move backward, or counterclockwise, around the triangle.
This reverse process allows us to find the score (X value) corresponding to a specific pro-
portion in the distribution. Following the lines in Figure 6.13, we begin with a specific
proportion, use the unit normal table to look up the corresponding z-score, and then
transform the z-score into an X value. The following example demonstrates this process.

The U.S. Census Bureau (2005) reports that Americans spend an average of

p = 24.3 minutes commuting to work each day. Assuming that the distribution of
commuting times is normal with a standard deviation of ¢ = 10 minutes, how much
time do you have to spend commuting each day to be in the highest 10% nationwide?
(An alternative form of the same question is presented in Box 6.1.) The distribution is
shown in Figure 6.14 with a portion representing approximately 10% shaded in the
right-hand tail.

In this problem, we begin with a proportion (10% or 0.10), and we are looking
for a score. According to the map in Figure 6.13, we can move from p (proportion) to
X (score) via z-scores. The first step is to use the unit normal table to find the z-score
that corresponds to a proportion of 0.10 in the tail. First, scan the values in column C
to locate the row that has a proportion of 0.10 in the tail of the distribution. Note that
you will not find 0.1000 exactly, but locate the closest value possible. In this case, the
closest value is 0.1003. Reading across the row, we find z = 1.28 in column A.

The next step is to determine whether the z-score is positive or negative. Remember
that the table does not specify the sign of the z-score. Looking at the distribution in
Figure 6.14, you should realize that the score we want is above the mean, so the z-score
is positive, z = +1.28.

The final step is to transform the z-score into an X value. By definition, a z-score
of +1.28 corresponds to a score that is located above the mean by 1.28 standard
deviations. One standard deviation is equal to 10 points (o = 10), so 1.28 standard
deviations is

1.280 = 1.28(10) = 12.8 points

FIGURE 6.14

The distribution of commuting
times for American workers.
The problem is to find the
score that separates the
highest 10% of commuting
times from the rest.

Highest 10%

w=243 37.1

0 1.28
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Thus, our score is located above the mean (u = 24.3) by a distance of 12.8 points.
Therefore,

X =243+ 128 =37.1

The answer for our original question is that you must commute at least 37.1 minutes
a day to be in the top 10% of American commuters.

EXAMPLE 6.9 Again, the distribution of commuting time for American workers is normal with a
mean of u = 24.3 minutes and a standard deviation of ¢ = 10 minutes. For this
example, we find the range of values that defines the middle 90% of the distribution.
The entire distribution is shown in Figure 6.15 with the middle portion shaded.

The 90% (0.9000) in the middle of the distribution can be split in half with 45%
(0.4500) on each side of the mean. Looking up 0.4500, in column D of the unit normal
table, you will find that the exact proportion is not listed. However, you will find 0.4495
and 0.4505, which are equally close. Technically, either value is acceptable, but we use
0.4505 so that the total area in the middle is at least 90%. Reading across the row, you
should find a z-score of z = 1.65 in column A. Thus, the z-score at the right boundary is
z = +1.65 and the z-score at the left boundary is z = —1.65. In either case, a z-score of
1.65 indicates a location that is 1.65 standard deviations away from the mean. For the
distribution of commuting times, one standard deviation is ¢ = 10, so 1.65 standard
deviations is a distance of

1.650 = 1.65(10) = 16.5 points

Therefore, the score at the right-hand boundary is located above the mean by
16.5 points and corresponds to X = 24.3 + 16.5 = 40.8. Similarly, the score at the
left-hand boundary is below the mean by 16.5 points and corresponds to X = 24.3 —
16.5 = 7.8. The middle 90% of the distribution corresponds to values between 7.8 and
40.8. Thus, 90% of American commuters spend between 7.8 and 40.8 minutes commu-
ting to work each day. Only 10% of commuters spend either more time or less time.

FIGURE 6.15 Middle 90%
The distribution of commuting
times for American workers.
The problem is to find the
middle 90% of the
distribution.
oc=10
X
7.8 n =243 40.8
V4

—1.65 0 1.65
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ANSWERS

1. For a normal distribution with a mean of u = 60 and a standard deviation of
o = 12, find each probability value requested.

a. p(X > 66)
b. p(X <75)
c. p(X <57)
d. p48 <X <72)
2. Scores on the Mathematics section of the SAT Reasoning Test form a normal
distribution with a mean of u = 500 and a standard deviation of ¢ = 100.

a. If the state college only accepts students who score in the top 60% on this test,
what is the minimum score needed for admission?

b. What is the minimum score necessary to be in the top 10% of the distribution?
¢. What scores form the boundaries for the middle 50% of the distribution?

3. What is the probability of selecting a score greater than 45 from a positively
skewed distribution with u = 40 and o = 10? (Be careful.)

1. a. p = 03085
b. p = 0.8944
¢. p=04013
d. p = 0.6826

2. a. z=-025; X =475
b. z =1.28; X = 628
c. z= *0.67; X =433 and X =567

3. You cannot obtain the answer. The unit normal table cannot be used to answer this question
because the distribution is not normal.

PROBABILITY AND THE BINOMIAL DISTRIBUTION

When a variable is measured on a scale consisting of exactly two categories, the resulting
data are called binomial. The term binomial can be loosely translated as “two names,”
referring to the two categories on the measurement scale.

Binomial data can occur when a variable naturally exists with only two categories.
For example, people can be classified as male or female, and a coin toss results in
either heads or tails. It also is common for a researcher to simplify data by collapsing
the scores into two categories. For example, a psychologist may use personality scores
to classify people as either high or low in aggression.

In binomial situations, the researcher often knows the probabilities associated with
each of the two categories. With a balanced coin, for example, p(heads) = p(tails) = %
The question of interest is the number of times each category occurs in a series of tri-
als or in a sample of individuals. For example:

What is the probability of obtaining 15 heads in 20 tosses of a balanced coin?
What is the probability of obtaining more than 40 introverts in a sampling of
50 college freshmen?
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As we shall see, the normal distribution serves as an excellent model for comput-
ing probabilities with binomial data.

THE BINOMIAL DISTRIBUTION To answer probability questions about binomial data, we must examine the binomial
distribution. To define and describe this distribution, we first introduce some notation.

1. The two categories are identified as A and B.
2. The probabilities (or proportions) associated with each category are identified as
p = p(A) = the probability of A
q = p(B) = the probability of B
Notice that p + ¢ = 1.00 because A and B are the only two possible outcomes.

3. The number of individuals or observations in the sample is identified by n.

4. The variable X refers to the number of times category A occurs in the sample.

Notice that X can have any value from 0 (none of the sample is in category A) to n
(all of the sample is in category A).

DEFINITION Using the notation presented here, the binomial distribution shows the proba-
bility associated with each value of X from X = 0 to X = n.

A simple example of a binomial distribution is presented next.

EXAMPLE 6.10 Figure 6.16 shows the binomial distribution for the number of heads obtained in
2 tosses of a balanced coin. This distribution shows that it is possible to obtain as
many as 2 heads or as few as 0 heads in 2 tosses. The most likely outcome (highest
probability) is to obtain exactly 1 head in 2 tosses. The construction of this
binomial distribution is discussed in detail next.
For this example, the event we are considering is a coin toss. There are two
possible outcomes, heads and tails. We assume the coin is balanced, so

1
= plheads|=—
p=p(heads)=—
FIGURE 6.16 >
The binomial distribution % 0.50
showing the probability 9]
- . . QO
for the number of heads in O 0.25
2 tosses of a balanced coin. o
0
0 1 2
Number of heads
in 2 coin tosses
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1
= pltails)|=—
g=p(uails)=>
We are looking at a sample of n = 2 tosses, and the variable of interest is

X = the number of heads

To construct the binomial distribution, we look at all of the possible outcomes

from tossing a coin 2 times. The complete set of 4 outcomes is listed in the following
table.

1st Toss 2nd Toss

Heads Heads (Both heads)

Heads Tails (Each sequence has exactly 1 head)
Tails Heads

Tails Tails (No heads)

Notice that there are 4 possible outcomes when you toss a coin 2 times. Only
1 of the 4 outcomes has 2 heads, so the probability of obtaining 2 heads is p = %.
Similarly, 2 of the 4 outcomes have exactly 1 head, so the probability of 1 head is
p= % = % Finally, the probability of no heads (X = 0)is p = %. These are the
probabilities shown in Figure 6.16.

Note that this binomial distribution can be used to answer probability questions.
For example, what is the probability of obtaining at least 1 head in 2 tosses?

According to the distribution shown in Figure 6.16, the answer is %.

Similar binomial distributions have been constructed for the number of heads in
4 tosses of a balanced coin and in 6 tosses of a coin (Figure 6.17). It should be obvi-
ous from the binomial distributions shown in Figures 6.16 and 6.17 that the binomial

@ ®

0.375
> > 0.2500
ol ol
8 0.250 - _8 0.1875
o o
& % 01250 -

0.125

0.0625
[ 1
2 3 4 0 1 2 3 4 5 6
Number of heads Number of heads
in 4 coin tosses in 6 coin fosses

FIGURE 6.17
Binomial distributions showing probabilities for the number of heads (a) in 4 tosses of a balanced
coin and (b) in 6 tosses of a balanced coin.




THE NORMAL
APPROXIMATION TO THE
BINOMIAL DISTRIBUTION

The value of 10 for pn or gn is

a general guide, not an absolute
cutoff. Values slightly less than
10 still provide a good approxi-
mation. However, with smaller
values the normal approximation
becomes less accurate as a
substitute for the binomial
distribution.

Coin tosses produce discrete
events. In a series of coin tosses,
you may observe 1 head, 2 heads,
3 heads, and so on, but no values
between them are possible

(p. 21).
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distribution tends toward a normal shape, especially when the sample size (n) is rela-
tively large.

It should not be surprising that the binomial distribution tends to be normal. With
n = 10 coin tosses, for example, the most likely outcome would be to obtain around
X = 5 heads. On the other hand, values far from 5 would be very unlikely—you would
not expect to get all 10 heads or all 10 tails (0 heads) in 10 tosses. Notice that we have
described a normal-shaped distribution: The probabilities are highest in the middle
(around X = 5), and they taper off as you move toward either extreme.

We have stated that the binomial distribution tends to approximate a normal distribu-
tion, particularly when n is large. To be more specific, the binomial distribution is a
nearly perfect normal distribution when pn and gn are both equal to or greater than 10.
Under these circumstances, the binomial distribution approximates a normal distribu-
tion with the following parameters:

Mean: u = pn 6.1)

standard deviation: o =+/npgq (6.2)

Within this normal distribution, each value of X has a corresponding z-score,

X—wn_ X-—pn
g \npq

The fact that the binomial distribution tends to be normal in shape means that we
can compute probability values directly from z-scores and the unit normal table.

It is important to remember that the normal distribution is only an approximation
of a true binomial distribution. Binomial values, such as the number of heads in a
series of coin tosses, are discrete. The normal distribution is continuous. However, the
normal approximation provides an extremely accurate model for computing binomial
probabilities in many situations. Figure 6.18 shows the difference between the true
binomial distribution, the discrete histogram, and the normal curve that approximates
the binomial distribution. Although the two distributions are slightly different, the area
under the distributions is nearly equivalent. Remember, it is the area under the distri-
bution that is used to find probabilities.

7=

6.3)

FIGURE 6.18

The relationship between
the binomial distribution
and the normal distribution.
The binomial distribution is
always a discrete histogram,
and the normal distribution
is a continuous, smooth
curve. Each X value is
represented by a bar in the
histogram or a section of
the normal distribution.
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EXAMPLE 6.11

To gain maximum accuracy when using the normal approximation, you must
remember that each X value in the binomial distribution actually corresponds to a bar
in the histogram. In the histogram in Figure 6.18, for example, the score X = 6 is rep-
resented by a bar that is bounded by real limits of 5.5 and 6.5. The actual probability of
X = 6 is determined by the area contained in this bar. To approximate this probability
using the normal distribution, you should find the area that is contained between the
two real limits. Similarly, if you are using the normal approximation to find the proba-
bility of obtaining a score greater than X = 6, you should use the area beyond the real
limit boundary of 6.5. The following example demonstrates how the normal approxi-
mation to the binomial distribution is used to compute probability values.

Suppose that you plan to test for ESP (extra-sensory perception) by asking people to
predict the suit of a card that is randomly selected from a complete deck. Before you
begin your test, however, you need to know what kind of performance is expected from
people who do not have ESP and are simply guessing. For these people, there are two
possible outcomes, correct or incorrect, on each trial. Because there are four different
suits, the probability of a correct prediction (assuming that there is no ESP) is p = %
and the probability of an incorrect prediction is g = %. With a series of n = 48 trials,
this situation meets the criteria for the normal approximation to the binomial
distribution:

pn = i(48) =12 gn= %(48) = 36 Both are greater than 10.

Thus, the distribution of correct predictions forms a normal-shaped distribution
with a mean of p = pn = 12 and a standard deviation of ¢ = \/npg = V9 = 3. We
can use this distribution to determine probabilities for different levels of performance.
For example, we can calculate the probability that a person without ESP would guess
correctly more than 15 times in a series of 48 trials.

Figure 6.19 shows the binomial distribution that we are considering. Because we
want the probability of obtaining more than 15 correct predictions, we must find the

FIGURE 6.19

The normal approximation
of the binomial distribution
discussed in Example 6.11.

X=15

/(14.5—15.5)

u=12 15.5




Caution: If the question had
asked for the probability of

15 or more correct predictions,
we would find the area beyond
X = 14.5. Read the question
carefully.

ANSWERS
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shaded area in the tail of the distribution beyond X = 15.5. (Remember that a score of
15 corresponds to an interval from 14.5 to 15.5. We want scores beyond this interval.)
The first step is to find the z-score corresponding to X = 15.5.

ZZX—M=15.53—12=1.17

Next, look up the probability in the unit normal table. In this case, we want the
proportion in the tail beyond z = 1.17. The value from the table is p = 0.1210. This is
the answer we want. The probability of correctly predicting the suit of a card more than
15 times in a series of 48 trials is only p = 0.1210 or 12.10%. Thus, it is very unlikely
for an individual without ESP to guess correctly more than 15 out of 48 trials.

