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1Edward E. Leamer, “Model Choice and Specification Analysis,” in Zvi Griliches and
Michael D. Intriligator, eds., Handbook of Econometrics, vol. I, North Holland Publishing
Company, Amsterdam, 1983, pp. 300–301.

10
MULTICOLLINEARITY:
WHAT HAPPENS IF
THE REGRESSORS
ARE CORRELATED?

There is no pair of words that is more misused both in econometrics texts and in
the applied literature than the pair “multi-collinearity problem.” That many of our
explanatory variables are highly collinear is a fact of life. And it is completely clear
that there are experimental designs X′X [i.e., data matrix] which would be much
preferred to the designs the natural experiment has provided us [i.e., the sample at
hand]. But a complaint about the apparent malevolence of nature is not at all con-
structive, and the ad hoc cures for a bad design, such as stepwise regression or
ridge regression, can be disastrously inappropriate. Better that we should rightly
accept the fact that our non-experiments [i.e., data not collected by designed ex-
periments] are sometimes not very informative about parameters of interest.1

Assumption 10 of the classical linear regression model (CLRM) is that
there is no multicollinearity among the regressors included in the regres-
sion model. In this chapter we take a critical look at this assumption by
seeking answers to the following questions:

1. What is the nature of multicollinearity?
2. Is multicollinearity really a problem?
3. What are its practical consequences?
4. How does one detect it?
5. What remedial measures can be taken to alleviate the problem of

multicollinearity?
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2See his A Course in Econometrics, Harvard University Press, Cambridge, Mass., 1991,
p. 249.

3Ragnar Frisch, Statistical Confluence Analysis by Means of Complete Regression Systems,
Institute of Economics, Oslo University, publ. no. 5, 1934.

4Strictly speaking, multicollinearity refers to the existence of more than one exact linear
relationship, and collinearity refers to the existence of a single linear relationship. But this dis-
tinction is rarely maintained in practice, and multicollinearity refers to both cases.

5The chances of one’s obtaining a sample of values where the regressors are related in this
fashion are indeed very small in practice except by design when, for example, the number of
observations is smaller than the number of regressors or if one falls into the “dummy variable
trap” as discussed in Chap. 9. See exercise 10.2.

6If there are only two explanatory variables, intercorrelation can be measured by the zero-
order or simple correlation coefficient. But if there are more than two X variables, intercorre-
lation can be measured by the partial correlation coefficients or by the multiple correlation
coefficient R of one X variable with all other X variables taken together.

In this chapter we also discuss Assumption 7 of the CLRM, namely, that
the number of observations in the sample must be greater than the number
of regressors, and Assumption 8, which requires that there be sufficient
variability in the values of the regressors, for they are intimately related to
the assumption of no multicollinearity. Arthur Goldberger has christened
Assumption 7 as the problem of micronumerosity,2 which simply means
small sample size.

10.1 THE NATURE OF MULTICOLLINEARITY

The term multicollinearity is due to Ragnar Frisch.3 Originally it meant the
existence of a “perfect,” or exact, linear relationship among some or all
explanatory variables of a regression model.4 For the k-variable regression
involving explanatory variable X1, X2, . . . , Xk (where X1 = 1 for all observa-
tions to allow for the intercept term), an exact linear relationship is said to
exist if the following condition is satisfied:

λ1 X1 + λ2 X2 + · · · + λkXk = 0 (10.1.1)

where λ1, λ2, . . . , λk are constants such that not all of them are zero simulta-
neously.5

Today, however, the term multicollinearity is used in a broader sense to
include the case of perfect multicollinearity, as shown by (10.1.1), as well
as the case where the X variables are intercorrelated but not perfectly so, as
follows6:

λ1 X1 + λ2 X2 + · · · + λ2 Xk + vi = 0 (10.1.2)

where vi is a stochastic error term.
To see the difference between perfect and less than perfect multicollinear-

ity, assume, for example, that λ2 �= 0. Then, (10.1.1) can be written as

X2i = −λ1

λ2
X1i − λ3

λ2
X3i − · · · − λk

λ2
Xki (10.1.3)
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which shows how X2 is exactly linearly related to other variables or how it
can be derived from a linear combination of other X variables. In this situa-
tion, the coefficient of correlation between the variable X2 and the linear
combination on the right side of (10.1.3) is bound to be unity.

Similarly, if λ2 �= 0, Eq. (10.1.2) can be written as

X2i = −λ1

λ2
X1i − λ3

λ2
X3i − · · · − λk

λ2
Xki − 1

λ2
vi (10.1.4)

which shows that X2 is not an exact linear combination of other X ’s because
it is also determined by the stochastic error term vi.

As a numerical example, consider the following hypothetical data:

X2 X3 X*3

10 50 52
15 75 75
18 90 97
24 120 129
30 150 152

It is apparent that X3i = 5X2i . Therefore, there is perfect collinearity be-
tween X2 and X3 since the coefficient of correlation r23 is unity. The variable
X*3 was created from X3 by simply adding to it the following numbers, which
were taken from a table of random numbers: 2, 0, 7, 9, 2. Now there is no
longer perfect collinearity between X2 and X*3. However, the two variables
are highly correlated because calculations will show that the coefficient of
correlation between them is 0.9959.

The preceding algebraic approach to multicollinearity can be portrayed
succinctly by the Ballentine (recall Figure 3.9, reproduced in Figure 10.1).
In this figure the circles Y, X2, and X3 represent, respectively, the variations
in Y (the dependent variable) and X2 and X3 (the explanatory variables). The
degree of collinearity can be measured by the extent of the overlap (shaded
area) of the X2 and X3 circles. In Figure 10.1a there is no overlap between X2

and X3, and hence no collinearity. In Figure 10.1b through 10.1e there is a
“low” to “high” degree of collinearity—the greater the overlap between X2

and X3 (i.e., the larger the shaded area), the higher the degree of collinear-
ity. In the extreme, if X2 and X3 were to overlap completely (or if X2 were
completely inside X3, or vice versa), collinearity would be perfect.

In passing, note that multicollinearity, as we have defined it, refers only to
linear relationships among the X variables. It does not rule out nonlinear re-
lationships among them. For example, consider the following regression
model:

Yi = β0 + β1 Xi + β2 X2
i + β3 X3

i + ui (10.1.5)

where, say, Y = total cost of production and X = output. The variables X2
i

(output squared) and X3
i (output cubed) are obviously functionally related
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(a) No collinearity (b) Low collinearity

(c) Moderate collinearity (d) High collinearity (e) Very high collinearity

FIGURE 10.1 The Ballentine view of multicollinearity.

to Xi , but the relationship is nonlinear. Strictly, therefore, models such as
(10.1.5) do not violate the assumption of no multicollinearity. However, in
concrete applications, the conventionally measured correlation coefficient
will show Xi , X2

i , and X3
i to be highly correlated, which, as we shall show,

will make it difficult to estimate the parameters of (10.1.5) with greater pre-
cision (i.e., with smaller standard errors).

Why does the classical linear regression model assume that there is no
multicollinearity among the X’s? The reasoning is this: If multicollinearity
is perfect in the sense of (10.1.1), the regression coefficients of the
X variables are indeterminate and their standard errors are infinite.
If multicollinearity is less than perfect, as in (10.1.2), the regression
coefficients, although determinate, possess large standard errors (in
relation to the coefficients themselves), which means the coefficients
cannot be estimated with great precision or accuracy. The proofs of
these statements are given in the following sections.
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7Douglas Montgomery and Elizabeth Peck, Introduction to Linear Regression Analysis, John
Wiley & Sons, New York, 1982, pp. 289–290. See also R. L. Mason, R. F. Gunst, and J. T. Web-
ster, “Regression Analysis and Problems of Multicollinearity,” Communications in Statistics A,
vol. 4, no. 3, 1975, pp. 277–292; R. F. Gunst, and R. L. Mason, “Advantages of Examining Mul-
ticollinearities in Regression Analysis,” Biometrics, vol. 33, 1977, pp. 249–260.

There are several sources of multicollinearity. As Montgomery and Peck
note, multicollinearity may be due to the following factors7:

1. The data collection method employed, for example, sampling over a
limited range of the values taken by the regressors in the population.

