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752 Chapter 16 Regression Analysis: Model Building

Monsanto Company traces its roots to one entrepreneur’s
investment of $500 and a dusty warehouse on the 
Mississippi riverfront, where in 1901 John F. Queeney
began manufacturing saccharin. Today, Monsanto is one
of the nation’s largest chemical companies, producing
more than a thousand products ranging from industrial
chemicals to synthetic playing surfaces used in modern
sports stadiums. Monsanto is a worldwide corporation
with manufacturing facilities, laboratories, technical cen-
ters, and marketing operations in 65 countries.

Monsanto’s Nutrition Chemical Division manufac-
tures and markets a methionine supplement used in poul-
try, swine, and cattle feed products. Because poultry
growers work with high volumes and low profit margins,
cost-effective poultry feed products with the best possi-
ble nutrition value are needed. Optimal feed composition
will result in rapid growth and high final body weight for
a given level of feed intake. The chemical industry works
closely with poultry growers to optimize poultry feed
products. Ultimately, success depends on keeping the
cost of poultry low in comparison with the cost of beef
and other meat products.

Monsanto used regression analysis to model the rela-
tionship between body weight y and the amount of methio-
nine x added to the poultry feed. Initially, the following
simple linearestimatedregressionequationwasdeveloped.

This estimated regression equation proved statistically
significant; however, the analysis of the residuals indi-
cated that a curvilinear relationship would be a better
model of the relationship between body weight and
methionine.

yn � .21 � .42x

Further research conducted by Monsanto showed
that although small amounts of methionine tended to in-
crease body weight, at some point body weight leveled
off and additional amounts of the methionine were of lit-
tle or no benefit. In fact, when the amount of methionine
increased beyond nutritional requirements, body weight
tended to decline. The following estimated multiple
regression equation was used to model the curvilinear
relationship between body weight and methionine.

Use of the regression results enabled Monsanto to deter-
mine the optimal level of methionine to be used in poul-
try feed products.

In this chapter we will extend the discussion of re-
gression analysis by showing how curvilinear models
such as the one used by Monsanto can be developed. In
addition, we will describe a variety of tools that help
determine which independent variables lead to the best
estimated regression equation.

yn � �1.89 � 1.32x � .506x2

Monsanto researchers used regression analysis to
develop an optimal feed composition for poultry
growers. © Krugloff/Shutterstock.com.

MONSANTO COMPANY*
ST. LOUIS, MISSOURI

STATISTICS in PRACTICE

*The authors are indebted to James R. Ryland and Robert M. Schisla, 
Senior Research Specialists, Monsanto Nutrition Chemical Division, for
providing this Statistics in Practice.

Model building is the process of developing an estimated regression equation that describes
the relationship between a dependent variable and one or more independent variables. The
major issues in model building are finding the proper functional form of the relationship
and selecting the independent variables to be included in the model. In Section 16.1 we es-
tablish the framework for model building by introducing the concept of a general linear
model. Section 16.2, which provides the foundation for the more sophisticated computer-
based procedures, introduces a general approach for determining when to add or delete
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16.1 General Linear Model 753

In equation (16.1), each of the independent variables zj (where j � 1, 2, . . . , p) is a
function of x1, x2, . . . , xk (the variables for which data are collected). In some cases, each
zj may be a function of only one x variable. The simplest case is when we collect data for
just one variable x1 and want to predict y by using a straight-line relationship. In this case
z1 � x1 and equation (16.1) becomes

(16.2)

Equation (16.2) is the simple linear regression model introduced in Chapter 14 with the ex-
ception that the independent variable is labeled x1 instead of x. In the statistical modeling
literature, this model is called a simple first-order model with one predictor variable.

Modeling Curvilinear Relationships
More complex types of relationships can be modeled with equation (16.1). To illustrate, let us
consider the problem facing Reynolds, Inc., a manufacturer of industrial scales and laboratory
equipment. Managers at Reynolds want to investigate the relationship between length of em-
ployment of their salespeople and the number of electronic laboratory scales sold. Table 16.1
gives the number of scales sold by 15 randomly selected salespeople for the most recent sales
period and the number of months each salesperson has been employed by the firm. Figure 16.1
is the scatter diagram for these data. The scatter diagram indicates a possible curvilinear rela-
tionship between the length of time employed and the number of units sold. Before consider-
ing how to develop a curvilinear relationship for Reynolds, let us consider the Minitab output
in Figure 16.2 corresponding to a simple first-order model; the estimated regression is

where

Sales �

Months �

number of electronic laboratory scales sold
the number of months the salesperson has been employed

Sales � 111 � 2.38 Months

y � �0 � �1x1 � é

GENERAL LINEAR MODEL

(16.1)y � �0 � �1z1 � �2 
z

 2 � . . . � �p 
zp � é

If you can write a
regression model in the
form of equation (16.1), 
the standard multiple
regression procedures
described in Chapter 15 
are applicable.

independent variables. In Section 16.3 we consider a larger regression problem involving
eight independent variables and 25 observations; this problem is used to illustrate the vari-
able selection procedures presented in Section 16.4, including stepwise regression, the for-
ward selection procedure, the backward elimination procedure, and best-subsets regression.
In Section 16.5 we show how multiple regression analysis can provide another approach to
solving experimental design problems, and in Section 16.6 we show how the Durbin-
Watson test can be used to detect serial or autocorrelation. 

16.1 General Linear Model
Suppose we collected data for one dependent variable y and k independent variables x1,
x2, . . . , xk. Our objective is to use these data to develop an estimated regression equation that
provides the best relationship between the dependent and independent variables. As a gen-
eral framework for developing more complex relationships among the independent variables,
we introduce the concept of a general linear model involving p independent variables.

TABLE 16.1

DATA FOR THE
REYNOLDS
EXAMPLE

Months Scales
Employed Sold 

41 275
106 296
76 317

104 376
22 162
12 150
85 367

111 308
40 189
51 235
9 83

12 112
6 67

56 325
19 189

fileWEB
Reynolds
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754 Chapter 16 Regression Analysis: Model Building
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FIGURE 16.1 SCATTER DIAGRAM FOR THE REYNOLDS EXAMPLE

The regression equation is
Sales = 111 + 2.38 Months

Predictor    Coef  SE Coef     T      p
Constant   111.23    21.63  5.14  0.000
Months     2.3768   0.3489  6.81  0.000

S = 49.5158   R-Sq = 78.1%   R-Sq(adj) = 76.4%

Analysis of Variance

SOURCE          DF      SS      MS      F      p
Regression       1  113783  113783  46.41  0.000
Residual Error  13   31874    2452
Total           14  145657

FIGURE 16.2 MINITAB OUTPUT FOR THE REYNOLDS EXAMPLE: FIRST-ORDER MODEL

Figure 16.3 is the corresponding standardized residual plot. Although the computer output
shows that the relationship is significant ( p-value � .000) and that a linear relationship
explains a high percentage of the variability in sales (R-Sq � 78.1%), the standardized
residual plot suggests that a curvilinear relationship is needed.

To account for the curvilinear relationship, we set z1 � x1 and z2 � in equation (16.1)
to obtain the model

(16.3)

This model is called a second-order model with one predictor variable. To develop an
estimated regression equation corresponding to this second-order model, the statistical

y � �0 � �1x1 � �2 
x2

1 � é

x2
1
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16.1 General Linear Model 755
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FIGURE 16.3 STANDARDIZED RESIDUAL PLOT FOR THE REYNOLDS EXAMPLE: FIRST-ORDER MODEL

software package we are using needs the original data in Table 16.1, as well as that data cor-
responding to adding a second independent variable that is the square of the number of
months the employee has been with the firm. In Figure 16.4 we show the Minitab output
corresponding to the second-order model; the estimated regression equation is

where

Figure 16.5 is the corresponding standardized residual plot. It shows that the previous curvi-
linear pattern has been removed. At the .05 level of significance, the computer output shows
that the overall model is significant ( p-value for the F test is .000); note also that the 
p-value corresponding to the t-ratio for MonthsSq ( p-value � .002) is less than .05, and
hence we can conclude that adding MonthsSq to the model involving Months is significant.
With R-Sq(adj) � 88.6%, we should be pleased with the fit provided by this estimated
regression equation. More important, however, is seeing how easy it is to handle curvilin-
ear relationships in regression analysis.

Clearly, many types of relationships can be modeled by using equation (16.1). The re-
gression techniques with which we have been working are definitely not limited to linear,
or straight-line, relationships. In multiple regression analysis the word linear in the term
“general linear model” refers only to the fact that �0, �1, . . . , �p all have exponents of 1;
it does not imply that the relationship between y and the xi’s is linear. Indeed, in this sec-
tion we have seen one example of how equation (16.1) can be used to model a curvilinear
relationship.

MonthsSq �
 
the square of the number of months the
salesperson has been employed

Sales � 45.3 � 6.34 Months � .0345 MonthsSqThe data for the MonthsSq
independent variable is
obtained by squaring the
values of Months.
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756 Chapter 16 Regression Analysis: Model Building

The regression equation is
Sales = 45.3 + 6.34 Months - 0.0345 MonthsSq

Predictor         Coef   SE Coef      T      p
Constant         45.35     22.77   1.99  0.070
Months           6.345     1.058   6.00  0.000
MonthsSq     -0.034486  0.008948  -3.85  0.002

S = 34.4528   R-Sq = 90.2%   R-Sq(adj) = 88.6%

Analysis of Variance

SOURCE           DF      SS     MS      F      p
Regression        2  131413  65707  55.36  0.000
Residual Error   12   14244   1187
Total            14  145657

FIGURE 16.4 MINITAB OUTPUT FOR THE REYNOLDS EXAMPLE: 
SECOND-ORDER MODEL
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FIGURE 16.5 STANDARDIZED RESIDUAL PLOT FOR THE REYNOLDS EXAMPLE: 
SECOND-ORDER MODEL

Interaction
If the original data set consists of observations for y and two independent variables x1 and
x2, we can develop a second-order model with two predictor variables by setting z1 � x1,
z2 � x2, z3 � , z4 � , and z5 � x1x2 in the general linear model of equation (16.1). The
model obtained is

(16.4)y � �0 � �1x1 � �2 
x2 � �3 

x2
1 � �4 

x2
2 � �5 

x1x2 � é

x2
2x2

1
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16.1 General Linear Model 757

Advertising Advertising
Expenditure Sales Expenditure Sales

Price ($1000s) (1000s) Price ($1000s) (1000s)
$2.00 50 478 $2.00 100 810
$2.50 50 373 $2.50 100 653
$3.00 50 335 $3.00 100 345
$2.00 50 473 $2.00 100 832
$2.50 50 358 $2.50 100 641
$3.00 50 329 $3.00 100 372
$2.00 50 456 $2.00 100 800
$2.50 50 360 $2.50 100 620
$3.00 50 322 $3.00 100 390
$2.00 50 437 $2.00 100 790
$2.50 50 365 $2.50 100 670
$3.00 50 342 $3.00 100 393

TABLE 16.2 DATA FOR THE TYLER PERSONAL CARE EXAMPLE

fileWEB
Tyler

In this second-order model, the variable z5 � x1x2 is added to account for the potential 
effects of the two variables acting together. This type of effect is called interaction.

To provide an illustration of interaction and what it means, let us review the regression
study conducted by Tyler Personal Care for one of its new shampoo products. Two factors
believed to have the most influence on sales are unit selling price and advertising expendi-
ture. To investigate the effects of these two variables on sales, prices of $2.00, $2.50, and
$3.00 were paired with advertising expenditures of $50,000 and $100,000 in 24 test mar-
kets. The unit sales (in thousands) that were observed are reported in Table 16.2.

