
Topic 14

Unbiased Estimation

14.1 Introduction
In creating a parameter estimator, a fundamental question is whether or not the estimator differs from the parameter
in a systematic manner. Let’s examine this by looking a the computation of the mean and the variance of 16 flips of a
fair coin.

Give this task to 10 individuals and ask them report the number of heads. We can simulate this in R as follows .

> (x<-rbinom(10,16,0.5))
[1] 8 5 9 7 7 9 7 8 8 10

Our estimate is obtained by taking these 10 answers and averaging them. Intuitively we anticipate an answer
around 8. For these 10 observations, we find, in this case, that

> sum(x)/10
[1] 7.8

The result is a bit below 8. Is this systematic? To assess this, we appeal to the ideas behind Monte Carlo to twice
perform a 1000 simulations of the example above.

> meanx<-replicate(1000,mean(rbinom(10,16,0.5)))
> mean(meanx)
[1] 7.9799
> meanx<-replicate(1000,mean(rbinom(10,16,0.5)))
> mean(meanx)
[1] 8.0049

From this, we surmise that we the estimate of the sample mean x̄ neither systematically overestimates or un-
derestimates the distributional mean. From our knowledge of the binomial distribution, we know that the mean
µ = np = 16 · 0.5 = 8. In addition, the sample mean X̄ also has mean

EX̄ =
1

10
(8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8 + 8) =

80

10
= 8

verifying that we have no systematic error.
The phrase that we use is that the sample mean X̄ is an unbiased estimator of the distributional mean µ. Here is

the precise definition.

Definition 14.1. For observations X = (X1, X2, . . . , Xn) based on a distribution having parameter value θ, and for
d(X) an estimator for k(θ), the bias is the mean of the difference d(X)− k(θ), i.e.,

bd(θ) = Eθd(X)− k(θ). (14.1)
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If bd(θ) = 0 for all values of the parameter, then d(X) is called an unbiased estimator. Any estimator that is not
unbiased is called biased.

Example 14.2. Let X1, X2, . . . , Xn be Bernoulli trials with success parameter p and set the estimator for p to be
d(X) = X̄ , the sample mean. Then,

EpX̄ =
1

n
(EX1 + EX2 + · · ·+ EXn) =

1

n
(p+ p+ · · ·+ p) = p

Thus, X̄ is an unbiased estimator for p. In this circumstance, we generally write p̂ instead of X̄ . In addition, we can
use the fact that for independent random variables, the variance of the sum is the sum of the variances to see that

Var(p̂) =
1

n2
(Var(X1) + Var(X2) + · · ·+ Var(Xn))

=
1

n2
(p(1− p) + p(1− p) + · · ·+ p(1− p)) =

1

n
p(1− p).

Example 14.3. If X1, . . . , Xn form a simple random sample with unknown finite mean µ, then X̄ is an unbiased
estimator of µ. If the Xi have variance σ2, then

Var(X̄) =
σ2

n
. (14.2)

We can assess the quality of an estimator by computing its mean square error, defined by

Eθ[(d(X)− k(θ))2]. (14.3)

Estimators with smaller mean square error are generally preferred to those with larger. Next we derive a simple
relationship between mean square error and variance. If we write Y = d(X) − k(θ) in (14.3) and recall that the
variance Varθ(Y ) = EθY

2 − (EθY )2 .
Then

EθY = Eθ(d(X)− k(θ)) = Eθd(X)− k(θ) = bd(θ) and Varθ(Y ) = Varθ(d(X))

and the mean square error

Eθ[(d(X)− k(θ))2] = EθY
2 = Var(Y ) + (EY )2 = Varθ(d(X)) + bd(θ)

2 (14.4)

Thus, the representation of the mean square error as equal to the variance of the estimator plus the square of the
bias is called the bias-variance decomposition. Mean square error can be considered as a measure of the accuracy
of an estimator. If the variance is small, then we can say that the estimator is precise. It may still not be very accurate
if the bias is large, but will be accurate only if the estimator is both precise and has low bias. In addition:

• The mean square error for an unbiased estimator is its variance.

• Bias always increases the mean square error.

14.2 Computing Bias
For the variance σ2, we have been presented with two choices:

1

n

n∑

i=1

(xi − x̄)2 and
1

n− 1

n∑

i=1

(xi − x̄)2. (14.5)

Using bias as our criterion, we can now resolve between the two choices for the estimators for the variance σ2.
Again, we use simulations to make a conjecture, we then follow up with a computation to verify our guess. For 16
tosses of a fair coin, we know that the variance is np(1− p) = 16 · 1/2 · 1/2 = 4

For the example above, we begin by simulating the coin tosses and compute the sum of squares
∑10
i=1(xi − x̄)2,
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> ssx<-numeric(1000)
> for (i in 1:1000){x<-rbinom(10,16,0.5);ssx[i]<-sum((x-mean(x))ˆ2)}
> mean(ssx)
[1] 35.8511
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Figure 14.1: Sum of squares about x̄ for 1000 simulations.

