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The Chi-Square Test

OBSERVED AND THEORETICAL FREQUENCIES

As we have already seen many times, the results obtained in samples do not always agree exactly
with the theoretical results expected according to the rules of probability. For example, although
theoretical considerations lead us to expect 50 heads and 50 tails when we toss a fair coin 100 times,
it is rare that these results are obtained exactly.

Suppose that in a particular sample a set of possible events E1, E2, E3, . . . , Ek (see Table 12.1) are
observed to occur with frequencies o1, o2, o3, . . . , ok, called observed frequencies, and that according to
probability rules they are expected to occur with frequencies e1, e2, e3, . . . , ek, called expected, or theo-
retical, frequencies. Often we wish to know whether the observed frequencies differ significantly from the
expected frequencies.

DEFINITION OF v2

A measure of the discrepancy existing between the observed and expected frequencies is supplied by
the statistic �2 (read chi-square) given by

�2 ¼ ðo1 � e1Þ2
e1

þ ðo2 � e2Þ2
e2

þ � � � þ ðok � ekÞ2
ek

¼
Xk
j¼1

ðoj � ejÞ2
ej

ð1Þ

where if the total frequency is N, P
oj ¼

P
ej ¼ N ð2Þ

An expression equivalent to formula (1) is (see Problem 12.11)

�2 ¼P o2j

ej
�N ð3Þ

If �2 ¼ 0, the observed and theoretical frequencies agree exactly; while if �2 > 0, they do not agree
exactly. The larger the value of �2, the greater is the discrepancy between the observed and expected
frequencies.

Table 12.1

Event E1 E2 E3 � � � Ek

Observed frequency o1 o2 o3 � � � ok

Expected frequency e1 e2 e3 � � � ek
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The sampling distribution of �2 is approximated very closely by the chi-square distribution

Y ¼ Y0ð�2Þ1=2ð��2Þe�1=2�2 ¼ Y0�
��2e�1=2�

2 ð4Þ
(already considered in Chapter 11) if the expected frequencies are at least equal to 5. The approximation
improves for larger values.

The number of degrees of freedom, �, is given by
(1) � ¼ k� 1 if the expected frequencies can be computed without having to estimate the population

parameters from sample statistics. Note that we subtract 1 from k because of constraint condition
(2), which states that if we know k� 1 of the expected frequencies, the remaining frequency can be
determined.

(2) � ¼ k� 1�m if the expected frequencies can be computed only by estimating m population
parameters from sample statistics.

SIGNIFICANCE TESTS

In practice, expected frequencies are computed on the basis of a hypothesis H0. If under this
hypothesis the computed value of �2 given by equation (1) or (3) is greater than some critical value
(such as �2

:95 or �
2
:99, which are the critical values of the 0.05 and 0.01 significance levels, respectively), we

would conclude that the observed frequencies differ significantly from the expected frequencies and
would reject H0 at the corresponding level of significance; otherwise, we would accept it (or at least
not reject it). This procedure is called the chi-square test of hypothesis or significance.

It should be noted that we must look with suspicion upon circumstances where �2 is too close to zero,
since it is rare that observed frequencies agree too well with expected frequencies. To examine such
situations, we can determine whether the computed value of �2 is less than �2

:05 or �
2
:01, in which cases we

would decide that the agreement is too good at the 0.05 or 0.01 significance levels, respectively.

THE CHI-SQUARE TEST FOR GOODNESS OF FIT

The chi-square test can be used to determine how well theoretical distributions (such as the normal
and binomial distributions) fit empirical distributions (i.e., those obtained from sample data).
See Problems 12.12 and 12.13.

EXAMPLE 1. A pair of dice is rolled 500 times with the sums in Table 12.2 showing on the dice:

The expected number, if the dice are fair, are determined from the distribution of x as in Table 12.3.

We have the observed and expected frequencies in Table 12.4.
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Table 12.2

Sum 2 3 4 5 6 7 8 9 10 11 12

Observed 15 35 49 58 65 76 72 60 35 29 6

Table 12.3

x 2 3 4 5 6 7 8 9 10 11 12

p(x) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

Table 12.4

Observed 15 35 49 58 65 76 72 60 35 29 6

Expected 13.9 27.8 41.7 55.6 69.5 83.4 69.5 55.6 41.7 27.8 13.9



If the observed and expected are entered into B1:L2 in the EXCEL worksheet, the expression ¼(B1-B2)^2/B2
is entered into B4, a click-and-drag is executed from B4 to L4, and then the quantities in B4:L4 are summed we
obtain 10.34 for �2 ¼Pj ððoj � ejÞ2=ejÞ.
The p-value corresponding to 10.34 is given by the EXCEL expression ¼CHIDIST(10.34,10). The p-value is

0.411. Because of this large p-value, we have no reason to doubt the fairness of the dice.

CONTINGENCY TABLES

Table 12.1, in which the observed frequencies occupy a single row, is called a one-way classification
table. Since the number of columns is k, this is also called a 1� k (read ‘‘1 by k’’) table. By extending
these ideas, we can arrive at two-way classification tables, or h� k tables, in which the observed
frequencies occupy h rows and k columns. Such tables are often called contingency tables.

