
Creating the Product Catalog:
Part 1

A fter learning about the three-tier architecture and implementing a bit of your web site’s
main page, you’re ready to start creating the TShirtShop product catalog.

Because the product catalog is composed of many components, you’ll create it over two
chapters. In this chapter, you’ll create the first data table, implement access methods in the
middle tier, and learn how to deal with the data tier. By the end of this chapter, you’ll finally
have something dynamically generated on your web page. In Chapter 5, you’ll finish building
the product catalog by adding support for categories, product lists, a product details page, and
more!

The main topics we’ll cover in this chapter are

• Analyzing the structure of the product catalog and the functionality it should support

• Creating the database structures for the catalog and the data tier of the catalog

• Implementing the business tier objects required to make the catalog run

• Implementing a functional user interface for the product catalog

Showing Your Visitors What You’ve Got
One of the essential features required in any e-store is to allow the visitor to easily browse through
the products. Just imagine what Amazon.com would be like without its excellent product catalog!

Whether your visitors are looking for something specific or just browsing, it’s important to
make sure their experiences with your site are pleasant ones. After all, you want your visitors
to find what they are looking for as easily and painlessly as possible. This is why you’ll want to
add search functionality to the site and also find a clever way of structuring products into cat-
egories so they can be quickly and intuitively accessed.

Depending on the size of the store, it might be enough to group products under a number
of categories, but if there are a lot of products, you’ll need to find even more ways to categorize
and structure the product catalog.

Determining the structure of the catalog is one of the first tasks to accomplish in this chapter.
Keep in mind that, in a professional approach, these details would have been established before
starting to code when building the requirements document for the project. However, for the
purposes of this book, we prefer to deal with things one at a time.

63

C H A P T E R 4

8644ch04.qxd 1/30/08 12:06 PM Page 63

www.it-ebooks.info

http://www.it-ebooks.info/

After the structure of the catalog is established, you’ll start writing the code that makes
the catalog work as planned.

What Does a Product Catalog Look Like?
Today’s web surfers are more demanding than they used to be. They expect to find informa-
tion quickly on whatever product or service they have in mind, and if they don’t find it, they
are likely to go to the competition before giving the site a second chance. Of course, you don’t
want this to happen to your visitors, so you need to structure the catalog to make it as intuitive
and helpful as possible.

Because the e-store will start with around 100 products and will probably have many
more in the future, it’s not enough to just group them in categories. The store also has a num-
ber of departments, and each department will contain a number of categories. Each category
can then have any number of products attached to it.

■Note Later in the book, you’ll also create the administrative part of the web site, often referred to as the
control panel, which allows the client to update department, category, and product data. Until then, you’ll
manually fill in the database with data (or you can “cheat” by using the SQL scripts provided in the Source
Code/Download section of the Apress web site at http://www.apress.com, as you’ll see).

Another particularly important detail that you need to think about is whether a category
can exist in more than one department and whether a product can exist in more than one cat-
egory. As you might suspect, this is the kind of decision that has implications on the way you
code the product catalog, so you need to consult your client on this matter.

For the TShirtShop product catalog, each category can exist in only one department, but
a product can exist in more than one category. For example, in our catalog, the product Kat Over
New Moon will appear in both Animal and Christmas categories. This decision will have implica-
tions in the way you’ll design the database, and we’ll highlight those implications when we get there.

Finally, apart from having the products grouped in categories, you also want to have fea-
tured products. For this web site, a product can be featured either on the front page or in the
department pages. The next section shows a few screenshots that explain this.

Previewing the Product Catalog
Although you’ll have the fully functional product catalog finished by the end of Chapter 5, tak-
ing a look at it right now will give you a better idea about where you’re heading. In Figure 4-1,
you can see the TShirtShop front page and two of its featured products.

Note the departments list in the upper-left corner of the page. The list of departments is
dynamically generated with data gathered from the database; you’ll implement the list of
departments in this chapter.

When site visitors click a department in the departments list, they go to the main page of the
specified department. This replaces the store’s list of catalog-featured products with a page con-
taining information specific to the selected department—including the list of featured products
for that department. In Figure 4-2, you see the page that will appear when the Seasonal depart-
ment is clicked.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 164

8644ch04.qxd 1/30/08 12:06 PM Page 64

www.it-ebooks.info

http://www.apress.com
http://www.it-ebooks.info/

Figure 4-1. TShirtShop front page and two of its featured products

Figure 4-2. Visiting the Seasonal department

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 65

8644ch04.qxd 1/30/08 12:06 PM Page 65

www.it-ebooks.info

http://www.it-ebooks.info/

Under the list of departments, you can now see the list of categories that belong to the
selected department. On the right side of the screen, you can see the name of the selected
department, its description, and its featured products. When a particular page must display
a larger number of products than a predefined value, the products will be split into more sub-
pages, and a pager shows up to allow the navigation between these pages. You can see this
pager in Figure 4-2.

We decided to list only the featured products in the department page, and let the visitors
browse all the products by navigating to category pages. On a department page, the text above
the list of products is the description for the selected department, which means you’ll need to
store both a name and a description for each department in the database. When selecting
a category from the categories list, all of its products are listed, along with the category title
and description. Clicking a product’s image or title takes you to a product details page, which
you can see in Figure 4-3. The department and category boxes must retain their state when
a product is selected; this is a navigational aid for the visitor. A Continue Shopping link also
shows up, helping the visitor go back to the page he or she was visiting prior to selecting
a product.

Figure 4-3. Visiting a product details page

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 166

8644ch04.qxd 1/30/08 12:06 PM Page 66

www.it-ebooks.info

http://www.it-ebooks.info/

When a category is selected, all its products are listed—you no longer see featured
products. Note that the description text also changes. This time, this is the description of
the selected category.

Roadmap for This Chapter
As you can see, the product catalog, although not very complicated, has more parts that need
to be covered. In this chapter, you’ll only create the departments list (see Figure 4-4).

Figure 4-4. The departments list

The departments list will be the first dynamically generated data in your site (the names
of the departments will be extracted from the database).

In this chapter, you’ll implement just the departments list part of the web site. After you
understand how this list works, you’ll be able to quickly implement the other components of
the product catalog in Chapter 5.

In Chapter 2, we discussed the three-tiered architecture that you’ll use to implement the
web application. The product catalog part of the site is no exception to the rule, and its com-
ponents (including the departments list) will be spread over the three logical layers. Figure 4-5
previews what you’ll create in this chapter at each tier to achieve a functional departments list.

So far, you’ve only played a bit with the presentation and business tiers in Chapter 3. Now,
when building the catalog, you’ll finally meet the final tier and work further with the tshirtshop
database (depending on whom you ask, the data store may or may not be considered an inte-
gral part of the three-tiered architecture).

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 67

8644ch04.qxd 1/30/08 12:06 PM Page 67

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 4-5. The components of the departments list

These are the main steps you’ll take toward having your own dynamically generated depart-
ment list. Note that you start with the database and make your way to the presentation tier:

1. Create the department table in the database. This table will store data regarding the
store’s departments. Before adding this table, you’ll learn the basic concepts of working
with relational databases.

2. Write a MySQL stored procedure named catalog_get_departments_list, which returns
the IDs and names of the departments from the department table. PHP scripts will call
this stored procedure to generate the departments list for your visitor. MySQL stored
procedures are logically located in the data tier of your application. At this step, you’ll
learn how to speak to your relational database using SQL.

Presentation Tier

Smarty Componentized Template:
departments_list.tpl (Smarty Design Template)

load_presentation_object (Generic Smarty Function Plug-in)
DepartmentsList (Presentation Object)

Business Tier

PHP Code:
catalog.php (Contains the Catalog Class and its GetDepartments Method)

database_handler.php (Contains the DatabaseHandler Class)
error_handler.php (Contains the ErrorHandler Class)

Web Server

Data Tier
MySQL Stored Procedure: catalog_get_departments_list()

MySQL Server

Data
MySQL

Data Store

Department
(Data Table)

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 168

8644ch04.qxd 1/30/08 12:06 PM Page 68

www.it-ebooks.info

http://www.it-ebooks.info/

3. Create the DatabaseHandler class, which will be your helper class that performs
common database interaction operations. DatabaseHandler is a wrapper class for
some PDO methods and includes consistent error-handling techniques that deal
with database-related errors.

4. Create the business tier components of the departments list (the Catalog class and its
GetDepartments() method). You’ll see how to communicate with the database, through
the DatabaseHandler helper class, to retrieve the necessary data.

5. Implement the departments_list Smarty componentized template, the load_
presentation_object Smarty plug-in that glues the templates and their associated
presentation objects. The DepartmentList presentation object is needed by the
departments_list template.

So, let’s start by creating the department table.

Storing Catalog Information
The vast majority of web applications, e-commerce web sites being no exception, live around
the data they manage. Analyzing and understanding the data you need to store and process is
an essential step in successfully completing your project.

The typical data storage solution for this kind of application is a relational database.
However, this is not a requirement—you have the freedom to create your own data access
layer and have whatever kind of data structures you want to support your application.

■Note In some particular cases, it may be preferable to store your data in plain text files or XML files
instead of databases, but these solutions are generally not suited for applications such as TShirtShop, so we
won’t cover them in this book. However, it’s good to know your options.

Although this is not a book about databases or relational database design, you’ll learn all
you need to know to understand the product catalog and make it work.

Essentially, a relational database is made up of data tables and the relationships that exist
among them. Because you’ll work with a single data table in this chapter, we’ll cover only the
database theory that applies to the table as a separate, individual database item. In the next
chapter, when you’ll add the other tables to the picture, we’ll take a closer look at the theory
behind relational databases by analyzing how the tables relate to each other and how MySQL
helps you deal with these relationships.

■Note In a real-world situation, you would probably design the whole database (or at least all the tables
relevant to the feature you build) from the start. In this book, we chose to split the development over two
chapters to maintain a better balance of theory and practice.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 69

8644ch04.qxd 1/30/08 12:06 PM Page 69

www.it-ebooks.info

http://www.it-ebooks.info/

So, let’s start with a little bit of theory, after which you’ll create the department data table
and the rest of the required components:

Understanding Data Tables
This section provides a quick database lesson covering the essential information you need to
know to design simple data tables. We’ll briefly discuss the main parts that make up a data-
base table:

• Primary keys

• MySQL data types

• UNIQUE columns

• NOT NULL columns and default values

• Autoincrement columns

• Indexes

■Note If you have previous experience with MySQL, you might want to skip this section and go directly to
the “Creating the department Table” section.

A data table is made up of columns and rows. Columns are also referred to as fields, and
rows are sometimes also called records.

Because this chapter covers the only departments list, you’ll only need to create one data
table: the department table. This table will store your departments’ data and is one of the sim-
plest tables you’ll work with.

