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Correlation Theory

CORRELATION AND REGRESSION

In Chapter 13 we considered the problem of regression, or estimation, of one variable (the dependent
variable) from one or more related variables (the independent variables). In this chapter we consider the
closely related problem of correlation, or the degree of relationship between variables, which seeks to
determine how well a linear or other equation describes or explains the relationship between variables.

If all values of the variables satisfy an equation exactly, we say that the variables are perfectly
correlated or that there is perfect correlation between them. Thus the circumferences C and radii r
of all circles are perfectly correlated since C ¼ 2�r. If two dice are tossed simultaneously 100 times,
there is no relationship between corresponding points on each die (unless the dice are loaded);
that is, they are uncorrelated. Such variables as the height and weight of individuals would show some
correlation.

When only two variables are involved, we speak of simple correlation and simple regression. When
more than two variables are involved, we speak of multiple correlation and multiple regression.
This chapter considers only simple correlation. Multiple correlation and regression are considered
in Chapter 15.

LINEAR CORRELATION

If X and Y denote the two variables under consideration, a scatter diagram shows the location of
points ðX ,YÞ on a rectangular coordinate system. If all points in this scatter diagram seem to lie near a
line, as in Figs. 14-1(a) and 14-1(b), the correlation is called linear. In such cases, as we have seen in
Chapter 13, a linear equation is appropriate for purposes of regression (or estimation).

If Y tends to increase as X increases, as in Fig. 14-1(a), the correlation is called positive, or direct,
correlation. If Y tends to decrease as X increases, as in Fig. 14-1(b), the correlation is called negative, or
inverse, correlation.

If all points seem to lie near some curve, the correlation is called nonlinear, and a nonlinear equation
is appropriate for regression, as we have seen in Chapter 13. It is clear that nonlinear correlation can be
sometimes positive and sometimes negative.

If there is no relationship indicated between the variables, as in Fig. 14-1(c), we say that there is
no correlation between them (i.e., they are uncorrelated).
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MEASURES OF CORRELATION

We can determine in a qualitative manner how well a given line or curve describes the relation-
ship between variables by direct observation of the scatter diagram itself. For example, it is seen
that a straight line is far more helpful in describing the relation between X and Y for the data of
Fig. 14-1(a) than for the data of Fig. 14-1(b) because of the fact that there is less scattering about the
line of Fig. 14-1(a).

If we are to deal with the problem of scattering of sample data about lines or curves in a quantitative
manner, it will be necessary for us to devise measures of correlation

THE LEAST-SQUARES REGRESSION LINES

We first consider the problem of how well a straight line explains the relationship between two
variables. To do this, we shall need the equations for the least-squares regression lines obtained in
Chapter 13. As we have seen, the least-squares regression line of Y on X is

Y ¼ a0 þ a1X ð1Þ
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Fig. 14-1 Examples of positive correlation, negative correlation and no correlation. (a) Beginning salary and
years of formal education are positively correlated; (b) Grade point average (GPA) and hours spent
watching TV are negatively correlated; (c) There is no correlation between hours on a cell phone

and letters in last name.



where a0 and a1 are obtained from the normal equations

P
Y ¼ a0N þ a1

P
XP

XY ¼ a0
P

X þ a1
P

X2 ð2Þ

which yield

a0 ¼
ðP YÞðP X2Þ � ðP XÞðP XYÞ

N
P

X2 � ðP XÞ2

a1 ¼
N
P

XY � ðP XÞðP YÞ
N
P

X2 � ðP XÞ2 ð3Þ

Similarly, the regression line of X on Y is given by

X ¼ b0 þ b1Y ð4Þ

where b0 and b1 are obtained from the normal equations

P
X ¼ b0N þ b1

P
YP

XY ¼ b0
P

X þ b1
P

Y2 ð5Þ

which yield

b0 ¼
ðP XÞðP Y2Þ � ðP YÞðP XYÞ

N
P

Y2 � ðP YÞ2

b1 ¼
N
P

XY � ðP XÞðP YÞ
N
P

Y2 � ðP YÞ2 ð6Þ

Equations (1) and (4) can also be written, respectively, as

y ¼
P

xyP
x2

� �
x and x ¼

P
xyP
y2

� �
y ð7Þ

where x ¼ X � �X and y ¼ Y � �Y .
The regression equations are identical if and only if all points of the scatter diagram lie on a line.