Table 16.3 is a summary of these data. Note that the sample mean sales corresponding to
a price of $2.00 and an advertising expenditure of $50,000 is 461,000, and the sample mean
sales corresponding to a price of $2.00 and an advertising expenditure of $100,000 is
808,000. Hence, with price held constant at $2.00, the difference in the sample mean sales
between advertising expenditures of $50,000 and $100,000 is 808,000 � 461,000 � 347,000
units. When the price of the product is $2.50, the difference in the sample mean sales is
646,000 � 364,000 � 282,000 units. Finally, when the price is $3.00, the difference in the
sample mean sales is 375,000 � 332,000 � 43,000 units. Clearly, the difference in the sam-
ple mean sales between advertising expenditures of $50,000 and $100,000 depends on the
price of the product. In other words, at higher selling prices, the effect of increased advertising
expenditure diminishes. These observations provide evidence of interaction between the price
and advertising expenditure variables.

Price
$2.00 $2.50 $3.00

Advertising $50,000 461 364 332
Expenditure $100,000 808 646 375

TABLE 16.3 SAMPLE MEAN UNIT SALES (1000s) FOR THE TYLER PERSONAL CARE
EXAMPLE

Mean sales of 808,000 units when
price � $2.00 and advertising
expenditure � $100,000
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758 Chapter 16 Regression Analysis: Model Building
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FIGURE 16.6 SAMPLE MEAN UNIT SALES (1000S) AS A FUNCTION OF SELLING PRICE 
AND ADVERTISING EXPENDITURE

To provide another perspective of interaction, Figure 16.6 shows the sample mean sales
for the six price-advertising expenditure combinations. This graph also shows that the effect
of advertising expenditure on the sample mean sales depends on the price of the product;
we again see the effect of interaction. When interaction between two variables is present,
we cannot study the effect of one variable on the response y independently of the other
variable. In other words, meaningful conclusions can be developed only if we consider the
joint effect that both variables have on the response.

To account for the effect of interaction, we will use the following regression model.

(16.5)

where

y �

x1 �

x2 �

unit sales (1000s)
price ($)
advertising expenditure ($1000s)

y � �0 � �1x1 � �2 
x2 � �3 

x1x2 � é
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16.1 General Linear Model 759

Note that equation (16.5) reflects Tyler’s belief that the number of units sold depends lin-
early on selling price and advertising expenditure (accounted for by the �1x1 and �2x2 terms),
and that there is interaction between the two variables (accounted for by the �3x1x2 term).

To develop an estimated regression equation, a general linear model involving three 
independent variables (z1, z2, and z3) was used.

(16.6)

where

Figure 16.7 is the Minitab output corresponding to the interaction model for the Tyler
Personal Care example. The resulting estimated regression equation is

where

Because the model is significant ( p-value for the F test is .000) and the p-value corre-
sponding to the t test for PriceAdv is .000, we conclude that interaction is significant given
the linear effect of the price of the product and the advertising expenditure. Thus, the
regression results show that the effect of advertising expenditure on sales depends on 
the price.

Sales �

Price �

AdvExp �

PriceAdv �

unit sales (1000s)
price of the product ($)
advertising expenditure ($1000s)
interaction term (Price times AdvExp)

Sales � �276 � 175 Price � 19.7 AdvExp � 6.08 PriceAdv

z1 �

z
 2 �

z3 �

x1

x
 2

x1x 2

y � �0 � �1z1 � �2 
z

 2 � �3 
z3 � é

The data for the PriceAdv
independent variable is
obtained by multiplying
each value of Price times
the corresponding value of
AdvExp.

The regression equation is
Sales = - 276 + 175 Price + 19.7 AdvExpen - 6.08 PriceAdv

Predictor     Coef  SE Coef       T      p
Constant    -275.8    112.8   -2.44  0.024
Price       175.00    44.55    3.93  0.001
Adver       19.680    1.427   13.79  0.000
PriceAdv   -6.0800   0.5635  -10.79  0.000

S = 28.1739   R-Sq = 97.8%   R-Sq(adj) = 97.5%

Analysis of Variance

SOURCE          DF      SS      MS       F      p
Regression       3  709316  236439  297.87  0.000
Residual Error  20   15875     794
Total           23  725191

FIGURE 16.7 MINITAB OUTPUT FOR THE TYLER PERSONAL CARE EXAMPLE
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760 Chapter 16 Regression Analysis: Model Building

Transformations Involving the Dependent Variable
In showing how the general linear model can be used to model a variety of possible rela-
tionships between the independent variables and the dependent variable, we have focused
attention on transformations involving one or more of the independent variables. Often it
is worthwhile to consider transformations involving the dependent variable y. As an illus-
tration of when we might want to transform the dependent variable, consider the data in
Table 16.4, which shows the miles-per-gallon ratings and weights for 12 automobiles. The
scatter diagram in Figure 16.8 indicates a negative linear relationship between these two
variables. Therefore, we use a simple first-order model to relate the two variables. The
Minitab output is shown in Figure 16.9; the resulting estimated regression equation is

where

The model is significant ( p-value for the F test is .000) and the fit is very good (R-sq �
93.5%). However, we note in Figure 16.9 that observation 3 is identified as having a large
standardized residual.

Figure 16.10 is the standardized residual plot corresponding to the first-order model.
The pattern we observe does not look like the horizontal band we should expect to find if
the assumptions about the error term are valid. Instead, the variability in the residuals ap-
pears to increase as the value of increases. In other words, we see the wedge-shaped pat-
tern referred to in Chapters 14 and 15 as being indicative of a nonconstant variance. We are
not justified in reaching any conclusions about the statistical significance of the resulting
estimated regression equation when the underlying assumptions for the tests of significance
do not appear to be satisfied.

yn

MPG �

Weight �

miles-per-gallon rating
weight of the car in pounds

MPG � 56.1 � 0.0116 Weight

TABLE 16.4

MILES-PER-
GALLON RATINGS
AND WEIGHTS FOR
12 AUTOMOBILES

Miles per
Weight Gallon

2289 28.7
2113 29.2
2180 34.2
2448 27.9
2026 33.3
2702 26.4
2657 23.9
2106 30.5
3226 18.1
3213 19.5
3607 14.3
2888 20.9

fileWEB
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FIGURE 16.8 SCATTER DIAGRAM FOR THE MILES-PER-GALLON EXAMPLE
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16.1 General Linear Model 761

The regression equation is
MPG = 56.1 - 0.0116 Weight

Predictor        Coef    SE Coef       T      p
Constant       56.096      2.582   21.72  0.000
Weight     -0.0116436  0.0009677  -12.03  0.000

S = 1.67053   R-Sq = 93.5%   R-Sq(adj) = 92.9%

Analysis of Variance

SOURCE          DF      SS      MS       F      p
Regression       1  403.98  403.98  144.76  0.000
Residual Error  10   27.91    2.79
Total           11  431.88

Unusual Observations
Obs  Weight     MPG     Fit  SE Fit  Residual  St Resid
3    2180  34.200  30.713   0.644     3.487      2.26R

R denotes an observation with a large standardized residual.

FIGURE 16.9 MINITAB OUTPUT FOR THE MILES-PER-GALLON EXAMPLE
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FIGURE 16.10 STANDARDIZED RESIDUAL PLOT FOR THE MILES-PER-GALLON EXAMPLE

Often the problem of nonconstant variance can be corrected by transforming the de-
pendent variable to a different scale. For instance, if we work with the logarithm of the de-
pendent variable instead of the original dependent variable, the effect will be to compress
the values of the dependent variable and thus diminish the effects of nonconstant variance.
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762 Chapter 16 Regression Analysis: Model Building

The regression equation is
LogeMPG = 4.52 -0.000501 Weight

Predictor         Coef     SE Coef       T      p
Constant       4.52423     0.09932   45.55  0.000
Weight     -0.00050110  0.00003722  -13.46  0.000

S = 0.0642547   R-Sq = 94.8%   R-Sq(adj) = 94.2%

Analysis of Variance

SOURCE          DF       SS        MS       F      p
Regression       1  0.74822   0.74822  181.22  0.000
Residual Error  10  0.04129   0.00413
Total           11  0.78950

FIGURE 16.11 MINITAB OUTPUT FOR THE MILES-PER-GALLON EXAMPLE:
LOGARITHMIC TRANSFORMATION

Most statistical packages provide the ability to apply logarithmic transformations using
either the base 10 (common logarithm) or the base e � 2.71828 . . . (natural logarithm). We
applied a natural logarithmic transformation to the miles-per-gallon data and developed the
estimated regression equation relating weight to the natural logarithm of miles-per-gallon.
The regression results obtained by using the natural logarithm of miles-per-gallon as the de-
pendent variable, labeled LogeMPG in the output, are shown in Figure 16.11; Figure 16.12
is the corresponding standardized residual plot.
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FIGURE 16.12 STANDARDIZED RESIDUAL PLOT FOR THE MILES-PER-GALLON EXAMPLE:
LOGARITHMIC TRANSFORMATION
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16.1 General Linear Model 763

Looking at the residual plot in Figure 16.12, we see that the wedge-shaped pattern has
now disappeared. Moreover, none of the observations are identified as having a large
standardized residual. The model with the logarithm of miles per gallon as the dependent
variable is statistically significant and provides an excellent fit to the observed data. Hence,
we would recommend using the estimated regression equation

To predict the miles-per-gallon rating for an automobile that weighs 2500 pounds, we
first develop an estimate of the logarithm of the miles-per-gallon rating.

The miles-per-gallon estimate is obtained by finding the number whose natural logarithm
is 3.2675. Using a calculator with an exponential function, or raising e to the power 3.2675,
we obtain 26.2 miles per gallon.

Another approach to problems of nonconstant variance is to use 1/y as the dependent
variable instead of y. This type of transformation is called a reciprocal transformation. For
instance, if the dependent variable is measured in miles per gallon, the reciprocal transfor-
mation would result in a new dependent variable whose units would be 1/(miles per gallon)
or gallons per mile. In general, there is no way to determine whether a logarithmic transfor-
mation or a reciprocal transformation will perform best without actually trying each of them.

Nonlinear Models That Are Intrinsically Linear
Models in which the parameters ( �0, �1, . . . , �p) have exponents other than 1 are called
nonlinear models. However, for the case of the exponential model, we can perform a
transformation of variables that will enable us to perform regression analysis with
equation (16.1), the general linear model. The exponential model involves the following
regression equation.

(16.7)

This regression equation is appropriate when the dependent variable y increases or
decreases by a constant percentage, instead of by a fixed amount, as x increases.

As an example, suppose sales for a product y are related to advertising expenditure x
(in thousands of dollars) according to the following regression equation.

Thus, for x � 1, E( y) � 500(1.2)1 � 600; for x � 2, E( y) � 500(1.2)2 � 720; and for
x � 3, E( y) � 500(1.2)3 � 864. Note that E( y) is not increasing by a constant amount in
this case, but by a constant percentage; the percentage increase is 20%.

We can transform this nonlinear regression equation to a linear regression equation by
taking the logarithm of both sides of equation (16.7).

(16.8)

Now if we let y� � log E( y), � log �0, and � log �1, we can rewrite equation (16.8) as

It is clear that the formulas for simple linear regression can now be used to develop esti-
mates of and . Denoting the estimates as and leads to the following estimated 
regression equation.