With the help of the MySQL client console interface, it’s easy to create a data table in the
database if you know for sure what kind of data it will store. When designing a table, you must
consider which fields it should contain and which data types should be used for those fields.
Besides a field’s data type, there are a few more properties to consider, which you’ll learn
about in the following pages.

To determine which fields you need for the department table, write down a few examples
of records that would be stored in that table. Remember from the previous figures that there
isn’t much information to store about a department—just the name and description for each
department. The table containing the departments’ data might look like Figure 4-6 (you’ll
implement the table in the database later, after we discuss the theory).

Figure 4-6. Data from the department table

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 170

8644ch04.qxd 1/30/08 12:06 PM Page 70

www.it-ebooks.info

http://www.it-ebooks.info/

From a table like this, the names would be extracted to populate the list in the upper-left part
of the web page, and the descriptions would be used as headers for the featured products list.

Primary Keys
The way you work with data tables in a relational database is a bit different from the way you
usually work on paper. A fundamental requirement in relational databases is that each data
row in a table must be uniquely identifiable. This makes sense because you usually save records
into a database so that you can retrieve them later; however, you can’t always do that if each
table row doesn’t have something that makes it unique. For example, suppose you add another
record to the department table shown previously in Figure 4-6, making it look like the table
shown in Figure 4-7.

Figure 4-7. Two departments with the same name

Look at this table, and tell me the description of the Seasonal department! Yep, we have
a problem—we have two departments with the same name Seasonal (the name isn’t unique).
If you queried the table using the name column, you would get two results. Sometimes getting
multiple results for a query is what you expect—but other times you want the rows to be uniquely
identifiable depending on the value of a column, which is supposed to be unique.

This problem is addressed, in the world of relational database design, using the concept
of the primary key, which allows you to uniquely identify a specific row out of many rows.
Technically, the primary key is not a column itself. Instead, the PRIMARY KEY is a constraint that
when applied on a column guarantees that the column will have unique values across the table.

Constraints are rules that apply to data tables and make up part of the data integrity rules
of the database. The database takes care of its own integrity and makes sure these rules aren’t
broken. If, for example, you try to add two identical values for a column that has a PRIMARY KEY
constraint, the database refuses the operation and generates an error. We’ll do some exper-
iments later in this chapter to show this.

■Note A primary key is not a column but a constraint that applies to that column; however, from now on
and for convenience, when referring to the primary key, we’ll be talking about the column that has the
PRIMARY KEY constraint applied to it.

Back to the example, setting the name column as the primary key of the department table
would solve the problem because two departments would not be allowed to have the same
name. If name is the primary key of the department table, searching for a product with a specific
name will always produce exactly one result if the name exists, or no results if no records have
the specified name.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 71

8644ch04.qxd 1/30/08 12:06 PM Page 71

www.it-ebooks.info

http://www.it-ebooks.info/

■Tip This is common sense, but it has to be said: a primary key column will never allow NULL values.

An alternative solution, and usually the preferred one, is to have an additional column in
the table, called an ID column, to act as its primary key. With an ID column, the department
table would look like Figure 4-8.

Figure 4-8. Adding an ID column as the primary key of department

The primary key column is named department_id. We’ll use this naming convention for
primary key columns in all data tables we’ll create. In this scenario, having departments with
the same name is now acceptable, because they would have different IDs. (To guard against
unique column values for columns that are not the primary key you’d need to use the UNIQUE
constraint, which is discussed next.)

There are two main reasons it’s better to create a separate numerical primary key column
than to use the name (or another existing column) as the primary key:

Performance: The database engine handles sorting and searching operations much faster
with numerical values than with strings. This becomes even more relevant in the context
of working with multiple related tables that need to be frequently joined (you’ll learn more
about this in Chapter 5).

Department name changes: If you need to rely on the ID value being stable in time, creating
an artificial key solves the problem because it’s unlikely you’ll ever want to change the ID.

In Figure 4-8, the primary key is composed of a single column, but this is not a require-
ment. If the primary key is set on more than one column, the group of primary key columns
(taken as a unit) is guaranteed to be unique, but the individual columns that form the primary
key can have repeating values in the table. In Chapter 5, you’ll see an example of a multivalued
primary key. For now, it’s enough to know that they exist.

■Note Applying a PRIMARY KEY constraint on a field also generates a unique index created on it by
default. Indexes are objects that improve performance of many database operations, dramatically speeding
up your web application (you’ll learn more about this later in the “Indexes” section of this chapter).

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 172

8644ch04.qxd 1/30/08 12:06 PM Page 72

www.it-ebooks.info

http://www.it-ebooks.info/

Unique Columns
UNIQUE is yet another kind of constraint that can be applied to table columns. This constraint is
similar to the PRIMARY KEY constraint in that it doesn’t allow duplicate data in a column. Still,
there are differences. Although there is only one PRIMARY KEY constraint per table, you are
allowed to have as many UNIQUE constraints as you like.

Columns that have the UNIQUE constraint are useful when you already have a primary key
but still have columns (or groups of columns) for which you want to have unique values. You
can set name to be unique in the department table if you want to forbid repeating values.

The facts that you need to remember about UNIQUE constraints follow:

• The UNIQUE constraint forbids having identical values on the field.

• You can have more than one UNIQUE field in a data table.

• A UNIQUE field is allowed to accept NULL values, in which case it will accept any number
of them.

• Indexes are automatically created on UNIQUE and PRIMARY KEY columns.

Columns and Data Types
Each column in a table has a particular data type. By looking at the department table shown in
Figure 4-8, you can see that department_id has a numeric data type, whereas name and description
contain text.

It’s important to consider the many data types that MySQL Server supports so that you’ll
be able to make correct decisions about how to create your tables. Table 4-1 isn’t an exhaustive
list of MySQL data types, but it focuses on the main types you might come across in your proj-
ect. Refer to the MySQL documentation for a more detailed list at http://www.mysql.org/doc/
refman/5.1/en/data-types.html.

■Tip For more information about any specific detail regarding MySQL or PHP, including MySQL data types,
you can always refer to W. Jason Gilmore’s Beginning PHP and MySQL 5: From Novice to Professional,
Second Edition (Apress, 2006), which is an excellent reference.

To keep the table short, under the Data Type heading, we have listed the types used in this
project, while similar data types are explained under the Description and Notes headings. You
don’t need to memorize the list, but you should get an idea of which data types are available.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 73

8644ch04.qxd 1/30/08 12:06 PM Page 73

www.it-ebooks.info

http://www.mysql.org/doc
http://www.it-ebooks.info/

Table 4-1. MySQL Server Data Types for Use in TShirtShop

Data Type Size in Bytes Description and Notes

int 4 Stores integer numbers from –2,147,483,648 to
2,147,483,647. Related types are bigint, mediumint,
smallint, and tinyint. A bit data type is able to
store values of 0 and 1.

decimal (M,N) M+2 bytes if N > 0 One character for each digit of the value, the
decimal point (if the scale is greater than 0), and
the negative sign (for negative numbers).

M+1 bytes if N = 0 decimal is a numeric data type you’ll use to
store monetary information because of its exact
precision. To preserve the decimal precision of
these numbers, MySQL stores decimal values
internally as strings. M represents the precision
(the number of significant decimal digits that
will be stored for values), and N is the scale (the
number of digits after the decimal point). If N is 0,
decimal will only store integer values.

datetime 8 bytes Supports date and time data from
1000-01-01 00:00:00 to 9999-12-31 23:59:59.

varchar variable Stores variable-length character data from 0 to
65,535. The dimension you set represents the
maximum length of strings it can accept.

text (blob) L+2 bytes, where L < 2^16 A column with a maximum length of 65,535
(2^16 – 1) characters.

Keep in mind that data type names are case insensitive, so you might see them capitalized
differently depending on the database console program you’re using.

Now, let’s get back to the department table and determine which data types to use. Don’t
worry that you don’t have the table yet in your database; you’ll create it a bit later. Figure 4-9
shows the fields of the department table. department_id is an int data type, and name and
description are varchar data types.

Figure 4-9. Designing the department table

For varchar, the associated dimension—such as in varchar(100)—represents the maximum
length of the stored strings. We’ll choose to have 100 characters available for the department’s
name and 1,000 for the description. An integer record, as shown in the table, always occupies
4 bytes.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 174

8644ch04.qxd 1/30/08 12:06 PM Page 74

www.it-ebooks.info

http://www.it-ebooks.info/

NOT NULL Columns and Default Values
For each column of the table, you can specify whether it is allowed to be NULL. The best
and shortest definition for NULL is “undefined.” For example, in your department table, only
department_id and name are really required, whereas description is optional—meaning that
you are allowed to add a new department without supplying a description for it. If you add
a new row of data without supplying a value for columns that allow nulls, NULL is automat-
ically supplied for them.

Especially for character data, there is a subtle difference between the NULL value and an
empty value. If you add a product with an empty string for its description, this means that you
actually set a value for its description; it’s an empty string, not an undefined (NULL) value.

The primary key field never allows NULL values. For the other columns, it’s up to you to decide
which fields are required and which are not.

In some cases, instead of allowing NULLs, you’ll prefer to specify default values. This
way, if the value is unspecified when creating a new row, it will be supplied with the default
value. The default value can be a literal value (such as 0 for a salary column or "unknown"
for a description column), a system value, or a function.

Autoincrement Columns
Autoincrement columns are automatically numbered columns. When a column is set as an
autoincrement column, MySQL automatically provides values for it when inserting new
records into the table. Usually if max is the largest value currently in the table for that column,
then the next generated value will be max + 1.

This way, the generated values are always unique, which makes them especially useful
when used in conjunction with the PRIMARY KEY constraint. You already know that primary
keys are used on columns that uniquely identify each row of a table. If you set a primary key
column to also be an autoincrement column, the MySQL server automatically fills that col-
umn with values when adding new rows (in other words, it generates new IDs), ensuring that
the values are unique.

When setting an autoincrement column, the first value that the MySQL server provides
for that column is 1, but you can change this before adding data to your table with an SQL
statement like the following:

ALTER TABLE your_table_name AUTO_INCREMENT = 1234;

This way, your MySQL server will start generating values with 1234.
The table structure you saw in Figure 4-9 shows that department_id in your department

table is an autoincrement column.

■Note Unlike other database servers, MySQL still allows you to manually specify for an autonumbered
field when adding new rows, if you want.

For more details about the autoincrement columns, see its official documentation at
http://www.mysql.org/doc/refman/5.1/en/example-auto-increment.html.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 75

8644ch04.qxd 1/30/08 12:06 PM Page 75

www.it-ebooks.info

http://www.mysql.org/doc/refman/5.1/en/example-auto-increment.html
http://www.it-ebooks.info/

Indexes
Indexes are related to MySQL performance tuning, so we’ll mention them only briefly here.
Indexes are database objects meant to increase the overall speed of database operations.
Indexes work on the presumption that the vast majority of database operations are read oper-
ations. Indexes increase the speed of search operations but slow down insert, delete, and update
operations. Usually, the gains of using indexes considerably outweigh the drawbacks.

