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Statistics in Practice 683

Founded in 1989 by the husband-and-wife team of Clive
Humby (a mathematician) and Edwina Dunn (a mar-
keter), dunnhumby combines proven natural abilities
with big ideas to find clues and patterns as to what cus-
tomers are buying and why. The company turns these in-
sights into actionable strategies that create dramatic
growth and sustainable loyalty, ultimately improving
brand value and the customer experience.

Employing more than 950 people in Europe, Asia,
and the Americas, dunnhumby serves a prestigious list of
companies, including Kroger, Tesco, Coca-Cola, Gen-
eral Mills, Kimberly-Clark, PepsiCo, Procter & Gamble,
and Home Depot. dunnhumbyUSA is a joint venture
between the Kroger Company and dunnhumby and has
offices in New York, Chicago, Atlanta, Minneapolis,
Cincinnati, and Portland.

The company’s research begins with data collected
about a client’s customers. Data come from customer re-
ward or discount card purchase records, electronic point-
of-sale transactions, and traditional market research.
Analysis of the data often translates billions of data points
into detailed insights about the behavior, preferences, and
lifestyles of the customers. Such insights allow for more
effective merchandising programs to be activated, in-
cluding strategy recommendations on pricing, promo-
tion, advertising, and product assortment decisions.

Researchers have used a multiple regression tech-
nique referred to as logistic regression to help in their
analysis of customer-based data. Using logistic regres-
sion, an estimated multiple regression equation of the fol-
lowing form is developed.

The dependent variable is a prediction of the prob-
ability that a customer belongs to a particular customer
group. The independent variables x1, x2, x3, . . . , xp are
measures of the customer’s actual shopping behavior and 
may include the specific items purchased, number of
items purchased, amount purchased, day of the week,
hour of the day, and so on. The analysis helps identify the
independent variables that are most relevant in predict-

ŷ

yn � b0 � b1x1 � b2 
x2 � b3 

x3 � . . . � bp 
xp

ing the customer’s group and provides a better under-
standing of the customer population, enabling further
analysis with far greater confidence. The focus of the
analysis is on understanding the customer to the point of
developing merchandising, marketing, and direct mar-
keting programs that will maximize the relevancy and
service to the customer group.

In this chapter, we will introduce multiple regres-
sion and show how the concepts of simple linear re-
gression introduced in Chapter 14 can be extended to
the multiple regression case. In addition, we will show
how computer software packages are used for multiple
regression. In the final section of the chapter we intro-
duce logistic regression using an example that illus-
trates how the technique is used in a marketing research
application.

dunnhumby uses logistic regression to predict
customer shopping behavior. © Micro 10x/
Shutterstock.com.

dunnhumby*
LONDON, ENGLAND

STATISTICS in PRACTICE

*The authors are indebted to Paul Hunter, Senior Vice President of
Solutions for dunnhumby for providing this Statistics in Practice.
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684 Chapter 15 Multiple Regression

MULTIPLE REGRESSION MODEL

(15.1)y � �0 � �1x1 � �2 
x2 � . . . � �p 

xp � �

MULTIPLE REGRESSION EQUATION

(15.2)E(
 
y) � �0 � �1x1 � �2 

x2 � . . . � �p 
xp

In Chapter 14 we presented simple linear regression and demonstrated its use in develop-
ing an estimated regression equation that describes the relationship between two variables.
Recall that the variable being predicted or explained is called the dependent variable and
the variable being used to predict or explain the dependent variable is called the indepen-
dent variable. In this chapter we continue our study of regression analysis by considering
situations involving two or more independent variables. This subject area, called multiple
regression analysis, enables us to consider more factors and thus obtain better predictions
than are possible with simple linear regression.

15.1 Multiple Regression Model
Multiple regression analysis is the study of how a dependent variable y is related to two or
more independent variables. In the general case, we will use p to denote the number of in-
dependent variables.

Regression Model and Regression Equation
The concepts of a regression model and a regression equation introduced in the preceding
chapter are applicable in the multiple regression case. The equation that describes how the
dependent variable y is related to the independent variables x1, x2, . . . , xp and an error term
is called the multiple regression model. We begin with the assumption that the multiple
regression model takes the following form.

In the multiple regression model, �0, �1, �2, . . . , �p are the parameters and the error term �
(the Greek letter epsilon) is a random variable. A close examination of this model reveals
that y is a linear function of x1, x2, . . . , xp (the �0 � �1x1 � �2x2 � . . . � �pxp part) plus the
error term �. The error term accounts for the variability in y that cannot be explained by the
linear effect of the p independent variables.

In Section 15.4 we will discuss the assumptions for the multiple regression model and
�. One of the assumptions is that the mean or expected value of � is zero. A consequence 
of this assumption is that the mean or expected value of y, denoted E( y), is equal to
�0 � �1x1 � �2x2 � . . . � �pxp. The equation that describes how the mean value of y is re-
lated to x1, x2, . . . , xp is called the multiple regression equation.

Estimated Multiple Regression Equation
If the values of �0, �1, �2, . . . , �p were known, equation (15.2) could be used to compute
the mean value of y at given values of x1, x2, . . . , xp. Unfortunately, these parameter values
will not, in general, be known and must be estimated from sample data. A simple ran-
dom sample is used to compute sample statistics b0, b1, b2, . . . , bp that are used as the point
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15.2 Least Squares Method 685

The estimation process for multiple regression is shown in Figure 15.1.

15.2 Least Squares Method
In Chapter 14, we used the least squares method to develop the estimated regression equa-
tion that best approximated the straight-line relationship between the dependent and inde-
pendent variables. This same approach is used to develop the estimated multiple regression
equation. The least squares criterion is restated as follows.

LEAST SQUARES CRITERION

(15.4)min �(
 
yi � yn i 

)2

estimators of the parameters �0, �1, �2, . . . , �p. These sample statistics provide the follow-
ing estimated multiple regression equation.

 

FIGURE 15.1 THE ESTIMATION PROCESS FOR MULTIPLE REGRESSION

ESTIMATED MULTIPLE REGRESSION EQUATION

(15.3)

where

b0, b1, b2, . . . , bp are the estimates of �0, �1, �2, . . . , �p

yn � predicted value of the dependent variable

yn � b0 � b1x1 � b2 
x2 � . . . � bp 

xp

In simple linear regression,
b0 and b1 were the sample
statistics used to estimate
the parameters �0 and �1.
Multiple regression
parallels this statistical
inference process, with b0,
b1, b2, . . . , bp denoting the
sample statistics used 
to estimate the parameters
�0, �1, �2, . . . , �p.
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686 Chapter 15 Multiple Regression

where

yi �

yn i �

observed value of the dependent variable for the ith observation
predicted value of the dependent variable for the ith observation

The predicted values of the dependent variable are computed by using the estimated mul-
tiple regression equation,

As expression (15.4) shows, the least squares method uses sample data to provide the val-
ues of b0, b1, b2, . . . , bp that make the sum of squared residuals [the deviations between the
observed values of the dependent variable ( yi) and the predicted values of the dependent
variable ( )] a minimum.

In Chapter 14 we presented formulas for computing the least squares estimators b0 and
b1 for the estimated simple linear regression equation � b0 � b1x. With relatively small
data sets, we were able to use those formulas to compute b0 and b1 by manual calculations.
In multiple regression, however, the presentation of the formulas for the regression coeffi-
cients b0, b1, b2, . . . , bp involves the use of matrix algebra and is beyond the scope of this
text. Therefore, in presenting multiple regression, we focus on how computer software
packages can be used to obtain the estimated regression equation and other information.
The emphasis will be on how to interpret the computer output rather than on how to make
the multiple regression computations.

An Example: Butler Trucking Company
As an illustration of multiple regression analysis, we will consider a problem faced by the
Butler Trucking Company, an independent trucking company in southern California.Amajor
portion of Butler’s business involves deliveries throughout its local area. To develop better
work schedules, the managers want to predict the total daily travel time for their drivers.

Initially the managers believed that the total daily travel time would be closely related
to the number of miles traveled in making the daily deliveries. A simple random sample of
10 driving assignments provided the data shown in Table 15.1 and the scatter diagram
shown in Figure 15.2. After reviewing this scatter diagram, the managers hypothesized that
the simple linear regression model y � �0 � �1x1 � � could be used to describe the rela-
tionship between the total travel time ( y) and the number of miles traveled (x1). To estimate

yn

yn i

yn � b0 � b1x1 � b2 
x2 � . . . � bp 

xp

Driving x1 � Miles y � Travel Time
Assignment Traveled (hours)

1 100 9.3
2 50 4.8
3 100 8.9
4 100 6.5
5 50 4.2
6 80 6.2
7 75 7.4
8 65 6.0
9 90 7.6

10 90 6.1

TABLE 15.1 PRELIMINARY DATA FOR BUTLER TRUCKING

fileWEB
Butler
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15.2 Least Squares Method 687

the parameters �0 and �1, the least squares method was used to develop the estimated re-
gression equation.

(15.5)

In Figure 15.3, we show the Minitab computer output from applying simple linear re-
gression to the data in Table 15.1. The estimated regression equation is

At the .05 level of significance, the F value of 15.81 and its corresponding p-value of .004
indicate that the relationship is significant; that is, we can reject H0: �1 � 0 because the 
p-value is less than α � .05. Note that the same conclusion is obtained from the t value 
of 3.98 and its associated p-value of .004. Thus, we can conclude that the relationship be-
tween the total travel time and the number of miles traveled is significant; longer travel
times are associated with more miles traveled. With a coefficient of determination (ex-
pressed as a percentage) of R-Sq � 66.4%, we see that 66.4% of the variability in travel
time can be explained by the linear effect of the number of miles traveled. This finding is
fairly good, but the managers might want to consider adding a second independent variable
to explain some of the remaining variability in the dependent variable.

In attempting to identify another independent variable, the managers felt that the num-
ber of deliveries could also contribute to the total travel time. The Butler Trucking data, with
the number of deliveries added, are shown in Table 15.2. The Minitab computer solution
with both miles traveled (x1) and number of deliveries (x2) as independent variables is 
shown in Figure 15.4. The estimated regression equation is

(15.6)yn � � .869 � .0611x1 � .923x
 2

yn � 1.27 � .0678x1

yn � b0 � b1x1
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FIGURE 15.2 SCATTER DIAGRAM OF PRELIMINARY DATA FOR BUTLER TRUCKING

The Minitab steps necessary
to generate the output
shown in Figure 15.4 are
given in Appendix 15.1.
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688 Chapter 15 Multiple Regression

The regression equation is
Time = 1.27 + 0.0678 Miles

Predictor     Coef  SE Coef     T      p
Constant     1.274    1.401  0.91  0.390
Miles      0.06783  0.01706  3.98  0.004

S = 1.00179   R-Sq = 66.4%   R-Sq(adj) = 62.2%

Analysis of Variance

SOURCE          DF      SS      MS      F      p
Regression       1  15.871  15.871  15.81  0.004
Residual Error   8   8.029   1.004
Total            9  23.900

FIGURE 15.3 MINITAB OUTPUT FOR BUTLER TRUCKING WITH ONE
INDEPENDENT VARIABLE

In the Minitab output the
variable names Miles and
Time were entered as the
column headings on the
worksheet; thus, x1 � Miles
and y � Time.

In the next section we will discuss the use of the coefficient of multiple determination in
measuring how good a fit is provided by this estimated regression equation. Before doing
so, let us examine more carefully the values of b1 � .0611 and b2 � .923 in equation (15.6).

Note on Interpretation of Coefficients
One observation can be made at this point about the relationship between the estimated
regression equation with only the miles traveled as an independent variable and the equation
that includes the number of deliveries as a second independent variable. The value of b1
is not the same in both cases. In simple linear regression, we interpret b1 as an estimate of
the change in y for a one-unit change in the independent variable. In multiple regression
analysis, this interpretation must be modified somewhat. That is, in multiple regression analy-
sis, we interpret each regression coefficient as follows: bi represents an estimate of the change
in y corresponding to a one-unit change in xi when all other independent variables are held con-
stant. In the Butler Trucking example involving two independent variables, b1 � .0611. Thus,

Driving x1 � Miles x2 � Number y � Travel Time
Assignment Traveled of Deliveries (hours)

1 100 4 9.3
2 50 3 4.8
3 100 4 8.9
4 100 2 6.5
5 50 2 4.2
6 80 2 6.2
7 75 3 7.4
8 65 4 6.0
9 90 3 7.6

10 90 2 6.1

TABLE 15.2 DATA FOR BUTLER TRUCKING WITH MILES TRAVELED (x1) AND NUMBER
OF DELIVERIES (x2) AS THE INDEPENDENT VARIABLES

fileWEB
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15.2 Least Squares Method 689

The regression equation is
Time = - 0.869 + 0.0611 Miles + 0.923 Deliveries

Predictor       Coef   SE Coef      T      p
Constant     -0.8687    0.9515  -0.91  0.392
Miles       0.061135  0.009888   6.18  0.000
Deliveries    0.9234    0.2211   4.18  0.004

S = 0.573142   R-Sq = 90.4%   R-Sq(adj) = 87.6%

Analysis of Variance

SOURCE          DF      SS      MS      F      p
Regression       2  21.601  10.800  32.88  0.000
Residual Error   7   2.299   0.328
Total            9  23.900

FIGURE 15.4 MINITAB OUTPUT FOR BUTLER TRUCKING WITH TWO
INDEPENDENT VARIABLES

In the Minitab output the
variable names Miles,
Deliveries, and Time were
entered as the column
headings on the worksheet;
thus, x1 � Miles, x2 �

Deliveries, and y � Time.

.0611 hours is an estimate of the expected increase in travel time corresponding to an increase
of one mile in the distance traveled when the number of deliveries is held constant. Similarly,
because b2 � .923, an estimate of the expected increase in travel time corresponding to an in-
crease of one delivery when the number of miles traveled is held constant is .923 hours.

Exercises

Note to student: The exercises involving data in this and subsequent sections were designed
to be solved using a computer software package.

Methods
1. The estimated regression equation for a model involving two independent variables and 

10 observations follows.

a. Interpret b1 and b2 in this estimated regression equation.
b. Predict y when x1 � 180 and x2 � 310.

2. Consider the following data for a dependent variable y and two independent variables, x1
and x2.

yn � 29.1270 � .5906x1 � .4980x
 2

testSELF

x1 x2 y
30 12 94
47 10 108
25 17 112
51 16 178
40 5 94
51 19 175
74 7 170
36 12 117
59 13 142
76 16 211

fileWEB
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690 Chapter 15 Multiple Regression

a. Develop an estimated regression equation relating y to x1. Predict y if x1 � 45.
b. Develop an estimated regression equation relating y to x2. Predict y if x2 � 15.
c. Develop an estimated regression equation relating y to x1 and x2. Predict y if x1 � 45

and x2 � 15.
3. In a regression analysis involving 30 observations, the following estimated regression

equation was obtained.

a. Interpret b1, b2, b3, and b4 in this estimated regression equation.
b. Predict y when x1 � 10, x2 � 5, x3 � 1, and x4 � 2.

Applications
4. A shoe store developed the following estimated regression equation relating sales to in-

ventory investment and advertising expenditures.

where

a. Predict the sales resulting from a $15,000 investment in inventory and an advertising
budget of $10,000.

b. Interpret b1 and b2 in this estimated regression equation.
5. The owner of Showtime Movie Theaters, Inc., would like to predict weekly gross revenue

as a function of advertising expenditures. Historical data for a sample of eight weeks follow.

x1 �

x2 �

y �

inventory investment ($1000s)
advertising expenditures ($1000s)
sales ($1000s)

yn � 25 � 10x1 � 8x
 2

yn � 17.6 � 3.8x1 � 2.3x
 2 � 7.6x3 � 2.7x4

testSELF

Weekly Television Newspaper
Gross Revenue Advertising Advertising

($1000s) ($1000s) ($1000s)
96 5.0 1.5
90 2.0 2.0
95 4.0 1.5
92 2.5 2.5
95 3.0 3.3
94 3.5 2.3
94 2.5 4.2
94 3.0 2.5

a. Develop an estimated regression equation with the amount of television advertising as
the independent variable.

b. Develop an estimated regression equation with both television advertising and news-
paper advertising as the independent variables.

c. Is the estimated regression equation coefficient for television advertising expenditures
the same in part (a) and in part (b)? Interpret the coefficient in each case.

d. Predict weekly gross revenue for a week when $3500 is spent on television advertising
and $1800 is spent on newspaper advertising?