1. Under what circumstances is the normal distribution an accurate approximation of
the binomial distribution?

2. In the game Rock-Paper-Scissors, the probability that both players will select the
same response and tie is p = %, and the probability that they will pick different
responses is p = % If two people play 72 rounds of the game and choose their
responses randomly, what is the probability that they will choose the same
response (tie) more than 28 times?

3. If you toss a balanced coin 36 times, you would expect, on the average, to get
18 heads and 18 tails. What is the probability of obtaining exactly 18 heads in
36 tosses?

1. When pn and gn are both greater than 10

2. With p = § and ¢ = %, the binomial distribution is normal with p = 24 and o = 4;
p(X > 28.5) = p(z > 1.13) = 0.1292.

3. X = 18 is an interval with real limits of 17.5 and 18.5. The real limits correspond to z = *0.17,
and a probability of p = 0.1350.

LOOKING AHEAD TO INFERENTIAL STATISTICS

Probability forms a direct link between samples and the populations from which they
come. As we noted at the beginning of this chapter, this link is the foundation for the
inferential statistics in future chapters. The following example provides a brief preview
of how probability is used in the context of inferential statistics.

We ended Chapter 5 with a demonstration of how inferential statistics are used to
help interpret the results of a research study. A general research situation was shown in
Figure 5.9 and is repeated here in Figure 6.20. The research begins with a population
that forms a normal distribution with a mean of p = 400 and a standard deviation of
o = 20. A sample is selected from the population and a treatment is administered to the
sample. The goal for the study is to evaluate the effect of the treatment.
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FIGURE 6.20

A diagram of a research
study. A sample is selected
from the population and
receives a treatment. The
goal is to determine whether
the treatment has an effect.

Population

Normal
w = 400
=20

T
r
e
sample ? Treated
m sample
e
n
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To determine whether the treatment has an effect, the researcher simply compares
the treated sample with the original population. If the individuals in the sample have
scores around 400 (the original population mean), then we must conclude that the treat-
ment appears to have no effect. On the other hand, if the treated individuals have scores
that are noticeably different from 400, then the researcher has evidence that the treatment
does have an effect. Notice that the study is using a sample to help answer a question
about a population; this is the essence of inferential statistics.

The problem for the researcher is determining exactly what is meant by “notice-
ably different” from 400. If a treated individual has a score of X = 415, is that enough
to say that the treatment has an effect? What about X = 420 or X = 4507 In Chapter 5,
we suggested that z-scores provide one method for solving this problem. Specifically,
we suggested that a z-score value beyond z = 2.00 (or —2.00) was an extreme value and,
therefore, noticeably different. However, the choice of z = +2.00 was purely arbitrary.
Now we have another tool, probability, to help us decide exactly where to set the
boundaries.

Figure 6.21 shows the original population from our hypothetical research study.
Note that most of the scores are located close to p = 400. Also note that we have added
boundaries separating the middle 95% of the distribution from the extreme 5%, or
0.0500, in the two tails. Dividing the 0.0500 in half produces proportions of 0.0250 in
the right-hand tail and 0.0250 in the left-hand tail. Using column C of the unit normal
table, the z-score boundaries for the right and left tails are z = +1.96 and z = —1.96,
respectively.

The boundaries set at z = *1.96 provide objective criteria for deciding whether
our sample provides evidence that the treatment has an effect. Specifically, we use the
sample data to help decide between the following two alternatives:

1. The treatment has no effect. After treatment, the scores still average u = 400.
2. The treatment does have an effect. The treatment changes the scores so that,
after treatment, they no longer average p = 400.

As a starting point, we assume that the first alternative is true and the treatment has
no effect. In this case, treated individuals should be no different from the individuals in
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FIGURE 6.21

Using probability to evalu-
ate a treatment effect.
Values that are extremely
unlikely to be obtained from
the original population are
viewed as evidence of a
treatment effect.

Middle 95%

High probability values
(scores near p = 400)
indicating that the tfreatment
has no effect

1
p = 400
z=—-1.96 z=+1.96

Extreme 5%

Scores that are very unlikely
to be obtained from the original population
and therefore provide evidence of a tfreatment effect

the original population, which is shown in Figure 6.21. Notice that, if our assumption
is correct, it is extremely unlikely (probability less than 5%) for a treated individual to
be outside the =1.96 boundaries. Therefore, if we obtain a treated individual who is
outside the boundaries, we must conclude that the assumption is probably not correct.
In this case, we are left with the second alternative (the treatment does have an effect)
as the more likely explanation.

Notice that we are comparing the treated sample with the original population to see
if the sample is noticeably different. If it is different, we can conclude that the treatment
seems to have an effect. Now we are defining “noticeably different” as meaning “very
unlikely.” Specifically, if the sample is very unlikely to have come from a population
of untreated individuals, then we must conclude that the treatment has an effect and has
caused the sample to be different.

We are using the sample data and the *=1.96 boundaries, which were determined
by probabilities, to make a general decision about the treatment. If the sample falls out-
side the boundaries we make the following logical conclusion:

a. This kind of sample is very unlikely to occur if the treatment has no effect.

b. Therefore, the treatment must have an effect that changed the sample.
On the other hand, if the sample falls between the *1.96 boundaries, we conclude:

a. This is the kind of sample that is likely to occur if the treatment has no effect.

b. Therefore, the treatment does not appear to have had an effect.
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1. The probability of a particular event A is defined as a
fraction or proportion:

number of outcomes classified as A
total number of possible outcomes

pA) =

2. Our definition of probability is accurate only for
random samples. There are two requirements that must
be satisfied for a random sample:

a. Every individual in the population has an equal
chance of being selected.

b. When more than one individual is being selected, the
probabilities must stay constant. This means that
there must be sampling with replacement.

3. All probability problems can be restated as proportion
problems. The “probability of selecting a king from a
deck of cards” is equivalent to the “proportion of the
deck that consists of kings.” For frequency distributions,
probability questions can be answered by determining
proportions of area. The “probability of selecting an
individual with an IQ greater than 108” is equivalent to
the “proportion of the whole population that consists of
1Qs greater than 108.”

4. For normal distributions, probabilities (proportions) can
be found in the unit normal table. The table provides a
listing of the proportions of a normal distribution that
correspond to each z-score value. With the table, it is
possible to move between X values and probabilities
using a two-step procedure:

a. The z-score formula (Chapter 5) allows you to
transform X to z or to change z back to X.

b. The unit normal table allows you to look up the
probability (proportion) corresponding to each
z-score or the z-score corresponding to each
probability.

KEY TERMS

probability (165)
random sample (167)

independent random sample (167)

sampling with replacement (168)
unit normal table (172)
percentile rank (179)

5. Percentiles and percentile ranks measure the relative
standing of a score within a distribution (see Box 6.1).
Percentile rank is the percentage of individuals with
scores at or below a particular X value. A percentile is
an X value that is identified by its rank. The percentile
rank always corresponds to the proportion to the left of
the score in question.

. The binomial distribution is used whenever the

measurement procedure classifies individuals into
exactly two categories. The two categories are
identified as A and B, with probabilities of

pA)=p and pB)=gq

. The binomial distribution gives the probability for each

value of X, where X equals the number of occurrences
of category A in a series of n events. For example, X
equals the number of heads in n = 10 tosses of a coin.

When pn and gn are both at least 10, the binomial
distribution is closely approximated by a normal
distribution with

=pn o=ynpq

. In the normal approximation to the binomial distribution,

each value of X has a corresponding z-score:

X—w_X-—pn
o \npq

With the z-score and the unit normal table, you can find
probability values associated with any value of X. For

maximum accuracy, you should use the appropriate real
limits for X when computing z-scores and probabilities.

7=

percentile (179)
binomial distribution (185)

normal approximation (binomial) (187)
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Book Companion Website: www.cengage.com/psychology/gravetter
You can find a tutorial quiz and other learning exercises for Chapter 6 on the book
companion website.

aplia
Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.
CENGAGEbrain

Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific website,
Psychology CourseMate includes an integrated interactive eBook and other interactive
learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.

The statistics computer package SPSS is not structured to compute probabilities.
However, the program does report probability values as part of the inferential statistics
that we examine later in this book. In the context of inferential statistics, the probabili-
ties are called significance levels, and they warn researchers about the probability of
misinterpreting their research results.

FOCUS ON PROBLEM SOLVING

1. We have defined probability as being equivalent to a proportion, which means that
you can restate every probability problem as a proportion problem. This definition is
particularly useful when you are working with frequency distribution graphs in which
the population is represented by the whole graph and probabilities (proportions) are
represented by portions of the graph. When working problems with the normal
distribution, you always should start with a sketch of the distribution. You should
shade the portion of the graph that reflects the proportion you are looking for.

2. Remember that the unit normal table shows only positive z-scores in column A.
However, because the normal distribution is symmetrical, the proportions in the
table apply to both positive and negative z-score values.
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DEMONSTRATION 6.1

3. A common error for students is to use negative values for proportions on the left-
hand side of the normal distribution. Proportions (or probabilities) are always
positive: 10% is 10% whether it is in the left or right tail of the distribution.

4. The proportions in the unit normal table are accurate only for normal distributions.
If a distribution is not normal, you cannot use the table.

5. For maximum accuracy when using the normal approximation to the binomial
distribution, you must remember that each X value is an interval bounded by real
limits. For example, a score of X = 10 is actually an interval from 9.5 to 10.5. To
find the probability of obtaining an X value greater than 10, you should use the real
limit 10.5 in the z-score formula. Similarly, to find the probability of obtaining an
X value less than 10, you should use the real limit 9.5.

STEP 1

STEP 2

STEP 3

FINDING PROBABILITY FROM THE UNIT NORMAL TABLE

A population is normally distributed with a mean of p = 45 and a standard deviation
of 0 = 4. What is the probability of randomly selecting a score that is greater than 43?
In other words, what proportion of the distribution consists of scores greater than 43?

Sketch the distribution. For this demonstration, the distribution is normal with

pu = 45 and o = 4. The score of X = 43 is lower than the mean and therefore is placed
to the left of the mean. The question asks for the proportion corresponding to scores
greater than 43, so shade in the area to the right of this score. Figure 6.22 shows the
sketch.

Transform the X value to a z-score.

Find the appropriate proportion in the unit normal table. Ignoring the negative
size, locate z = —0.50 in column A. In this case, the proportion we want corresponds to
the body of the distribution and the value is found in column B. For this example,

p(X > 43) = p(z > -0.50) = 0.6915

FIGURE 6.22

A sketch of the distribution
for Demonstration 6.1.

43
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DEMONSTRATION 6.2

PROBABILITY AND THE BINOMIAL DISTRIBUTION

Suppose that you completely forgot to study for a quiz and now must guess on every
question. It is a true/false quiz with n = 40 questions. What is the probability that you
will get at least 26 questions correct just by chance? Stated in symbols,

P(X =126) = ?

STEP 1 Identify p and ¢g. This problem is a binomial situation, in which
p = probability of guessing correctly = 0.50
q = probability of guessing incorrectly = 0.50

With n = 40 quiz items, both pn and gn are greater than 10. Thus, the criteria for the
normal approximation to the binomial distribution are satisfied:

pn = 0.50(40) = 20

gn = 0.50(40) = 20
STEP 2 Identify the parameters, and sketch the binomial distribution. For a true/false
quiz, correct and incorrect guesses are equally likely, p = g = % With pn and gn both

greater than 10, the normal approximation is appropriate and has a mean and a standard
deviation as follows:

w=pn=0.5(40)=20

0=anq=x/ﬁ=3.l6

Figure 6.23 shows the distribution. We are looking for the probability of getting X = 26
or more questions correct, so we use the lower real limit for 26, which is 25.5.

FIGURE 6.23

The normal approximation
of a binomial distribution
with u = 20 and o = 3.16.
The proportion of all scores
equal to or greater than 26 is
shaded. Notice that the real
lower limit (25.5) for X =
26 is used.

n 25.5
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STEP 3 The z-score for X = 25.5 is calculated as follows:

:X—pn:25.5—20

© g 316

According to the unit normal table, the proportion we want is 0.0409. Thus, the proba-
bility of getting at least 26 questions right just by guessing is

=+1.74

p(X = 26) = 0.0409 (or 4.09%)

PROBLEMS

1. A local hardware store has a “Savings Wheel” at whether the body is on the right or left side of the line

the checkout. Customers get to spin the wheel and,

and find the proportion in the body.

when the wheel stops, a pointer indicates how much a. z =220
they will save. The wheel can stop in any one of b. z = 1.60
50 sections. Of the sections, 10 produce 0% off, c. z=-1.50
20 sections are for 10% off, 10 sections for 20%, d. z =-0.70

5 for 30%, 3 for 40%, 1 for 50%, and 1 for 100%

off. Assuming that all 50 sections are equally likely, 7. F.md. each of the following probabilities for a normal
. S , distribution.
a. What is the probability that a customer’s purchase
. a. p(z > 0.25)
will be free (100% off)? b =~ _075
b. What is the probability that a customer will get no - p(z>-075)
) c. p(z <1.20)
savings from the wheel (0% off)? d < _120
c. What is the probability that a customer will get at - pla=-120)
least 20% off? 8. What proportion of a normal distribution is located
S -
2. A psychology class consists of 14 males and 36 females. between each of the following z-score boundaries?
. . a. z = -0.50 and z = +0.50
If the professor selects names from the class list using
. b. z =-0.90 and z = +0.90
random sampling, — 150 ands = +1.50
a. What is the probability that the first student G = -obandz ==L
selected will be a female? 9. Find each of the following probabilities for a normal
b. If a random sample of n = 3 students is selected distribution.
and the first two are both females, what is the a. p(-0.25 < 7 <0.25)
probability that the third student selected will be b. p(-2.00 < z < 2.00)
a male? c. p(-0.30 < z < 1.00)
3. What are the two requirements that must be satisfied d. p(-125<2<025
for a random sample? 10. Find the z-score location of a vertical line that
. . . . 9 separates a normal distribution as described in
4. What is sampling with replacement, and why is it used? each of the following.
5. Draw a vertical line through a normal distribution for a. 20% in the tail on the left
each of the following z-score locations. Determine b. 40% in the tail on the right
whether the tail is on the right or left side of the line ¢. 75% in the body on the left
and find the proportion in the tail. d. 99% in the body on the right
Lz=2. . .
-z _ 00 11. Find the z-score boundaries that separate a normal
b. z =0.60 S . . .
e 2 =-130 distribution as described in each of the following.
d 7= _0‘30 a. The middle 20% from the 80% in the tails.
) ' b. The middle 50% from the 50% in the tails.
6. Draw a vertical line through a normal distribution for c. The middle 95% from the 5% in the tails.

each of the following z-score locations. Determine

d. The middle 99% from the 1% in the tails.
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12. For a normal distribution with a mean of p = 80 and normal with a standard deviation of o = 20 minutes,
a standard deviation of o = 20, find the proportion of find each of the following proportions.
the population corresponding to each of the following a. What proportion of 2-year-old children watch more
scores. than 90 minutes of television each day?
a. Scores greater than 85. b. What proportion of 2-year-old children watch less
b. Scores less than 100. than 20 minutes a day?