2. Constraints on the model or in the population being sampled. For
example, in the regression of electricity consumption on income (X2) and
house size (X3) there is a physical constraint in the population in that fami-
lies with higher incomes generally have larger homes than families with
lower incomes.

3. Model specification, for example, adding polynomial terms to a re-
gression model, especially when the range of the X variable is small.

4. An overdetermined model. This happens when the model has more
explanatory variables than the number of observations. This could happen
in medical research where there may be a small number of patients about
whom information is collected on a large number of variables.

An additional reason for multicollinearity, especially in time series data,
may be that the regressors included in the model share a common trend,
that is, they all increase or decrease over time. Thus, in the regression of
consumption expenditure on income, wealth, and population, the regres-
sors income, wealth, and population may all be growing over time at more
or less the same rate, leading to collinearity among these variables.

10.2 ESTIMATION IN THE PRESENCE OF
PERFECT MULTICOLLINEARITY

It was stated previously that in the case of perfect multicollinearity the re-
gression coefficients remain indeterminate and their standard errors are
infinite. This fact can be demonstrated readily in terms of the three-variable
regression model. Using the deviation form, where all the variables are
expressed as deviations from their sample means, we can write the three-
variable regression model as

yi = β̂2x2i + β̂3x3i + ûi (10.2.1)

Now from Chapter 7 we obtain

β̂2 =
(∑

yix2i
)(∑

x2
3i

) − (∑
yix3i

)(∑
x2i x3i

)
(∑

x2
2i

)(∑
x2

3i

) − (∑
x2i x3i

)2 (7.4.7)
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8Another way of seeing this is as follows: By definition, the coefficient of correlation

between X2 and X3, r2 3, is 
∑

x2i x3i/

√∑
x2

2i

∑
x2

3i . If r
2
2 3 = 1, i.e., perfect collinearity between X2

and X3, the denominator of (7.4.7) will be zero, making estimation of β2 (or of β3) impossible.

β̂3 =
(∑

yix3i
)(∑

x2
2i

) − (∑
yix2i

)(∑
x2i x3i

)
(∑

x2
2i

)(∑
x2

3i

) − (∑
x2i x3i

)2 (7.4.8)

Assume that X3i = λX2i , where λ is a nonzero constant (e.g., 2, 4, 1.8, etc.).
Substituting this into (7.4.7), we obtain

β̂2 =
(∑

yix2i
)(

λ2 ∑
x2

2i

) − (
λ

∑
yix2i

)(
λ

∑
x2

2i

)
(∑

x2
2i

)(
λ2

∑
x2

2i

) − λ2
(∑

x2
2i

)2

= 0
0

(10.2.2)

which is an indeterminate expression. The reader can verify that β̂3 is also
indeterminate.8

Why do we obtain the result shown in (10.2.2)? Recall the meaning of β̂2:
It gives the rate of change in the average value of Y as X2 changes by a unit,
holding X3 constant. But if X3 and X2 are perfectly collinear, there is no way
X3 can be kept constant: As X2 changes, so does X3 by the factor λ. What it
means, then, is that there is no way of disentangling the separate influences
of X2 and X3 from the given sample: For practical purposes X2 and X3 are
indistinguishable. In applied econometrics this problem is most damaging
since the entire intent is to separate the partial effects of each X upon the
dependent variable.

To see this differently, let us substitute X3i = λX2i into (10.2.1) and obtain
the following [see also (7.1.9)]:

yi = β̂2x2i + β̂3(λx2i) + ûi

= (β̂2 + λβ̂3)x2i + ûi (10.2.3)

= α̂x2i + ûi

where
α̂ = (β̂2 + λβ̂3) (10.2.4)

Applying the usual OLS formula to (10.2.3), we get

α̂ = (β̂2 + λβ̂3) =
∑

x2i yi∑
x2

2i

(10.2.5)

Therefore, although we can estimate α uniquely, there is no way to estimate
β2 and β3 uniquely; mathematically

α̂ = β̂2 + λβ̂3 (10.2.6)
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9In econometric literature, a function such as (β2 + λβ3) is known as an estimable function.

gives us only one equation in two unknowns (note λ is given) and there is an
infinity of solutions to (10.2.6) for given values of α̂ and λ. To put this idea
in concrete terms, let α̂ = 0.8 and λ = 2. Then we have

0.8 = β̂2 + 2β̂3 (10.2.7)

or

β̂2 = 0.8 − 2β̂3 (10.2.8)

Now choose a value of β̂3 arbitrarily, and we will have a solution for β̂2.
Choose another value for β̂3, and we will have another solution for β̂2. No
matter how hard we try, there is no unique value for β̂2.

The upshot of the preceding discussion is that in the case of perfect mul-
ticollinearity one cannot get a unique solution for the individual regression
coefficients. But notice that one can get a unique solution for linear combi-
nations of these coefficients. The linear combination (β2 + λβ3) is uniquely
estimated by α, given the value of λ.9

In passing, note that in the case of perfect multicollinearity the vari-
ances and standard errors of β̂2 and β̂3 individually are infinite. (See exer-
cise 10.21.)

10.3 ESTIMATION IN THE PRESENCE OF “HIGH”
BUT “IMPERFECT” MULTICOLLINEARITY

The perfect multicollinearity situation is a pathological extreme. Generally,
there is no exact linear relationship among the X variables, especially in
data involving economic time series. Thus, turning to the three-variable
model in the deviation form given in (10.2.1), instead of exact multi-
collinearity, we may have

x3i = λx2i + vi (10.3.1)

where λ �= 0 and where vi is a stochastic error term such that 
∑

x2ivi = 0.
(Why?)

Incidentally, the Ballentines shown in Figure 10.1b to 10.1e represent
cases of imperfect collinearity.

In this case, estimation of regression coefficients β2 and β3 may be possi-
ble. For example, substituting (10.3.1) into (7.4.7), we obtain

β̂2 =
∑

(yix2i)
(
λ2 ∑

x2
2i + ∑

v2
i

) − (
λ

∑
yix2i + ∑

yivi
)(

λ
∑

x2
2i

)
∑

x2
2i

(
λ2

∑
x2

2i + ∑
v2

i

) − (
λ

∑
x2

2i

)2 (10.3.2)

where use is made of 
∑

x2ivi = 0. A similar expression can be derived for β̂3.
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10Since near multicollinearity per se does not violate the other assumptions listed in
Chap. 7, the OLS estimators are BLUE as indicated there.

11Christopher H. Achen, Interpreting and Using Regression, Sage Publications, Beverly Hills,
Calif., 1982, pp. 82–83.

Now, unlike (10.2.2), there is no reason to believe a priori that (10.3.2)
cannot be estimated. Of course, if vi is sufficiently small, say, very close to
zero, (10.3.1) will indicate almost perfect collinearity and we shall be back
to the indeterminate case of (10.2.2).

10.4 MULTICOLLINEARITY: MUCH ADO ABOUT NOTHING?
THEORETICAL CONSEQUENCES OF MULTICOLLINEARITY

Recall that if the assumptions of the classical model are satisfied, the OLS
estimators of the regression estimators are BLUE (or BUE, if the normality
assumption is added). Now it can be shown that even if multicollinearity is
very high, as in the case of near multicollinearity, the OLS estimators still
retain the property of BLUE.10 Then what is the multicollinearity fuss all
about? As Christopher Achen remarks (note also the Leamer quote at the
beginning of this chapter):

Beginning students of methodology occasionally worry that their independent
variables are correlated—the so-called multicollinearity problem. But multi-
collinearity violates no regression assumptions. Unbiased, consistent estimates
will occur, and their standard errors will be correctly estimated. The only effect of
multicollinearity is to make it hard to get coefficient estimates with small stan-
dard error. But having a small number of observations also has that effect, as does
having independent variables with small variances. (In fact, at a theoretical level,
multicollinearity, few observations and small variances on the independent vari-
ables are essentially all the same problem.) Thus “What should I do about multi-
collinearity?” is a question like “What should I do if I don’t have many observa-
tions?” No statistical answer can be given.11

To drive home the importance of sample size, Goldberger coined the term
micronumerosity, to counter the exotic polysyllabic name multicollinear-
ity. According to Goldberger, exact micronumerosity (the counterpart of
exact multicollinearity) arises when n, the sample size, is zero, in which
case any kind of estimation is impossible. Near micronumerosity, like near
multicollinearity, arises when the number of observations barely exceeds
the number of parameters to be estimated.