On a table, you can create one or more indexes, with each index working on one column
or on a set of columns. When a table is indexed on a specific column, its rows are either indexed
or physically arranged based on the values of that column and the type of index. This makes
search operations on that column very fast. If, for example, an index exists on department_id
and then you do a search for the department with the ID value 934, the search would be per-
formed very quickly.

The drawback of indexes is that they can slow down database operations that add new rows
or update existing ones because the index must be actualized (or the table rows rearranged)
each time these operations occur.

You should keep the following in mind about indexes:

• Indexes greatly increase search operations on the database, but they slow down opera-
tions that change the database (delete, update, and insert operations).

• Having too many indexes can slow down the general performance of the database. The
general rule is to set indexes on columns frequently used in WHERE, ORDER BY, and GROUP
BY clauses or used in table joins.

• By default, unique indexes are automatically created on primary key table columns.

You can use dedicated tools to test the performance of a database under stress conditions
with and without particular indexes; in fact, a serious database administrator will want to run
some of these tests before deciding on a winning combination for indexes.

■Note You learned about some data table properties in the previous pages. For more details about each of
them, refer to the MySQL online manual at http://dev.mysql.com/doc/ or Jason Gilmore’s Beginning
PHP and MySQL 5: From Novice to Professional, Second Edition (Apress, 2006).

Creating the department Table
You created the tshirtshop database in Chapter 3. In the following exercise, you’ll add the
department table to it using the phpMyAdmin web client interface.

■Note Alternatively, you can use the SQL scripts from the Source Code/Download section of the Apress web
site to create and populate the department table. You can find the database creation scripts in the Database
folder for this chapter in the code download for this book. You can also find the files on the authors’ web sites.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 176

8644ch04.qxd 1/30/08 12:06 PM Page 76

www.it-ebooks.info

http://dev.mysql.com/doc
http://www.it-ebooks.info/

Exercise: Creating the department Table

1. Point your web browser to your phpMyAdmin location (http://localhost/phpmyadmin/), like you did in
Chapter 3 when creating the tshirtshop database.

2. Select the tshirtshop database from the Database combo box in the left side of the window. Type
department in the Name text box of the “Create a new table on database tshirtshop” section, and type 3 in
the “Number of fields” text box, as shown in Figure 4-10.

Figure 4-10. Adding the department table to the database

3. Click Go. You’ll be presented with a screen where you need to specify the details for each of the three table
columns as shown in Figure 4-11.

If you prefer to type the SQL code yourself instead of using the visual builder of phpMyAdmin, here’s the
code you need (you can find it in the source code download as well):

-- Create deparment table
CREATE TABLE `department` (
`department_id` INT NOT NULL AUTO_INCREMENT,
`name` VARCHAR(100) NOT NULL,
`description` VARCHAR(1000),
PRIMARY KEY (`department_id`)

) ENGINE=MyISAM;

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 77

8644ch04.qxd 1/30/08 12:06 PM Page 77

www.it-ebooks.info

http://localhost/phpmyadmin
http://www.it-ebooks.info/

Figure 4-11. Designing the department table

4. Click Save. You’ll be shown a page with many details about the table you just created. There, you can see
the SQL code that was generated to create the table and various other details, such as confirmation that an
index was indeed created automatically for the primary key field.

5. Now, you can add some sample data in the department table. Click the SQL tab, type the following query,
and then click Go to execute it. The command should add three records to the department table you cre-
ated earlier.

-- Populate department table
INSERT INTO `department` (`department_id`, `name`, `description`) VALUES

(1, 'Regional', 'Proud of your country? Wear a T-shirt with a national
symbol stamp!'),

(2, 'Nature', 'Find beautiful T-shirts with animals and flowers in our
Nature department!'),

(3, 'Seasonal', 'Each time of the year has a special flavor. Our seasonal
T-shirts express traditional symbols using unique postal stamp pictures.');

How It Works: Creating MySQL Data Tables

You have just created your first database table! You also filled the table with some data using the INSERT SQL
command, which we use to add records to a database table. You’ll learn more about it soon.

As you can see, as soon as you have a clear idea about the structure of a table, it’s relatively easy to use the
phpMyAdmin web interface to create it into your database. Let’s move on!

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 178

8644ch04.qxd 1/30/08 12:06 PM Page 78

www.it-ebooks.info

http://www.it-ebooks.info/

Communicating with the Database
Now that you have a table filled with data, let’s do something useful with it! The ultimate goal
with this table is to get the list of department names from a PHP page and populate the
Smarty template with that list.

To get data from a database, you first need to know how to communicate with the database.
Relational databases understand dialects and variants of SQL. The usual way of communicating
with MySQL is to write an SQL command, send it to the MySQL server, and get the results back.

In practice, as you’ll see later, we prefer to centralize the data access code using MySQL
stored procedures, but before you can learn about them, you need to know the basics of SQL.

The Structured Query Language (SQL)
SQL is the language used to communicate with modern relational database management
systems (RDBMSs). However, we haven’t seen a database system yet that supports exactly the
SQL 99 and SQL 2003 standards. This means that in many cases, the SQL code that works with
one database will not work with the other. Currently, MySQL supports most of SQL 92 and an
important part of SQL 99.

The most commonly used SQL commands are SELECT, INSERT, UPDATE, and DELETE. These
commands allow you to perform the most basic operations on the database.

The basic syntax of these commands is very simple, as you’ll see in the following pages.
However, keep in mind that SQL is a very flexible and powerful language and can be used to
create much more complicated and powerful queries than what you see here. You’ll learn
more while building the web site, but for now, let’s take a quick look at the basic syntax. For more
details about any of these commands, you can always refer to their official documentation:

• http://www.mysql.org/doc/refman/5.1/en/select.html

• http://www.mysql.org/doc/refman/5.1/en/insert.html

• http://www.mysql.org/doc/refman/5.1/en/update.html

• http://www.mysql.org/doc/refman/5.1/en/delete.html

SELECT
The SELECT statement is used to query the database and retrieve selected data that match the
criteria you specify. Its basic structure is

SELECT <column list>
[FROM <table name(s)>]
[WHERE <restrictive condition(s)>]

■Note In this book, the SQL commands and queries appear in uppercase for consistency and clarity
although SQL is not case sensitive. The WHERE and FROM clauses appear in brackets because they are
optional.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 79

8644ch04.qxd 1/30/08 12:06 PM Page 79

www.it-ebooks.info

http://www.mysql.org/doc/refman/5.1/en/select.html
http://www.mysql.org/doc/refman/5.1/en/insert.html
http://www.mysql.org/doc/refman/5.1/en/update.html
http://www.mysql.org/doc/refman/5.1/en/delete.html
http://www.it-ebooks.info/

The following command returns the name of the department that has the department_id
of 1. In your case, the returned value is Regional, but you would receive no results if there was
no department with an ID of 1.

SELECT name FROM department WHERE department_id = 1;

■Tip You can easily test these queries to make sure they actually work by using the MySQL console interface
or phpMyAdmin.

If you want more columns to be returned, you simply list them, separated by commas.
Alternatively, you can use an asterisk (*), which means “all columns.” However, for perform-
ance reasons, if you need only certain columns, you should list them separately instead of
asking for them all. Using * is not advisable even if at a particular moment you do want all the
columns for a query, because in the future, you may add even more columns to the table, and
your query would end up asking for more data than is needed. Finally, using * doesn’t guaran-
tee the order in which the columns are returned, as the order of the columns in a table may
change (although this is not likely to happen). For these reasons, we don’t use * in this book.

With your current department table, the following two statements return the same results:

SELECT department_id, name, description
FROM department
WHERE department_id = 1;

SELECT * FROM department WHERE department_id = 1;

■Tip You can split an SQL query on more lines, if you prefer—MySQL won’t mind.

If you don’t want to place any condition on the query, simply remove the WHERE clause,
and you’ll get all the rows. The following SELECT statement returns all rows and all columns
from the department table:

SELECT * FROM department;

■Tip If you are impatient and can’t wait until later in the chapter, you can test the SQL queries right now by
using the phpMyAdmin web client interface! Be careful, though, because in the rest of the book, we’ll assume
the data in your department table is the same as shown previously in the chapter.

Unless a sorting order is specified, the order in which the rows are returned by a SELECT
clause can’t be determined. Moreover, executing the same query twice could generate differ-
ent results! To sort the results, you use ORDER BY. The following query will return the list of
departments sorted alphabetically by the department name:

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 180

8644ch04.qxd 1/30/08 12:06 PM Page 80

www.it-ebooks.info

http://www.it-ebooks.info/

SELECT department_id, name, description
FROM department
ORDER BY name;

INSERT
The INSERT statement is used to insert a row of data into the table. Its syntax is as follows:

INSERT INTO <table name> [(column list)] VALUES (column values)

■Tip Although the column list is optional (if you don’t include it, column values are assigned to columns
in the order in which they appear in the table’s definition), you should always include it. This ensures that
changing the table definition doesn’t break the existing INSERT statements.

The following INSERT statement adds a department named Zodiac T-Shirts Department to
the department table:

INSERT INTO department (name) VALUES ('Zodiac T-Shirts Department');

No value was specified for the description field, because it was marked to allow NULLs in
the department table. This is why you can omit specifying a value, if you want to. Also, you’re
allowed to omit specifying a department ID, because the department_id column was created
with the AUTO_INCREMENT option, which means the database takes care of automatically gener-
ating a value for it when adding new records. However, you’re allowed to manually specify
a value, if you prefer.

■Tip Because department_id is the primary key column, trying to add more records with the same ID
would cause the database to generate an error. The database doesn’t permit having duplicate values in the
primary key field.

When letting MySQL generate values for AUTO_INCREMENT columns, you can obtain the last
generated value using the LAST_INSERT_ID() function. Here’s an example of how this works:

INSERT INTO department (name) VALUES ('Some New Department');
SELECT LAST_INSERT_ID();

■Tip In MySQL, the semicolon (;) is the delimiter between SQL commands.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 81

8644ch04.qxd 1/30/08 12:06 PM Page 81

www.it-ebooks.info

http://www.it-ebooks.info/

UPDATE
The UPDATE statement is used to modify existing data and has the following syntax:

UPDATE <table name>
SET <column name> = <new value> [, <column name> = <new value> ...]
[WHERE <restrictive condition>]

The following query changes the name of the department with the ID of 43 to Cool
Department. If there were more departments with that ID, all of them would have been modi-
fied, but because department_id is the primary key, you can’t have more departments with the
same ID.