The choice is to divide either by 10, for the first
choice, or 9, for the second.

> mean(ssx)/10;mean(ssx)/9
[1] 3.58511
[1] 3.983456

Exercise 14.4. Repeat the simulation above, compute
the sum of squares

∑10
i=1(xi− 8)2. Show that these sim-

ulations support dividing by 10 rather than 9.
Nore generally, show that

∑n
i=1(Xi − µ)2/n is an

unbiased estimator for σ2 for independent random vari-
able X1, . . . , Xn whose common distribution has mean
µ and variance σ2.

In this case, because we know all the aspects of the
simulation, and thus we know that the answer ought to
be near 4. Consequently, division by 9 appears to be the
appropriate choice. Let’s check this out, beginning with
what seems to be the inappropriate choice to see what goes wrong..

Example 14.5. If a simple random sample X1, X2, . . . , has unknown finite variance σ2, then, we can consider the
sample variance

S2 =
1

n

n∑

i=1

(Xi − X̄)2.

To find the mean of S2, we divide the difference between an observation Xi and the distributional mean into two steps
- the first from Xi to the sample mean X̄ and and then from the sample mean to the distributional mean, i.e.,

Xi − µ = (Xi − X̄) + (X̄ − µ).

We shall soon see that the lack of knowledge of µ is the source of the bias. Make this substitution and expand the
square to obtain

n∑

i=1

(Xi − µ)2 =

n∑

i=1

((Xi − X̄) + (X̄ − µ))2

=

n∑

i=1

(Xi − X̄)2 + 2

n∑

i=1

(Xi − X̄)(X̄ − µ) +

n∑

i=1

(X̄ − µ)2

=

n∑

i=1

(Xi − X̄)2 + 2(X̄ − µ)

n∑

i=1

(Xi − X̄) + n(X̄ − µ)2

=

n∑

i=1

(Xi − X̄)2 + n(X̄ − µ)2

(Check for yourself that the middle term in the third line equals 0.) Subtract the term n(X̄ − µ)2 from both sides and
divide by n to obtain the identity
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1

n

n∑

i=1

(Xi − X̄)2 =
1

n

n∑

i=1

(Xi − µ)2 − (X̄ − µ)2.

Using the identity above and the linearity property of expectation we find that

ES2 = E

[
1

n

n∑

i=1

(Xi − X̄)2

]

= E

[
1

n

n∑

i=1

(Xi − µ)2 − (X̄ − µ)2

]

=
1

n

n∑

i=1

E[(Xi − µ)2]− E[(X̄ − µ)2]

=
1

n

n∑

i=1

Var(Xi)− Var(X̄)

=
1

n
nσ2 − 1

n
σ2 =

n− 1

n
σ2 6= σ2.

The last line uses (14.2). This shows that S2 is a biased estimator for σ2. Using the definition in (14.1), we can
see that it is biased downwards.

b(σ2) =
n− 1

n
σ2 − σ2 = − 1

n
σ2.

Note that the bias is equal to −Var(X̄). In addition, because

E

[
n

n− 1
S2

]
=

n

n− 1
E
[
S2
]

=
n

n− 1

(
n− 1

n
σ2

)
= σ2

and

S2
u =

n

n− 1
S2 =

1

n− 1

n∑

i=1

(Xi − X̄)2

is an unbiased estimator for σ2. As we shall learn in the next section, because the square root is concave downward,
Su =

√
S2
u as an estimator for σ is downwardly biased.

Example 14.6. We have seen, in the case of n Bernoulli trials having x successes, that p̂ = x/n is an unbiased
estimator for the parameter p. This is the case, for example, in taking a simple random sample of genetic markers at
a particular biallelic locus. (A locus with exactly two alleles.) Let one allele denote the wildtype (the typical alleles
as it occurs in nature) and the second a variant. If the circumstances in which variant is recessive, then an individual
expresses the variant phenotype only in the case that both chromosomes contain this marker. In the case of independent
alleles from each parent, the probability of the variant phenotype is p2. Naı̈vely, we could use the estimator p̂2. (Later,
we will see that this is the maximum likelihood estimator.) To determine the bias of this estimator, note that

Ep̂2 = (Ep̂)2 + Var(p̂) = p2 +
1

n
p(1− p). (14.6)

Thus, the bias b(p) = p(1− p)/n and the estimator p̂2 is biased upward.

Exercise 14.7. For Bernoulli trials X1, . . . , Xn,

1

n

n∑

i=1

(Xi − p̂)2 = p̂(1− p̂).
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Based on this exercise, and the computation above yielding an unbiased estimator, S2
u, for the variance,

E

[
1

n− 1
p̂(1− p̂)

]
=

1

n
E

[
1

n− 1

n∑

i=1

(Xi − p̂)2

]
=

1

n
E[S2

u] =
1

n
Var(X1) =

1

n
p(1− p).