Leamer, Achen, and Goldberger are right in bemoaning the lack of atten-
tion given to the sample size problem and the undue attention to the multi-
collinearity problem. Unfortunately, in applied work involving secondary
data (i.e., data collected by some agency, such as the GNP data collected by
the government), an individual researcher may not be able to do much
about the size of the sample data and may have to face “estimating problems
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12Peter Kennedy, A Guide to Econometrics, 3d ed., The MIT Press, Cambridge, Mass., 1992,
p. 177.

important enough to warrant our treating it [i.e., multicollinearity] as a
violation of the CLR [classical linear regression] model.”12

First, it is true that even in the case of near multicollinearity the OLS es-
timators are unbiased. But unbiasedness is a multisample or repeated sam-
pling property. What it means is that, keeping the values of the X variables
fixed, if one obtains repeated samples and computes the OLS estimators for
each of these samples, the average of the sample values will converge to the
true population values of the estimators as the number of samples increases.
But this says nothing about the properties of estimators in any given sample.

Second, it is also true that collinearity does not destroy the property of
minimum variance: In the class of all linear unbiased estimators, the OLS
estimators have minimum variance; that is, they are efficient. But this does
not mean that the variance of an OLS estimator will necessarily be small (in
relation to the value of the estimator) in any given sample, as we shall
demonstrate shortly.

Third, multicollinearity is essentially a sample (regression) phenomenon in
the sense that even if the X variables are not linearly related in the popu-
lation, they may be so related in the particular sample at hand: When we
postulate the theoretical or population regression function (PRF), we be-
lieve that all the X variables included in the model have a separate or inde-
pendent influence on the dependent variable Y. But it may happen that in
any given sample that is used to test the PRF some or all of the X variables
are so highly collinear that we cannot isolate their individual influence on Y.
So to speak, our sample lets us down, although the theory says that all the
X’s are important. In short, our sample may not be “rich” enough to accom-
modate all X variables in the analysis.

As an illustration, reconsider the consumption–income example of
Chapter 3. Economists theorize that, besides income, the wealth of the con-
sumer is also an important determinant of consumption expenditure. Thus,
we may write

Consumptioni = β1 + β2 Incomei + β3 Wealthi + ui

Now it may happen that when we obtain data on income and wealth, the
two variables may be highly, if not perfectly, correlated: Wealthier people
generally tend to have higher incomes. Thus, although in theory income and
wealth are logical candidates to explain the behavior of consumption ex-
penditure, in practice (i.e., in the sample) it may be difficult to disentangle
the separate influences of income and wealth on consumption expenditure.

Ideally, to assess the individual effects of wealth and income on con-
sumption expenditure we need a sufficient number of sample observations
of wealthy individuals with low income, and high-income individuals with
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low wealth (recall Assumption 8). Although this may be possible in cross-
sectional studies (by increasing the sample size), it is very difficult to
achieve in aggregate time series work.

For all these reasons, the fact that the OLS estimators are BLUE despite
multicollinearity is of little consolation in practice. We must see what
happens or is likely to happen in any given sample, a topic discussed in the
following section.

10.5 PRACTICAL CONSEQUENCES OF MULTICOLLINEARITY

In cases of near or high multicollinearity, one is likely to encounter the fol-
lowing consequences:

1. Although BLUE, the OLS estimators have large variances and covari-
ances, making precise estimation difficult.

2. Because of consequence 1, the confidence intervals tend to be much
wider, leading to the acceptance of the “zero null hypothesis” (i.e., the true
population coefficient is zero) more readily.

3. Also because of consequence 1, the t ratio of one or more coefficients
tends to be statistically insignificant.

4. Although the t ratio of one or more coefficients is statistically insigni-
ficant, R2, the overall measure of goodness of fit, can be very high.

5. The OLS estimators and their standard errors can be sensitive to
small changes in the data.

The preceding consequences can be demonstrated as follows.

Large Variances and Covariances of OLS Estimators

To see large variances and covariances, recall that for the model (10.2.1) the
variances and covariances of β̂2 and β̂3 are given by

var (β̂2) = σ 2∑
x2

2i

(
1 − r2

2 3

) (7.4.12)

var (β̂3) = σ 2∑
x2

3i

(
1 − r2

2 3

) (7.4.15)

cov (β̂2, β̂3) = −r2 3σ
2

(
1 − r2

2 3

)√∑
x2

2i

∑
x2

3i

(7.4.17)

where r2 3 is the coefficient of correlation between X2 and X3.
It is apparent from (7.4.12) and (7.4.15) that as r2 3 tends toward 1, that is,

as collinearity increases, the variances of the two estimators increase and in
the limit when r2 3 = 1, they are infinite. It is equally clear from (7.4.17) that
as r2 3 increases toward 1, the covariance of the two estimators also in-
creases in absolute value. [Note: cov (β̂2, β̂3) ≡ cov (β̂3, β̂2).]
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The speed with which variances and covariances increase can be seen
with the variance-inflating factor (VIF), which is defined as

VIF = 1(
1 − r2

2 3

) (10.5.1)

VIF shows how the variance of an estimator is inflated by the presence of
multicollinearity. As r2

2 3 approaches 1, the VIF approaches infinity. That is,
as the extent of collinearity increases, the variance of an estimator in-
creases, and in the limit it can become infinite. As can be readily seen, if
there is no collinearity between X2 and X3, VIF will be 1.

Using this definition, we can express (7.4.12) and (7.4.15) as

var (β̂2) = σ 2∑
x2

2i

VIF (10.5.2)

var (β̂3) = σ 2∑
x2

3i

VIF (10.5.3)

which show that the variances of β̂2 and β̂3 are directly proportional to the
VIF.

To give some idea about how fast the variances and covariances increase
as r2 3 increases, consider Table 10.1, which gives these variances and
covariances for selected values of r2 3. As this table shows, increases in r2 3

TABLE 10.1 THE EFFECT OF INCREASING r2 3 ON VAR (β̂2) AND COV (β̂2, β̂3)

var (β̂2)(r2 3 �= 0)

var (β̂2)(r2 3 = 0)Value of r2 3 VIF var (β̂2) cov (β̂2, β̂3)
(1) (2) (3)* (4) (5) 

0.00 1.00
σ 2∑
x2

2i

= A — 0

0.50 1.33 1.33 × A 1.33 0.67 × B
0.70 1.96 1.96 × A 1.96 1.37 × B
0.80 2.78 2.78 × A 2.78 2.22 × B
0.90 5.76 5.26 × A 5.26 4.73 × B
0.95 10.26 10.26 × A 10.26 9.74 × B
0.97 16.92 16.92 × A 16.92 16.41 × B
0.99 50.25 50.25 × A 50.25 49.75 × B
0.995 100.00 100.00 × A 100.00 99.50 × B
0.999 500.00 500.00 × A 500.00 499.50 × B

Note: A = σ 2∑
x2

2i

B = −σ 2√∑
x2

2i

∑
x3

3i

× = times
*To find out the effect of increasing r2 3 on var (β̂3), note that A = σ 2/

∑
x2

3i when r2 3 = 0, but the variance
and covariance magnifying factors remain the same.
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have a dramatic effect on the estimated variances and covariances of the
OLS estimators. When r2 3 = 0.50, the var (β̂2) is 1.33 times the variance
when r2 3 is zero, but by the time r2 3 reaches 0.95 it is about 10 times as high
as when there is no collinearity. And lo and behold, an increase of r2 3 from
0.95 to 0.995 makes the estimated variance 100 times that when collinearity
is zero. The same dramatic effect is seen on the estimated covariance. All
this can be seen in Figure 10.2.

