
Topic 16

Interval Estimation

The form of this solution consists in determining certain intervals, which I propose to call the con-
fidence intervals..., in which we may assume are contained the values of the estimated characters of the
population, the probability of an error is a statement of this sort being equal to or less than 1− ε, where ε
is any number 0 < ε < 1, chosen in advance. The number ε I call the confidence coefficient. - Jerzy Ney-
man, 1934, On the Two Different Aspects of the Representative Method, Journal of the Royal Statistical
Society

Our strategy to estimation thus far has been to use a method to find an estimator, e.g., method of moments, or
maximum likelihood, and evaluate the quality of the estimator by evaluating its bias and the variance. Often, we
know more about the distribution of the estimator and this allows us to take a more comprehensive statement about the
estimation procedure.

Interval estimation is an exteneion to the variety of techniques we have examined. Given data x, we replace the
point estimate θ̂(x) for the parameter θ by a statistic that is subset Ĉ(x) of the parameter space. We will consider both
the classical and Bayesian approaches to choosing Ĉ(x). As we shall learn, the two approaches have very different
interpretations.

16.1 Classical Statistics
In this case, the random set Ĉ(X) is chosen to have a prescribed high probability, γ, of containing the true parameter
value θ. In symbols,

Pθ{θ ∈ Ĉ(X)} = γ.
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Figure 16.1: Upper tail critical values. α is the area under
the standard normal density and to the right of the vertical line
at critical value zα

In this case, the set Ĉ(x) is called a γ-level confidence set.
In the case of a one dimensional parameter set, the typical choice
of confidence set is a confidence interval

Ĉ(x) = (θ̂`(x), θ̂u(x)).

Often this interval takes the form

Ĉ(x) = (θ̂(x)−m(x), θ̂(x) +m(x)) = θ̂(x)±m(x)

where the two statistics,

• θ̂(x) is a point estimate, and

• m(x) is the margin of error.
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16.1.1 Means

Example 16.1 (1-sample z interval). IfX1.X2. . . . Xn are normal random variables with unknown mean µ but known
variance σ2

0 . Then,

Z =
X̄ − µ
σ0/
√
n

is a standard normal random variable. For any α between 0 and 1, choose zα so that

P{Z > zα} = α or equivalently P{Z ≤ zα} = 1− α.

The value is known as the upper tail probability with critical value zα. We can compute this in R using, for example

> qnorm(0.975)
[1] 1.959964

for α = 0.025.
If γ = 1− 2α, then α = (1− γ)/2. In this case, we have that

P{−zα < Z < zα} = γ.

Let µ0 is the state of nature. Taking in turn each the two inequalities in the line above and isolating µ0, we find that

X̄ − µ0

σ0/
√
n

= Z < zα

X̄ − µ0 < zα
σ0√
n

X̄ − zα
σ0√
n

< µ0

Similarly,
X̄ − µ0

σ0/
√
n

= Z > −zα

implies

µ0 < X̄ + zα
σ0√
n

Thus
X̄ − zα

σ0√
n
< µ0 < X̄ + zα

σ0√
n
.

has probability γ. Thus, for data x,

x̄± z(1−γ)/2
σ0√
n

is a confidence interval with confidence level γ. In this case,

µ̂(x) = x̄ is the estimate for the mean and m(x) = z(1−γ)/2σ0/
√
n is the margin of error.

We can use the z-interval above for the confidence interval for µ for data that is not necessarily normally dis-
tributed as long as the central limit theorem applies. For one population intervals for means, n > 30 and data not
strongly skewed is a good rule of thumb.
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Generally, the standard deviation is not known and must be estimated. So, let X1, X2, · · · , Xn be normal random
variables with unknown mean and unknown standard deviation. Let S2 be the unbiased sample variance. If we are
forced to replace the unknown variance σ2 with its unbiased estimate s2, then the statistic is known as t:

t =
x̄− µ
s/
√
n
.

The term s/
√
n which estimates the standard deviation of the sample mean is called the standard error. The

remarkable discovery by William Gossett is that the distribution of the t statistic can be determined exactly. Write

Tn−1 =

√
n(X̄ − µ)

S
.

Then, Gossett was able to establish the following three facts:

• The numerator is a standard normal random variable.