¢. Scores between 70 and 90. 18. Information from the Department of Motor Vehicles

13. A normal distribution has a mean of p = 50 and indicates that the average age of licensed drivers is
a standard deviation of ¢ = 12. For each of the u = 45.7 years with a standard deviation of ¢ = 12.5
following scores, indicate whether the tail is to the years. Assuming that the distribution of drivers’ ages
right or left of the score and find the proportion of is approximately normal,
the distribution located in the tail. a. What proportion of licensed drivers are older than
a. X =53 50 years old?
b. X = 44 b. What proportion of licensed drivers are younger
c. X =68 than 30 years old?
d. X =38 .
19. A consumer survey indicates that the average
14. 1Q test scores are standardized to produce a normal household spends p = $185 on groceries each
distribution with a mean of p = 100 and a standard week. The distribution of spending amounts is
deviation of o =15. Find the proportion of the approximately normal with a standard deviation
population in each of the following IQ categories. of ¢ = $25. Based on this distribution,
a. Genius or near genius: 1Q greater than 140 a. What proportion of the population spends more
b. Very superior intelligence: 1Q between 120 than $200 per week on groceries?
and 140 b. What is the probability of randomly selecting a
¢. Average or normal intelligence: IQ between 90 family that spends less than $150 per week on
and 109 groceries?
¢. How much money do you need to spend on
15. The distribution of scores on the SAT is approximately groceries each week to be in the top 20% of
normal with a mean of u = 500 and a standard the distribution?
deviation of ¢ = 100. For the population of students
who have taken the SAT, 20. Over the past 10 years, the local school district has
a. What proportion have SAT scores greater than 700? measured physical fitness for all high school freshmen.
b. What proportion have SAT scores greater than 5507 During that time, the average score on a treadmill
c. What is the minimum SAT score needed to be in endurance task has been p = 19.8 minutes with a
the highest 10% of the population? standard deviation of ¢ = 7.2 minutes. Assuming that
d. If the state college only accepts students from the the distribution is approximately normal, find each of
top 60% of the SAT distribution, what is the the following probabilities.
minimum SAT score needed to be accepted? a. What is the probability of randomly selecting
a student with a treadmill time greater than
16. The distribution of SAT scores is normal with u = 500 25 minutes? In symbols, p(X > 25) = ?
and o = 100. b. What is the probability of randomly selecting a

a. What SAT score, X value, separates the top 15% of

the distribution from the rest?

student with a time greater than 30 minutes? In
symbols, p(X > 30) = ?

b. What SAT score, X value, separates the top 10% of c. If the school required a minimum time of 10 minutes
the distribution from the rest? for students to pass the physical education course,
c. What SAT score, X value, separates the top 2% of what proportion of the freshmen would fail?
the distribution from the rest?
21. Rochester, New York, averages u = 21.9 inches of
17. A recent newspaper article reported the results snow for the month of December. The distribution

of a survey of well-educated suburban parents.
The responses to one question indicated that by
age 2, children were watching an average of

1 = 60 minutes of television each day. Assuming
that the distribution of television-watching times is

of snowfall amounts is approximately normal with
a standard deviation of ¢ = 6.5 inches. This year, a
local jewelry store is advertising a refund of 50%
off of all purchases made in December, if Rochester
finishes the month with more than 3 feet (36 inches)
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22.

23.

24.

25.

CHAPTER 6 PROBABILITY

of total snowfall. What is the probability that the
jewelry store will have to pay off on its promise?

A multiple-choice test has 48 questions, each with four

response choices. If a student is simply guessing at the

answers,

a. What is the probability of guessing correctly for
any question?

b. On average, how many questions would a student
get correct for the entire test?

c. What is the probability that a student would get
more than 15 answers correct simply by guessing?

d. What is the probability that a student would get 15
or more answers correct simply by guessing?

A true/false test has 40 questions. If a students is

simply guessing at the answers,

a. What is the probability of guessing correctly for
any one question?

b. On average, how many questions would the student
get correct for the entire test?

c. What is the probability that the student would get
more than 25 answers correct simply by guessing?

d. What is the probability that the student would get
25 or more answers correct simply by guessing?

A roulette wheel has alternating red and black
numbered slots into one of which the ball finally
stops to determine the winner. If a gambler always
bets on black to win, what is the probability of
winning at least 24 times in a series of 36 spins?
(Note that at least 24 wins means 24 or more.)

One test for ESP involves using Zener cards. Each
card shows one of five different symbols (square,
circle, star, cross, wavy lines), and the person being
tested has to predict the shape on each card before it

26.

27.

28.

is selected. Find each of the probabilities requested

for a person who has no ESP and is just guessing.

a. What is the probability of correctly predicting
20 cards in a series of 100 trials?

b. What is the probability of correctly predicting more
than 30 cards in a series of 100 trials?

c. What is the probability of correctly predicting 50 or
more cards in a series of 200 trials?

A trick coin has been weighted so that heads occurs

with a probability of p = %, and p(tails) = % If you

toss this coin 72 times,

a. How many heads would you expect to get on
average?

b. What is the probability of getting more than 50
heads?

¢. What is the probability of getting exactly 50 heads?

For a balanced coin:

a. What is the probability of getting more than
30 heads in 50 tosses?

b. What is the probability of getting more than
60 heads in 100 tosses?

c. Parts a and b both asked for the probability of
getting more than 60% heads in a series of coin
tosses (39 = 9 = 60%). Why do you think the two
probabilities are different?

A national health organization predicts that 20% of

American adults will get the flu this season. If a

sample of 100 adults is selected from the population,

a. What is the probability that at least 25 of the people
will be diagnosed with the flu? (Be careful: “at
least 25” means “25 or more.”)

b. What is the probability that fewer than 15 of the

people will be diagnosed with the flu? (Be careful:
“fewer than 15” means “14 or less.”)

Improve your statistical skills with
ample practice exercises and detailed
explanations on every question. Purchase
www.aplia.com/statistics



www.aplia.com/statistics

CHAPTER Probability and
Samples: The
Distribution of
Sample Means

Tools You Will Need Preview
The following items are considered essential 7.1 Samples and Populations
background material for this chapter. If you 7.2 The Distribution of Sample Means
doubt your knowledge of any of these items,
you should review the appropriate chapter 7.3 Probability and the Distribution
and section before proceeding. of Sample Means
* Random sampling (Chapter 6) 7.4 More About Standard Error
e Probability and the normal distribution . .

(Chapter g) 7.5 Looking Ahead to Inferential
e zScores (Chapter 5) Statistics

Summary

Focus on Problem Solving
Demonstration 7.1
Problems




Preview

In this chapter we extend the topic of probability to cover
larger samples; specifically, samples that have more than
one score. Fortunately, you already know the one basic
fact governing probability for samples:

Samples tend to be similar to the populations from
which they are taken.

For example, if you take a sample from a population
that consists of 75% females and only 25% males, you
probably will get a sample that has more females than
males. Or, if you select a sample from a population for
which the average age is u = 21 years, you probably will
get a sample with an average age around 21 years. We are
confident that you already know this basic fact because
research indicates that even 8-month-old infants under-
stand this basic law of sampling.

Xu and Garcia (2008) began one experiment by
showing 8-month-old infants a large box filled with ping-
pong balls. The box was brought onto a puppet stage and
the front panel was opened to reveal the balls inside. The
box contained either mostly red with a few white balls
or mostly white with a few red balls. The experimenter
alternated between the two boxes until the infants had seen
both displays several times. After the infants were familiar
with the boxes, the researchers began a series of test trials.
On each trial, the box was brought on stage with the front
panel closed. The researcher reached in the box and, one
at a time, drew out a sample of five balls. The balls were
placed in a transparent container next to the box. On half of
the trials, the sample was rigged to have 1 red ball and
4 white balls. For the other half, the sample had 1 white ball
and 4 red balls. The researchers then removed the front
panel to reveal the contents of the box and recorded how
long the infants continued to look at the box. The contents
of the box were either consistent with the sample, and,
therefore, expected, or inconsistent with the sample,
and, therefore, unexpected. An expected outcome, for
example, means that a sample with 4 red balls and 1 white

ball should come from a box with mostly red balls. This
same sample is unexpected from a box with mostly white
balls. The results showed that the infants consistently looked
longer at the unexpected outcome (M = 9.9 seconds) than at
the expected outcome (M = 7.5 seconds), indicating that the
infants considered the unexpected outcome surprising and
more interesting than the expected outcome.

The Problem: Xu and Garcia’s results strongly
suggest that even 8-month-old infants understand the
basic principles that determine which samples have
high probability and which have low probability.
Nevertheless, whenever you are picking ping pong
balls from a box or recruiting people to participate in a
research study, it usually is possible to obtain thousands
or even millions of different samples from the same
population. Under these circumstances, how can we
determine the probability for obtaining any specific
sample?

The Solution: In this chapter we introduce the
distribution of sample means, which allows us to find
the exact probability of obtaining a specific sample
mean from a specific population. This distribution
describes the entire set of all the possible sample means
for any sized sample. Because we can describe the entire
set, we can find probabilities associated with specific
sample means. (Recall from Chapter 6 that probabilities
are equivalent to proportions of the entire distribution.)
Also, because the distribution of sample means tends

to be normal, it is possible to find probabilities using
z-scores and the unit normal table. Although it is
impossible to predict exactly which sample will be
obtained, the probabilities allow researchers to
determine which samples are likely (and which are
very unlikely).

m SAMPLES AND POPULATIONS

The preceding two chapters presented the topics of z-scores and probability. Whenever
a score is selected from a population, you should be able to compute a z-score that de-
scribes exactly where the score is located in the distribution. If the population is nor-
mal, you also should be able to determine the probability value for obtaining any
individual score. In a normal distribution, for example, any score located in the tail of
the distribution beyond z = +2.00 is an extreme value, and a score this large has a prob-

200 ability of only p = 0.0228.
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However, the z-scores and probabilities that we have considered so far are limited
to situations in which the sample consists of a single score. Most research studies in-
volve much larger samples, such as n = 25 preschool children or n = 100 American
Idol contestants. In these situations, the sample mean, rather than a single score, is used
to answer questions about the population. In this chapter we extend the concepts of
z-scores and probability to cover situations with larger samples. In particular, we intro-
duce a procedure for transforming a sample mean into a z-score. Thus, a researcher is
able to compute a z-score that describes an entire sample. As always, a z-score near zero
indicates a central, representative sample; a z-score beyond +2.00 or —2.00 indicates an
extreme sample. Thus, it is possible to describe how any specific sample is related to
all the other possible samples. In addition, we can use the z-scores to look up probabil-
ities for obtaining certain samples, no matter how many scores the sample contains.

In general, the difficulty of working with samples is that a sample provides an in-
complete picture of the population. Suppose, for example, a researcher randomly se-
lects a sample of n = 25 students from the state college. Although the sample should
be representative of the entire student population, there are almost certainly some seg-
ments of the population that are not included in the sample. In addition, any statistics
that are computed for the sample are not identical to the corresponding parameters for
the entire population. For example, the average IQ for the sample of 25 students is not
the same as the overall mean IQ for the entire population. This difference, or error, be-
tween sample statistics and the corresponding population parameters is called sampling
error and was illustrated in Figure 1.2 (p. 201).

Sampling error is the natural discrepancy, or amount of error, between a sam-
ple statistic and its corresponding population parameter.

Furthermore, samples are variable; they are not all the same. If you take two sep-
arate samples from the same population, the samples are different. They contain differ-
ent individuals, they have different scores, and they have different sample means. How
can you tell which sample gives the best description of the population? Can you even
predict how well a sample describes its population? What is the probability of select-
ing a sample with specific characteristics? These questions can be answered once we
establish the rules that relate samples and populations.

THE DISTRIBUTION OF SAMPLE MEANS

As noted, two separate samples probably are different even though they are taken from
the same population. The samples have different individuals, different scores, different
means, and so on. In most cases, it is possible to obtain thousands of different samples
from one population. With all these different samples coming from the same popula-
tion, it may seem hopeless to try to establish some simple rules for the relationships be-
tween samples and populations. Fortunately, however, the huge set of possible samples
forms a relatively simple and orderly pattern that makes it possible to predict the char-
acteristics of a sample with some accuracy. The ability to predict sample characteristics
is based on the distribution of sample means.

The distribution of sample means is the collection of sample means for all of
the possible random samples of a particular size () that can be obtained from a
population.
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CHAPTER 7 PROBABILITY AND SAMPLES: THE DISTRIBUTION OF SAMPLE MEANS

DEFINITION

Notice that the distribution of sample means contains all of the possible samples.
It is necessary to have all of the possible values to compute probabilities. For example,
if the entire set contains exactly 100 samples, then the probability of obtaining any spe-
cific sample is 1 out of 100: p = ﬁ (Box 7.1).

Also, you should notice that the distribution of sample means is different from the
distributions that we have considered before. Until now we always have discussed
distributions of scores; now the values in the distribution are not scores, but statistics
(sample means). Because statistics are obtained from samples, a distribution of statis-
tics is referred to as a sampling distribution.