(16.9)yn� � b�0 � b�1x

b�1b�0��1��0

y� � ��0 � ��1x

��1��0

log E( y) � log �0 � x log �1

E( y) � 500(1.2)x

E( y) � �0 
�x

1

LogeMPG � 4.52 � .000501(2500) � 3.2675

LogeMPG � 4.52 � .000501 Weight
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764 Chapter 16 Regression Analysis: Model Building

To obtain predictions of the original dependent variable y given a value of x, we would first
substitute the value of x into equation (16.9) and compute . The antilog of would be the
prediction of y, or the expected value of y.

Many nonlinear models cannot be transformed into an equivalent linear model. How-
ever, such models have had limited use in business and economic applications. Further-
more, the mathematical background needed for study of such models is beyond the scope
of this text.

Exercises

Methods
1. Consider the following data for two variables, x and y.

x 22 24 26 30 35 40

y 12 21 33 35 40 36

a. Develop an estimated regression equation for the data of the form � b0 � b1x.
b. Use the results from part (a) to test for a significant relationship between x and y.

Use α � .05.
c. Develop a scatter diagram for the data. Does the scatter diagram suggest an estimated

regression equation of the form � b0 � b1x � b2x2? Explain.
d. Develop an estimated regression equation for the data of the form � b0 � b1x �

b2x2.
e. Refer to part (d). Is the relationship between x, x2, and y significant? Use α � .05.
f. Predict the value of y when x � 25.

2. Consider the following data for two variables, x and y.

x 9 32 18 15 26

y 10 20 21 16 22

a. Develop an estimated regression equation for the data of the form � b0 � b1x. 
Comment on the adequacy of this equation for predicting y.

b. Develop an estimated regression equation for the data of the form � b0 � b1x �
b2x2. Comment on the adequacy of this equation for predicting y.

c. Predict the value of y when x � 20.
3. Consider the following data for two variables, x and y.

x 2 3 4 5 7 7 7 8 9

y 4 5 4 6 4 6 9 5 11

a. Does there appear to be a linear relationship between x and y? Explain.
b. Develop the estimated regression equation relating x and y.
c. Plot the standardized residuals versus for the estimated regression equation devel-

oped in part (b). Do the model assumptions appear to be satisfied? Explain.
d. Perform a logarithmic transformation on the dependent variable y. Develop an esti-

mated regression equation using the transformed dependent variable. Do the model as-
sumptions appear to be satisfied by using the transformed dependent variable? Does a
reciprocal transformation work better in this case? Explain.

yn

yn

yn

yn
yn

yn

yn�yn�

testSELF
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16.1 General Linear Model 765

Applications
4. A highway department is studying the relationship between traffic flow and speed. The 

following model has been hypothesized.

where

The following data were collected during rush hour for six highways leading out of the city.

y �

x �

traffic flow in vehicles per hour
vehicle speed in miles per hour

y � �0 � �1x � é

Traffic Flow ( y) Vehicle Speed (x)
1256 35
1329 40
1226 30
1335 45
1349 50
1124 25

a. Develop an estimated regression equation for the data.
b. Use α � .01 to test for a significant relationship.

5. In working further with the problem of exercise 4, statisticians suggested the use of the
following curvilinear estimated regression equation.

a. Use the data of exercise 4 to estimate the parameters of this estimated regression equation.
b. Use α � .01 to test for a significant relationship.
c. Predict the traffic flow in vehicles per hour at a speed of 38 miles per hour.

6. A study of emergency service facilities investigated the relationship between the number
of facilities and the average distance traveled to provide the emergency service. The 
following table gives the data collected.

yn � b0 � b1x � b2 
x2

Number of Average Distance
Facilities (miles)

9 1.66
11 1.12
16 .83
21 .62
27 .51
30 .47

a. Develop a scatter diagram for these data, treating average distance traveled as the
dependent variable.

b. Does a simple linear regression model appear to be appropriate? Explain.
c. Develop an estimated regression equation for the data that you believe will best

explain the relationship between these two variables.
7. In 2011, home prices and mortgage rates fell so far that in a number of cities the monthly

cost of owning a home was less expensive than renting. The following data show 
the average asking rent and the monthly mortgage on the median-priced home 

testSELF
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766 Chapter 16 Regression Analysis: Model Building

(including taxes and insurance) for 10 cities where the average monthly mortgage payment
was less than the average asking rent (The Wall Street Journal, November 26–27, 2011).

a. Develop a scatter diagram for these data, treating the average asking rent as the inde-
pendent variable. Does a simple linear regression model appear to be appropriate?

b. Use a simple linear regression model to develop an estimated regression equation to
predict the monthly mortgage on the median-priced home given the average asking
rent. Construct a standardized residual plot. Based upon the standardized residual plot,
does a simple linear regression model appear to be appropriate?

c. Using a second-order model, develop an estimated regression equation to predict the
monthly mortgage on the median-priced home given the average asking rent.

d. Do you prefer the estimated regression equation developed in part (a) or part (c)? Explain.
8. Corvette, Ferrari, and Jaguar produced a variety of classic cars that continue to increase in

value. The following data, based upon the Martin Rating System for Collectible Cars, show
the rarity rating (1–20) and the high price ($1000) for 15 classic cars (BusinessWeek website,
February 2006).

City Rent ($) Mortgage ($)
Atlanta 840 539
Chicago 1062 1002
Detroit 823 626
Jacksonville, Fla. 779 711
Las Vegas 796 655
Miami 1071 977
Minneapolis 953 776
Orlando, Fla. 851 695
Phoenix 762 651
St. Louis 723 654

fileWEB
RentMortgage

Year Make Model Rating Price ($1000)
1984 Chevrolet Corvette 18 1600.0
1956 Chevrolet Corvette 265/225-hp 19 4000.0
1963 Chevrolet Corvette coupe (340-bhp 4-speed) 18 1000.0
1978 Chevrolet Corvette coupe Silver Anniversary 19 1300.0

1960–1963 Ferrari 250 GTE 2+2 16 350.0
1962–1964 Ferrari 250 GTL Lusso 19 2650.0

1962 Ferrari 250 GTO 18 375.0
1967–1968 Ferrari 275 GTB/4 NART Spyder 17 450.0
1968–1973 Ferrari 365 GTB/4 Daytona 17 140.0
1962–1967 Jaguar E-type OTS 15 77.5
1969–1971 Jaguar E-type Series II OTS 14 62.0
1971–1974 Jaguar E-type Series III OTS 16 125.0
1951–1954 Jaguar XK 120 roadster (steel) 17 400.0
1950–1953 Jaguar XK C-type 16 250.0
1956–1957 Jaguar XKSS 13 70.0

fileWEB
ClassicCars

a. Develop a scatter diagram of the data using the rarity rating as the independent vari-
able and price as the independent variable. Does a simple linear regression model
appear to be appropriate?

b. Develop an estimated multiple regression equation with x � rarity rating and x2 as the
two independent variables.

c. Consider the nonlinear relationship shown by equation (16.7). Use logarithms to
develop an estimated regression equation for this model.

d. Do you prefer the estimated regression equation developed in part (b) or part (c)? Explain.
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16.2 Determining When to Add or Delete Variables 767

9. Kiplinger’s Personal Finance Magazine rated 359 U.S. metropolitan areas to determine the
best cities to live, work, and play. The data contained in the data set named MetroAreas show
the data from the Kiplinger study for the 50 metropolitan areas with a population of 1,000,000
or more (Kiplinger’s website, March 2, 2009). The data set includes the following variables:
Population, Income, Cost of Living Index, and Creative (%). Population is the size of the
population in 1000s; Income is the median household income in $1000s; Cost of Living In-
dex is based on 100 being the national average; and Creative (%) is the percentage of the
workforce in creative fields such as science, engineering, architecture, education, art, and
entertainment. Workers in creative fields are generally considered an important factor in the
vitality and livability of a city and a key to future economic prosperity.
a. Develop a scatter diagram for these data with median household income as the inde-

pendent variable and the percentage of the workforce in creative fields as the depen-
dent variable. Does a simple linear regression model appear to be appropriate?

b. Develop a scatter diagram for these data with the cost of living index as the indepen-
dent variable and the percentage of the workforce in creative fields as the dependent
variable. Does a simple linear regression model appear to be appropriate?

c. Use the data provided to develop the best estimated multiple regression equation for
estimating the percentage of the workforce in creative fields.

d. The Tucson, Arizona, metropolitan area has a population of 946,362, a median house-
hold income of $42,984, and cost of living index of 99. Develop a prediction of the per-
centage of the workforce in creative fields for Tucson. Are there any factors that should
be considered before using this predicted value?

16.2 Determining When to Add or Delete Variables
In this section we will show how an F test can be used to determine whether it is advanta-
geous to add one or more independent variables to a multiple regression model. This test is
based on a determination of the amount of reduction in the error sum of squares resulting
from adding one or more independent variables to the model. We will first illustrate how
the test can be used in the context of the Butler Trucking example.

In Chapter 15, the Butler Trucking example was introduced to illustrate the use of mul-
tiple regression analysis. Recall that the managers wanted to develop an estimated regres-
sion equation to predict total daily travel time for trucks using two independent variables:
miles traveled and number of deliveries. With miles traveled x1 as the only independent 
variable, the least squares procedure provided the following estimated regression equation.

In Chapter 15 we showed that the error sum of squares for this model was SSE � 8.029.
When x2, the number of deliveries, was added as a second independent variable, we obtained
the following estimated regression equation.

The error sum of squares for this model was SSE � 2.299. Clearly, adding x2 resulted in a
reduction of SSE. The question we want to answer is: Does adding the variable x2 lead to a
significant reduction in SSE?

We use the notation SSE(x1) to denote the error sum of squares when x1 is the only in-
dependent variable in the model, SSE(x1, x2) to denote the error sum of squares when x1 and
x2 are both in the model, and so on. Hence, the reduction in SSE resulting from adding x2
to the model involving just x1 is

An F test is conducted to determine whether this reduction is significant.

SSE(x1) � SSE(x1, x2) � 8.029 � 2.299 � 5.730

yn � � .869 � .0611x1 � .923x2

yn � 1.27 � .0678x1

fileWEB
MetroAreas
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768 Chapter 16 Regression Analysis: Model Building

The numerator of the F statistic is the reduction in SSE divided by the number of inde-
pendent variables added to the original model. Here only one variable, x2, has been added;
thus, the numerator of the F statistic is

The result is a measure of the reduction in SSE per independent variable added to the model.
The denominator of the F statistic is the mean square error for the model that includes all
of the independent variables. For Butler Trucking this corresponds to the model containing
both x1 and x2; thus, p � 2 and

The following F statistic provides the basis for testing whether the addition of x2 is 
statistically significant.

(16.10)

The numerator degrees of freedom for this F test is equal to the number of variables added
to the model, and the denominator degrees of freedom is equal to n � p � 1.

For the Butler Trucking problem, we obtain

Refer to Table 4 of Appendix B. We find that for a level of significance of α � .05,
F.05 � 5.59. Because F � 17.45 � F.05 � 5.59, we can reject the null hypothesis that x2 is
not statistically significant; in other words, adding x2 to the model involving only x1 results
in a significant reduction in the error sum of squares.

When we want to test for the significance of adding only one more independent vari-
able to a model, the result found with the F test just described could also be obtained by 
using the t test for the significance of an individual parameter (described in Section 15.4).
Indeed, the F statistic we just computed is the square of the t statistic used to test the 
significance of an individual parameter.