UPDATE department SET name='Cool Department' WHERE department_id = 43;

Be careful with the UPDATE statement, because it makes messing up an entire table easy.
If the WHERE clause is omitted, the change is applied to every record of the table, which you
usually don’t want to happen. MySQL will be happy to change all of your records; even if all
departments in the table would have the same name and description, they would still be
perceived as different entities because they have different department_id values.

DELETE
The syntax of the DELETE command is actually very simple:

DELETE FROM <table name>
[WHERE <restrictive condition>]

Most of the time, you’ll want to use the WHERE clause to delete a single row:

DELETE FROM department WHERE department_id = 43;

As with UPDATE, be careful with this command, because if you forget to specify a WHERE
clause, you’ll end up deleting all of the rows in the table. The table itself isn’t deleted by the
DELETE command; for that purpose, you’d use DROP TABLE (http://dev.mysql.com/doc/refman/
5.0/en/drop-table.html).

The following query deletes all the records in department:

DELETE FROM department;

MySQL Stored Procedures
A stored procedure is a named set of SQL commands stored in the MySQL server. Similar to
functions in PHP, stored procedures can receive parameters and return data. Stored procedures
in MySQL 5.1 follow the ANSI SQL 2003 specification. Their official documentation page is
http://www.mysql.org/doc/refman/5.1/en/stored-procedures.html.

You don’t need to use stored procedures if you want to perform database operations. You
can directly send SQL commands from an external application (such as a PHP script of your
TShirtShop application) to your MySQL database. When using stored procedures, instead of
passing the SQL code you want executed, you just call the stored procedure and the values for
any parameters it might have. Using stored procedures for data operations has the following
advantages:

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 182

8644ch04.qxd 1/30/08 12:06 PM Page 82

www.it-ebooks.info

http://dev.mysql.com/doc/refman/5.0/en/drop-table.html
http://dev.mysql.com/doc/refman/5.0/en/drop-table.html
http://www.mysql.org/doc/refman/5.1/en/stored-procedures.html
http://www.it-ebooks.info/

• Performance can be better, because MySQL generates an execution plan for the queries
in the stored procedure when it’s first executed, and then reuses the same plan on sub-
sequent executions of the procedure.

• Using stored procedures allows for better maintainability of the data access and manip-
ulation code, which is stored in a central place, and permits easier implementation of
the three-tier architecture (the database stored procedures forming the data tier).

• Security can be better controlled, because MySQL permits setting different security
permissions for each stored procedure.

• SQL queries created ad hoc in PHP code are more vulnerable to SQL injection attacks,
which is a major security threat (many Internet resources cover this security subject,
and you can find the most popular of them by Googling for “SQL injection attack”).

• This might be a matter of taste, but separating the SQL logic from the PHP code keeps
the PHP code cleaner and easier to manage; it simply looks better to execute a stored
procedure than to build SQL queries by joining strings in PHP.

When developing TShirtShop, we’ll save all the data access code as MySQL stored proce-
dures inside the tshirtshop database. The syntax for creating stored procedures is

DELIMITER $$
CREATE PROCEDURE <name>(<param1 type>, <param2 type> ...)
BEGIN
<code>

END$$

DELIMITER;

Note that the delimiter can be defined as something other than $$. The key is to define it
as something different than the default delimiter, the semicolon.

You can’t create a stored procedure if your database already has a procedure with the same
name. To remove an existing stored procedure, you use the DROP PROCEDURE command. To change
the body or parameters of an existing procedure, you need to delete it using DROP PROCEDURE and
create it again. MySQL supports a command named ALTER PROCEDURE, but unlike with other data-
base applications, it can’t be used to update the body or parameters of an existing procedure.

For the data tier of the departments list, you need to create stored procedure called
catalog_get_departments_list. This procedure returns a list with the IDs and names of the
departments in TShirtShop, and it will be called by business tier methods that need this data.
Let’s implement catalog_get_departments_list in the following exercise.

Exercise: Creating MySQL Stored Procedures

1. Load phpMyAdmin (http://localhost/phpmyadmin/) into your favorite browser. Select the
tshirtshop database from the Database combo box in the left side of the window.

2. Select the SQL tab, and change the delimiter to $$ as shown in Figure 4-12.
3. Execute the following code, which creates the catalog_get_departments_list stored procedure:

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 83

8644ch04.qxd 1/30/08 12:06 PM Page 83

www.it-ebooks.info

http://localhost/phpmyadmin
http://www.it-ebooks.info/

-- Create catalog_get_departments_list stored procedure
CREATE PROCEDURE catalog_get_departments_list()
BEGIN
SELECT department_id, name FROM department ORDER BY department_id;

END$$

Figure 4-12. Creating the catalog_get_deparments_list stored procedure

How It Works: MySQL Stored Procedures

Let’s break down in parts the catalog_get_departments_list stored procedure. On the first line, we’re
defining the stored procedure name:

PROCEDURE catalog_get_departments_list()

The body of the stored procedure is between BEGIN and END$$. The following code snippet represents the typical
way we’ll code our stored procedures. The bold line represents the query we’re interested in, and the rest is auxil-
iary code required to define the body of the stored procedure.

BEGIN
SELECT department_id, name FROM department ORDER BY department_id;

END$$

So what happens here? The code that performs the actual functionality is written between BEGIN and END$$. The
syntax may look weird at first, but what it does is pretty straightforward.

The stored procedure executes the SELECT statement and returns the results.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 184

8644ch04.qxd 1/30/08 12:06 PM Page 84

www.it-ebooks.info

http://www.it-ebooks.info/

Adding Logic to the Site
The business tier (or middle tier) is said to be the brains of the application, because it manages
the application’s business logic. However, for simple tasks such as getting a list of departments
from the data tier, the business tier doesn’t have much logic to implement. It just requests the
data from the database and passes it along. Usually, there will be a presentation tier object
that will request this data, but it could be another business tier method that needs the data to
implement some more complex functionality.

In this chapter, we’re building the foundation of the business tier, which includes the func-
tionality to open and close database connections, store data logic as MySQL stored procedures,
and access these stored procedures from PHP.

For the business tier of the departments list, you’ll implement two classes:

• DatabaseHandler will store the common functionality that you’ll reuse whenever you
need to access the database. Having this kind of generic functionality packed in
a separate class saves keystrokes and avoids bugs in the long run.

• Catalog contains product-catalog-specific functionality, such as the GetDepartments()
method that will retrieve the list of departments from the database.

Connecting to MySQL
The SQL queries you write must be sent somehow to the database engine for execution. As
you learned in Chapter 2, you’ll use PHP PDO to access the MySQL server.

Before writing the business tier code, you need to analyze and understand the possibili-
ties for implementation. The important questions to answer before writing any code include
the following:

• What strategy should you adopt for opening and closing database connections when
you need to execute an SQL query?

• Which methods of PHP PDO should you use for executing database stored procedures
and returning the results?

• How should you handle possible errors and integrate the error-handling solution with
the error-handling code you wrote in Chapter 3?

Let’s have a look at each of these questions one by one, and then we’ll start writing some
code.

Opening and Closing Connections to the MySQL Server
There are two main possible approaches you can take for this. The first is illustrated by the follow-
ing sequence of actions, which needs to be executed each time the database needs to be accessed.

1. Open a connection to the database immediately before you need to execute a com-
mand on the database.

2. Execute the SQL query (or the database stored procedure) using the open connection,
and get back the results. At this stage, you also need to handle any possible errors.

3. Close the database connection immediately after executing the command.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 85

8644ch04.qxd 1/30/08 12:06 PM Page 85

www.it-ebooks.info

http://www.it-ebooks.info/

This method has the advantage that you don’t keep database connections for a long time
(which is good because database connections consume server resources), and it is also encour-
aged for servers that don’t allow many simultaneous database connections. The disadvantage
is the overhead implied by opening and closing the database connection every time, which
can be partially reduced by using persistent connections.

■Note “Persistent connections” refers to a technology that attempts to improve the efficiency of opening
and closing database connections with no impact on functionality. You can learn more about this technology
at http://www.php.net/manual/en/features.persistent-connections.php.

The alternative solution, and the one you’ll use when implementing TShirtShop, is like this:

1. Open a connection to the database the first time you need to access the database during
a request.

2. Execute all database stored procedures (or SQL queries) through that connection
without closing it. Here, you also need to handle any possible errors.

3. Close the database connection when the client request finishes processing.

Using this method, all database operations that happen for a single client request (which
happens each time a user visits a new page of our site) will go through a single database con-
nection, avoiding opening and closing the connection each time you need something from
the database. You’ll still use persistent connections to improve the efficiency of opening a new
database connection for each client request.

This solution is the one you will use for data access in the TShirtShop project.

Using PHP PDO for Database Operations
Now, we’ll talk about how to put this in practice—opening and closing database connections
and executing queries using those connections—using PHP PDO.

As explained in Chapter 2, you won’t access MySQL through PHP’s MySQL extension func-
tions, but through a database abstraction layer (PHP PDO). The PDO classes permit accessing
various data sources using the same application programming interface (API), so you won’t
need to change the PHP data access code or learn different data-access techniques when
working with database systems other than MySQL (but you might need to change the SQL
code itself if the database you migrate to uses a different dialect). Using PHP PDO is the modern
way to interact with your database, and it makes your life as a programmer easier in the long run.

The important PHP PDO class you’ll work with is PDO, which provides methods for perform-
ing various database operations. We can take advantage of the many methods already in the
PDO class to process data, make connections to the DB, and for many other common tasks;
we are spared having to write the code for these common tasks, because they are already
included in the PDO class. It is a good idea to be familiar with the methods that are made
available to you through the PDO class—you don’t have to understand exactly how they work,
but knowing that the functionality is already available can save you hours of painstakingly rein-
venting the wheel.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 186

8644ch04.qxd 1/30/08 12:06 PM Page 86

www.it-ebooks.info

http://www.php.net/manual/en/features.persistent-connections.php
http://www.it-ebooks.info/

■Note In this book, you’ll learn about the PHP PDO functionality as used in TShirtShop. For more details
about PHP PDO, see the PHP Manual documentation at http://www.php.net/manual/en/ref.pdo.php.

The PDO class provides the functionality to connect to the MySQL server and execute SQL
queries. The method that opens a database connection is PDO’s constructor, which receives as
parameters the connection string to the database server and an optional parameter that speci-
fies whether the connection is a persistent connection. The connection string contains the data
required to connect to the database server. You create a new PDO object like this:

$dbh = new PDO('mysql:dbname=' . $db_name . ';host=' . $db_host,
$db_user,
$db_pass,
array(PDO::ATTR_PERSISTENT => $persistent));

■Note The constructor of the PDO class returns an initialized database connection object (which is specific
to the type of database you’re connecting to, such as mysql) if the connection is successful; otherwise, an
exception is thrown.

