Topic 7

Random Variables and Distribution
Functions

While writing my book I had an argument with Feller. He asserted that everyone said “random variable”
and I asserted that everyone said “chance variable.” We obviously had to use the same name in our books,
so we decided the issue by a stochastic procedure. That is, we tossed for it and he won. — Joseph Doob,
Statistical Science

7.1 Introduction

From the universe of possible information, we ask

a question. To address this question, we might col- statistics probability
lect quantitative data and organize it, for example,
using the empirical cumulative distribution func- universe of sample space - ()
tion. With this information, we are able to com- information and probability - P
pute sample means, standard deviations, medians [} [}
and so on. _ ‘ » ask a question and define a random

Similarly, even a fairly simple probability collect data variable X
model can have an enormous number of outcomes.
For example, flip a coin 333 times. Then the num- Y Y
ber of outcomes is more than a google (10%?) — organize into the organize into the
a number at least 100 quintillion times the num- empirical cumulative cumulative
ber of elementary particles in the known universe. distribution function | distribution function
We may not be interested in an analysis that con- ) )
siders separately every possible outcome but rather A

: i compute sample compute distributional

some simpler concept like the number of heads or . .
the longest run of tails. To focus our attention on means and variances means and variances
the issues of interest, we take a given outcome and

compute a number. This function is called a ran-

dom variable. Table I: Corresponding notions between statistics and probability. Examining

probabilities models and random variables will lead to strategies for the collection
Definition 7.1. A random variable is a real val- °f data and inference from these data.
ued function from the probability space.

X: Q=R

Generally speaking, we shall use capital letters near the end of the alphabet, e.g., X, Y, Z for random variables.
The range S of a random variable is sometimes called the state space.
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Exercise 7.2. Roll a die twice and consider the sample space Q = {(i,7);i,7 = 1,2,3,4,5,6} and give some random
variables on ).

Exercise 7.3. Flip a coin 10 times and consider the sample space S, the set of 10-tuples of heads and tails, and give
some random variables on ).

We often create new random variables via composition of functions:
w = X(w) = f(X(w))
Thus, if X is a random variable, then so are

X2, expaX, VX2+1, tan’X, |X]
and so on. The last of these, rounding down X to the nearest integer, is called the floor function.

Exercise 7.4. How would we use the floor function to round down a number x to n decimal places.

7.2 Distribution Functions

Having defined a random variable of interest, X, the question typically becomes, “What are the chances that X lands
in some subset of values B?” For example,

B = {odd numbers}, B = {greater than 1}, or B = {between 2 and 7}.

We write
{we )X (w) e B} (7.1

to indicate those outcomes w which have X (w), the value of the random variable, in the subset B. We shall often
abbreviate (7.1) to the shorter {X € B}. Thus, for the example above, we may write the events

{X is an odd number}, {X isgreater than 1} = {X > 1}, {Xisbetween2and7} ={2< X <7}

to correspond to the three choices above for the subset B.

Many of the properties of random variables are not concerned with the specific random variable X given above,
but rather depends on the way X distributes its values. This leads to a definition in the context of random variables
that we saw previously with quantitive data.

Definition 7.5. A (cumulative) distribution function of a random variable X is defined by
Fx(z) = P{w € O; X (w) < z}.

Recall that with quantitative observations, we called the analogous notion the empirical cumulative distribution
function. Using the abbreviated notation above, we shall typically write the less explicit expression

Fx(z) =P{X <z}
for the distribution function.

Exercise 7.6. Establish the following identities that relate a random variable the complement of an event and the
union and intersection of events

I {X € B}* = {X € B}

2. For sets By, Bs, . ..,

UixeB}={xelJB} and (X eBi}={Xe()B}
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3. If By, ... By, form a partition of the sample space S, then C; = {X € B;}, i = 1,...,n form a partition of the
probability space ().

Exercise 7.7. For a random variable X and subset B of the sample space S, define
Px(B) = P{X € B}.
Show that Px is a probability.
For {X > z}, the complement of { X < z}, we have the survival function
Fx(z)=P{X >z} =1-P{X <z} =1-Fx(x).
Choose a < b, then the event {X < a} C {X < b}. Their set theoretic difference
{X <b\{X <a} ={a< X <b}.