In other words,
1

n− 1
p̂(1− p̂)

is an unbiased estimator of p(1− p)/n. Returning to (14.6),

E

[
p̂2 − 1

n− 1
p̂(1− p̂)

]
=

(
p2 +

1

n
p(1− p)

)
− 1

n
p(1− p) = p2.

Thus,

p̂2
u = p̂2 − 1

n− 1
p̂(1− p̂) = p̂

(n− 1)p̂− 1 + p̂

n− 1
= p̂

np̂− 1

n− 1
=
x(x− 1)

n(n− 1)
.

is an unbiased estimator of p2.
To compare the two estimators for p2, assume that we find 13 variant alleles in a sample of 30, then p̂ = 13/30 =

0.4333,

p̂2 =

(
13

30

)2

= 0.1878, and p̂2
u =

13 · 12

30 · 29
= 0.1793.

The bias for the estimate p̂2, in this case 0.0085, is subtracted to give the unbiased estimate p̂2
u.

The heterozygosity of a biallelic locus is h = 2p(1−p). From the discussion above, we see that h has the unbiased
estimator

ĥ =
2n

n− 1
p̂(1− p̂) =

2n

n− 1

(x
n

)(n− x
n

)
=

2x(n− x)

n(n− 1)
.

14.3 Compensating for Bias
In the methods of moments estimation, we have used g(X̄) as an estimator for g(µ). If g is a convex function, we
can say something about the bias of this estimator. In Figure 14.2, we see the method of moments estimator for the
estimator g(X̄) for a parameter β in the Pareto distribution. The choice of β = 3 corresponds to a mean of µ = 3/2 for
the Pareto random variables. The central limit theorem states that the sample mean X̄ is nearly normally distributed
with mean 3/2. Thus, the distribution of X̄ is nearly symmetric around 3/2. From the figure, we can see that the
interval from 1.4 to 1.5 under the function g maps into a longer interval above β = 3 than the interval from 1.5 to 1.6
maps below β = 3. Thus, the function g spreads the values of X̄ above β = 3 more than below. Consequently, we
anticipate that the estimator β̂ will be upwardly biased.

To address this phenomena in more general terms, we use the characterization of a convex function as a differen-
tiable function whose graph lies above any tangent line. If we look at the value µ for the convex function g, then this
statement becomes

g(x)− g(µ) ≥ g′(µ)(x− µ).

Now replace x with the random variable X̄ and take expectations.

Eµ[g(X̄)− g(µ)] ≥ Eµ[g′(µ)(X̄ − µ)] = g′(µ)Eµ[X̄ − µ] = 0.

Consequently,
Eµg(X̄) ≥ g(µ) (14.7)

and g(X̄) is biased upwards. The expression in (14.7) is known as Jensen’s inequality.

Exercise 14.8. Show that the estimator Su is a downwardly biased estimator for σ.
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Figure 14.2: Graph of a convex function. Note that the tangent line is below the graph of g. Here we show the case in which µ = 1.5 and
β = g(µ) = 3. Notice that the interval from x = 1.4 to x = 1.5 has a longer range than the interval from x = 1.5 to x = 1.6 Because g spreads
the values of X̄ above β = 3 more than below, the estimator β̂ for β is biased upward. We can use a second order Taylor series expansion to correct
most of this bias.

To estimate the size of the bias, we look at a quadratic approximation for g centered at the value µ

g(x)− g(µ) ≈ g′(µ)(x− µ) +
1

2
g′′(µ)(x− µ)2.

Again, replace x in this expression with the random variable X̄ and then take expectations. Then, the bias

bg(µ) = Eµ[g(X̄)]− g(µ) ≈ Eµ[g′(µ)(X̄ − µ)] +
1

2
E[g′′(µ)(X̄ − µ)2] =

1

2
g′′(µ)Var(X̄) =

1

2
g′′(µ)

σ2

n
. (14.8)

(Remember that Eµ[g′(µ)(X̄ − µ)] = 0.)

Thus, the bias has the intuitive properties of being

• large for strongly convex functions, i.e., ones with a large value for the second derivative evaluated at the mean
µ,

• large for observations having high variance σ2, and

• small when the number of observations n is large.

In addition, this provides an estimate of the mean square error for a method of moment estimator θ̂(X) =
g(X̄) based on the relationship θ = g(µ). Based on the variance-bias identity in (14.3), we use the delta method to
approximate Varθ(g(X̄)) and (14.8) to approximate the bias. Consequently,

Eθ[(θ̂(X)− θ)2] = Eθ[(g(X̄)− g(µ))2] = Varθ(g(X̄)) + bg(µ)2 ≈ g′(µ)2σ
2

n
+

1

4

(
g′′(µ)

σ2

n

)2

.