The previous code snippet shows the standard data you need to supply when connecting
to a MySQL server and uses five variables:

• $db_user represents the username.

• $db_pass represents the user’s password.

• $db_host is the hostname of your MySQL server.

• $db_name is the name of the database you’re connecting to.

• $persistent is true if we want to create a persistent database connection or false
otherwise.

To disconnect from the database, you need to make $dbh equal null ($dbh = null).
The following code snippet demonstrates how to create, open, and then close a MySQL

database connection and also catch any exceptions that are thrown:

try
{
// Open connection
$dbh = new PDO('mysql:dbname=' . $db_name . ';host=' . $db_host,

$db_user, $db_pass);

// Close connection
$dbh = null;

}

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 87

8644ch04.qxd 1/30/08 12:06 PM Page 87

www.it-ebooks.info

http://www.php.net/manual/en/ref.pdo.php
http://www.it-ebooks.info/

catch (PDOException $e)
{
echo 'Connection failed: ' . $e->getMessage();

}

The try and catch keywords are used to handle exceptions.

PHP 5 EXCEPTION HANDLING

In Chapter 3, you implemented the code that intercepts and handles (and eventually reports) errors that hap-
pen in the TShirtShop site. PHP errors are the standard mechanism that you can use to react with an error
happening in your PHP code. When a PHP error occurs, the execution stops; you can, however, define an
error-handling function that is called just before the execution is terminated. You added such a function in
Chapter 3, where you obtained as many details as possible about the error and logged them for future refer-
ence. Having those details, a programmer can fix the code to avoid the same error happening in the future.

PHP 5 introduced, along with other object-oriented programming (OOP) features, a new way to handle
runtime errors: enter exceptions. Exceptions represent the modern way of managing runtime errors in your
code and are much more powerful and flexible than PHP errors. Exceptions are a very important part of the
OO (object oriented) model, and PHP 5 introduces an exception model resembling that of other OOP languages,
such as Java and C#. However, exceptions in PHP coexist with the standard PHP errors in a strange combina-
tion, and you can’t solely rely on exceptions for dealing with runtime problems. Some PHP extensions, such
as PDO, can be configured to generate exceptions to signal problems that happen at runtime, whereas in
other cases, your only option is to deal with standard PHP errors.

The advantages of exceptions over errors lay in the flexibility you’re offered in handling them. When an
exception is generated, you can handle it locally and let your script continue executing normally, or you can
pass the exception to another class for further processing. With exceptions, your script isn’t terminated like it
is when a PHP error appears. When using exceptions, you place the code that you suspect could throw an
exception inside a try block and handle potential exceptions in an associated catch block:

try
{
// Code that could generate an exception that you want to handle

}
catch (Exception $e)
{
// Code that is executed when an exception is generated
// (exception details are accessible through the $e object)

}

When an exception is generated by any of the code in the try block, the execution is passed directly to
the catch block. Unless the code in the catch block rethrows the exception, it is assumed that it handled
the exception, and the execution of your script continues normally. This kind of flexibility allows you to pre-
vent many causes that could make your pages stop working, and you’ll appreciate the power exceptions give
you when writing PHP code!

A PHP 5 exception is represented by the Exception class, which contains the exception’s details. You
can generate (throw) an exception yourself using the throw keyword. The Exception object that you throw
is propagated through the call stack until it is intercepted using the catch keyword. The call stack is the list

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 188

8644ch04.qxd 1/30/08 12:06 PM Page 88

www.it-ebooks.info

http://www.it-ebooks.info/

of methods being executed. So if a function A() calls a function B(), which in turn calls a function C(), then
the call stack will be formed of these three methods. In this scenario, an exception that is raised in function
C() can be handled in the same function, provided the offending code is inside a try-catch block. If this is
not the case, the exception propagates to method B(), which has a chance to handle the exception, and so
on. If no method handles the exception, the exception is finally intercepted by the PHP interpreter, which
transforms the exception into a PHP Fatal Error.

In our database-handling code, we’ll catch the potential exceptions that could be generated by PDO.
Although it doesn’t do it by default, PDO can be instructed to generate exceptions in case something goes
wrong when executing an SQL command or opening a database connection, like this:

// Create a new PDO class instance
$handler = new PDO(...);

// Configure PDO to throw exceptions
self::$_mHandler->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);

We catch any exceptions the data access code may throw, and we pass the error details to
the error-handling code you wrote in Chapter 3. The following code snippet shows a short
method with this functionality implemented:

// Wrapper method for PDOStatement::fetch()
public static function GetRow($sqlQuery, $params = null,

$fetchStyle = PDO::FETCH_ASSOC)
{
// Initialize the return value to null
$result = null;

// Try to execute an SQL query or a stored procedure
try
{
// Get the database handler
$database_handler = self::GetHandler();

// Prepare the query for execution
$statement_handler = $database_handler->prepare($sqlQuery);

// Execute the query
$statement_handler->execute($params);

// Fetch result
$result = $statement_handler->fetch($fetchStyle);

}

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 89

8644ch04.qxd 1/30/08 12:06 PM Page 89

www.it-ebooks.info

http://www.it-ebooks.info/

// Trigger an error if an exception was thrown when executing the SQL query
catch(PDOException $e)
{
// Close the database handler and trigger an error
self::Close();
trigger_error($e->getMessage(), E_USER_ERROR);

}

// Return the query results
return $result;

}

Issuing Commands Using the Connection
After opening the connection, you’re now at the stage we’ve been aiming for from the start:
executing SQL commands through the connection.

You can execute the command in many ways, depending on the specifics. Does the SQL
query you want to execute return any data? If so, what kind of data and in which format? The
PDO methods that we’ll use to execute SQL queries follow:

• PDOStatement::execute() is used to execute an INSERT, UPDATE, or DELETE queries that
don’t return any data.

• PDOStatement::fetch() is used to retrieve one row of data from the database.

• PDOStatement::fetchAll() is used to retrieve multiple rows of data from the database.

• PDO::prepare() prepares an SQL query to be executed, creating a so-called prepared
statement.

A prepared statement is a parameterized SQL query whose parameter values are replaced
by either parameter markers (?) or named variables (:variable_name), like in these examples:

$query1 = "SELECT name FROM department WHERE department_id = ?"
$query2 = "SELECT name FROM department WHERE department_id = :dept_id"

To execute a prepared statement, you supply the parameter values to the functions that
execute your query, which take care of building the complete SQL query for you. To implement
the list of departments, you won’t need to work with parameters, but you’ll learn how to handle
them in Chapter 5.

In this book, we’ll always use prepared statements, because they bring two important
benefits:

• Parameter values are checked to prevent injection attacks.

• The query will likely execute faster with prepared statements, because the database
server can reuse the access plan it builds for a prepared statement.

To be able to reuse more of the database-handling code and to have a centralized error-
handling mechanism for the database code, we won’t be using the PDO methods directly from
the business tier of our application. Instead, we’ll wrap the PDO functionality into a class named
DatabaseHandler, and we’ll use this class from the other classes of the business tier.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 190

8644ch04.qxd 1/30/08 12:06 PM Page 90

www.it-ebooks.info

http://www.it-ebooks.info/

Writing the Business Tier Code
OK, let’s write some code! You’ll start by writing the DatabaseHandler class, which will be
a support class that contains generic functionality needed in the other business tier meth-
ods. Next, you’ll create a business tier class named Catalog, which uses the DatabaseHandler
class to provide the functionality required by the presentation tier. The Catalog class will con-
tain methods such as GetDepartments() (which will be used to generate the list of departments),
GetCategories(), and so on. The only method we’ll need to add to the Catalog class in this
chapter is GetDepartments().

Although in this chapter we won’t need all this functionality, we’ll write the complete code
of the DatabaseHandler class. DatabaseHandler will have the following methods:

• Execute() executes a stored procedure that doesn’t return records from the database,
such as INSERT, DELETE, or UPDATE statements.

• GetAll() is used to execute queries that return more rows of data, such as when requesting
the list of departments.

• GetRow() is used to execute queries that return a row data.

• GetOne() returns a single value from the database. We can use this method to call data-
base stored procedures that return a single value, such as one that returns the subtotal
of a shopping cart.

Exercise: Creating and Using the DatabaseHandler Class

1. Add the database login information at the end of tshirtshop/include/config.php, modifying the
constants’ values to fit your server’s configuration. The following code assumes you created the admin user
account as instructed in Chapter 3:

// Database connectivity setup
define('DB_PERSISTENCY', 'true');
define('DB_SERVER', 'localhost');
define('DB_USERNAME', 'tshirtshopadmin');
define('DB_PASSWORD', 'tshirtshopadmin');
define('DB_DATABASE', 'tshirtshop');
define('PDO_DSN', 'mysql:host=' . DB_SERVER . ';dbname=' . DB_DATABASE);

2. Create a new file named database_handler.php in the tshirtshop/business folder, and create the
DatabaseHandler class as shown in the following code listing. At this moment, we only included its con-
structor (which is private, so the class can’t be instantiated), and the static GetHandler() method, which
creates a new database connection, saves it into the $_mHandler member, and then returns this object
(find more explanations about the process in the upcoming “How it Works” section).