In words, the event that “X is less than or equal to b but not less than or equal to a” is the same event as “X is greater
than a and less than or equal to b.” Consequently, by the difference rule for probabilities,

Pfa< X <b} = P{X <b}\{X <a}) = P{X <b} — P{X < a} = Fx(b) — Fx(a). (12)

Thus, we can compute the probability that a random variable takes values in an interval by subtracting the distri-
bution function evaluated at the endpoints of the intervals. Care is needed on the issue of the inclusion or exclusion of
the endpoints of the interval.

Example 7.8. To give the cumulative distribution function for X, the sum of the values for two rolls of a die, we start
with the table

x | 2 3 4 5 6 7 8 9 10 11 12
P{X ==z} | 136 236 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36

and create the graph.
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Figure 7.1: Graph of F'x, the cumulative distribution function for the sum of the values for two rolls of a die.
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If we look at the graph of this cumulative distribution function, we see that it is constant in between the possible
values for X and that the jump size at z is equal to P{X = x}. In this example, P{X = 5} = 4/36, the size of the
jump at x = 5. In addition,

Fx(5)—Fx(2)=P{2< X <5} =P{X=3}+P{X =4} +P{X =5} = Z P{X =z}
2<x<5
2 3 4 9
T 36 3636 36
We shall call a random variable discrete if it has a finite or countably infinite state space. Thus, we have in general
that:

Pla<X <b}= > P{X =z}

a<z<b

Exercise 7.9. Let X be the number of heads on three independent flips of a biased coin that turns ups heads with
probability p. Give the cumulative distribution function F'x for X.

Exercise 7.10. Let X be the number of spades in a collection of three cards. Give the cumulative distribution function
for X. Use R to plot this function.

Exercise 7.11. Find the cumulative distribution function of Y = X2 in terms of Fx, the distribution function for X.

7.3 Properties of the Distribution Function

A distribution function F'x has the property that it starts at 0, ends at 1 and does not decrease with increasing values
of z. This is the content of the next exercise.

Exercise 7.12. The disribution function Fx has the properties:
1. lim, o Fx(z) =0.
2. limg 00 Fx(z) = 1.

3. Fx is nondecreasing.

7.3.1 Discrete Random Variables

The cumulative distribution function F'x of a discrete random variable X is constant except for jumps. At the jump,
Fx is right continuous,

zl}gr;_i_ Fx(z) = Fx(xo). (7.3)
The next exercise ask that this be shown more generally.

Exercise 7.13. Prove the statement (7.3) concerning the right continuity of the distribution function from the continuity
property of a probability.

Exercise 7.14. Show that for any x,
P{X < a0} = xl_lgl_ Fx(z) = Fx(zo—),
the left limit of F'x at x.
Putting the previous two exercises together, we find that
P{X =20} = P({X < 20} \ {X <o}) = P{X < 2o} — P{X <o} = Fx(20) — Fx(20—),

The size of the jump in F'x (x) at the value x.
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7.3.2 Continuous Random Variables
Definition 7.15. A continuous random variable has a cumulative distribution function F'x that is differentiable.

So, distribution functions for continuous random variables increase
smoothly. To show how this can occur, we will develop an example of a
continuous random variable. 1

Example 7.16. Consider a dartboard having unit radius. Assume that
the dart lands randomly uniformly on the dartboard.
Let X be the distance from the center. For x € [0, 1],

area inside circle of radius z 722 9

Fx(x)=P{X <z} = - = — =2x°. 02

x(@) (X <z} area of circle w12 o

Thus, we have the distribution function -oe

-0.8

0 if x < 07 -1

2 .
Fx(r)=q2° if0<az<l, S os o5 o9 o7 o oz o o8 o8
1 ifx > 1.