Finally, we make the substitution µ = k(θ) to give an expression for the approximation of the mean square error for
θ̂ as a function of θ. Notice that the contribution to mean square error from the variance of the estimator is inversely
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proportional to n, the sample size. The contribution from the bias decreases more rapidly, inversely proportional to
n2,

Exercise 14.9. If a method of moments estimator θ̂ is a linear function of the sample mean x̄, then it is unbiased,

Exercise 14.10. Use (14.8) to estimate the bias in using p̂2 as an estimate of p2 is a sequence of n Bernoulli trials and
note that it matches the value (14.6).

Example 14.11. For the method of moments estimator for the Pareto random variable, we determined that

g(µ) =
µ

µ− 1
.

and that X̄ has

mean µ = β
β−1 and variance σ2

n = β
n(β−1)2(β−2)

By taking derivatives, we see that g′(µ) = −1/(µ− 1)2 and g′′(µ) = 2(µ− 1)−3 > 0 and, because µ > 1, g is a
convex function. Next, we have

g′
(

β

β − 1

)
=

−1
(

β
β−1 − 1

)2 = −(β − 1)2 and g′′
(

β

β − 1

)
=

2
(

β
β−1 − 1

)3 = 2(β − 1)3.

Thus, the bias

bg(β) ≈ 1

2
g′′(µ)

σ2

n
=

1

2
2(β − 1)3 β

n(β − 1)2(β − 2)
=
β(β − 1)

n(β − 2)
.

So, for β = 3 and n = 100, the bias is approximately 0.06. Compare this to the estimated value of 0.053 from the
simulation in the previous section. The mean square error,

Eθ[(g(X̄)− g(µ))2] ≈ g′(µ)2σ
2

n
+ bg(β)2 =

β(β − 1)2

n(β − 2)
+
β2(β − 1)2

n2(β − 2)2
=
β(β − 1)2

n(β − 2)

(
1 +

β

n(β − 2)

)
.

Example 14.12. For estimating the population in mark and recapture, we used the estimate

N = g(µ) =
kt

µ

for the total population. Here µ is the mean number recaptured, k is the number captured in the second capture event
and t is the number tagged. The second derivative

g′′(µ) =
2kt

µ3
> 0

and hence the method of moments estimate is biased upwards. In this siutation, n = 1 and the number recaptured is a
hypergeometric random variable. Hence its variance

σ2 =
kt

N

(N − t)(N − k)

N(N − 1)
.

Thus, the bias

bg(N) =
1

2

2kt

µ3

kt

N

(N − t)(N − k)

N(N − 1)
=

(N − t)(N − k)

µ(N − 1)
=

(kt/µ− t)(kt/µ− k)

µ(kt/µ− 1)
=
kt(k − µ)(t− µ)

µ2(kt− µ)
.

In the simulation example, N = 2000, t = 200, k = 400 and µ = 40. This gives an estimate for the bias of 36.02. We
can compare this to the bias of 2031.03-2000 = 31.03 based on the simulation in Example 13.2.

This suggests a new estimator by taking the method of moments estimator and subtracting the approximation of
the bias.

N̂ =
kt

r
− kt(k − r)(t− r)

r2(kt− r) =
kt

r

(
1− (k − r)(t− r)

r(kt− r)

)
.
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The delta method gives us that the standard deviation of the estimator is |g′(µ)|σ/√n. Thus the ratio of the bias
of an estimator to its standard deviation as determined by the delta method is approximately

g′′(µ)σ2/(2n)

|g′(µ)|σ/√n =
1

2

g′′(µ)

|g′(µ)|
σ√
n
.

If this ratio is� 1, then the bias correction is not very important. In the case of the example above, this ratio is

36.02

268.40
= 0.134

and its usefulness in correcting bias is small.

Example 14.13. As noted earlier, because S2 is an unbiased estimator of σ2 and the square root function is concave
downward. Thus, S is biased downwards as an estimator of σ. To illustrate this, we first simulate both ESn and ES2

n

for values n from 2 to 25 using normal random variables with mean µ = 0 and standard deviation σ = 1.

> s<-numeric(24); s2<-numeric(24)
> for (i in 1:24){s[i]<-mean(replicate(10000,sd(rnorm(i+1))))}
> for (i in 1:24){s2[i]<-mean(replicate(10000,var(rnorm(i+1))))}

We can also find an analytical expression for ESn.

Exercise 14.14. Note that for Z1, Z2, . . . , Zn independent standard normal variables, then

Vn =

n∑

i=1

(Zi − Z̄)2

is χ2
n−1. Let

S2
n =

1

n− 1

n∑

i=1

(Zi − Z̄)2. Show that ESn =

√
2

n− 1

Γ(n/2)

Γ((n− 1)/2)
. (14.9)
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Figure 14.3: Simulated values ESn (red) and ES2

n (black) versus degrees of freedom df = n− 1. The values of ESn (solid black) from (14.9).
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Then, we add the values of ES to form a table that has ES along with the simulated values of ES and ES2.