Corresponding to each observed frequency in an h� k contingency table, there is an expected (or
theoretical) frequency that is computed subject to some hypothesis according to rules of probability.
These frequencies, which occupy the cells of a contingency table, are called cell frequencies. The total
frequency in each row or each column is called the marginal frequency.

To investigate agreement between the observed and expected frequencies, we compute the statistic

�2 ¼
X
j

ðoj � ejÞ2
ej

ð5Þ

where the sum is taken over all cells in the contingency table and where the symbols oj and ej represent,
respectively, the observed and expected frequencies in the jth cell. This sum, which is analogous to
equation (1), contains hk terms. The sum of all observed frequencies is denoted by N and is equal to
the sum of all expected frequencies [compare with equation (2)].

As before, statistic (5) has a sampling distribution given very closely by (4), provided the expected
frequencies are not too small. The number of degrees of freedom, �, of this chi-square distribution is
given for h > 1 and k > 1 by

1. � ¼ ðh� 1Þðk� 1Þ if the expected frequencies can be computed without having to estimate popula-
tion parameters from sample statistics. For a proof of this, see Problem 12.18.

2. � ¼ ðh� 1Þðk� 1Þ �m if the expected frequencies can be computed only by estimating m population
parameters from sample statistics.

Significance tests for h� k tables are similar to those for 1� k tables. The expected frequencies are
found subject to a particular hypothesis H0. A hypothesis commonly assumed is that the two classifica-
tions are independent of each other.

Contingency tables can be extended to higher dimensions. Thus, for example, we can have h� k� l
tables, where three classifications are present.

EXAMPLE 2. The data in Table 12.5 were collected on how individuals prepared their taxes and their education
level. The null hypothesis is that the way people prepare their taxes (computer software or pen and paper) is
independent of their education level. Table 12.5 is a contingency table.

If MINITAB is used to analyze this data, the following results are obtained.
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Table 12.5

Education Level

Tax prep. High school Bachelors Masters

computer 23 35 42

Pen and paper 45 30 25



Chi-Square Test: highschool, bachelors, masters

Expected counts are printed below observed counts

Chi-Square contributions are printed below expected counts

highschool bachelors masters Total

1 23 35 42 100

34.00 32.50 33.50

3.559 0.192 2.157

2 45 30 25 100

34.00 32.50 33.50

3.559 0.192 2.157

Total 68 65 67 200

Chi-Sq = 11.816, DF = 2, P-Value = 0.003

Because of the small p-value, the hypothesis of independence would be rejected and we would
conclude that tax preparation would be contingent upon education level.

YATES’ CORRECTION FOR CONTINUITY

When results for continuous distributions are applied to discrete data, certain corrections for con-
tinuity can be made, as we have seen in previous chapters. A similar correction is available when the
chi-square distribution is used. The correction consists in rewriting equation (1) as

�2ðcorrectedÞ ¼ ðjo1 � e1j � 0:5Þ2
e1

þ ðjo2 � e2j � 0:5Þ2
e2

þ � � � þ ðjok � ekj � 0:5Þ2
ek

ð6Þ

and is often referred to as Yates’ correction. An analogous modification of equation (5) also exists.
In general, the correction is made only when the number of degrees of freedom is � ¼ 1. For large

samples, this yields practically the same results as the uncorrected �2, but difficulties can arise
near critical values (see Problem 12.8). For small samples where each expected frequency is between
5 and 10, it is perhaps best to compare both the corrected and uncorrected values of �2. If both values
lead to the same conclusion regarding a hypothesis, such as rejection at the 0.05 level, difficulties are
rarely encountered. If they lead to different conclusions, one can resort to increasing the sample sizes or,
if this proves impractical, one can employ methods of probability involving the multinomial distribution
of Chapter 6.

SIMPLE FORMULAS FOR COMPUTING v2

Simple formulas for computing �2 that involve only the observed frequencies can be derived.
The following gives the results for 2� 2 and 2� 3 contingency tables (see Tables 12.6 and 12.7,
respectively).