The first line states that X cannot be negative. The third states that X
is at most 1, and the middle lines describes how X distributes is values /
between 0 and 1. For example,

1 1
FX(2>—4

indicates that with probability 1/4, the dart will land within 1/2 unit of
the center of the dartboard. -

probability
02 04 08 1.0
| | |

0.0
L

Exercise 7.17. Find the probability that the dart lands between 1/3 unit ‘ ‘

0.0 0.5 1.0
and 2/3 unit from the center. Find the median, the first quartile, and the Figure 7.2: (top) Dartboasd. (bottom) Cumulative
third quartile s. distribution function for the dartboard random vari-
able.

Exercise 7.18. Let the rewardY for throwing the dart be the inverse 1/ X
of the distance from the center. Find the cumulative distribution function for 'Y .

Exercise 7.19. An exponential random variable X has cumulative distribution function

0 ifx <0,

1 —exp(—Az) ifz>0. 74

Fx(z)=P{X <z} = {

for some X\ > 0. Show that Fx has the properties of a distribution function.
We can create an expression and perform an evaluation using R.

> F<-expression (l-exp (-lambdax*x))

We can then evaluate Fx (3) and Fx (1) with A = 2 as follows.

> x<-c (10, 30);lambda<-1/10
> (Feval<-eval (F))

[1] 0.6321206 0.9502129
> Feval[2]-Feval[l]
[1] 0.3180924
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The last expression gives the value for Fix(30) — Fx(10) = P{10 < X < 30}.
This function is also stored in R and so its value at 2 can be computed in R using the command pexp (x, 0.1)
for A = 1/10. Thus, we make the computation above by

> pexp(30,0.1)-pexp(10,0.1)
[1] 0.3180924

We can draw the distribution function using the curve command.

> curve (pexp(x,0.1),0,80)

1.0

pexp(x, 0.1)
0.6 0.8

0.4

0.2

0.0

Figure 7.3: Cumulative distribution function for &n exponential random variable with A = 1/10.

Exercise 7.20. The time until the next bus arrives is an exponential random variable with A = 1/10 minutes. A
person waits at the bus stop until the bus arrives, giving up when the wait reaches 20 minutes. Give the cumulative
distribution function for T, the time that the person remains at the bus station and sketch a graph.

Even though the cumulative distribution function is defined for every random variable, we will often use other
characterizations, namely, the mass function for discrete random variable and the density function for continuous
random variables. Indeed, we typically will introduce a random variable via one of these two functions. In the next
two sections we introduce these two concepts and develop some of their properties.

7.4 Mass Functions
Definition 7.21. The (probability) mass function of a discrete random variable X is
fx(x) = P{X ==z}.
The mass function has a value at z equal to the size of the jump in the distribution function. In symbols,

fx (@) = Fx(x) = Fx ()

where F'x (z—) is the left limit of F'x at x.
The mass function has two basic properties:

e fx(x) > 0 forall z in the state space.
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The first property is based on the fact that probabilities are non-negative. The second follows from the observation
that the collection C,, = {w; X(w) = z} for all x € S, the state space for X, forms a partition of the probability
space 2. In Example 7.8, we saw the mass function for the random variable X that is the sum of the values on two
independent rolls of a fair dice.

Example 7.22. Let’s make tosses of a biased coin whose outcomes are independent. We shall continue tossing until
we obtain a toss of heads. Let X denote the random variable that gives the number of tails before the first head and p
denote the probability of heads in any given toss. Then

fx(0) = P{X =0} = P{H} =p
fx(1) = P{X =1} = P{TH} = (1 —p)p
fx(2)=P{X =2} = P{TTH} = (1-p)*p

fx(#) = P{X =} = P{T--TH} = (1-p)p

So, the probability mass function fx(x) = (1 — p)®p. Because the terms in this mass function form a geometric

sequence, X is called a geometric random variable. Recall that a geometric sequence c,cr,cr?,. .., cr™ has sum
2 n C(l — TnJrl)
S, =c+cr+crc+---4+cr” = EEEp—
—r

forr £ 1 If|r| <1, then lim,,_, o 7™ = 0 and thus s,, has a limit as n — co. In this case, the infinite sum is the limit

cterter’ 4+ o™ +-o= lim s, = < (7.5)

n—00 1—7r

Exercise 7.23. Establish the formula (7.5) above for s,,.