Because the t test is equivalent to the F test when only one independent variable is being
added to the model, we can now further clarify the proper use of the t test for testing the
significance of an individual parameter. If an individual parameter is not significant, the cor-
responding variable can be dropped from the model. However, if the t test shows that two 
or more parameters are not significant, no more than one independent variable can ever be
dropped from a model on the basis of a t test; if one variable is dropped, a second variable
that was not significant initially might become significant.

We now turn to a consideration of whether the addition of more than one independent
variable—as a set—results in a significant reduction in the error sum of squares.

F �

5.730
1

2.299
7

�
5.730
.3284

� 17.45

F �

SSE(x1) � SSE(x1, x2)
1

SSE(x1, x2)
n � p � 1

MSE �
SSE(x1, x2)
n � p � 1

�
2.299

7
� .3284

SSE(x1) � SSE(x1, x2)
1

� 5.730
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16.2 Determining When to Add or Delete Variables 769

General Case
Consider the following multiple regression model involving q independent variables,
where q � p.

(16.11)

If we add variables xq�1, xq�2, . . . , xp to this model, we obtain a model involving p inde-
pendent variables.

(16.12)

To test whether the addition of xq�1, xq�2, . . . , xp is statistically significant, the null and 
alternative hypotheses can be stated as follows.

The following F statistic provides the basis for testing whether the additional indepen-
dent variables are statistically significant.

(16.13)

This computed F value is then compared with Fα, the table value with p � q numerator
degrees of freedom and n � p � 1 denominator degrees of freedom. If F � Fα, we reject
H0 and conclude that the set of additional independent variables is statistically signifi-
cant. Note that for the special case where q � 1 and p � 2, equation (16.13) reduces to
equation (16.10).

Many students find equation (16.13) somewhat complex. To provide a simpler descrip-
tion of this F ratio, we can refer to the model with the smaller number of independent vari-
ables as the reduced model and the model with the larger number of independent variables
as the full model. If we let SSE(reduced) denote the error sum of squares for the reduced
model and SSE(full) denote the error sum of squares for the full model, we can write the 
numerator of (16.13) as

(16.14)

Note that “number of extra terms” denotes the difference between the number of indepen-
dent variables in the full model and the number of independent variables in the reduced
model. The denominator of equation (16.13) is the error sum of squares for the full model
divided by the corresponding degrees of freedom; in other words, the denominator is the
mean square error for the full model. Denoting the mean square error for the full model as
MSE(full) enables us to write it as

(16.15)F �

SSE(reduced) � SSE(full)
number of extra terms

MSE(full)

SSE(reduced) � SSE(full)
number of extra terms

F �

SSE(x1, x2, . . . , xq) � SSE(x1, x2, . . . , xq, xq�1, . . . , xp)
p � q

SSE(x1, x2, . . . , xq, xq�1, . . . , xp)
n � p � 1

H0:
Ha:

 
�q�1 � �q�2 � . . . � �p � 0
One or more of the parameters is not equal to zero

y �
 
�0 � �1x1 � �2 

x2 � . . . � �q 
xq

�  �q�1xq�1 � �q�2 
xq�2 � . . . � �p 

xp � é

y � �0 � �1x1 � �2 
x2 � . . . � �q 

xq � é

Many computer packages,
such as Minitab, provide
extra sums of squares
corresponding to the order
in which each independent
variable enters the model;
in such cases, the
computation of the F test
for determining whether to
add or delete a set of
variables is simplified.
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770 Chapter 16 Regression Analysis: Model Building

To illustrate the use of this F statistic, suppose we have a regression problem involving 
30 observations. One model with the independent variables x1, x2, and x3 has an error sum
of squares of 150 and a second model with the independent variables x1, x2, x3, x4, and x5
has an error sum of squares of 100. Did the addition of the two independent variables x4 and
x5 result in a significant reduction in the error sum of squares?

First, note that the degrees of freedom for SST is 30 � 1 � 29 and that the degrees 
of freedom for the regression sum of squares for the full model is five (the number of
independent variables in the full model). Thus, the degrees of freedom for the error sum of
squares for the full model is 29 � 5 � 24, and hence MSE(full) � 100/24 � 4.17. There-
fore the F statistic is

This computed F value is compared with the table F value with two numerator and 24 de-
nominator degrees of freedom. At the .05 level of significance, Table 4 of Appendix B shows
F.05 � 3.40. Because F � 6.00 is greater than 3.40, we conclude that the addition of 
variables x4 and x5 is statistically significant.

Use of p-Values
The p-value criterion can also be used to determine whether it is advantageous to add
one or more independent variables to a multiple regression model. In the preceding ex-
ample, we showed how to perform an F test to determine if the addition of two inde-
pendent variables, x4 and x5, to a model with three independent variables, x1, x2, and x3,
was statistically significant. For this example, the computed F statistic was 6.00 and we
concluded (by comparing F � 6.00 to the critical value F.05 � 3.40) that the addition of
variables x4 and x5 was significant. Using Minitab or Excel, the p-value associated with
F � 6.00 (2 numerator and 24 denominator degrees of freedom) is .008. With a 
p-value � .008 � α � .05, we also conclude that the addition of the two independent
variables is statistically significant. It is difficult to determine the p-value directly from
tables of the F distribution, but computer software packages, such as Minitab or Excel,
make computing the p-value easy.

F �

150 � 100
2

4.17
� 6.00

NOTES AND COMMENTS

Computation of the F statistic can also be based on the difference in the regression sums of squares. To
show this form of the F statistic, we first note that

Hence

Thus,

F �

SSR(full) � SSR(reduced)
number of extra terms

MSE(full)

SSE(reduced) � SSE(full)
 

� [SST � SSR(reduced)] � [SST � SSR(full)]
� SSR(full) � SSR(reduced)

SSE(reduced) �

SSE(full) �

SST � SSR(reduced)
SST � SSR(full)

74537_16_ch16_p751-799.qxd  10/8/12  8:59 PM  Page 770

Copyright 2014 Nelson Education Ltd. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content
may be suppressed from the eBook and/or eChapter(s). Nelson Education reserves the right to remove additional content at any time if subsequent rights restrictions require it.



16.2 Determining When to Add or Delete Variables 771

Exercises

Methods
10. In a regression analysis involving 27 observations, the following estimated regression

equation was developed.

For this estimated regression equation SST � 1550 and SSE � 520.
a. At α � .05, test whether x1 is significant.

Suppose that variables x2 and x3 are added to the model and the following regression
equation is obtained.

For this estimated regression equation SST � 1550 and SSE � 100.
b. Use an F test and a .05 level of significance to determine whether x2 and x3 contribute

significantly to the model.
11. In a regression analysis involving 30 observations, the following estimated regression

equation was obtained.

For this estimated regression equation SST � 1805 and SSR � 1760.
a. At α � .05, test the significance of the relationship among the variables.

Suppose variables x1 and x4 are dropped from the model and the following estimated
regression equation is obtained.

For this model SST � 1805 and SSR � 1705.
b. Compute SSE(x1, x2, x3, x4).
c. Compute SSE(x2, x3).
d. Use an F test and a .05 level of significance to determine whether x1 and x4 contribute

significantly to the model.

Applications
12. The Ladies Professional Golfers Association (LPGA) maintains statistics on performance and

earnings for members of the LPGA Tour. Year-end performance statistics for the 30 players
who had the highest total earnings in LPGA Tour events for 2005 appear in the file named
LPGATour (LPGA Tour website, 2006). Earnings ($1000) is the total earnings in thousands
of dollars; Scoring Avg. is the average score for all events; Greens in Reg. is the percentage
of time a player is able to hit the green in regulation; Putting Avg. is the average number of
putts taken on greens hit in regulation; and Sand Saves is the percentage of time a player is
able to get “up and down” once in a greenside sand bunker. A green is considered hit in regu-
lation if any part of the ball is touching the putting surface and the difference between the value
of par for the hole and the number of strokes taken to hit the green is at least 2.
a. Develop an estimated regression equation that can be used to predict the average score

for all events given the average number of putts taken on greens hit in regulation.
b. Develop an estimated regression equation that can be used to predict the average score

for all events given the percentage of time a player is able to hit the green in regula-
tion, the average number of putts taken on greens hit in regulation, and the percentage
of time a player is able to get “up and down” once in a greenside sand bunker.

yn � 11.1 � 3.6x2 � 8.1x3

yn � 17.6 � 3.8x1 � 2.3x2 � 7.6x3 � 2.7x4

yn � 16.3 � 2.3x1 � 12.1x2 � 5.8x3

yn � 25.2 � 5.5x1

testSELF
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772 Chapter 16 Regression Analysis: Model Building

c. At the .05 level of significance, test whether the two independent variables added in
part (b), the percentage of time a player is able to hit the green in regulation and the
percentage of time a player is able to get “up and down” once in a greenside sand
bunker, contribute significantly to the estimated regression equation developed in
part (a). Explain.

13. Refer to exercise 12.
a. Develop an estimated regression equation that can be used to predict the total earnings

for all events given the average number of putts taken on greens hit in regulation.
b. Develop an estimated regression equation that can be used to predict the total earn-

ings for all events given the percentage of time a player is able to hit the green in
regulation, the average number of putts taken on greens hit in regulation, and the
percentage of time a player is able to get “up and down” once in a greenside sand
bunker.

c. At the .05 level of significance, test whether the two independent variables added in
part (b), the percentage of time a player is able to hit the green in regulation and the
percentage of time a player is able to get “up and down” once in a greenside sand
bunker, contribute significantly to the estimated regression equation developed in
part (a). Explain.

d. In general, lower scores should lead to higher earnings. To investigate this option to
predicting total earnings, develop an estimated regression equation that can be used to
predict total earnings for all events given the average score for all events. Would you
prefer to use this equation to predict total earnings or the estimated regression equa-
tion developed in part (b)? Explain.

14. A 10-year study conducted by the American Heart Association provided data on how age,
blood pressure, and smoking relate to the risk of strokes. Data from a portion of this study
follow. Risk is interpreted as the probability (times 100) that a person will have a stroke
over the next 10-year period. For the smoker variable, 1 indicates a smoker and 0 indicates
a nonsmoker.

fileWEB
LPGATour

Risk Age Blood Pressure Smoker
12 57 152 0
24 67 163 0
13 58 155 0
56 86 177 1
28 59 196 0
51 76 189 1
18 56 155 1
31 78 120 0
37 80 135 1
15 78 98 0
22 71 152 0
36 70 173 1
15 67 135 1
48 77 209 1
15 60 199 0
36 82 119 1
8 66 166 0

34 80 125 1
3 62 117 0

37 59 207 1

fileWEB
Stroke

a. Develop an estimated regression equation that can be used to predict the risk of stroke
given the age and blood-pressure level.

b. Consider adding two independent variables to the model developed in part (a), one for
the interaction between age and blood-pressure level and the other for whether the
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16.3 Analysis of a Larger Problem 773

person is a smoker. Develop an estimated regression equation using these four inde-
pendent variables.

c. At a .05 level of significance, test to see whether the addition of the interaction term
and the smoker variable contribute significantly to the estimated regression equation
developed in part (a).