In such case there is perfect linear correlation between X and Y.

STANDARD ERROR OF ESTIMATE

If we let Yest represent the value of Y for given values of X as estimated from equation (1), a measure
of the scatter about the regression line of Y on X is supplied by the quantity

sY :X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðY � YestÞ2

N

s
ð8Þ

which is called the standard error of estimate of Y on X.
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If the regression line (4) is used, an analogous standard error of estimate of X on Y is defined by

sX :Y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðX � XestÞ2

N

s
ð9Þ

In general, sY :X 6¼ sX :Y .
Equation (8) can be written

s2Y :X ¼
P

Y2 � a0
P

Y � a1
P

XY

N
ð10Þ

which may be more suitable for computation (see Problem 14.3). A similar expression exists for
equation (9).

The standard error of estimate has properties analogous to those of the standard deviation.
For example, if we construct lines parallel to the regression line of Y on X at respective vertical distances
sY :X , 2sY :X , and 3sY :X from it, we should find, if N is large enough, that there would be included
between these lines about 68%, 95%, and 99.7% of the sample points.

Just as a modified standard deviation given by

ŝ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N � 1

r
s

was found useful for small samples, so a modified standard error of estimate given by

ŝY :X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N � 2

r
sY :X

is useful. For this reason, some statisticians prefer to define equation (8) or (9) with N � 2 replacing
N in the denominator.

EXPLAINED AND UNEXPLAINED VARIATION

The total variation of Y is defined as
P ðY � �YÞ2: that is, the sum of the squares of the deviations

of the values of Y from the mean �Y . As shown in Problem 14.7, this can be writtenP ðY � �YÞ2 ¼P ðY � YestÞ2 þ
P ðYest � �YÞ2 ð11Þ

The first term on the right of equation (11) is called the unexplained variation, while the second term
is called the explained variation—so called because the deviations Yest � �Y have a definite pattern, while
the deviations Y � Yest behave in a random or unpredictable manner. Similar results hold for the
variable X.

COEFFICIENT OF CORRELATION

The ratio of the explained variation to the total variation is called the coefficient of determination.
If there is zero explained variation (i.e., the total variation is all unexplained), this ratio is 0. If there is
zero unexplained variation (i.e., the total variation is all explained), the ratio is 1. In other cases the ratio
lies between 0 and 1. Since the ratio is always nonnegative, we denote it by r2. The quantity r, called the
coefficient of correlation (or briefly correlation coefficient), is given by

r ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
explained variation

total variation

r
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðYest � �YÞ2P ðY � �YÞ2

s
ð12Þ
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and varies between �1 and þ1. The þ and � signs are used for positive linear correlation and negative
linear correlation, respectively. Note that r is a dimensionless quantity; that is, it does not depend on the
units employed.

By using equations (8) and (11) and the fact that the standard deviation of Y is

sY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP ðY � �YÞ2

N

s
ð13Þ

we find that equation (12) can be written, disregarding the sign, as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2Y :X

s2Y

s
or sY :X ¼ sY

ffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
ð14Þ

Similar equations exist when X and Y are interchanged.

For the case of linear correlation, the quantity r is the same regardless of whether X or Y is
considered the independent variable. Thus r is a very good measure of the linear correlation between
two variables.

REMARKS CONCERNING THE CORRELATION COEFFICIENT

The definitions of the correlation coefficient in equations (12) and (14) are quite general and can be
used for nonlinear relationships as well as for linear ones, the only differences being that Yest is computed
from a nonlinear regression equation in place of a linear equation and that the þ and � signs are
omitted. In such case equation (8), defining the standard error of estimate, is perfectly general. Equation
(10), however, which applies to linear regression only, must be modified. If, for example, the estimating
equation is

Y ¼ a0 þ a1X þ a2X
2 þ � � � þ an�1X

n�1 ð15Þ
then equation (10) is replaced by

s2Y :X ¼
P

Y2 � a0
P

Y � a1
P

XY � � � � � an�1
P

Xn�1Y
N

ð16Þ

In such case the modified standard error of estimate (discussed earlier in this chapter) is

ŝY :X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N

N � n

r
sY :X

where the quantity N � n is called the number of degrees of freedom.