> df<-1:24
> means<-sqrt(2/df)*gamma((df+1)/2)/gamma(df/2)
> head(data.frame(df,means,s,s2))

df means s s2
1 1 0.7978846 0.7913008 1.0008486
2 2 0.8862269 0.8920162 0.9811749
3 3 0.9213177 0.9190756 1.0145019
4 4 0.9399856 0.9419472 1.0006425
5 5 0.9515329 0.9498657 1.0055365
6 6 0.9593688 0.9563602 0.9985865

As we can see from both the analytical expression and the simulations, ES < σ = 1 and approaches 1 as the
degrees of freedom df = n− 1 increase. Notice that the simulated values for the variance is close to 1 = ES2.

Exercise 14.15. The Stirling approximation states that

Γ(t) ≈
√

2π(t− 1)

(
t− 1

e

)t−1

, t = 1.2. . . .

Use this in (14.9) to show that
lim
n→∞

ESn = 1.

14.4 Consistency
Despite the desirability of using unbiased estimation, sometimes such an estimator is hard to find and at other times
impossible. However, note that in the examples above both the size of the bias and the variance in the estimator
decrease inversely proportional to n, the number of observations. Thus, these estimators improve, under both of these
criteria, with more observations. A concept that describes properties such as these is called consistency.

Definition 14.16. Given data X1, X2, . . . and a real valued function h of the parameter space, a sequence of estima-
tors dn, based on the first n observations, is called consistent if for every choice of θ

lim
n→∞

dn(X1, X2, . . . , Xn) = k(θ)

whenever θ is the true state of nature.

Thus, the bias of the estimator disappears in the limit of a large number of observations. In addition, the distribution
of the estimators dn(X1, X2, . . . , Xn) become more and more concentrated near k(θ).

For the next example, we need to recall the sequence definition of continuity: A function g is continuous at a real
number x provided that for every sequence {xn;n ≥ 1} with

xn → x, then, we have that g(xn)→ g(x).

A function is called continuous if it is continuous at every value of x in the domain of g. Thus, we can write the
expression above more succinctly by saying that for every convergent sequence {xn;n ≥ 1},

lim
n→∞

g(xn) = g( lim
n→∞

xn).

Example 14.17. For a method of moment estimator, let’s focus on the case of a single parameter (d = 1). For
independent observations, X1, X2, . . . , having mean µ = k(θ), we have that

EX̄n = µ,
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i. e. X̄n, the sample mean for the first n observations, is an unbiased estimator for µ = k(θ). Also, by the law of large
numbers, we have that

lim
n→∞

X̄n = µ.

Assume that k has a continuous inverse g = k−1. In particular, because µ = k(θ), we have that g(µ) = θ. Next,
using the methods of moments procedure, define, for n observations, the estimators

θ̂n(X1, X2, . . . , Xn) = g

(
1

n
(X1 + · · ·+Xn)

)
= g(X̄n).

for the parameter θ. Using the continuity of g, we find that

lim
n→∞

θ̂n(X1, X2, . . . , Xn) = lim
n→∞

g(X̄n) = g( lim
n→∞

X̄n) = g(µ) = θ

and so we have that g(X̄n) is a consistent sequence of estimators for θ.

14.5 Cramér-Rao Bound
This topic is somewhat more advanced and can be skipped for the first reading. This section gives us an introduction to
the log-likelihood and its derivative, the score functions. We shall encounter these functions again when we introduce
maximum likelihood estimation. In addition, the Cramér Rao bound, which is based on the variance of the score
function, known as the Fisher information, gives a lower bound for the variance of an unbiased estimator. These
concepts will be necessary to describe the variance for maximum likelihood estimators.

Among unbiased estimators, one important goal is to find an estimator that has as small a variance as possible, A
more precise goal would be to find an unbiased estimator d that has uniform minimum variance. In other words,
d(X) has has a smaller variance than for any other unbiased estimator d̃ for every value θ of the parameter.

Varθd(X) ≤ Varθd̃(X) for all θ ∈ Θ.

The efficiency e(d̃) of unbiased estimator d̃ is the minimum value of the ratio

Varθd(X)

Varθd̃(X)

over all values of θ. Thus, the efficiency is between 0 and 1 with a goal of finding estimators with efficiency as near to
one as possible.

For unbiased estimators, the Cramér-Rao bound tells us how small a variance is ever possible. The formula is a bit
mysterious at first. However, we shall soon learn that this bound is a consequence of the bound on correlation that we
have previously learned

Recall that for two random variables Y and Z, the correlation

ρ(Y,Z) =
Cov(Y,Z)√

Var(Y )Var(Z)
. (14.10)

takes values between -1 and 1. Thus, ρ(Y, Z)2 ≤ 1 and so

Cov(Y,Z)2 ≤ Var(Y )Var(Z). (14.11)

Exercise 14.18. If EZ = 0, the Cov(Y,Z) = EY Z
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We begin with data X = (X1, . . . , Xn) drawn from an unknown probability Pθ. The parameter space Θ ⊂ R.
Denote the joint density of these random variables

f(x|θ), where x = (x1 . . . , xn).