The results just discussed can be easily extended to the k-variable model.
In such a model, the variance of the kth coefficient, as noted in (7.5.6), can
be expressed as:

var (β̂j ) = σ 2∑
x2

j

(
1

1 − R2
j

)
(7.5.6)

where β̂j = (estimated) partial regression coefficient of regressor Xj

R2
j = R2 in the regression of Xj on the remaining (k − 2) regressions

[Note: There are (k − 1) regressors in the k-variable regres-
sion model.]∑

x2
j = ∑

(Xj − X̄j )2

We can also write (7.5.6) as

var (β̂j ) = σ 2∑
x2

j

VIFj (10.5.4)

As you can see from this expression, var (β̂j ) is proportional to σ 2 and VIF
but inversely proportional to 

∑
x2

j . Thus, whether var (β̂j ) is large or small

1.33A
A

5.26A

0 0.9 1.00.80.5

var ( β2)

A = σ
Σx

r
2 3

2

2
2i

FIGURE 10.2 The behavior of var (β̂2) as a function of r2 3.
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will depend on the three ingredients: (1) σ 2, (2) VIF, and (3) 
∑

x2
j . The last

one, which ties in with Assumption 8 of the classical model, states that the
larger the variability in a regressor, the smaller the variance of the coeffi-
cient of that regressor, assuming the other two ingredients are constant, and
therefore the greater the precision with which that coefficient can be
estimated.

Before proceeding further, it may be noted that the inverse of the VIF is
called tolerance (TOL). That is,

TOLj = 1
VIFj

= (
1 − R2

j

)
(10.5.5)

When R2
j = 1 (i.e., perfect collinearity), TOLj = 0 and when R2

j = 0 (i.e., no
collinearity whatsoever), TOLj is 1. Because of the intimate connection be-
tween VIF and TOL, one can use them interchangeably.

Wider Confidence Intervals

Because of the large standard errors, the confidence intervals for the relevant
population parameters tend to be larger, as can be seen from Table 10.2. For
example, when r2 3 = 0.95, the confidence interval for β2 is larger than when
r2 3 = 0 by a factor of 

√
10.26, or about 3.

Therefore, in cases of high multicollinearity, the sample data may be com-
patible with a diverse set of hypotheses. Hence, the probability of accepting
a false hypothesis (i.e., type II error) increases.

TABLE 10.2 THE EFFECT OF INCREASING COLLINEARITY
ON THE 95% CONFIDENCE INTERVAL FOR
β2: β̂2 ± 1.96 se (β̂2)

Value of r2 3 95% confidence interval for β2

0.00 β̂2 ± 1.96

√
σ 2∑
x2

2i

0.50 β̂2 ± 1.96
√

(1.33)

√
σ 2∑
x2

2i

0.95 β̂2 ± 1.96
√

(10.26)

√
σ 2∑
x2

2i

0.995 β̂2 ± 1.96
√

(100)

√
σ 2∑
x2

2i

0.999 β̂2 ± 1.96
√

(500)

√
σ 2∑
x2

2i

Note: We are using the normal distribution because
σ2 is assumed for convenience to be known. Hence the
use of 1.96, the 95% confidence factor for the normal
distribution.

The standard errors corresponding to the various r2 3
values are obtained from Table 10.1.
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13In terms of the confidence intervals, β2 = 0 value will lie increasingly in the acceptance
region as the degree of collinearity increases.

“Insignificant” t Ratios

Recall that to test the null hypothesis that, say, β2 = 0, we use the t ratio,
that is, β̂2/se (β̂2), and compare the estimated t value with the critical t value
from the t table. But as we have seen, in cases of high collinearity the esti-
mated standard errors increase dramatically, thereby making the t values
smaller. Therefore, in such cases, one will increasingly accept the null hy-
pothesis that the relevant true population value is zero.13

A High R2 but Few Significant t Ratios

Consider the k-variable linear regression model:

Yi = β1 + β2 X2i + β3 X3i + · · · + βkXki + ui

In cases of high collinearity, it is possible to find, as we have just noted, that
one or more of the partial slope coefficients are individually statistically in-
significant on the basis of the t test. Yet the R2 in such situations may be so
high, say, in excess of 0.9, that on the basis of the F test one can convincingly
reject the hypothesis that β2 = β3 = · · · = βk = 0. Indeed, this is one of the
signals of multicollinearity—insignificant t values but a high overall R2 (and
a significant F value)!

We shall demonstrate this signal in the next section, but this outcome
should not be surprising in view of our discussion on individual vs. joint
testing in Chapter 8. As you may recall, the real problem here is the covari-
ances between the estimators, which, as formula (7.4.17) indicates, are re-
lated to the correlations between the regressors.

Sensitivity of OLS Estimators and Their Standard Errors
to Small Changes in Data

As long as multicollinearity is not perfect, estimation of the regression coef-
ficients is possible but the estimates and their standard errors become very
sensitive to even the slightest change in the data.

To see this, consider Table 10.3. Based on these data, we obtain the fol-
lowing multiple regression:

Ŷi = 1.1939 + 0.4463X2i + 0.0030X3i

(0.7737)    (0.1848)       (0.0851)

t = (1.5431)    (2.4151)       (0.0358) (10.5.6)

R2 = 0.8101 r2 3 = 0.5523

cov (β̂2, β̂3) = −0.00868 df = 2
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TABLE 10.3
HYPOTHETICAL DATA ON Y, X2, AND X3

Y X2 X3

1 2 4
2 0 2
3 4 12
4 6 0
5 8 16

Regression (10.5.6) shows that none of the regression coefficients is individ-
ually significant at the conventional 1 or 5 percent levels of significance, al-
though β̂2 is significant at the 10 percent level on the basis of a one-tail t test.

Now consider Table 10.4. The only difference between Tables 10.3 and
10.4 is that the third and fourth values of X3 are interchanged. Using the
data of Table 10.4, we now obtain

Ŷi = 1.2108 + 0.4014X2i + 0.0270X3i

(0.7480)    (0.2721)        (0.1252)

t = (1.6187)   (1.4752)       (0.2158) (10.5.7)

R2 = 0.8143 r2 3 = 0.8285

cov (β̂2, β̂3) = −0.0282 df = 2

As a result of a slight change in the data, we see that β̂2, which was statis-
tically significant before at the 10 percent level of significance, is no longer
significant even at that level. Also note that in (10.5.6) cov (β̂2, β̂3) = −0.00868
whereas in (10.5.7) it is −0.0282, a more than threefold increase. All these
changes may be attributable to increased multicollinearity: In (10.5.6) r23 =
0.5523, whereas in (10.5.7) it is 0.8285. Similarly, the standard errors of β̂2

and β̂3 increase between the two regressions, a usual symptom of collinearity.
We noted earlier that in the presence of high collinearity one cannot esti-

mate the individual regression coefficients precisely but that linear combi-
nations of these coefficients may be estimated more precisely. This fact can
be substantiated from the regressions (10.5.6) and (10.5.7). In the first re-
gression the sum of the two partial slope coefficients is 0.4493 and in the
second it is 0.4284, practically the same. Not only that, their standard errors
are practically the same, 0.1550 vs. 0.1823.14 Note, however, the coefficient
of X3 has changed dramatically, from 0.003 to 0.027.

TABLE 10.4
HYPOTHETICAL DATA ON Y, X2, AND X3

Y X2 X3

1 2 4
2 0 2
3 4 0
4 6 12
5 8 16

14These standard errors are obtained from the formula

se (β̂2 + β̂3) =
√

var (β̂2) + var (β̂3) + 2 cov (β̂2, β̂3)

Note that increasing collinearity increases the variances of β̂2 and β̂3, but these variances may
be offset if there is high negative covariance between the two, as our results clearly point out.
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TABLE 10.5 HYPOTHETICAL DATA ON CONSUMPTION
EXPENDITURE Y, INCOME X2, AND WEALTH X3

Y, $ X2, $ X3, $

70 80 810
65 100 1009
90 120 1273
95 140 1425

110 160 1633
115 180 1876
120 200 2052
140 220 2201
155 240 2435
150 260 2686

15Goldberger, op. cit., pp. 248–250.

Consequences of Micronumerosity

In a parody of the consequences of multicollinearity, and in a tongue-in-
cheek manner, Goldberger cites exactly similar consequences of micro-
numerosity, that is, analysis based on small sample size.15 The reader is
advised to read Goldberger’s analysis to see why he regards micronumeros-
ity as being as important as multicollinearity.

