
Part IV

Hypothesis Testing
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Topic 17

Simple Hypotheses

I can point to the particular moment when I understood how to formulate the undogmatic problem of
the most powerful test of a simple statistical hypothesis against a fixed simple alternative. At the present
time, the problem appears entirely trivial and within reach of a beginning undergraduate. But, with a
degree of embarrassment, I must confess that it took something like half a decade of combined effort of
E.S.P. and myself to put things straight. - Jerzy Neymann in the Festschrift in honor of Herman Wold,
1970, E.S.P is Egon Sharpe Pearson

17.1 Overview and Terminology
Statistical hypothesis testing is designed to address the question: Do the data provide sufficient evidence to conclude
that we must depart from our original assumption concerning the state of nature?

The logic of hypothesis testing is similar to the one a juror faces in a criminal trial: Is the evidence provided by the
prosecutor sufficient for the jury to depart from its original assumption that the defendant is not guilty of the charges
brought before the court?

Two of the jury’s possible actions are

• Find the defendant guilty.

• Find the defendant not guilty.

The weight of evidence that is necessary to find the defendant guilty depends on the type of trial. In a criminal
trial the stated standard is that the prosecution must prove that the defendant is guilty beyond any reasonable doubt.
In civil trials, the burden of proof may be the intermediate level of clear and convincing evidence or the lower level of
the preponderance of evidence.

Given the level of evidence needed, a prosecutors task is to present the evidence in the most powerful and convinc-
ing manner possible. We shall see these notions reflected in the nature of hypothesis testing.

The simplest set-up for understanding the issues of statistical hypothesis, is the case of two values θ0, and θ1 in
the parameter space. We write the test, known as a simple hypothesis as

H0 : θ = θ0 versus H1 : θ = θ1.

H0 is called the null hypothesis. H1 is called the alternative hypothesis.
We now frame the issue of hypothesis testing using the classical approach. In this approach, the possible actions

are:

• Reject the hypothesis. Rejecting the hypothesis when it is true is called a type I error or a false positive. Its
probability α is called the size of the test or the significance level. Sometimes, 1 − α, the true negatiive is
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called the specificity. In symbols, we write

α = Pθ0{reject H0}.

• Fail to reject the hypothesis. Failing to reject the hypothesis when it is false is called a type II error or a false
negative, has probability β. The power of the test, 1− β, the probability of rejecting the test when it is indeed
false, is also called the true positive fraction or the the sensitivity. In symbols, we write

β = Pθ1{fail to reject H0} and 1− β = Pθ1{reject H0}.

hypothesis tests criminal trials
the defendant is

H0 is true H1 is true innocent guilty
reject H0 type I error OK convict OK

fail to reject H0 OK type II error do not convict OK

Thus, the higher level necessary to secure conviction in a criminal trial corresponds to having lower significance
levels. This analogy should not be taken too far. The nature of the data and the decision making process is quite
dissimilar. For example, the prosecutor and the defense attorney are not always out to find the most honest manner
to present information. In statistical inference for hypothesis testing, the goal is something that all participants in this
endeavor ought to share.

In addition, care should be taken not to be overly invested in a fixed value α for the significance level. As we con-
tinue to investigate the logic and methodology behind hypothesis testing, we will broaden and make more sophisticated
our approach to evaluating hypotheses.

The decision for the test is often based on first determining a critical region C. Data x in this region is determined
to be too unlikely to have occurred when the null hypothesis is true. Thus, the decision is

reject H0 if and only if x ∈ C.

Given a choice α for the size of the test, the choice of a critical region C is called best or most powerful if for any
other choice of critical region C∗ for a size α test, i.e., both critical region lead to the same type I error probability,

α = Pθ0{X ∈ C} = Pθ0{X ∈ C∗},

but perhaps different type II error probabiities

β = Pθ1{X /∈ C}, β∗ = Pθ1{X /∈ C∗},

we have the lowest probability of a type II error, (β ≤ β∗) associated to the critical region C.
The two approaches to hypothesis testing, classical and Bayesian, begin with distinct starting points and end with

different interpretations for implications of the data. Interestingly, both approaches result in a decision that is based on
the values of a likelihood ratio. In the classical approach, we shall learn, based on the Neyman-Pearson lemma, that
the decision is based on a level for this ratio based on setting the type I error probabilities. In the Bayesian approach,
the decision on minimizing risk, a concept that we will soon define precisely.

17.2 The Neyman-Pearson Lemma
Many critical regions are either determined by the consequences of the Neyman-Pearson lemma or by using analogies
of this fundamental lemma. Rather than presenting a proof of this lemma, we will provide some intuition for the choice
of critical region through the following “game”.

We will conduct a single observation X that can take values from −11 to 11 and based on that observation, decide
whether or not to reject the null hypothesis. Basing a decision on a single observation, of course, is not the usual
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circumstance for hypothesis testing. We will first continue on this line of reasoning to articulate the logic behind the
Neyman-Pearson lemma before examining more typical and reasonable data collection protocols.

To begin the game, corresponding to values for x running from −11 to 11, write a row of the number from 0 up
to 10 and back down to 0 and add an additional 0 at each end. These numbers add to give 100. Now, scramble the
numbers and write them under the first row. This can be created and displayed quickly in R using the commands:

> x<- -11:11
> L1<-c(0,0:10,9:0,0)
> L0<-sample(L0) #This provides a random perturbation of the values in L1.
> data.frame(x,L1,L0)

The top row, giving the values of L1, represents the likelihood for one observation under the alternative hypothesis.
The bottom row, giving the values of L0, represents the likelihood under the null hypothesis. Note that the values for
L0 is a rearrangement of the values for L1. Here is the output.

x -11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11
L1(x) 0 0 1 2 3 4 5 6 7 8 9 10 9 8 7 6 5 4 3 2 1 0 0
L0(x) 3 8 7 5 7 1 3 10 6 0 6 4 2 5 0 1 0 4 0 8 2 9 9

The goal is to pick values x so that the accumulated points (the benefit) increase as quickly as possible from the
likelihood L1 keeping points (the cost) from L0 as low as possible. The natural start is to pick values of x so that
L0(x) = 0. Then, the benefit begins to add up without any cost. We find four such values for x and record their values
along with running totals for L1 and L0.

x -2 3 5 7
L1 total 8 15 20 23
L0 total 0 0 0 0

Being ahead by a score of 23 to 0 can be translated into a best critical region C in the following way. If we take
C = {−2, 3, 5, 7}, then, because the L1-total is 23 points out of a possible 100, we find the power of the test

1− β = P1{X ∈ C} = 0.23

and the type II error β = P1{X /∈ C} = 0.77. Because the L0-total is 0 points, the size of the test,

α = P0{X ∈ C} = 0

and there is no chance of type I error with this critical region.
Understanding the next choice is crucial. Candidates are

x = 4,with L1(4) = 6 against L0(4) = 1 and x = 1,with L1(1) = 9 against L0(1) = 2.

The choice 6 against 1 is better than 9 against 2. One way to see this is to note that choosing 6 against 1 twice will
put us in a better place than the single choice of 9 against 2. Indeed, after choosing 6 against 1, a choice of 3 against
1 puts us in at least as good a position than the single choice of 9 against 2. The central point is that the best choice
comes to picking the remaining value for x that has the highest benefit-to-cost ratio of L1(x) to L0(x)

Now we can pick the next few candidates, keeping track of both the type I and type II error of the test with the
choice of critical region being the chosen values of x.

x -2 3 5 7 4 1 -6 0 -5
L1(x)/L0(x) ∞ ∞ ∞ ∞ 6 9/2 4 5/2 5/3
L1 total 8 15 20 23 29 38 42 52 57
L0 total 0 0 0 0 1 3 4 8 11
β 0.92 0.85 0.80 0.77 0.71 0.62 0.58 0.48 0.43
α 0.00 0.00 0.00 0.00 0.01 0.03 0.04 0.08 0.11
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Figure 17.1: Receiver Operating Characteristic. The graph of α = P{X ∈ C|H0 is true} (significance) versus 1−β = P{X ∈
C|H1 is true} (power) in the example. The horizontal axis α is also called the false positive fraction (FPF). The vertical axis
1− β is also called the true positive fraction (TPF).

From this exercise we see how the likelihood ratio test is the choice for a most powerful test. For example, for
these likelihoods, the last column states that for a α = 0.11 level test, the best region consists of those values of x so
that

L1(x)

L0(x)
≥ 5

3
.

The type II error probability is β = 0.43 and thus the power is 1− β = 0.57. In genuine examples, we will typically
look for type II error probability much below 0.43 and we will make many observations. We now summarize carefully
the insights from this game before examining more genuine examples. A proof of this theorem is provided in Section
17.4.

Theorem 17.1 (Neyman-Pearson Lemma). Let L(θ|x) denote the likelihood function for the random variable X
corresponding to the probability Pθ. If there exists a critical region C of size α and a nonnegative constant kα such
that

L(θ1|x)

L(θ0|x)
≥ kα for x ∈ C

and
L(θ1|x)

L(θ0|x)
< kα for x /∈ C, (17.1)

then C is the most powerful critical region of size α.

We, thus, reject the null hypothesis if and only if the likelihood ratio exceeds a value kα with

α = Pθ0

{
L(θ1|X)

L(θ0|X)
≥ kα

}
.

We shall learn that many of the standard tests use critical values for the t-statistic, the chi-square statistic, or the F -
statistic. These critical values are related to the critical value kα in extensions of the ideas of likelihood ratios. In a
few pages, we will take a glance at the Bayesian approach to hypothesis testing.

17.2.1 The Receiver Operating Characteristic
Using R, we can complete the table for L0 total and L1 total.
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> o<-order(L1/L0,decreasing=TRUE)
> sumL1<-cumsum(L1[o])
> sumL0<-cumsum(L0[o])
> significance<-sumL0/100
> power<-sumL1/100
> plot(significance,power,type="s")
> data.frame(x[o],L1[o],L0[o],sumL1,sumL0,power,significance)

Completing the curve, known as the receiver operating characteristic (ROC), is shown in the figure above.
The ROC shows the inevitable trade-offs between Type I and Type II errors. For example, by the mere fact that the
graph is increasing, we can see that by setting a more rigorous test achieved by lowering α, the level of significance,
(decreasing the value on the horizontal axis) necessarily reduces 1−β, the power (decreasing the value on the vertical
axis.). The unusual and slightly mystifying name is due to the fact that the ROC was first developed during World
War II for detecting enemy objects in battlefields, Following the surprise military attack on Pearl Harbor in 1941, the
United States saw the need to improve the prediction of the movement of aircraft from their radar signals.