6. The National Football League (NFL) records a variety of performance data for individuals
and teams. To investigate the importance of passing on the percentage of games won by a
team, the following data show the conference (Conf), average number of passing yards per

fileWEB
Showtime

74537_15_ch15_p682-750.qxd  10/8/12  8:50 PM  Page 690

Copyright 2014 Nelson Education Ltd. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content
may be suppressed from the eBook and/or eChapter(s). Nelson Education reserves the right to remove additional content at any time if subsequent rights restrictions require it.



15.2 Least Squares Method 691

a. Develop the estimated regression equation that could be used to predict the percent-
age of games won given the average number of passing yards per attempt.

b. Develop the estimated regression equation that could be used to predict the percent-
age of games won given the number of interceptions thrown per attempt.

c. Develop the estimated regression equation that could be used to predict the percent-
age of games won given the average number of passing yards per attempt and the num-
ber of interceptions thrown per attempt.

d. The average number of passing yards per attempt for the Kansas City Chiefs was 6.2
and the number of interceptions thrown per attempt was .036. Use the estimated
regression equation developed in part (c) to predict the percentage of games won by
the Kansas City Chiefs. (Note: For the 2011 season the Kansas City Chiefs’ record was
7 wins and 9 losses.) Compare your prediction to the actual percentage of games won
by the Kansas City Chiefs.

7. PC World rated four component characteristics for 10 ultraportable laptop computers: fea-
tures; performance; design; and price. Each characteristic was rated using a 0–100 point
scale. An overall rating, referred to as the PCW World Rating, was then developed for each
laptop. The following table shows the performance rating, features rating, and the PCW
World Rating for the 10 laptop computers (PC World website, February 5, 2009).

Model Performance Features PCW Rating
Thinkpad X200 77 87 83
VGN-Z598U 97 85 82
U6V 83 80 81
Elitebook 2530P 77 75 78
X360 64 80 78
Thinkpad X300 56 76 78
Ideapad U110 55 81 77
Micro Express JFT2500 76 73 75
Toughbook W7 46 79 73
HP Voodoo Envy133 54 68 72

Team Conf Yds/Att Int/Att Win%
Arizona Cardinals NFC 6.5 .042 50.0
Atlanta Falcons NFC 7.1 .022 62.5
Carolina Panthers NFC 7.4 .033 37.5
Cincinnati Bengals AFC 6.2 .026 56.3
Detroit Lions NFC 7.2 .024 62.5
Green Bay Packers NFC 8.9 .014 93.8
Houstan Texans AFC 7.5 .019 62.5
Indianapolis Colts AFC 5.6 .026 12.5
Jacksonville Jaguars AFC 4.6 .032 31.3
Minnesota Vikings NFC 5.8 .033 18.8
New England Patriots AFC 8.3 .020 81.3
New Orleans Saints NFC 8.1 .021 81.3
Oakland Raiders AFC 7.6 .044 50.0
San Francisco 49ers NFC 6.5 .011 81.3
Tennessee Titans AFC 6.7 .024 56.3
Washington Redskins NFC 6.4 .041 31.3

fileWEB
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attempt (Yds/Att), the number of interceptions thrown per attempt (Int/Att), and the per-
centage of games won (Win%) for a random sample of 16 NFL teams for the 2011 season
(NFL website, February 12, 2012). 
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692 Chapter 15 Multiple Regression

a. Determine an estimated regression equation that can be used to predict the overall
score given the score for Shore Excursions.

b. Consider the addition of the independent variable Food/Dining. Develop the estimated
regression equation that can be used to predict the overall score given the scores for
Shore Excursions and Food/Dining.

c. Predict the overall score for a cruise ship with a Shore Excursions score of 80 and a
Food/Dining Score of 90.

9. Waterskiing and wakeboarding are two popular water-sports. Finding a model that best
suits your intended needs, whether it is waterskiing, wakeboading, or general boating, can
be a difficult task. WaterSki magazine did extensive testing for 88 boats and provided a
wide variety of information to help consumers select the best boat. A portion of the data
they reported for 20 boats with a length of between 20 and 22 feet follows (WaterSki,
January/February 2006). Beam is the maximum width of the boat in inches, HP is the
horsepower of the boat’s engine, and TopSpeed is the top speed in miles per hour (mph).

a. Determine the estimated regression equation that can be used to predict the PCW
World Rating using the performance rating as the independent variable.

b. Determine the estimated regression equation that can be used to predict the PCW
World Rating using both the performance rating and the features rating.

c. Predict the PCW World Rating for a laptop computer that has a performance rating of
80 and a features rating of 70.

8. The Condé Nast Traveler Gold List for 2012 provided ratings for the top 20 small cruise
ships (Condé Nast Traveler website, March 1, 2012). The data shown below are the scores
each ship received based upon the results from Condé Nast Traveler’s annual Readers’
Choice Survey. Each score represents the percentage of respondents who rated a ship as
excellent or very good on several criteria, including Shore Excursions and Food/Dining.
An overall score was also reported and used to rank the ships. The highest ranked ship, the
Seabourn Odyssey, has an overall score of 94.4, the highest component of which is 97.8
for Food/Dining. 

Shore 
Ship Overall Excursions Food/Dining
Seabourn Odyssey 94.4 90.9 97.8
Seabourn Pride 93.0 84.2 96.7
National Geographic Endeavor 92.9 100.0 88.5
Seabourn Sojourn 91.3 94.8 97.1
Paul Gauguin 90.5 87.9 91.2
Seabourn Legend 90.3 82.1 98.8
Seabourn Spirit 90.2 86.3 92.0
Silver Explorer 89.9 92.6 88.9
Silver Spirit 89.4 85.9 90.8
Seven Seas Navigator 89.2 83.3 90.5
Silver Whisperer 89.2 82.0 88.6
National Geographic Explorer 89.1 93.1 89.7
Silver Cloud 88.7 78.3 91.3
Celebrity Xpedition 87.2 91.7 73.6
Silver Shadow 87.2 75.0 89.7
Silver Wind 86.6 78.1 91.6
SeaDream II 86.2 77.4 90.9
Wind Star 86.1 76.5 91.5
Wind Surf 86.1 72.3 89.3
Wind Spirit 85.2 77.4 91.9
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15.2 Least Squares Method 693

a. Using these data, develop an estimated regression equation relating the top speed with
the boat’s beam and horsepower rating.

b. The Svfara SV609 has a beam of 85 inches and an engine with a 330 horsepower rat-
ing. Use the estimated regression equation developed in part (a) to predict the top
speed for the Svfara SV609.

10. Major League Baseball (MLB) consists of teams that play in the American League and the
National League. MLB collects a wide variety of team and player statistics. Some of the
statistics often used to evaluate pitching performance are as follows:

ERA: The average number of earned runs given up by the pitcher per nine innings.
An earned run is any run that the opponent scores off a particular pitcher except for
runs scored as a result of errors. 
SO/IP: The average number of strikeouts per inning pitched.
HR/IP: The average number of home runs per inning pitched.
R/IP: The number of runs given up per inning pitched.

The following data show values for these statistics for a random sample of 20 pitchers from
the American League for the 2011 season (MLB website, March 1, 2012). 

Make and Model Beam HP TopSpeed
Calabria Cal Air Pro V-2 100.0 330 45.3
Correct Craft Air Nautique 210 91.0 330 47.3
Correct Craft Air Nautique SV-211 93.0 375 46.9
Correct Craft Ski Nautique 206 Limited 91.0 330 46.7
Gekko GTR 22 96.0 375 50.1
Gekko GTS 20 83.0 375 52.2
Malibu Response LXi 93.5 340 47.2
Malibu Sunsettter LXi 98.0 400 46.0
Malibu Sunsetter 21 XTi 98.0 340 44.0
Malibu Sunscape 21 LSV 98.0 400 47.5
Malibu Wakesetter 21 XTi 98.0 340 44.9
Malibu Wakesetter VLX 98.0 400 47.3
Malibu vRide 93.5 340 44.5
Malibu Ride XTi 93.5 320 44.5
Mastercraft ProStar 209 96.0 350 42.5
Mastercraft X-1 90.0 310 45.8
Mastercraft X-2 94.0 310 42.8
Mastercraft X-9 96.0 350 43.2
MB Sports 190 Plus 92.0 330 45.3
Svfara SVONE 91.0 330 47.7

fileWEB
Boats

Player Team W L ERA SO/IP HR/IP R/IP
Verlander, J DET 24 5 2.40 1.00 .10 .29
Beckett, J BOS 13 7 2.89 .91 .11 .34
Wilson, C TEX 16 7 2.94 .92 .07 .40
Sabathia, C NYY 19 8 3.00 .97 .07 .37
Haren, D LAA 16 10 3.17 .81 .08 .38
McCarthy, B OAK 9 9 3.32 .72 .06 .43
Santana, E LAA 11 12 3.38 .78 .11 .42

(continued)
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694 Chapter 15 Multiple Regression

RELATIONSHIP AMONG SST, SSR, AND SSE

(15.7)

where

SST �

SSR �

SSE �

total sum of squares � �(
 
yi � ȳ )2

sum of squares due to regression � �(
 
yn i � ȳ )2

sum of squares due to error � �(
 
yi � yn i 

)2

SST � SSR � SSE

15.3 Multiple Coefficient of Determination
In simple linear regression we showed that the total sum of squares can be partitioned into
two components: the sum of squares due to regression and the sum of squares due to error.
The same procedure applies to the sum of squares in multiple regression.

a. Develop an estimated regression equation that can be used to predict the average
number of runs given up per inning given the average number of strikeouts per inning
pitched.

b. Develop an estimated regression equation that can be used to predict the average num-
ber of runs given up per inning given the average number of home runs per inning
pitched.

c. Develop an estimated regression equation that can be used to predict the average num-
ber of runs given up per inning given the average number of strikeouts per inning
pitched and the average number of home runs per inning pitched.

d. A. J. Burnett, a pitcher for the New York Yankees, had an average number of strike-
outs per inning pitched of .91 and an average number of home runs per inning of .16.
Use the estimated regression equation developed in part (c) to predict the average
number of runs given up per inning for A. J. Burnett. (Note: The actual value for
R/IP was .6.)

e. Suppose a suggestion was made to also use the earned run average as another inde-
pendent variable in part (c). What do you think of this suggestion? 

Player Team W L ERA SO/IP HR/IP R/IP
Lester, J BOS 15 9 3.47 .95 .10 .40
Hernandez, F SEA 14 14 3.47 .95 .08 .42
Buehrle, M CWS 13 9 3.59 .53 .10 .45
Pineda, M SEA 9 10 3.74 1.01 .11 .44
Colon, B NYY 8 10 4.00 .82 .13 .52
Tomlin, J CLE 12 7 4.25 .54 .15 .48
Pavano, C MIN 9 13 4.30 .46 .10 .55
Danks, J CWS 8 12 4.33 .79 .11 .52
Guthrie, J BAL 9 17 4.33 .63 .13 .54
Lewis, C TEX 14 10 4.40 .84 .17 .51
Scherzer, M DET 15 9 4.43 .89 .15 .52
Davis, W TB 11 10 4.45 .57 .13 .52
Porcello, R DET 14 9 4.75 .57 .10 .57
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15.3 Multiple Coefficient of Determination 695

Because of the computational difficulty in computing the three sums of squares, we
rely on computer packages to determine those values. The analysis of variance part of
the Minitab output in Figure 15.4 shows the three values for the Butler Trucking prob-
lem with two independent variables: SST � 23.900, SSR � 21.601, and SSE � 2.299.
With only one independent variable (number of miles traveled), the Minitab output in
Figure 15.3 shows that SST � 23.900, SSR � 15.871, and SSE � 8.029. The value of
SST is the same in both cases because it does not depend on , but SSR increases and
SSE decreases when a second independent variable (number of deliveries) is added. The
implication is that the estimated multiple regression equation provides a better fit for the
observed data.

In Chapter 14, we used the coefficient of determination, r2 � SSR/SST, to measure the
goodness of fit for the estimated regression equation. The same concept applies to multiple
regression. The term multiple coefficient of determination indicates that we are measur-
ing the goodness of fit for the estimated multiple regression equation. The multiple coeffi-
cient of determination, denoted R2, is computed as follows.

yn

The multiple coefficient of determination can be interpreted as the proportion of the vari-
ability in the dependent variable that can be explained by the estimated multiple regression
equation. Hence, when multiplied by 100, it can be interpreted as the percentage of the vari-
ability in y that can be explained by the estimated regression equation.

In the two-independent-variable Butler Trucking example, with SSR � 21.601 and
SST � 23.900, we have

Therefore, 90.4% of the variability in travel time y is explained by the estimated multi-
ple regression equation with miles traveled and number of deliveries as the independent
variables. In Figure 15.4, we see that the multiple coefficient of determination
(expressed as a percentage) is also provided by the Minitab output; it is denoted by
R-Sq � 90.4%.

Figure 15.3 shows that the R-Sq value for the estimated regression equation with only
one independent variable, number of miles traveled (x1), is 66.4%. Thus, the percentage
of the variability in travel times that is explained by the estimated regression equation
increases from 66.4% to 90.4% when number of deliveries is added as a second inde-
pendent variable. In general, R2 always increases as independent variables are added to
the model.

Many analysts prefer adjusting R2 for the number of independent variables to avoid 
overestimating the impact of adding an independent variable on the amount of variability 
explained by the estimated regression equation. With n denoting the number of observations
and p denoting the number of independent variables, the adjusted multiple coefficient of
determination is computed as follows.

R2 �
21.601
23.900

� .904

MULTIPLE COEFFICIENT OF DETERMINATION

(15.8)R2 �
SSR
SST

Adding independent
variables causes the
prediction errors to become
smaller, thus reducing 
the sum of squares due to
error, SSE. Because SSR �

SST � SSE, when SSE
becomes smaller, SSR
becomes larger, causing 
R2 � SSR/SST to increase.
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696 Chapter 15 Multiple Regression

Exercises

Methods
11. In exercise 1, the following estimated regression equation based on 10 observations was

presented.

The values of SST and SSR are 6724.125 and 6216.375, respectively.
a. Find SSE.
b. Compute R2.
c. Compute .
d. Comment on the goodness of fit.

12. In exercise 2, 10 observations were provided for a dependent variable y and two indepen-
dent variables x1 and x2; for these data SST � 15,182.9, and SSR � 14,052.2.
a. Compute R2.
b. Compute .
c. Does the estimated regression equation explain a large amount of the variability in the

data? Explain.
13. In exercise 3, the following estimated regression equation based on 30 observations was

presented.

The values of SST and SSR are 1805 and 1760, respectively.

yn � 17.6 � 3.8x1 � 2.3x2 � 7.6x3 � 2.7x4

R2
a

R2
a

yn � 29.1270 � .5906x1 � .4980x2

For the Butler Trucking example with n � 10 and p � 2, we have

Thus, after adjusting for the two independent variables, we have an adjusted multiple coef-
ficient of determination of .88. This value (expressed as a percentage) is provided by the
Minitab output in Figure 15.4 as R-Sq(adj) � 87.6%; the value we calculated differs be-
cause we used a rounded value of R2 in the calculation.