• The denominator is the square root of

S2 =
1

n− 1

n∑

i=1

(Xi − X̄)2.

This sum has chi-square distribution with n− 1 degrees of freedom.

• The numerator and denominator are independent.

With this, Gossett was able to compute the density of the t distribution with n − 1 degrees of freedom. Gossett,
who worked for the the brewery of Arthur Guinness in Dublin, was permitted to publish his results only if it appeared
under a pseudonym. Gosset chose the name Student, thus the distribution is sometimes known as Student’s t.
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Figure 16.2: The density and distribution function for a standard normal random variable (black) and a t random variable with 4 degrees of freedom
(red). The variance of the t distribution is df/(df − 2) = 4/(4− 2) = 2 is higher than the variance of a standard normal. This can be seen in the
broader shoulders of the t density function or in the smaller increases in the t distribution function away from the mean of 0.
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Figure 16.3: Upper critical values for the t confidence interval with γ = 0.90 (black), 0.95 (red), 0.98 (magenta) and 0.99 (blue) as a function of
df , the number of degrees of freedom. Note that these critical values decrease to the critical value for the z confidence interval and increases with
γ.

Again, for any α between 0 and 1, let upper tail probability tn−1,α satisfy

P{Tn−1 > tn−1,α} = α or equivalently P{Tn−1 ≤ tn−1,α} = 1− α.

We can compute this in R using, for example

> qt(0.975,12)
[1] 2.178813

for α = 0.025 and n− 1 = 12.

Example 16.2. For the data on the lengths of 200 Bacillus subtilis, we had a mean x̄ = 2.49 and standard deviation
s = 0.674. For a 96% confidence interval α = 0.02 and we type in R,

> qt(0.98,199)
[1] 2.067298

Thus, the interval is

2.490± 2.0674
0.674√

200
= 2.490± 0.099 or (2.391, 2.589)

Example 16.3. We can obtain the data for the Michaelson-Morley experiment using R by typing

> data(morley)

The data have 100 rows - 5 experiments (column 1) of 20 runs (column 2). The Speed is in column 3. The values
for speed are the amounts over 299,000 km/sec. Thus, a t-confidence interval will have 99 degrees of freedom. We can
see a histogram by writing hist(morley$Speed). To determine a 95% confidence interval, we find
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Figure 16.4: Measurements of the speed of light. Actual values are 299,000 kilometers per second plus the value shown.

> mean(morley$Speed)
[1] 852.4
> sd(morley$Speed)
[1] 79.01055
> qt(0.975,99)
[1] 1.984217

Thus, our confidence interval for the speed of light is

299, 852.4± 1.9842
79.0√
100

= 299, 852.4± 15.7 or the interval (299836.7, 299868.1)

This confidence interval does not include the presently determined values of 299,792.458 km/sec for the speed of light.
The confidence interval can also be found by tying t.test(morley$Speed). We will study this command in more
detail when we describe the t-test.

Exercise 16.4. Give a 90% and a 98% confidence interval for the example above.

We often wish to determine a sample size that will guarantee a desired margin of error. For a γ-level t-interval,
this is

m = tn−1,(1−γ)/2
s√
n
.

Solving this for n yields

n =

(
tn−1,(1−γ)/2 s

m

)2

.

Because the number of degrees of freedom, n − 1, for the t distribution is unknown, the quantity n appears on both
sides of the equation and the value of s is unknown. We search for a conservative value for n, i.e., a margin of error
that will be no greater that the desired length. This can be achieved by overestimating tn−1,(1−γ)/2 and s. For the
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speed of light example above, if we desire a margin of error of m = 10 km/sec for a 95% confidence interval, then we
set tn−1,(1−γ)/2 = 2 and s = 80 to obtain

n ≈
(

2 · 80

10

)2

= 256

measurements are necessary to obtain the desired margin of error..

The next set of confidence intervals are determined, in those case in which the distributional variance in known,
by finding the standardized score and using the normal approximation as given via the central limit theorem. In the
cases in which the variance is unknown, we replace the distribution variance with a variance that is estimated from the
observations. In this case, the procedure that is analogous to the standardized score is called the studentized score.