A sampling distribution is a distribution of statistics obtained by selecting all
of the possible samples of a specific size from a population.

Thus, the distribution of sample means is an example of a sampling distribution. In
fact, it often is called the sampling distribution of M.

If you actually wanted to construct the distribution of sample means, you would
first select a random sample of a specific size (n) from a population, calculate the sam-
ple mean, and place the sample mean in a frequency distribution. Then you would
select another random sample with the same number of scores. Again, you would cal-
culate the sample mean and add it to your distribution. You would continue selecting
samples and calculating means, over and over, until you had the complete set of all the
possible random samples. At this point, your frequency distribution would show the
distribution of sample means.

We demonstrate the process of constructing a distribution of sample means in
Example 7.1, but first we use common sense and a little logic to predict the general
characteristics of the distribution.

1. The sample means should pile up around the population mean. Samples are not
expected to be perfect but they are representative of the population. As a result,
most of the sample means should be relatively close to the population mean.

PROBABILITY AND THE DISTRIBUTION OF SAMPLE MEANS

I have a bad habit of losing playing cards. This habit is
compounded by the fact that I always save the old deck
in the hope that someday I will find the missing cards.
As aresult, I have a drawer filled with partial decks of
playing cards. Suppose that I take one of these almost-
complete decks, shuffle the cards carefully, and then
randomly select one card. What is the probability that

I will draw a king?

You should realize that it is impossible to answer
this probability question. To find the probability of
selecting a king, you must know how many cards are
in the deck and exactly which cards are missing. (It is
crucial that you know whether any kings are missing.)
The point of this simple example is that any probability

question requires that you have complete information
about the population from which the sample is being
selected. In this case, you must know all of the possible
cards in the deck before you can find the probability for
selecting any specific card.

In this chapter, we are examining probability and
sample means. To find the probability for any specific
sample mean, you first must know all of the possible sam-
ple means. Therefore, we begin by defining and describing
the set of all possible sample means that can be obtained
from a particular population. Once we have specified the
complete set of all possible sample means (i.e., the distri-
bution of sample means), we can find the probability of
selecting any specific sample means.




EXAMPLE 7.1

Remember that random
sampling requires sampling
with replacement.
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2. The pile of sample means should tend to form a normal-shaped distribution.
Logically, most of the samples should have means close to y, and it should be
relatively rare to find sample means that are substantially different from p. As a
result, the sample means should pile up in the center of the distribution (around )
and the frequencies should taper off as the distance between M and p increases.
This describes a normal-shaped distribution.

3. In general, the larger the sample size, the closer the sample means should be to
the population mean, p. Logically, a large sample should be a better representa-
tive than a small sample. Thus, the sample means obtained with a large sample
size should cluster relatively close to the population mean; the means obtained
from small samples should be more widely scattered.

As you will see, each of these three commonsense characteristics is an accurate
description of the distribution of sample means. The following example demonstrates
the process of constructing the distribution of sample means by repeatedly selecting
samples from a population.

Consider a population that consists of only 4 scores: 2, 4, 6, 8. This population is
pictured in the frequency distribution histogram in Figure 7.1.

We are going to use this population as the basis for constructing the distribution of
sample means for n = 2. Remember: This distribution is the collection of sample means
from all of the possible random samples of n = 2 from this population. We begin by
looking at all of the possible samples. For this example, there are 16 different samples,
and they are all listed in Table 7.1. Notice that the samples are listed systematically.
First, we list all of the possible samples with X = 2 as the first score, then all of the
possible samples with X = 4 as the first score, and so on. In this way, we can be sure
that we have all of the possible random samples.

Next, we compute the mean, M, for each of the 16 samples (see the last column
of Table 7.1). The 16 means are then placed in a frequency distribution histogram in
Figure 7.2. This is the distribution of sample means. Note that the distribution in
Figure 7.2 demonstrates two of the characteristics that we predicted for the distribu-
tion of sample means.

1. The sample means pile up around the population mean. For this example, the
population mean is u = 5, and the sample means are clustered around a value
of 5. It should not surprise you that the sample means tend to approximate the

FIGURE 7.1

Frequency distribution
histogram for a population
of 4 scores: 2, 4, 6, 8.
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TABLE 7.1

All the possible samples

of n = 2 scores that can be
obtained from the population
presented in Figure 7.1.
Notice that the table lists
random samples. This requires
sampling with replacement,

so it is possible to select the
same score twice.

Remember that our goal in
this chapter is to answer
probability questions about
samples with n > 1.

___ Scores Sample Mean
Sample First Second M)
1 2 2 2
2 2 4 3
3 2 6 4
4 2 8 5
5 4 2 3
6 4 4 4
7 4 6 5
8 4 8 6
9 6 2 4
10 6 4 5
11 6 6 6
12 6 8 7
13 8 2 5
14 8 4 6
15 8 6 7
16 8 8 8

2.

population mean. After all, samples are supposed to be representative of the
population.

The distribution of sample means is approximately normal in shape. This is a
characteristic that is discussed in detail later and is extremely useful because we
already know a great deal about probabilities and the normal distribution
(Chapter 6).

Finally, you should notice that we can use the distribution of sample means to
answer probability questions about sample means. For example, if you take a sample of
n = 2 scores from the original population, what is the probability of obtaining a sam-
ple mean greater than 7? In symbols,

pM>T) ="

FIGURE 7.2

The distribution of
sample means for n = 2.
The distribution shows
the 16 sample means
from Table 7.1.

Frequency
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Sample means
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Because probability is equivalent to proportion, the probability question can be re-
stated as follows: Of all of the possible sample means, what proportion have values
greater than 77? In this form, the question is easily answered by looking at the distribu-
tion of sample means. All of the possible sample means are pictured (see Figure 7.2),
and only 1 out of the 16 means has a value greater than 7. The answer, therefore, is 1
out of 16, or p = %

Example 7.1 demonstrated the construction of the distribution of sample means for an
overly simplified situation with a very small population and samples that each contain
only n = 2 scores. In more realistic circumstances, with larger populations and larger
samples, the number of possible samples increases dramatically and it is virtually im-
possible to actually obtain every possible random sample. Fortunately, it is possible
to determine exactly what the distribution of sample means looks like without taking
hundreds or thousands of samples. Specifically, a mathematical proposition known as
the central limit theorem provides a precise description of the distribution that would
be obtained if you selected every possible sample, calculated every sample mean, and
constructed the distribution of the sample mean. This important and useful theorem
serves as a cornerstone for much of inferential statistics. Following is the essence of the
theorem.

Central limit theorem: For any population with mean p and standard deviation o, the distri-
bution of sample means for sample size n will have a mean of p and a standard deviation of
o/V'n and will approach a normal distribution as n approaches infinity.

The value of this theorem comes from two simple facts. First, it describes the dis-
tribution of sample means for any population, no matter what shape, mean, or standard
deviation. Second, the distribution of sample means “approaches” a normal distribution
very rapidly. By the time the sample size reaches n = 30, the distribution is almost per-
fectly normal.

Note that the central limit theorem describes the distribution of sample means by
identifying the three basic characteristics that describe any distribution: shape, central
tendency, and variability. We examine each of these.

It has been observed that the distribution of sample means tends to be a normal distri-
bution. In fact, this distribution is almost perfectly normal if either of the following
two conditions is satisfied:

1. The population from which the samples are selected is a normal distribution.

2. The number of scores (n) in each sample is relatively large, around 30 or more.

(As n gets larger, the distribution of sample means more closely approximates a
normal distribution. When n > 30, the distribution is almost normal, regardless of the
shape of the original population.)

As we noted earlier, the fact that the distribution of sample means tends to be nor-
mal is not surprising. Whenever you take a sample from a population, you expect the
sample mean to be near to the population mean. When you take lots of different sam-
ples, you expect the sample means to “pile up”” around y, resulting in a normal-shaped
distribution. You can see this tendency emerging (although it is not yet normal) in
Figure 7.2.
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THE MEAN OF THE
DISTRIBUTION OF SAMPLE
MEANS: THE EXPECTED
VALUE OF M

DEFINITION

THE STANDARD ERROR OF M

In Example 7.1, the distribution of sample means is centered around the mean of the
population from which the samples were obtained. In fact, the average value of all the
sample means is exactly equal to the value of the population mean. This fact should be
intuitively reasonable; the sample means are expected to be close to the population
mean, and they do tend to pile up around p. The formal statement of this phenomenon
is that the mean of the distribution of sample means always is identical to the popula-
tion mean. This mean value is called the expected value of M.

In commonsense terms, a sample mean is “expected” to be near its population
mean. When all of the possible sample means are obtained, the average value is identi-
cal to .

The fact that the average value of M is equal to p was first introduced in Chapter 4
(p- 121) in the context of biased versus unbiased statistics. The sample mean is an
example of an unbiased statistic, which means that, on average, the sample statistic
produces a value that is exactly equal to the corresponding population parameter. In this
case, the average value of all of the sample means is exactly equal to p.

The mean of the distribution of sample means is equal to the mean of the popu-
lation of scores, y, and is called the expected value of M.

So far, we have considered the shape and the central tendency of the distribution of sam-
ple means. To completely describe this distribution, we need one more characteristic,
variability. The value we will be working with is the standard deviation for the distribu-
tion of sample means. This standard deviation is identified by the symbol o, and is
called the standard error of M.

When the standard deviation was first introduced in Chapter 4, we noted that
this measure of variability serves two general purposes. First, the standard deviation
describes the distribution by telling whether the individual scores are clustered close
together or scattered over a wide range. Second, the standard deviation measures
how well any individual score represents the population by providing a measure of
how much distance is reasonable to expect between a score and the population mean.
The standard error serves the same two purposes for the distribution of sample
means.

1. The standard error describes the distribution of sample means. It provides a
measure of how much difference is expected from one sample to another. When
the standard error is small, then all of the sample means are close together and
have similar values. If the standard error is large, then the sample means are
scattered over a wide range and there are big differences from one sample to
another.

2. Standard error measures how well an individual sample mean represents the
entire distribution. Specifically, it provides a measure of how much distance is
reasonable to expect between a sample mean and the overall mean for the dis-
tribution of sample means. However, because the overall mean is equal to p, the
standard error also provides a measure of how much distance to expect between
a sample mean (M) and the population mean (p).

Remember that a sample is not expected to provide a perfectly accurate reflection
of its population. Although a sample mean should be representative of the population
mean, there typically is some error between the sample and the population. The standard
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error measures exactly how much difference is expected on average between a sample
mean, M, and the population mean, p.

The standard deviation of the distribution of sample means, ,,, is called the stan-
dard error of M. The standard error provides a measure of how much distance is
expected on average between a sample mean (M) and the population mean (p).

Once again, the symbol for the standard error is g,,. The o indicates that this value
is a standard deviation, and the subscript M indicates that it is the standard deviation for
the distribution of sample means. Similarly, it is common to use the symbol ., to rep-
resent the mean of the distribution of sample means. However, L, is always equal to u
and our primary interest in inferential statistics is to compare sample means (M) with
their population means (u). Therefore, we simply use the symbol p to refer to the mean
of the distribution of sample means.

The standard error is an extremely valuable measure because it specifies precisely
how well a sample mean estimates its population mean—that is, how much error you
should expect, on the average, between M and p. Remember that one basic reason for
taking samples is to use the sample data to answer questions about the population.
However, you do not expect a sample to provide a perfectly accurate picture of the pop-
ulation. There always is some discrepancy, or error, between a sample statistic and the
corresponding population parameter. Now we are able to calculate exactly how much
error to expect. For any sample size (n), we can compute the standard error, which
measures the average distance between a sample mean and the population mean.

The magnitude of the standard error is determined by two factors: (1) the size of
the sample and (2) the standard deviation of the population from which the sample is
selected. We examine each of these factors.

The sample size Earlier we predicted, based on common sense, that the size of a sam-
ple should influence how accurately the sample represents its population. Specifically,
a large sample should be more accurate than a small sample. In general, as the sample
size increases, the error between the sample mean and the population mean should de-
crease. This rule is also known as the law of large numbers.

The law of large numbers states that the larger the sample size (n), the more
probable it is that the sample mean is close to the population mean.

The population standard deviation As we noted earlier, there is an inverse rela-
tionship between the sample size and the standard error: bigger samples have smaller
error, and smaller samples have bigger error. At the extreme, the smallest possible sam-
ple (and the largest standard error) occurs when the sample consists of n = 1 score. At
this extreme, each sample is a single score and the distribution of sample means is iden-
tical to the original distribution of scores. In this case, the standard deviation for the dis-
tribution of sample means, which is the standard error, is identical to the standard
deviation for the distribution of scores. In other words, when n = 1, the standard error
= 0, is identical to the standard deviation = o.

When n = 1, o), = o (standard error = standard deviation).

You can think of the standard deviation as the “starting point” for standard error.
When n = 1, the standard error and the standard deviation are the same: o,;, = ©.
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This formula is contained in
the central limit theorem.

As sample size increases beyond n = 1, the sample becomes a more accurate represen-
tative of the population, and the standard error decreases. The formula for standard
error expresses this relationship between standard deviation and sample size (n).

standard error = oy, = <z (7.1)

Vn

Note that the formula satisfies all of the requirements for the standard error.
Specifically,

a. As sample size (n) increases, the size of the standard error decreases. (Larger
samples are more accurate.)

b. When the sample consists of a single score (n = 1), the standard error is the
same as the standard deviation (o, = 0).

In Equation 7.1 and in most of the preceding discussion, we defined standard error
in terms of the population standard deviation. However, the population standard devia-
tion (o) and the population variance (o) are directly related, and it is easy to substitute
variance into the equation for standard error. Using the simple equality ¢ = V o2, the
equation for standard error can be rewritten as follows:

e Ve 7 .
Vo Vn n

Throughout the rest of this chapter (and in Chapter 8), we continue to define stan-
dard error in terms of the standard deviation (Equation 7.1). However, in later chapters
(starting in Chapter 9) the formula based on variance (Equation 7.2) will become more
useful.