R2
a � 1 � (1 � .904) 

10 � 1
10 � 2 � 1

� .88

testSELF

NOTES AND COMMENTS

If the value of R2 is small and the model contains a
large number of independent variables, the adjusted
coefficient of determination can take a negative

value; in such cases, Minitab sets the adjusted co-
efficient of determination to zero.

ADJUSTED MULTIPLE COEFFICIENT OF DETERMINATION

(15.9)R2
a � 1 � (1 � R2) 

n � 1
n � p � 1

If a variable is added to the
model, R2 becomes larger
even if the variable added
is not statistically
significant. The adjusted
multiple coefficient of
determination compensates
for the number of
independent variables in
the model.
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15.3 Multiple Coefficient of Determination 697

a. Compute R2.
b. Compute .
c. Comment on the goodness of fit.

Applications
14. In exercise 4, the following estimated regression equation relating sales to inventory in-

vestment and advertising expenditures was given.

The data used to develop the model came from a survey of 10 stores; for those data,
SST � 16,000 and SSR � 12,000.
a. For the estimated regression equation given, compute R2.
b. Compute .
c. Does the model appear to explain a large amount of variability in the data?

Explain.
15. In exercise 5, the owner of Showtime Movie Theaters, Inc., used multiple regression analy-

sis to predict gross revenue ( y) as a function of television advertising (x1) and newspaper
advertising (x2). The estimated regression equation was

The computer solution provided SST � 25.5 and SSR � 23.435.
a. Compute and interpret R2 and .
b. When television advertising was the only independent variable, R2 � .653 and �

.595. Do you prefer the multiple regression results? Explain.
16. In exercise 6, data were given on the average number of passing yards per attempt (Yds/Att),

the number of interceptions thrown per attempt (Int/Att), and the percentage of games won
(Win%) for a random sample of 16 National Football League (NFL) teams for the 2011 season
(NFL website, February 12, 2012). 
a. Did the estimated regression equation that uses only the average number of passing

yards per attempt as the independent variable to predict the percentage of games won
provide a good fit?

b. Discuss the benefit of using both the average number of passing yards per attempt
and the number of interceptions thrown per attempt to predict the percentage of
games won.

17. In exercise 9, an estimated regression equation was developed relating the top speed for a
boat to the boat’s beam and horsepower rating.
a. Compute and interpret and R2 and .
b. Does the estimated regression equation provide a good fit to the data? Explain.

18. Refer to exercise 10, where Major League Baseball (MLB) pitching statistics were
reported for a random sample of 20 pitchers from the American League for the 2011
season (MLB website, March 1, 2012). 
a. In part (c) of exercise 10, an estimated regression equation was developed relating the

average number of runs given up per inning pitched given the average number of
strikeouts per inning pitched and the average number of home runs per inning pitched.
What are the values of R2 and ?

b. Does the estimated regression equation provide a good fit to the data? Explain.
c. Suppose the earned run average (ERA) is used as the dependent variable in part (c)

instead of the average number of runs given up per inning pitched. Does the
estimated regression equation that uses the ERA provide a good fit to the data?
Explain.

R2
a

R2
a

R2
a

R2
a

yn � 83.2 � 2.29x1 � 1.30x2

R2
a

yn � 25 � 10x1 � 8x2

R2
a

testSELF
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698 Chapter 15 Multiple Regression

To obtain more insight about the form of the relationship given by equation (15.11),
consider the following two-independent-variable multiple regression equation.

The graph of this equation is a plane in three-dimensional space. Figure 15.5 provides an
example of such a graph. Note that the value of � shown is the difference between the ac-
tual y value and the expected value of y, E( y), when and x2 � x*2 .x1 � x*1

E(
 
y) � �0 � �1x1 � �2 

x2

ASSUMPTIONS ABOUT THE ERROR TERM � IN THE MULTIPLE REGRESSION
MODEL y � �0 � �1x1 � . . . � �pxp � �

1. The error term � is a random variable with mean or expected value of zero;
that is, E(�) � 0.
Implication: For given values of x1, x2, . . . , xp, the expected, or average, value
of y is given by

(15.11)

Equation (15.11) is the multiple regression equation we introduced in Sec-
tion 15.1. In this equation, E( y) represents the average of all possible values
of y that might occur for the given values of x1, x2, . . . , xp.

2. The variance of � is denoted by σ 2 and is the same for all values of the inde-
pendent variables x1, x2, . . . , xp.
Implication: The variance of y about the regression line equals σ 2 and is the
same for all values of x1, x2, . . . , xp.

3. The values of � are independent.
Implication: The value of � for a particular set of values for the independent
variables is not related to the value of � for any other set of values.

4. The error term � is a normally distributed random variable reflecting the
deviation between the y value and the expected value of y given by
�0 � �1x1 � �2x2 � . . . � �pxp.
Implication: Because �0, �1, . . . , �p are constants for the given values of x1,
x2, . . . , xp, the dependent variable y is also a normally distributed random
variable.

E(
 
y) � �0 � �1x1 � �2 

x2 � . . . � �p 
xp

MULTIPLE REGRESSION MODEL

(15.10)y � �0 � �1x1 � �2 
x2 � . . . � �p 

xp � �

15.4 Model Assumptions
In Section 15.1 we introduced the following multiple regression model.

The assumptions about the error term � in the multiple regression model parallel those for
the simple linear regression model.
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15.5 Testing for Significance 699

In regression analysis, the term response variable is often used in place of the term de-
pendent variable. Furthermore, since the multiple regression equation generates a plane or
surface, its graph is called a response surface.

15.5 Testing for Significance
In this section we show how to conduct significance tests for a multiple regression rela-
tionship. The significance tests we used in simple linear regression were a t test and an F
test. In simple linear regression, both tests provide the same conclusion; that is, if the null
hypothesis is rejected, we conclude that �1 � 0. In multiple regression, the t test and the F
test have different purposes.

1. The F test is used to determine whether a significant relationship exists between the
dependent variable and the set of all the independent variables; we will refer to the
F test as the test for overall significance.

2. If the F test shows an overall significance, the t test is used to determine whether
each of the individual independent variables is significant. A separate t test is con-
ducted for each of the independent variables in the model; we refer to each of these
t tests as a test for individual significance.

In the material that follows, we will explain the F test and the t test and apply each to the
Butler Trucking Company example.

F Test
The multiple regression model as defined in Section 15.4 is

The hypotheses for the F test involve the parameters of the multiple regression model.

H0:
Ha:

 
�1 � �2 � . . . � �p � 0
One or more of the parameters is not equal to zero

y � �0 � �1x1 � �2 
x2 � . . . � �p 

xp � �

Value of y when
x1 = x1 and x2 = x2

**

E(y) when
x1 = x1 and x2 = x2

* *    Plane corresponding
to E(y) = 0 +   1x1 + ββ 2x2 β

0β

x1
*

x2
*

x2
x1

(x1, x2)**

Point corresponding to
x1 = x1 and x2 = x2

**

y

�

FIGURE 15.5 GRAPH OF THE REGRESSION EQUATION FOR MULTIPLE REGRESSION
ANALYSIS WITH TWO INDEPENDENT VARIABLES
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700 Chapter 15 Multiple Regression

If H0 is rejected, the test gives us sufficient statistical evidence to conclude that one or more
of the parameters is not equal to zero and that the overall relationship between y and the set
of independent variables x1, x2, . . . , xp is significant. However, if H0 cannot be rejected, we
do not have sufficient evidence to conclude that a significant relationship is present.

Before describing the steps of the F test, we need to review the concept of mean square.
A mean square is a sum of squares divided by its corresponding degrees of freedom. In the
multiple regression case, the total sum of squares has n � 1 degrees of freedom, the sum of
squares due to regression (SSR) has p degrees of freedom, and the sum of squares due to 
error has n � p � 1 degrees of freedom. Hence, the mean square due to regression (MSR)
is SSR/p and the mean square due to error (MSE) is SSE/(n � p � 1).

(15.12)

and

(15.13)

As discussed in Chapter 14, MSE provides an unbiased estimate of σ 2, the variance of the
error term �. If H0: �1 � �2 � . . . � �p � 0 is true, MSR also provides an unbiased estimate
of σ 2, and the value of MSR/MSE should be close to 1. However, if H0 is false, MSR over-
estimates σ 2 and the value of MSR/MSE becomes larger. To determine how large the value
of MSR/MSE must be to reject H0, we make use of the fact that if H0 is true and the as-
sumptions about the multiple regression model are valid, the sampling distribution of
MSR/MSE is an F distribution with p degrees of freedom in the numerator and n � p � 1
in the denominator. A summary of the F test for significance in multiple regression follows.

MSE �
SSE

n � p � 1

MSR �
SSR

p

F TEST FOR OVERALL SIGNIFICANCE

TEST STATISTIC

(15.14)

REJECTION RULE

where Fα is based on an F distribution with p degrees of freedom in the numerator
and n � p � 1 degrees of freedom in the denominator.

p-value approach:
Critical value approach:

  
Reject H0 if p-value � α
Reject H0 if F � Fα

F �
MSR
MSE

H0:
Ha:

 
�1 � �2 � . . . � �p � 0
One or more of the parameters is not equal to zero

Let us apply the F test to the Butler Trucking Company multiple regression problem.
With two independent variables, the hypotheses are written as follows.

H0:
Ha:

 
�1 � �2 � 0
�1 and/or �2 is not equal to zero
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15.5 Testing for Significance 701

Figure 15.6 is the Minitab output for the multiple regression model with miles traveled (x1)
and number of deliveries (x2) as the two independent variables. In the analysis of variance
part of the output, we see that MSR � 10.8 and MSE � .328. Using equation (15.14), we
obtain the test statistic.

Note that the F value on the Minitab output is F � 32.88; the value we calculated differs
because we used rounded values for MSR and MSE in the calculation. Using α � .01, the
p-value � 0.000 in the last column of the analysis of variance table (Figure 15.6) indicates
that we can reject H0: �1 � �2 � 0 because the p-value is less than α � .01. Alternatively,
Table 4 of Appendix B shows that with two degrees of freedom in the numerator and seven
degrees of freedom in the denominator, F.01 � 9.55. With 32.9 	 9.55, we reject H0: �1 �
�2 � 0 and conclude that a significant relationship is present between travel time y and the
two independent variables, miles traveled and number of deliveries.

As noted previously, the mean square error provides an unbiased estimate of σ 2, the
variance of the error term �. Referring to Figure 15.6, we see that the estimate of σ 2 is
MSE � .328. The square root of MSE is the estimate of the standard deviation of the error
term. As defined in Section 14.5, this standard deviation is called the standard error of the
estimate and is denoted s. Hence, we have Note that the value
of the standard error of the estimate appears in the Minitab output in Figure 15.6.

Table 15.3 is the general analysis of variance (ANOVA) table that provides the F test re-
sults for a multiple regression model. The value of the F test statistic appears in the last col-
umn and can be compared to Fα with p degrees of freedom in the numerator and n � p � 1
degrees of freedom in the denominator to make the hypothesis test conclusion. By review-
ing the Minitab output for Butler Trucking Company in Figure 15.6, we see that Minitab’s
analysis of variance table contains this information. Moreover, Minitab also provides the 
p-value corresponding to the F test statistic.

s � �MSE � �.328 � .573.

F �
10.8
.328

� 32.9

The regression equation is
Time = - 0.869 + 0.0611 Miles + 0.923 Deliveries

Predictor       Coef   SE Coef      T      p
Constant     –0.8687    0.9515  –0.91  0.392
Miles       0.061135  0.009888   6.18  0.000
Deliveries    0.9234    0.2211   4.18  0.004

S = 0.573142   R–Sq = 90.4%   R–Sq(adj) = 87.6%

Analysis of Variance

SOURCE          DF      SS      MS      F      p
Regression       2  21.601  10.800  32.88  0.000
Residual Error   7   2.299   0.328
Total            9  23.900

FIGURE 15.6 MINITAB OUTPUT FOR BUTLER TRUCKING WITH TWO INDEPENDENT
VARIABLES, MILES TRAVELED (x1) AND NUMBER OF DELIVERIES (x2)
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702 Chapter 15 Multiple Regression

t Test
If the F test shows that the multiple regression relationship is significant, a t test can be con-
ducted to determine the significance of each of the individual parameters. The t test for in-
dividual significance follows.

In the test statistic, is the estimate of the standard deviation of bi. The value of will be
provided by the computer software package.

Let us conduct the t test for the Butler Trucking regression problem. Refer to the sec-
tion of Figure 15.6 that shows the Minitab output for the t-ratio calculations. Values of b1,
b2, and are as follows.

Using equation (15.15), we obtain the test statistic for the hypotheses involving parameters
�1 and �2.

t � .061135/.009888 � 6.18
t � .9234/.2211 � 4.18

b1 � .061135
b2 � .9234

sb1
� .009888

sb2
� .2211

sb2
sb1

,

sbi
sbi

Sum Degrees
Source of Squares of Freedom Mean Square F

Regression SSR p

Error SSE

Total SST n � 1

MSE �
SSE

n � p � 1
n � p � 1

F �
MSR
MSE

MSR �
SSR

p

TABLE 15.3 ANOVA TABLE FOR A MULTIPLE REGRESSION MODEL WITH p
INDEPENDENT VARIABLES

t TEST FOR INDIVIDUAL SIGNIFICANCE

For any parameter �i

TEST STATISTIC

(15.15)

REJECTION RULE

where tα/2 is based on a t distribution with n � p � 1 degrees of freedom.

p-value approach:
Critical value approach:

  
Reject H0 if p-value � α
Reject H0 if t � �tα/2 or if t � tα/2

t �
bi
sbi

H0:
Ha:

 
�i � 0
�i � 0

74537_15_ch15_p682-750.qxd  10/8/12  8:50 PM  Page 702

Copyright 2014 Nelson Education Ltd. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content
may be suppressed from the eBook and/or eChapter(s). Nelson Education reserves the right to remove additional content at any time if subsequent rights restrictions require it.



15.5 Testing for Significance 703

Note that both of these t-ratio values and the corresponding p-values are provided by the
Minitab output in Figure 15.6. Using α � .01, the p-values of .000 and .004 on the Minitab
output indicate that we can reject H0: �1 � 0 and H0: �2 � 0. Hence, both parameters are
statistically significant. Alternatively, Table 2 of Appendix B shows that with n � p � 1 �
10 � 2 � 1 � 7 degrees of freedom, t.005 � 3.499. With 6.18 	 3.499, we reject H0: �1 � 0.
Similarly, with 4.18 	 3.499, we reject H0: �2 � 0.

Multicollinearity
We use the term independent variable in regression analysis to refer to any variable being
used to predict or explain the value of the dependent variable. The term does not mean, how-
ever, that the independent variables themselves are independent in any statistical sense. On
the contrary, most independent variables in a multiple regression problem are correlated to
some degree with one another. For example, in the Butler Trucking example involving the
two independent variables x1 (miles traveled) and x2 (number of deliveries), we could treat
the miles traveled as the dependent variable and the number of deliveries as the indepen-
dent variable to determine whether those two variables are themselves related. We could
then compute the sample correlation coefficient to determine the extent to which the rx1x2
variables are related. Doing so yields � .16. Thus, we find some degree of linear associa-
tion between the two independent variables. In multiple regression analysis, multicollinearity
refers to the correlation among the independent variables.

To provide a better perspective of the potential problems of multicollinearity, let us con-
sider a modification of the Butler Trucking example. Instead of x2 being the number of de-
liveries, let x2 denote the number of gallons of gasoline consumed. Clearly, x1 (the miles
traveled) and x2 are related; that is, we know that the number of gallons of gasoline used
depends on the number of miles traveled. Hence, we would conclude logically that x1 and
x2 are highly correlated independent variables.