The mass function above forms a geometric sequence with the ratio r = 1 — p. Consequently, for positive integers
a and b,

b
Pla<X<bl= Y (1-pp=0-p) " p+-+(1-p)'p

r=a+1
(1—p)*'p—(1—p)*tp +1 b1
= =1-p* =(1-p
e (1=p)"* = (1-p)
We can take a = —1 to find the distribution function for a geometric random variable.
Fx(b)=P{X <bl=1—-(1-p)*. (7.6)

To obtain (7.6) in another way, note that the event {X > b+ 1} = {X > b} is the same as having the first
b + 1 coin tosses turn up fails. This event consists of b + 1 independent events each with probability 1 — p. Thus,
P{X >b+1} = P{X > b} = (1 — p)**L. By noting that the distribution function, Fx (b)) = 1 — P{X > b}, we
again obtain (7.6).

Exercise 7.24. Show that for a geometric random variable X,
P{X >a+bX >b} = P{X >a}. (1.7)

This property is called memorylessness. In words, if the first b trials results in failures, then the probability of at least
a additional failures is the same as the probability of at least a failures from the beginning. The fact that we begin with
b failures does not impact the number of trials afterwards until a success.

Conversely, if the memoryless property holds for an N-valued random variable X, then X is a geometric random
variable.
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The mass function and the cumulative distribution function for the geometric random variable with parameter
p = 1/3 can be found in R by writing

> x<-0:10
> f<-dgeom(x,1/3)
> F<-pgeom(x,1/3)

The initial d indicates density and p indicates the probability from the distribution function.

> data.frame(x, f,F)

X f F
1 0 0.333333333 0.3333333
2 1 0.222222222 0.5555556
3 2 0.148148148 0.7037037
4 3 0.098765432 0.8024691
5 4 0.065843621 0.8683128
6 5 0.043895748 0.9122085
7 6 0.029263832 0.9414723
8 7 0.019509221 0.9609816
9 8 0.013006147 0.9739877
10 9 0.008670765 0.9826585
11 10 0.005780510 0.9884390

Note that the difference in values in the distribution function Fix(x) — Fx(x — 1), giving the height of the jump
in F'x at z, is equal to the value of the mass function. For example,

Fx(3) — Fx(2) = 0.8024691 — 0.7037037 = 0.0987654 = fx(3).

Exercise 7.25. Check that the jumps in the cumulative distribution function for the geometric random variable above
is equal to the values of the mass function.

Exercise 7.26. For the geometric random variable above, find P{X < 3}, P{2 < X <5}. P{X > 4}.

We can simulate 100 geometric random variables with parameter p = 1/3 using the R command rgeom (100, 1/3).
(See Figure 7.4.)
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Figure 7.4: Histogram of 100 and 10,000 simulated geometric random variables with p = 1/3. Note that the histogram looks much more like a
geometric series for 10,000 simulations. We shall see later how this relates to the law of large numbers.
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7.5 Density Functions

Definition 7.27. For X a random variable whose distribution function Fx has a derivative. The function fx satisfying

Fxa) = [ ") dr

is called the probability density function and X is called a continuous random variable.
By the fundamental theorem of calculus, the density function is the derivative of the distribution function.

Fx(iE+A£L’) 7Fx(1’)

fx(z) = lim Ax = Fi(x).

Az—0

In other words,
Fx(x 4+ Az) — Fx(x) = fx(x)Az.

We can compute probabilities by evaluating definite integrals

b
P{a<X§b}:FX(b)7FX(a):/ Fx(2) dt.

The density function has two basic properties that mirror

the properties of the mass function: 5
e fx(x) > 0 for all z in the state space. 5p
° ffooo fx((E) der =1. 4

Return to the dart board example, letting X be the dis-
tance from the center of a dartboard having unit radius. =}
Then,

Plz < X <z + Az} =Fx(z+ Azx) — Fx(z)

~ fx(z)Az = 2zAx R e L
. Figure 7.5: The probability P{a < X < b} is the area under the
and X has densny density function, above the x axis between y = a and y = b.
0 ifz <0,
fx(x)=q¢2¢ if0<z<],
0 ifz > 1.