Figure 7.3 illustrates the general relationship between standard error and sample
size. (The calculations for the data points in Figure 7.3 are presented in Table 7.2.)
Again, the basic concept is that the larger a sample is, the more accurately it represents
its population. Also note that the standard error decreases in relation to the square root
of the sample size. As a result, researchers can substantially reduce error by increasing

standard error = o,

FIGURE 7.3

Standard Error 10
(based on o = 10) 9
8
7
Standard distance 6
between a sample 5
mean and 4
the population 3
mean
2 o
1F ° —e
O | | | | | | | | |
14 9 16 25 36 49 64 100

The relationship between standard error and sample size. As the sample size is increased, there
is less error between the sample mean and the population mean.

Number of scores in the sample (n)




TABLE 7.2

Calculations for the points
shown in Figure 7.3. Again,
notice that the size of the
standard error decreases as
the size of the sample
increases.

THREE DIFFERENT
DISTRIBUTIONS
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Sample Size (n) Standard Error

1 oy = 10 = 10.00
V1
4 o = 10 = 5.00
V4
9 o = 10 =333
V9
16 oy = 10 =250
16
25 oy = 10 =2.00
25
49 oy = 10 =143
49
64 oy = 10 =125
64
10
100 M= = 1.00

sample size up to around n = 30. However, increasing sample size beyond n = 30 does
not produce much additional improvement in how well the sample represents the
population.

Before we move forward with our discussion of the distribution of sample means, we
pause for a moment to emphasize the idea that we are now dealing with three different
but interrelated distributions.

1. First, we have the original population of scores. This population contains the
scores for thousands or millions of individual people, and it has its own shape,
mean, and standard deviation. For example, the population of 1Q scores consists
of millions of individual IQ scores that form a normal distribution with a mean
of u = 100 and a standard deviation of ¢ = 15. An example of a population is
shown in Figure 7.4(a).

2. Next, we have a sample that is selected from the population. The sample consists
of a small set of scores for a few people who have been selected to represent the
entire population. For example, we could select a sample of n = 25 people and
measure each individual’s IQ score. The 25 scores could be organized in a fre-
quency distribution and we could calculate the sample mean and the sample
standard deviation. Note that the sample also has its own shape, mean, and
standard deviation. An example of a sample is shown in Figure 7.4(b).

3. The third distribution is the distribution of sample means. This is a theoretical
distribution consisting of the sample means obtained from all of the possible
random samples of a specific size. For example, the distribution of sample means
for samples of n = 25 1Q scores would be normal with a mean (expected value)
of u = 100 and a standard deviation (standard error) of a,, = % = 3. This
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FIGURE 7.4 (o) Original population of 1Q scores.

The distribution. Part (a)
shows the population of
1Q scores. Part (b) shows a
sample of n = 25 IQ scores.
Part (c) shows the distribu-
tion of sample means for
samples of n = 25 scores.
Note that the sample mean
from part (b) is one of the
thousands of sample means
in the part (c) distribution.

u =100
(b) A sample of n = 251Q scores.

(s=115_

[0

90 100 110 120 130

M=101.2

(c) The distribution of sample means. Sample means for
all the possible random samples of n = 25 1Q scores.

=100

distribution, shown in Figure 7.4(c), also has its own shape, mean, and standard
deviation.

Note that the scores for the sample [Figure 7.4(b)] were taken from the origi-
nal population [Figure 7.4(a)] and that the mean for the sample is one of the
values contained in the distribution of sample means [Figure 7.4(c)]. Thus, the
three distributions are all connected, but they are all distinct.
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m 1. A population has a mean of p = 50 and a standard deviation of o = 12.

ANSWERS

a. For samples of size n = 4, what is the mean (expected value) and the standard
deviation (standard error) for the distribution of sample means?

b. If the population distribution is not normal, describe the shape of the distribu-
tion of sample means based on n = 4.

c¢. For samples of size n = 36, what is the mean (expected value) and the standard
deviation (standard error) for the distribution of sample means?

d. If the population distribution is not normal, describe the shape of the distribu-
tion of sample means based on n = 36.

2. As sample size increases, the value of expected value also increases. (True or
false?)

3. As sample size increases, the value of the standard error also increases. (True or
false?)

1. a. The distribution of sample means would have a mean of u = 50 and a standard error of
on = 12/V4 =6.
b. The distribution of sample means does not satisfy either criterion to be normal. It would
not be a normal distribution.

¢. The distribution of sample means is normal and would have a mean of p = 50 and a
standard error of o, = 12/V36 = 2.

d. Because the sample size is greater than 30, the distribution of sample means is a normal
distribution.

2. False. The expected value does not depend on sample size.

3. False. The standard error decreases as sample size increases.

EXAMPLE 7.2

Caution: Whenever you have
a probability question about a
sample mean, you must use the
distribution of sample means.

PROBABILITY AND THE DISTRIBUTION OF SAMPLE
MEANS

The primary use of the distribution of sample means is to find the probability associ-
ated with any specific sample. Recall that probability is equivalent to proportion.
Because the distribution of sample means presents the entire set of all possible sample
means, we can use proportions of this distribution to determine probabilities. The fol-
lowing example demonstrates this process.

The population of scores on the SAT forms a normal distribution with u = 500 and
o = 100. If you take a random sample of n = 25 students, what is the probability that
the sample mean will be greater than M = 540?
First, you can restate this probability question as a proportion question: Out of
all of the possible sample means, what proportion have values greater than 540?
You know about “all of the possible sample means”; this is the distribution of
sample means. The problem is to find a specific portion of this distribution.
Although we cannot construct the distribution of sample means by repeatedly
taking samples and calculating means (as in Example 7.1), we know exactly what the
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A z-SCORE FOR SAMPLE
MEANS

distribution looks like based on the information from the central limit theorem.
Specifically, the distribution of sample means has the following characteristics:

a. The distribution is normal because the population of SAT scores is normal.
b. The distribution has a mean of 500 because the population mean is u = 500.

c. For n = 25, the distribution has a standard error of o,, = 20:

o _ 100 _ 100 _

RV

This distribution of sample means is shown in Figure 7.5.

We are interested in sample means greater than 540 (the shaded area in Figure 7.5),
so the next step is to use a z-score to locate the exact position of M = 540 in the dis-
tribution. The value 540 is located above the mean by 40 points, which is exactly
2 standard deviations (in this case, exactly 2 standard errors). Thus, the z-score for
M =5401is z = +2.00.

Because this distribution of sample means is normal, you can use the unit normal
table to find the probability associated with z = +2.00. The table indicates that
0.0228 of the distribution is located in the tail of the distribution beyond z = +2.00.
Our conclusion is that it is very unlikely, p = 0.0228 (2.28%), to obtain a random
sample of n = 25 students with an average SAT score greater than 540.

As demonstrated in Example 7.2, it is possible to use a z-score to describe the exact
location of any specific sample mean within the distribution of sample means. The
z-score tells exactly where the sample mean is located in relation to all of the other
possible sample means that could have been obtained. As defined in Chapter 5, a
z-score identifies the location with a signed number so that

1. The sign tells whether the location is above (+) or below (—) the mean.

2. The number tells the distance between the location and the mean in terms of the
number of standard deviations.

FIGURE 7.5

The distribution of sample
means for n = 25. Samples
were selected from a normal
population with p= 500 and
o= 100.

6,,=20




Caution: When computing z for
a single score, use the standard
deviation, . When computing
z for a sample mean, you must
use the standard error, o,

(see Box 7.2).

EXAMPLE 7.3
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However, we are now finding a location within the distribution of sample means.
Therefore, we must use the notation and terminology appropriate for this distribution.
First, we are finding the location for a sample mean (M) rather than a score (X). Second,
the standard deviation for the distribution of sample means is the standard error, ;.
With these changes, the z-score formula for locating a sample mean is

e

(7.3)
Om

Just as every score (X) has a z-score that describes its position in the distribution of
scores, every sample mean (M) has a z-score that describes its position in the distribu-
tion of sample means. When the distribution of sample means is normal, it is possible
to use z-scores and the unit normal table to find the probability associated with any spe-
cific sample mean (as in Example 7.2). The following example demonstrates that it also
is possible to make quantitative predictions about the kinds of samples that should be
obtained from any population.

Once again, the distribution of SAT scores forms a normal distribution with a mean
of u = 500 and a standard deviation of ¢ = 100. For this example, we are going to
determine what kind of sample mean is likely to be obtained as the average SAT
score for a random sample of n = 25 students. Specifically, we determine the exact
range of values that is expected for the sample mean 80% of the time.

We begin with the distribution of sample means for n = 25. As demonstrated
in Example 7.2, this distribution is normal with an expected value of u = 500 and a
standard error of o), = 20 (Figure 7.6). Our goal is to find the range of values that
make up the middle 80% of the distribution. Because the distribution is normal, we
can use the unit normal table. First, the 80% in the middle is split in half, with 40%
(0.4000) on each side of the mean. Looking up 0.4000 in column D (the proportion
between the mean and z), we find a corresponding z-score of z = 1.28. Thus, the
z-score boundaries for the middle 80% are z = +1.28 and z = —1.28. By definition,
a z-score of 1.28 represents a location that is 1.28 standard deviations (or standard

FIGURE 7.6

The middle 80% of the
distribution of sample
means for n = 25. Sample
were selected from a
normal population with
pu= 500 and o= 100.
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| |
-1.28 0 +1.28
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THE DIFFERENCE BETWEEN STANDARD DEVIATION AND STANDARD ERROR

A constant source of confusion for many students is the ©

standard error = oy, = ——

difference between standard deviation and standard Vi
error. Remember that standard deviation measures the

standard distance between a score and the population
mean, X — p. If you are working with a distribution of
scores, the standard deviation is the appropriate measure

If you are working with a single score, then n = 1, and
the standard error becomes

(0} (o)
of variability. Standard error, on the other hand, meas- standard error = o), = 7 = 7
ures the standard distance between a sample mean and e 1
the population mean, M — u. Whenever you have a = g = standard deviation

question concerning a sample, the standard error is the

appropriate measure of variability.

If you still find the distinction confusing, there is a
simple solution. Namely, if you always use standard
error, you always will be right. Consider the formula for

standard error:

Thus, standard error always measures the standard
distance from the population mean for any sample size,
including n = 1.

errors) from the mean. With a standard error of 20 points, the distance from the mean
is 1.28(20) = 25.6 points. The mean is p = 500, so a distance of 25.6 in both
directions produces a range of values from 474.4 to 525.6.

Thus, 80% of all the possible sample means are contained in a range between
474.4 and 525.6. If we select a sample of n = 25 students, we can be 80% confident
that the mean SAT score for the sample will be in this range.

The point of Example 7.3 is that the distribution of sample means makes it possi-
ble to predict the value that ought to be obtained for a sample mean. We know, for
example, that a sample of n = 25 students ought to have a mean SAT score around 500.
More specifically, we are 80% confident that the value of the sample mean will be be-
tween 474.4 and 525.6. The ability to predict sample means in this way is a valuable
tool for the inferential statistics that follow.

1. For a population with a mean of p = 40 and a standard deviation of o = 8§, find
the z-score corresponding to a sample mean of M = 44 for each of the following
sample sizes.
a.n=4
b. n =16

2. What is the probability of obtaining a sample mean greater than M = 60 for a
random sample of n = 16 scores selected from a normal population with a mean
of u = 65 and a standard deviation of o = 20?

3. A positively skewed distribution has p = 60 and o = 8.

a. What is the probability of obtaining a sample mean greater than M = 62 for a
sample of n = 4 scores? (Be careful. This is a trick question.)
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b. What is the probability of obtaining a sample mean greater than M = 62 for a
sample of n = 64 scores?

1. a. The standard error is o,; = 4, and z =1.00.
b. The standard error is oy, = 2, and z = 2.00.

2. The standard error is o, = 5, and M = 60 corresponds to z = —1.00, p(M > 60) =
p(z>-1.00) = 0.8413 (or 84.13%).

3. a. The distribution of sample means does not satisfy either of the criteria for being normal.
Therefore, you cannot use the unit normal table, and it is impossible to find the probability.

b. With n = 64, the distribution of sample means is nearly normal. The standard error is
8/V64 = 1, the z-score is +2.00, and the probability is 0.0228.

MORE ABOUT STANDARD ERROR

At the beginning of this chapter, we introduced the idea that it is possible to obtain
thousands of different samples from a single population. Each sample has its own indi-
viduals, its own scores, and its own sample mean. The distribution of sample means
provides a method for organizing all of the different sample means into a single picture.
Figure 7.7 shows a prototypical distribution of sample means. To emphasize the fact
that the distribution contains many different samples, we have constructed this figure
so that the distribution is made up of hundreds of small boxes, each box representing a
single sample mean. Also notice that the sample means tend to pile up around the pop-
ulation mean (p), forming a normal-shaped distribution as predicted by the central limit
theorem.

FIGURE 7.7

An example of a typical
distribution of sample
means. Each of the small
boxes represents the mean
obtained for one sample.
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EXAMPLE 7.4

The distribution shown in Figure 7.7 provides a concrete example for reviewing
the general concepts of sampling error and standard error. Although the following
points may seem obvious, they are intended to provide you with a better understanding
of these two statistical concepts.

1. Sampling Error. The general concept of sampling error is that a sample typi-
cally does not provide a perfectly accurate representation of its population.
More specifically, there typically is some discrepancy (or error) between a
statistic computed for a sample and the corresponding parameter for the popula-
tion. As you look at Figure 7.7, notice that the individual sample means are not
exactly equal to the population mean. In fact, 50% of the samples have means
that are smaller than p (the entire left-hand side of the distribution). Similarly,
50% of the samples produce means that overestimate the true population mean.
In general, there is some discrepancy, or sampling error, between the mean for
a sample and the mean for the population from which the sample was obtained.

2. Standard Error. Again looking at Figure 7.7, notice that most of the sample
means are relatively close to the population mean (those in the center of the
distribution). These samples provide a fairly accurate representation of the
population. On the other hand, some samples produce means that are out in the
tails of the distribution, relatively far from the population mean. These extreme
sample means do not accurately represent the population. For each individual
sample, you can measure the error (or distance) between the sample mean and
the population mean. For some samples, the error is relatively small, but for
other samples, the error is relatively large. The standard error provides a way
to measure the “average,” or standard, distance between a sample mean and the
population mean.