10.6 AN ILLUSTRATIVE EXAMPLE: CONSUMPTION EXPENDITURE
IN RELATION TO INCOME AND WEALTH

To illustrate the various points made thus far, let us reconsider the con-
sumption–income example of Chapter 3. In Table 10.5 we reproduce the
data of Table 3.2 and add to it data on wealth of the consumer. If we assume
that consumption expenditure is linearly related to income and wealth,
then, from Table 10.5 we obtain the following regression:

Ŷi = 24.7747 + 0.9415X2i − 0.0424X3i

(6.7525) (0.8229) (0.0807)

t = (3.6690) (1.1442) (−0.5261) (10.6.1)

R2 = 0.9635 R̄2 = 0.9531 df = 7

Regression (10.6.1) shows that income and wealth together explain about
96 percent of the variation in consumption expenditure, and yet neither of
the slope coefficients is individually statistically significant. Moreover, not
only is the wealth variable statistically insignificant but also it has the wrong
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sign. A priori, one would expect a positive relationship between consump-
tion and wealth. Although β̂2 and β̂3 are individually statistically insignifi-
cant, if we test the hypothesis that β2 = β3 = 0 simultaneously, this hypo-
thesis can be rejected, as Table 10.6 shows. Under the usual assumption we
obtain

F = 4282.7770
46.3494

= 92.4019 (10.6.2)

This F value is obviously highly significant.
It is interesting to look at this result geometrically. (See Figure 10.3.)

Based on the regression (10.6.1), we have established the individual 95%
confidence intervals for β2 and β3 following the usual procedure discussed
in Chapter 8. As these intervals show, individually each of them includes the
value of zero. Therefore, individually we can accept the hypothesis that the

TABLE 10.6 ANOVA TABLE FOR THE CONSUMPTION–INCOME–WEALTH EXAMPLE

Source of variation SS df MSS

Due to regression 8,565.5541 2 4,282.7770
Due to residual 324.4459 7 46.3494

FIGURE 10.3 Individual confidence intervals for β2 and β3 and joint confidence interval (ellipse) for β2 and β3.
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16As noted in Sec. 5.3, the topic of joint confidence interval is rather involved. The interested
reader may consult the reference cited there.

two partial slopes are zero. But, when we establish the joint confidence in-
terval to test the hypothesis that β2 = β3 = 0, that hypothesis cannot be ac-
cepted since the joint confidence interval, actually an ellipse, does not in-
clude the origin.16 As already pointed out, when collinearity is high, tests on
individual regressors are not reliable; in such cases it is the overall F test
that will show if Y is related to the various regressors.

Our example shows dramatically what multicollinearity does. The fact
that the F test is significant but the t values of X2 and X3 are individually in-
significant means that the two variables are so highly correlated that it is
impossible to isolate the individual impact of either income or wealth on
consumption. As a matter of fact, if we regress X3 on X2, we obtain

X̂3i = 7.5454 + 10.1909X2i

(29.4758) (0.1643) (10.6.3)

t = (0.2560) (62.0405) R2 = 0.9979

which shows that there is almost perfect collinearity between X3 and X2.
Now let us see what happens if we regress Y on X2 only:

Ŷi = 24.4545 + 0.5091X2i

(6.4138) (0.0357) (10.6.4)

t = (3.8128) (14.2432) R2 = 0.9621

In (10.6.1) the income variable was statistically insignificant, whereas now
it is highly significant. If instead of regressing Y on X2, we regress it on X3,
we obtain

Ŷi = 24.411 + 0.0498X3i

(6.874) (0.0037) (10.6.5)

t = (3.551) (13.29) R2 = 0.9567

We see that wealth has now a significant impact on consumption expendi-
ture, whereas in (10.6.1) it had no effect on consumption expenditure.

Regressions (10.6.4) and (10.6.5) show very clearly that in situations of
extreme multicollinearity dropping the highly collinear variable will often
make the other X variable statistically significant. This result would suggest
that a way out of extreme collinearity is to drop the collinear variable, but
we shall have more to say about it in Section 10.8.
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17Jan Kmenta, Elements of Econometrics, 2d ed., Macmillan, New York, 1986, p. 431.
18Ibid., p. 439.

10.7 DETECTION OF MULTICOLLINEARITY

Having studied the nature and consequences of multicollinearity, the nat-
ural question is: How does one know that collinearity is present in any given
situation, especially in models involving more than two explanatory vari-
ables? Here it is useful to bear in mind Kmenta’s warning:

1. Multicollinearity is a question of degree and not of kind. The meaningful
distinction is not between the presence and the absence of multicollinearity, but
between its various degrees.

2. Since multicollinearity refers to the condition of the explanatory variables
that are assumed to be nonstochastic, it is a feature of the sample and not of the
population.

Therefore, we do not “test for multicollinearity” but can, if we wish, measure
its degree in any particular sample.17

Since multicollinearity is essentially a sample phenomenon, arising out
of the largely nonexperimental data collected in most social sciences, we do
not have one unique method of detecting it or measuring its strength. What
we have are some rules of thumb, some informal and some formal, but rules
of thumb all the same. We now consider some of these rules.

1. High R2 but few significant t ratios. As noted, this is the “classic”
symptom of multicollinearity. If R2 is high, say, in excess of 0.8, the F test in
most cases will reject the hypothesis that the partial slope coefficients are
simultaneously equal to zero, but the individual t tests will show that none or
very few of the partial slope coefficients are statistically different from zero.
This fact was clearly demonstrated by our consumption–income–wealth
example.

Although this diagnostic is sensible, its disadvantage is that “it is too
strong in the sense that multicollinearity is considered as harmful only
when all of the influences of the explanatory variables on Y cannot be dis-
entangled.”18

2. High pair-wise correlations among regressors. Another suggested
rule of thumb is that if the pair-wise or zero-order correlation coefficient be-
tween two regressors is high, say, in excess of 0.8, then multicollinearity is a
serious problem. The problem with this criterion is that, although high
zero-order correlations may suggest collinearity, it is not necessary that they
be high to have collinearity in any specific case. To put the matter somewhat
technically, high zero-order correlations are a sufficient but not a necessary
condition for the existence of multicollinearity because it can exist even
though the zero-order or simple correlations are comparatively low (say, less
than 0.50). To see this relationship, suppose we have a four-variable model:

Yi = β1 + β2 X2i + β3 X3i + β4 X4i + ui
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and suppose that
X4i = λ2 X2i + λ3 X3i

where λ2 and λ3 are constants, not both zero. Obviously, X4 is an exact lin-
ear combination of X2 and X3, giving R2

4.23 = 1, the coefficient of determina-
tion in the regression of X4 on X2 and X3.

Now recalling the formula (7.11.5) from Chapter 7, we can write

(10.7.1)

But since R2
4.2 3 = 1 because of perfect collinearity, we obtain

1 = r2
4 2 + r2

4 3 − 2r4 2r4 3r2 3

1 − r2
2 3

(10.7.2)

It is not difficult to see that (10.7.2) is satisfied by r4 2 = 0.5, r4 3 = 0.5, and
r2 3 = −0.5, which are not very high values.

Therefore, in models involving more than two explanatory variables, the
simple or zero-order correlation will not provide an infallible guide to the
presence of multicollinearity. Of course, if there are only two explanatory
variables, the zero-order correlations will suffice.

3. Examination of partial correlations. Because of the problem just
mentioned in relying on zero-order correlations, Farrar and Glauber have
suggested that one should look at the partial correlation coefficients.19 Thus,
in the regression of Y on X2, X3, and X4, a finding that R2

1.2 3 4 is very high but
r2

1 2.3 4, r2
1 3.2 4, and r2

1 4.2 3 are comparatively low may suggest that the variables
X2, X3, and X4 are highly intercorrelated and that at least one of these vari-
ables is superfluous.

Although a study of the partial correlations may be useful, there is no
guarantee that they will provide an infallible guide to multicollinearity, for
it may happen that both R2 and all the partial correlations are sufficiently
high. But more importantly, C. Robert Wichers has shown20 that the Farrar-
Glauber partial correlation test is ineffective in that a given partial correla-
tion may be compatible with different multicollinearity patterns. The
Farrar–Glauber test has also been severely criticized by T. Krishna Kumar21

and John O’Hagan and Brendan McCabe.22

R2
4.2 3 = r2

4 2 + r2
4 3 − 2r4 2r4 3r2 3

1 − r2
2 3

19D. E. Farrar and R. R. Glauber, “Multicollinearity in Regression Analysis: The Problem
Revisited,” Review of Economics and Statistics, vol. 49, 1967, pp. 92–107.