Exercise 7.28. Ler fx be the density for a random variable X and pick a number xo. Explain why P{X = xq} = 0.

Exercise 7.29. Plot, on both the distribution function and the density function, the probability that the dart lands
between 1/3 unit and 2/3 unit from the center.

Example 7.30. For the exponential distribution function (7.4), we have the density function

0 ifx <0,
Jx(@) = {)\e’\"” if z > 0.

R performs differentiation. We must first create an expression
> F<-expression (l-exp (-lambdaxx))

We then differentiate using the D command, placing x, the variable of differentiation in quotes.
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> f<-D(F,"x")
> f
exp (—lambda * x) *x lambda

Example 7.31. Density functions do not need to be bounded, for example, if we take

0 ifx <0,
fx(z) = % if0<ax <1,
0 if1 <z

Then, to find the value of the constant c, we compute the integral

1 1
C
1= —dt=2c¢£’=2c.
[ =2,

Soc=1/2. For0 <a<b<],

P{a<X§b}=/b2\1/Edt:\/iZ:\/5—\/5.

Exercise 7.32. Give the cumulative distribution function for the random variable in the previous example.

Exercise 7.33. Let X be a continuous random variable with density fx, then the random variable Y = aX + b has
density

a

(Hint: Begin with the definition of the cumulative distribution function Fy for Y. Consider the cases a > 0 and a < 0
separately.)

7.6 Mixtures

Exercise 7.34. Let Iy and Fy be two cumulative distribution functions and let w € (0, 1), then
F(z)=7nF(z)+ (1 — m)Fy(x)
is a cumulative distribution function.

We call the distribution F' a mixture of F} and F5. Mixture distributions occur routinely. To see this, first flip a
coin, heads occurring with probability 7. In this case the random variable

Y — X7  if the coin lands heads,
"~ 1 X, if the coin lands tails.

If X; has distribution function Fj, ¢ = 1, 2, then, by the law of total probability,

Fx(z) = P{X <z} = P{X < z|coin lands heads} P{coin lands heads}
+P{X < z|coin lands tails} P{coin lands tails}
=P{X; <zlr+P{Xo<z}(1-m) =nFi(z) + (1 —m)Fs(z)
More generally, let X, ..., X,, be random variables with distribution functions Fi,..., F, and m,..., 7, be

positive numbers with Z?:l m; = 1. In this case, roll an n sided die, ¢ showing with probability 7;. If the die shows
i, then we use the random variable X;. To be concrete, individuals arriving to take an airline flight are assigned to
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group ¢ with probability 7;. Let X; be the (random) time until individuals in group ¢ are seated. Then the distribution
function for the time to be seated

Fx(x)=P{X <z} = Z P{X < xl|assigned group i} P{assigned group i}
i=1

= ZP{XZ <atm=mFi(z)+ -+ mF(x).

i=1

F is call the mixture of F}, ..., F, with weights 7y, ..., m,.
If the X, are discrete random variables, then so is X. The mass function for X is

fx(z) = Fx(z) = Fx (2 ) m(Fi(2) = Fi(z=)) + - + mn(Fu(z) = Fo(2-))
mfi(x) + - fu ().

Exercise 7.35. Check that fx is a mass function.

Exercise 7.36. Find the mass function for the mixture of the three mass functions

filz)  falz)  fi(@)
0.2 0.5 0.1
0.3 0.5 0.1
0.1 0 0.2
0.4 0 0.2
0 0 0.4

[0, NGOV SR

and weights m = (1/4,1/4,1/2),
If the X; are continuous random variables, then so is X. The density function for X is

fx(@) = Fx(z) = mFi(z) + - + T F (2)
= 7Tlfl(l‘) + -+ ann(x)

=> fila)r
i=1

Checking that fx is a density function is similar to the exercise above. Just replace the sum on x with an integral.