Exercise 17.2. Consider the following (ignorant) example. Flip a coin that gives heads with probability α. Ignore
whatever data you have collected and reject if the coin turns up heads. This test has significance level α. Show that
the receiver operating characteristic curve is the line through the origin having slope 1.

Figure 17.2: Heliconius butterflies

This shows what a minimum acceptable ROC curve looks like - any
hypothesis test ought be better than a coin toss that ignores the data. The
ROC can be used as a test diagnostic. One commonly used is the area
under the ROC, (AUC). For the example above, the AUC is 1/2. So any
test should be improve on that value. The “nearly perfect test” would have
have the power near to 1 for even very low significance level. In this case
the AUC is very nearly equal to 1.

17.3 Examples

Example 17.3. Mimicry is the similarity of one species to another in a
manner that enhances the survivability of one or both species - the model
and mimic . This similarity can be, for example, in appearance, behavior,
sound, or scent. One method for producing a mimic species is hybridiza-
tion. This results in the transferring of adaptations from the model species
to the mimic. The genetic signature of this has recently been discovered in
Heliconius butterflies. Padro-Diaz et al sequenced chromosomal regions
both linked and unlinked to the red color locus and found a region that displays an almost perfect genotype by pheno-
type association across four species in the genus Heliconius

Let’s consider a model butterfly species with mean wingspan µ0 = 10 cm and a mimic species with mean wingspan
µ1 = 7 cm. For both species, the wingspans have standard deviation σ0 = 3 cm. Collect 16 specimen to decide if the
mimic species has migrated into a given region. If we assume, for the null hypothesis, that the habitat under study is
populated by the model species, then

• a type I error is falsely concluding that the species is the mimic when indeed the model species is resident and

• a type II error is falsely concluding that the species is the model when indeed the mimic species has invaded.

If our action is to begin an eradication program if the mimic has invaded, then a type I error would result in the
eradication of the resident model species and a type II error would result in the letting the invasion by the mimic take
its course.
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To begin, we set a significance level. The choice of an α = 0.05 test means that we are accepting a 5% chance of
having this error. If the goal is to design a test that has the lowest type II error probability, then the Neyman-Pearson
lemma tells us that the critical region is determined by a threshold level kα for the likelihood ratio.

C =

{
x;
L(µ1|x)

L(µ0|x)
≥ kα

}
.

We next move to see how this critical region is determined.

Example 17.4. LetX = (X1, . . . , Xn) be independent normal observations with unknown mean and known variance
σ2

0 . The hypothesis is
H0 : µ = µ0 versus H1 : µ = µ1. (17.2)

For the moment consider the case in which µ1 < µ0. We look to determine the critical region.

L(µ1|x)

L(µ0|x)
=

1√
2πσ2

0

exp− (x1−µ1)2

2σ2
0
· · · 1√

2πσ2
0

exp− (xn−µ1)2

2σ2
0

1√
2πσ2

0

exp− (x1−µ0)2

2σ2
0
· · · 1√

2πσ2
0

exp− (xn−µ1)2

2σ2
0

=
exp− 1

2σ2
0

∑n
i=1(xi − µ1)2

exp− 1
2σ2

0

∑n
i=1(xi − µ0)2

= exp− 1

2σ2
0

n∑

i=1

(
(xi − µ1)2 − (xi − µ0)2

)

= exp−µ0 − µ1

2σ2
0

n∑

i=1

(2xi − µ1 − µ0)

Because the exponential function is increasing, the likelihood ratio test (17.1) is equivalent to

µ1 − µ0

2σ2
0

n∑

i=1

(2xi − µ1 − µ0), (17.3)

exceeding some critical value. Continuing to simplify, this is equivalent to x̄ bounded by some critical value,

x̄ ≤ k̃α,

where k̃α is chosen to satisfy
Pµ0{X̄ ≤ k̃α} = α.

(Note that division by the negative number µ1 − µ0 reverses the direction of the inequality.) Pay particular attention
to the fact that the probability is computed under the null hypothesis specifying the mean to be µ0. In this case, X̄ is
N(µ0, σ0/

√
n) and consequently the standardized version of X̄ ,

Z =
X̄ − µ0

σ0/
√
n
, (17.4)

is a standard normal. Set zα so that P{Z ≤ −zα} = α. (This can be determined in R using the qnorm command.)
Then, by rearranging (17.4), we can determine k̃α.

X̄ ≤ µ0 − zα
σ0√
n

= k̃α.

.
Equivalently, we can use the standardized score Z as our test statistic and −zα as the critical value. Note that the

only role played by µ1, the value of the mean under the alternative, is that is less than µ0. However, it will play a role
in determining the power of the test.
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Exercise 17.5. In the example above, give the value of k̃α explicitly in terms of kα, µ0, µ1, σ
2
0 and n.

Returning to the example of the model and mimic bird species, we now see, by the Neyman-Person lemma that
the critical region can be defined as

C =
{
x; x̄ ≤ k̃α

}
=

{
x;
x̄− µ0

σ/
√
n
≤ −zα

}
.

Under the null hypothesis, X̄ has a normal distribution with mean µ0 = 10 and standard deviation σ/
√
n = 3/4.

This using the distribution function of the normal we can find either k̃α

> qnorm(0.05,10,3/4)
[1] 8.76636

or −zα,

> qnorm(0.05)
[1] -1.644854

Thus, the critical value is k̃α = 8.767 for the test statistic x̄ and −zα = −1.645 for the test statistic z. Now let’s
look at data.

> x
[1] 8.9 2.4 12.1 10.0 9.2 3.7 13.9 9.1 8.8 6.3 12.1 11.0 12.5 4.5 8.2 10.2

> mean(x)
[1] 8.93125

Then
x̄ = 8.931 z =

8.93124− 10

3/
√

16
= −1.425.

k̃α = 8.766 < 8.931 or −zα = −1.645 < −1.425 and we fail to reject the null hypothesis.

Exercise 17.6. Modify the calculations in the example above to show that for the case µ0 < µ1, using the same value
of zα as above, the we reject the null hypothesis precisely when

X̄ ≥ µ0 + zα
σ0√
n
. or Z ≥ zα

Exercise 17.7. Give an intuitive explanation why the power should

• increase as a function of |µ1 − µ0|,
• decrease as a function of σ2

0 , and

• increase as a function of n.

Next we determine the type II error probability for the situation given by the previous exercise. We will be guided
by the fact that

X̄ − µ1

σ0/
√
n

is a standard normal random variable for the case that the alternative hypothesis, H1 : µ = µ1, is true.
For µ1 > µ0, we find that the type II error probability

β = Pµ1
{X /∈ C} = Pµ1

{X̄ < µ0 + zα
σ0√
n
}

= Pµ1

{
X̄ − µ1

σ0/
√
n
< zα −

|µ1 − µ0|
σ0/
√
n

}
= Φ

(
zα −

|µ1 − µ0|
σ0/
√
n

)

and the power

1− β = 1− Φ

(
zα +

|µ1 − µ0|
σ0/
√
n

)
(17.5)
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Exercise 17.8. For sample size determination for the simple hypothesis (17.2) show that n∗, the number of observa-
tions to obtain type I error probability α and type II error probability β must satisfy

n∗ ≥ σ2
0

(µ1 − µ0)2
(zα + zβ)2.
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Figure 17.3: Sample size determination for the simple hy-
pothesis (17.2) . Minimum sample sample size versus
power for significance level α = 0.10 (black), 0.05 (red),
0.02 (purple), and 0.01 (blue).

Notice that n∗

• decreases as a function of |µ1 − µ0|,
• increases as a function of σ2

0 , and

• decreases as a function of α and β. In other words, n∗

increases as we decrease either type I or type II error.

Exercise 17.9. Modify the calculations of power in (17.5)
above to show that for the case µ1 < µ0 to show that

1− β = Φ

(
−zα −

µ1 − µ0

σ0/
√
n

)
. (17.6)

A type II error is falsely failing to conclude that the mimic
species have inhabited the study area when indeed they have.
To compute the probability of a type II error, note that for α =
0.05, we substitute into (17.6),

−zα +
µ0 − µ1

σ0/
√
n

= −1.645 +
3

3/
√

16
= 2.355
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Figure 17.4: Left: (black) Density of X̄ for normal data under the null hypothesis - µ0 = 10 and σ0/
√
n = 3/

√
16 = 3/4. With an α = 0.05

level test, the critical value k̃α = µ0 − zασ0/
√
n = 8.766. Thus, the area to the left of the vertical dashed line and below the black density

function is the significance level α = Pµ0{X̄ ≤ kα}. The alternatives shown are µ1 = 9 and 8 (in blue) and µ1 = 7 (in red). The areas below
these curves and to the left of the dashed line is the power 1 − β = Pµ1{X̄ ≤ kα}. These values are 0.3777, 0.8466, and 0.9907 for respective
alternatives µ1 = 9, 8 and 7. Right: The corresponding receiver operating characteristics curves of the power 1−β versus the significance α using
equation (17.6). The power for an α = 0.05 test are indicated by the intersection of vertical dashed line and the receiver operating characteristics
curves.
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Figure 17.5: Power as a function of the number of observations for an α = 0.01 level test. The null hypothesis - µ0 = 10. The alternatives shown
are µ1 = 9 and 8 (in blue) and µ1 = 7 (in red). Here σ0 = 3. The low level for α is chosen to reflect the desire to have a stringent criterion for
rejecting the null hypothesis that the resident species is the model species.