Thus, the standard error provides a method for defining and measuring sampling
error. Knowing the standard error gives researchers a good indication of how accurately
their sample data represent the populations that they are studying. In most research sit-
uations, for example, the population mean is unknown, and the researcher selects a
sample to help obtain information about the unknown population. Specifically, the sam-
ple mean provides information about the value of the unknown population mean. The
sample mean is not expected to give a perfectly accurate representation of the popula-
tion mean; there will be some error, and the standard error tells exactly how much error,
on average, should exist between the sample mean and the unknown population mean.
The following example demonstrates the use of standard error and provides additional
information about the relationship between standard error and standard deviation.

A recent survey of students at a local college included the following question: How
many minutes do you spend each day watching electronic video (e.g., online, TV, cell
phone, iPod, etc.). The average response was u = 80 minutes, and the distribution of
viewing times was approximately normal with a standard deviation of ¢ = 20 minutes.
Next, we take a sample from this population and examine how accurately the sample
mean represents the population mean. More specifically, we will examine how sample
size affects accuracy by considering three different samples: one with n = 1 student,
one with n = 4 students, and one with n = 100 students.

Figure 7.8 shows the distributions of sample means based on samples of n = 1,
n = 4, and n = 100. Each distribution shows the collection of all possible sample
means that could be obtained for that particular sample size. Notice that all three
sampling distributions are normal (because the original population is normal), and
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(@) Distribution of M (o)  Distribution of M () Distribution of M
forn=1 forn=4 forn= 100
6y=0=20 c, =10 Gy =2
10 5
20
80 80 80
FIGURE 7.8

The distribution of sample means for random samples of size (a) n = 1, (b) n = 4, and (c)
n = 100 obtained from a normal population with (u = 80) and (o = 20). Notice that the size
of the standard error decreases as the sample size increases.

all three have the same mean, p = 80, which is the expected value of M. However,
the three distributions differ greatly with respect to variability. We will consider each
one separately.

The smallest sample size is # = 1. When a sample consists of a single student, the
mean for the sample equals the score for the student, M = X. Thus, when n = 1, the
distribution of sample means is identical to the original population of scores. In this
case, the standard error for the distribution of sample means is equal to the standard
deviation for the original population. Equation 7.1 confirms this observation.

o, =2 =20 _9

Vi V1
When the sample consists of a single student, you expect, on average, a 20-point
difference between the sample mean and the mean for the population. As we noted
earlier, the population standard deviation is the “starting point” for the standard error.
With the smallest possible sample, n = 1, the standard error is equal to the standard
deviation [see Figure 7.8(a)].
As the sample size increases, however, the standard error gets smaller. For a sample
of n = 4 students, the standard error is
gyo L2020y,
Vi V4 2
That is, the typical (or standard) distance between M and p is 10 points. Figure 7.8(b)
illustrates this distribution. Notice that the sample means in this distribution approximate
the population mean more closely than in the previous distribution where n = 1.
With a sample of n = 100, the standard error is still smaller.

o, =L -0 _20_,
" \Vn V1o 10
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TABLE 7.3

The mean self-consciousness
scores for participants who were
working in front of a video
camera and those who were not
(controls).

A sample of n = 100 students should produce a sample mean that represents
the population much more accurately than a sample of n = 4 or n = 1. As shown in
Figure 7.8(c), there is very little error between M and u when n = 100. Specifically,
you would expect, on average, only a 2-point difference between the population mean
and the sample mean.

In summary, this example illustrates that with the smallest possible sample (n = 1),
the standard error and the population standard deviation are the same. When sample size
is increased, the standard error gets smaller, and the sample means tend to approximate
p more closely. Thus, standard error defines the relationship between sample size and the
accuracy with which M represents p.

IN THE LITERATURE
REPORTING STANDARD ERROR

As we will see later, standard error plays a very important role in inferential statistics.
Because of its crucial role, the standard error for a sample mean, rather than the
sample standard deviation, is often reported in scientific papers. Scientific journals
vary in how they refer to the standard error, but frequently the symbols SE and SEM
(for standard error of the mean) are used. The standard error is reported in two ways.
Much like the standard deviation, it may be reported in a table along with the sample
means (Table 7.3). Alternatively, the standard error may be reported in graphs.
Figure 7.9 illustrates the use of a bar graph to display information about the
sample mean and the standard error. In this experiment, two samples (groups A

n Mean SE

Control 17 32.23 2.31
Camera 15 45.17 2.78

FIGURE 7.9

The mean (*SE) score for
treatment groups A and B.
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and B) are given different treatments, and then the subjects’ scores on a dependent
variable are recorded. The mean for group A is M = 15, and for group B, itis M
= 30. For both samples, the standard error of M is g,, = 4. Note that the mean is
represented by the height of the bar, and the standard error is depicted by brackets at
the top of each bar. Each bracket extends 1 standard error above and 1 standard error
below the sample mean. Thus, the graph illustrates the mean for each group plus or
minus 1 standard error (M = SE). When you glance at Figure 7.9, not only do you
get a “picture” of the sample means, but also you get an idea of how much error you
should expect for those means.

Figure 7.10 shows how sample means and standard error are displayed in a line
graph. In this study, two samples representing different age groups are tested on a
task for four trials. The number of errors committed on each trial is recorded for all
participants. The graph shows the mean (M) number of errors committed for each group
on each trial. The brackets show the size of the standard error for each sample mean.
Again, the brackets extend 1 standard error above and below the value of the mean.

FIGURE 7.10

The mean (=SE) number
of mistakes made for groups
A and B on each trial.

30
25
20
15
10
5 Group B

Group A

M number of mistakes (+SE)

N
N

3
Trials

m 1. A population has a standard deviation of o = 10.

a. On average, how much difference should there be between the population mean
and a single score selected from this population?

b. On average, how much difference should there be between the population mean
and the sample mean for n = 4 scores selected from this population?

c¢. On average, how much difference should there be between the population mean
and the sample mean for n = 25 scores selected from this population?

2. Can the value of the standard error ever be larger than the value of the population
standard deviation? Explain your answer.

3. A researcher plans to select a random sample from a population with a standard
deviation of o = 12.
a. How large a sample is needed to have a standard error of 6 points or less?
b. How large a sample is needed to have a standard error of 4 points or less?
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ANSWERS 1. a. o = 10 points
b. o), = 5 points
¢. oy = 2 points
2. No. The standard error is computed by dividing the standard deviation by the square root of
n. The standard error is always less than or equal to the standard deviation.
3. a. A sample of n = 4 or larger.
b. A sample of n = 9 or larger.
/&Y LOOKING AHEAD TO INFERENTIAL STATISTICS

EXAMPLE 7.5

Inferential statistics are methods that use sample data as the basis for drawing general
conclusions about populations. However, we have noted that a sample is not expected to
give a perfectly accurate reflection of its population. In particular, there will be some error
or discrepancy between a sample statistic and the corresponding population parameter. In
this chapter, we have observed that a sample mean is not exactly equal to the population
mean. The standard error of M specifies how much difference is expected on average be-
tween the mean for a sample and the mean for the population.

The natural differences that exist between samples and populations introduce a
degree of uncertainty and error into all inferential processes. Specifically, there is always
a margin of error that must be considered whenever a researcher uses a sample mean as
the basis for drawing a conclusion about a population mean. Remember that the sample
mean is not perfect. In the next seven chapters we introduce a variety of statistical meth-
ods that all use sample means to draw inferences about population means.

In each case, the distribution of sample means and the standard error are critical
elements in the inferential process. Before we begin this series of chapters, we pause
briefly to demonstrate how the distribution of sample means, along with z-scores and
probability, can help us use sample means to draw inferences about population means.

Suppose that a psychologist is planning a research study to evaluate the effect of a new
growth hormone. It is known that regular adult rats (with no hormone) weigh an average
of u = 400 grams. Of course, not all rats are the same size, and the distribution of their
weights is normal with o = 20. The psychologist plans to select a sample of n = 25
newborn rats, inject them with the hormone, and then measure their weights when they
become adults. The structure of this research study is shown in Figure 7.11.

The psychologist makes a decision about the effect of the hormone by comparing
the sample of treated rats with the regular untreated rats in the original population. If
the treated rats in the sample are noticeably different from untreated rats, then the
researcher has evidence that the hormone has an effect. The problem is to determine
exactly how much difference is necessary before we can say that the sample is
noticeably different.

The distribution of sample means and the standard error can help researchers
make this decision. In particular, the distribution of sample means can be used to
show exactly what would be expected for a sample of rats who do not receive any
hormone injections. This allows researchers to make a simple comparison between

a. The sample of treated rats (from the research study)

b. Samples of untreated rats (from the distribution of sample means)
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FIGURE 7.11

The structure of the
research study described in
Example 7.5. The purpose
of the study is to determine
whether the treatment (a
growth hormone) has an
effect on weight for rats.

Population
of weights
for adult rats

Normal
u =400
c=20

T
r
e
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If our treated sample is noticeably different from the untreated samples, then we
have evidence that the treatment has an effect. On the other hand, if our treated sample
still looks like one of the untreated samples, then we must conclude that the treatment
does not appear to have any effect.

We begin with the original population of untreated rats and consider the distribution
of sample means for all of the possible samples of n = 25 rats. The distribution of
sample means has the following characteristics:

1. It is a normal distribution, because the population of rat weights is normal.

2. It has an expected value of 400, because the population mean for untreated rats
is u = 400.

3. It has a standard error of 0, = 20 _20_ 4, because the population standard
V2s S

deviation is o = 20 and the sample size is n = 25.

The distribution of sample means is shown in Figure 7.12. Notice that a sample
of n = 25 untreated rats (without the hormone) should have a mean weight around
400 grams. To be more precise, we can use z-scores to determine the middle 95%
of all the possible sample means. As demonstrated in Chapter 6 (p. 190), the middle
95% of a normal distribution is located between z-score boundaries of z = +1.96
and z = —1.96 (check the unit normal table). These z-score boundaries are shown in
Figure 7.12. With a standard error of o,, = 4 points, a z-score of z = 1.96 corresponds
to a distance of 1.96(4) = 7.84 points from the mean. Thus, the z-score boundaries of
*1.96 correspond to sample means of 392.16 and 407.84.

We have demonstrated that a sample of untreated rats is almost guaranteed (95%
probability) to have a sample mean between 392.16 and 407.84. If our sample has a
mean within this range, then we must conclude that our sample of treated rats is not
noticeably different from samples of untreated rats. In this case, we conclude that the
treatment does not appear to have any effect.

On the other hand, if the mean for the treated sample is outside the 95% range,
then we can conclude that our sample of treated rats is noticeably different from the
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FIGURE 7.12

The distribution of sample
means for samples of

n = 25 untreated rats
(from Example 7.5).

392.16 u =400 407.84

! !
-1.96 +1.96

STANDARD ERROR AS A
MEASURE OF RELIABILITY

The relationship between the
number of scores in the sample
and the size of the standard
error is shown in Figure 7.3 on
page 208.

samples that would be obtained without any treatment. In this case, the research
results provide evidence that the treatment has an effect.

In Example 7.5 we used the distribution of sample means, together with z-scores
and probability, to provide a description of what is reasonable to expect for an untreated
sample. Then, we evaluated the effect of a treatment by determining whether the treated
sample was noticeably different from an untreated sample. This procedure forms the
foundation for the inferential technique known as hypothesis testing, which is intro-
duced in Chapter 8 and repeated throughout the remainder of this book.

The research situation shown in Figure 7.11 introduces one final issue concerning sam-
ple means and standard error. In Figure 7.11, as in most research studies, the researcher
must rely on a single sample to provide an accurate representation of the population
being investigated. As we have noted, however, if you take two different samples from
the same population, the samples will have different individuals with different scores
and different sample means. Thus, every researcher must face the nagging question, “If
I had taken a different sample, would I have obtained different results?”

The importance of this question is directly related to the degree of similarity among
all the different samples. For example, if there is a high level of consistency from one
sample to another, then a researcher can be reasonably confident that the specific sam-
ple being studied provides a good measurement of the population. That is, when all of
the samples are similar, then it does not matter which one you have selected. On the
other hand, if there are big differences from one sample to another, then the researcher
is left with some doubts about the accuracy of his or her specific sample. In this case,
a different sample could have produced vastly different results.

In this context, the standard error can be viewed as a measure of the reliability of
a sample mean. The term reliability refers to the consistency of different measurements
of the same thing. More specifically, a measurement procedure is said to be reliable if
you make two different measurements of the same thing and obtain identical (or nearly
identical) values. If you view a sample as a “measurement” of a population, then a sam-
ple mean is a “measurement” of the population mean.
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If the standard error is small, then all of the possible sample means are clustered
close together and a researcher can be confident that any individual sample mean pro-
vides a reliable measure of the population. On the other hand, a large standard error in-
dicates that there are relatively large differences from one sample mean to another, and
a researcher must be concerned that a different sample could produce a different con-
clusion. Fortunately, the size of the standard error can be controlled. In particular, if a
researcher is concerned about a large standard error and the potential for big differences
from one sample to another, then the researcher has the option of reducing the standard
error by selecting a larger sample. Thus, the ability to compute the value of the standard
error provides researchers with the ability to control the reliability of their samples.

The reliability of a sample mean is directly related to the degree of confidence that
a specific sample mean is a stable and accurate representative of the population. If a re-
searcher suspects that adding one or two new scores to a sample might produce a sub-
stantial change in the sample mean, then the sample is not reliable and the researcher
has no confidence that it is stable and accurate. There are two factors that influence
whether a few new scores might substantially change a sample mean.

1. The number of scores in the sample. If there are only 2 or 3 scores in a sample,
then a few new scores can have a huge influence on the sample mean. On the
other hand, if a sample already has 100 scores, then one or two new ones can-
not have much effect.