7.7 Joint and Conditional Distributions

Because we will collect data on several observations, we must, as well, consider more than one random variable at a
time in order to model our experimental procedures. Consequently, we will expand on the concepts above to the case
of multiple random variables and their joint distribution. For the case of two random variables, X; and X5, this means
looking at the probability of events,

P{Xl € B, X5 € BQ}

For discrete random variables, take By = {x1} and By = {z3}. Then, we have

7.7.1 Discrete Random Variables
Definition 7.37. The joint probability mass function

le,X2($1;$2) = P{Xl =1x1,Xo = Lg}
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The mass functions for X; and X5 can be obtained from the joint mass function by summing over the values for
the other random variable. Thus, for example,

le($1) = P{X1 = 551} = ZP{Xl =x1, X = 552} = Zle,Xg(xla‘r2)‘ (7.8)

xr2 xr2

In this case, we use the expression marginal probability mass function to distinguish it from the joint probability
mass function.

Exercise 7.38. Let X1 and X5 have the joint mass function displayed in the table below

Ix, 5, (w1, 2)
.132\.1‘1 1 2 3 4 5
-1 0.09 0.04 0.03 0.01 0.02
0 0.07 0 0.07 0.02 0.03
1 0.10 0.06 0.05 0.08 0.06
2 0.01 0.08 0.09 0.05 0.04

Show that the sum of the entries is 1 and determine the marginal mass functions.

The conditional mass functions looks at the probabilities that one random variable takes on a given value, given
a value for the second random variable. The conditional mass function of X5 given X; is denoted f Xo| X1 (x2]z1) =
P{X5 = x5|X; = z1}. To compute this function,

P{Xy =x1,Xo =22}  fx, x,(71,22)

P{Xy =z} o fx(x) 79

Ixax, (@2|r1) = P{Xo = 22| Xy =11} =

provided fx, (z1) > 0.

Exercise 7.39. Show that, for each value of x1, fx,|x, (¥2|x1) is a mass function, that is, the values are non-negative
and the sum over all values for xo equals 1.

Exercise 7.40. For each value of x, find the conditional mass function. fx,| x,(x2|x1) for the values in the table
above.

7.7.2 Continuous Random Variables

For continuous random variables, we consider By = (21,21 + Ax1] and By = (22, z2 + Axs] and ask that for some
function fx, x,, the joint probability density function to satisfy

Plzy < X1 <1+ Azy,22 < Xo <23+ Aza} = fx, x, (21, 22) Az1Azs.

Similar to mass functions, the density functions for X; and X5 can be obtained from the joint density function
by integrating over the values for the other random variable. Also, we sometimes say marginal probability density
function to distinguish it from the joint probability density function. Thus, for example, in analogy with (7.8).

[x,(z1) = / Ix1x, (21, m2)ds. (7.10)

We can obtain this identity starting with (7.8) and using Riemann sums in a manner similar to the argument that led to
the formula for expectation for a continuous random variable.
For the conditional density, we start with
P{J?l < X1 <1 +AI1,SE2 < X9 <o +Al‘2}
P{z; < X1 <21+ Az}
U fxoxo (@, m)AnAxy fx, x, (71, 72)

- fx, (z1)Ary  fx(x) A

P{.Z‘Q < X9 < 9 —|—AZE2|ZC1 <X; <1 +A1‘1} =
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Next, divide by Axs and let Azo — 0. In keeping with the analogies between discrete and continuous densities, we
have the following definition.

Definition 7.41. The conditional density function

Ixa)x, (w2|71) = W

provided fx, (x1) > 0.

Exercise 7.42. Show that, for each value of x1, fx,|x, (x2|21) is a density function, that is, the values are non-negative
and the integral over all values for x4 equals 1.

Exercise 7.43. Verify that

f (@1, 2) x1+%m§ O0<z1 <1,0< 29 < 1.
X1, X220 otherwise

is a joint density function. Find the marginal densities.