20“The Detection of Multicollinearity: A Comment,” Review of Economics and Statistics,
vol. 57, 1975, pp. 365–366.

21“Multicollinearity in Regression Analysis,” Review of Economics and Statistics, vol. 57,
1975, pp. 366–368. 

22“Tests for the Severity of Multicollinearity in Regression Analysis: A Comment,” Review of
Economics and Statistics, vol. 57, 1975, pp. 368–370.
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23For example, R2
x2

can be obtained by regressing X2i as follows: X2i = a1 + a3 X3i + a4 X4i +
· · · + akXki + ûi .

24George G. Judge, R. Carter Hill, William E. Griffiths, Helmut Lütkepohl, and Tsoung-Chao
Lee, Introduction to the Theory and Practice of Econometrics, John Wiley & Sons, New York,
1982, p. 621.

25Lawrence R. Klien, An Introduction to Econometrics, Prentice-Hall, Englewood Cliffs,
N.J., 1962, p. 101.

4. Auxiliary regressions. Since multicollinearity arises because one or
more of the regressors are exact or approximately linear combinations of
the other regressors, one way of finding out which X variable is related to
other X variables is to regress each Xi on the remaining X variables and com-
pute the corresponding R2, which we designate as R2

i ; each one of these re-
gressions is called an auxiliary regression, auxiliary to the main regression
of Y on the X ’s. Then, following the relationship between F and R2 estab-
lished in (8.5.11), the variable

(10.7.3)

follows the F distribution with k − 2 and n − k + 1df. In Eq. (10.7.3) n stands
for the sample size, k stands for the number of explanatory variables in-
cluding the intercept term, and R2

xi ·x2x3···xk
is the coefficient of determination

in the regression of variable Xi on the remaining X variables.23

If the computed F exceeds the critical Fi at the chosen level of signifi-
cance, it is taken to mean that the particular Xi is collinear with other X’s; if
it does not exceed the critical Fi, we say that it is not collinear with other X’s,
in which case we may retain that variable in the model. If Fi is statistically
significant, we will still have to decide whether the particular Xi should be
dropped from the model. This question will be taken up in Section 10.8.

But this method is not without its drawbacks, for

. . . if the multicollinearity involves only a few variables so that the auxiliary re-
gressions do not suffer from extensive multicollinearity, the estimated coefficients
may reveal the nature of the linear dependence among the regressors. Unfortu-
nately, if there are several complex linear associations, this curve fitting exercise
may not prove to be of much value as it will be difficult to identify the separate
interrelationships.24

Instead of formally testing all auxiliary R2 values, one may adopt Klien’s
rule of thumb, which suggests that multicollinearity may be a troublesome
problem only if the R2 obtained from an auxiliary regression is greater than
the overall R2, that is, that obtained from the regression of Y on all the re-
gressors.25 Of course, like all other rules of thumb, this one should be used
judiciously.

5. Eigenvalues and condition index. If you examine the SAS output of
the Cobb–Douglas production function given in Appendix 7A.5 you will see

Fi = R2
xi ·x2x3···xk

/
(k − 2)(

1 − R2
xi ·x2x3···xk

)/
(n − k + 1)
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that SAS uses eigenvalues and the condition index to diagnose multi-
collinearity. We will not discuss eigenvalues here, for that would take us into
topics in matrix algebra that are beyond the scope of this book. From these
eigenvalues, however, we can derive what is known as the condition num-
ber k defined as

k = Maximum eigenvalue
Minimum eigenvalue

and the condition index (CI) defined as

CI =
√

Maximum eigenvalue
Minimum eigenvalue

=
√

k

Then we have this rule of thumb. If k is between 100 and 1000 there is
moderate to strong multicollinearity and if it exceeds 1000 there is severe
multicollinearity. Alternatively, if the CI ( = √

k) is between 10 and 30, there
is moderate to strong multicollinearity and if it exceeds 30 there is severe
multicollinearity.

For the illustrative example, k = 3.0/0.00002422 or about 123,864, and
CI = √

123,864 = about 352; both k and the CI therefore suggest severe mul-
ticollinearity. Of course, k and CI can be calculated between the maximum
eigenvalue and any other eigenvalue, as is done in the printout. (Note: The
printout does not explicitly compute k, but that is simply the square of CI.)
Incidentally, note that a low eigenvalue (in relation to the maximum eigen-
value) is generally an indication of near-linear dependencies in the data.

Some authors believe that the condition index is the best available multi-
collinearity diagnostic. But this opinion is not shared widely. For us, then,
the CI is just a rule of thumb, a bit more sophisticated perhaps. But for fur-
ther details, the reader may consult the references.26

6. Tolerance and variance inflation factor. We have already intro-
duced TOL and VIF. As R2

j , the coefficient of determination in the regression
of regressor Xj on the remaining regressors in the model, increases toward
unity, that is, as the collinearity of Xj with the other regressors increases,
VIF also increases and in the limit it can be infinite.

Some authors therefore use the VIF as an indicator of multicollinearity.
The larger the value of VIFj, the more “troublesome” or collinear the vari-
able Xj. As a rule of thumb, if the VIF of a variable exceeds 10, which will
happen if R2

j exceeds 0.90, that variable is said be highly collinear.27

Of course, one could use TOLj as a measure of multicollinearity in view
of its intimate connection with VIFj. The closer is TOLj to zero, the greater
the degree of collinearity of that variable with the other regressors. On the

26See especially D. A. Belsley, E. Kuh, and R. E. Welsch, Regression Diagnostics: Identifying
Influential Data and Sources of Collinearity, John Wiley & Sons, New York, 1980, Chap. 3. How-
ever, this book is not for the beginner.

27See David G. Kleinbaum, Lawrence L. Kupper, and Keith E. Muller, Applied Regression
Analysis and other Multivariate Methods, 2d ed., PWS-Kent, Boston, Mass., 1988, p. 210.
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other hand, the closer TOLj is to 1, the greater the evidence that Xj is not
collinear with the other regressors.

VIF (or tolerance) as a measure of collinearity is not free of criticism. As
(10.5.4) shows, var (β̂j ) depends on three factors: σ 2,

∑
x2

j , and VIFj. A high
VIF can be counterbalanced by a low σ 2 or a high 

∑
x2

j . To put it differently,
a high VIF is neither necessary nor sufficient to get high variances and high
standard errors. Therefore, high multicollinearity, as measured by a high
VIF, may not necessarily cause high standard errors. In all this discussion,
the terms high and low are used in a relative sense. 

To conclude our discussion of detecting multicollinearity, we stress that
the various methods we have discussed are essentially in the nature of
“fishing expeditions,” for we cannot tell which of these methods will work in
any particular application. Alas, not much can be done about it, for multi-
collinearity is specific to a given sample over which the researcher may not
have much control, especially if the data are nonexperimental in nature—
the usual fate of researchers in the social sciences.

Again as a parody of multicollinearity, Goldberger cites numerous ways of
detecting micronumerosity, such as developing critical values of the sample
size, n*, such that micronumerosity is a problem only if the actual sample
size, n, is smaller than n*. The point of Goldberger’s parody is to emphasize
that small sample size and lack of variability in the explanatory variables may
cause problems that are at least as serious as those due to multicollinearity.

10.8 REMEDIAL MEASURES

What can be done if multicollinearity is serious? We have two choices:
(1) do nothing or (2) follow some rules of thumb.

Do Nothing

The “do nothing” school of thought is expressed by Blanchard as follows28:

When students run their first ordinary least squares (OLS) regression, the first prob-
lem that they usually encounter is that of multicollinearity. Many of them conclude
that there is something wrong with OLS; some resort to new and often creative
techniques to get around the problem. But, we tell them, this is wrong. Multi-
collinearity is God’s will, not a problem with OLS or statistical technique in general.

What Blanchard is saying is that multicollinearity is essentially a data
deficiency problem (micronumerosity, again) and some times we have no
choice over the data we have available for empirical analysis.