> pnorm(2.355)
[1] 0.9907386

and the type II error probability is β = 1− 0.9907 = 0.0093, a bit under 1%.
Let’s expand the examination of equation (17.6). As we move the alternative value µ1 downward, the density of

X̄ moves leftward. The values for µ1 = 9, 8, and 7 are displayed on the left in Figure 17.4. This shift in the values is
a way of saying that the alternative is becoming more and more distinct as µ1 decreases. The mimic species becomes
easier and easier to detect. We express this by showing that the test is more and more powerful with decreasing values
of µ1. This is displayed by the increasing area under the density curve to the left of the dashed line from 0.377 for
the alternative µ1 = 9 to 0.9907 for µ1 = 7. We can also see this relationship in the receiver operating characteristic
graphed, the graph of the power 1− β versus the significance α. This is displayed for the significance level α = 0.05
by the dashed line.

Exercise 17.10. Determine the power of the test for µ0 = 10 cm and µ1 = 9, 8, and 7 cm with the significance level
α = 0.01. Does the power increase or decrease from its value when α = 0.01? Explain your answer. How would the
graphs in Figure 17.4 be altered to show this case?

Often, we wish to know in advance the number of observations n needed to obtain a given power. In this case,
we use (17.5) with a fixed value of α, the size of the test, and determine the power of the test as a function of n. We
display this in Figure 17.5 with the value of α = 0.01. Notice how the number of observations needed to achieve a
desired power is high when the wingspan of the mimic species is close to that of the model species.

The example above is called the z-test. If n is sufficiently large, then even if the data are not normally distributed,
X̄ is well approximated by a normal distribution and, as long as the variance σ2

0 is known, the z-test is used in this
case. In addition, the z-test can be used when g(X̄1, . . . , X̄n) can be approximated by a normal distribution using the
delta method.

Example 17.11 (Bernoulli trials). Here X = (X1, . . . , Xn) is a sequence of Bernoulli trials with unknown success
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probability p, the likelihood

L(p|x) = px1(1− p)1−x1 · · · pxn(1− p)1−xn = px1+···+xn(1− p)n−(x1+···+xn)

= (1− p)n
(

p

1− p

)x1+···+xn

For the test
H0 : p = p0 versus H1 : p = p1

the likelihood ratio
L(p1|x)

L(p0|x)
=

(
1− p1

1− p0

)n((
p1

1− p1

)/( p0

1− p0

))x1+···+xn
. (17.7)

Exercise 17.12. Show that the likelihood ratio (17.7) results in a test to reject H0 whenever
n∑

i=1

xi ≥ k̃α when p0 < p1 or
n∑

i=1

xi ≤ k̃α when p0 > p1. (17.8)

In words, if the alternative is a higher proportion than the null hypothesis, we reject H0 when the data have too
many successes. If the alternative is lower than the null, we eject H0 when the data do not have enough successes .

In either situation, the number of successesN =
∑n
i=1Xi has aBin(n, p0) distribution under the null hypothesis.

Thus, in the case p0 < p1, we choose k̃α so that

Pp0

{
n∑

i=1

Xi ≥ k̃α
}
≤ α. (17.9)

In general, we cannot choose kα to obtain exactly the value α. Thus, we take the minimum value of kα to achieve the
inequality in (17.9).

To give a concrete example take p0 = 0.6 and n = 20 and look at a part of the cumulative distribution function.

x · · · 13 14 15 16 17 18 19 20
FN (x) = P{N ≤ x} · · · 0.7500 0.8744 0.9491 0.9840 0.9964 0.9994 0.99996 1

If we take α = 0.05, then

P{N ≥ 16} = 1− P{N ≤ 15} = 1− 0.9491 = 0.0509 > 0.05

P{N ≥ 17} = 1− P{N ≤ 16} = 1− 0.9840 = 0.0160 < 0.05

Consequently, we need to have at least 17 successes in order to reject H0.

Exercise 17.13. Find the critical region in the example above for α = 0.10 and α = 0.01. For what values of α is
C = {16, 17, 18, 19, 20} a critical region for the likelihood ratio test.

Example 17.14. If np0 and n(1− p0) are sufficiently large, then, by the central limit theorem,
∑n
i=1Xi has approxi-

mately a normal distribution. If we write the sample proportion

p̂ =
1

n

n∑

i=1

Xi,

then, under the null hypothesis, we can apply the central limit theorem to see that

Z =
p̂− p0√

p0(1− p0)/n

is approximately a standard normal random variable and we perform the z-test as in the previous exercise.
For example, if we take p0 = 1/2 and p1 = 3/5 and α = 0.05, then with 110 heads in 200 coin tosses

Z =
0.55− 0.50

0.05/
√

2
=
√

2.
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> qnorm(0.95)
[1] 1.644854

Thus,
√

2 < 1.645 = z0.05 and we fail to reject the null hypothesis.

Example 17.15. Honey bees store honey for the winter. This honey serves both as nourishment and insulation from
the cold. Typically for a given region, the probability of survival of a feral bee hive over the winter is p0 = 0.7. We
are checking to see if, for a particularly mild winter, this probability moved up to p1 = 0.8. This leads us to consider
the hypotheses

H0 : p = p0 versus H1 : p = p1.

for a test of the probability that a feral bee hive survives a winter. If we use the central limit theorem, then, under the
null hypothesis,

z =
p̂− p0√

p0(1− p0)/n

has a distribution approximately that of a standard normal random variable. For an α level test, the critical value is
zα where α is the probability that a standard normal is at least zα. If the significance level is α = 0.05, then we will
reject H0 for any value of z > zα = 1.645

For this study, 112 colonies have been chosen and 88 survive. Thus p̂ = 0.7875 and

z =
0.7875− 0.7√

0.7(1− 0.7)/112
= 1.979.

Consequently, reject H0.

For both of these previous examples, the usual method is to compute the z-score with the continuity correction.
We shall soon see this with the use of prop.test in R.

17.4 Summary

For a simple hypothesis
H0 : θ = θ0 versus H1 : θ = θ1.

we have two possible action, reject H0 and fail to reject H0, this leads to two possible types of errors

error probability alternative names
type I α = Pθ0{reject H0} level significance false positive
type II β = Pθ1{fail to reject H0} false negative

The probability 1 − β = Pθ1{reject H0} is called the true positive probability or power or sensitivity. The
probability 1− α = Pθ0{fail to reject H0} is called the specificity.

The procedure is to set a significance level α and find a critical region C so that the type II error probability is as
small as possible. The Neyman-Pearson lemma lets us know that in many cases the critical region is determined by
setting a level kα for the likelihood ratio.

C =

{
x;
L(θ1|x)

L(θ0|x)
≥ kα

}

We continue, showing the procedure in the examples above.
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normal observations µ1 ≥ µ0 Bernoulli trials p1 > p0

Simplify likelihood ratio to obtain a x̄
∑n

i=1 xi
test statistic T (x) z = x̄−µ0

σ0/
√
n

Use the distribution of T (x) under X̄ ∼ N(µ0, σ0/
√
n)

∑n
i=1Xi ∼ Bin(n, p0)

H0 to set a critical value k̃α so that Z ∼ N(0, 1)

Pθ0{T (X) ≥ k̃α} = α

Determine type II error probability Pµ1{X̄ ≥ k̃α} Pp1{
∑n

i=1Xi ≥ k̃α}
β = Pθ1{T (X) ≥ k̃α}

17.5 Proof of the Neyman-Pearson Lemma
For completeness in exposition, we include a proof of the Neyman-Pearson lemma.

Let C be the α critical region determined by the likelihood ratio test. In addition, let C∗ be a critical region for a
second test of size α. In symbols,

Pθ0{X ∈ C∗} = Pθ0{X ∈ C} = α (17.10)

As before, we use the symbols β and β∗ denote, respectively, the probability of type II error for the critical regions C
and C∗ respectively. The Neyman-Pearson lemma is the statement that β∗ ≥ β.

Divide both critical regionsC andC∗ into two disjoint subsets, the subset that the critical regions share S = C∩C∗
and the subsets E = C\C∗ and E∗ = C∗\C that are exclusive to one region. In symbols, we write this as the disjoint
unions

C = S ∪ E, and C∗ = S ∪ E∗.
Thus under either parameter value θi, i = 1, 2,

Pθi{X ∈ C} = Pθi{X ∈ S}+ Pθi{X ∈ E} and Pθi{X ∈ C∗} = Pθi{X ∈ S}+ Pθi{X ∈ E∗}.

(See Figure 17.5)
First, we will describe the proof in words.
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Figure 17.6: Critical region C as determined by the Neyman-Pearson lemma is indicated by the circle on the left. The circle on the right C∗ is the
critical region is for a second α level test. Thus, C = S ∪ E and C∗ = S ∪ E∗.
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• The contribution to type I errors from data in S and for type II errors from data outside E ∪E∗ are the same for
both tests. Consequently, we can focus on differences in types of error by examining the case in which the data
land in either E and E∗.

• Because both test have level α, the probability that the data land in E or in E∗ are the same under the null
hypothesis.

• Under the likelihood ratio critical region, the null hypothesis is not rejected in E∗.

• Under the second test, the null hypothesis is not rejected in E.

• E∗ is outside likelihood ratio critical region. So, under the alternative hypothesis, the probability that the data
land in E∗ is at most kα times as large as it is under the null hypothesis. This contributes to the type II error for
the likelihood ratio based test.

• E is in the likelihood ratio critical region. So, under the alternative hypothesis, the probability that the data land
in E is at least kα times as large as it is under the null hypothesis. This contributes a larger amount to the type
II error for the second test than is added from E∗ to the likelihood ratio based test.

• Thus, the type II error for the likelihood ratio based test is smaller than the type II error for the second test.

To carry out the proof, first consider the parameter value θ0 and subtract from both sides in (17.10) the probability
Pθ0{X ∈ S} that the data land in the shared critical regions and thus would be rejected by both tests to obtain

Pθ0{X ∈ E∗} ≥ Pθ0{X ∈ E}

or
Pθ0{X ∈ E∗} − Pθ0{X ∈ E} ≥ 0. (17.11)

Moving to the parameter value θ1, the difference in the corresponding type II error probabilities is

β∗ − β = Pθ1{X /∈ C∗} − Pθ1{X /∈ C}
= (1− Pθ1{X ∈ C∗})− (1− Pθ1{X ∈ C}) = Pθ1{X ∈ C} − Pθ1{X ∈ C∗}.