7.7.3 Independent Random Variables

Many of our experimental protocols will be designed so that observations are independent. More precisely, we will
say that two random variables X; and X5 are independent if any two events associated to them are independent, i.e.,

P{X| € By, X € By} = P{X, € Bi}P{X; € By}.

In words, the probability that the two events {X; € B;} and {X3 € By} happen simultaneously is equal to the
product of the probabilities that each of them happen individually.
For independent discrete random variables, we have that

fxix,(x1,22) = P{Xh =21, Xo = 22} = P{Xy = 21} P{X2 = 22} = fx, (21) fx, (72).

In this case, we say that the joint probability mass function is the product of the marginal mass functions.
For continuous random variables,
fxi x, (21, 22) Az Aze = P{z1 < X1 < 21+ Az, 20 < Xo < 29 + Az}
= P{l‘l <Xi<x1+ Al‘l}P{l‘g < X9 <x9+ Al‘g} =~ le (.’Ifl)Al‘lfxz (I‘Q)Aa?g
= fx,(x1) fx, (w2) Az Ay,

Thus, for independent continuous random variables, the joint probability density function

Ix1.x, (71, 22) = fx,(71) fx,(72)
is the product of the marginal density functions.
Exercise 7.44. Generalize the notion of independent mass and density functions to more than two random variables.

Soon, we will be looking at n independent observations x1, o, . . . , &, arising from an unknown density or mass
function f. Thus, the joint density is

f(@)f(wa) - fan).

Generally speaking, the density function f will depend on the choice of a parameter value 6. (For example, the
unknown parameter in the density function for an exponential random variable that describes the waiting time for a
bus.) Given the data from the n observations, the likelihood function arises by considering this joint density not as
a function of =1, ..., x,, but rather as a function of the parameter 8. We shall learn how the study of the likelihood
plays a major role in parameter estimation and in the testing of hypotheses.
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7.8 Simulating Random Variables

One goal for these notes is to provide the tools needed to design inferential procedures based on sound principles of
statistical science. Thus, one of the very important uses of statistical software is the ability to generate pseudo-data
to simulate the actual data. This provides the opportunity to explore the properties of the data through simulation
and to test and refine methods of analysis in advance of the need to use these methods on genuine data. For many of
the frequently used families of random variables, R provides commands for their simulation. We shall examine these
families and their properties in Topic 9, Examples of Mass Functions and Densities. For other circumstances, we will
need to have methods for simulating sequence of independent random variables that possess a common distribution.
We first consider the case of discrete random variables.

7.8.1 Discrete Random Variables and the sample Command

The sample command is used to create simple and stratified random samples. Thus, if we enter a sequence x,
sample (x, 40) chooses 40 entries from x in such a way that all choices of size 40 have the same probability.

This uses the default R command of sampling without replacement. We can use this command to simulate
discrete random variables. To do this, we need to give the state space in a vector x and a mass function £. The call for
replace=TRUE indicates that we are sampling with replacement. Then to give a sample of n independent random
variables having common mass function £, we use sample (x, n, replace=TRUE, prob=f).

Example 7.45. Let X be described by the mass function

v |1 ]2]3 |4
fx(@) [ 01]02]03]04

Then to simulate 50 independent observations from this mass function:

> x<-c(1,2,3,4); £<-c(0.1,0.2,0.3,0.4)
> sum (f)
[1] 1
> data<-sample (x, 50, replace=TRUE, prob=f)
> data
[1] 1 4444433 43323334433 2413342333124323444421471
[43] 2 3 4 41 4 3 4

Notice that 1 is the least represented value and 4 is the most represented. If the command prob=£ is omitted, then
sample will choose uniformly from the values in the vector x. Let’s check our simulation against the mass function
that generated the data. First, recount the observations that take on each possible value for x. We can make a table.

> table (data)

data
1 2 3 4
5 7 18 20

or use the counts to determine the simulated proportions.

> counts<-numeric (4)
> for (i in 1:4){counts[i]<-sum(data==i)}
> simprob<-counts/ (sum(counts))
> data.frame (x, £, simprob)
b4 f simprob
11 0.1 0.10
22 0.2 0.14
33 0.3 0.36
4 4 0.4 0.40

124



Introduction to the Science of Statistics Random Variables and Distribution Functions

The expression data==1 returns a sequence FALSE and TRUE. the sum command adds up the number of times
TRUE appears.