It must be emphasized that in every case the computed value of r measures the degree of the
relationship relative to the type of equation that is actually assumed. Thus if a linear equation is assumed
and equation (12) or (14) yields a value of r near zero, it means that there is almost no linear correlation
between the variables. However, it does not mean that there is no correlation at all, since there may
actually be a high nonlinear correlation between the variables. In other words, the correlation coefficient
measures the goodness of fit between (1) the equation actually assumed and (2) the data. Unless other-
wise specified, the term correlation coefficient is used to mean linear correlation coefficient.

It should also be pointed out that a high correlation coefficient (i.e., near 1 or �1) does not
necessarily indicate a direct dependence of the variables. Thus there may be a high correlation between
the number of books published each year and the number of thunderstorms each year. Such examples
are sometimes referred to as nonsense, or spurious, correlations.

CHAP. 14] CORRELATION THEORY 349



PRODUCT-MOMENT FORMULA FOR THE LINEAR CORRELATION COEFFICIENT

If a linear relationship between two variables is assumed, equation (12) becomes

r ¼
P

xyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðP x2ÞðP y2Þ

p ð17Þ

where x ¼ X � �X and y ¼ Y � �Y (see Problem 14.10). This formula, which automatically gives the
proper sign of r, is called the product-moment formula and clearly shows the symmetry between X and Y.

If we write

sXY ¼
P

xy

N
sX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiP
x2

N

s
sY ¼

ffiffiffiffiffiffiffiffiffiffiffiP
y2

N

s
ð18Þ

then sX and sY will be recognized as the standard deviations of the variables X and Y, respectively, while
s2X and s2Y are their variances. The new quantity sXY is called the covariance of X and Y. In terms of the
symbols of formulas (18), formula (17) can be written

r ¼ sXY
sXsY

ð19Þ

Note that r is not only independent of the choice of units of X and Y, but is also independent of the
choice of origin.

SHORT COMPUTATIONAL FORMULAS

Formula (17) can be written in the equivalent form

r ¼ N
P

XY � ðP XÞðP YÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½n P X2 � ðP XÞ2�½N P

Y2 � ðP YÞ2�
q ð20Þ

which is often used in computing r.
For data grouped as in a bivariate frequency table, or bivariate frequency distribution (see Problem

14.17), it is convenient to use a coding method as in previous chapters. In such case, formula (20) can be
written

r ¼ N
P

fuXuY � ð
P

fXuXÞð
P

fYuY Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½N P

fXu
2
X � ð

P
fXuXÞ2�½N

P
fYu

2
Y � ð

P
fYuYÞ2�

q ð21Þ

(see Problem 14.18). For convenience in calculations using this formula, a correlation table is used
(see Problem 14.19).

For grouped data, formulas (18) can be written

sXY ¼ cXcY

P
fuXuY
N

�
P

fXuX
N

� � P
fYuY
N

� �
 �
ð22Þ

sX ¼ cX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
fXu

2
X

N
�

P
fXuX
N

� �2
s

ð23Þ

sY ¼ cY

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
fYu

2
Y

N
�

P
fYuY
N

� �2
s

ð24Þ

where cX and cY are the class-interval widths (assumed constant) corresponding to the variables X and
Y, respectively. Note that (23) and (24) are equivalent to formula (11) of Chapter 4.

Formula (19) is seen to be equivalent to (21) if results (22) to (24) are used.
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REGRESSION LINES AND THE LINEAR CORRELATION COEFFICIENT

The equation of the least-squares line Y¼ a0 þ a1X , the regression line of Y on X, can be written

Y � �Y ¼ rsY
sX
ðX � �XÞ or y ¼ rsY

sX
x ð25Þ

Similarly, the regression line of X on Y, X ¼ b0 þ b1Y , can be written

X � �X ¼ rsX
sY
ðY � �YÞ or x ¼ rsX

sY
y ð26Þ

The slopes of the lines in equations (25) and (26) are equal if and only if r ¼ �1. In such case the two
lines are identical and there is perfect linear correlation between the variables X and Y. If r ¼ 0, the lines
are at right angles and there is no linear correlation between X and Y. Thus the linear correlation
coefficient measures the departure of the two regression lines.

Note that if equations (25) and (26) are written Y¼ a0 þ a1X and X¼ b0 þ b1Y , respectively, then
a1b1¼ r2 (see Problem 14.22).