Now subtract from both of the integrals the quantity Pθ1{X ∈ S}, the probability that the hypothesis would be falsely
rejected by both tests to obtain

β∗ − β = Pθ1{X ∈ E} − Pθ1{X ∈ E∗} (17.12)

We can use the likelihood ratio criterion on each of the two integrals above.

• For x ∈ E, then x is in the critical region and consequently L(θ1|x) ≥ kαL(θ0|x) and

Pθ1{X ∈ E} =

∫

E

L(θ1|x) dx ≥ kα
∫

E

L(θ0|x) dx = kαPθ0{X ∈ E}.

• For x ∈ E∗, then x is not in the critical region and consequently L(θ1|x) ≤ kαL(θ0|x) and

Pθ1{X ∈ E∗} =

∫

E∗
L(θ1|x) dx ≤ kα

∫

E∗
L(θ0|x) dx = kαPθ0{X ∈ E∗}.

Apply these two inequalities to (17.12)

β∗ − β ≥ kα(Pθ0{X ∈ E∗} − Pθ0{X ∈ E}).

This difference is at least 0 by (17.11) and consequently β∗ ≥ β, i. e., the critical region C∗ has at least as large type
II error probability as that given by the likelihood ratio test.

NB. The integral will be placed by sums in the case of discrete random variables. For those who know some measure
theory, we can maintain the inequalities above if the integral is taken with respect to some reference measure µ.
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17.6 An Brief Introduction to the Bayesian Approach
As with other aspects of the Bayesian approach to statistics, hypothesis testing is closely aligned with Bayes theorem.
For a simple hypothesis, we begin with a prior probability for each of the competing hypotheses.

π{θ0} = P{H0 is true} and π{θ1} = P{H1 is true}.
Naturally, π{θ0} + π{θ1} = 1. Although this is easy to state, the choice of a prior ought to be grounded in solid
scientific reasoning.

As before, we collect data and with it compute the posterior probabilities of the two parameter values θ0 and θ1.
This gives us the posterior probabilities that H0 is true and H1 is true.

We can see, in its formulation, the wide difference in perspective between the Bayesian and classical approaches.

• In the Bayesian approach, we begin with a prior probability that H0 is true. In the classical approach, the
assumption is that H0 is true.

• In the Bayesian approach, we use the data and Bayes formula to compute the posterior probability that H1 is
true. In the classical approach, we use the data and a significance level to make a decision to reject H0. The
question: What is the probability that H1 is true? has no meaning in the classical setting.

• The decision to reject H0 in the Bayesian setting is based on minimizing risk using presumed losses for type
I and type II errors. In classical statistics, the choice of type I error probability is used to construct a critical
region. This choice is made with a view to making the type II error probability as small as possible. We reject
H0 whenever the data fall in the critical region.

Both approaches use as a basic concept, the likelihood function L(θ|x) for the data x. Let Θ̃ be a random variable
taking on one of the two values θ0, θ1 and having a distribution equal to the prior probability π. Thus,

π{θi} = P{Θ̃ = θi}, i = 0, 1.

Recall Bayes formula for events A and C,

P (C|A) =
P (A|C)P (C)

P (A|C)P (C) + P (A|Cc)P (Cc)
, (17.13)

we set C to be the event that the alternative hypothesis is true and A to be the event that the data take on the value x.
In symbols,

C = {Θ̃ = θ1} = {H1 is true} and A = {X = x}.
Focus for the moment on the case in which the data are discrete, we have the conditional probabilities for the alternative
hypothesis.

P (A|C) = Pθ1{X = x} = fX(x|θ1) = L(θ1|x).

Similarly, for the null hypothesis,

P (A|Cc) = Pθ0{X = x} = fX(x|θ0) = L(θ0|x).

The posterior probability that H1 is true can be written symbolically in several ways.

fΘ̃|X(θ1|x) = P{H1 is true|X = x} = P{Θ̃ = θ1|X = x}

Returning to Bayes formula, we make the substitutions in (17.13),

fΘ̃|X(θ1|x) =
L(θ1|x)π{θ1}

L(θ0|x)π{θ0}+ L(θ1|x)π{θ1}
.
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By making a similar argument involving limits, we can reach the same identity for the density of continuous
random variables. The formula for the posterior probability can be more easily understood if we rewrite the expression
above in terms of odds, i. e., as the ratio of probabilities.

fΘ̃|X(θ1|x)

fΘ̃|X(θ0|x)
=
P{H1 is true|X = x}
P{H0 is true|X = x} =

P{Θ̃ = θ1|X = x}
P{Θ̃ = θ0|X = x}

=
L(θ1|x)

L(θ0|x)
· π{θ1}
π{θ0}

. (17.14)

With this expression we see that the posterior odds are equal to the likelihood ratio times the prior odds. In this case
the likelihood ratio is called the Bayes factor of H1 in favor of H0.

B =
L(θ1|x)

L(θ0|x)

(This is the reciprocal of the ratio used in the Neyman Pearson lemma. In general, pay particular attention to the choice
of numerator and denominator in this ratio.)

The decision whether or not to reject H0 depends on the values assigned for the loss obtained in making an
incorrect conclusion. We begin by setting values for the loss. This can be a serious exercise in which a group of
experts weighs the evidence for either adverse outcome. We will take a loss of 0 for making a correct decision, a loss
of `I for a type I error and `II for a type II error. We summarize this in a table.

loss function table
decision H0 is true H1 is true
H0 0 `II
H1 `I 0

The Bayes procedure is to make the decision that has the smaller posterior expected loss, also known as the risk.
If the decision is H0, the loss L0(x) takes on two values

L0(x) =

{
0 with probability P{H0 is true|X = x},
`II with probability P{H1 is true|X = x}.

The expected loss

EL0(x) = `IIP{H1 is true|X = x} = `II(1− P{H0 is true|X = x}) (17.15)

is simply the product of the loss and the probability of incorrectly choosing H1.
If the decision is H1, the loss L1(x) also takes on two values

L1(x) =

{
`I with probability P{H0 is true|X = x},
0 with probability P{H1 is true|X = x}.

In this case, the expected loss
EL1(x) = `IP{H0 is true|X = x} (17.16)

is a product of the loss and the probability of incorrectly choosing H0.
We can now express the Bayesian procedure in symbols using the criterion of smaller posterior expected loss:

decide on H1 if and only if EL1(x) ≤ EL0(x).

Now substituting for EL0(x) and EL1(x) in (17.15) and (17.16), we find that we make the decision on H1 and
reject H0 if and only if

`IP{H0 is true|X = x} ≤ `II(1− P{H0 is true|X = x})
(`I + `II)P{H0 is true|X = x} ≤ `II

P{H0 is true|X = x} ≤ `II
`I + `II
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or stated in terms of odds
P{H1 is true|X = x}
P{H0 is true|X = x} ≥

`I
`II
, (17.17)

we reject H0 whenever the posterior odds exceeds the ratio of the losses for each type of error.
As we saw in (17.14), this ratio of posterior odds is dependent on the ratio of prior odds. Taking this into account,

we see that the criterion for rejecting H0 is a level test for the likelihood ratio:
Reject H0 if and only if the Bayes factor

B =
L(θ1|x)

L(θ0|x)
≥ `I/π{θ1}
`II/π{θ0}

. (17.18)

This is exactly the same type of criterion as that used in classical statistics. However, the rationale, thus the value
for the ratio necessary to reject, is quite different. For example, the higher the value of the prior odds, the higher the
likelihood ratio needed to reject H0 under the Bayesian framework.

Example 17.16. For normal observations with means µ0 for the null hypothesis and µ1 for the alternative hypothesis.
If the variance has a known value, σ0, we have from Example 17.4, the likelihood ratio

L(µ1|x)

L(µ0|x)
= exp

µ1 − µ0

2σ2
0

n∑

i=1

(2xi − µ1 − µ0) = exp

(
µ1 − µ0

2σ2
0

n(2x̄− µ1 − µ0)

)
. (17.19)

For Example 17.3 on the model and mime butterfly species, µ0 = 10, µ1 = 7, σ0 = 3, and sample mean x̄ = 8.931
based on n = 16 observations, we find the likelihood ratio 0.1004. Thus,

P{H1 is true|X = x}
P{H0 is true|X = x} =

P{M̃ = µ1|X = x}
P{M̃ = µ0|X = x}

= 0.1004
π{µ1}
π{µ0}

.

where M̃ is a random variable having a distribution equal to the prior probability π for the model and mimic butterfly
wingspan. Consequently, the posterior odds for the mimic vs. mime species is approximately ten times the prior odds.

Finally, the decision will depend on the ratio of `II/`I, i. e., the ratio of the loss due to eradication of the resident
model species versus letting the invasion by the mimic take its course.

Exercise 17.17. Substitute the likelihood ratio in 17.19 into 17.18 and solve in terms of x̄. Use this to determine
threshold values for barx to reject H0 for prior probabilities π{µ0} = 0.05, 0.10, 0.20 and lost ratios `I/`II =
1/2, 1, 2. What situations give the lowest and highest threshold values for x̄? Explain your answer.

Exercise 17.18. Returning to a previous example, give the likelihood ratios for n = 20 Bernoulli trials with p0 = 0.6
and p1 = 0.7 for values x = 0, . . . , 20 for the number of successes. Give the values for the number of successes in
which the number of successes change the prior odds by a factor of 5 or more as given by the posterior odds.

17.7 Answers to Selected Exercises
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Figure 17.7: Receiver operating Charac-
teristic based on a biased coin toss. Thus,
any viable ROC should be above the line
the the graph.

17.2 Flip a biased coin in which the probability of heads is α under both the
null and alternative hypotheses and reject whenever heads turns up. Then

α = Pθ0{heads} = Pθ1{heads} = 1− β.

Thus, the receiver operating characteristic curve is the line through the origin
having slope 1.

17.4. The likelihood ratio

L(µ1|x)

L(µ0|x)
= exp−µ0 − µ1

2σ2
0

n∑

i=1

(2xi − µ1 − µ0) ≥ kα.
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Thus,
µ1−µ0

2σ2
0

∑n
i=1(2xi − µ1 − µ0) ≥ ln kα

∑n
i=1(2xi − µ1 − µ0) ≥ 2σ2

0

µ1−µ0
ln kα

2x̄− µ1 − µ0 ≤ 2σ2
0

n(µ1−µ0) ln kα

x̄ ≤ 1
2

(
2σ2

0

n(µ1−µ0) ln kα + µ1 + µ0

)
= k̃α

Notice that since µ1 < µ0, division by µ1 − µ0 changes the direction of the inequality.