Assume that we obtain the equation � b0 � b1x1 � b2x2 and find that the F test
shows the relationship to be significant. Then suppose we conduct a t test on �1 to deter-
mine whether �1 � 0, and we cannot reject H0: �1 � 0. Does this result mean that travel
time is not related to miles traveled? Not necessarily. What it probably means is that with
x2 already in the model, x1 does not make a significant contribution to determining the
value of y. This interpretation makes sense in our example; if we know the amount of gaso-
line consumed, we do not gain much additional information useful in predicting y by
knowing the miles traveled. Similarly, a t test might lead us to conclude �2 � 0 on the
grounds that, with x1 in the model, knowledge of the amount of gasoline consumed does
not add much.

To summarize, in t tests for the significance of individual parameters, the difficulty
caused by multicollinearity is that it is possible to conclude that none of the individual pa-
rameters are significantly different from zero when an F test on the overall multiple re-
gression equation indicates a significant relationship. This problem is avoided when there
is little correlation among the independent variables.

Statisticians have developed several tests for determining whether multicollinearity is
high enough to cause problems. According to the rule of thumb test, multicollinearity is a
potential problem if the absolute value of the sample correlation coefficient exceeds .7 for
any two of the independent variables. The other types of tests are more advanced and be-
yond the scope of this text.

If possible, every attempt should be made to avoid including independent variables that
are highly correlated. In practice, however, strict adherence to this policy is rarely possible.
When decision makers have reason to believe substantial multicollinearity is present, they
must realize that separating the effects of the individual independent variables on the de-
pendent variable is difficult.

yn

rx1x2

A sample correlation
coefficient greater than �.7
or less than �.7 for two
independent variables is a
rule of thumb warning of
potential problems with
multicollinearity.

When the independent
variables are highly
correlated, it is not possible
to determine the separate
effect of any particular
independent variable on the
dependent variable.

74537_15_ch15_p682-750.qxd  10/8/12  8:50 PM  Page 703

Copyright 2014 Nelson Education Ltd. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content
may be suppressed from the eBook and/or eChapter(s). Nelson Education reserves the right to remove additional content at any time if subsequent rights restrictions require it.



704 Chapter 15 Multiple Regression

Exercises

Methods
19. In exercise 1, the following estimated regression equation based on 10 observations was

presented.

Here SST � 6724.125, SSR � 6216.375, � .0813, and � .0567.
a. Compute MSR and MSE.
b. Compute F and perform the appropriate F test. Use α � .05.
c. Perform a t test for the significance of �1. Use α � .05.
d. Perform a t test for the significance of �2. Use α � .05.

20. Refer to the data presented in exercise 2. The estimated regression equation for these data is

Here SST � 15,182.9, SSR � 14,052.2, � .2471, and � .9484.sb2
sb1

yn � �18.37 � 2.01x1 � 4.74x2

sb2
sb1

yn � 29.1270 � .5906x1 � .4980x2

testSELF

NOTES AND COMMENTS

Ordinarily, multicollinearity does not affect the
way in which we perform our regression analysis or
interpret the output from a study. However, when
multicollinearity is severe—that is, when two or
more of the independent variables are highly corre-
lated with one another—we can have difficulty in-
terpreting the results of t tests on the individual
parameters. In addition to the type of problem il-
lustrated in this section, severe cases of multi-
collinearity have been shown to result in least
squares estimates that have the wrong sign. That is,

in simulated studies where researchers created the
underlying regression model and then applied the
least squares technique to develop estimates of �0,
�1, �2, and so on, it has been shown that under con-
ditions of high multicollinearity the least squares
estimates can have a sign opposite that of the para-
meter being estimated. For example, �2 might ac-
tually be �10 and b2, its estimate, might turn out to
be �2. Thus, little faith can be placed in the indi-
vidual coefficients if multicollinearity is present to
a high degree.

a. Test for a significant relationship among x1, x2, and y. Use α � .05.
b. Is �1 significant? Use α � .05.
c. Is �2 significant? Use α � .05.

21. The following estimated regression equation was developed for a model involving two in-
dependent variables.

After x2 was dropped from the model, the least squares method was used to obtain an es-
timated regression equation involving only x1 as an independent variable.

a. Give an interpretation of the coefficient of x1 in both models.
b. Could multicollinearity explain why the coefficient of x1 differs in the two models? If

so, how?

Applications
22. In exercise 4, the following estimated regression equation relating sales to inventory in-

vestment and advertising expenditures was given.

yn � 25 � 10x1 � 8x2

yn � 42.0 � 9.01x1

yn � 40.7 � 8.63x1 � 2.71x2
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15.5 Testing for Significance 705

The data used to develop the model came from a survey of 10 stores; for these data
SST � 16,000 and SSR � 12,000.
a. Compute SSE, MSE, and MSR.
b. Use an F test and a .05 level of significance to determine whether there is a relation-

ship among the variables.
23. Refer to exercise 5.

a. Use α � .01 to test the hypotheses

for the model y � �0 � �1x1 � �2x2 � �, where

b. Use α � .05 to test the significance of �1. Should x1 be dropped from the model?
c. Use α � .05 to test the significance of �2. Should x2 be dropped from the model?

24. The Wall Street Journal conducted a study of basketball spending at top colleges. A por-
tion of the data showing the revenue ($ millions), percentage of wins, and the coach’s
salary ($ millions) for 39 of the country’s top basketball programs follows (The Wall Street
Journal, March 11–12, 2006).

x1 �

x2 �

television advertising ($1000s)
newspaper advertising ($1000s)

H0:
Ha:

 
�1 � �2 � 0
�1 and/or �2 is not equal to zero

testSELF

School Revenue %Wins Salary
Alabama 6.5 61 1.00
Arizona 16.6 63 .70
Arkansas 11.1 72 .80
Boston College 3.4 80 .53

. . . .

. . . .

. . . .
Washington 5.0 83 .89
West Virginia 4.9 67 .70
Wichita State 3.1 75 .41
Wisconsin 12.0 66 .70

fileWEB
Basketball

a. Develop the estimated regression equation that can be used to predict the coach’s
salary given the revenue generated by the program and the percentage of wins.

b. Use the F test to determine the overall significance of the relationship. What is your
conclusion at the .05 level of significance?

c. Use the t test to determine the significance of each independent variable. What is your
conclusion at the .05 level of significance?

25. The Condé Nast Traveler Gold List for 2012 provided ratings for the top 20 small cruise ships
(Condé Nast Traveler website, March 1, 2012). The data shown below are the scores each ship
received based upon the results from Condé Nast Traveler’s annual Readers’ Choice Survey.
Each score represents the percentage of respondents who rated a ship as excellent or very good
on several criteria, including Itineraries/Schedule, Shore Excursions, and Food/Dining. An
overall score was also reported and used to rank the ships. The highest ranked ship, the
Seabourn Odyssey, has an overall score of 94.4, the highest component of which is 97.8 for
Food/Dining. 
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706 Chapter 15 Multiple Regression

a. Determine the estimated regression equation that can be used to predict the overall
score given the scores for Itineraries/Schedule, Shore Excursions, and Food/Dining.

b. Use the F test to determine the overall significance of the relationship. What is your
conclusion at the .05 level of significance?

c. Use the t test to determine the significance of each independent variable. What is your
conclusion at the .05 level of significance?

d. Remove any independent variable that is not significant from the estimated regression
equation. What is your recommended estimated regression equation? 

26. In exercise 10, data showing the values of several pitching statistics for a random sample of 20
pitchers from the American League of Major League Baseball were provided. In part (c) of this
exercise an estimated regression equation was developed to predict the average number of runs
given up per inning pitched (R/IP) given the average number of strikeouts per inning pitched
(SO/IP) and the average number of home runs per inning pitched (HR/IP). 
a. Use the F test to determine the overall significance of the relationship. What is your

conclusion at the .05 level of significance?
b. Use the t test to determine the significance of each independent variable. What is your

conclusion at the .05 level of significance?

15.6 Using the Estimated Regression Equation 
for Estimation and Prediction
The procedures for estimating the mean value of y and predicting an individual value of y
in multiple regression are similar to those in regression analysis involving one independent
variable. First, recall that in Chapter 14 we showed that the point estimate of the expected
value of y for a given value of x was the same as the point estimate of an individual value
of y. In both cases, we used � b0 � b1x as the point estimate.

In multiple regression we use the same procedure. That is, we substitute the given val-
ues of x1, x2, . . . , xp into the estimated regression equation and use the corresponding value
of as the point estimate. Suppose that for the Butler Trucking example we want to use theyn

yn

Itineraries/ Shore Food/
Ship Overall Schedule Excursions Dining
Seabourn Odyssey 94.4 94.6 90.9 97.8
Seabourn Pride 93.0 96.7 84.2 96.7
National Geographic Endeavor 92.9 100.0 100.0 88.5
Seabourn Sojourn 91.3 88.6 94.8 97.1
Paul Gauguin 90.5 95.1 87.9 91.2
Seabourn Legend 90.3 92.5 82.1 98.8
Seabourn Spirit 90.2 96.0 86.3 92.0
Silver Explorer 89.9 92.6 92.6 88.9
Silver Spirit 89.4 94.7 85.9 90.8
Seven Seas Navigator 89.2 90.6 83.3 90.5
Silver Whisperer 89.2 90.9 82.0 88.6
National Geographic Explorer 89.1 93.1 93.1 89.7
Silver Cloud 88.7 92.6 78.3 91.3
Celebrity Xpedition 87.2 93.1 91.7 73.6
Silver Shadow 87.2 91.0 75.0 89.7
Silver Wind 86.6 94.4 78.1 91.6
SeaDream II 86.2 95.5 77.4 90.9
Wind Star 86.1 94.9 76.5 91.5
Wind Surf 86.1 92.1 72.3 89.3
Wind Spirit 85.2 93.5 77.4 91.9

fileWEB
CruiseShips

fileWEB
MLBPitching
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15.6 Using the Estimated Regression Equation for Estimation and Prediction 707

estimated regression equation involving x1 (miles traveled) and x2 (number of deliveries) to
develop two interval estimates:

1. A confidence interval of the mean travel time for all trucks that travel 100 miles and
make two deliveries

2. A prediction interval of the travel time for one specific truck that travels 100 miles
and makes two deliveries

Using the estimated regression equation � �.869 � .0611x1 � .923x2 with x1 � 100 and
x2 � 2, we obtain the following value of .

Hence, the point estimate of travel time in both cases is approximately seven hours.
To develop interval estimates for the mean value of y and for an individual value of y,

we use a procedure similar to that for regression analysis involving one independent vari-
able. The formulas required are beyond the scope of the text, but computer packages for
multiple regression analysis will often provide confidence intervals once the values of x1,
x2, . . . , xp are specified by the user. In Table 15.4 we show the 95% confidence and predic-
tion intervals for the Butler Trucking example for selected values of x1 and x2; these values
were obtained using Minitab. Note that the interval estimate for an individual value of y is
wider than the interval estimate for the expected value of y. This difference simply reflects
the fact that for given values of x1 and x2 we can estimate the mean travel time for all trucks
with more precision than we can predict the travel time for one specific truck.

Exercises

Methods
27. In exercise 1, the following estimated regression equation based on 10 observations was

presented.

a. Develop a point estimate of the mean value of y when x1 � 180 and x2 � 310.
b. Develop a point estimate for an individual value of y when x1 � 180 and x2 � 310.

28. Refer to the data in exercise 2. The estimated regression equation for those data is

a. Develop a 95% confidence interval for the mean value of y when x1 � 45 and x2 � 15.
b. Develop a 95% prediction interval for y when x1 � 45 and x2 � 15.

yn � �18.4 � 2.01x1 � 4.74x2

yn � 29.1270 � .5906x1 � .4980x2

yn � � .869 � .0611(100) � .923(2) � 7.09

yn
yn

Value of Value of Confidence Interval Prediction Interval
x1 x2 Lower Limit Upper Limit Lower Limit Upper Limit
50 2 3.146 4.924 2.414 5.656
50 3 4.127 5.789 3.368 6.548
50 4 4.815 6.948 4.157 7.607

100 2 6.258 7.926 5.500 8.683
100 3 7.385 8.645 6.520 9.510
100 4 8.135 9.742 7.362 10.515

TABLE 15.4 THE 95% CONFIDENCE AND PREDICTION INTERVALS 
FOR BUTLER TRUCKING

testSELF
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708 Chapter 15 Multiple Regression

Applications
29. In exercise 5, the owner of Showtime Movie Theaters, Inc., used multiple regression analy-

sis to predict gross revenue ( y) as a function of television advertising (x1) and newspaper
advertising (x2). The estimated regression equation was

a. What is the gross revenue expected for a week when $3500 is spent on television ad-
vertising (x1 � 3.5) and $1800 is spent on newspaper advertising (x2 � 1.8)?

b. Provide a 95% confidence interval for the mean revenue of all weeks with the expen-
ditures listed in part (a).

c. Provide a 95% prediction interval for next week’s revenue, assuming that the adver-
tising expenditures will be allocated as in part (a).

30. In exercise 9 an estimated regression equation was developed relating the top speed for a
boat to the boat’s beam and horsepower rating.
a. Develop a 95% confidence interval for the mean top speed of a boat with a beam of

85 inches and an engine with a 330 horsepower rating. 
b. The Svfara SV609 has a beam of 85 inches and an engine with a 330 horsepower rating.

Develop a 95% prediction interval for the mean top speed for the Svfara SV609. 
31. The American Association of Individual Investors (AAII) On-Line Discount Broker

Survey polls members on their experiences with electronic trades handled by discount
brokers. As part of the survey, members were asked to rate their satisfaction with the trade
price and the speed of execution, as well as provide an overall satisfaction rating. Possible
responses (scores) were no opinion (0), unsatisfied (1), somewhat satisfied (2), satisfied
(3), and very satisfied (4). For each broker, summary scores were computed by computing
a weighted average of the scores provided by each respondent. A portion of the survey
results follows (AAII website, February 7, 2012). 

yn � 83.2 � 2.29x1 � 1.30x2

testSELF

Satisfaction
Trade Speed of Electronic

Brokerage Price Execution Trades
Scottrade, Inc. 3.4 3.4 3.5
Charles Schwab 3.2 3.3 3.4
Fidelity Brokerage Services 3.1 3.4 3.9
TD Ameritrade 2.9 3.6 3.7
E*Trade Financial 2.9 3.2 2.9
(Not listed) 2.5 3.2 2.7
Vanguard Brokerage Services 2.6 3.8 2.8
USAA Brokerage Services 2.4 3.8 3.6
Thinkorswim 2.6 2.6 2.6
Wells Fargo Investments 2.3 2.7 2.3
Interactive Brokers 3.7 4.0 4.0
Zecco.com 2.5 2.5 2.5
Firstrade Securities 3.0 3.0 4.0
Banc of America Investment Services 4.0 1.0 2.0

a. Develop an estimated regression equation using trade price and speed of execution to
predict overall satisfaction with the broker.

b. Finger Lakes Investments has developed a new electronic trading system and would
like to predict overall customer satisfaction assuming they can provide satisfactory
levels of service levels (3) for both trade price and speed of execution. Use the esti-
mated repression equation developed in part (a) to predict overall satisfaction level for
Finger Lakes Investments if they can achieve these performance levels.

fileWEB
Boats

fileWEB
Broker
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15.7 Categorical Independent Variables 709

c. Develop a 95% confidence interval estimate of the overall satisfaction of electronic
trades for all brokers that provide satisfactory levels of service for both trade price and
speed of execution.

d. Develop a 95% prediction interval of overall satisfaction for Finger Lakes Investments
assuming they achieve service levels of 3 for both trade price and speed of execution.