<?php
// Class providing generic data access functionality
class DatabaseHandler
{
// Hold an instance of the PDO class
private static $_mHandler;

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 91

8644ch04.qxd 1/30/08 12:06 PM Page 91

www.it-ebooks.info

http://www.it-ebooks.info/

// Private constructor to prevent direct creation of object
private function __construct()
{
}

// Return an initialized database handler
private static function GetHandler()
{
// Create a database connection only if one doesn't already exist
if (!isset(self::$_mHandler))
{
// Execute code catching potential exceptions
try
{
// Create a new PDO class instance
self::$_mHandler =
new PDO(PDO_DSN, DB_USERNAME, DB_PASSWORD,

array(PDO::ATTR_PERSISTENT => DB_PERSISTENCY));

// Configure PDO to throw exceptions
self::$_mHandler->setAttribute(PDO::ATTR_ERRMODE,

PDO::ERRMODE_EXCEPTION);
}
catch (PDOException $e)
{
// Close the database handler and trigger an error
self::Close();
trigger_error($e->getMessage(), E_USER_ERROR);

}
}

// Return the database handler
return self::$_mHandler;

}
}
?>

3. Add the Close() method to the DatabaseHandler class. This method will be called to close the database
connection:

// Clear the PDO class instance
public static function Close()
{
self::$_mHandler = null;

}

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 192

8644ch04.qxd 1/30/08 12:06 PM Page 92

www.it-ebooks.info

http://www.it-ebooks.info/

4. Add the Execute() method to the DatabaseHandler class. This method uses the PDOStatement::
execute() to run queries that don’t return records (INSERT, DELETE, or UPDATE queries):

// Wrapper method for PDOStatement::execute()
public static function Execute($sqlQuery, $params = null)
{
// Try to execute an SQL query or a stored procedure
try
{
// Get the database handler
$database_handler = self::GetHandler();

// Prepare the query for execution
$statement_handler = $database_handler->prepare($sqlQuery);

// Execute query
$statement_handler->execute($params);

}
// Trigger an error if an exception was thrown when executing the SQL query
catch(PDOException $e)
{
// Close the database handler and trigger an error
self::Close();
trigger_error($e->getMessage(), E_USER_ERROR);

}
}

5. Add the GetAll() method, which is the wrapper method for PDOStatement::fetchAll(). You’ll call
this method for retrieving a complete result set from a SELECT query:

// Wrapper method for PDOStatement::fetchAll()
public static function GetAll($sqlQuery, $params = null,

$fetchStyle = PDO::FETCH_ASSOC)
{
// Initialize the return value to null
$result = null;

// Try to execute an SQL query or a stored procedure
try
{
// Get the database handler
$database_handler = self::GetHandler();

// Prepare the query for execution
$statement_handler = $database_handler->prepare($sqlQuery);

// Execute the query
$statement_handler->execute($params);

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 93

8644ch04.qxd 1/30/08 12:06 PM Page 93

www.it-ebooks.info

http://www.it-ebooks.info/

// Fetch result
$result = $statement_handler->fetchAll($fetchStyle);

}
// Trigger an error if an exception was thrown when executing the SQL query
catch(PDOException $e)
{
// Close the database handler and trigger an error
self::Close();
trigger_error($e->getMessage(), E_USER_ERROR);

}

// Return the query results
return $result;

}

6. Add the GetRow() method, which is the wrapper class for PDOStatement::fetch(), as shown. This will
be used to get a row of data resulted from a SELECT query:

// Wrapper method for PDOStatement::fetch()
public static function GetRow($sqlQuery, $params = null,

$fetchStyle = PDO::FETCH_ASSOC)
{
// Initialize the return value to null
$result = null;

// Try to execute an SQL query or a stored procedure
try
{
// Get the database handler
$database_handler = self::GetHandler();

// Prepare the query for execution
$statement_handler = $database_handler->prepare($sqlQuery);

// Execute the query
$statement_handler->execute($params);

// Fetch result
$result = $statement_handler->fetch($fetchStyle);

}
// Trigger an error if an exception was thrown when executing the SQL query
catch(PDOException $e)
{
// Close the database handler and trigger an error
self::Close();
trigger_error($e->getMessage(), E_USER_ERROR);

}

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 194

8644ch04.qxd 1/30/08 12:06 PM Page 94

www.it-ebooks.info

http://www.it-ebooks.info/

// Return the query results
return $result;

}

7. Add the GetOne() method, which is the wrapper class for PDOStatement::fetch(), as shown. This will
be used to get a single value resulted from a SELECT query:

// Return the first column value from a row
public static function GetOne($sqlQuery, $params = null)
{
// Initialize the return value to null
$result = null;

// Try to execute an SQL query or a stored procedure
try
{
// Get the database handler
$database_handler = self::GetHandler();

// Prepare the query for execution
$statement_handler = $database_handler->prepare($sqlQuery);

// Execute the query
$statement_handler->execute($params);

// Fetch result
$result = $statement_handler->fetch(PDO::FETCH_NUM);

/* Save the first value of the result set (first column of the first row)
to $result */

$result = $result[0];
}
// Trigger an error if an exception was thrown when executing the SQL query
catch(PDOException $e)
{
// Close the database handler and trigger an error
self::Close();
trigger_error($e->getMessage(), E_USER_ERROR);

}

// Return the query results
return $result;

}

8. Create a file named catalog.php file inside the business folder. Add the following code into this file:

<?php
// Business tier class for reading product catalog information

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 95

8644ch04.qxd 1/30/08 12:06 PM Page 95

www.it-ebooks.info

http://www.it-ebooks.info/

class Catalog
{
// Retrieves all departments
public static function GetDepartments()
{
// Build SQL query
$sql = 'CALL catalog_get_departments_list()';

// Execute the query and return the results
return DatabaseHandler::GetAll($sql);

}
}
?>

9. You need to include the newly created database_handler.php in index.php to make the class available
for the application. To do this, add the highlighted code to the index.php file:

<?php
// Include utility files
require_once 'include/config.php';
require_once BUSINESS_DIR . 'error_handler.php';

// Sets the error handler
ErrorHandler::SetHandler();

// Load the application page template
require_once PRESENTATION_DIR . 'application.php';

// Load the database handler
require_once BUSINESS_DIR . 'database_handler.php';

10. At the end of index.php, add the highlighted code that closes the database connection:

// Load Smarty template file
$application = new Application();

// Display the page
$application->display('store_front.tpl');

// Close database connection
DatabaseHandler::Close();
?>

How It Works: The Business Tier Code

After adding the database connection data to include/config.php, you created the DatabaseHandler class.
This class contains a number of wrapper methods that access PDO methods and provide the functionality needed
for the rest of the business tier methods.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 196

8644ch04.qxd 1/30/08 12:06 PM Page 96

www.it-ebooks.info

http://www.it-ebooks.info/

The DatabaseHandler class has a private constructor, meaning that it can’t be instantiated; you can’t create
DatabaseHandler objects, but you can execute the static methods for the class. Static class members and
methods, as opposed to instance members and methods, are owned not by a particular instance of the class but
by the class as a whole. In other words, to execute an SQL query using GetAll(), we wouldn’t create a new class
instance, like in the following example (and we couldn’t do it not only because there’s no instance version of the
GetAll() method but also because the private constructor prevents us from instantiating the DatabaseHandler
class):

$myHandler = new DatabaseHandler();
$results = $myHandler->GetAll($sql);

Instead, static methods are called directly using the class name (using the :: notation) as follows, instead of an
object of the class (which uses the -> notation):

DatabaseHandler::GetAll($sql);

Static members of a class are internally stored by PHP using a global instance of the class. In our PDO scenario,
the advantage of storing the database connection in a static member (private static $_mHandler) is that all
database operations our site makes during one web request go through this one database connection. As explained
earlier, for performance, we prefer to use this technique instead of creating a new database connection for each
query that needs to be executed, and the support of static members of PHP allows us to implement it.

■Note Static members are OOP-specific features that aren’t supported by PHP 4 and older versions.
You can find a very good introduction to the OOP features in PHP 5 at http://php.net/manual/en/
language.oop5.php.

The methods that execute database stored procedures have a standard structure, taking advantage of the fact that
PDO has been configured to throw exceptions. Let’s take a closer look at the GetRow() method:

// Wrapper method for PDOStatement::fetch()
public static function GetRow($sqlQuery, $params = null,

$fetchStyle = PDO::FETCH_ASSOC)
{
// Initialize the return value to null
$result = null;

// Try to execute an SQL query or a stored procedure
try
{
// Get the database handler
$database_handler = self::GetHandler();

// Prepare the query for execution
$statement_handler = $database_handler->prepare($sqlQuery);

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 97

8644ch04.qxd 1/30/08 12:06 PM Page 97

www.it-ebooks.info

http://php.net/manual/en
http://www.it-ebooks.info/

// Execute the query
$statement_handler->execute($params);

// Fetch result
$result = $statement_handler->fetch($fetchStyle);

}
// Trigger an error if an exception was thrown when executing the SQL query
catch(PDOException $e)
{
// Close the database handler and trigger an error
self::Close();
trigger_error($e->getMessage(), E_USER_ERROR);

}

// Return the query results
return $result;

}

This method generates an error (using the trigger_error() function) if the database command didn’t execute
successfully. The error is captured by the error-handling mechanism you implemented in Chapter 3.

Because of the way you implemented the error-handling code in Chapter 3, generating an E_USER_ERROR error
freezes the execution of the request, eventually logging and/or e-mailing the error data, and showing the visitor
a nice “Please come back later” message (if there is such thing as a nice “Please come back later” message,
anyway).

Note that before the error is generated, we also close the database connection to ensure that we’re not leaving
any database resources occupied by the script.

By default, if you don’t specify to trigger_error() the kind of error to generate, an E_USER_NOTICE message
is generated, which doesn’t interfere with the normal execution of the request (the error is eventually logged, but
execution continues normally afterward).

The functionality in the DatabaseHandler class is meant to be used in the other business tier classes, such as
Catalog. At this moment, Catalog contains a single method: GetDepartments().

// Business tier class for reading product catalog information
class Catalog
{
// Retrieves all departments
public static function GetDepartments()
{
// Build SQL query
$sql = 'CALL catalog_get_departments_list()';

// Execute the query and return the results
return DatabaseHandler::GetAll($sql);

}
}

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 198

8644ch04.qxd 1/30/08 12:06 PM Page 98

www.it-ebooks.info

http://www.it-ebooks.info/

Because it relies on the functionality you’ve already included in the DatabaseHandler class and in the database
functions in place, the code in Catalog is very simple and straightforward. The GetDepartments() method will
be called from the presentation tier, which will display the returned data to the visitor. It starts by building the SQL
query, and then calling the appropriate DatabaseHandler method to execute the query. In this case, we’re call-
ing GetAll() to retrieve the list of departments.

Right now, the database connection is opened when index.php starts processing and is closed at the end. All
database operations that happen in one iteration of this file will be done through this connection.

Displaying the List of Departments
Now that everything is in place in the other tiers, all you have to do is create the presentation
tier part—this is the final goal that we’ve been aiming toward from the beginning of this chapter.
As shown previously, the departments list needs to look something like the one shown in
Figure 4-13 when the site is loaded in the browser.

Figure 4-13. TShirtShop with a dynamically generated list of departments

You’ll implement this functionality as a separate componentized template named
departments_list. You’ll then just include departments_list.tpl in the main Smarty template
(templates/store_front.tpl).

The departments_list componentized template is made up of three files: the Smarty
design template (templates/departments_list.tpl), the presentation object (presentation/
departments_list.php), and the Smarty plug-in file (presentation/smarty_plugins/function.
load_presentation_object.php). The Smarty plug-in file is a generic plug-in that will be used
by all Smarty templates to load presentation objects.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 99

8644ch04.qxd 1/30/08 12:06 PM Page 99

www.it-ebooks.info

http://www.it-ebooks.info/

Using Smarty Plug-ins
The Smarty plug-in is the Smarty technique we’ll use to implement the logic behind Smarty
design template files (with the .tpl extension). This is not the only way to store the logic behind
a Smarty design template, but it’s the way the Smarty documentation recommends at http://
smarty.php.net/manual/en/tips.componentized.templates.php.