15. In baseball, an earned run is any run that the opposing team scores off the pitcher except
for runs scored as a result of errors. The earned run average (ERA), the statistic most 
often used to compare the performance of pitchers, is computed as follows:

Note that the average number of earned runs per inning pitched is multiplied by nine, the
number of innings in a regulation game. Thus, ERA represents the average number of runs
the pitcher gives up per nine innings. For instance, in 2008, Roy Halladay, a pitcher for
the Toronto Blue Jays, pitched 246 innings and gave up 76 earned runs; his ERA was
(76/246)9 � 2.78. To investigate the relationship between ERA and other measures of
pitching performance, data for 50 Major League Baseball pitchers for the 2008 season ap-
pear in the data set named MLBPitching (MLB website, February 2009). Descriptions for
variables which appear on the data set follow:

W Number of games won
L Number of games lost
WPCT Percentage of games won
H/9 Average number of hits given up per nine innings
HR/9 Average number of home runs given up per nine innings
BB/9 Average number of bases on balls given up per nine innings

a. Develop an estimated regression equation that can be used to predict the earned run
average given the average number hits given up per nine innings.

b. Develop an estimated regression equation that can be used to predict the earned run
average given the average number hits given up per nine innings, the average number
of home runs given up per nine innings, and the average number of bases on balls given
up per nine innings.

c. At the .05 level of significance, test whether the two independent variables added in
part (b), the average number of home runs given up per nine innings and the average
number of bases on ball given up per nine innings, contribute significantly to the 
estimated regression equation developed in part (a).

16.3 Analysis of a Larger Problem
In introducing multiple regression analysis, we used the Butler Trucking example extensively.
The small size of this problem was an advantage in exploring introductory concepts but would
make it difficult to illustrate some of the variable selection issues involved in model building.
To provide an illustration of the variable selection procedures discussed in the next section, we
introduce a data set consisting of 25 observations on eight independent variables. Permission
to use these data was provided by Dr. David W. Cravens of the Department of Marketing at
Texas Christian University. Consequently, we refer to the data set as the Cravens data.1

The Cravens data are for a company that sells products in several sales territories, each
of which is assigned to a single sales representative. A regression analysis was conducted

ERA � �earned runs given up
innings pitched �9

1For details see David W. Cravens, Robert B. Woodruff, and Joe C. Stamper, “An Analytical Approach for Evaluating 
Sales Territory Performance,” Journal of Marketing, 36 (January 1972): 31–37. Copyright © 1972 American Marketing 
Association.

fileWEB
MLBPitching

74537_16_ch16_p751-799.qxd  10/8/12  8:59 PM  Page 773

Copyright 2014 Nelson Education Ltd. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content
may be suppressed from the eBook and/or eChapter(s). Nelson Education reserves the right to remove additional content at any time if subsequent rights restrictions require it.



774 Chapter 16 Regression Analysis: Model Building

to determine whether a variety of predictor (independent) variables could explain sales in
each territory. A random sample of 25 sales territories resulted in the data in Table 16.5; the
variable definitions are given in Table 16.6.

As a preliminary step, let us consider the sample correlation coefficients between each
pair of variables. Figure 16.13 is the correlation matrix obtained using Minitab. Note that
the sample correlation coefficient between Sales and Time is .623, between Sales and Poten
is .598, and so on.

Sales Time Poten AdvExp Share Change Accounts Work Rating
3,669.88 43.10 74,065.1 4,582.9 2.51 .34 74.86 15.05 4.9
3,473.95 108.13 58,117.3 5,539.8 5.51 .15 107.32 19.97 5.1
2,295.10 13.82 21,118.5 2,950.4 10.91 �.72 96.75 17.34 2.9
4,675.56 186.18 68,521.3 2,243.1 8.27 .17 195.12 13.40 3.4
6,125.96 161.79 57,805.1 7,747.1 9.15 .50 180.44 17.64 4.6
2,134.94 8.94 37,806.9 402.4 5.51 .15 104.88 16.22 4.5
5,031.66 365.04 50,935.3 3,140.6 8.54 .55 256.10 18.80 4.6
3,367.45 220.32 35,602.1 2,086.2 7.07 �.49 126.83 19.86 2.3
6,519.45 127.64 46,176.8 8,846.2 12.54 1.24 203.25 17.42 4.9
4,876.37 105.69 42,053.2 5,673.1 8.85 .31 119.51 21.41 2.8
2,468.27 57.72 36,829.7 2,761.8 5.38 .37 116.26 16.32 3.1
2,533.31 23.58 33,612.7 1,991.8 5.43 �.65 142.28 14.51 4.2
2,408.11 13.82 21,412.8 1,971.5 8.48 .64 89.43 19.35 4.3
2,337.38 13.82 20,416.9 1,737.4 7.80 1.01 84.55 20.02 4.2
4,586.95 86.99 36,272.0 10,694.2 10.34 .11 119.51 15.26 5.5
2,729.24 165.85 23,093.3 8,618.6 5.15 .04 80.49 15.87 3.6
3,289.40 116.26 26,878.6 7,747.9 6.64 .68 136.58 7.81 3.4
2,800.78 42.28 39,572.0 4,565.8 5.45 .66 78.86 16.00 4.2
3,264.20 52.84 51,866.1 6,022.7 6.31 �.10 136.58 17.44 3.6
3,453.62 165.04 58,749.8 3,721.1 6.35 �.03 138.21 17.98 3.1
1,741.45 10.57 23,990.8 861.0 7.37 �1.63 75.61 20.99 1.6
2,035.75 13.82 25,694.9 3,571.5 8.39 �.43 102.44 21.66 3.4
1,578.00 8.13 23,736.3 2,845.5 5.15 .04 76.42 21.46 2.7
4,167.44 58.44 34,314.3 5,060.1 12.88 .22 136.58 24.78 2.8
2,799.97 21.14 22,809.5 3,552.0 9.14 �.74 88.62 24.96 3.9

TABLE 16.5 CRAVENS DATA

fileWEB
Cravens

Variable Definition
Sales Total sales credited to the sales representative
Time Length of time employed in months
Poten Market potential; total industry sales in units for the sales territory*
AdvExp Advertising expenditure in the sales territory
Share Market share; weighted average for the past four years
Change Change in the market share over the previous four years
Accounts Number of accounts assigned to the sales representative*
Work Workload; a weighted index based on annual purchases and concentrations of accounts
Rating Sales representative overall rating on eight performance dimensions; an aggregate rating 

on a 1–7 scale

*These data were coded to preserve confidentiality.

TABLE 16.6 VARIABLE DEFINITIONS FOR THE CRAVENS DATA
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16.3 Analysis of a Larger Problem 775

Looking at the sample correlation coefficients between the independent variables, we see
that the correlation between Time and Accounts is .758; hence, if Accounts were used as an
independent variable, Time would not add much more explanatory power to the model. 
Recall the rule-of-thumb test from the discussion of multicollinearity in Section 15.4: Multi-
collinearity can cause problems if the absolute value of the sample correlation coefficient ex-
ceeds .7 for any two of the independent variables. If possible, then, we should avoid including
both Time and Accounts in the same regression model. The sample correlation coefficient of
.549 between Change and Rating is also high and may warrant further consideration.

Looking at the sample correlation coefficients between Sales and each of the indepen-
dent variables can give us a quick indication of which independent variables are, by them-
selves, good predictors. We see that the single best predictor of Sales is Accounts, because
it has the highest sample correlation coefficient (.754). Recall that for the case of one inde-
pendent variable, the square of the sample correlation coefficient is the coefficient of de-
termination. Thus, Accounts can explain (.754)2(100), or 56.85%, of the variability in Sales.
The next most important independent variables are Time, Poten, and AdvExp, each with a
sample correlation coefficient of approximately .6.

Although there are potential multicollinearity problems, let us consider developing an
estimated regression equation using all eight independent variables. The Minitab computer
package provided the results in Figure 16.14. The eight-variable multiple regression model
has an R-Sq (adj) value of 88.3%. Note, however, that the p-values for the t tests of indi-
vidual parameters show that only Poten, AdvExp, and Share are significant at the α � .05
level, given the effect of all the other variables. Hence, we might be inclined to investigate
the results that would be obtained if we used just those three variables. Figure 16.15 shows
the Minitab results obtained for the estimated regression equation with those three variables.
We see that the estimated regression equation has an R-Sq (adj) value of 82.7%, which,
although not quite as good as that for theeight-independent-variable estimated regression
equation, is high.

How can we find an estimated regression equation that will do the best job given the
data available? One approach is to compute all possible regressions. That is, we could de-
velop 8 one-variable estimated regression equations (each of which corresponds to one of
the independent variables), 28 two-variable estimated regression equations (the number of
combinations of eight variables taken two at a time), and so on. In all, for the Cravens data,
255 different estimated regression equations involving one or more independent variables
would have to be fitted to the data.

With the excellent computer packages available today, it is possible to compute all pos-
sible regressions. But doing so involves a great amount of computation and requires the
model builder to review a large volume of computer output, much of which is associated
with obviously poor models. Statisticians prefer a more systematic approach to selecting
the subset of independent variables that provide the best estimated regression equation. In
the next section, we introduce some of the more popular approaches.

Sales Time Poten AdvExp Share Change Accounts Work
Time 0.623
Poten 0.598 0.454
AdvExp 0.596 0.249 0.174
Share 0.484 0.106 -0.21 0.264
Change 0.489 0.251 0.268 0.377 0.085
Accounts 0.754 0.758 0.479 0.200 0.403 0.327
Work -0.117 -0.179 -0.259 -0.272 0.349 -0.288 -0.199
Rating 0.402 0.101 0.359 0.411 -0.024 0.549 0.229 -0.277

FIGURE 16.13 SAMPLE CORRELATION COEFFICIENTS FOR THE CRAVENS DATA
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776 Chapter 16 Regression Analysis: Model Building

The regression equation is
Sales = - 1508 + 2.01 Time + 0.0372 Poten + 0.151 AdvExp + 199 Share

+ 291 Change + 5.55 Accounts + 19.8 Work + 8 Rating

Predictor      Coef   SE Coef      T      p
Constant    -1507.8     778.6  -1.94  0.071
Time          2.010     1.931   1.04  0.313
Poten      0.037206  0.008202   4.54  0.000
AdvExp      0.15094   0.04711   3.21  0.006
Share        199.08     67.03   2.97  0.009
Change        290.9     186.8   1.56  0.139
Accounts      5.550     4.775   1.16  0.262
Work          19.79     33.68   0.59  0.565
Rating          8.2     128.5   0.06  0.950

S = 449.015   R-Sq = 92.2%   R-Sq(adj) = 88.3%

Analysis of Variance

SOURCE          DF        SS       MS      F      p
Regression       8  38153712  4769214  23.66  0.000
Residual Error  16   3225837   201615
Total           24  41379549

FIGURE 16.14 MINITAB OUTPUT FOR THE MODEL INVOLVING ALL EIGHT
INDEPENDENT VARIABLES

The regression equation is
Sales = - 1604 + 0.0543 Poten + 0.167 AdvExp + 283 Share

Predictor      Coef   SE Coef      T      p
Constant    -1603.6     505.6  -3.17  0.005
Poten      0.054286  0.007474   7.26  0.000
AdvExp      0.16748   0.04427   3.78  0.001
Share        282.75     48.76   5.80  0.000

S = 545.515   R-Sq = 84.9%   R-Sq(adj) = 82.7%

Analysis of Variance

SOURCE          DF        SS         MS       F      p
Regression       3  35130228   11710076   39.35  0.000
Residual Error  21   6249321     297587
Total           24  41379549

FIGURE 16.15 MINITAB OUTPUT FOR THE MODEL INVOLVING Poten, AdvExp,
AND Share
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16.4 Variable Selection Procedures 777

Variable selection
procedures are particularly
useful in the early stages of
building a model, but they
cannot substitute for
experience and judgment
on the part of the analyst.