15.7 Categorical Independent Variables
Thus far, the examples we have considered involved quantitative independent variables
such as student population, distance traveled, and number of deliveries. In many situations,
however, we must work with categorical independent variables such as gender (male,
female), method of payment (cash, credit card, check), and so on. The purpose of this sec-
tion is to show how categorical variables are handled in regression analysis. To illustrate
the use and interpretation of a categorical independent variable, we will consider a problem
facing the managers of Johnson Filtration, Inc.

An Example: Johnson Filtration, Inc.
Johnson Filtration, Inc., provides maintenance service for water-filtration systems through-
out southern Florida. Customers contact Johnson with requests for maintenance service on
their water-filtration systems. To estimate the service time and the service cost, Johnson’s
managers want to predict the repair time necessary for each maintenance request. Hence, re-
pair time in hours is the dependent variable. Repair time is believed to be related to two fac-
tors, the number of months since the last maintenance service and the type of repair problem
(mechanical or electrical). Data for a sample of 10 service calls are reported in Table 15.5.

Let y denote the repair time in hours and x1 denote the number of months since the last
maintenance service. The regression model that uses only x1 to predict y is

Using Minitab to develop the estimated regression equation, we obtained the output shown
in Figure 15.7. The estimated regression equation is

(15.16)

At the .05 level of significance, the p-value of .016 for the t (or F) test indicates that the
number of months since the last service is significantly related to repair time. R-sq � 53.4%
indicates that x1 alone explains 53.4% of the variability in repair time.

yn � 2.15 � .304x1

y � �0 � �1x1 � �

Service Months Since Repair Time
Call Last Service Type of Repair in Hours

1 2 electrical 2.9
2 6 mechanical 3.0
3 8 electrical 4.8
4 3 mechanical 1.8
5 2 electrical 2.9
6 7 electrical 4.9
7 9 mechanical 4.2
8 8 mechanical 4.8
9 4 electrical 4.4

10 6 electrical 4.5

TABLE 15.5 DATA FOR THE JOHNSON FILTRATION EXAMPLE

The independent variables
may be categorical or
quantitative.
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710 Chapter 15 Multiple Regression

To incorporate the type of repair into the regression model, we define the following variable.

In regression analysis x2 is called a dummy or indicator variable. Using this dummy vari-
able, we can write the multiple regression model as

Table 15.6 is the revised data set that includes the values of the dummy variable. Using
Minitab and the data in Table 15.6, we can develop estimates of the model parameters. The
Minitab output in Figure 15.8 shows that the estimated multiple regression equation is

(15.17)yn � .93 � .388x1 � 1.26x2

y � �0 � �1x1 � �2 
x2 � �

x2 � �0 if the type of repair is mechanical
1 if the type of repair is electrical

The regression equation is
Time = 2.15 + 0.304 Months

Predictor    Coef  SE Coef     T      p
Constant   2.1473   0.6050  3.55  0.008
Months     0.3041   0.1004  3.03  0.016

S = 0.781022   R-Sq = 53.4%   R-Sq(adj) = 47.6%

Analysis of Variance

SOURCE          DF       SS      MS     F      p
Regression       1   5.5960  5.5960  9.17  0.016
Residual Error   8   4.8800  0.6100
Total            9  10.4760

FIGURE 15.7 MINITAB OUTPUT FOR JOHNSON FILTRATION WITH MONTHS
SINCE LAST SERVICE (x1) AS THE INDEPENDENT VARIABLE

In the Minitab output the
variable names Months and
Time were entered as the
column headings on the
worksheet; thus, x1 �

Months and y � Time.

Months Since Type of Repair Time
Customer Last Service (x1) Repair (x2) in Hours ( y)

1 2 1 2.9
2 6 0 3.0
3 8 1 4.8
4 3 0 1.8
5 2 1 2.9
6 7 1 4.9
7 9 0 4.2
8 8 0 4.8
9 4 1 4.4

10 6 1 4.5

TABLE 15.6 DATA FOR THE JOHNSON FILTRATION EXAMPLE WITH TYPE OF REPAIR
INDICATED BY A DUMMY VARIABLE (x2 � 0 FOR MECHANICAL; x2 � 1
FOR ELECTRICAL)

fileWEB
Johnson
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At the .05 level of significance, the p-value of .001 associated with the F test (F � 21.36)
indicates that the regression relationship is significant. The t test part of the printout in
Figure 15.8 shows that both months since last service ( p-value � .000) and type of repair
( p-value � .005) are statistically significant. In addition, R-Sq � 85.9% and R-Sq (adj) �
81.9% indicate that the estimated regression equation does a good job of explaining the vari-
ability in repair times. Thus, equation (15.17) should prove helpful in predicting the repair
time necessary for the various service calls.

Interpreting the Parameters
The multiple regression equation for the Johnson Filtration example is

(15.18)

To understand how to interpret the parameters �0, �1, and �2 when a categorical variable is
present, consider the case when x2 � 0 (mechanical repair). Using E( y � mechanical) to de-
note the mean or expected value of repair time given a mechanical repair, we have

(15.19)

Similarly, for an electrical repair (x2 � 1), we have

(15.20)

Comparing equations (15.19) and (15.20), we see that the mean repair time is a linear func-
tion of x1 for both mechanical and electrical repairs. The slope of both equations is �1, but
the y-intercept differs. The y-intercept is �0 in equation (15.19) for mechanical repairs and
( �0 � �2) in equation (15.20) for electrical repairs. The interpretation of �2 is that it indi-
cates the difference between the mean repair time for an electrical repair and the mean re-
pair time for a mechanical repair.

E( y  electrical)
 

� �0 � �1x1 � �2(1) � �0 � �1x1 � �2

� ( �0 � �2) � �1x1

E( y  mechanical) � �0 � �1x1 � �2(0) � �0 � �1x1

E( y) � �0 � �1x1 � �2 
x2

The regression equation is
Time = 0.930 + 0.388 Months + 1.26 Type

Predictor     Coef  SE Coef     T      p
Constant    0.9305   0.4670  1.99  0.087
Months     0.38762  0.06257  6.20  0.000
Type        1.2627   0.3141  4.02  0.005

S = 0.459048   R-Sq = 85.9%   R-Sq(adj) = 81.9%

Analysis of Variance

SOURCE          DF       SS      MS      F      p
Regression       2   9.0009  4.5005  21.36  0.001
Residual Error   7   1.4751  0.2107
Total            9  10.4760

FIGURE 15.8 MINITAB OUTPUT FOR JOHNSON FILTRATION WITH MONTHS
SINCE LAST SERVICE (x1) AND TYPE OF REPAIR (x2) AS THE
INDEPENDENT VARIABLES

In the Minitab output the
variable names Months,
Type, and Time were
entered as the column
headings on the worksheet;
thus, x1 � Months,
x2 � Type, and y � Time.
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712 Chapter 15 Multiple Regression

If �2 is positive, the mean repair time for an electrical repair will be greater than that
for a mechanical repair; if �2 is negative, the mean repair time for an electrical repair will
be less than that for a mechanical repair. Finally, if �2 � 0, there is no difference in the mean
repair time between electrical and mechanical repairs and the type of repair is not related
to the repair time.

Using the estimated multiple regression equation � .93 � .388x1 � 1.26x2, we see
that .93 is the estimate of �0 and 1.26 is the estimate of �2. Thus, when x2 � 0 (mechanical
repair)

(15.21)

and when x2 � 1 (electrical repair)

(15.22)

In effect, the use of a dummy variable for type of repair provides two estimated regression
equations that can be used to predict the repair time, one corresponding to mechanical re-
pairs and one corresponding to electrical repairs. In addition, with b2 � 1.26, we learn that,
on average, electrical repairs require 1.26 hours longer than mechanical repairs.

Figure 15.9 is the plot of the Johnson data from Table 15.6. Repair time in hours ( y) is
represented by the vertical axis and months since last service (x1) is represented by the hori-
zontal axis. A data point for a mechanical repair is indicated by an M and a data point for
an electrical repair is indicated by an E. Equations (15.21) and (15.22) are plotted on the
graph to show graphically the two equations that can be used to predict the repair time, one
corresponding to mechanical repairs and one corresponding to electrical repairs.
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.93 � .388x1 � 1.26(1)
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M = mechanical repair
E = electrical repair

FIGURE 15.9 SCATTER DIAGRAM FOR THE JOHNSON FILTRATION REPAIR DATA
FROM TABLE 15.6
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15.7 Categorical Independent Variables 713

Region x1 x2

A 0 0
B 1 0
C 0 1

More Complex Categorical Variables
Because the categorical variable for the Johnson Filtration example had two levels (me-
chanical and electrical), defining a dummy variable with zero indicating a mechanical re-
pair and one indicating an electrical repair was easy. However, when a categorical variable
has more than two levels, care must be taken in both defining and interpreting the dummy
variables. As we will show, if a categorical variable has k levels, k � 1 dummy variables are
required, with each dummy variable being coded as 0 or 1.

For example, suppose a manufacturer of copy machines organized the sales territories
for a particular state into three regions: A, B, and C. The managers want to use regression
analysis to help predict the number of copiers sold per week. With the number of units sold
as the dependent variable, they are considering several independent variables (the number
of sales personnel, advertising expenditures, and so on). Suppose the managers believe sales
region is also an important factor in predicting the number of copiers sold. Because sales
region is a categorical variable with three levels,A, B and C, we will need 3 � 1 � 2 dummy
variables to represent the sales region. Each variable can be coded 0 or 1 as follows.

Observations corresponding to region A would be coded x1 � 0, x2 � 0; observations cor-
responding to region B would be coded x1 � 1, x2 � 0; and observations corresponding to
region C would be coded x1 � 0, x2 � 1.

The regression equation relating the expected value of the number of units sold, E( y),
to the dummy variables would be written as

To help us interpret the parameters �0, �1, and �2, consider the following three variations of
the regression equation.

Thus, �0 is the mean or expected value of sales for region A; �1 is the difference between
the mean number of units sold in region B and the mean number of units sold in region A;
and �2 is the difference between the mean number of units sold in region C and the mean
number of units sold in region A.

Two dummy variables were required because sales region is a categorical variable with
three levels. But the assignment of x1 � 0, x2 � 0 to indicate region A, x1 � 1, x2 � 0 to

E( y  region A)
E( y  region B)
E( y  region C)

� �0 � �1(0) � �2(0) � �0

� �0 � �1(1) � �2(0) � �0 � �1

� �0 � �1(0) � �2(1) � �0 � �2

E( y) � �0 � �1x1 � �2 
x2

A categorical variable with
k levels must be modeled
using k � 1 dummy
variables. Care must be
taken in defining and
interpreting the dummy
variables.

With this definition, we have the following values of x1 and x2.

x2 � �1 if sales region C
0 otherwise

x1 � �1 if sales region B
0 otherwise
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714 Chapter 15 Multiple Regression

indicate region B, and x1 � 0, x2 � 1 to indicate region C was arbitrary. For example, we
could have chosen x1 � 1, x2 � 0 to indicate region A, x1 � 0, x2 � 0 to indicate region B,
and x1 � 0, x2 � 1 to indicate region C. In that case, �1 would have been interpreted as the
mean difference between regions A and B and �2 as the mean difference between regions C
and B.

The important point to remember is that when a categorical variable has k levels, k � 1
dummy variables are required in the multiple regression analysis. Thus, if the sales region
example had a fourth region, labeled D, three dummy variables would be necessary. For ex-
ample, the three dummy variables can be coded as follows.

Exercises

Methods
32. Consider a regression study involving a dependent variable y, a quantitative independent

variable x1, and a categorical independent variable with two levels (level 1 and level 2).
a. Write a multiple regression equation relating x1 and the categorical variable to y.
b. What is the expected value of y corresponding to level 1 of the categorical variable?
c. What is the expected value of y corresponding to level 2 of the categorical variable?
d. Interpret the parameters in your regression equation.

33. Consider a regression study involving a dependent variable y, a quantitative independent
variable x1, and a categorical independent variable with three possible levels (level 1, level 2,
and level 3).
a. How many dummy variables are required to represent the categorical variable?
b. Write a multiple regression equation relating x1 and the categorical variable to y.
c. Interpret the parameters in your regression equation.

Applications
34. Management proposed the following regression model to predict sales at a fast-food outlet.

where

The following estimated regression equation was developed after 20 outlets were surveyed.

a. What is the expected amount of sales attributable to the drive-up window?
b. Predict sales for a store with two competitors, a population of 8000 within one mile,

and no drive-up window.
c. Predict sales for a store with one competitor, a population of 3000 within one mile,

and a drive-up window.

yn � 10.1 � 4.2x1 � 6.8x2 � 15.3x3

y � sales ($1000s)

x3 � �1 if drive-up window present
0 otherwise

x2 � population within one mile (1000s)
x1 � number of competitors within one mile

y � �0 � �1x1 � �2 
x2 � �3 

x3 � �

x3 � �1 if sales region D
0 otherwise

x2 � �1 if sales region C
0 otherwise

x1 � �1 if sales region B
0 otherwise

testSELF

testSELF
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15.7 Categorical Independent Variables 715

35. Refer to the Johnson Filtration problem introduced in this section. Suppose that in addi-
tion to information on the number of months since the machine was serviced and whether
a mechanical or an electrical repair was necessary, the managers obtained a list showing
which repairperson performed the service. The revised data follow.

a. Ignore for now the months since the last maintenance service (x1) and the repairperson
who performed the service. Develop the estimated simple linear regression equation
to predict the repair time ( y) given the type of repair (x2). Recall that x2 � 0 if the type
of repair is mechanical and 1 if the type of repair is electrical.

b. Does the equation that you developed in part (a) provide a good fit for the observed
data? Explain.

c. Ignore for now the months since the last maintenance service and the type of repair as-
sociated with the machine. Develop the estimated simple linear regression equation to
predict the repair time given the repairperson who performed the service. Let x3 � 0 if
Bob Jones performed the service and x3 � 1 if Dave Newton performed the service.

d. Does the equation that you developed in part (c) provide a good fit for the observed
data? Explain.

36. This problem is an extension of the situation described in exercise 35.
a. Develop the estimated regression equation to predict the repair time given the number

of months since the last maintenance service, the type of repair, and the repairperson
who performed the service.

b. At the .05 level of significance, test whether the estimated regression equation devel-
oped in part (a) represents a significant relationship between the independent variables
and the dependent variable.

c. Is the addition of the independent variable x3, the repairperson who performed the ser-
vice, statistically significant? Use α � .05. What explanation can you give for the 
results observed?

37. The Consumer Reports Restaurant Customer Satisfaction Survey is based upon 148,599 
visits to full-service restaurant chains (Consumer Reports website, February 11, 2009). 
Assume the following data are representative of the results reported. The variable type 
indicates whether the restaurant is an Italian restaurant or a seafood/steakhouse. Price 
indicates the average amount paid per person for dinner and drinks, minus the tip. Score 
reflects diners’ overall satisfaction, with higher values indicating greater overall satisfac-
tion. A score of 80 can be interpreted as very satisfied.

Repair Time Months Since
in Hours Last Service Type of Repair Repairperson

2.9 2 Electrical Dave Newton
3.0 6 Mechanical Dave Newton
4.8 8 Electrical Bob Jones
1.8 3 Mechanical Dave Newton
2.9 2 Electrical Dave Newton
4.9 7 Electrical Bob Jones
4.2 9 Mechanical Bob Jones 
4.8 8 Mechanical Bob Jones
4.4 4 Electrical Bob Jones
4.5 6 Electrical Dave Newton

fileWEB
Repair

Restaurant Type Price ($) Score
Bertucci’s Italian 16 77
Black Angus Steakhouse Seafood/Steakhouse 24 79
Bonefish Grill Seafood/Steakhouse 26 85

(continued)

fileWEB
RestaurantRatings
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716 Chapter 15 Multiple Regression

a. Develop the estimated regression equation to show how overall customer satisfaction
is related to the independent variable average meal price.

b. At the .05 level of significance, test whether the estimated regression equation devel-
oped in part (a) indicates a significant relationship between overall customer satisfac-
tion and average meal price. 

c. Develop a dummy variable that will account for the type of restaurant (Italian or
seafood/steakhouse).

d. Develop the estimated regression equation to show how overall customer satisfaction is
related to the average meal price and the type of restaurant.

e. Is type of restaurant a significant factor in overall customer satisfaction?
f. Predict the Consumer Reports customer satisfaction score for a seafood/steakhouse

that has an average meal price of $20. How much would the predicted score have
changed for an Italian restaurant? 