Example 16.5 (matched pair t interval). We begin with two quantitative measurements

(X1,1, . . . , X1,n) and (X2,1, . . . , X2,n),

on the same n individuals. Assume that the first set of measurements has mean µ1 and the second set has mean µ2.
If we want to determine a confidence interval for the difference µ1 − µ2, we can apply the t-procedure to the

differences
(X1,1 −X2,1, . . . , X1,n −X2,n)

to obtain the confidence interval

(X̄1 − X̄2)± tn−1,(1−γ)/2
Sd√
n

where Sd is the standard deviation of the difference.

Example 16.6 (2-sample z interval). If we have two independent samples of normal random variables

(X1,1, . . . , X1,n1
) and (X2,1, . . . , X2,n2

),

the first having mean µ1 and variance σ2
1 and the second having mean µ2 and variance σ2

2 , then the difference in their
sample means

X̄2 − X̄1

is also a normal random variable with

mean µ1 − µ2 and variance
σ2

1

n1
+
σ2

2

n2
.

Therefore,

Z =
(X̄1 − X̄2)− (µ1 − µ2)√

σ2
1

n1
+

σ2
2

n2

is a standard normal random variable. In the case in which the variances σ2
1 and σ2

2 are known, this gives us a γ-level
confidence interval for the difference in parameters µ1 − µ2.

(X̄1 − X̄2)± z(1−γ)/2

√
σ2

1

n1
+
σ2

2

n2
.

Example 16.7 (2-sample t interval). If we know that σ2
1 = σ2

2 , then we can pool the data to compute the standard
deviation. Let S2

1 and S2
2 be the sample variances from the two samples. Then the pooled sample variance Sp is the

weighted average of the sample variances with weights equal to their respective degrees of freedom.

S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2
.
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This gives a statistic

Tn1+n2−2 =
(X̄1 − X̄2)− (µ1 − µ2)

Sp

√
1
n1

+ 1
n2

that has a t distribution with n1 + n2 − 2 degrees of freedom. Thus we have the γ level confidence interval

(X̄1 − X̄2)± tn1+n2−2,(1−γ)/2Sp

√
1

n1
+

1

n2

for µ1 − µ2.
If we do not know that σ2

1 = σ2
2 , then the corresponding studentized random variable

T =
(X̄1 − X̄2)− (µ1 − µ2)√

S2
1

n1
+

S2
2

n2

no longer has a t-distribution.
Welch and Satterthwaite have provided an approximation to the t distribution with effective degrees of freedom

given by the Welch-Satterthwaite equation

ν =

(
s21
n1

+
s22
n2

)2

s41
n2
1·(n1−1)

+
s42

n2
2·(n2−1)

. (16.1)

This give a γ-level confidence interval

x̄1 − x̄2 ± tν,(1−γ/2

√
s2

1

n1
+
s2

2

n2
.

For two sample intervals, the number of observations per group may need to be at least 40 for a good approxima-
tion to the normal distribution.

Exercise 16.8. Show that the effective degrees is between the worst case of the minimum choice from a one sample
t-interval and the best case of equal variances.

min{n1, n2} − 1 ≤ ν ≤ n1 + n2 − 2

For data on the life span in days of 88 wildtype and 99 transgenic mosquitoes, we have the summary

standard
observations mean deviation

wildtype 88 20.784 12.99
transgenic 99 16.546 10.78

Using the conservative 95% confidence interval based on min{n1, n2} − 1 = 87 degrees of freedom, we use

> qt(0.975,87)
[1] 1.987608

to obtain the interval

(20.78− 16.55)± 1.9876

√
12.992

88
+

10.782

99
= (0.744, 7.733)

Using the the Welch-Satterthwaite equation, we obtain ν = 169.665. The increase in the number of degrees of
freedom gives a slightly narrower interval (0.768, 7.710).
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16.1.2 Linear Regression
For ordinary linear regression, we have given least squares estimates for the slope β and the intercept α. For data
(x1, y1), (x2, y2) . . . , (xn, yn), our model is

yi = α+ βxi + εi

where εi are independent N(0, σ) random variables. Recall that the estimator for the slope

β̂(x, y) =
cov(x, y)

var(x)

is unbiased.