16.4 Variable Selection Procedures
In this section we discuss four variable selection procedures: stepwise regression, forward
selection, backward elimination, and best-subsets regression. Given a data set with several
possible independent variables, we can use these procedures to identify which independent
variables provide the best model. The first three procedures are iterative; at each step of the
procedure a single independent variable is added or deleted and the new model is evaluated.
The process continues until a stopping criterion indicates that the procedure cannot find a
better model. The last procedure (best subsets) is not a one-variable-at-a-time procedure; it
evaluates regression models involving different subsets of the independent variables.

In the stepwise regression, forward selection, and backward elimination procedures, the
criterion for selecting an independent variable to add or delete from the model at each step
is based on the F statistic introduced in Section 16.2. Suppose, for instance, that we are con-
sidering adding x2 to a model involving x1 or deleting x2 from a model involving x1 and x2.
To test whether the addition or deletion of x2 is statistically significant, the null and alter-
native hypotheses can be stated as follows:

In Section 16.2 (see equation (16.10)) we showed that

can be used as a criterion for determining whether the presence of x2 in the model causes a sig-
nificant reduction in the error sum of squares. The p-value corresponding to this F statistic
is the criterion used to determine whether an independent variable should be added or deleted
from the regression model. The usual rejection rule applies: Reject H0 if p-value ¡ α.

Stepwise Regression
The stepwise regression procedure begins each step by determining whether any of the vari-
ables already in the model should be removed. It does so by first computing an F statistic
and a corresponding p-value for each independent variable in the model. The level of sig-
nificance α for determining whether an independent variable should be removed from the
model is referred to in Minitab as Alpha to remove. If the p-value for any independent vari-
able is greater than Alpha to remove, the independent variable with the largest p-value is 
removed from the model and the stepwise regression procedure begins a new step.

If no independent variable can be removed from the model, the procedure attempts to
enter another independent variable into the model. It does so by first computing an F sta-
tistic and corresponding p-value for each independent variable that is not in the model. The
level of significance α for determining whether an independent variable should be entered
into the model is referred to in Minitab as Alpha to enter. The independent variable with the
smallest p-value is entered into the model provided its p-value is less than or equal to 
Alpha to enter. The procedure continues in this manner until no independent variables can
be deleted from or added to the model.

Figure 16.16 shows the results obtained by using the Minitab stepwise regression proce-
dure for the Cravens data using values of .05 for Alpha to remove and .05 for Alpha to enter.

F �

SSE(x1) � SSE(x1, x 2)
1

SSE(x1, x 2)
n � p � 1

H0:
Ha:

 
�2 � 0
�2 í 0
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The stepwise procedure terminated after four steps. The estimated regression equation iden-
tified by the Minitab stepwise regression procedure is

Note also in Figure 16.16 that has been reduced from 881 with the best one-
variable model (using Accounts) to 454 after four steps. The value of R-sq has been in-
creased from 56.85% to 90.04%, and the recommended estimated regression equation has
an R-Sq(adj) value of 88.05%.

In summary, at each step of the stepwise regression procedure the first consideration is
to see whether any independent variable can be removed from the current model. If none of
the independent variables can be removed from the model, the procedure checks to see
whether any of the independent variables that are not currently in the model can be entered.
Because of the nature of the stepwise regression procedure, an independent variable can 
enter the model at one step, be removed at a subsequent step, and then enter the model at a
later step. The procedure stops when no independent variables can be removed from or 
entered into the model.

Forward Selection
The forward selection procedure starts with no independent variables. It adds variables 
one at a time using the same procedure as stepwise regression for determining whether 
an independent variable should be entered into the model. However, the forward selection

s � �MSE

yn � �1441.93 � 9.2 Accounts � .175 AdvExp � .0382 Poten � 190 Share

778 Chapter 16 Regression Analysis: Model Building

Because the stepwise
procedure does not
consider every possible
subset for a given number
of independent variables, it
will not necessarily select
the estimated regression
equation with the highest
R-sq value.

Alpha-to-Enter: 0.05     Alpha-to-Remove: 0.05

Response is Sales on 8 predictors, with N = 25

Step        1       2         3          4
Constant   709.32   50.29   -327.24   -1441.93

Accounts     21.7    19.0      15.6        9.2
T-Value      5.50    6.41      5.19       3.22
P-Value     0.000   0.000     0.000      0.004

AdvExp              0.227     0.216      0.175
T-Value              4.50      4.77       4.74
P-Value             0.000     0.000      0.000

Poten                        0.0219     0.0382
T-Value                        2.53       4.79
P-Value                       0.019      0.000

Share                                      190
T-Value                                   3.82
P-Value                                  0.001

S             881     650       583        454
R-Sq        56.85   77.51     82.77      90.04
R-Sq(adj)   54.97   75.47     80.31      88.05
Mallows Cp 67.6    27.2      18.4        5.4

FIGURE 16.16 MINITAB STEPWISE REGRESSION OUTPUT FOR THE CRAVENS DATA
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16.4 Variable Selection Procedures 779

procedure does not permit a variable to be removed from the model once it has been 
entered. The procedure stops if the p-value for each of the independent variables not in the
model is greater than Alpha to enter.

The estimated regression equation obtained using Minitab’s forward selection proce-
dure is

Thus, for the Cravens data, the forward selection procedure (using .05 for Alpha to enter)
leads to the same estimated regression equation as the stepwise procedure.

Backward Elimination
The backward elimination procedure begins with a model that includes all the independent
variables. It then deletes one independent variable at a time using the same procedure as
stepwise regression. However, the backward elimination procedure does not permit an in-
dependent variable to be reentered once it has been removed. The procedure stops when
none of the independent variables in the model have a p-value greater than Alpha to remove.

The estimated regression equation obtained using Minitab’s backward elimination pro-
cedure for the Cravens data (using .05 for Alpha to remove) is

Comparing the estimated regression equation identified using the backward elimination pro-
cedure to the estimated regression equation identified using the forward selection procedure,
we see that three independent variables—AdvExp, Poten, and Share—are common to both.
However, the backward elimination procedure has included Time instead of Accounts.

Forward selection and backward elimination are the two extremes of model building;
the forward selection procedure starts with no independent variables in the model and adds
independent variables one at a time, whereas the backward elimination procedure starts
with all independent variables in the model and deletes variables one at a time. The two pro-
cedures may lead to the same estimated regression equation. It is possible, however, for
them to lead to two different estimated regression equations, as we saw with the Cravens
data. Deciding which estimated regression equation to use remains a topic for discussion.
Ultimately, the analyst’s judgment must be applied. The best-subsets model building pro-
cedure we discuss next provides additional model-building information to be considered 
before a final decision is made.

Best-Subsets Regression
Stepwise regression, forward selection, and backward elimination are approaches to choos-
ing the regression model by adding or deleting independent variables one at a time. None
of them guarantees that the best model for a given number of variables will be found. Hence,
these one-variable-at-a-time methods are properly viewed as heuristics for selecting a good
regression model.

Some software packages use a procedure called best-subsets regression that enables the
user to find, given a specified number of independent variables, the best regression model.
Minitab has such a procedure. Figure 16.17 is a portion of the computer output obtained by
using the best-subsets procedure for the Cravens data set.

This output identifies the two best one-variable estimated regression equations, the two
best two-variable equations, the two best three-variable equations, and so on. The criterion
used in determining which estimated regression equations are best for any number of

yn � �1312 � 3.8 Time � .0444 Poten � .152 AdvExp � 259 Share

yn � �1441.93 � 9.2 Accounts � .175 AdvExp � .0382 Poten � 190 Share

Forward selection and
backward elimination may
lead to different models.

The complete best-subsets
output also includes values
for the Mallows Cp statistic.
More advanced texts
discuss the use of this
statistic.
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780 Chapter 16 Regression Analysis: Model Building

predictors is the value of the coefficient of determination (R-Sq). For instance, Accounts,
with an R-Sq � 56.8%, provides the best estimated regression equation using only one in-
dependent variable; AdvExp and Accounts, with an R-Sq � 77.5%, provides the best esti-
mated regression equation using two independent variables; and Poten, AdvExp, and
Share, with an R-Sq � 84.9%, provides the best estimated regression equation with
three independent variables. For the Cravens data, the adjusted coefficient of determina-
tion (R-Sq (adj) � 89.4%) is largest for the model with six independent variables: Time,
Poten, AdvExp, Share, Change, and Accounts. However, the best model with four
independent variables (Poten, AdvExp, Share, Accounts) has an adjusted coefficient of
determination almost as high (R-Sq (adj) � 88.1%). All other things being equal, a
simpler model with fewer variables is usually preferred.

Making the Final Choice
The analysis performed on the Cravens data to this point is good preparation for choosing
a final model, but more analysis should be conducted before the final choice. As we noted
in Chapters 14 and 15, a careful analysis of the residuals should be done. We want the resid-
ual plot for the chosen model to resemble approximately a horizontal band. Let us assume
the residuals are not a problem and that we want to use the results of the best-subsets pro-
cedure to help choose the model.

The best-subsets procedure shows us that the best four-variable model contains the 
independent variables Poten, AdvExp, Share, and Accounts. This result also happens to be
the four-variable model identified with the stepwise regression procedure. Table 16.7 is
helpful in making the final choice. It shows several possible models consisting of some or
all of these four independent variables.

A
c

A   C c   R
P d S h o   a

T o v h a u W t
i t E a n n o I
m e x r g t r n

Vars    R-Sq   R-Sq(adj)        S     e n p e e s K g

1    56.8       55.0    881.09               X
1    38.8       36.1    1049.3     X
2    77.5       75.5    650.39         X     X
2    74.6       72.3    691.11       X     X
3    84.9       82.7    545.52       X X X
3    82.8       80.3    582.64       X X     X
4    90.0       88.1    453.84       X X X   X
4    89.6       87.5    463.93     X X X X
5    91.5       89.3    430.21     X X X X X
5    91.2       88.9    436.75       X X X X X
6    92.0       89.4    427.99     X X X X X X
6    91.6       88.9    438.20       X X X X X X
7    92.2       89.0    435.66     X X X X X X X
7    92.0       88.8    440.29     X X X X X X   X
8    92.2       88.3    449.02     X X X X X X X X

FIGURE 16.17 PORTION OF MINITAB BEST-SUBSETS REGRESSION OUTPUT
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16.4 Variable Selection Procedures 781

From Table 16.7, we see that the model with just AdvExp and Accounts is good. The
adjusted coefficient of determination is R-Sq (adj) � 75.5%, and the model with all four
variables provides only a 12.6-percentage-point improvement. The simpler two-variable
model might be preferred, for instance, if it is difficult to measure market potential (Poten).
However, if the data are readily available and highly accurate predictions of sales are
needed, the model builder would clearly prefer the model with all four variables.

Exercises

Applications

16. A study provided data on variables that may be related to the number of weeks a manu-
facturing worker has been jobless. The dependent variable in the study (Weeks) was de-
fined as the number of weeks a worker has been jobless due to a layoff. The following
independent variables were used in the study. 

Age The age of the worker
Educ The number of years of education
Married A dummy variable; 1 if married, 0 otherwise
Head A dummy variable; 1 if the head of household, 0 otherwise
Tenure The number of years on the previous job
Manager A dummy variable; 1 if management occupation, 0 otherwise
Sales A dummy variable; 1 if sales occupation, 0 otherwise

The data are available in the file named Layoffs. 
a. Develop the best one-variable estimated regression equation.
b. Use the stepwise procedure to develop the best estimated regression equation. Use 

values of .05 for Alpha to enter and Alpha to remove.