38. A 10-year study conducted by the American Heart Association provided data on how age,
blood pressure, and smoking relate to the risk of strokes. Assume that the following data
are from a portion of this study. Risk is interpreted as the probability (times 100) that the
patient will have a stroke over the next 10-year period. For the smoking variable, define a
dummy variable with 1 indicating a smoker and 0 indicating a nonsmoker.

Restaurant Type Price ($) Score
Bravo! Cucina Italiana Italian 18 84
Buca di Beppo Italian 17 81
Bugaboo Creek Steak House Seafood/Steakhouse 18 77
Carrabba’s Italian Grill Italian 23 86
Charlie Brown’s Steakhouse Seafood/Steakhouse 17 75
Il Fornaio Italian 28 83
Joe’s Crab Shack Seafood/Steakhouse 15 71
Johnny Carino’s Italian Italian 17 81
Lone Star Steakhouse & Saloon Seafood/Steakhouse 17 76
LongHorn Steakhouse Seafood/Steakhouse 19 81
Maggiano’s Little Italy Italian 22 83
McGrath’s Fish House Seafood/Steakhouse 16 81
Olive Garden Italian 19 81
Outback Steakhouse Seafood/Steakhouse 20 80
Red Lobster Seafood/Steakhouse 18 78
Romano’s Macaroni Grill Italian 18 82
The Old Spaghetti Factory Italian 12 79
Uno Chicago Grill Italian 16 76

Risk Age Pressure Smoker
12 57 152 No
24 67 163 No
13 58 155 No
56 86 177 Yes
28 59 196 No
51 76 189 Yes
18 56 155 Yes
31 78 120 No
37 80 135 Yes
15 78 98 No
22 71 152 No
36 70 173 Yes

fileWEB
Stroke
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15.8 Residual Analysis 717

a. Develop an estimated regression equation that relates risk of a stroke to the person’s
age, blood pressure, and whether the person is a smoker.

b. Is smoking a significant factor in the risk of a stroke? Explain. Use α � .05.
c. What is the probability of a stroke over the next 10 years for Art Speen, a 68-year-old

smoker who has blood pressure of 175? What action might the physician recommend
for this patient?

15.8 Residual Analysis
In Chapter 14 we pointed out that standardized residuals are frequently used in residual
plots and in the identification of outliers. The general formula for the standardized residual
for observation i follows.

STANDARDIZED RESIDUAL FOR OBSERVATION i

(15.23)

where

syi� ŷi
� the standard deviation of residual i

yi � yn i
syi � ŷ i

STANDARD DEVIATION OF RESIDUAL i

(15.24)

where

s �

hi �

standard error of the estimate
leverage of observation i

syi� ŷi
� s �1 � hi

The general formula for the standard deviation of residual i is defined as follows.

As we stated in Chapter 14, the leverage of an observation is determined by how far the val-
ues of the independent variables are from their means. The computation of hi, , and hence 
the standardized residual for observation i in multiple regression analysis is too complex to be 

syi� ŷi

Risk Age Pressure Smoker
15 67 135 Yes
48 77 209 Yes
15 60 199 No
36 82 119 Yes
8 66 166 No

34 80 125 Yes
3 62 117 No

37 59 207 Yes
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718 Chapter 15 Multiple Regression

done by hand. However, the standardized residuals can be easily obtained as part of the output
from statistical software packages. Table 15.7 lists the predicted values, the residuals, and the
standardized residuals for the Butler Trucking example presented previously in this chapter;
we obtained these values by using the Minitab statistical software package. The predicted val-
ues in the table are based on the estimated regression equation � �.869 � .0611x1 � .923x2.

The standardized residuals and the predicted values of y from Table 15.7 are used in
Figure 15.10, the standardized residual plot for the Butler Trucking multiple regression ex-
ample. This standardized residual plot does not indicate any unusual abnormalities. Also,
all the standardized residuals are between �2 and �2; hence, we have no reason to ques-
tion the assumption that the error term � is normally distributed. We conclude that the model
assumptions are reasonable.
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FIGURE 15.10 STANDARDIZED RESIDUAL PLOT FOR BUTLER TRUCKING

Miles Travel Predicted
Traveled Deliveries Time Value Residual Standardized

(x1) (x2) ( y) ( ) ( y � ) Residual
100 4 9.3 8.93846 .361541 .78344
50 3 4.8 4.95830 �.158304 �.34962

100 4 8.9 8.93846 �.038460 �.08334
100 2 6.5 7.09161 �.591609 �1.30929

50 2 4.2 4.03488 .165121 .38167
80 2 6.2 5.86892 .331083 .65431
75 3 7.4 6.48667 .913331 1.68917
65 4 6.0 6.79875 �.798749 �1.77372
90 3 7.6 7.40369 .196311 .36703
90 2 6.1 6.48026 �.380263 �.77639

ŷŷ

TABLE 15.7 RESIDUALS AND STANDARDIZED RESIDUALS FOR THE BUTLER
TRUCKING REGRESSION ANALYSIS
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15.8 Residual Analysis 719

A normal probability plot also can be used to determine whether the distribution of �
appears to be normal. The procedure and interpretation for a normal probability plot were
discussed in Section 14.8. The same procedure is appropriate for multiple regression. Again,
we would use a statistical software package to perform the computations and provide the
normal probability plot.

Detecting Outliers
An outlier is an observation that is unusual in comparison with the other data; in other
words, an outlier does not fit the pattern of the other data. In Chapter 14 we showed an ex-
ample of an outlier and discussed how standardized residuals can be used to detect outliers.
Minitab classifies an observation as an outlier if the value of its standardized residual is less
than �2 or greater than �2. Applying this rule to the standardized residuals for the Butler
Trucking example (see Table 15.7), we do not detect any outliers in the data set.

In general, the presence of one or more outliers in a data set tends to increase s, the stan-
dard error of the estimate, and hence increase , the standard deviation of residual i. Be-
cause appears in the denominator of the formula for the standardized residual (15.23),
the size of the standardized residual will decrease as s increases. As a result, even though 
a residual may be unusually large, the large denominator in expression (15.23) may cause 
the standardized residual rule to fail to identify the observation as being an outlier. We can
circumvent this difficulty by using a form of the standardized residuals called studentized
deleted residuals.

Studentized Deleted Residuals and Outliers
Suppose the ith observation is deleted from the data set and a new estimated regression
equation is developed with the remaining n � 1 observations. Let s(i) denote the standard
error of the estimate based on the data set with the ith observation deleted. If we compute
the standard deviation of residual i using s(i) instead of s, and then compute the standard-
ized residual for observation i using the revised value, the resulting standardized resid-
ual is called a studentized deleted residual. If the ith observation is an outlier, s(i) will be less
than s. The absolute value of the ith studentized deleted residual therefore will be larger than
the absolute value of the standardized residual. In this sense, studentized deleted residuals
may detect outliers that standardized residuals do not detect.

Many statistical software packages provide an option for obtaining studentized deleted
residuals. Using Minitab, we obtained the studentized deleted residuals for the Butler
Trucking example; the results are reported in Table 15.8. The t distribution can be used to

syi� ŷi

syi� ŷi

sy� ŷi

Miles Traveled Deliveries Travel Time Standardized Studentized
(x1) (x2) ( y) Residual Deleted Residual
100 4 9.3 .78344 .75939
50 3 4.8 �.34962 �.32654

100 4 8.9 �.08334 �.07720
100 2 6.5 �1.30929 �1.39494
50 2 4.2 .38167 .35709
80 2 6.2 .65431 .62519
75 3 7.4 1.68917 2.03187
65 4 6.0 �1.77372 �2.21314
90 3 7.6 .36703 .34312
90 2 6.1 �.77639 �.75190

TABLE 15.8 STUDENTIZED DELETED RESIDUALS FOR BUTLER TRUCKING
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720 Chapter 15 Multiple Regression

determine whether the studentized deleted residuals indicate the presence of outliers. Re-
call that p denotes the number of independent variables and n denotes the number of ob-
servations. Hence, if we delete the ith observation, the number of observations in the
reduced data set is n � 1; in this case the error sum of squares has (n � 1) � p � 1 degrees
of freedom. For the Butler Trucking example with n � 10 and p � 2, the degrees of free-
dom for the error sum of squares with the ith observation deleted is 9 � 2 � 1 � 6. At a .05
level of significance, the t distribution (Table 2 of Appendix B) shows that with six degrees
of freedom, t.025 � 2.447. If the value of the ith studentized deleted residual is less than
�2.447 or greater than �2.447, we can conclude that the ith observation is an outlier. The
studentized deleted residuals in Table 15.8 do not exceed those limits; therefore, we con-
clude that outliers are not present in the data set.

Influential Observations
In Section 14.9 we discussed how the leverage of an observation can be used to identify ob-
servations for which the value of the independent variable may have a strong influence on
the regression results. As we indicated in the discussion of standardized residuals, the lever-
age of an observation, denoted hi, measures how far the values of the independent variables
are from their mean values. The leverage values are easily obtained as part of the output
from statistical software packages. Minitab computes the leverage values and uses the rule
of thumb hi 	 3( p � 1)/n to identify influential observations. For the Butler Trucking ex-
ample with p � 2 independent variables and n � 10 observations, the critical value for
leverage is 3(2 � 1)/10 � .9. The leverage values for the Butler Trucking example obtained
by using Minitab are reported in Table 15.9. Because hi does not exceed .9, we do not 
detect influential observations in the data set.

Using Cook’s Distance Measure to Identify 
Influential Observations
A problem that can arise in using leverage to identify influential observations is that an ob-
servation can be identified as having high leverage and not necessarily be influential in
terms of the resulting estimated regression equation. For example, Table 15.10 is a data set
consisting of eight observations and their corresponding leverage values (obtained by using
Minitab). Because the leverage for the eighth observation is .91 	 .75 (the critical leverage
value), this observation is identified as influential. Before reaching any final conclusions,
however, let us consider the situation from a different perspective.

TABLE 15.10

DATA SET
ILLUSTRATING
POTENTIAL
PROBLEM USING
THE LEVERAGE
CRITERION

Leverage
xi yi hi

1 18 .204170
1 21 .204170
2 22 .164205
3 21 .138141
4 23 .125977
4 24 .125977
5 26 .127715

15 39 .909644

Miles Traveled Deliveries Travel Time Leverage Cook’s D
(x1) (x2) ( y) (hi) (Di)
100 4 9.3 .351704 .110994
50 3 4.8 .375863 .024536

100 4 8.9 .351704 .001256
100 2 6.5 .378451 .347923
50 2 4.2 .430220 .036663
80 2 6.2 .220557 .040381
75 3 7.4 .110009 .117562
65 4 6.0 .382657 .650029
90 3 7.6 .129098 .006656
90 2 6.1 .269737 .074217

TABLE 15.9 LEVERAGE AND COOK’S DISTANCE MEASURES FOR BUTLER TRUCKING
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15.8 Residual Analysis 721

Figure 15.11 shows the scatter diagram corresponding to the data set in Table 15.10. We
used Minitab to develop the following estimated regression equation for these data.

The straight line in Figure 15.11 is the graph of this equation. Now, let us delete the obser-
vation x � 15, y � 39 from the data set and fit a new estimated regression equation to the
remaining seven observations; the new estimated regression equation is

We note that the y-intercept and slope of the new estimated regression equation are very
close to the values obtained using all the data. Although the leverage criterion identified the
eighth observation as influential, this observation clearly had little influence on the results
obtained. Thus, in some situations using only leverage to identify influential observations
can lead to wrong conclusions.

Cook’s distance measure uses both the leverage of observation i, hi, and the residual
for observation i, ( yi � ), to determine whether the observation is influential.yn i

yn � 18.1 � 1.42x

yn � 18.2 � 1.39x

5
x

y

0 10 15
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35
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25
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15

The estimated regression
equation with all the data is

y = 18.2 + 1.39x^

Note: If the point (15, 39) is deleted,
the estimated regression
equation is y = 18.1 + 1.42x^

FIGURE 15.11 SCATTER DIAGRAM FOR THE DATA SET IN TABLE 15.10
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722 Chapter 15 Multiple Regression

Exercises

Methods
39. Data for two variables, x and y, follow.

xi 1 2 3 4 5

yi 3 7 5 11 14

a. Develop the estimated regression equation for these data.
b. Plot the standardized residuals versus . Do there appear to be any outliers in these

data? Explain.
c. Compute the studentized deleted residuals for these data. At the .05 level of signifi-

cance, can any of these observations be classified as an outlier? Explain.

yn

testSELF

COOK’S DISTANCE MEASURE

(15.25)

where

yi � yn i �

hi �

p �

s �

the residual for observation i
the leverage for observation i
the number of independent variables
the standard error of the estimate

Di � Cook’s distance measure for observation i

Di �
( yi � yn i)2

( p � 1)s2  � hi

(1 � hi)2�

The value of Cook’s distance measure will be large and indicate an influential observation
if the residual or the leverage is large. As a rule of thumb, values of Di 	 1 indicate that the
ith observation is influential and should be studied further. The last column of Table 15.9
provides Cook’s distance measure for the Butler Trucking problem as given by Minitab. 
Observation 8 with Di � .650029 has the most influence. However, applying the rule
Di 	 1, we should not be concerned about the presence of influential observations in the
Butler Trucking data set.

NOTES AND COMMENTS

1. The procedures for identifying outliers and influ-
ential observations provide warnings about the
potential effects some observations may have on
the regression results. Each outlier and influen-
tial observation warrants careful examination. If
data errors are found, the errors can be corrected
and the regression analysis repeated. In general,
outliers and influential observations should not
be removed from the data set unless clear evi-
dence shows that they are not based on elements
of the population being studied and should not
have been included in the original data set.

2. To determine whether the value of Cook’s dis-
tance measure Di is large enough to conclude
that the ith observation is influential, we can also
compare the value of Di to the 50th percentile of
an F distribution (denoted F.50) with p � 1 
numerator degrees of freedom and n � p � 1
denominator degrees of freedom. F tables corre-
sponding to a .50 level of significance must 
be available to carry out the test. The rule of
thumb we provided (Di 	 1) is based on the fact
that the table value is close to one for a wide 
variety of cases.
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15.8 Residual Analysis 723

Weekly Gross Revenue Television Advertising Newspaper Advertising
($1000s) ($1000s) ($1000s)

96 5.0 1.5
90 2.0 2.0
95 4.0 1.5
92 2.5 2.5
95 3.0 3.3
94 3.5 2.3
94 2.5 4.2
94 3.0 2.5

40. Data for two variables, x and y, follow.

xi 22 24 26 28 40

yi 12 21 31 35 70

a. Develop the estimated regression equation for these data.
b. Compute the studentized deleted residuals for these data. At the .05 level of signifi-

cance, can any of these observations be classified as an outlier? Explain.
c. Compute the leverage values for these data. Do there appear to be any influential 

observations in these data? Explain.
d. Compute Cook’s distance measure for these data. Are any observations influential?

Explain.

Applications
41. Exercise 5 gave the following data on weekly gross revenue, television advertising, and

newspaper advertising for Showtime Movie Theaters.