In the case that the data come from a simple random sample then the joint density is the product of the marginal
densities.

f(x|θ) = f(x1|θ) · · · f(xn|θ) (14.12)

For continuous random variables, the two basic properties of the density are that f(x|θ) ≥ 0 for all x and that

1 =

∫

Rn
f(x|θ) dx. (14.13)

Now, let d be the unbiased estimator of k(θ), then by the basic formula for computing expectation, we have for
continuous random variables

k(θ) = Eθd(X) =

∫

Rn
d(x)f(x|θ) dx. (14.14)

If the functions in (14.13) and (14.14) are differentiable with respect to the parameter θ and we can pass the
derivative through the integral, then we first differentiate both sides of equation (14.13), and then use the logarithm
function to write this derivate as the expectation of a random variable,

0 =

∫

Rn

∂f(x|θ)
∂θ

dx =

∫

Rn

∂f(x|θ)/∂θ
f(x|θ) f(x|θ) dx =

∫

Rn

∂ ln f(x|θ)
∂θ

f(x|θ) dx = Eθ

[
∂ ln f(X|θ)

∂θ

]
. (14.15)

From a similar calculation using (14.14),

k′(θ) = Eθ

[
d(X)

∂ ln f(X|θ)
∂θ

]
. (14.16)

Now, return to the review on correlation with Y = d(X), the unbiased estimator for k(θ) and the score function
Z = ∂ ln f(X|θ)/∂θ. From equations (14.16) and then (14.11), we find that

k′(θ)2 = Eθ

[
d(X)

∂ ln f(X|θ)
∂θ

]2

= Covθ

(
d(X),

∂ ln f(X|θ)
∂θ

)
≤ Varθ(d(X))Varθ

(
∂ ln f(X|θ)

∂θ

)
,

or,

Varθ(d(X)) ≥ k′(θ)2

I(θ)
. (14.17)

where

I(θ) = Varθ

(
∂ ln f(X|θ)

∂θ

)
= Eθ

[(
∂ ln f(X|θ)

∂θ

)2
]

is called the Fisher information. For the equality, recall that the variance Var(Z) = EZ2 − (EZ)2 and recall from
equation (14.15) that the random variable Z = ∂ ln f(X|θ)/∂θ has mean EZ = 0.

Equation (14.17), called the Cramér-Rao lower bound or the information inequality, states that the lower bound
for the variance of an unbiased estimator is the reciprocal of the Fisher information. In other words, the higher the
information, the lower is the possible value of the variance of an unbiased estimator.

Exercise 14.19. Let X be uniform on the interval [0, θ], θ > 0. Show that

∫ θ

0

∂f(x|θ)
∂θ

dx 6= 0

Thus, in the case, we cannot pass the derivative through the integral,
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If we return to the case of a simple random sample, then take the logarithm of both sides of equation (14.12)

ln f(x|θ) = ln f(x1|θ) + · · ·+ ln f(xn|θ)

and then differentiate with respect to the parameter θ,

∂ ln f(x|θ)
∂θ

=
∂ ln f(x1|θ)

∂θ
+ · · ·+ ∂ ln f(xn|θ)

∂θ
.

The random variables {∂ ln f(Xk|θ)/∂θ; 1 ≤ k ≤ n} are independent and have the same distribution. Using the fact
that the variance of the sum is the sum of the variances for independent random variables, we see that In, the Fisher
information for n observations is n times the Fisher information of a single observation.

In(θ) = Var
(
∂ ln f(X1|θ)

∂θ
+ · · ·+ ∂ ln f(Xn|θ)

∂θ

)
= nVar(

∂ ln f(X1|θ)
∂θ

) = nE[(
∂ ln f(X1|θ)

∂θ
)2].

Notice the correspondence. Information is linearly proportional to the number of observations. If our estimator
is a sample mean or a function of the sample mean, then the variance is inversely proportional to the number of
observations.

Example 14.20. For independent Bernoulli random variables with unknown success probability θ, the density is

f(x|θ) = θx(1− θ)(1−x).

The mean is θ and the variance is θ(1− θ). Taking logarithms, we find that

ln f(x|θ) = x ln θ + (1− x) ln(1− θ),

∂

∂θ
ln f(x|θ) =

x

θ
− 1− x

1− θ =
x− θ
θ(1− θ) .

The Fisher information associated to a single observation

I(θ) = E

[(
∂

∂θ
ln f(X|θ)

)2
]

=
1

θ2(1− θ)2
E[(X − θ)2] =

1

θ2(1− θ)2
Var(X)

=
1

θ2(1− θ)2
θ(1− θ) =

1

θ(1− θ) .

The information for n observations In(θ) = n/(θ(1 − θ)). Thus, by the Cramér-Rao lower bound, any unbiased
estimator of θ based on n observations must have variance al least θ(1− θ)/n. Now, notice that if we take d(x) = x̄,
then

EθX̄ = θ, and Varθd(X) = Var(X̄) =
θ(1− θ)

n
.