Exercise 16.9. Show that

Var(α,β)(β̂) =
σ2

(n− 1)var(x)
.

Var(α,β)(α̂) = σ2

(
1

n
+

x̄2

(n− 1)var(x)

)
= σ2

(
(n− 1)var(x) + nx̄2

n(n− 1)var(x)

)
=

σ2x2

(n− 1)var(x)
,

and
Cov(α,β)(α̂, β̂) = −x̄Var(α,β)(β̂)

The last equality for Var(α,β)(α̂) uses formula (2.2) for the sample variance.

Notice that Var(α,β)(α̂) increases with the distance that the mean of the x values is from 0. The correlation

ρ(α,β)(α̂, β̂) =
Cov(α,β)(α̂, β̂)√

Var(α,β)(α̂)Var(α,β)(β̂)
= −x̄

√
Var(α,β)(β̂)

Var(α,β)(α̂)
= − x̄√

x2
,

which does not depend on the data. If the mean of the explanatory variable x̄ > 0, then α̂ and β̂ are negatively
correlated. For example, if we underestimate β̂ for β > 0, then the line is more shallow and we will likely overestimate
α̂.

Exercise 16.10. Explore the fact that the correlation between α̂ and β̂ does not depend on the data.

If σ is known, this suggests a z-interval for a γ-level confidence interval

β̂ ± z(1−γ)/2
σ

sx
√
n− 1

.

Generally, σ is unknown. However, the variance of the residuals,

s2
u =

1

n− 2

n∑

i=1

(yi − (α̂− β̂xi))2 (16.2)

is an unbiased estimator of σ2 and su/σ has a t distribution with n− 2 degrees of freedom. This gives the t-interval

β̂ ± tn−2,(1−γ)/2
su

sx
√
n− 1

.

As the formula shows, the margin of error is proportional to the standard deviation of the residuals. It is inversely
proportional to the standard deviation of the x measurement. Thus, we can reduce the margin of error by taking a
broader set of values for the explanatory variables.

For the data on the humerus and femur of the five specimens of Archeopteryx, we have β̂ = 1.197. su = 1.982,
sx = 13.2, and t3,0.025 = 3.1824, Thus, the 95% confidence interval is 1.197± 0.239 or (0.958, 1.436).
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16.1.3 Sample Proportions
Example 16.11 (proportions). For n Bernoulli trials with success parameter p, the sample proportion p̂ has

mean p and variance
p(1− p)

n
.

The parameter p appears in both the mean and in the variance. Thus, we need to make a choice p̃ to replace p in the
confidence interval

p̂± z(1−γ)/2

√
p̃(1− p̃)

n
. (16.3)

One simple choice for p̃ is simply to take the sample proportion p̂. Based on extensive numerical experimentation, one
more recent popular choice is

p̃ =
x+ 2

n+ 4

where x is the number of successes.
For population proportions, we ask that the mean number of successes np and the mean number of failures

n(1− p) each be at least 10. We have this requirement so that a normal random variable is a good approximation to
the appropriate binomial random variable.

Example 16.12. For Mendel’s data the F2 generation consisted 428 for the dominant allele green pods and 152 for
the recessive allele yellow pods. Thus, the sample proportion of green pod alleles is

p̂ =
428

428 + 152
= 0.7379.

The confidence interval, using

p̃ =
428 + 2

428 + 152 + 4
= 0.7363

is

0.7379± z(1−γ)/2

√
0.7363 · 0.2637

580
= 0.7379± 0.0183z(1−γ)/2

For γ = 0.98, z0.01 = 2.326 and the confidence interval is 0.7379 ± 0.0426 = (0.6953, 0.7805). Note that this
interval contains the predicted value of p = 3/4.

A comparable formula gives confidence intervals based on more than two independent samples

Example 16.13. For the difference in two proportions p1 and p2 based on n1 and n2 independent trials. We have, for
the difference p1 − p2, the confidence interval

p̂1 − p̂2 ±
√
p̂1(1− p̂1)

n1
+
p̂2(1− p̂2)

n2
.