The layout and presentation in our project is generated using Smarty design templates.
When a certain component is more complex and needs PHP code to supply it with additional
data or functionality, we use a Smarty componentized template, which is composed of

• Smarty design template: This is a .tpl file containing HTML and Smarty-specific tags.
For the departments list, the design template is named departments_list.tpl.

• Smarty plug-in function: The Smarty plug-in function is referenced from the Smarty
design template, and its role is to supply the template with data it needs to display. In
our project, the same Smarty plug-in function (function.load_presentation_object.php)
will be loaded by all Smarty design templates. However, the Smarty plug-in function will
return different results depending on the parameters it is invoked with.

• Presentation object: This is a class that returns the data required by a Smarty design
template. In the case of the departments list, this class will be named DepartmentsList.
This class reads the list of departments and stores it into a public member that can then
be accessed by the Smarty design template.

Smarty plug-in files and functions must follow strict naming conventions to be located
by Smarty. Smarty plug-in files must be named as type.name.php (in our case, function.load_
presentation_object.php), and the functions inside these files must be named as smarty_
type_name (in our case, smarty_function_load_presentation_object). The official page for
Smarty plug-ins naming conventions is http://smarty.php.net/manual/en/plugins.naming.
conventions.php. You can learn more about Smarty plug-ins at http://smarty.php.net/manual/
en/plugins.php.

After the Smarty plug-in file is in place, you can reference it from the Smarty design
template file (departments_list.tpl) with a line like this:

{load_presentation_object filename="departments_list" assign="obj"}

Given the correct naming conventions where used, this line is enough to get Smarty to
load the plug-in file, which at its turn will load the presentation object mentioned through
the filename parameter, and assign the loaded object to a template variable (in our example the
name of the variable will be obj). The Smarty design template file can then access the vari-
ables populated by the plug-in function like this:

{$obj->mDepartments[i].name}

To understand how the whole mechanism works, let’s create the departments_list com-
ponentized template, and all the other pieces required to have it working. We’ll continue to
use CSS for defining the visual styles of our presentation. While CSS is very powerful, learning
the basics of its use is straightforward and easy—and even fun!

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1100

8644ch04.qxd 1/30/08 12:06 PM Page 100

www.it-ebooks.info

http://smarty.php.net/manual/en/tips.componentized.templates.php
http://smarty.php.net/manual/en/tips.componentized.templates.php
http://smarty.php.net/manual/en/plugins.naming
http://smarty.php.net/manual
http://www.it-ebooks.info/

Exercise: Creating the departments_list Componentized Template

1. Open the tshirtshop.css file in the tshirtshop/styles folder, and add the following code listing.
These styles refer to the way department names should look inside the departments list when they are
unselected, unselected but with the mouse hovering over them, or selected.

div.yui-b div.box {
color: #333333;
border: 1px solid #c6e1ec;
margin-top: 15px;

}

div.yui-b div p.box-title {
background: #0590C7;
border-bottom: 2px solid #c6e1ec;
color: #FFFFFF;
display: block;
font-size: 93%;
font-weight: bold;
margin: 1px;
padding: 2px 10px;

}

a {
color: #0590C7;

}

a:hover {
color: #ff0000;

}

a.selected {
font-weight: bold;

}

div.yui-b div ul {
margin: 0;

}

div.yui-b div ul li {
border-bottom: 1px solid #fff;
list-style-type: none;

}

div.yui-b div ul li a {
color: #333333;
display: block;

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 101

8644ch04.qxd 1/30/08 12:06 PM Page 101

www.it-ebooks.info

http://www.it-ebooks.info/

text-decoration: none;
padding: 3px 10px;

}

div.yui-b div ul li a:hover {
background: #c6e1ec;
color: #333333;

}

2. Edit the presentation/application.php file, and add the following two lines to the constructor of the
Application class. These lines configure the plug-in folders used by Smarty. The first one is for the inter-
nal Smarty plug-ins, and the second specifies the smarty_plugins folder you’ll create to hold the plug-ins
you’ll write for TShirtShop.

/* Class that extends Smarty, used to process and display Smarty
files */

classApplication extends Smarty
{
// Class constructor
public function __construct()
{
// Call Smarty's constructor
parent::Smarty();

// Change the default template directories
$this->template_dir = TEMPLATE_DIR;
$this->compile_dir = COMPILE_DIR;
$this->config_dir = CONFIG_DIR;
$this->plugins_dir[0] = SMARTY_DIR . 'plugins';
$this->plugins_dir[1] = PRESENTATION_DIR . 'smarty_plugins';

}
}

3. Now, create the Smarty template file for the departments_list componentized template. Write the fol-
lowing lines in presentation/templates/departments_list.tpl. This will create the presentation
or visual layout of the departments list.

{* departments_list.tpl *}
{load_presentation_object filename="departments_list" assign="obj"}
{* Start departments list *}
<div class="box">
<p class="box-title">Choose a Department</p>

{* Loop through the list of departments *}
{section name=i loop=$obj->mDepartments}
{assign var=selected value=""}
{* Verify if the department is selected to decide what CSS style

to use *}
{if ($obj->mSelectedDepartment ==

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1102

8644ch04.qxd 1/30/08 12:06 PM Page 102

www.it-ebooks.info

http://www.it-ebooks.info/

$obj->mDepartments[i].department_id)}
{assign var=selected value="class=\"selected\""}

{/if}

{* Generate a link for a new department in the list *}
<a {$selected} href="{$obj->mDepartments[i].link_to_department}">
{$obj->mDepartments[i].name}

{/section}

</div>
{* End departments list *}

4. Create a folder named smarty_plugins in the presentation folder. This will contain the Smarty
plug-in files.

5. Inside the smarty_plugins folder, create a file named function.load_presentation_object.php,
and add the following code to it:

<?php
// Plug-in functions inside plug-in files must be named: smarty_type_name
function smarty_function_load_presentation_object($params, $smarty)
{
require_once PRESENTATION_DIR . $params['filename'] . '.php';

$className = str_replace(' ', '',
ucfirst(str_replace('_', ' ',

$params['filename'])));

// Create presentation object
$obj = new $className();

if (method_exists($obj, 'init'))
{
$obj->init();

}

// Assign template variable
$smarty->assign($params['assign'], $obj);

}
?>

6. Inside the presentation folder, create a file named departments_list.php, and add the following
code to it:

<?php
// Manages the departments list
class DepartmentsList
{

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 103

8644ch04.qxd 1/30/08 12:06 PM Page 103

www.it-ebooks.info

http://www.it-ebooks.info/

/* Public variables available in departments_list.tpl Smarty template */
public $mSelectedDepartment = 0;
public $mDepartments;

// Constructor reads query string parameter
public function __construct()
{
/* If DepartmentId exists in the query string, we're visiting a

department */
if (isset ($_GET['DepartmentId']))
$this->mSelectedDepartment = (int)$_GET['DepartmentId'];

}

/* Calls business tier method to read departments list and create
their links */

public function init()
{
// Get the list of departments from the business tier
$this->mDepartments = Catalog::GetDepartments();

// Create the department links
for ($i = 0; $i < count($this->mDepartments); $i++)
$this->mDepartments[$i]['link_to_department'] =
'index.php?DepartmentId=' . $this->mDepartments[$i]['department_id'];

}
}
?>

7. Modify the index.php file to include a reference to the Catalog business tier class:

// Load the application page template
require_once PRESENTATION_DIR . 'application.php';

// Load the database handler
require_once BUSINESS_DIR . 'database_handler.php';

// Load Business Tier
require_once BUSINESS_DIR . 'catalog.php';

// Load Smarty template file
$application = new Application();

8. Make the following modification in presentation/templates/store_front.tpl to load the newly
created departments_list componentized template. Search for the following code:

<div class="yui-b">
Place list of departments here

</div>

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1104

8644ch04.qxd 1/30/08 12:06 PM Page 104

www.it-ebooks.info

http://www.it-ebooks.info/

and replace it with this:

<div class="yui-b">
{include file="departments_list.tpl"}

</div>

9. Examine the result of your work with your favorite browser by loading http://localhost/tshirtshop/
index.php (refer to Figure 4-13). Play a little with the page to see what happens when you click a depart-
ment or place the mouse over a link.

■Note If you don’t get the expected output, make sure your machine is configured correctly and all PHP
required modules, such as PDO, were loaded successfully. Many errors will be reported in the Apache error
log file (by default, C:/xampp/apache/logs/error.log on Windows or /opt/lampp/logs/error_log on
Linux). Also, make sure to check the book’s errata page, which we’ll keep updated with solutions to potential
problems you may run into.

How It Works: The departments_list Smarty Template

If the page worked as expected from the start, you’re certainly one lucky programmer! Most of the time, errors
happen because of typos, so watch out for them! Database access problems are also common, so make sure you
correctly configured the tshirtshop database and the tshirtshopadmin user, as shown in Chapter 3. In any
case, we’re lucky to have a good error-reporting mechanism, which shows a detailed error report if something goes
wrong. Figure 4-14 shows the error message I received when mistyping the database password in config.php.
The error message shows up in the box that generated it (to be able to read the message, you need to select it in
the box it was generated, and paste it in another document).

Figure 4-14. The error-handling code you’ve written in Chapter 2 is helpful for debugging.

If everything goes right, however, you’ll get the neat page containing a list of departments generated using
a Smarty template. Each department name in the list is a link to the department’s page, which, in fact, is a link to

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 105

8644ch04.qxd 1/30/08 12:06 PM Page 105

www.it-ebooks.info

http://localhost/tshirtshop
http://www.it-ebooks.info/

the index.php page with a DepartmentId parameter in the query string that specifies which department was
selected. Here’s an example of such a link:

http://localhost/tshirtshop/index.php?DepartmentId=3

When clicking a department’s link, the selected department will be displayed using a different CSS style in the list
(see Figure 4-15).

Figure 4-15. Selecting a department

It is important to understand how the Smarty template file (presentation/templates/departments_list.tpl)
and the plug-in file (presentation/smarty_plugins/function.load_presentation_object.php) work
together to generate the list of departments and to use the correct style for the currently selected one.

The processing starts at function.load_presentation_object.php, which is included in the store_
front.tpl file. The first line in departments_list.tpl loads the DepartmentList presentation object
through the Smarty plug-in:

{load_presentation_object filename="departments_list" assign="obj"}

The smarty_function_load_presentation_object() plug-in function creates and initializes
a DepartmentsList object (this class is included in presentation/departments_list.php), which is
then assigned to the obj variable accessible from the Smarty design template file:

// Plug-in functions inside plug-in files must be named: smarty_type_name
function smarty_function_load_presentation_object($params, $smarty)
{
require_once PRESENTATION_DIR . $params['filename'] . '.php';

$className = str_replace(' ', '',
ucfirst(str_replace('_', ' ',

$params['filename'])));

// Create presentation object
$obj = new $className();

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1106

8644ch04.qxd 1/30/08 12:06 PM Page 106

www.it-ebooks.info

http://localhost/tshirtshop/index.php?DepartmentId=3
http://www.it-ebooks.info/

if (method_exists($obj, 'init'))
{
$obj->init();

}

// Assign template variable
$smarty->assign($params['assign'], $obj);

}

The init() method in DepartmentsList populates a public member of the class ($mDepartments) with an
array containing the list of departments and another public member containing the index of the currently selected
department ($mSelectedDepartment).