17.6. If cα is the critical value in expression in (17.3) then

µ1 − µ0

2σ2
0

n∑

i=1

(2xi − µ1 − µ0) ≥ cα

SInce µ1 > µ0, division by µ1−µ0 does not change the direction of the inequality. The rest of the argument proceeds
as before. we obtain that x̄ ≥ k̃α.

17.7. If power means easier to distinguish using the data, then this is true when the means are farther apart, the
measurements are less variable or the number of measurements increases. This can be seen explicitly is the power
equation (17.5).
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Figure 17.8: Plot of standard normal density function
The value −zβ has lower tail probabiility β. (β = 0.05
is shown.)

17.8. We shall do the case µ1 > µ0. the other case is similar.
From equation (17.5),

β = Φ

(
zα −

|µ1 − µ0|
σ0/
√
n

)

The goal is to choose n so that the argument argument zα +
|µ1−µ0|
σ0/
√
n

has probability β. However, we have that −zβ has
lower tail probability β. In other words, β = Φ(−zβ). Be-
cause Φ, the cumulative distribution function for the standard
normal, is one-to-one,

−zβ = zα −
|µ1 − µ0|
σ0/
√
n

√
n
|µ1 − µ0|

σ0
= zα + zβ

√
n =

σ0

|µ1 − µ0|
(zα + zβ)

n =
σ2

0

(µ1 − µ0)2
(zα + zβ)2

Thus, n∗, any integer al least as large as nwill have the desired
type I and type II errors.

17.9. For µ0 > µ1,

β = Pµ1
{X /∈ C} = Pµ1

{X̄ > µ0 −
σ0√
n
zα}

= Pµ1

{
X̄ − µ1

σ0/
√
n
> −zα −

µ1 − µ0

σ0/
√
n

}
= 1− Φ

(
−zα −

µ1 − µ0

σ0/
√
n

)

and the power

1− β = Φ

(
−zα −

µ1 − µ0

σ0/
√
n

)
.
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17.10. Interpreting equation (17.5) in R, we find that

> mu0<-10;sigma0<-3;n<-16
> zalpha<-qnorm(0.99)
> mu1<-c(9,8,7)
> power<-1-pnorm(zalpha-abs(mu1-mu0)/(sigma0/sqrt(n)))
> data.frame(mu1,power)

mu1 power
1 9 0.1603514
2 8 0.6331918
3 7 0.9529005

Notice that the power has decreased from the case α = 0.05. This could be anticipated. In reducing the significance
level from α = 0.05 to α = 0.01, we make the criterion for rejecting more stringent by reducing he critical region C.
The effect can be seen in FIgure 17.4. On the left side figure, the vertical dashed line is moved left to reduce the area
under the black curve to the left of the dashed line. This, in turn, reduces the area under the other curves to the left of
the dashed line. On the right figure, the vertical dashed line is moved left to the value α = 0.01 and, because the ROC
curve is increasing, the values for the power decreased.

17.12. For the likelihood ratio (17.7), take the logarithm to obtain

ln

(
L(p1|x)

L(p0|x)

)
= n ln

(
1− p1

1− p0

)
+ (x1 + · · ·+ xn) ln

((
p1

1− p1

)/( p0

1− p0

))
≥ ln kα.

If p0 < p1 then the ratio in the expression for the logarithm in the second term is greater than 1 and consequently, the
logarithm is positive. Thus, we isolate the sum

∑n
i=1 xi to give the test (17.8). For p0 > p1, the logarithm is negative

and the direction of the inequality in (17.8) is reversed.

17.13. If we take α = 0.10, then

P{N ≥ 15} = 1− P{N ≤ 14} = 1− 0.8744 = 0.1256 > 0.10

P{N ≥ 16} = 1− P{N ≤ 15} = 1− 0.9491 = 0.0509 < 0.10

Consequently, we need to have at least 16 successes in order to reject H0. If we take α = 0.01, then

P{N ≥ 17} = 1− P{N ≤ 16} = 1− 0.9840 = 0.0160 > 0.01

P{N ≥ 18} = 1− P{N ≤ 17} = 1− 0.9964 = 0.0036 < 0.01

Consequently, we need to have at least 18 successes in order to reject H0. For C = {16, 17, 18, 19, 20},
P{N ∈ C} = 1− P{N ≤ 15} = 1− 0.9491 = 0.0509.

Thus, α must be less that 0.0509 for C to be a critical region. In addition, P{N ≥ 17} = 0.0160. Consequently, if
we take any value for α < 0.0160, then the critical region will be smaller than C.

17.17. Making the substitution of 17.19 into 17.18, we have

exp

(
µ0 − µ1

2σ2
0

n(2x̄− µ1 − µ0)

)
≤ `II/π{θ0}

`I/π{θ1}
µ0 − µ1

2σ2
0

n(2x̄− µ1 − µ0) ≤ ln

(
`II/π{θ0}
`I/π{θ1}

)

2x̄− µ1 − µ0 ≤
2σ2

0

n(µ0 − µ1)
ln

(
`II/π{θ0}
`I/π{θ1}

)

x̄ ≤ 1

2

(
2σ2

0

n(µ0 − µ1)
ln

(
`II/π{θ0}
`I/π{θ1}

)
+ µ1 + µ0

)
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> mu0<-10;mu1<-7;sigma<-3;n<-16
> pi0<-c(0.05,0.10,0.20)
> lr<-1/2
> threshold<-(2*sigmaˆ2/(n*(mu1-mu0))*log(lr*pi0/(1-pi0))+mu1+mu0)/2
> data.frame(pi0,threshold)

pi0 threshold
1 0.05 9.182047
2 0.10 9.041945
3 0.20 8.889895
> threshold<-(2*sigmaˆ2/(n*(mu1-mu0))*log(lr*pi0/(1-pi0))+mu1+mu0)/2
> data.frame(pi0,threshold)

pi0 threshold
1 0.05 9.052082
2 0.10 8.911980
3 0.20 8.759930
> lr<-2
> threshold<-(2*sigmaˆ2/(n*(mu1-mu0))*log(lr*pi0/(1-pi0))+mu1+mu0)/2
> data.frame(pi0,threshold)

pi0 threshold
1 0.05 8.922117
2 0.10 8.782015
3 0.20 8.629965
> lr<-1

The lowest threshold value x̄ = 8.62 is for the case π{θ0} = 0.20 and `I/`|I = 2. This is the highest prior probability
and the highest relative loss for a type I error. These both require stronger evidence to reject H0 and thus need a more
extreme and thus lower value for x̄ to reject H0.

The highest threshold value x̄ = 9.18 is for the case π{θ0} = 0.05 and `I/`II = 1/2. This is the lowest prior
probability and the lowest relative loss for a type I error. These both require less evidence to reject H0 and thus need
a less extreme and thus higher value for x̄ to reject H0.

17.19. Using the reciprocal likelihood ratio formula in Example 17.9, we compute the Bayes factor B for

> x<-c(0:20)
> n<-20
> p0<-0.6
> p1<-0.7
> B<-((1-p1)/(1-p0))ˆn*((p1/(1-p1))/(p0/(1-p0)))ˆx
> data.frame(x[1:7],B[1:7],x[8:14],B[8:14],x[15:21],B[15:21])

x.1.7. B.1.7. x.8.14. B.8.14. x.15.21. B.15.21.
1 0 0.003171212 7 0.06989143 14 1.540361
2 1 0.004932996 8 0.10872001 15 2.396118
3 2 0.007673550 9 0.16912001 16 3.727294
4 3 0.011936633 10 0.26307558 17 5.798013
5 4 0.018568096 11 0.40922867 18 9.019132
6 5 0.028883705 12 0.63657794 19 14.029761
7 6 0.044930208 13 0.99023235 20 21.824072

Thus, values x ≤ 9 increase the posterior odds in favor of H0 by a factor greater than 5 (B < 1/5), values x ≥ 17
increase the posterior odds in favor of H1 by a factor greater than 5 (B > 5).
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Topic 18

Composite Hypotheses

Simple hypotheses limit us to a decision between one of two possible states of nature. This limitation does not allow
us, under the procedures of hypothesis testing to address the basic question:

Does the length, the reaction rate, the fraction displaying a particular behavior or having a particular
opinion, the temperature, the kinetic energy, the Michaelis constant, the speed of light, mutation rate, the
melting point, the probability that the dominant allele is expressed, the elasticity, the force, the mass, the
parameter value θ0 increase, decrease or change at all under under a different experimental condition?

18.1 Partitioning the Parameter Space
This leads us to consider composite hypotheses. In this case, the parameter space Θ is divided into two disjoint
regions, Θ0 and Θ1. The hypothesis test is now written

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

Again, H0 is called the null hypothesis and H1 the alternative hypothesis.
For the three alternatives to the question posed above, let θ be one of the components in the parameter space, then

• increase would lead to the choices Θ0 = {θ; θ ≤ θ0} and Θ1 = {θ; θ > θ0},

• decrease would lead to the choices Θ0 = {θ; θ ≥ θ0} and Θ1 = {θ; θ < θ0}, and

• change would lead to the choices Θ0 = {θ0} and Θ1 = {θ; θ 6= θ0}

for some choice of parameter value θ0. The effect that we are meant to show, here the nature of the change, is contained
in Θ1. The first two options given above are called one-sided tests. The third is called a two-sided test,

Rejection and failure to reject the null hypothesis, critical regions, C, and type I and type II errors have the same
meaning for a composite hypotheses as it does with a simple hypothesis. Significance level and power will necessitate
an extension of the ideas for simple hypotheses.

18.2 The Power Function
Power is now a function of the parameter value θ. If our test is to reject H0 whenever the data fall in a critical region
C, then the power function is defined as

π(θ) = Pθ{X ∈ C}.
that gives the probability of rejecting the null hypothesis for a given value of the parameter.
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The ideal power function has

π(θ) ≈ 0 for all θ ∈ Θ0 and π(θ) ≈ 1 for all θ ∈ Θ1

With this property for the power function, we would rarely reject the null hypothesis when it is true and rarely fail to
reject the null hypothesis when it is false.