Model Independent Variables R-Sq (adj)
1 Accounts 55.0
2 AdvExp, Accounts 75.5
3 Poten, Share 72.3
4 Poten, AdvExp, Accounts 80.3
5 Poten, AdvExp, Share 82.7
6 Poten, AdvExp, Share, Accounts 88.1

TABLE 16.7 SELECTED MODELS INVOLVING Accounts, AdvExp, Poten, AND Share

NOTES AND COMMENTS

1. The stepwise procedure requires that Alpha
to remove be greater than or equal to Alpha to
enter. This requirement prevents the same vari-
able from being removed and then reentered at
the same step.

2. Functions of the independent variables can be
used to create new independent variables for use
with any of the procedures in this section. For

instance, if we wanted x1x2 in the model to ac-
count for interaction, we would use the data for
x1 and x2 to create the data for z � x1x2.

3. None of the procedures that add or delete vari-
ables one at a time can be guaranteed to identify
the best regression model. But they are excellent
approaches to finding good models—especially
when little multicollinearity is present.

fileWEB
Layoffs
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c. Use the forward selection procedure to develop the best estimated regression equation.
Use a value of .05 for Alpha to enter.

d. Use the backward elimination procedure to develop the best estimated regression
equation. Use a value of .05 for Alpha to remove.

e. Use the best-subsets regression procedure to develop the best estimated regression
equation.

17. The Ladies Professional Golfers Association (LPGA) maintains statistics on perfor-
mance and earnings for members of the LPGA Tour. Year-end performance statistics for
the 30 players who had the highest total earnings in LPGA Tour events for 2005 appear
in the file named LPGATour2 (LPGA Tour website, 2006). Earnings ($1000) is the total
earnings in thousands of dollars; Scoring Avg. is the average score for all events; Drive
Average is the average length of a players drive in yards; Greens in Reg. is the percent-
age of time a player is able to hit the green in regulation; Putting Avg. is the average num-
ber of putts taken on greens hit in regulation; and Sand Saves is the percentage of time a
player is able to get “up and down” once in a greenside sand bunker. A green is consid-
ered hit in regulation if any part of the ball is touching the putting surface and the dif-
ference between the value of par for the hole and the number of strokes taken to hit the
green is at least 2. Let DriveGreens denote a new independent variable that represents the
interaction between the average length of a player’s drive and the percentage of time a
player is able to hit the green in regulation. Use the methods in this section to develop
the best estimated multiple regression equation for predicting a player’s average score for
all events.

18. Jeff Sagarin has been providing sports ratings for USA Today since 1985. In baseball his
predicted RPG (runs/game) statistic takes into account the entire player’s offensive statis-
tics, and is claimed to be the best measure of a player’s true offensive value. The follow-
ing data show the RPG and a variety of offensive statistics for the 2005 Major League
Baseball (MLB) season for 20 members of the New York Yankees (USA Today website,
March 3, 2006). The labels on columns are defined as follows: RPG, predicted runs per
game statistic; H, hits; 2B, doubles; 3B, triples; HR, home runs; RBI, runs batted in; BB,
bases on balls (walks); SO, strikeouts; SB, stolen bases; CS, caught stealing; OBP, on-base
percentage; SLG, slugging percentage; and AVG, batting average.

782 Chapter 16 Regression Analysis: Model Building

Player RPG H 2B 3B HR RBI BB SO SB CS OBP SLG AVG
D Jeter 6.51 202 25 5 19 70 77 117 14 5 .389 .450 .309
H Matsui 6.32 192 45 3 23 116 63 78 2 2 .367 .496 .305
A Rodriguez 9.06 194 29 1 48 130 91 139 21 6 .421 .610 .321
G Sheffield 6.93 170 27 0 34 123 78 76 10 2 .379 .512 .291
R Cano 5.01 155 34 4 14 62 16 68 1 3 .320 .458 .297
B Williams 4.14 121 19 1 12 64 53 75 1 2 .321 .367 .249
J Posada 5.36 124 23 0 19 71 66 94 1 0 .352 .430 .262
J Giambi 9.11 113 14 0 32 87 108 109 0 0 .440 .535 .271
T Womack 2.91 82 8 1 0 15 12 49 27 5 .276 .280 .249
T Martinez 5.08 73 9 0 17 49 38 54 2 0 .328 .439 .241
M Bellhorn 4.07 63 20 0 8 30 52 112 3 0 .324 .357 .210
R Sierra 3.27 39 12 0 4 29 9 41 0 0 .265 .371 .229
J Flaherty 1.83 21 5 0 2 11 6 26 0 0 .206 .252 .165
B Crosby 3.48 27 0 1 1 6 4 14 4 1 .304 .327 .276
M Lawton 5.15 6 0 0 2 4 7 8 1 0 .263 .250 .125
R Sanchez 3.36 12 1 0 0 2 2 3 0 1 .326 .302 .279
A Phillips 2.13 6 4 0 1 4 1 13 0 0 .171 .325 .150
M Cabrera 1.19 4 0 0 0 0 0 2 0 0 .211 .211 .211
R Johnson 3.44 4 2 0 0 0 1 4 0 0 .300 .333 .222
F Escalona 5.31 4 1 0 0 2 1 4 0 0 .375 .357 .286

fileWEB
Yankees

fileWEB
LPGATour2

74537_16_ch16_p751-799.qxd  10/8/12  8:59 PM  Page 782

Copyright 2014 Nelson Education Ltd. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content
may be suppressed from the eBook and/or eChapter(s). Nelson Education reserves the right to remove additional content at any time if subsequent rights restrictions require it.



16.5 Multiple Regression Approach to Experimental Design 783

Let the dependent variable be the RPG statistic.
a. Develop the best one-variable estimated regression equation.
b. Use the methods in this section to develop the best estimated multiple regression equa-

tion for predicting a player’s RPG.
19. Refer to exercise 14. Using age, blood pressure, whether a person is a smoker, and any

interaction involving those variables, develop an estimated regression equation that can be
used to predict risk. Briefly describe the process you used to develop an estimated regres-
sion equation for these data.

16.5 Multiple Regression Approach 
to Experimental Design
In Section 15.7 we discussed the use of dummy variables in multiple regression analysis. In
this section we show how the use of dummy variables in a multiple regression equation can
provide another approach to solving experimental design problems. We will demonstrate the
multiple regression approach to experimental design by applying it to the Chemitech, Inc.,
completely randomized design introduced in Chapter 13.

Recall that Chemitech developed a new filtration system for municipal water supplies.
The components for the new filtration system will be purchased from several suppliers, and
Chemitech will assemble the components at its plant in Columbia, South Carolina. Three
different assembly methods, referred to as methods A, B, and C, have been proposed. Man-
agers at Chemitech want to determine which assembly method can produce the greatest
number of filtration systems per week. 

A random sample of 15 employees was selected, and each of the three assembly meth-
ods was randomly assigned to 5 employees. The number of units assembled by each em-
ployee is shown in Table 16.8. The sample mean number of units produced with each of the
three assembly methods is as follows:

Although method B appears to result in higher production rates than either of the other
methods, the issue is whether the three sample means observed are different enough for us
to conclude that the means of the populations corresponding to the three methods of
assembly are different.

We begin the regression approach to this problem by defining dummy variables that will
be used to indicate which assembly method was used. Because the Chemitech problem has

Mean Number
Assembly Method Produced

A 62
B 66
C 52

Method
A B C
58 58 48
64 69 57
55 71 59
66 64 47
67 68 49

TABLE 16.8 NUMBER OF UNITS PRODUCED BY 15 WORKERS

fileWEB
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784 Chapter 16 Regression Analysis: Model Building

three assembly methods or treatments, we need two dummy variables. In general, if the fac-
tor being investigated involves k distinct levels or treatments, we need to define k � 1
dummy variables. For the Chemitech experiment we define dummy variables A and B as
shown in Table 16.9.

We can use the dummy variables to relate the number of units produced per week, y, to
the method of assembly the employee uses.

E(y) � Expected value of the number of units produced per week

Thus, if we are interested in the expected value of the number of units assembled per week
for an employee who uses method C, our procedure for assigning numerical values to the
dummy variables would result in setting A � B � 0. The multiple regression equation then
reduces to 

We can interpret as the expected value of the number of units assembled per week for an
employee who uses method C. In other words, is the mean number of units assembled
per week using method C.

Next let us consider the forms of the multiple regression equation for each of the other
methods. For method A the values of the dummy variables are A � 1 and B � 0, and

For method B we set A � 0 and B � 1, and

We see that represents the mean number of units assembled per week using method
A, and represents the mean number of units assembled per week using method B.

We now want to estimate the coefficients , and and hence develop an estimate
of the mean number of units assembled per week for each method. Table 16.10 shows the
sample data, consisting of 15 observations of A, B, and y. Figure 16.18 shows the corre-
sponding Minitab multiple regression output. We see that the estimates of , and are�2�0, �1

�2�0, �1

�0 � �2

�0 � �1

E(y) � �0 � �1(0) � �2(1) � �0 � �2

E(y) � �0 � �1(1) � �2(0) � �0 � �1

�0

�0

E(y) � �0 � �1(0) � �2(0) � �0

� �0 � �1A � �2B

A B
1 0 Observation is associated with assembly method A
0 1 Observation is associated with assembly method B
0 0 Observation is associated with assembly method C

TABLE 16.9 DUMMY VARIABLES FOR THE CHEMITECH EXPERIMENT

Assembly Method Prediction of E( y)
A b0 � b1 � 52 � 10 � 62
B b0 � 52 � 14 � 66
C b0 � 52

b0 � 52, b1 � 10, and b2 � 14. Thus, the best estimate of the mean number of units
assembled per week for each assembly method is as follows:
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16.5 Multiple Regression Approach to Experimental Design 785

Note that the estimate of the mean number of units produced with each of the three assem-
bly methods obtained from the regression analysis is the same as the sample mean shown
previously.

Now let us see how we can use the output from the multiple regression analysis to per-
form the ANOVA test on the difference among the means for the three plants. First, we
observe that if the means do not differ

E(y) for method A � E(y) for method C � 0
E(y) for method B � E(y) for method C � 0

A B y
1 0 58
1 0 64
1 0 55
1 0 66
1 0 67
0 1 58
0 1 69
0 1 71
0 1 64
0 1 68
0 0 48
0 0 57
0 0 59
0 0 47
0 0 49

TABLE 16.10 INPUT DATA FOR THE CHEMITECH COMPLETELY RANDOMIZED
DESIGN

fileWEB
Chemitech

The regression equation is
y = 52.0 + 10.0 A + 14.0 B

Predictor     Coef  SE Coef       T      P
Constant    52.000    2.380   21.84  0.000
A           10.000    3.367    2.97  0.012
B           14.000    3.367    4.16  0.001

S = 5.32291   R-Sq � 60.5%   R-Sq(adj) = 53.9%

Analysis of Variance

SOURCE          DF       SS      MS      F      P
Regression       2   520.00  260.00   9.18  0.004
Residual Error  12   340.00   28.33
Total           14   860.00

FIGURE 16.18 MULTIPLE REGRESSION OUTPUT FOR THE CHEMITECH COMPLETELY
RANDOMIZED DESIGN
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786 Chapter 16 Regression Analysis: Model Building

Because equals E(y) for method C and equals E(y) for method A, the first dif-
ference is equal to . Moreover, because equals E(y) for
method B, the second difference is equal to . We would conclude that(�0 � �2) � �0 � �2

�0 � �2(�0 � �1) � �0 � �1

�0 � �1�0

the three methods do not differ if � 0 and � 0. Hence, the null hypothesis for a test
for difference of means can be stated as 

Suppose the level of significance is . Recall that to test this type of null hy-
pothesis about the significance of the regression relationship we use the F test for overall
significance. The Minitab output in Figure 16.18 shows that the p-value corresponding to
F � 9.18 is .004. Because the p-value , we reject and
conclude that the means for the three assembly methods are not the same. Because the F test
shows that the multiple regression relationship is significant, a t test can be conducted to
determine the significance of the individual parameters, and . Using , the 
p-values of .012 and .001 on the Minitab output indicate that we can reject and

. Hence, both parameters are statistically significant. Thus, we can also con-
clude that the means for methods A and C are different and that the means for methods 
B and C are different.