Curb Speed at
Price Weight ¹⁄₄ Mile

Sports & GT Car ($1000s) (lb.) Horsepower (mph)
Acura Integra Type R 25.035 2577 195 90.7
Acura NSX-T 93.758 3066 290 108.0
BMW Z3 2.8 40.900 2844 189 93.2
Chevrolet Camaro Z28 24.865 3439 305 103.2
Chevrolet Corvette Convertible 50.144 3246 345 102.1
Dodge Viper RT/10 69.742 3319 450 116.2
Ford Mustang GT 23.200 3227 225 91.7
Honda Prelude Type SH 26.382 3042 195 89.7
Mercedes-Benz CLK320 44.988 3240 215 93.0
Mercedes-Benz SLK230 42.762 3025 185 92.3
Mitsubishi 3000GT VR-4 47.518 3737 320 99.0

(continued)

a. Find an estimated regression equation relating weekly gross revenue to television and
newspaper advertising.

b. Plot the standardized residuals against . Does the residual plot support the assump-
tions about �? Explain.

c. Check for any outliers in these data. What are your conclusions?
d. Are there any influential observations? Explain.

42. The following data show the curb weight, horsepower, and ¹⁄₄-mile speed for 16 popular
sports and GT cars. Suppose that the price of each sports and GT car is also available. The
complete data set is as follows:

yn

testSELF

fileWEB
Showtime

fileWEB
Auto2
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724 Chapter 15 Multiple Regression

a. Find the estimated regression equation that uses price and horsepower to predict 
¹⁄₄-mile speed.

b. Plot the standardized residuals against . Does the residual plot support the assump-
tion about �? Explain.

c. Check for any outliers. What are your conclusions?
d. Are there any influential observations? Explain.

43. The Ladies Professional Golfers Association (LPGA) maintains statistics on performance
and earnings for members of the LPGA Tour. Year-end performance statistics for the
30 players who had the highest total earnings in LPGA Tour events for 2005 appear in the
file named LPGA (LPGA website, 2006). Earnings ($1000s) is the total earnings in thou-
sands of dollars; Scoring Avg. is the average score for all events; Greens in Reg. is the per-
centage of time a player is able to hit the green in regulation; and Putting Avg. is the average
number of putts taken on greens hit in regulation. A green is considered hit in regulation if
any part of the ball is touching the putting surface and the difference between the value of
par for the hole and the number of strokes taken to hit the green is at least 2.
a. Develop an estimated regression equation that can be used to predict the average score

for all events given the percentage of time a player is able to hit the green in regula-
tion and the average number of putts taken on greens hit in regulation.

b. Plot the standardized residuals against . Does the residual plot support the assump-
tion about �? Explain.

c. Check for any outliers. What are your conclusions?
d. Are there any influential observations? Explain.

15.9 Logistic Regression
In many regression applications the dependent variable may only assume two discrete val-
ues. For instance, a bank might like to develop an estimated regression equation for pre-
dicting whether a person will be approved for a credit card. The dependent variable can be
coded as y � 1 if the bank approves the request for a credit card and y � 0 if the bank re-
jects the request for a credit card. Using logistic regression we can estimate the probability
that the bank will approve the request for a credit card given a particular set of values for
the chosen independent variables.

Let us consider an application of logistic regression involving a direct mail promotion be-
ing used by Simmons Stores. Simmons owns and operates a national chain of women’s ap-
parel stores. Five thousand copies of an expensive four-color sales catalog have been printed,
and each catalog includes a coupon that provides a $50 discount on purchases of $200 or more.
The catalogs are expensive and Simmons would like to send them to only those customers
who have the highest probability of using the coupon.

Management thinks that annual spending at Simmons Stores and whether a customer
has a Simmons credit card are two variables that might be helpful in predicting whether
a customer who receives the catalog will use the coupon. Simmons conducted a pilot

yn

yn

Curb Speed at
Price Weight ¹⁄₄ Mile

Sports & GT Car ($1000s) (lb.) Horsepower (mph)
Nissan 240SX SE 25.066 2862 155 84.6
Pontiac Firebird Trans Am 27.770 3455 305 103.2
Porsche Boxster 45.560 2822 201 93.2
Toyota Supra Turbo 40.989 3505 320 105.0
Volvo C70 41.120 3285 236 97.0

fileWEB
LPGA
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15.9 Logistic Regression 725

If the two values of the dependent variable y are coded as 0 or 1, the value of E( y) in equa-
tion (15.27) provides the probability that y � 1 given a particular set of values for the 

study using a random sample of 50 Simmons credit card customers and 50 other 
customers who do not have a Simmons credit card. Simmons sent the catalog to each of
the 100 customers selected. At the end of a test period, Simmons noted whether the cus-
tomer used the coupon. The sample data for the first 10 catalog recipients are shown in
Table 15.11. The amount each customer spent last year at Simmons is shown in thousands
of dollars and the credit card information has been coded as 1 if the customer has a
Simmons credit card and 0 if not. In the Coupon column, a 1 is recorded if the sampled
customer used the coupon and 0 if not.

We might think of building a multiple regression model using the data in Table 15.11 to
help Simmons estimate whether a catalog recipient will use the coupon. We would use
Annual Spending ($1000) and Simmons Card as independent variables and Coupon as the
dependent variable. Because the dependent variable may only assume the values of 0 or 1,
however, the ordinary multiple regression model is not applicable. This example shows the
type of situation for which logistic regression was developed. Let us see how logistic
regression can be used to help Simmons estimate which type of customer is most likely to
take advantage of their promotion.

Logistic Regression Equation
In many ways logistic regression is like ordinary regression. It requires a dependent vari-
able, y, and one or more independent variables. In multiple regression analysis, the mean or
expected value of y is referred to as the multiple regression equation.

(15.26)

In logistic regression, statistical theory as well as practice has shown that the relation-
ship between E( y) and x1, x2, . . . , xp is better described by the following nonlinear equation.

E( y) � �0 � �1x1 � �2
 

x2 � . . . � �p
 

xp

Annual Spending
Customer ($1000) Simmons Card Coupon

1 2.291 1 0
2 3.215 1 0
3 2.135 1 0
4 3.924 0 0
5 2.528 1 0
6 2.473 0 1
7 2.384 0 0
8 7.076 0 0
9 1.182 1 1

10 3.345 0 0

TABLE 15.11 PARTIAL SAMPLE DATA FOR THE SIMMONS STORES EXAMPLE

LOGISTIC REGRESSION EQUATION

(15.27)E( y) �
e 

�0��1x1��2x2�...��p xp

1 � e 
�0��1x1��2x2�...��p xp

fileWEB
Simmons
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726 Chapter 15 Multiple Regression

independent variables x1, x2, . . . , xp. Because of the interpretation of E( y) as a probability,
the logistic regression equation is often written as follows.

To provide a better understanding of the characteristics of the logistic regression equa-
tion, suppose the model involves only one independent variable x and the values of the
model parameters are �0 � �7 and �1 � 3. The logistic regression equation corresponding
to these parameter values is

(15.29)

Figure 15.12 shows a graph of equation (15.29). Note that the graph is S-shaped. The value
of E( y) ranges from 0 to 1, with the value of E( y) gradually approaching 1 as the value of x
becomes larger and the value of E( y) approaching 0 as the value of x becomes smaller. Note
also that the values of E( y), representing probability, increase fairly rapidly as x increases from
2 to 3. The fact that the values of E( y) range from 0 to 1 and that the curve is S-shaped makes
equation (15.29) ideally suited to model the probability the dependent variable is equal to 1.

Estimating the Logistic Regression Equation
In simple linear and multiple regression the least squares method is used to compute b0,
b1, . . . , bp as estimates of the model parameters ( �0, �1, . . . , �p). The nonlinear form of the
logistic regression equation makes the method of computing estimates more complex and
beyond the scope of this text. We will use computer software to provide the estimates. The
estimated logistic regression equation is

E( y) � P( y � 1�x) �
e 

�0��1x

1 � e 
�0��1x �

e�7�3x

1 � e�7�3x

INTERPRETATION OF E( y) AS A PROBABILITY IN LOGISTIC REGRESSION

(15.28)E( y) � P( y � 1�x1, x2, . . . , xp)

0.2

0.4

0.0

0.6

0.8

1.0

543210

E
(y

)

Independent Variable (x)

FIGURE 15.12 LOGISTIC REGRESSION EQUATION FOR �0 � �7 AND �1 � 3
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15.9 Logistic Regression 727

Here, provides an estimate of the probability that y � 1 given a particular set of values
for the independent variables.

Let us now return to the Simmons Stores example. The variables in the study are de-
fined as follows:

Thus, we choose a logistic regression equation with two independent variables.

(15.31)

Using the sample data (see Table 15.11), Minitab’s binary logistic regression procedure
was used to compute estimates of the model parameters �0, �1, and �2. A portion of the out-
put obtained is shown in Figure 15.13. We see that b0 � �2.14637, b1 � .341643, and
b2 � 1.09873. Thus, the estimated logistic regression equation is

(15.32)

We can now use equation (15.32) to estimate the probability of using the coupon for a
particular type of customer. For example, to estimate the probability of using the coupon
for customers who spend $2000 annually and do not have a Simmons credit card, we sub-
stitute x1 � 2 and x2 � 0 into equation (15.32).

yn �
eb0�b1x1�b2x2

1 � eb0�b1x1�b2x2
�

e�2.14637�.341643x1�1.09873x2

1 � e�2.14637�.341643x1�1.09873x2

E( y) �
e 

�0��1x1��2x2

1 � e 
�0��1x1��2x2

x2 � �0 if the customer does not have a Simmons credit card
1 if the customer has a Simmons credit card

x1 � annual spending at Simmons Stores ($1000s)

y � �0 if the customer did not use the coupon
1 if the customer used the coupon

yn

In Appendix 15.3 we show
how Minitab is used to
generate the output in
Figure 15.13.

Logistic Regression Table
Odds 95% CI

Predictor Coef SE Coef Z p Ratio Lower Upper
Constant -2.14637 0.577245 -3.72 0.000
Spending 0.341643 0.128672 2.66 0.008 1.41 1.09 1.81
Card 1.09873 0.444696 2.47 0.013 3.00 1.25 7.17

Log-Likelihood = -60.487
Test that all slopes are zero: G = 13.628, DF = 2, P-Value = 0.001

FIGURE 15.13 PARTIAL LOGISTIC REGRESSION OUTPUT FOR THE SIMMONS
STORES EXAMPLE

In the Minitab output,
x1 � Spending and 
x2 � Card.

ESTIMATED LOGISTIC REGRESSION EQUATION

(15.30)yn � estimate of P( y � 1�x1, x2, . . . , xp 
) �

eb0�b1x1�b2x2�...�bp xp

1 � eb0�b1x1�b2x2�...�bp xp
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728 Chapter 15 Multiple Regression

Thus, an estimate of the probability of using the coupon for this particular group of cus-
tomers is approximately 0.19. Similarly, to estimate the probability of using the coupon for
customers who spent $2000 last year and have a Simmons credit card, we substitute x1 � 2
and x2 � 1 into equation (15.32).

Thus, for this group of customers, the probability of using the coupon is approximately 0.41.
It appears that the probability of using the coupon is much higher for customers with a
Simmons credit card. Before reaching any conclusions, however, we need to assess the
statistical significance of our model.

Testing for Significance
Testing for significance in logistic regression is similar to testing for significance in multi-
ple regression. First we conduct a test for overall significance. For the Simmons Stores 
example, the hypotheses for the test of overall significance follow:

The test for overall significance is based upon the value of a G test statistic. If the
null hypothesis is true, the sampling distribution of G follows a chi-square distribution
with degrees of freedom equal to the number of independent variables in the model.
Although the computation of G is beyond the scope of the book, the value of G and its
corresponding p-value are provided as part of Minitab’s binary logistic regression out-
put. Referring to the last line in Figure 15.13, we see that the value of G is 13.628, its
degrees of freedom are 2, and its p-value is .001. Thus, at any level of significance
α � .001, we would reject the null hypothesis and conclude that the overall model is
significant.

If the G test shows an overall significance, a z test can be used to determine whether
each of the individual independent variables is making a significant contribution to the 
overall model. For the independent variables xi, the hypotheses are

If the null hypothesis is true, the value of the estimated coefficient divided by its standard
error follows a standard normal probability distribution. The column labeled Z in the
Minitab output contains the values of zi � bi / for each of the estimated coefficients and
the column labeled p contains the corresponding p-values. Suppose we use α � .05 to test
for the significance of the independent variables in the Simmons model. For the inde-
pendent variable x1 the z value is 2.66 and the corresponding p-value is .008. Thus, at the 
.05 level of significance we can reject H0: �1 � 0. In a similar fashion we can also reject 
H0: �2 � 0 because the p-value corresponding to z � 2.47 is .013. Hence, at the .05 level
of significance, both independent variables are statistically significant.

sbi

H0:
Ha:

 
�i � 0
�i � 0

H0:
Ha:

 
�1 � �2 � 0
One or both of the parameters is not equal to zero

yn �
e�2.14637�.341643(2)�1.09873(1)

1 � e�2.14637�.341643(2)�1.09873(1) �
e�.3644

1 � e�.3644 �
.6946

1.6946
� .4099

yn �
e�2.14637�.341643(2)�1.09873(0)

1 � e�2.14637�.341643(2)�1.09873(0) �
e�1.4631

1 � e�1.4631 �
.2315

1.2315
� .1880

74537_15_ch15_p682-750.qxd  10/8/12  8:51 PM  Page 728

Copyright 2014 Nelson Education Ltd. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content
may be suppressed from the eBook and/or eChapter(s). Nelson Education reserves the right to remove additional content at any time if subsequent rights restrictions require it.



15.9 Logistic Regression 729

Annual Spending
$1000 $2000 $3000 $4000 $5000 $6000 $7000

Credit Yes .3305 .4099 .4943 .5791 .6594 .7315 .7931
Card No .1413 .1880 .2457 .3144 .3922 .4759 .5610

TABLE 15.12 ESTIMATED PROBABILITIES FOR SIMMONS STORES

Managerial Use
We described how to develop the estimated logistic regression equation and how to test it
for significance. Let us now use it to make a decision recommendation concerning the
Simmons Stores catalog promotion. For Simmons Stores, we already computed
P( y � 1	x1 � 2, x2 � 1) � .4099 and P( y � 1	x1 � 2, x2 � 0) � .1880. These probabili-
ties indicate that for customers with annual spending of $2000 the presence of a Simmons
credit card increases the probability of using the coupon. In Table 15.12 we show estimated
probabilities for values of annual spending ranging from $1000 to $7000 for both customers
who have a Simmons credit card and customers who do not have a Simmons credit card.
How can Simmons use this information to better target customers for the new promotion?
Suppose Simmons wants to send the promotional catalog only to customers who have a 0.40
or higher probability of using the coupon. Using the estimated probabilities in Table 15.12,
Simmons promotion strategy would be:

Customers who have a Simmons credit card: Send the catalog to every customer who
spent $2000 or more last year.
Customers who do not have a Simmons credit card: Send the catalog to every customer
who spent $6000 or more last year.

Looking at the estimated probabilities further, we see that the probability of using the
coupon for customers who do not have a Simmons credit card but spend $5000 annually is
.3922. Thus, Simmons may want to consider revising this strategy by including those cus-
tomers who do not have a credit card, as long as they spent $5000 or more last year.

Interpreting the Logistic Regression Equation
Interpreting a regression equation involves relating the independent variables to the busi-
ness question that the equation was developed to answer. With logistic regression, it is dif-
ficult to interpret the relation between the independent variables and the probability that
y � 1 directly because the logistic regression equation is nonlinear. However, statisticians
have shown that the relationship can be interpreted indirectly using a concept called the
odds ratio.