In reality, incorrect decisions are made. Thus, for θ ∈ Θ0,

π(θ) is the probability of making a type I error,

i.e., rejecting the null hypothesis when it is indeed true. For θ ∈ Θ1,

1− π(θ) is the probability of making a type II error,

i.e., failing to reject the null hypothesis when it is false.
The goal is to make the chance for error small. The traditional method is analogous to that employed in the

Neyman-Pearson lemma. Fix a (significance) level α, now defined to be the largest value of π(θ) in the region Θ0

defined by the null hypothesis. In other words, by focusing on the value of the parameter in Θ0 that is most likely to
result in an error, we insure that the probability of a type I error is no more that α irrespective of the value for θ ∈ Θ0.
Then, we look for a critical region that makes the power function as large as possible for values of the parameter
θ ∈ Θ1
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Figure 18.1: Power function for the one-sided test with alternative “greater”. The size of the test α is given by the height of the red segment.
Notice that π(µ) < α for all µ < µ0 and π(µ) > α for all µ > µ0

Example 18.1. Let X1, X2, . . . , Xn be independent N(µ, σ0) random variables with σ0 known and µ unknown. For
the composite hypothesis for the one-sided test

H0 : µ ≤ µ0 versus H1 : µ > µ0,

we use the test statistic from the likelihood ratio test and reject H0 if the statistic x̄ is too large. Thus, the critical
region

C = {x; x̄ ≥ k(µ0)}.
If µ is the true mean, then the power function

π(µ) = Pµ{X ∈ C} = Pµ{X̄ ≥ k(µ0)}.
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As we shall see soon, the value of k(µ0) depends on the level of the test.
As the actual mean µ increases, then the probability that the sample mean X̄ exceeds a particular value k(µ0) also

increases. In other words, π is an increasing function. Thus, the maximum value of π on the set Θ0 = {µ;µ ≤ µ0}
takes place for the value µ0. Consequently, to obtain level α for the hypothesis test, set

α = π(µ0) = Pµ0{X̄ ≥ k(µ0)}.

We now use this to find the value k(µ0). When µ0 is the value of the mean, we standardize to give a standard normal
random variable

Z =
X̄ − µ0

σ0/
√
n
.

Choose zα so that P{Z ≥ zα} = α. Thus

Pµ0
{Z ≥ zα} = Pµ0

{X̄ ≥ µ0 +
σ0√
n
zα}

and k(µ0) = µ0 + (σ0/
√
n)zα.

If µ is the true state of nature, then

Z =
X̄ − µ
σ0/
√
n

is a standard normal random variable. We use this fact to determine the power function for this test.

π(µ) = Pµ{X̄ ≥
σ0√
n
zα + µ0} = Pµ{X̄ − µ ≥

σ0√
n
zα − (µ− µ0)} (18.1)

= Pµ

{
X̄ − µ
σ0/
√
n
≥ zα −

µ− µ0

σ0/
√
n

}
= 1− Φ

(
zα −

µ− µ0

σ0/
√
n

)
(18.2)

where Φ is the distribution function for a standard normal random variable.
We have seen the expression above in several contexts.

• If we fix n, the number of observations and the alternative value µ = µ1 > µ0 and determine the power 1− β
as a function of the significance level α, then we have the receiver operating characteristic as in Figure 17.2.

• If we fix µ1 the alternative value and the significance level α, then we can determine the power as a function of
the number of observations as in Figure 17.3.

• If we fix n and the significance level α, then we can determine the power function π(µ), the power as a function
of the alternative value µ. An example of this function is shown in Figure 18.1.

Exercise 18.2. If the alternative is less than, show that

π(µ) = Φ

(
−zα −

µ− µ0

σ0/
√
n

)
.

Returning to the example with a model species and its mimic. For the plot of the power function for µ0 = 10,
σ0 = 3, and n = 16 observations,

> zalpha<-qnorm(0.95)
> mu0<-10
> sigma0<-3
> mu<-(600:1100)/100
> n<-16
> z<--zalpha - (mu-mu0)/(sigma0/sqrt(n))
> pi<-pnorm(z)
> plot(mu,pi,type="l")
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Figure 18.2: Power function for the one-sided test with alternative “less than”. µ0 = 10, σ0 = 3. Note, as argued in the text that π is a decreasing
function. (left) n = 16, α = 0.05 (black), 0.02 (red), and 0.01 (blue). Notice that lowering significance level α reduces power π(µ) for each value
of µ. (right) α = 0.05, n = 15 (black), 40 (red), and 100 (blue). Notice that increasing sample size n increases power π(µ) for each value of
µ ≤ µ0 and decreases type I error probability for each value of µ > µ0. For all 6 power curves, we have that π(µ0) = α.

In Figure 18.2, we vary the values of the significance level α and the values of n, the number of observations in
the graph of the power function π

Example 18.3 (mark and recapture). We may want to use mark and recapture as an experimental procedure to test
whether or not a population has reached a dangerously low level. The variables in mark and recapture are

• t be the number captured and tagged,

• k be the number in the second capture,

• r the the number in the second capture that are tagged, and let

• N be the total population.

If N0 is the level that a wildlife biologist say is dangerously low, then the natural hypothesis is one-sided.

H0 : N ≥ N0 versus H1 : N < N0.

The data are used to compute r, the number in the second capture that are tagged. The likelihood function for N is
the hypergeometric distribution,

L(N |r) =

(
t
r

)(
N−t
k−r
)

(
N
k

) .

The maximum likelihood estimate is N̂ = [tk/r]. Thus, higher values for r lead us to lower estimates for N . Let R be
the (random) number in the second capture that are tagged, then, for an α level test, we look for the minimum value
rα so that

π(N) = PN{R ≥ rα} ≤ α for all N ≥ N0. (18.3)

As N increases, then recaptures become less likely and the probability in (18.3) decreases. Thus, we should set the
value of rα according to the parameter value N0, the minimum value under the null hypothesis. Let’s determine rα
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for several values of α using the example from the topic, Maximum Likelihood Estimation, and consider the case in
which the critical population is N0 = 2000.

> N0<-2000; t<-200; k<-400
> alpha<-c(0.05,0.02,0.01)
> ralpha<-qhyper(1-alpha,t,N0-t,k)
> data.frame(alpha,ralpha)

alpha ralpha
1 0.05 49
2 0.02 51
3 0.01 53

For example, we must capture al least 49 that were tagged in order to reject H0 at the α = 0.05 level. In this case
the estimate for N is N̂ = [kt/rα] = 1632. As anticipated, rα increases and the critical regions shrinks as the value
of α decreases.

Using the level rα determined using the value N0 for N , we see that the power function

π(N) = PN{R ≥ rα}.
R is a hypergeometric random variable with mass function

fR(r) = PN{R = r} =

(
t
r

)(
N−t
k−r
)

(
N
k

) .

The plot for the case α = 0.05 is given using the R commands

> N<-c(1300:2100)
> pi<-1-phyper(49,t,N-t,k)
> plot(N,pi,type="l",ylim=c(0,1))

We can increase power by increasing the size of k, the number the value in the second capture. This increases the
value of rα. For α = 0.05, we have the table.

> k<-c(400,600,800)
> N0<-2000
> ralpha<-qhyper(0.95,t,N0-t,k)
> data.frame(k,ralpha)

k ralpha
1 400 49
2 600 70
3 800 91

We show the impact on power π(N) of both significance level α and the number in the recapture k in Figure 18.3.

Exercise 18.4. Determine the type II error rate for N = 1600 with

• k = 400 and α = 0.05, 0.02, and 0.01, and

• α = 0.05 and k = 400, 600, and 800.

Example 18.5. For a two-sided test

H0 : µ = µ0 versus H1 : µ 6= µ0.

In this case, the parameter values for the null hypothesis Θ0 consist of a single value, µ0. We reject H0 if |X̄ − µ0| is
too large. Under the null hypothesis,

Z =
X̄ − µ0

σ/
√
n
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Figure 18.3: Power function for Lincoln-Peterson mark and recapture test for population N0 = 2000 and t = 200 captured and tagged. (left)
k = 400 recaptured α = 0.05 (black), 0.02 (red), and 0.01 (blue). Notice that lower significance level α reduces power. (right) α = 0.05,
k = 400 (black), 600 (red), and 800 (blue). As expected, increased recapture size increases power.

is a standard normal random variable. For a significance level α, choose zα/2 so that

P{Z ≥ zα/2} = P{Z ≤ −zα/2} =
α

2
.

Thus, P{|Z| ≥ zα/2} = α. For data x = (x1, . . . , xn), this leads to a critical region

C =

{
x;
∣∣∣ x̄− µ0

σ/
√
n

∣∣∣ ≥ zα/2
}
.

If µ is the actual mean, then
X̄ − µ
σ0/
√
n

is a standard normal random variable. We use this fact to determine the power function for this test

π(µ) = Pµ{X ∈ C} = 1− Pµ{X /∈ C} = 1− Pµ
{∣∣∣X̄ − µ0

σ0/
√
n

∣∣∣ < zα/2

}

= 1− Pµ
{
−zα/2 <

X̄ − µ0

σ0/
√
n
< zα/2

}
= 1− Pµ

{
−zα/2 −

µ− µ0

σ0/
√
n
<
X̄ − µ
σ0/
√
n
< zα/2 −

µ− µ0

σ0/
√
n

}

= 1− Φ

(
zα/2 −

µ− µ0

σ0/
√
n

)
+ Φ

(
−zα/2 −

µ− µ0

σ0/
√
n

)

If we do not know if the mimic is larger or smaller that the model, then we use a two-sided test. Below is the R
commands for the power function with α = 0.05 and n = 16 observations.

> zalpha = qnorm(.975)
> mu0<-10
> sigma0<-3
> mu<-(600:1400)/100
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Figure 18.4: Power function for the two-sided test. µ0 = 10, σ0 = 3. (left) n = 16, α = 0.05 (black), 0.02 (red), and 0.01 (blue). Notice that
lower significance level α reduces power. (right) α = 0.05, n = 15 (black), 40 (red), and 100 (blue). As before, decreased significance level
reduces power and increased sample size n increases power.