2. The size of the population standard deviation. When the standard deviation is
large, it means that the scores are spread over a wide range of values. In this
situation it is possible to select one or two extreme scores that are very different
from the others. As we noted in Chapter 3 (p. 90), adding one or two extreme
scores to a sample can have a large influence on the sample mean. With a small
standard deviation, however, all of the scores are close together and a few new
scores should be similar to the ones already in the sample.

Notice that these two factors are the same values that are used to calculate the stan-
dard error. A large sample means that the standard error is small and the sample mean
is reliable. Also, a small population standard deviation means that the standard error is
small and the sample mean is reliable. In either case, a researcher can be confident that
adding a few new scores to an existing sample will not have a significant influence on
the sample mean.

m 1. A population forms a normal distribution with a mean of u = 80 and a standard

deviation of o = 20.

a. If single score is selected from this population, how much distance would you
expect, on average, between the score and the population mean?

b. If a sample of n = 100 scores is selected from this population, how much dis-

tance would you expect, on average, between the sample mean and the popula-
tion mean?

2. A population forms a normal shaped distribution with u = 40 and o = 8.

a. A sample of n = 16 scores from this population has a mean of M = 36.
Would you describe this as a relatively typical sample, or is the sample mean
an extreme value? Explain your answer.

b. If the sample from part a had n = 4 scores, would it be considered typical or
extreme?
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3. The SAT scores for the entering freshman class at a local college form a normal
distribution with a mean of u = 530 and a standard deviation of ¢ = 80.
a. For a random sample of n = 16 students, what range of values for the sample
mean would be expected 95% of the time?

b. What range of values would be expected 95% of the time if the sample size
were n = 1007

4. An automobile manufacturer claims that a new model will average p = 45
miles per gallon with o = 4. A sample of n = 16 cars is tested and averages
only M = 43 miles per gallon. Is this sample mean likely to occur if the manufac-
turer’s claim is true? Specifically, is the sample mean within the range of values
that would be expected 95% of the time? (Assume that the distribution of mileage
scores is normal.)

ANSWERS 1.

[V

. For a single score, the standard distance from the mean is the standard deviation, o = 20.

b. For a sample of n = 100 scores, the average distance between the sample mean and the
population mean is the standard error, o, = 20/V 100 = 2.

2. a. With n = 16 the standard error is 2, and the sample mean corresponds to z = —2.00.
This is an extreme value.

b. With n = 4 the standard error is 4, and the sample mean corresponds to z = —1.00. This
is a relatively typical value.

3. a. With n = 16 the standard error is o, = 20 points. Using z = *1.96, the 95% range
extends from 490.8 to 569.2.

b. With n = 100 the standard error is only 8 points and the range extends from 514.32 to
545.68.

4. With n = 16, the standard error is o, = 1. If the real mean is u = 45, then 95% of all
sample means should be within 1.96(1) = 1.96 points of p = 45. This is a range of values
from 43.04 to 46.96. Our sample mean is outside this range, so it is not the kind of sample
that ought to be obtained if the manufacturer’s claim is true.

1. The distribution of sample means is defined as the set population from which the samples are selected. The
of Ms for all the possible random samples for a specific mean of the distribution of sample means is called
sample size (n) that can be obtained from a given the expected value of M.
population. According to the central limit theorem, the c. Variability. The standard deviation of the
parameters of the distribution of sample means are as distribution of sample means is called the standard
follows: error of M and is defined by the formula
a. Shape. The distribution of sample means is normal if >

either one of the following two conditions is satisfied: Oy = g or oy = \/:
(1) The population from which the samples are Vn

selected is normal.
(2) The size of the samples is relatively large (n = 30
or more).
b. Central Tendency. The mean of the distribution 2. One of the most important concepts in this chapter is
of sample means is identical to the mean of the standard error. The standard error is the standard

Standard error measures the standard distance
between a sample mean (M) and the population mean (u).
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deviation of the distribution of sample means. It measures
the standard distance between a sample mean (M) and
the population mean (u). The standard error tells how
much error to expect if you are using a sample mean to
represent a population mean.

. The location of each M in the distribution of sample

means can be specified by a z-score:
M- p

Om

7=

Because the distribution of sample means tends to be
normal, we can use these z-scores and the unit normal

KEY TERMS

sampling error (201)
distribution of sample means (201)
sampling distribution (202)

central limit theorem (205)
expected value of M (206)
standard error of M (207)
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table to find probabilities for specific sample means.
In particular, we can identify which sample means are
likely and which are very unlikely to be obtained from
any given population. This ability to find probabilities
for samples is the basis for the inferential statistics in
the chapters ahead.

. In general terms, the standard error measures how much

discrepancy you should expect between a sample statistic
and a population parameter. Statistical inference involves
using sample statistics to make a general conclusion
about a population parameter. Thus, standard error plays
a crucial role in inferential statistics.

law of large numbers (207)

Book Companion Website: www.cengage.com/psychology/gravetter

You can find a tutorial quiz and other learning exercises for Chapter 7 on the book
companion website. The website also provides access to two workshops entitled Standard
Error and Central Limit Theorem that review the material covered in Chapter 7.

aplia
Improve your understanding of statistics with Aplia’s auto-graded problem sets and
immediate, detailed explanations for every question. To learn more, visit
www.aplia.com/statistics.
CENGAGEbrain

Psychology CourseMate brings course concepts to life with interactive learning, study,
and exam preparation tools that support the printed textbook. A textbook-specific website,
Psychology CourseMate includes an integrated interactive eBook and other interactive
learning tools including quizzes, flashcards, and more.

Visit www.cengagebrain.com to access your account and purchase materials.



www.cengage.com/psychology/gravetter
www.aplia.com/statistics
www.cengagebrain.com

226 CHAPTER 7 PROBABILITY AND SAMPLES: THE DISTRIBUTION OF SAMPLE MEANS

The statistical computer package SPSS is not structured to compute the standard error or
a z-score for a sample mean. In later chapters, however, we introduce new inferential
statistics that are included in SPSS. When these new statistics are computed, SPSS typi-
cally includes a report of standard error that describes how accurately, on average, the
sample represents its population.

FOCUS ON PROBLEM SOLVING

DEMONSTRATION 7.1

1. Whenever you are working probability questions about sample means, you must use
the distribution of sample means. Remember that every probability question can be
restated as a proportion question. Probabilities for sample means are equivalent to
proportions of the distribution of sample means.

2. When computing probabilities for sample means, the most common error is to use
standard deviation (o) instead of standard error (o,) in the z-score formula. Standard
deviation measures the typical deviation (or error) for a single score. Standard error
measures the typical deviation (or error) for a sample. Remember: The larger the
sample is, the more accurately the sample represents the population. Thus, sample
size (n) is a critical part of the standard error.

T

Vn

Although the distribution of sample means is often normal, it is not always a normal dis-
tribution. Check the criteria to be certain that the distribution is normal before you use
the unit normal table to find probabilities (see item la of the Summary). Remember that

all probability problems with a normal distribution are easier to solve if you sketch the
distribution and shade in the area of interest.

Standard error = oy, =

STEP 1

PROBABILITY AND THE DISTRIBUTION OF SAMPLE MEANS

A population forms a normal distribution with a mean of p = 60 and a standard deviation
of o = 12. For a sample of n = 36 scores from this population, what is the probability of
obtaining a sample mean greater than 64?

p(M > 64) = ?

Rephrase the probability question as a proportion question. Out of all of the
possible sample means for n = 36, what proportion has values greater than 64? All of the
possible sample means is simply the distribution of sample means, which is normal, with a
mean of u = 60 and a standard error of

Oy = —— = - =
U Nm VEe 6

The distribution is shown in Figure 7.13(a). Because the problem is asking for the propor-
tion greater than M = 64, this portion of the distribution is shaded in Figure 7.13(b).

o _ 12 12 _
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() ©
Column B
p=0.9772
Column C
p =0.0228
M
u 64
60

FIGURE 7.13

Sketches of the distributions for Demonstration 7.1.

STEP 2 Compute the z-score for the sample mean. A sample mean of M = 64 corresponds
to a z-score of

M- 64—60 4
= =5 =200
Oy 2 2

7=

Therefore, p(M > 64) = p(z > 2.00)

STEP 3 Look up the proportion in the unit normal table. Find z = 2.00 in column A and
read across the row to find p = 0.0228 in column C. This is the answer as shown in
Figure 7.13(c).

p(M > 64) = p(z>2.00) = 0.0228 (or 2.28%)

PROBLEMS

1. Briefly define each of the following:
a. Distribution of sample means
b. Expected value of M
c. Standard error of M

5. A population has a standard deviation of o = 30.
a. On average, how much difference should exist
between the population mean and the sample mean
for n = 4 scores randomly selected from the

2. Describe the distribution of sample means (shape, population? ) )
expected value, and standard error) for samples of b. On average, how much difference should exist for a
n = 36 selected from a population with a mean of sample of n = 25 scores?
u = 100 and a standard deviation of o = 12. ¢. On average, how much difference should exist for a
sample of n = 100 scores?
3. A sample is selected from a population with a mean of
i = 40 and a standard deviation of ¢ = 8. 6. For a population with a mean of p = 70 and a standard
a. If the sample has n = 4 scores, what is the expected deviation of o = 20, how much error, on average,
value of M and the standard error of M? would you expect between the sample mean (M) and
b. If the sample has n = 16 scores, what is the expected the population mean for each of the following sample
value of M and the standard error of M? sizes?
a. n = 4 scores
4. The distribution of sample means is not always a b. n = 16 scores
normal distribution. Under what circumstances is the c. n = 25 scores

distribution of sample means not normal?
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7.

10.

11.

12.

13.

14.
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For a population with a standard deviation of o = 20,
how large a sample is necessary to have a standard
error that is:

a. less than or equal to 5 points?

b. less than or equal to 2 points?

c. less than or equal to 1 point?

. If the population standard deviation is o = 8, how

large a sample is necessary to have a standard error
that is:

a. less than 4 points?

b. less than 2 points?

c. less than 1 point?

. For a sample of n = 25 scores, what is the value of the

population standard deviation (o) necessary to produce
each of the following a standard error values?

a. oy, = 10 points?

b. o), = 5 points?

c. o) = 2 points?

For a population with a mean of p = 80 and a standard
deviation of o = 12, find the z-score corresponding to
each of the following samples.

a. M = 83 for a sample of n = 4 scores

b. M = 83 for a sample of n = 16 scores

c. M = 83 for a sample of n = 36 scores

A sample of n = 4 scores has a mean of M = 75. Find

the z-score for this sample:

a. If it was obtained from a population with u = 80
and o = 10.

b. If it was obtained from a population with p = 80
and o = 20.

c. If it was obtained from a population with p = 80
and o = 40.

A population forms a normal distribution with a mean
of u = 80 and a standard deviation of o = 15. For
each of the following samples, compute the z-score for
the sample mean and determine whether the sample
mean is a typical, representative value or an extreme
value for a sample of this size.

a. M = 84 for n = 9 scores

b. M = 84 for n = 100 scores

A random sample is obtained from a normal

population with a mean of p = 30 and a standard

deviation of o = 8. The sample mean is M = 33.

a. Is this a fairly typical sample mean or an extreme
value for a sample of n = 4 scores?

b. Is this a fairly typical sample mean or an extreme
value for a sample of n = 64 scores?

The population of IQ scores forms a normal distribution
with a mean of u = 100 and a standard deviation of

15.

16.

17.

18.

o = 15. What is the probability of obtaining a sample
mean greater than M = 97,

a. for a random sample of n = 9 people?

b. for a random sample of n = 25 people?

The scores on a standardized mathematics test for

8th-grade children in New York State form a normal

distribution with a mean of u = 70 and a standard

deviation of o = 10.

a. What proportion of the students in the state have
scores less than X = 757

b. If samples of n = 4 are selected from the
population, what proportion of the samples will
have means less than M = 75?

c. If samples of n = 25 are selected from the
population, what proportion of the samples will
have means less than M = 75?

A population of scores forms a normal distribution

with a mean of u = 40 and a standard deviation of

o=12.

a. What is the probability of randomly selecting a
score less than X = 347

b. What is the probability of selecting a sample of
n = 9 scores with a mean less than M = 34?

c. What is the probability of selecting a sample of
n = 36 scores with a mean less than M = 34?

A population of scores forms a normal distribution

with a mean of u = 80 and a standard deviation of

o =10.

a. What proportion of the scores have values between
75 and 857

b. For samples of n = 4, what proportion of the
samples will have means between 75 and 857

¢. For samples of n = 16, what proportion of the
samples will have means between 75 and 857

At the end of the spring semester, the Dean of Students
sent a survey to the entire freshman class. One question
asked the students how much weight they had gained or
lost since the beginning of the school year. The average
was a gain of u = 9 pounds with a standard deviation of
o = 6. The distribution of scores was approximately
normal. A sample of n = 4 students is selected and the
average weight change is computed for the sample.

a. What is the probability that the sample mean will
be greater than M = 10 pounds? In symbols, what
is p(M > 10)?

b. Of all of the possible samples, what proportion will
show an average weight loss? In symbols, what is
p(M < 0)?

c. What is the probability that the sample mean will
be a gain of between M = 9 and M = 12 pounds?
In symbols, what is p(9 <M < 12)?



19. The machinery at a food-packing plant is able to put

20.

21.

exactly 12 ounces of juice in every bottle. However,
some items such as apples come in variable sizes so it
is almost impossible to get exactly 3 pounds of apples
in a bag labeled “3 Ibs.” Therefore, the machinery is
set to put an average of u = 50 ounces (3 pounds and
2 ounces) in each bag. The distribution of bag weights
is approximately normal with a standard deviation of
o = 4 ounces.
a. What is the probability of randomly picking a
bag of apples that weighs less than 48 ounces
(3 pounds)?
b. What is the probability of randomly picking n = 4
bags of apples that have an average weight less
than M = 48 ounces?

The average age for licensed drivers in the county

is u = 40.3 years with a standard deviation of o =

13.2 years.

a. A researcher obtained a random sample of n = 16
parking tickets and computed an average age of
M = 38.9 years for the drivers. Compute the z-score
for the sample mean and find the probability of
obtaining an average age this young or younger
for a random sample of licensed drivers. Is it
reasonable to conclude that this set of n = 16
people is a representative sample of licensed
drivers?

b. The same researcher obtained a random sample of
n = 36 speeding tickets and computed an average
age of M = 36.2 years for the drivers. Compute the
z-score for the sample mean and find the prob-
ability of obtaining an average age this young or
younger for a random sample of licensed drivers.
Is it reasonable to conclude that this set of n = 36
people is a representative sample of licensed
drivers?