Example 16.14 (transformation of a single parameter). If

(θ̂`, θ̂u)

is a level γ confidence interval for θ and g is an increasing function, then

(g(θ̂`), g(θ̂u))

is a level γ confidence interval for g(θ)

Exercise 16.15. For the example above, find the confidence interval for the yellow pod genotype.
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16.1.4 Summary of Standard Confidence Intervals
The confidence interval is an extension of the idea of a point estimation of the parameter to an interval that is likely to
contain the true parameter value. A level γ confidence interval for a population parameter θ is an interval computed
from the sample data having probability γ of producing an interval containing θ.

For an estimate of a population mean or proportion, a level γ confidence interval often has the form

estimate± t∗ × standard error

where t∗ is the upper 1−γ
2 critical value for the t distribution with the appropriate number of degrees of freedom. If

the number of degrees of freedom is infinite, we use the standard normal distribution to determine the critical value,
usually denoted by z∗.

The margin of error m = t∗ × standard error decreases if

• γ, the confidence level, decreases

• the standard deviation decreases

• n, the number of observations, increases

The procedures for finding the confidence interval are summarized in the table below.

procedure parameter estimate standard error degrees of freedom
one sample µ x̄ s√

n
n− 1

two sample µ1 − µ2 x̄1 − x̄2

√
s21
n1

+
s22
n2

See (16.1)

pooled two sample µ1 − µ2 x̄1 − x̄2 sp
√

1
n1

+ 1
n2

n1 + n2 − 2

one proportion p p̂
√

p̃(1−p̃)
n

, p̃ = x+2
n+4

∞
two proportion p1 − p2 p̂1 − p̂2

√
p̂1(1−p̂1)

n1
+ p̂2(1−p̂2)

n2
∞

linear regression β β̂ = cov(x, y)/var(x) su
sx
√
n−1

n− 2

The first confidence interval for µ1 − µ2 is the two-sample t procedure. If we can assume that the two samples
have a common standard deviation, then we pool the data to compute sp, the pooled standard deviation. Matched pair
procedures use a one sample procedure on the difference in the observed values.

For these intervals, we need a sample size large enough so that the central limit theorem is a sufficiently good
approximation. For one population tests for means, n > 30 and data not strongly skewed is a good rule of thumb. For
two population tests, 40 observations for each group may be necessary. For population proportions, we ask that the
mean number of successes np and the mean number of failures n(1− p) each be at least 10.

For the standard error for β̂ in linear regression, su is defined in (16.2) and sx is the standard deviation of the
values of the explanatory variable.

16.1.5 Interpretation of the Confidence Interval

The confidence interval for a parameter θ is based on two statistics - θ̂`(x), the lower end of the confidence interval
and θ̂u(x), the upper end of the confidence interval. As with all statistics, these two statistics cannot be based on the
value of the parameter. In addition, the formulas for these two statistics are determined in advance of having the actual
data. The term confidence can be related to the production of confidence intervals. We can think of the situation in
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Figure 16.5: One hundred confidence build from repeatedly simulating 100 standard normal random variables and constructing 95% confidence
intervals for the mean value - 0. Note that the 24th interval is entirely below 0 and so does not contain the actual parameter. The 11th, 80th and 91st
intervals are entirely above 0 and again do not contain the parameter.

which we produce independent confidence intervals repeatedly. Each time, we may either succeed or fail to include
the true parameter in the confidence interval. In other words, the inclusion of the parameter value in the confidence
interval is a Bernoulli trial with success probability γ.

For example, after having seen these 100 intervals in Figure 5, we can conclude that the lowest and highest intervals
are much less likely than 95% of containing the true parameter value. This phenomena can be seen in the presidential
polls for the 2012 election. Three days before the election we see the following spread between Mr. Obama and Mr.
Romney

0% -1% 0% 1% 5% 0% -5% -1% 1% 1%

with the 95% confidence interval having a margin of error ∼ 3% based on a sample of size ∼ 1000. Because these
values are highly dependent, the values of ±5% is less likely to contain the true spread.

Exercise 16.16. Perform the computations needed to determine the margin of error in the example above.

The following example, although never likely to be used in an actual problem, may shed some insight into the
difference between confidence and probability.
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Example 16.17. Let X1 and X2 be two independent observations from a uniform distribution on the interval [θ −
1, θ+ 1] where θ is an unknown parameter. In this case, an observation is greater than θ with probability 1/2, and less
than θ with probability 1/2. Thus,

• with probability 1/4, both observations are above θ,

• with probability 1/4, both observations are below θ, and

• with probability 1/2, one observation is below θ and the other is above.