> n<-16
> pi<-1-pnorm(zalpha-(mu-mu0)/(sigma0/sqrt(n)))

+pnorm(-zalpha-(mu-mu0)/(sigma0/sqrt(n)))
> plot(mu,pi,type="l")

We shall see in the the next topic how these tests follow from extensions of the likelihood ratio test for simple
hypotheses.

The next example is unlikely to occur in any genuine scientific situation. It is included because it allows us to
compute the power function explicitly from the distribution of the test statistic. We begin with an exercise.

Exercise 18.6. For X1, X2, . . . , Xn independent U(0, θ) random variables, θ ∈ Θ = (0,∞). The density

fX(x|θ) =

{
1
θ if 0 < x ≤ θ,
0 otherwise.

Let X(n) denote the maximum of X1, X2, . . . , Xn, then X(n) has distribution function

FX(n)
(x) = Pθ{X(n) ≤ x} =

(x
θ

)n
.

Example 18.7. For X1, X2, . . . , Xn independent U(0, θ) random variables, take the null hypothesis that θ lands in
some normal range of values [θL, θR]. The alternative is that θ lies outside the normal range.

H0 : θL ≤ θ ≤ θR versus H1 : θ < θL or θ > θR.

Because θ is the highest possible value for an observation, if any of our observations Xi are greater than θR, then
we are certain θ > θR and we should reject H0. On the other hand, all of the observations could be below θL and the
maximum possible value θ might still land in the normal range.

Consequently, we will try to base a test based on the statistic X(n) = max1≤i≤nXi and reject H0 if X(n) > θR
and too much smaller than θL, say θ̃. We shall soon see that the choice of θ̃ will depend on n the number of observations
and on α, the size of the test.
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The power function
π(θ) = Pθ{X(n) ≤ θ̃}+ Pθ{X(n) ≥ θR}

We compute the power function in three cases - low, middle and high values for the parameter θ. The second case
has the values of θ under the null hypothesis. The first and the third cases have the values for θ under the alternative
hypothesis. An example of the power function is shown in Figure 18.5.
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Figure 18.5: Power function for the test above with θL = 1, θR = 3, θ̃ = 0.9, and n = 10. The size of the test is π(1) = 0.3487.

Case 1. θ ≤ θ̃.
In this case all of the observations Xi must be less than θ which is in turn less than θ̃. Thus, X(n) is certainly less

than θ̃ and

Pθ{X(n) ≤ θ̃} = 1 and Pθ{X(n) ≥ θR} = 0

and therefore π(θ) = 1.

Case 2. θ̃ < θ ≤ θR.
Here X(n) can be less that θ̃ but never greater than θR.

Pθ{X(n) ≤ θ̃} =

(
θ̃

θ

)n
and Pθ{X(n) ≥ θR} = 0

and therefore π(θ) = (θ̃/θ)n.

Case 3. θ > θR.
Repeat the argument in Case 2 to conclude that

Pθ{X(n) ≤ θ̃} =

(
θ̃

θ

)n
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and that

Pθ{X(n) ≥ θR} = 1− Pθ{X(n) < θR} = 1−
(
θR
θ

)n

and therefore π(θ) = (θ̃/θ)n + 1− (θR/θ)
n.

The size of the test is the maximum value of the power function under the null hypothesis. This is case 2. Here, the
power function

π(θ) =

(
θ̃

θ

)n

decreases as a function of θ. Thus, its maximum value takes place at θL and

α = π(θL) =

(
θ̃

θL

)n

To achieve this level, we solve for θ̃, obtaining θ̃ = θL n
√
α. Note that θ̃ increases with α. Consequently, we must

expand the critical region in order to reduce the significance level. Also, θ̃ increases with n and we can reduce the
critical region while maintaining significance if we increase the sample size.

The assessment of statistical power is an important aspect of experimental design. In practical terms, we can
increase power by either increasing effort or asking a less stringent question. For example, we can increase effort

• (mathematics) by applying a more powerful test or a more rigorous design,

• (engineering) by designing a better measuring devise, reducing variance, or

• (exersion) by increasing sample size

We can ask a less stringent question

• by increasing the significance level and thus the ability to reject the null hypothesis or

• by increasing the difference between null value and the alternative value for detection of difference

These practical considerations will be useful in understanding the change in power resulting from a change in the
experimental design and hypothesis testing.

18.3 The p-value
The report of reject the null hypothesis does not describe the strength of the evidence because it fails to give us the sense
of whether or not a small change in the values in the data could have resulted in a different decision. Consequently,
one common method is not to choose, in advance, a significance level α of the test and then report “reject” or “fail to
reject”, but rather to report the value of the test statistic and to give all the values for α that would lead to the rejection
of H0. The p-value is the probability of obtaining a result at least as extreme as the one that was actually observed,
assuming that the null hypothesis is true. In this way, we provide an assessment of the strength of evidence against
H0. Consequently, a very low p-value indicates strong evidence against the null hypothesis.

Example 18.8. For the one-sided hypothesis test to see if the mimic had invaded,

H0 : µ ≥ µ0 versus H1 : µ < µ0.

with µ0 = 10 cm, σ0 = 3 cm and n = 16 observations. The test statistics is the sample mean x̄ and the critical region
is C = {x; x̄ ≤ k}
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Figure 18.6: Under the null hypothesis, X̄ has a normal distribution mean µ0 = 10 cm, standard deviation 3/
√

16 = 3/4 cm. The p-value,
0.077, is the area under the density curve to the left of the observed value of 8.931 for x̄, The critical value, 8.767, for an α = 0.05 level test is
indicated by the red line. Because the p-vlaue is greater than the significance level, we cannot reject H0.

Our data had sample mean x̄ = 8.93125 cm. The maximum value of the power function π(µ) for µ in the subset
of the parameter space determined by the null hypothesis occurs for µ = µ0. Consequently, the p-value is

Pµ0
{X̄ ≤ 8.93125}.

With the parameter value µ0 = 10 cm, X̄ has mean 10 cm and standard deviation 3/
√

16 = 3/4. We can compute
the p-value using R.

> pnorm(8.93125,10,3/4)
[1] 0.0770786

If the p-value is below a given significance level α, then we say that the result is statistically significant at the
level α. For the previous example, we could not have rejected H0 at the α = 0.05 significance level. Indeed, we
could not have rejected H0 at any level below the p-value, 0.0770786. On the other hand, we would reject H0 for any
significance level above this value.

Many statistical software packages (including R, see the example below) do not need to have the significance level
in order to perform a test procedure. This is especially important to note when setting up a hypothesis test for the
purpose of deciding whether or not to reject H0. In these circumstances, the significance level of a test is a value that
should be decided before the data are viewed. After the test is performed, a report of the p-value adds information
beyond simply saying that the results were or were not significant.

It is tempting to associate the p-value to a statement about the probability of the null or alternative hypothesis being
true. Such a statement would have to be based on knowing which value of the parameter is the true state of nature.
Assessing whether of not this parameter value is in Θ0 is the reason for the testing procedure and the p-value was
computed in knowledge of the data and our choice of Θ0.

In the example above, the test is based on having a test statistic S(x) (namely x̄) fall below a level kα, i.e., we
have decision

reject H0 if and only if S(x) ≤ kα.
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This choice of kα is based on the choice of significance level α and the choice of θ0 ∈ Θ0 so that π(θ0) = Pθ0{S(X) ≤
kα} = α, the lowest value for the power function under the null hypothesis. If the observed data x takes the value
S(x) = s, then the p-value equals

Pθ0{S(X) ≤ s}. (18.4)

This is the lowest value for the significance level that would result in rejection of the null hypothesis if we had chosen
it in advance of seeing the data.

Example 18.9. Returning to the example on the proportion of hives that survive the winter, the appropriate composite
hypothesis test to see if more that the usual normal of hives survive is

H0 : p ≤ 0.7 versus H1 : p > 0.7.

The R output shows a p-value of 3%.

> prop.test(88,112,0.7,alternative="greater")

1-sample proportions test with continuity correction

data: 88 out of 112, null probability 0.7
X-squared = 3.5208, df = 1, p-value = 0.0303
alternative hypothesis: true p is greater than 0.7
95 percent confidence interval:
0.7107807 1.0000000

sample estimates:
p

0.7857143

Exercise 18.10. Is the hypothesis test above significant at the 5% level? the 1% level?

In 2016, the American Statistical Association set for itself a task to make a statement on p-values. They note that
it is all too easy to set a test, create a test statistic and compute a p-value. Proper statistical practice is much more than
this and includes

• appropriately chosen techniques based on a thorough understanding of the phenomena under study,

• adequate visual and numerical summaries of the data,

• properly conducted analyses whose logic and quantitative approaches are clearly explained,

• correct interpretation of statistical results in context, and

• reproducibility of results via a thorough reporting.

Expressing a p-value is one of many approaches to summarize the results of a statistical investigation. The notion
is that the smaller the p-value, the greater the statistical incompatibility of the data with the null hypothesis. This
incompatibility is meant to cast doubt on the null hypothesis.

Under the logic of classical statistics, the p-value cannot be turned into a statement about the truth of the null
hypothesis but rather is a statement about the data in relation to a specified statistical model stated as a hypothesis
test. Moreover, the p-value is not meant to serve as a “bright line” between true and false. Part of this arises from the
pedogogy of introducing of hypothesis testing in setting a significance level α as a part of the test.

These issues are compounded in most scientific considerations where multiple hypothesis testing makes interpre-
tation of p-values difficult and calls on the authors for complete transparency of all statistical procedures including
data collection and hypothesis testing. In addition, even strong statistical evidence of the incompatibility of the data
with the null hypothesis may have very little practical or scientific meaning.

Many investigators engage in statistical analysis based on limited background and so often need to collaborate to
find other appropriate statistical approached to decision making under uncertainty. Some appear in this book, e.g.,
Bayes factors, likelihood ratios, and false discovery rates, but there are many others.
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18.4 Distribution of p-values and the Receiving Operating Characteristic
Let’s return to the case of a simple hypotheses.