Also, it is not that all the coefficients in a regression model are statisti-
cally insignificant. Moreover, even if we cannot estimate one or more re-
gression coefficients with greater precision, a linear combination of them
(i.e., estimable function) can be estimated relatively efficiently. As we saw in

28Blanchard, O. J., Comment, Journal of Business and Economic Statistics, vol. 5, 1967,
pp. 449–451. The quote is reproduced from Peter Kennedy, A Guide to Econometrics, 4th ed.,
MIT Press, Cambridge, Mass., 1998, p. 190.
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29For an interesting discussion on this, see Conlisk, J., “When Collinearity is Desirable,”
Western Economic Journal, vol. 9, 1971, pp. 393–407.

30Mark B. Stewart and Kenneth F. Wallis, Introductory Econometrics, 2d ed., John Wiley &
Sons, A Halstead Press Book, New York, 1981, p. 154.

(10.2.3), we can estimate α uniquely, even if we cannot estimate its two com-
ponents given there individually. Sometimes this is the best we can do with
a given set of data.29

Rule-of-Thumb Procedures

One can try the following rules of thumb to address the problem of multi-
collinearity, the success depending on the severity of the collinearity
problem.

1. A priori information. Suppose we consider the model

Yi = β1 + β2 X2i + β3 X3i + ui

where Y = consumption, X2 = income, and X3 = wealth. As noted before,
income and wealth variables tend to be highly collinear. But suppose a pri-
ori we believe that β3 = 0.10β2; that is, the rate of change of consumption
with respect to wealth is one-tenth the corresponding rate with respect to
income. We can then run the following regression:

Yi = β1 + β2 X2i + 0.10β2 X3i + ui

= β1 + β2 Xi + ui

where Xi = X2i + 0.1X3i . Once we obtain β̂2, we can estimate β̂3 from the
postulated relationship between β2 and β3.

How does one obtain a priori information? It could come from previous
empirical work in which the collinearity problem happens to be less serious
or from the relevant theory underlying the field of study. For example, in the
Cobb–Douglas–type production function (7.9.1), if one expects constant re-
turns to scale to prevail, then (β2 + β3) = 1, in which case we could run the
regression (8.7.14), regressing the output-labor ratio on the capital-labor
ratio. If there is collinearity between labor and capital, as generally is the
case in most sample data, such a transformation may reduce or eliminate
the collinearity problem. But a warning is in order here regarding imposing
such a priori restrictions, “. . . since in general we will want to test economic
theory’s a priori predictions rather than simply impose them on data for
which they may not be true.”30 However, we know from Section 8.7 how to
test for the validity of such restrictions explicitly.

2. Combining cross-sectional and time series data. A variant of the
extraneous or a priori information technique is the combination of cross-
sectional and time-series data, known as pooling the data. Suppose we want
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to study the demand for automobiles in the United States and assume we
have time series data on the number of cars sold, average price of the car,
and consumer income. Suppose also that

ln Yt = β1 + β2 ln Pt + β3 ln It + ut

where Y = number of cars sold, P = average price, I = income, and t = time.
Out objective is to estimate the price elasticity β2 and income elasticity β3.

In time series data the price and income variables generally tend to be
highly collinear. Therefore, if we run the preceding regression, we shall be
faced with the usual multicollinearity problem. A way out of this has been
suggested by Tobin.31 He says that if we have cross-sectional data (for ex-
ample, data generated by consumer panels, or budget studies conducted by
various private and governmental agencies), we can obtain a fairly reliable
estimate of the income elasticity β3 because in such data, which are at a
point in time, the prices do not vary much. Let the cross-sectionally esti-
mated income elasticity be β̂3. Using this estimate, we may write the pre-
ceding time series regression as

Y*
t = β1 + β2 ln Pt + ut

where Y* = ln Y − β̂3 ln I, that is, Y* represents that value of Y after remov-
ing from it the effect of income. We can now obtain an estimate of the price
elasticity β2 from the preceding regression.

Although it is an appealing technique, pooling the time series and cross-
sectional data in the manner just suggested may create problems of inter-
pretation, because we are assuming implicitly that the cross-sectionally es-
timated income elasticity is the same thing as that which would be obtained
from a pure time series analysis.32 Nonetheless, the technique has been used
in many applications and is worthy of consideration in situations where the
cross-sectional estimates do not vary substantially from one cross section to
another. An example of this technique is provided in exercise 10.26.

3. Dropping a variable(s) and specification bias. When faced with
severe multicollinearity, one of the “simplest” things to do is to drop one of
the collinear variables. Thus, in our consumption–income–wealth illustra-
tion, when we drop the wealth variable, we obtain regression (10.6.4), which
shows that, whereas in the original model the income variable was statisti-
cally insignificant, it is now “highly” significant.

But in dropping a variable from the model we may be committing a
specification bias or specification error. Specification bias arises from

31J. Tobin, “A Statistical Demand Function for Food in the U.S.A.,” Journal of the Royal
Statistical Society, Ser. A, 1950, pp. 113–141.

32For a thorough discussion and application of the pooling technique, see Edwin Kuh,
Capital Stock Growth: A Micro-Econometric Approach, North-Holland Publishing Company,
Amsterdam, 1963, Chaps. 5 and 6.
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incorrect specification of the model used in the analysis. Thus, if economic
theory says that income and wealth should both be included in the model
explaining the consumption expenditure, dropping the wealth variable
would constitute specification bias.

Although we will discuss the topic of specification bias in Chapter 13, we
caught a glimpse of it in Section 7.7. If, for example, the true model is

Yi = β1 + β2 X2i + β3 X3i + ui

but we mistakenly fit the model

Yi = b1 + b1 2 X2i + ûi (10.8.1)

then it can be shown that (see Appendix 13A.1)

E(b1 2) = β2 + β3b3 2 (10.8.2)

where b3 2 = slope coefficient in the regression of X3 on X2. Therefore, it is
obvious from (10.8.2) that b12 will be a biased estimate of β2 as long as b3 2

is different from zero (it is assumed that β3 is different from zero; otherwise
there is no sense in including X3 in the original model).33 Of course, if b3 2 is
zero, we have no multicollinearity problem to begin with. It is also clear
from (10.8.2) that if both b3 2 and β3 are positive (or both are negative),
E(b1 2) will be greater than β2; hence, on the average b1 2 will overestimate β2,
leading to a positive bias. Similarly, if the product b3 2β3 is negative, on the
average b1 2 will underestimate β2, leading to a negative bias.

From the preceding discussion it is clear that dropping a variable from
the model to alleviate the problem of multicollinearity may lead to the spec-
ification bias. Hence the remedy may be worse than the disease in some sit-
uations because, whereas multicollinearity may prevent precise estimation
of the parameters of the model, omitting a variable may seriously mislead
us as to the true values of the parameters. Recall that OLS estimators are
BLUE despite near collinearity.

4. Transformation of variables. Suppose we have time series data on
consumption expenditure, income, and wealth. One reason for high multi-
collinearity between income and wealth in such data is that over time both
the variables tend to move in the same direction. One way of minimizing
this dependence is to proceed as follows.

If the relation

Yt = β1 + β2 X2t + β3 X3t + ut (10.8.3)

33Note further that if b3 2 does not approach zero as the sample size is increased indefinitely,
then b1 2 will be not only biased but also inconsistent.
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holds at time t, it must also hold at time t − 1 because the origin of time is
arbitrary anyway. Therefore, we have

Yt−1 = β1 + β2 X2,t−1 + β3 X3,t−1 + ut−1 (10.8.4)

If we subtract (10.8.4) from (10.8.3), we obtain

Yt − Yt−1 = β2(X2t − X2,t−1) + β3(X3t − X3,t−1) + vt (10.8.5)

where vt = ut − ut−1. Equation (10.8.5) is known as the first difference
form because we run the regression, not on the original variables, but on
the differences of successive values of the variables.

The first difference regression model often reduces the severity of multi-
collinearity because, although the levels of X2 and X3 may be highly corre-
lated, there is no a priori reason to believe that their differences will also be
highly correlated.

As we shall see in the chapters on time series econometrics, an inci-
dental advantage of the first-difference transformation is that it may make a
nonstationary time series stationary. In those chapters we will see the im-
portance of stationary time series. As noted in Chapter 1, loosely speaking,
a time series, say, Yt, is stationary if its mean and variance do not change
systematically over time.