In the third case alone, the confidence interval contains the parameter value. As a consequence of these considerations,
the interval

(θ̂`(X1, X2), θ̂u(X1, X2)) = (min{X1, X2},max{X1, X2})

is a 50% confidence interval for the parameter.
Sometimes, max{X1, X2} − min{X1, X2} > 1. Because any subinterval of the interval [θ − 1, θ + 1] that has

length at least 1 must contain θ, the midpoint of the interval, this confidence interval must contain the parameter value.
In other words, sometimes the 50% confidence interval is certain to contain the parameter.

Exercise 16.18. For the example above, show that

P{confidence interval has length > 1} = 1/4.

Hint: Draw the square [θ− 1, θ+ 1]× [θ− 1, θ+ 1] and shade the region in which the confidence interval has length
greater than 1.

16.1.6 Extensions on the Use of Confidence Intervals

Example 16.19 (delta method). For estimating the distribution µ by the sample mean X̄ , the delta method provides
an alternative for the example above. In this case, the standard deviation of g(X̄) is approximately

|g′(µ)|σ√
n

. (16.4)

We replace µ with X̄ to obtain the confidence interval for g(µ)

g(X̄)± zα/2
|g′(X̄)|σ√

n
.

Using the notation for the example of estimating α3, the coefficient of volume expansion based on independent
length measurements, Y1, Y2, . . . , Yn measured at temperature T1 of an object having length `0 at temperature T0.

Ȳ 3 − `30
`30|T1 − T0|

± z(1−γ)/2
3Ȳ 2σY
n

Exercise 16.20. Recall that the odds of an event having probability p is

ψ =
p

1− p . (16.5)

Use the delta method to show that

σ2
ψ̂
≈ ψ(ψ + 1)2

n
.

292



Introduction to the Science of Statistics Interval Estimation

In the example above on green peas,

ψ̂ =
p̂

1− p̂ =
0.7379

1− 0.7379
= 2.8153.

Using (16.4), we obtain a 98% confidence interval

ψ̂ ± z0.01

√
σ2
ψ̂
≈ 2.8153± 2.326

√
2.8153(1 + 2.8153)2

580
= (2.1970, 3.4337)

which includes the predicted value ψ = 3.
If we transform the 98% confidence interval (0.6953, 0.7805) for p to a confidence interval for the odds ψ using

the transformation (16.5), we obtain an interval (2.2819, 3.5558) that is slightly shifted upward from the confidence
interval obtained by the delta method.

For multiple independent samples, the simple idea using the transformation in the Example 12 no longer works.
For example, to determine the confidence interval using X̄1 and X̄2 above, the confidence interval for g(µ1, µ2), the
delta method gives the confidence interval

g(X̄1, X̄2)± z(1−γ)/2

√(
∂

∂x
g(X̄1, X̄2)

)2
σ2

1

n1
+

(
∂

∂y
g(X̄1, X̄2)

)2
σ2

2

n2
.

Example 16.21. Let’s return to the example of n` and nh measurements x and y of, respectively, the length ` and the
height h of a right triangle with the goal of giving the angle

θ = g(`, h) = tan−1

(
h

`

)

between these two sides. Here are the measurements:

> x
[1] 10.224484 10.061800 9.945213 9.982061 9.961353 10.173944 9.952279 9.855147
[9] 9.737811 9.956345

> y
[1] 4.989871 5.090002 5.021615 4.864633 5.024388 5.123419 5.033074 4.750892 4.985719

[10] 4.912719 5.027048 5.055755
> mean(x);sd(x)
[1] 9.985044
[1] 0.1417969
> mean(y);sd(y)
[1] 4.989928
[1] 0.1028745

The angle θ is the arctangent, here estimated using the mean and given in radians

>(thetahat<-atan(mean(y)/mean(x)))
[1] 0.4634398

Using the delta method, we have estimated the standard deviation of these measurements.

σθ̂ ≈
1

h2 + `2

√
h2
σ2
`

n`
+ `2

σ2
h

nh
.