The odds in favor of an event occurring is defined as the probability the event will
occur divided by the probability the event will not occur. In logistic regression the event of
interest is always y � 1. Given a particular set of values for the independent variables, the
odds in favor of y � 1 can be calculated as follows:

(15.33)

The odds ratio measures the impact on the odds of a one-unit increase in only one 
of the independent variables. The odds ratio is the odds that y � 1 given that one of the 

odds �
P( y � 1�x1, x2, . . . , xp)
P( y � 0�x1, x2, . . . , xp)

�
P( y � 1�x1, x2, . . . , xp)

1 � P( y � 1�x1, x2, . . . , xp)
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730 Chapter 15 Multiple Regression

For example, suppose we want to compare the odds of using the coupon for customers
who spend $2000 annually and have a Simmons credit card (x1 � 2 and x2 � 1) to the odds
of using the coupon for customers who spend $2000 annually and do not have a Simmons
credit card (x1 � 2 and x2 � 0). We are interested in interpreting the effect of a one-unit 
increase in the independent variable x2. In this case

and

Previously we showed that an estimate of the probability that y � 1 given x1 � 2 and x2 � 1
is .4099, and an estimate of the probability that y � 1 given x1 � 2 and x2 � 0 is .1880. Thus,

and

The estimated odds ratio is

Thus, we can conclude that the estimated odds in favor of using the coupon for customers
who spent $2000 last year and have a Simmons credit card are 3 times greater than the
estimated odds in favor of using the coupon for customers who spent $2000 last year and
do not have a Simmons credit card.

The odds ratio for each independent variable is computed while holding all the other inde-
pendent variables constant. But it does not matter what constant values are used for the other in-
dependent variables. For instance, if we computed the odds ratio for the Simmons credit card
variable (x2) using $3000, instead of $2000, as the value for the annual spending variable (x1),
we would still obtain the same value for the estimated odds ratio (3.00). Thus, we can conclude
that the estimated odds of using the coupon for customers who have a Simmons credit card are
3 times greater than the estimated odds of using the coupon for customers who do not have a
Simmons credit card.

The odds ratio is standard output for logistic regression software packages. Refer to the
Minitab output in Figure 15.13. The column with the heading Odds Ratio contains the 

Estimated odds ratio �
.6946
.2315

� 3.00

estimate of odds0 �
.1880

1 � .1880
� .2315

estimate of odds1 �
.4099

1 � .4099
� .6946

odds0 �
P( y � 1�x1 � 2, x2 � 0)

1 � P( y � 1�x1 � 2, x2 � 0)

odds1 �
P( y � 1�x1 � 2, x2 � 1)

1 � P( y � 1�x1 � 2, x2 � 1)

ODDS RATIO

(15.34)Odds Ratio �
odds1

odds0

independent variables has been increased by one unit (odds1) divided by the odds that y � 1
given no change in the values for the independent variables (odds0).
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15.9 Logistic Regression 731

estimated odds ratios for each of the independent variables. The estimated odds ratio for x1
is 1.41 and the estimated odds ratio for x2 is 3.00. We already showed how to interpret the
estimated odds ratio for the binary independent variable x2. Let us now consider the inter-
pretation of the estimated odds ratio for the continuous independent variable x1.

The value of 1.41 in the Odds Ratio column of the Minitab output tells us that the esti-
mated odds in favor of using the coupon for customers who spent $3000 last year is 1.41
times greater than the estimated odds in favor of using the coupon for customers who spent
$2000 last year. Moreover, this interpretation is true for any one-unit change in x1. For in-
stance, the estimated odds in favor of using the coupon for someone who spent $5000 last
year is 1.41 times greater than the odds in favor of using the coupon for a customer who
spent $4000 last year. But suppose we are interested in the change in the odds for an increase
of more than one unit for an independent variable. Note that x1 can range from 1 to 7. The
odds ratio given by the Minitab output does not answer this question. To answer this ques-
tion we must explore the relationship between the odds ratio and the regression coefficients.

A unique relationship exists between the odds ratio for a variable and its corresponding
regression coefficient. For each independent variable in a logistic regression equation it can
be shown that

To illustrate this relationship, consider the independent variable x1 in the Simmons 
example. The estimated odds ratio for x1 is

Similarly, the estimated odds ratio for x2 is

This relationship between the odds ratio and the coefficients of the independent variables
makes it easy to compute estimated odds ratios once we develop estimates of the model
parameters. Moreover, it also provides us with the ability to investigate changes in the
odds ratio of more than or less than one unit for a continuous independent variable.

The odds ratio for an independent variable represents the change in the odds for a one-
unit change in the independent variable holding all the other independent variables constant.
Suppose that we want to consider the effect of a change of more than one unit, say c units.
For instance, suppose in the Simmons example that we want to compare the odds of using
the coupon for customers who spend $5000 annually (x1 � 5) to the odds of using the coupon
for customers who spend $2000 annually (x1 � 2). In this case c � 5 � 2 � 3 and the cor-
responding estimated odds ratio is

This result indicates that the estimated odds of using the coupon for customers who spend
$5000 annually is 2.79 times greater than the estimated odds of using the coupon for cus-
tomers who spend $2000 annually. In other words, the estimated odds ratio for an increase
of $3000 in annual spending is 2.79.

In general, the odds ratio enables us to compare the odds for two different events. If the
value of the odds ratio is 1, the odds for both events are the same. Thus, if the independent
variable we are considering (such as Simmons credit card status) has a positive impact on the
probability of the event occurring, the corresponding odds ratio will be greater than 1. Most
logistic regression software packages provide a confidence interval for the odds ratio. The
Minitab output in Figure 15.13 provides a 95% confidence interval for each of the odds

ecb1 � e3(.341643) � e1.0249 � 2.79

Estimated odds ratio � e 
b2 � e1.09873 � 3.00

Estimated odds ratio � e 
b1 � e .341643 � 1.41

Odds ratio � e 
�i
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732 Chapter 15 Multiple Regression

Thus, in terms of the estimated logit, the estimated regression equation is

(15.38)

For the Simmons Stores example, the estimated logit is

and the estimated regression equation is

Thus, because of the unique relationship between the estimated logit and the estimated lo-
gistic regression equation, we can compute the estimated probabilities for Simmons Stores
by dividing by 1 � .e ĝ(x1, x2)e ĝ(x1, x2)

yn �
e 

gn(x1, x2)

1 � e 
gn(x1, x2) �

e�2.14637�.341643x1�1.09873x2

1 � e�2.14637�.341643x1�1.09873x2

gn(x1, x2) � �2.14637 � .341643x1 � 1.09873x2

yn �
e b0�b1x1�b2x2�. . .�bpxp

1 � e b0�b1x1�b2x2�. . .�bpxp
�

e 
gn(x1, x2,... , xp)

1 � e 
gn(x1, x2,... , xp)

ratios. For example, the point estimate of the odds ratio for x1 is 1.41 and the 95% confidence
interval is 1.09 to 1.81. Because the confidence interval does not contain the value of 1, we
can conclude that x1, has a significant effect on the estimated odds ratio. Similarly, the 95%
confidence interval for the odds ratio for x2 is 1.25 to 7.17. Because this interval does not
contain the value of 1, we can also conclude that x2 has a significant effect on the odds ratio.

Logit Transformation
An interesting relationship can be observed between the odds in favor of y � 1 and the 
exponent for e in the logistic regression equation. It can be shown that

This equation shows that the natural logarithm of the odds in favor of y � 1 is a linear func-
tion of the independent variables. This linear function is called the logit. We will use the
notation g(x1, x2, . . . , xp) to denote the logit.

ln(odds) � �0 � �1x1 � �2 
x2 � . . . � �p 

xp

LOGIT

(15.35)g(x1, x2, . . . , xp) � �0 � �1x1 � �2 
x2 � . . . � �p 

xp

Substituting g(x1, x2, . . . , xp) for �1 � �1x1 � �2x2 � . . . � �pxp in equation (15.27), we
can write the logistic regression equation as

(15.36)

Once we estimate the parameters in the logistic regression equation, we can compute
an estimate of the logit. Using (x1, x2, . . . , xp) to denote the estimated logit, we obtaingn

E( y) �
e g(x1, x2,... , xp)

1 � e g(x1, x2,... , xp)

ESTIMATED LOGIT

(15.37)gn(x1, x2, . . . , xp) � b0 � b1x1 � b2 
x2 � . . . � bp 

xp
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15.9 Logistic Regression 733

Exercises

Applications
44. Refer to the Simmons Stores example introduced in this section. The dependent variable

is coded as y � 1 if the customer used the coupon and 0 if not. Suppose that the only
information available to help predict whether the customer will use the coupon is the
customer’s credit card status, coded as x � 1 if the customer has a Simmons credit card
and x � 0 if not.
a. Write the logistic regression equation relating x to y.
b. What is the interpretation of E( y) when x � 0?
c. For the Simmons data in Table 15.11, use Minitab to compute the estimated logit.
d. Use the estimated logit computed in part (c) to estimate the probability of using the

coupon for customers who do not have a Simmons credit card and to estimate the
probability of using the coupon for customers who have a Simmons credit card.

e. What is the estimated odds ratio? What is its interpretation?
45. In Table 15.12 we provided estimates of the probability of using the coupon in the

Simmons Stores catalog promotion. A different value is obtained for each combination of
values for the independent variables.
a. Compute the odds in favor of using the coupon for a customer with annual spending

of $4000 who does not have a Simmons credit card (x1 � 4, x2 � 0).
b. Use the information in Table 15.12 and part (a) to compute the odds ratio for the 

Simmons credit card variable x2 � 0, holding annual spending constant at x1 � 4.
c. In the text, the odds ratio for the credit card variable was computed using the infor-

mation in the $2000 column of Table 15.12. Did you get the same value for the odds
ratio in part (b)?

46. Community Bank would like to increase the number of customers who use payroll direct
deposit. Management is considering a new sales campaign that will require each branch
manager to call each customer who does not currently use payroll direct deposit. As an in-
centive to sign up for payroll direct deposit, each customer contacted will be offered free
checking for two years. Because of the time and cost associated with the new campaign,
management would like to focus their efforts on customers who have the highest proba-
bility of signing up for payroll direct deposit. Management believes that the average
monthly balance in a customer’s checking account may be a useful predictor of whether
the customer will sign up for direct payroll deposit. To investigate the relationship between
these two variables, Community Bank tried the new campaign using a sample of 50 check-
ing account customers who do not currently use payroll direct deposit. The sample data
show the average monthly checking account balance (in hundreds of dollars) and whether
the customer contacted signed up for payroll direct deposit (coded 1 if the customer signed
up for payroll direct deposit and 0 if not). The data are contained in the data set named
Bank; a portion of the data follows.

NOTES AND COMMENTS

1. Because of the unique relationship between the
estimated coefficients in the model and the cor-
responding odds ratios, the overall test for sig-
nificance based upon the G statistic is also a test
of overall significance for the odds ratios. In ad-
dition, the z test for the individual significance of
a model parameter also provides a statistical test
of significance for the corresponding odds ratio.

2. In simple and multiple regression, the coefficient
of determination is used to measure the goodness
of fit. In logistic regression, no single measure
provides a similar interpretation. A discussion of
goodness of fit is beyond the scope of our intro-
ductory treatment of logistic regression.

fileWEB
Simmons
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734 Chapter 15 Multiple Regression

The dependent variable was coded as y � 1 if the student returned to Lakeland for the
sophomore year and y � 0 if not. The two independent variables are:

x2 � �0 if the student did not attend the orientation program
1 if the student attended the orientation program

x1 � GPA at the end of the first semester

Customer x � Monthly Balance y � Direct Deposit
1 1.22 0
2 1.56 0
3 2.10 0
4 2.25 0
5 2.89 0
6 3.55 0
7 3.56 0
8 3.65 1
. . .
. . .
. . .

48 18.45 1
49 24.98 0
50 26.05 1

Student GPA Program Return
1 3.78 1 1
2 2.38 0 1
3 1.30 0 0
4 2.19 1 0
5 3.22 1 1
6 2.68 1 1

. . . .

. . . .

. . . .
98 2.57 1 1
99 1.70 1 1

100 3.85 1 1

a. Write the logistic regression equation relating x to y.
b. For the Community Bank data, use Minitab to compute the estimated logistic regres-

sion equation.
c. Conduct a test of significance using the G test statistic. Use α � .05.
d. Estimate the probability that customers with an average monthly balance of $1000 will

sign up for direct payroll deposit.
e. Suppose Community Bank only wants to contact customers who have a .50 or higher

probability of signing up for direct payroll deposit. What is the average monthly bal-
ance required to achieve this level of probability?

f. What is the estimated odds ratio? What is its interpretation?
47. Over the past few years the percentage of students who leave Lakeland College at the end

of the first year has increased. Last year Lakeland started a voluntary one-week orientation
program to help first-year students adjust to campus life. If Lakeland is able to show that
the orientation program has a positive effect on retention, they will consider mak-
ing the program a requirement for all first-year students. Lakeland’s administration also
suspects that students with lower GPAs have a higher probability of leaving Lakeland at
the end of the first year. In order to investigate the relation of these variables to retention,
Lakeland selected a random sample of 100 students from last year’s entering class. The
data are contained in the data set named Lakeland; a portion of the data follows.

fileWEB
Bank

fileWEB
Lakeland
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15.9 Logistic Regression 735

a. Write the logistic regression equation relating x1 and x2 to y.
b. What is the interpretation of E( y) when x2 � 0?
c. Use both independent variables and Minitab to compute the estimated logit.
d. Conduct a test for overall significance using α � .05.
e. Use α � .05 to determine whether each of the independent variables is significant.
f. Use the estimated logit computed in part (c) to estimate the probability that students

with a 2.5 grade point average who did not attend the orientation program will return
to Lakeland for their sophomore year. What is the estimated probability for students
with a 2.5 grade point average who attended the orientation program?

g. What is the estimated odds ratio for the orientation program? Interpret it.
h. Would you recommend making the orientation program a required activity? Why or

why not?
48. The Tire Rack maintains an independent consumer survey to help drivers help each other

by sharing their long-term tire experiences. The data contained in the file named
TireRatings show survey results for 68 all-season tires (Tire Rack website, March 21,
2012). Performance traits are rated using the following 10-point scale. 

fileWEB
TireRatings

Superior Excellent Good Fair Unacceptable
10 9 8 7 6 5 4 3 2 1

The values for the variable labeled Wet are the average of the ratings for each tire’s wet
traction performance and the values for the variable labeled Noise are the average of the
ratings for the noise level generated by each tire. Respondents were also asked whether
they would buy the tire again using the following 10-point scale:

Definitely Probably Possibly Probably Not Definitely Not
10 9 8 7 6 5 4 3 2 1

The values for the variable labeled Buy Again are the average of the buy-again responses.
For the purposes of this exercise, we created the following binary dependent variable:

Thus, if Purchase � 1, the respondent would probably or definitely buy the tire again.
a. Write the logistic regression equation relating x1 � Wet performance rating and x2 �

Noise performance rating to y � Purchase.
b. Use Minitab to compute the estimated logit.
c. Use the estimated logit to compute an estimate of the probability that a customer will

probably or definitely purchase a particular tire again with a Wet performance rating
of 8 and a Noise performance rating of 8.

d. Suppose that the Wet and Noise performance ratings were 7. How does that affect the
probability that a customer will probably or definitely purchase a particular tire again
with these performance ratings?

e. If you were the CEO of a tire company, what do the results for parts (c) and (d)
tell you?

Purchase � �1 if the value of the Buy-Again variable is 7 or greater
0 if the value of the Buy-Again variable is less than 7

74537_15_ch15_p682-750.qxd  10/8/12  8:51 PM  Page 735

Copyright 2014 Nelson Education Ltd. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content
may be suppressed from the eBook and/or eChapter(s). Nelson Education reserves the right to remove additional content at any time if subsequent rights restrictions require it.


	Chapter 15: Multiple Regression