These two equations show that X̄ is a unbiased estimator having uniformly minimum variance.

Exercise 14.21. For independent normal random variables with known variance σ2
0 and unknown mean µ, X̄ is a

uniformly minimum variance unbiased estimator.

Exercise 14.22. If we have that the parameter θ appears in the density as a function η = η(θ), then we have two
forms for the Fisher information, Iθ and Iη for each parameterization. Show that

Iθ(θ) = Iη(η(θ))

(
dη(θ)

dθ

)2

(14.18)
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Exercise 14.23. Take two derivatives of ln f(x|θ) to show that

I(θ) = Eθ

[(
∂ ln f(X|θ)

∂θ

)2
]

= −Eθ
[
∂2 ln f(X|θ)

∂θ2

]
. (14.19)

This identity is often a useful alternative to compute the Fisher Information.

Example 14.24. For an exponential random variable,

ln f(x|λ) = lnλ− λx, ∂2f(x|λ)

∂λ2
= − 1

λ2
.

Thus, by (14.19),

I(λ) =
1

λ2
.

Now, X̄ is an unbiased estimator for h(λ) = 1/λ with variance

1

nλ2
.

By the Cramér-Rao lower bound, we have that

g′(λ)2

nI(λ)
=

1/λ4

nλ2
=

1

nλ2
.

Because X̄ has this variance, it is a uniformly minimum variance unbiased estimator.

Example 14.25. To give an estimator that does not achieve the Cramér-Rao bound, let X1, X2, . . . , Xn be a simple
random sample of Pareto random variables with density

fX(x|β) =
β

xβ+1
, x > 1.

The mean and the variance
µ =

β

β − 1
, σ2 =

β

(β − 1)2(β − 2)
.

Thus, X̄ is an unbiased estimator of µ = β/(β − 1)

Var(X̄) =
β

n(β − 1)2(β − 2)
.

To compute the Fisher information, note that

ln f(x|β) = lnβ − (β + 1) lnx and thus
∂2 ln f(x|β)

∂β2
= − 1

β2
.

Using (14.19), we have that

I(β) =
1

β2
.

Next, for

µ = g(β) =
β

β − 1
, g′(β) = − 1

(β − 1)2
, and g′(β)2 =

1

(β − 1)4
.

Thus, the Cramér-Rao bound for the estimator is

g′(β)2

In(β)
=

β2

n(β − 1)4
.

and the efficiency compared to the Cramér-Rao bound is

g′(β)2/In(β)

Var(X̄)
=

β2

n(β − 1)4
· n(β − 1)2(β − 2)

β
=
β(β − 2)

(β − 1)2
= 1− 1

(β − 1)2
.

The Pareto distribution does not have a variance unless β > 2. For β just above 2, the efficiency compared to its
Cramér-Rao bound is low but improves with larger β.
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14.6 A Note on Exponential Families and Efficient Estimators
For an efficient estimator, we need find the cases that lead to equality in the correlation inequality (14.10). Recall that
equality occurs precisely when the correlation is ±1. This occurs when the estimator d(X) and the score function
∂ ln fX(X|θ)/∂θ are linearly related with probability 1.

∂

∂θ
ln fX(X|θ) = a(θ)d(X) + b(θ). (14.20)

After integrating, we obtain,

ln fX(X|θ) =

∫
a(θ)dθ d(X) +

∫
b(θ)dθ + j(X) = η(θ)d(X) +B(θ) + j(X)

Note that the constant of integration of integration is a function of X . Now exponentiate both sides of this equation

fX(X|θ) = c(θ)h(X) exp(η(θ)d(X)). (14.21)

Here c(θ) = expB(θ) and h(X) = exp j(X).

Definition 14.26. Density functions satisfying equation (14.21) form an exponential family with natural parameter
η(θ) and sufficient statistic d(x).

Thus, if we have independent random variables X1, X2, . . . Xn, then the joint density is the product of the densi-
ties, namely,

f(X|θ) = c(θ)nh(X1) · · ·h(Xn) exp(η(θ)(d(X1) + · · ·+ d(Xn)). (14.22)

In addition, as a consequence of this linear relation in (14.20), the mean of he sufficient statistic

d(X) =
1

n
(d(X1) + · · ·+ d(Xn))

is an efficient estimator for k(θ).

Example 14.27 (Poisson random variables).

f(x|λ) =
λx

x!
e−λ = e−λ

1

x!
exp(x lnλ).

Thus, Poisson random variables are an exponential family with c(λ) = exp(−λ), h(x) = 1/x!, and natural parameter
η(λ) = lnλ. Because

λ = EλX̄,

X̄ is an unbiased estimator of the parameter λ.
The score function

∂

∂λ
ln f(x|λ) =

∂

∂λ
(x lnλ− lnx!− λ) =

x

λ
− 1.

The Fisher information for one observation is

I(λ) = Eλ

[(
X

λ
− 1

)2
]

=
1

λ2
Eλ[(X − λ)2] =

1

λ
.