Exercises

Methods
20. Consider a completely randomized design involving four treatments: A, B, C, and D.

Write a multiple regression equation that can be used to analyze these data. Define all
variables.

21. Write a multiple regression equation that can be used to analyze the data for a randomized
block design involving three treatments and two blocks. Define all variables.

22. Write a multiple regression equation that can be used to analyze the data for a two-factorial
design with two levels for factor A and three levels for factor B. Define all variables.

Applications
23. The Jacobs Chemical Company wants to estimate the mean time (minutes) required to mix

a batch of material on machines produced by three different manufacturers. To limit the
cost of testing, four batches of material were mixed on machines produced by each of the
three manufacturers. The times needed to mix the material follow.

H0 : �2 � 0
H0 : �1 � 0

α � .05�2�1

H0 : �1 � �2 � 0� .004 � α � .05

α � .05

H0 : �1 � �2 � 0

�2�1

testSELF

testSELF

Manufacturer 1 Manufacturer 2 Manufacturer 3
20 28 20
26 26 19
24 31 23
22 27 22

a. Write a multiple regression equation that can be used to analyze the data.
b. What are the best estimates of the coefficients in your regression equation?
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16.5 Multiple Regression Approach to Experimental Design 787

a. Use α � .05 to test for any significant differences in mean drying time among the paints.
b. What is your estimate of the mean drying time for paint 2? How is it obtained from

the computer output?
25. An automobile dealer conducted a test to determine whether the time needed to complete

a minor engine tune-up depends on whether a computerized engine analyzer or an elec-
tronic analyzer is used. Because tune-up time varies among compact, intermediate, and
full-sized cars, the three types of cars were used as blocks in the experiment. The data (time
in minutes) obtained follow.

Use α � .05 to test for any significant differences.
26. A mail-order catalog firm designed a factorial experiment to test the effect of the size of a

magazine advertisement and the advertisement design on the number (in thousands) of
catalog requests received. Three advertising designs and two sizes of advertisements were
considered. The following data were obtained. Test for any significant effects due to type
of design, size of advertisement, or interaction. Use α � .05.

Paint 1 Paint 2 Paint 3 Paint 4
128 144 133 150
137 133 143 142
135 142 137 135
124 146 136 140
141 130 131 153

Car
Compact Intermediate Full Size

Computerized 50 55 63
Analyzer

Electronic 42 44 46

c. In terms of the regression equation coefficients, what hypotheses must we test to see
whether the mean time to mix a batch of material is the same for all three manufacturers?

d. For an α � .05 level of significance, what conclusion should be drawn?
24. Four different paints are advertised as having the same drying time. To check the manu-

facturers’ claims, five samples were tested for each of the paints. The time in minutes until
the paint was dry enough for a second coat to be applied was recorded for each sample.
The data obtained follow.

Size of Advertisement
Small Large

A 8 12
12 8

Design B 22 26
14 30

C 10 18
18 14
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788 Chapter 16 Regression Analysis: Model Building

16.6 Autocorrelation and the Durbin-Watson Test
Often, the data used for regression studies in business and economics are collected over
time. It is not uncommon for the value of y at time t, denoted by yt, to be related to the value
of y at previous time periods. In such cases, we say autocorrelation (also called serial
correlation) is present in the data. If the value of y in time period t is related to its value in
time period t � 1, first-order autocorrelation is present. If the value of y in time period t is
related to the value of y in time period t � 2, second-order autocorrelation is present, and
so on.

One of the assumptions of the regression model is the error terms are independent. How-
ever, when autocorrelation is present, this assumption is violated. In the case of first-order
autocorrelation, the error at time t, denoted �t, will be related to the error at time period t � 1,
denoted �t�1. Two cases of first-order autocorrelation are illustrated in Figure 16.19. Panel
A is the case of positive autocorrelation; panel B is the case of negative autocorrelation.
With positive autocorrelation we expect a positive residual in one period to be followed by
a positive residual in the next period, a negative residual in one period to be followed by a
negative residual in the next period, and so on. With negative autocorrelation, we expect
a positive residual in one period to be followed by a negative residual in the next period,
then a positive residual, and so on.

When autocorrelation is present, serious errors can be made in performing tests of 
statistical significance based upon the assumed regression model. It is therefore important
to be able to detect autocorrelation and take corrective action. We will show how the 
Durbin-Watson statistic can be used to detect first-order autocorrelation.

Suppose the values of � are not independent but are related in the following manner:

(16.16)

where � is a parameter with an absolute value less than one and zt is a normally and inde-
pendently distributed random variable with a mean of zero and a variance of σ2. From equa-
tion (16.16) we see that if � � 0, the error terms are not related, and each has a mean of zero
and a variance of σ2. In this case, there is no autocorrelation and the regression assumptions

ét � rét�1 � zt

0

Time
t

yt – ytˆ

Panel A.  Positive Autocorrelation

Time
t

yt – yt

Panel B.  Negative Autocorrelation

0

ˆ

FIGURE 16.19 TWO DATA SETS WITH FIRST-ORDER AUTOCORRELATION
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16.6 Autocorrelation and the Durbin-Watson Test 789

are satisfied. If � � 0, we have positive autocorrelation; if � � 0, we have negative autocor-
relation. In either of these cases, the regression assumptions about the error term are violated.

The Durbin-Watson test for autocorrelation uses the residuals to determine whether
� � 0. To simplify the notation for the Durbin-Watson statistic, we denote the ith residual
by ei � yi � The Durbin-Watson test statistic is computed as follows.yn i.

If successive values of the residuals are close together (positive autocorrelation), the value
of the Durbin-Watson test statistic will be small. If successive values of the residuals are 
far apart (negative autocorrelation), the value of the Durbin-Watson statistic will be large.

The Durbin-Watson test statistic ranges in value from zero to four, with a value of
two indicating no autocorrelation is present. Durbin and Watson developed tables that
can be used to determine when their test statistic indicates the presence of autocorrelation.
Table 16.11 shows lower and upper bounds (dL and dU) for hypothesis tests using α � .05; n
denotes the number of observations. The null hypothesis to be tested is always that there is
no autocorrelation.

The alternative hypothesis to test for positive autocorrelation is

Ha: r � 0

H0: r � 0

DURBIN-WATSON TEST STATISTIC

(16.17)d �
�

n

t�2
(et � et�1)2

�
n

t�1
 e2

t

Note: Entries in the table are the critical values for a one-tailed Durbin-Watson test for autocorrelation.
For a two-tailed test, the level of significance is doubled.

Significance Points of dL and dU: α � .05
Number of Independent Variables

1 2 3 4 5
n* dL dU dL dU dL dU dL dU dL dU

15 1.08 1.36 .95 1.54 .82 1.75 .69 1.97 .56 2.21
20 1.20 1.41 1.10 1.54 1.00 1.68 .90 1.83 .79 1.99
25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 .95 1.89
30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83
40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79
50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77
70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77

100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78

*Interpolate linearly for intermediate n values.

TABLE 16.11 CRITICAL VALUES FOR THE DURBIN-WATSON TEST
FOR AUTOCORRELATION
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790 Chapter 16 Regression Analysis: Model Building

The alternative hypothesis to test for negative autocorrelation is

A two-sided test is also possible. In this case the alternative hypothesis is

Figure 16.20 shows how the values of dL and dU in Table 16.11 are used to test for auto-
correlation. Panel A illustrates the test for positive autocorrelation. If d � dL, we conclude
that positive autocorrelation is present. If dL ¡ d ¡ dU, we say the test is inconclusive. If
d � dU, we conclude that there is no evidence of positive autocorrelation.

Panel B illustrates the test for negative autocorrelation. If d � 4 � dL, we conclude that
negative autocorrelation is present. If 4 � dU ¡ d ¡ 4 � dL, we say the test is inconclusive.
If d � 4 � dU, we conclude that there is no evidence of negative autocorrelation.

Ha: r í 0

Ha: r � 0

dUdL0 2

Inconclusive No evidence of positive autocorrelation

Panel A.  Test for Positive Autocorrelation

Positive
auto-

correlation

dU 2 4 � dL 4

No evidence of negative autocorrelation

Panel B.  Test for Negative Autocorrelation

dUdL0 4 � dU2 4 � dL 4

Inconclusive No evidence of
autocorrelation

Panel C.  Two-Sided Test for Autocorrelation

Positive
auto-

correlation

Negative
auto-

correlationInconclusive

Negative
auto-

correlationInconclusive

4 � dUdL

FIGURE 16.20 HYPOTHESIS TEST FOR AUTOCORRELATION USING 
THE DURBIN-WATSON TEST
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16.6 Autocorrelation and the Durbin-Watson Test 791

a. Define the independent variable Period, where Period � 1 corresponds to the data for
November 3, Period � 2 corresponds to the data for November 4, and so on. Develop
the estimated regression equation that can be used to predict the closing price given
the value of Period.

b. At the .05 level of significance, test for any positive autocorrelation in the data.
28. Refer to the Cravens data set in Table 16.5. In Section 16.3 we showed that the estimated re-

gression equation involving Accounts, AdvExp, Poten, and Share had an adjusted coefficient

Panel C illustrates the two-sided test. If d � dL or d � 4 � dL, we reject H0 and con-
clude that autocorrelation is present. If dL ¡ d ¡ dU or 4 � dU ¡ d ¡ 4 � dL, we say the
test is inconclusive. If dU � d � 4 � dU, we conclude that there is no evidence of
autocorrelation.

If significant autocorrelation is identified, we should investigate whether we omitted
one or more key independent variables that have time-ordered effects on the dependent
variable. If no such variables can be identified, including an independent variable that
measures the time of the observation (for instance, the value of this variable could be one
for the first observation, two for the second observation, and so on) will sometimes elimi-
nate or reduce the autocorrelation. When these attempts to reduce or remove autocorrela-
tion do not work, transformations on the dependent or independent variables can prove
helpful; a discussion of such transformations can be found in more advanced texts on 
regression analysis.

Note that the Durbin-Watson tables list the smallest sample size as 15. The reason is
that the test is generally inconclusive for smaller sample sizes; in fact, many statisticians
believe the sample size should be at least 50 for the test to produce worthwhile results.

Exercises

Applications

27. The following data show the daily closing prices (in dollars per share) for a stock.

Date Price ($)
Nov. 3 82.87
Nov. 4 83.00
Nov. 7 83.61
Nov. 8 83.15
Nov. 9 82.84
Nov. 10 83.99
Nov. 11 84.55
Nov. 14 84.36
Nov. 15 85.53
Nov. 16 86.54
Nov. 17 86.89
Nov. 18 87.77
Nov. 21 87.29
Nov. 22 87.99
Nov. 23 88.80
Nov. 25 88.80
Nov. 28 89.11
Nov. 29 89.10
Nov. 30 88.90
Dec. 1 89.21
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