We estimate this with the sample means and standard deviations

sθ̂ ≈
1

ȳ2 + x̄2

√
ȳ2
s2
x

n`
+ x̄2

s2
y

nh
= 0.0030.
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This gives a γ level z- confidence interval
θ̂ ± z(1−γ)/2sθ̂.

For a 95% confidence interval, this is 0.4634± 0.0059 = (0.4575, 0.4693) radians or (26.22◦, 26.89◦).
We can extend the Welch and Satterthwaite method to include the delta method to create a t-interval with effective

degrees of freedom

ν =

(
∂g(x̄,ȳ)2

∂x
s21
n1

+ ∂g(x̄,ȳ)2

∂y
s22
n2

)2

∂g(x̄,ȳ)4

∂x
s41

n2
1·(n1−1)

+ ∂g(x̄,ȳ)4

∂y
s42

n2
2·(n2−1)

.

We compute to find that ν = 19.4 and then use the t-interval

θ̂ ± tν,(1−γ)/2sθ̂.

For a 95% confidence, this is sightly larger interval 0.4634±0.0063 = (0.4571, 0.4697) radians or (26.19◦, 26.91◦).

Example 16.22 (maximum likelihood estimation). The Fisher information is the main tool used to set an confidence
interval for a maximum likelihood estimation .Two choices are typical. Let θ̂ be the maximum likelihood estimate for
the parameter θ.

First, we can use the Fisher information I(θ) and recall that θ̂ is approximately normally distributed, mean θ,
standard deviation 1/

√
nI(θ). Replacing θ by its estimate gives a confidence interval

θ̂ ± zα/2
1√
nI(θ̂)

.

More recently, the more popular method is to use the observed information based on the observations x =
(x1, x2, . . . , xn).

J(θ) = − ∂2

∂θ2
logL(θ|x) = −

n∑

i=1

∂2

∂θ2
log fX(xi|θ).

This is the second derivative of the score function evaluated at the maximum likelihood estimator. Then, the confidence
interval is

θ̂ ± zα/2
1√
J(θ̂)

.

To compare the two approaches, first note that EθJ(θ) = nI(θ), the Fisher information for n observations. Thus,
by the law of large numbers,

1

n
J(θ)→ I(θ) as n→∞.

If the estimator is consistent and I is continuous at θ, then

1

n
J(θ̂)→ I(θ) as n→∞.

16.2 The Bootstrap
The confidence regions have been determined using aspects of the distribution of the data. In particular, these regions
have often been specified by appealing to the central limit theorem and normal approximations. The notion behind
bootstrap techniques begins with the concession that the information about the source of the data is insufficient to
perform the analysis to produce the necessary description of the distribution of the estimator. This is particularly true
for small data sets or highly skewed data.

The strategy is to take the data and treat it as if it were the distribution underlaying the data and to use a resampling
protocol to describe the estimator. For the example above, we estimated the angle in a right triangle by estimating `
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Figure 16.6: Bootstrap distribution of θ̂.

and h, the lengths two adjacent sides by taking the mean of our measurements and then computing the arctangent of
the ratio of these means. Using the delta method, our confidence interval was based on a normal approximation of the
estimator.

The bootstrap takes another approach. We take the data

x1, x2, . . . , xn1
, y1, y2, . . . , yn2

,

the empirical distribution of the measurements of ` and h and act as if it were the actual distribution. The next step
is the use the data and randomly create the results of the experiment many times over. In the example, we choose, with
replacement n1 measurements from the x data and n2 measurements from the y data. We then compute the bootstrap
means

x̄b and ȳb

and the estimate

θ̂(x̄b, ȳb) = tan−1

(
ȳb
x̄b

)
.

Repeating this many times gives an empirical distribution for the estimator θ̂. This can be accomplish in just a couple
lines of R code.

> angle<-numeric10000)
> for (i in 1:10000){xb<-sample(x,length(x),replace=TRUE);

yb<-sample(y,length(y),replace=TRUE);angle[i]<-atan(mean(yb)/mean(xb))*180/pi}
> hist(angle)

We can use this bootstrap distribution of θ̂ to construct a confidence interval.