Exercise 7.46. Simulate the sums on each of 20 rolls of a pair of dice. Repeat this for 1000 rolls and compare the
simulation with the appropriate mass function.

Exercise 7.47. Simulate the mixture in Exercise 7.36 and comment on how it matches the mixture mass function.

7.8.2 Continuous Random Variables and the Probability Transform

If X a continuous random variable with a density fx that is positive everywhere in its domain, then the distribution
function Fx(z) = P{X < z} is strictly increasing. In this case Fx has a inverse function F;z', known as the
quantile function.

Exercise 7.48. Fx(z) < wifand only if v < Fy'(u).
The probability transform follows from an analysis of the random variable
U=Fx(X)

Note that F'x has range from 0 to 1. It cannot take values below 0 or above 1. Thus, U takes on values between 0 and
1 and, therefore,
Fy(u)=0foru <0 and Fy(u)=1foru>1.

For values of u between 0 and 1, note that
P{Fx(X) <u}=P{X < Fy'(u)} = Fx(Fx'(u)) = u.
Taken together, we have the distribution function for the random variable U,

0 wu<0O,
Fy(uy=<u 0<u<l,
1 1<u.
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Figure 7.6: Illustrating the Probability Transform. First simulate uniform random variables w1, u2, . . . , un, on the interval [O, 1]. About 10%
of the random numbers should be in the interval [0.3, 0.4]. This corresponds to the 10% of the simulations on the interval [0.28, 0.38] for a random
variable with distribution function F’x shown. Similarly, about 10% of the random numbers should be in the interval [0.7, 0.8] which corresponds
to the 10% of the simulations on the interval [0.96, 1.51] for a random variable with distribution function F'x, These values on the x-axis can be
obtained from taking the inverse function of F'x,i.e., x; = F;l (ug).
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If we can simulate U, we can simulate a random variable with distribution F'x via the quantile function
X = F¢H(U). (7.11)

Take a derivative of Fyy(u) to see that its density

0 u<0,
fU(u): 1 0<5u<l,
0 1<u.

Because the random variable U has a constant density over
the interval of its possible values, it is called uniform on the
interval [0, 1]. It is simulated in R using the runi f command.
The identity (7.11) is called the probability transform. This
transform is illustrated in Figure 7.6. We can see how the prob-
ability transform works in the following example.

1.0

Example 7.49. For the dart board, for x between 0 and 1, the
distribution function v = Fx(x) = 2 and thus the quantile
function

probability

0.4
|

= Fy'(u) = Vu.

We can simulate independent observations of the distance from
the center X1, Xa, ..., X, of the dart board by simulating in-
dependent uniform random variables U1,Us,, . ..U, and tak-

ing the quantile function \ T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

X i =V U, 7. X
Figure 7.7: The distribution function (red) and the empirical cu-

mulative distribution function (black) based on 100 simulations of
the dart board distribution. R commands given below.

0.2
|

0.0
|

u<-runif (100)

xu<-sqrt (u)

plot (sort (xu),l:length (xu)/length (xu),
type="s",xlim=c(0,1),ylim=c(0,1), xlab="x",ylab="probability")

x<-seq(0,1,0.01)

lines (x,x"2,col="red") #add the distribution function to the graph

vV V. + V V V

We have used the 1 ines command to ad the distribution function Fx (x) = x2. Notice how it follows the empirical
cumulative distribution function.

Exercise 7.50. If U is uniform on [0,1], then soisV =1 —U.
Sometimes, it is easier to simulate X using F;* (V).

Example 7.51. For an exponential random variable, set
1
u=Fx(z) =1—exp(—Ax), and thus x = Y In(1 —w)

Consequently, we can simulate independent exponential random variables X1, Xo, ..., X, by simulating independent
uniform random variables V1, Vs, ...V, and taking the transform

1

R accomplishes this directly through the rexp command.
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