People are selected to serve on juries by randomly
picking names from the list of registered voters.
The average age for registered voters in the county is
u = 44.3 years with a standard deviation of ¢ = 12.4.
A statistician computes the average age for a group of
n = 12 people currently serving on a jury and obtains
a mean of M = 48.9 years.
a. How likely is it to obtain a random sample of
n = 12 jurors with an average age equal to or
greater than 48.97

22,
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b. Is it reasonable to conclude that this set of n = 12
people is not a representative random sample of
registered voters?

Welsh, Davis, Burke, and Williams (2002) con-
ducted a study to evaluate the effectiveness of a
carbohydrate-electrolyte drink on sports performance
and endurance. Experienced athletes were given
either a carbohydrate-electrolyte drink or a placebo
while they were tested on a series of high-intensity
exercises. One measure was how much time it took
for the athletes to run to fatigue. Data similar to the
results obtained in the study are shown in the
following table.

Time to Run to Fatigue (in minutes)

Mean SE
Placebo 21.7 2.2
Carbohydrate-electrolyte 28.6 2.7

a. Construct a bar graph that incorporates all of the
information in the table.

b. Looking at your graph, do you think that the
carbohydrate-electrolyte drink helps performance?

In the Preview section for this chapter, we discussed a
research study demonstrating that 8-month-old infants
appear to recognize which samples are likely to be
obtained from a population and which are not. In

the study, the infants watched as a sample of n = 5
ping pong balls was selected from a large box. In

one condition, the sample consisted of 1 red ball and
4 white balls. After the sample was selected, the front
panel of the box was removed to reveal the contents.
In the expected condition, the box contained primarily
white balls like the sample and the infants looked at it
for an average of M = 7.5 seconds. In the unexpected
condition, the box had primarily red balls, unlike the
sample, and the infants looked at it for M = 9.9 seconds.
Assuming that the standard error for both means is
(oas = 1 second, draw a bar graph showing the two
sample means using brackets to show the size of the
standard error for each mean.
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Preview

Most of us spend more time looking down at our mobile
devices than we do looking up at the clouds. But if you

do watch the clouds and have a little imagination, you
occasionally see them form into familiar shapes. Figure 8.1
is a photograph of a cloud formation seen over Kansas
City around Christmas in 2008. Do you recognize a
familiar image?

The cloud pattern shown in Figure 8.1 was formed
simply by chance. Specifically, it was the random forces
of wind and air currents that produced a portrait of Santa
Claus. The clouds did not conspire to form the image, and
it was not deliberately created by a team of professional
skywriters. The point we would like to make is that what
appear to be meaningful patterns can be produced by
random chance.

The Problem Researchers often find meaningful
patterns in the sample data obtained in research studies.
The problem is deciding whether the patterns found in a
sample reflect real patterns that exist in the population
or are simply random, chance occurrences.

The Solution To differentiate between real,
systematic patterns and random, chance occurrences,
researchers rely on a statistical technique known as
hypothesis testing, which is introduced in this chapter.
As you will see, a hypothesis test first determines the
probability that the pattern could have been produced
by chance alone. If this probability is large enough, then
we conclude that the pattern can reasonably be
explained by chance. However, if the probability is
extremely small, then we can rule out chance as a
plausible explanation and conclude that some
meaningful, systematic force has created the pattern.
For example, it is reasonable, once in a lifetime, to see
a cloud formation that resembles Santa Claus. However,
it would be extremely unlikely if the clouds also
included the words “Merry Christmas” spelled out
beneath Santa’s face. If this happened, we would
conclude that the pattern was not produced by the
random forces of chance, but rather was created by a
deliberate, systematic act.

FIGURE 8.1

A cloud formation seen over
Kansas City.

Mark Gravetter
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THE LOGIC OF HYPOTHESIS TESTING

It usually is impossible or impractical for a researcher to observe every individual in
a population. Therefore, researchers usually collect data from a sample and then use
the sample data to help answer questions about the population. Hypothesis testing is a
statistical procedure that allows researchers to use sample data to draw inferences about
the population of interest.

Hypothesis testing is one of the most commonly used inferential procedures. In fact,
most of the remainder of this book examines hypothesis testing in a variety of different
situations and applications. Although the details of a hypothesis test change from one
situation to another, the general process remains constant. In this chapter, we introduce
the general procedure for a hypothesis test. You should notice that we use the statistical
techniques that have been developed in the preceding three chapters—that is, we com-
bine the concepts of z-scores, probability, and the distribution of sample means to create
a new statistical procedure known as a hypothesis test.

A hypothesis test is a statistical method that uses sample data to evaluate a
hypothesis about a population.

In very simple terms, the logic underlying the hypothesis-testing procedure is as
follows:

1. First, we state a hypothesis about a population. Usually the hypothesis concerns
the value of a population parameter. For example, we might hypothesize that
American adults gain an average of i = 7 pounds between Thanksgiving and
New Year’s Day each year.

2. Before we select a sample, we use the hypothesis to predict the characteristics
that the sample should have. For example, if we predict that the average weight
gain for the population is w = 7 pounds, then we would predict that our sample
should have a mean around 7 pounds. Remember: The sample should be similar
to the population, but you always expect a certain amount of error.

3. Next, we obtain a random sample from the population. For example, we might
select a sample of n = 200 American adults and measure the average weight
change for the sample between Thanksgiving and New Year’s Day.

4. Finally, we compare the obtained sample data with the prediction that was made
from the hypothesis. If the sample mean is consistent with the prediction, then
we conclude that the hypothesis is reasonable. But if there is a big discrepancy
between the data and the prediction, then we decide that the hypothesis is wrong.

A hypothesis test is typically used in the context of a research study. That is, a researcher
completes a research study and then uses a hypothesis test to evaluate the results. Depending
on the type of research and the type of data, the details of the hypothesis test change from one
research situation to another. In later chapters, we examine different versions of hypothesis
testing that are used for different kinds of research. For now, however, we focus on the basic
elements that are common to all hypothesis tests. To accomplish this general goal, we
examine a hypothesis test as it applies to the simplest possible situation—using a sample
mean to test a hypothesis about a population mean.

In the six chapters that follow, we consider hypothesis testing in more complex
research situations involving sample means and mean differences. In Chapters 15 and 16,
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we look at correlational research and examine how the relationships obtained for sample
data are used to evaluate hypotheses about relationships in the population. In Chapters 17
and 18, we examine how the proportions that exist in a sample are used to test hypothe-
ses about the corresponding proportions in the population. Chapter 19 reviews the com-
plete set of hypothesis tests and presents a guide to help you find the appropriate test for
a specific set of data.

Once again, we introduce hypothesis testing with a situation in which a researcher
is using one sample mean to evaluate a hypothesis about one unknown population mean.

The unknown population Figure 8.2 shows the general research situation that we
use to introduce the process of hypothesis testing. Notice that the researcher begins with
a known population. This is the set of individuals as they exist before treatment. For
this example, we are assuming that the original set of scores forms a normal distribu-
tion with w = 80 and o = 20. The purpose of the research is to determine the effect of
a treatment on the individuals in the population. That is, the goal is to determine what
happens to the population after the treatment is administered.

To simplify the hypothesis-testing situation, one basic assumption is made about
the effect of the treatment: If the treatment has any effect, it is simply to add a constant
amount to (or subtract a constant amount from) each individual’s score. You should
recall from Chapters 3 and 4 that adding (or subtracting) a constant changes the mean
but does not change the shape of the population, nor does it change the standard devi-
ation. Thus, we assume that the population after treatment has the same shape as the
original population and the same standard deviation as the original population. This
assumption is incorporated into the situation shown in Figure 8.2.

Note that the unknown population, after treatment, is the focus of the research
question. Specifically, the purpose of the research is to determine what would happen
if the treatment were administered to every individual in the population.

The sample in the research study The goal of the hypothesis test is to determine
whether the treatment has any effect on the individuals in the population (see Figure 8.2).
Usually, however, we cannot administer the treatment to the entire population, so the
actual research study is conducted using a sample. Figure 8.3 shows the structure of the
research study from the point of view of the hypothesis test. The original population,
before treatment, is shown on the left-hand side. The unknown population, after treatment,
is shown on the right-hand side. Note that the unknown population is actually hypothetical
(the treatment is never administered to the entire population). Instead, we are asking what
would happen if the treatment were administered to the entire population. The research

FIGURE 8.2

The basic experimental
situation for hypothesis
testing. It is assumed that
the parameter p is known
for the population before
treatment. The purpose
of the experiment is to
determine whether the
treatment has an effect on
the population mean.
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EXAMPLE 8.1

study involves selecting a sample from the original population, administering the treatment
to the sample, and then recording scores for the individuals in the treated sample. Notice
that the research study produces a treated sample. Although this sample was obtained
indirectly, it is equivalent to a sample that is obtained directly from the unknown treated
population. The hypothesis test uses the treated sample on the right-hand side of Figure 8.3
to evaluate a hypothesis about the unknown treated population on the right side of the
figure.

A hypothesis test is a formalized procedure that follows a standard series of oper-
ations. In this way, researchers have a standardized method for evaluating the results of
their research studies. Other researchers recognize and understand exactly how the data
were evaluated and how conclusions were reached. To emphasize the formal structure
of a hypothesis test, we present hypothesis testing as a four-step process that is used
throughout the rest of the book. The following example provides a concrete foundation
for introducing the hypothesis-testing procedure.

Researchers have noted a decline in cognitive functioning as people age (Bartus,
1990). However, the results from other research suggest that the antioxidants in foods
such as blueberries can reduce and even reverse these age-related declines, at least in
laboratory rats (Joseph et al., 1999). Based on these results, one might theorize that
the same antioxidants might also benefit elderly humans. Suppose a researcher is
interested in testing this theory.

Standardized neuropsychological tests such as the Wisconsin Card Sorting Test
can be used to measure conceptual thinking ability and mental flexibility (Heaton,
Chelune, Talley, Kay, & Curtiss, 1993). Performance on this type of test declines
gradually with age. Suppose that our researcher selects a test for which adults older
than 65 have an average score of . = 80 with a standard deviation of o = 20. The
distribution of test scores is approximately normal. The researcher’s plan is to obtain
a sample of n = 25 adults who are older than 65, and give each participant a daily
dose of a blueberry supplement that is very high in antioxidants. After taking the
supplement for 6 months, the participants are given the neuropsychological test to
measure their level of cognitive function. If the mean score for the sample is
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STEP 1: STATE THE
HYPOTHESIS

The goal of inferential statistics
is to make general statements
about the population by using
sample data. Therefore, when
testing hypotheses, we make our
predictions about the population
parameters.

DEFINITION

DEFINITION

The null hypothesis and the
alternative hypothesis are
mutually exclusive and
exhaustive. They cannot both
be true, and one of them must
be true. The data determine
which one should be rejected.
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noticeably different from the mean for the general population of elderly adults, then
the researcher can conclude that the supplement does appear to have an effect on
cognitive function. On the other hand, if the sample mean is around 80 (the same as
the general population mean), the researcher must conclude that the supplement does
not appear to have any effect.

Figure 8.3 depicts the research situation that was described in the preceding example.
Notice that the population after treatment is unknown. Specifically, we do not know
what will happen to the mean score if the entire population of elderly adults is given the
blueberry supplement. However, we do have a sample of n = 25 participants who have
received the supplement and we can use this sample to help draw inferences about the
unknown population. The following four steps outline the hypothesis-testing procedure
that allows us to use sample data to answer questions about an unknown population.

As the name implies, the process of hypothesis testing begins by stating a hypothesis
about the unknown population. Actually, we state two opposing hypotheses. Notice that
both hypotheses are stated in terms of population parameters.

The first, and most important, of the two hypotheses is called the null hypothesis.
The null hypothesis states that the treatment has no effect. In general, the null hypoth-
esis states that there is no change, no effect, no difference—nothing happened, hence
the name null. The null hypothesis is identified by the symbol H,. (The H stands for
hypothesis, and the zero subscript indicates that this is the zero-effect hypothesis.)
For the study in Example 8.1, the null hypothesis states that the blueberry supplement
has no effect on cognitive functioning for the population of adults who are more than
65 years old. In symbols, this hypothesis is

(Even with the supplement,
the mean test score is still 80.)

HO: Mewith supplement =80

The null hypothesis (H,) states that in the general population there is no
change, no difference, or no relationship. In the context of an experiment, H
predicts that the independent variable (treatment) has no effect on the dependent
variable (scores) for the population.

The second hypothesis is simply the opposite of the null hypothesis, and it is called
the scientific, or alternative, hypothesis (H;). This hypothesis states that the treatment
has an effect on the dependent variable.

The alternative hypothesis (H) states that there is a change, a difference,

or a relationship for the general population. In the context of an experiment, H,
predicts that the independent variable (treatment) does have an effect on the
dependent variable.

For this example, the alternative hypothesis states that the supplement does have
an effect on cognitive functioning for the population and will cause a change in the
mean score. In symbols, the alternative hypothesis is represented as

(With the supplement, the mean
test score is different from 80.)

Hl: Mewith supplement #+ 80



STEP 2: SET THE CRITERIA
FOR A DECISION

With rare exceptions, an alpha
level is never larger than .05.
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Notice that the alternative hypothesis simply states that there will be some type of
change. It does not specify whether the effect will be increased or decreased test scores.
In some circumstances, it is appropriate for the alternative hypothesis to specify the
direction of the effect. For example, the researcher might hypothesize that the supple-
ment will increase neuropsychological test scores (i > 80). This type of hypothesis
results in a directional hypothesis test, which is examined in detail later in this chapter.
For now we concentrate on nondirectional tests, for which the hypotheses simply state
that the treatment has no effect (Hy) or has some effect (H,).

Eventually the researcher uses the data from the sample to evaluate the credibility of
the nul