H0 : θ = θ0 versus H1 : θ = θ1.

As before, for data x, let S(x) be a test statistic for this hypothesis, rejecting if the value of test statistic S(x) is
too low. If S(x) = s, the p-value is FS(X)(s|θ0) = Pθ0{S(X) ≤ s}. Recalling out introductory example on model
and mimic butterflies, the hypothesis on the mean wing span in centimeters, is

H0 : µ = µ0 versus H1 : µ = µ1.

In this situation, the test statistic S(X) = X̄ is N(µ0, σ/
√
n) under the null hypothesis. If the standard devia-

tion is sigma with n observations, using xbar to denote the sample mean, we find the p-value with the command
pnorm(xbar,mu0,sigma/sqrt(n)).

For a significance test at level α, there exists a critical value kα so that

α = Pθ0{S(X) ≤ kα} = FS(X)(kα|θ0)

and we reject the null hypothesis at level α if the value of the test statistic is below the critical value, i. e., s < kα. Thus,
for significance level alpha, we determine kα with the command qnorm(alpha,mu0,sigma/sqrt(n)).

For the parameter value θ1, the power

1− β(α) = Pθ1{S(X) ≤ kα}.

In other words, 1− β(α) is the probability, under the alternative parameter θ1 that the p-value is less than α.
Define FR(α) = 1 − β(α), then FR is a non-decreasing function on the interval [0, 1] with FR(0) = 0 and

FR(1) = 1. Thus, FR is a cumulative distribution function. Recall that the receiving operator characteristic is the
plot of the power as a function of significance. In other words, it is the plot FR(α).

Exercise 18.11. Show that the receiver operating characteristic gives the distribution function for the p-values for the
alternative parameter value θ1.

The area under the receiving operator characteristic, AUC,
∫ 1

0

FR(α) dα.

is a general diagnostic for the overall power of a test. If the AUC is nearly 1, then the power has the very desirable
property of increasing quickly for low significance levels.

Exercise 18.12. Let Si, i = 0, 1 be independent random variables that have the distributions of S(X) under θi. The
the area under the curve equals ∫ ∞

−∞
F1(s0)f0(s0) ds0 = P{S1 < S0}. (18.5)

In words, for two independent samples of the test statistic, one under the null hypothesis and the other under the
alternative, the area under the curve is the probability that the value under the alternative is smaller. We will see a
similar expression in an alternative approach to t procedures. This will leads to the Wilcoxon ranked sum test and an
interpretation associated to the area under the empirical receiving operator characteristic.

Exercise 18.13. For n = 16 observations, standard deviation σ = 3 and µ0 = 10 centimeters, determine the values
for the area under the receiver operator characteristics in Figure 17.3.

µ1 AUC
9 0.8271
8 0.9703
7 0.9977
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Hint: Use the integrate command for the integral in (18.5)

Notice that, as expected, as the difference µ0 − µ1 increases, the mimic and the model butterfly are easier to
distinguish and the AUC increases.

Exercise 18.14. Simulate P{S1 < S0} in the previous exercise and see how they match the values for the AUC.

18.5 Multiple Hypothesis Testing
We now consider testing multiple hypotheses. This is common in the world of “big data” with thousands of hypothesis
on many issues in subjects including genomics, internet searches, or financial transactions. For m hypotheses, let
p1, . . . , pm be the p-values for m hypothesis tests.

18.5.1 Familywise Error Rate
The familywise error rate (FWER) is the probability of making even one type I error. If we set αB for the significance
level for a single test, then the simplest strategy is to employ the Bonferroni correction. This uses the Bonferroni
inequality,

P (A1 ∪ · · · ∪Am) ≤ P (A1) + · · ·+ P (Am)

for events A1, . . . , Am.
If Ai is the event of rejecting the null hypothesis when it is true, then A1 ∪ · · · ∪ Am is the event that at least one

of the hypotheses is rejected when it is true. For each i, P (Ai) = αB and so α = P (A1 ∪ · · · ∪ Am) ≤ mαB . Thus,
the Bonferroni correction is to reject if

pi ≤
α

m
for all i.

Exercise 18.15. For m independent, αI level hypothesis tests, show that the familywise error α = 1 − (1 − αI)m.
Thus, (1− α)1/m = 1− αI and αI = 1− (1− α)1/m is the level necessary to obtain an α familywise error rate.

This gives a cautionary take, if we take α = 0.05 and m = 20, then the probability of one or more false positive
tests, 1 − (1 − 0.05)20 ≈ 0.64, is well above 1/2. The Bonferroni correction, αB = 0.05/20 = 0.0025 and the
independence correction, αI = 1− (1− 0.05)1/20 = 0.0256 will guarantee a familywise error rate α = 0.05

Note that the second method allows for slightly higher values of α than the Bonferroni correction. However, it is
far less general. For independent test statistics, Fisher’s method for testing multiple works directly with the p-values.
We begin with the following exercise.

Exercise 18.16. Let θ0 be the true state of nature. Assume that the distribution function for the text statistic S(X) is
continuous and strictly increasing for all possible values. Show that the p-value is uniformly distributed on the interval
[0, 1].

In this circumstance, if the null hypothesis is true for all m hypotheses, then

p1, . . . , pm are independent U(0, 1) random variables.

Recall from the use of the probability transform that

−2 ln p1, . . . ,−2 ln pm are independent Exp(1/2) random variables.

So their sum
−2 ln p1 − · · · − 2 ln pm is a Γ(1/2,m) random variable.

Thus this Γ random variable can serve as a test statistic for the multiple hypothesis that all the null hypotheses are
true, rejecting if the sum above is sufficiency large. Traditionally, we use the fact that Γ(1/2,m) is also a member of
the chi-square family, namely, χ2

2m and then use this as the distribution of −2 ln p1 − · · · − 2 ln pm under the multiple
hypothesis that all m null hypotheses hold.
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Example 18.17. For 10 independent test consider the p-values

> p
[1] 0.0086 0.0164 0.6891 0.7671 0.2967 0.5465 0.0247 0.8235 0.9603 0.0041

The test statistic for Fisher’s method

> -2*sum(log(p))
[1] 41.5113

gives a p-value of 0.3% for the multiple test for all 10 hypotheses.

> 1-pchisq(-2*sum(log(p)),2*10)
[1] 0.003200711

18.5.2 False Discovery Rate
When the number of tests becomes very large, then having all hypotheses true is an extremely strict criterion. A more
relaxed and often more valuable criterion is the false discovery rate..

Thus, we can model question Is the null hypothesis hypothesis true? as a sequence of Bernoulli trials. Let π0 be the
success parameter for the trials. Thus, with probability π0, the null hypothesis is true and the p-values follow FU , the
uniform distribution on the interval [0, 1]. With probability 1− π0, the null hypothesis is false and the p-values follow
FR, the distribution of the receiver operating characteristic. Taken together, we say that the p-values are distributed
according to the mixture

F (x) = πFU (x) + (1− π)FR(x) = π0x+ (1− π0)FR(x). (18.6)

Thus, if we reject whenever the p-value is below a chosen value α, then the type I error probability is α. From this
we determine the false discovery rate, here defined as

q = P{H0 is true|reject H0}.

Using Bayes formula

q =
P{reject H0|H0 is true}P{H0 is true}

P{reject H0}
=

απ0

F (α)
.
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Figure 18.7: False discovery rate versus π. Here the significance level α =
0.01, the power, β = 0.953.

An estimate of the false discovery rate can be
determined from an estimate of π0. This is deter-
mined by looking at the p-values and estimating
the mixture in (18.6).

Example 18.18. Consider a simple hypothesis

H0 : µ = 0 versus H1 : µ = 1.

for the mean µ based on 16 observations of nor-
mal random variable, variance 1. Thus, either the
effect is not present (µ = 0), or it is (µ = 1). If we
take the significance level α = 0.01, then based
on n = 16 observations, the test statistic X̄ has
standard deviation 1/

√
16 = 1/4,

> alpha<-0.01
> (kalpha<-qnorm(1-alpha,0,1/4))
[1] 0.581587
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and, thus, we reject H0 if the sample mean x̄ >
kα = 0.581587. The power, i.e.., the probability
that we reject H0 when H1 is true,

> (p_1<-1-pnorm(xbar,1,1/4))
[1] 0.9529005

If we plot the false discovery rate versus π0, the probability H0 is true, then

> pi<-seq(0,0.25,0.01)
> fdr<-alpha*pi0/(alpha*pi0+p_1*(1-pi))
> plot(pi0,fdr,type="l")

In this case, for π = 0.10, we have a false discovery rate q = 0.00116, For 10,000 hypothesis, we have a mean of
11.6 false discoveries.

18.6 Answers to Selected Exercises
18.2. In this case the critical regions is C = {x; x̄ ≤ k(µ0)} for some value k(µ0). To find this value, note that

Pµ0{Z ≤ −zα} = Pµ0{X̄ ≤ −
σ0√
n
zα + µ0}

and k(µ0) = −(σ0/
√
n)zα + µ0. The power function

π(µ) = Pµ{X̄ ≤ −
σ0√
n
zα + µ0} = Pµ{X̄ − µ ≤ −

σ0√
n
zα − (µ− µ0)}

= Pµ

{
X̄ − µ
σ0/
√
n
≤ −zα −

µ− µ0

σ0/
√
n

}
= Φ

(
−zα −

µ− µ0

σ0/
√
n

)
.

18.4. The type II error rate β is 1− π(1600) = P1600{R < rα}. This is the distribution function of a hypergeometric
random variable and thus these probabilities can be computed using the phyper command

• For varying significance, we have the R commands:

> t<-200;N<-1600
> k<-400
> alpha<-c(0.05,0.02,0.01)
> ralpha<-c(49,51,53)
> beta<-1-phyper(ralpha-1,t,N-t,k)
> data.frame(alpha,beta)

alpha beta
1 0.05 0.5993010
2 0.02 0.4609237
3 0.01 0.3281095

Notice that the type II error probability is high for α = 0.05 and increases as α decreases.

• For varying recapture size, we continue with the R commands:

> k<-c(400,600,800)
> ralpha<-c(49,70,91)
> beta<-1-phyper(ralpha-1,t,N-t,k)
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