> q<-c(0.005,0.01,0.025,0.5,0.975,0.99,0.995)
> quantile(angle,q)

0.5% 1% 2.5% 50% 97.5% 99% 99.5%
26.09837 26.14807 26.21860 26.55387 26.86203 26.91486 26.95065
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Figure 16.7: Bayesian credible interval. The 95% credible interval based on a Beta(9, 3) prior distribution and data consisting of 8 heads and 6
tails. This interval has probability 0.025 both above and below the end of the interval. Because the density is higher for the upper value, an narrow
credible interval can be obtained by shifting the values upward so that the densities are equal at the endpoints of the interval and (16.6) is satisfied.

A 95% confidence interval (26.21◦, 26.86◦) can be accomplished using the 2.5th percentile as the lower end point
and the 97.5th percentile as the upper end point. This confidence interval is very similar to the one obtained using the
delta method.

Exercise 16.23. Give the 98% bootstrap confidence interval for the angle in the example above.

Exercise 16.24. Bootstrap confidences are based on a simulation. So, the answer will vary with each simulation.
Repeat the bootstrap above and compare.

16.3 Bayesian Statistics
A Bayesian interval estimate is called a credible interval. Recall that for the Bayesian approach to statistics, both
the data and the parameter are random Thus, the interval estimate is a statement about the posterior probability of the
parameter θ.

P{Θ̃ ∈ C(X)|X = x} = γ. (16.6)

Here Θ̃ is the random variable having a distribution equal to the prior probability π. We have choices in defining
this interval. For example, we can

• choose the narrowest interval, which involves choosing those values of highest posterior density.

• choosing the interval in which the probability of being below the interval is as likely as being above it.

We can look at this by examining the two examples given in the Introduction to Estimation.

Example 16.25 (coin tosses). In this example, we began with a beta prior distribution. Consequently, the posterior
distribution will also be a member of the beta family of distributions. We then flipped a coin n = 14 times with 8
heads. Here, again, is the summary.

prior data posterior
α β mean variance heads tails α β mean
6 6 1/2 1/52 8 6 14 12 7/13
9 3 3/4 3/208 8 6 17 9 17/26
3 9 1/4 3/208 8 6 11 15 11/26
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We use the R command qbeta to find the credible interval. For the second case in the table above and with
γ = 0.95, we find values that give the lower and upper 2.5% of the posterior distribution.

> qbeta(0.025,17,9)
[1] 0.4649993
> qbeta(0.975,17,9)
[1] 0.8202832

This gives a 95% credible interval of (0.4650, 0.8203). This is indicated in the figure above by the two vertical
lines. Thus, the area under the density function from the vertical lines outward totals 5%.

The narrowest credible interval is (0.4737, 0.8276). At these values, the density equals 0.695. The density is lower
for more extreme values and higher between these values. The beta distribution has a probability 0.0306 below the
lower value for the credible interval and 0.0194 above the upper value satisfying the criterion (16.6) with γ = 0.95.

Example 16.26. For the example having both a normal prior distribution and normal data, we find that we also have
a normal posterior distribution. In particular, if the prior is normal, mean θ0, variance 1/λ and our data has sample
mean x̄ and each observation has variance 1.

The classical statistics confidence interval

x̄± zα/2
1√
n
.

For the Bayesian credible interval, note that the posterior distribution in normal with mean

θ1(x) =
λ

λ+ n
θ0 +

n

λ+ n
x̄.

and variance 1/(n+ λ). Thus the credible interval is

θ1(x)± zα/2
1√
λ+ n

.

Thus, the center of the interval is influenced by the prior mean. The prior variance results in a narrower interval.

16.4 Answers to Selected Exercises
16.4. Using R to find upper tail probabilities, we find that

> qt(0.95,99)
[1] 1.660391
> qt(0.99,99)
[1] 2.364606

For the 90% confidence interval

299, 852.4± 1.6604
79.0√
100

= 299852.4± 13.1 or the interval (299839.3, 299865.5).

For the 98% confidence interval

299, 852.4± 2.3646
79.0√
100

= 299852.4± 18.7 or the interval (299833.7, 299871.1).

16.8. Let

c =
s2

1/n1

s2
2/n2

. Then,
s2

2

n2
= c

s2
1

n1
.
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