Back to the Smarty code now—inside the HTML code that forms the layout of the Smarty template (presentation/
templates/departments_list.tpl), you can see the Smarty tags that do the magic:

{* Loop through the list of departments *}
{section name=i loop=$obj->mDepartments}
{assign var=selected value=""}
{* Verify if the department is selected to decide what CSS style

to use *}
{if ($obj->mSelectedDepartment == $obj->mDepartments[i].department_id)}
{assign var=selected value="class=\"selected\""}

{/if}

{* Generate a link for a new department in the list *}
<a {$selected} href="{$obj->mDepartments[i].link_to_department}">
{$obj->mDepartments[i].name}

{/section}

Smarty template sections are used for looping over arrays of data. In this case, you want to loop over the departments
array kept in $obj->mDepartments:

{section name=i loop=$obj->mDepartments}
...

{/section}

Inside the loop, you verify whether the current department in the loop ($obj->mDepartments[i].department_id)
has the ID that was mentioned in the query string ($obj->mSelectedDepartment). Depending on this, you
decide what style to apply to the name by saving the style name (selected or default style) to a variable named
selected.

This variable is then used to generate the link:

<a {$selected} href="{$obj->mDepartments[i].link_to_department}">
{$obj->mDepartments[i].name}

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 107

8644ch04.qxd 1/30/08 12:06 PM Page 107

www.it-ebooks.info

http://www.it-ebooks.info/

Creating the Link Factory
In a well-constructed web site, all the links must have a consistent format. For example, in
PHP, you read query string parameters by name rather than ordinal, so the following two links
would normally have the same output:

• http://localhost/index.php?DepartmentId=3&CategoryId=5

• http://localhost/index.php?CategoryId=5&DepartmentId=3

In many cases, the case of parts of an URL can be changed without affecting the output. To
have all the URLs in our web site follow a consistent style, we’ll create a class that creates links.

This class will prove to be very useful in the long term. In Chapter 7, we’ll update the URLs
in our web site, so that they will be more friendly to search engines and human visitors browsing
your site. Having a central place that generates links will make this feature easy to implement.

Also, at some point in the development process, you’ll want certain pages of your site to
be accessible only through secured HTTPS connections to ensure the confidentiality of the
data passed from the client to the server and back. Such sensitive pages include user login forms,
pages where the user enters credit card data, and so on. We don’t get into much detail here.
However, what you do need to know is that pages accessed through HTTPS occupy much of
a server’s resources, and we only want to use a secure connection when visiting secure pages.
Once again, the link factory can come in handy, as it can be configured to generate HTTPS
links only for the sections of the web site that need increased security.

Our link factory will always generate absolute links. Most of the time, it’s more comfortable
to use relative links inside the web site. For example, it’s typical for the header image of a site
to contain a link to index.php rather than the full URL, such as http://www.example.com/
index.php. In this case, clicking the header image from a secured page would redirect the user
to https://www.example.com/index.php, so the visitor would end up accessing through a secure
connection a page that isn’t supposed to be accessed like that (and, in effect, consumes much
more server resources than necessary).

To avoid this problem and other similar ones, we’ll write a bit of code that makes sure all
the links in the web site are absolute links.

Exercise: Creating the Link Factory

1. Create a new file named link.php in the presentation folder, and add the following code to it:

<?php
class Link
{
public static function Build($link)
{
$base = 'http://' . getenv('SERVER_NAME');

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1108

8644ch04.qxd 1/30/08 12:06 PM Page 108

www.it-ebooks.info

http://localhost/index.php?DepartmentId=3&CategoryId=5
http://localhost/index.php?CategoryId=5&DepartmentId=3
http://www.example.com
https://www.example.com/index.php
http://www.it-ebooks.info/

// If HTTP_SERVER_PORT is defined and different than default
if (defined('HTTP_SERVER_PORT') && HTTP_SERVER_PORT != '80')
{
// Append server port
$base .= ':' . HTTP_SERVER_PORT;

}

$link = $base . VIRTUAL_LOCATION . $link;

// Escape html
return htmlspecialchars($link, ENT_QUOTES);

}

public static function ToDepartment($departmentId)
{
$link = 'index.php?DepartmentId=' . $departmentId;

return self::Build($link);
}

}
?>

2. Add two new constants to include/config.php:

// Server HTTP port (can omit if the default 80 is used)
define('HTTP_SERVER_PORT', '80');
/* Name of the virtual directory the site runs in, for example:

'/tshirtshop/' if the site runs at http://www.example.com/tshirtshop/
'/' if the site runs at http://www.example.com/ */

define('VIRTUAL_LOCATION', '/tshirtshop/');

3. Modify the init() method from the DepartmentsList class in presentation/departments_
list.php as shown in the highlighted code:

/* Calls business tier method to read departments list and create
their links */

public function init()
{
// Get the list of departments from the business tier
$this->mDepartments = Catalog::GetDepartments();

// Create the department links
for ($i = 0; $i < count($this->mDepartments); $i++)
$this->mDepartments[$i]['link_to_department'] =
Link::ToDepartment($this->mDepartments[$i]['department_id']);

}

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 109

8644ch04.qxd 1/30/08 12:06 PM Page 109

www.it-ebooks.info

http://www.example.com/tshirtshop
http://www.example.com
http://www.it-ebooks.info/

4. Create a new file named store_front.php in the presentation folder, and add the following code to it.
This is the presentation object that we’ll use for the store_front template, and it builds a link to the main
page of the site.

<?php
class StoreFront
{
public $mSiteUrl;

// Class constructor
public function __construct()
{
$this->mSiteUrl = Link::Build('');

}
}
?>

5. Modify presentation/templates/store_front.tpl like this:

{* smarty *}
{config_load file="site.conf"}
{load_presentation_object filename="store_front" assign="obj"}
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
<head>
<title>{#site_title#}</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<link type="text/css" rel="stylesheet"
href="{$obj->mSiteUrl}styles/tshirtshop.css" />

</head>
<body>
<div id="doc" class="yui-t2">
<div id="bd">
<div id="yui-main">
<div class="yui-b">
<div id="header" class="yui-g">
mSiteUrl}">
mSiteUrl}images/tshirtshop.png"
alt="tshirtshop logo" />

</div>
<div id="contents" class="yui-g">
Place contents here

</div>
</div>

</div>
<div class="yui-b">
{include file="departments_list.tpl"}

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1110

8644ch04.qxd 1/30/08 12:06 PM Page 110

www.it-ebooks.info

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.it-ebooks.info/

</div>
</div>

</div>
</body>

</html>

6. Open index.php, and add a reference to the Link class as shown in the highlighted code:

<?php
// Include utility files
require_once 'include/config.php';
require_once BUSINESS_DIR . 'error_handler.php';

// Sets the error handler
ErrorHandler::SetHandler();

// Load the application page template
require_once PRESENTATION_DIR . 'application.php';
require_once PRESENTATION_DIR . 'link.php';

// Load the database handler
require_once BUSINESS_DIR . 'database_handler.php';

7. Load TShirtShop, and make sure it still works as expected. This exercise isn’t supposed to alter our existing
functionality but to implement an improvement that will prove to be of great help when extending the site in
the following chapters.

How It Works: Using the Link Factory

First of all, make sure the new entry you added to config.php is configured correctly. If you’re running your web
site on a different port than the default of 80 (say, if you’re using port 8080), make sure you specify the correct port
in the HTTP_SERVER_PORT constant. Now, let’s see how the link factory works. The Link presentation object is
used as shown by the modifications you’ve implemented in store_front.tpl and departments_list.tpl,
and it transforms the relative links received as parameters to absolute links.

■Note In case you aren’t using the tshirtshop alias as explained in Chapter 3, you’ll need to modify the
VIRTUAL_LOCATION constant in config.php to reflect the real location of your web application.

Note that the Build() method doesn’t add the port if the HTTP_SERVER_PORT constant isn’t defined or if it con-
tains the default port 80:

// If HTTP_SERVER_PORT is defined and different than default
if (defined('HTTP_SERVER_PORT') && HTTP_SERVER_PORT != '80')
{
// Append server port
$base .= ':' . HTTP_SERVER_PORT;

}

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1 111

8644ch04.qxd 1/30/08 12:06 PM Page 111

www.it-ebooks.info

http://www.it-ebooks.info/

However, you should add the HTTP_SERVER_PORT to config.php anyway to make it easier to modify in case
you move the application to a server that runs on another port. If HTTP_SERVER_PORT would be, for example,
8080, the links to index.php specified earlier would be transformed to

Summary
This long chapter was well worth the effort when you consider how much theory you’ve learned
and applied to the TShirtShop project! In this chapter, you accomplished the following:

• You created the department table and populated it with data.

• You learned how to access this data from the data tier using PDO and then how to
access the data tier method from the business tier.

• You learned how to use PHP 5 exceptions.

• You implemented the user interface using a Smarty template.

In the next chapter, you will finish creating the product catalog by displaying the site’s
categories and products! After that’s accomplished, we’ll have the opportunity to review the
structure our web site is built on and the theory you’ve learned so far.

CHAPTER 4 ■ CREATING THE PRODUCT CATALOG: PART 1112

8644ch04.qxd 1/30/08 12:06 PM Page 112

www.it-ebooks.info

http://www.example.com:8080/index.php
http://www.it-ebooks.info/

	Creating the Product Catalog: Part 1
	Showing Your Visitors What You’ve Got
	What Does a Product Catalog Look Like?
	Previewing the Product Catalog

	Roadmap for This Chapter
	Storing Catalog Information
	Understanding Data Tables
	Primary Keys
	Unique Columns
	Columns and Data Types
	NOT NULL Columns and Default Values
	Autoincrement Columns
	Indexes

	Creating the department Table

	Communicating with the Database
	The Structured Query Language (SQL)
	SELECT
	INSERT
	UPDATE
	DELETE

	MySQL Stored Procedures

	Adding Logic to the Site
	Connecting to MySQL
	Opening and Closing Connections to the MySQL Server
	Using PHP PDO for Database Operations
	Issuing Commands Using the Connection

	Writing the Business Tier Code

	Displaying the List of Departments
	Using Smarty Plug-ins

	Creating the Link Factory
	Summary