Thus, In(λ) = n/λ is the Fisher information for n observations. In addition,

Varλ(X̄) =
λ

n
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and d(x) = x̄ has efficiency
Var(X̄)

1/In(λ)
= 1.

This could have been predicted. The density of n independent observations is

f(x|λ) =
e−λ

x1!
λx1 · · · e

−λ

xn!
λxn =

e−nλλx1···+xn

x1! · · ·xn!
=

e−nλλnx̄

x1! · · ·xn!

and so the score function
∂

∂λ
ln f(x|λ) =

∂

∂λ
(−nλ+ nx̄ lnλ) = −n+

nx̄

λ
showing that the estimate x̄ and the score function are linearly related.

Exercise 14.28. Show that a Bernoulli random variable with parameter p is an exponential family with c(p) =

1− p, h(x) = 1 and the natural parameter η(p) = ln
(

p
1−p

)
, the log-odds, and sufficient statistic x.

Exercise 14.29. Show that a normal random variable with known variance σ2
0 and unknown mean µ is an exponential

family.

If we parameterize using the natural parameter η, then

fX(x|η) = c(η)h(x) exp(ηd(x))

ln fX(x|η) = ln c(η) + lnh(x) + ηd(x)

∂

∂η
ln fX(x|η) =

∂

∂η
ln c(η) + d(x)

Recall that the mean of the score function is 0. Thus,

0 = Eη

[
∂

∂η
ln fX(X|η)

]
=

∂

∂η
ln c(η) + Eηd(x)

Eηd(x) = − ∂
∂η

ln c(η) (14.23)

Exercise 14.30. For a Bernoulli random variable, show that

c(η) =
1

1 + eη

Exercise 14.31. For a Bernoulli random variable, use (14.23) to show that EpX = p.

Now differentiate the score function and take expectation

∂2

∂η2
ln fX(x|η) =

∂2

∂η2
ln c(η)

Eη

[
∂2

∂η2
ln fX(X|η)

]
=

∂2

∂η2
ln c(η)

Iη(η) = − ∂
2

∂η2
ln c(η), (14.24)

the Fisher information with respect to the natural parameter η.

Exercise 14.32. For a Bernoulli random variable, use (14.24) to show that.

Iη(η) =
eη

(1 + eη)2

and check that (14.18) holds.
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14.7 Answers to Selected Exercises
14.4. Repeat the simulation, replacing mean(x) by 8.

> ssx<-numeric(1000)
> for (i in 1:1000){x<-rbinom(10,16,0.5);ssx[i]<-sum((x-8)ˆ2)}
> mean(ssx)/10;mean(ssx)/9
[1] 3.9918
[1] 4.435333

Note that division by 10 gives an answer very close to the correct value of 4. To verify that the estimator is
unbiased, we write

E

[
1

n

n∑

i=1

(Xi − µ)2

]
=

1

n

n∑

i=1

E[(Xi − µ)2] =
1

n

n∑

i=1

Var(Xi) =
1

n

n∑

i=1

σ2 = σ2.

14.7. For a Bernoulli trial note that X2
i = Xi. Expand the square to obtain

n∑

i=1

(Xi − p̂)2 =

n∑

i=1

X2
i − p̂

n∑

i=1

Xi + np̂2 = np̂− 2np̂2 + np̂2 = n(p̂− p̂2) = np̂(1− p̂).

Divide by n to obtain the result.

14.8. Recall that ES2
u = σ2. Check the second derivative to see that g(t) =

√
t is concave down for all t. For concave

down functions, the direction of the inequality in Jensen’s inequality is reversed. Setting t = S2
u, we have that

ESu = Eg(S2
u) ≤ g(ES2

u) = g(σ2) = σ

and Su is a downwardly biased estimator of σ.

14.9. In oder to have a linear method of moments estimator

θ̂ = a+ bx̄,

we must have, for mean µ,
θ = a+ bµ.

Thus,
Eθ θ̂ = E[a+ bX̄] = a+ bEX̄ = a+ bµ = θ

and θ̂ is unbiased.

14.10. Set g(p) = p2. Then, g′′(p) = 2. Recall that the variance of a Bernoulli random variable σ2 = p(1 − p) and
the bias

bg(p) ≈
1

2
g′′(p)

σ2

n
=

1

2
2
p(1− p)

n
=
p(1− p)

n
.

14.14. Vn is χ2
n−1,

E
√
Vn =

∫ ∞

0

√
vf(v|n− 1) dv =

1

2(n−1)/2Γ((n− 1)/2)

∫ ∞

0

√
vv(n−1)/2−1e−v/2 dv

=

√
2Γ(n/2)

Γ((n− 1)/2)

1

2n/2Γ(n/2)

∫ ∞

0

vn/2−1e−v/2 dv =

√
2Γ(n/2)

Γ((n− 1)/2)

∫ ∞

0

f(v|n) dv

=

√
2Γ(n/2)

Γ((n− 1)/2)
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