2T2 Tables

�2 ¼ Nða1b2 � a2b1Þ2
ða1 þ b1Þða2 þ b2Þða1 þ a2Þðb1 þ b2Þ

¼ N�2

N1N2NANB

ð7Þ
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where � ¼ a1b2 � a2b1, N ¼ a1 þ a2 þ b1 þ b2, N1 ¼ a1 þ b1, N2 ¼ a2 þ b2, NA ¼ a1 þ a2, and
NB ¼ b1 þ b2 (see Problem 12.19). With Yates’ correction, this becomes

�2 ðcorrectedÞ ¼ Nðja1b2 � a2b1j � 1
2NÞ2

ða1 þ b1Þða2 þ b2Þða1 þ a2Þðb1 þ b2Þ
¼ Nðj�j � 1

2NÞ2
N1N2NANB

ð8Þ

2T3 Tables

�2 ¼ N

NA

a21
N1

þ a22
N2

þ a23
N3

" #
þ N

NB

b21
N1

þ b22
N2

þ b23
N3

" #
�N ð9Þ

where we have used the general result valid for all contingency tables (see Problem 12.43):

�2 ¼P o2j

ej
�N ð10Þ

Result (9) for 2� k tables where k>3 can be generalized (see Problem 12.46).

COEFFICIENT OF CONTINGENCY

A measure of the degree of relationship, association, or dependence of the classifications in a
contingency table is given by

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2

�2 þN

s
ð11Þ

which is called the coefficient of contingency. The larger the value of C, the greater is the degree of
association. The number of rows and columns in the contingency table determines the maximum value of
C, which is never greater than 1. If the number of rows and columns of a contingency table is equal to k,
the maximum value of C is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk� 1Þ=kp
(see Problems 12.22, 12.52, and 12.53).

EXAMPLE 3. Find the coefficient of contingency for Example 2.

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2

�2 þN

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11:816

11:816þ 200

r
¼ 0:236

CORRELATION OF ATTRIBUTES

Because classifications in a contingency table often describe characteristics of individuals or objects,
they are often referred to as attributes, and the degree of dependence, association, or relationship is
called the correlation of attributes. For k� k tables, we define

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2

Nðk� 1Þ

s
ð12Þ
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Table 12.6

I II Total

A a1 a2 NA

B b1 b2 NB

Total N1 N2 N

Table 12.7

I II III Total

A a1 a2 a3 NA

B b1 b2 b3 NB

Total N1 N2 N3 N



as the correlation coefficient between attributes (or classifications). This coefficient lies between 0 and 1
(see Problem 12.24). For 2� 2 tables in which k ¼ 2, the correlation is often called tetrachoric
correlation.

The general problem of correlation of numerical variables is considered in Chapter 14.

ADDITIVE PROPERTY OF v2

Suppose that the results of repeated experiments yield sample values of �2 given by �2
1, �

2
2, �

2
3, . . .

with �1, �2, �3, . . . degrees of freedom, respectively. Then the result of all these experiments can
be considered equivalent to a �2 value given by �2

1 þ �2
2 þ �2

3 þ � � � with �1 þ �2 þ �3 þ � � � degrees of
freedom (see Problem 12.25).

Solved Problems

THE CHI-SQUARE TEST

12.1 In 200 tosses of a coin, 115 heads and 85 tails were observed. Test the hypothesis that the coin is
fair, using Appendix IV and significance levels of (a) 0.05 and (b) 0.01. Test the hypothesis by
computing the p-value and (c) comparing it to levels 0.05 and 0.01.

SOLUTION

The observed frequencies of heads and tails are o1 ¼ 115 and o2 ¼ 85, respectively, and the expected
frequencies of heads and tails (if the coin is fair) are e1 ¼ 100 and e2 ¼ 100, respectively. Thus

�2 ¼ ðo1 � e1Þ2
e1

þ ðo2 � e2Þ2
e2

¼ ð115� 100Þ2
100

þ ð85� 100Þ2
100

¼ 4:50

Since the number of categories, or classes (heads, tails), is k ¼ 2, � ¼ k� 1 ¼ 2� 1 ¼ 1.

(a) The critical value �2
:95 for 1 degree of freedom is 3.84. Thus, since 4:50 > 3:84, we reject the hypothesis

that the coin is fair at the 0.05 significance level.

(b) The critical value �2
:99 for 1 degree of freedom is 6.63. Thus, since 4:50 < 6:63, we cannot reject the

hypothesis that the coin is fair at the 0.02 significance level.

We conclude that the observed results are probably significant and that the coin is probably not fair.

For a comparison of this method with previous methods used, see Problem 12.3.
Using EXCEL, the p-value is given by ¼CHIDIST(4.5,1), which equals 0.0339. And we see, using the

p-value approach that the results are significant at 0.05 but not at 0.01. Either of these methods of testing

may be used.

12.2 Work Problem 12.1 by using Yates’ correction.

SOLUTION

�2 ðcorrectedÞ ¼ ðjo1 � e1j � 0:5Þ2
e1

þ ðjo2 � e2j � 0:5Þ2
e2

¼ ðj115� 100j � 0:5Þ2
100

þ ðj85� 100j � 0:5Þ2
100

¼ ð14:5Þ
2

100
þ ð14:5Þ

2

100
¼ 4:205

Since 4.205>3.84 and 4.205<6.63, the conclusions reached in Problem 12.1 are valid. For a comparison
with previous methods, see Problem 12.3.
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