CORRELATION OF TIME SERIES

If each of the variables X and Y depends on time, it is possible that a relationship may exist between
X and Y even though such relationship is not necessarily one of direct dependence and may produce
‘‘nonsense correlation.’’ The correlation coefficient is obtained simply by considering the pairs of values
ðX ,YÞ corresponding to the various times and proceeding as usual, making use of the above formulas
(see Problem 14.28).

It is possible to attempt to correlate values of a variable X at certain times with corresponding values
of X at earlier times. Such correlation is often called autocorrelation.

CORRELATION OF ATTRIBUTES

The methods described in this chapter do not enable us to consider the correlation of variables
that are nonnumerical by nature, such as the attributes of individuals (e.g., hair color, eye color, etc.).
For a discussion of the correlation of attributes, see Chapter 12.

SAMPLING THEORY OF CORRELATION

The N pairs of values ðX ,YÞ of two variables can be thought of as samples from a population of all
such pairs that are possible. Since two variables are involved, this is called a bivariate population, which
we assume to be a bivariate normal distribution.

We can think of a theoretical population coefficient of correlation, denoted by , which is estimated
by the sample correlation coefficient r. Tests of significance or hypotheses concerning various values of 
require knowledge of the sampling distribution of r. For  ¼ 0 this distribution is symmetrical, and a
statistic involving Student’s distribution can be used. For  6¼ 0, the distribution is skewed; in such case a
transformation developed by Fisher produces a statistic that is approximately normally distributed.
The following tests summarize the procedures involved:

1. Test of Hypothesis  ¼ 0. Here we use the fact that the statistic

t ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 2
pffiffiffiffiffiffiffiffiffiffiffiffi
1� r2
p ð27Þ

has Student’s distribution with � ¼ N � 2 degrees of freedom (see Problems 14.31 and 14.32).
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2. Test of Hypothesis  ¼ 0 6¼ 0. Here we use the fact that the statistic

Z ¼ 1
2 loge

1þ r

1� r

� �
¼ 1:1513 log10

1þ r

1� r

� �
ð28Þ

where e ¼ 2:71828 . . . , is approximately normally distributed with mean and standard deviation
given by

�Z ¼ 1
2 loge

1þ 0
1� 0

� �
¼ 1:1513 log10

1þ 0
1� 0

� �
�Z ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 3
p ð29Þ

Equations (28) and (29) can also be used to find confidence limits for correlation coefficients
(see Problems 14.33 and 14.34). Equation (28) is called Fisher’s Z transformation.

3. Significance of a Difference between Correlation Coefficients. To determine whether two correlation
coefficients, r1 and r2, drawn from samples of sizes N1 and N2, respectively, differ significantly from
each other, we compute Z1 and Z2 corresponding to r1 and r2 by using equation (28). We then use the
fact that the test statistic

z ¼ Z1 � Z2 � �Z1�Z2

�Z1�Z2

ð30Þ

where �Z1�Z2
¼ �Z1

� �Z2

and �Z1�Z2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
Z1
þ �2

Z2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N1 � 3
þ 1

N2 � 3

s

is normally distributed (see Problem 14.35).

SAMPLING THEORY OF REGRESSION

The regression equation Y¼ a0 þ a1X is obtained on the basis of sample data. We are often
interested in the corresponding regression equation for the population from which the sample was
drawn. The following are three tests concerning such a population:

1. Test of Hypothesis a1 ¼ A1. To test the hypothesis that the regression coefficient a1 is equal to some
specified value A1, we use the fact that the statistic

t ¼ a1 � A1

sY :X=sX

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 2
p

ð31Þ

has Student’s distribution with N � 2 degrees of freedom. This can also be used to find confidence
intervals for population regression coefficients from sample values (see Problems 14.36 and 14.37).

2. Test of Hypothesis for Predicted Values. Let Y0 denote the predicted value of Y corresponding to
X ¼ X0 as estimated from the sample regression equation (i.e., Y0 ¼ a0 þ a1X0Þ. Let Yp denote the
predicted value of Y corresponding to X ¼ X0 for the population. Then the statistic

t ¼ Y0 � Yp

sY :X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 1þ ðX0 � �XÞ2=s2X

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 2
p

¼ Y0 � Yp

ŝX:Y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=N þ ðX0 � �XÞ2=ðNs2XÞ

q ð32Þ

has Student’s distribution with N � 2 degrees of freedom. From this, confidence limits for predicted
population values can be found (see Problem 14.38).
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