Another commonly used transformation in practice is the ratio trans-
formation. Consider the model:

Yt = β1 + β2 X2t + β3 X3t + ut (10.8.6)

where Y is consumption expenditure in real dollars, X2 is GDP, and X3 is
total population. Since GDP and population grow over time, they are likely
to be correlated. One “solution” to this problem is to express the model on a
per capita basis, that is, by dividing (10.8.4) by X3, to obtain:

Yt

X3t
= β1

(
1

X3t

)
+ β2

(
X2t

X3t

)
+ β3 +

(
ut

X3t

)
(10.8.7)

Such a transformation may reduce collinearity in the original variables.
But the first-difference or ratio transformations are not without prob-

lems. For instance, the error term vt in (10.8.5) may not satisfy one of the
assumptions of the classical linear regression model, namely, that the dis-
turbances are serially uncorrelated. As we will see in Chapter 12, if the orig-
inal disturbance term ut is serially uncorrelated, the error term vt obtained
previously will in most cases be serially correlated. Therefore, the remedy
may be worse than the disease. Moreover, there is a loss of one observation
due to the differencing procedure, and therefore the degrees of freedom are
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reduced by one. In a small sample, this could be a factor one would wish at
least to take into consideration. Furthermore, the first-differencing proce-
dure may not be appropriate in cross-sectional data where there is no logi-
cal ordering of the observations.

Similarly, in the ratio model (10.8.7), the error term(
ut

X3t

)

will be heteroscedastic, if the original error term ut is homoscedastic, as we
shall see in Chapter 11. Again, the remedy may be worse than the disease of
collinearity.

In short, one should be careful in using the first difference or ratio
method of transforming the data to resolve the problem of multicollinearity.

5. Additional or new data. Since multicollinearity is a sample feature,
it is possible that in another sample involving the same variables collinear-
ity may not be so serious as in the first sample. Sometimes simply increas-
ing the size of the sample (if possible) may attenuate the collinearity prob-
lem. For example, in the three-variable model we saw that

var (β̂2) = σ 2∑
x2

2i

(
1 − r2

2 3

)

Now as the sample size increases, 
∑

x2
2i will generally increase. (Why?)

Therefore, for any given r2 3, the variance of β̂2 will decrease, thus decreas-
ing the standard error, which will enable us to estimate β2 more precisely.

As an illustration, consider the following regression of consumption ex-
penditure Y on income X2 and wealth X3 based on 10 observations34:

Ŷi = 24.377 + 0.8716X2i − 0.0349X3i

t = (3.875) (2.7726) (−1.1595) R2 = 0.9682
(10.8.8)

The wealth coefficient in this regression not only has the wrong sign but is
also statistically insignificant at the 5 percent level. But when the sample
size was increased to 40 observations (micronumerosity?), the following
results were obtained:

Ŷi = 2.0907 + 0.7299X2i + 0.0605X3i

t = (0.8713) (6.0014) (2.0014) R2 = 0.9672
(10.8.9)

Now the wealth coefficient not only has the correct sign but also is statisti-
cally significant at the 5 percent level.

34I am indebted to Albert Zucker for providing the results given in the following regressions.
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35Judge et al., op. cit., p. 625. See also Sec. 10.9.
36As noted, since the relationship between X, X2, and X3 is nonlinear, polynomial regressions

do not violate the assumption of no multicollinearity of the classical model, strictly speaking.
37See R. A. Bradley and S. S. Srivastava, “Correlation and Polynomial Regression,” American

Statistician, vol. 33, 1979, pp. 11–14.
38See Norman Draper and Harry Smith, Applied Regression Analysis, 2d ed., John Wiley &

Sons, New York, 1981, pp. 266–274.
39A readable account of these techniques from an applied viewpoint can be found in

Samprit Chatterjee and Bertram Price, Regression Analysis by Example, John Wiley & Sons,
New York, 1977, Chaps. 7 and 8. See also H. D. Vinod, “A Survey of Ridge Regression and
Related Techniques for Improvements over Ordinary Least Squares,” Review of Economics and
Statistics, vol. 60, February 1978, pp. 121–131.

40See R. C. Geary, “Some Results about Relations between Stochastic Variables: A Discus-
sion Document,” Review of International Statistical Institute, vol. 31, 1963, pp. 163–181.

Obtaining additional or “better” data is not always that easy, for as Judge
et al. note:

Unfortunately, economists seldom can obtain additional data without bearing
large costs, much less choose the values of the explanatory variables they desire.
In addition, when adding new variables in situations that are not controlled, we
must be aware of adding observations that were generated by a process other
than that associated with the original data set; that is, we must be sure that the
economic structure associated with the new observations is the same as the
original structure.35

6. Reducing collinearity in polynomial regressions. In Section 7.10
we discussed polynomial regression models. A special feature of these mod-
els is that the explanatory variable(s) appear with various powers. Thus, in
the total cubic cost function involving the regression of total cost on output,
(output)2, and (output)3, as in (7.10.4), the various output terms are going to
be correlated, making it difficult to estimate the various slope coefficients
precisely.36 In practice though, it has been found that if the explanatory vari-
able(s) are expressed in the deviation form (i.e., deviation from the mean
value), multicollinearity is substantially reduced. But even then the problem
may persist,37 in which case one may want to consider techniques such as
orthogonal polynomials.38

7. Other methods of remedying multicollinearity. Multivariate sta-
tistical techniques such as factor analysis and principal components or
techniques such as ridge regression are often employed to “solve” the prob-
lem of multicollinearity. Unfortunately, these techniques are beyond the
scope of this book, for they cannot be discussed competently without re-
sorting to matrix algebra.39

10.9 IS MULTICOLLINEARITY NECESSARILY BAD?
MAYBE NOT IF THE OBJECTIVE IS PREDICTION ONLY

It has been said that if the sole purpose of regression analysis is prediction
or forecasting, then multicollinearity is not a serious problem because the
higher the R2, the better the prediction.40 But this may be so “. . . as long as
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41Judge et al., op. cit., p. 619. You will also find on this page proof of why, despite collinear-
ity, one can obtain better mean predictions if the existing collinearity structure also continues
in the future samples.

42For an excellent discussion, see E. Malinvaud, Statistical Methods of Econometrics, 2d ed.,
North-Holland Publishing Company, Amsterdam, 1970, pp. 220–221.

43J. Johnston, Econometric Methods, 3d ed., McGraw-Hill, New York, 1984, p. 249.
44Longley, J. “An Appraisal of Least-Squares Programs from the Point of the User,” Journal

of the American Statistical Association, vol. 62, 1967, pp. 819–841.

the values of the explanatory variables for which predictions are desired
obey the same near-exact linear dependencies as the original design [data]
matrix X.”41 Thus, if in an estimated regression it was found that X2 = 2X3

approximately, then in a future sample used to forecast Y, X2 should also
be approximately equal to 2X3, a condition difficult to meet in practice
(see footnote 35), in which case prediction will become increasingly uncer-
tain.42 Moreover, if the objective of the analysis is not only prediction but
also reliable estimation of the parameters, serious multicollinearity will be
a problem because we have seen that it leads to large standard errors of the
estimators.

In one situation, however, multicollinearity may not pose a serious
problem. This is the case when R2 is high and the regression coefficients
are individually significant as revealed by the higher t values. Yet, multi-
collinearity diagnostics, say, the condition index, indicate that there is seri-
ous collinearity in the data. When can such a situation arise? As Johnston
notes:

This can arise if individual coefficients happen to be numerically well in excess of
the true value, so that the effect still shows up in spite of the inflated standard
error and/or because the true value itself is so large that even an estimate on the
downside still shows up as significant.43

10.10 AN EXTENDED EXAMPLE: THE LONGLEY DATA

We conclude this chapter by analyzing the data collected by Longley.44

Although originally collected to assess the computational accuracy of
least-squares estimates in several computer programs, the Longley data
has become the workhorse to illustrate several econometric problems, in-
cluding multicollinearity. The data are reproduced in Table 10.7. The data
are time series for the years 1947–1962 and pertain to Y = number of peo-
ple employed, in thousands; X1 = GNP implicit price deflator; X2 = GNP,
millions of dollars; X3 = number of people unemployed in thousands, X4 =
number of people in the armed forces, X5 = noninstitutionalized popula-
tion over 14 years of age; and X6 = year, equal to 1 in 1947, 2 in 1948, and
16 in 1962.
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TABLE 10.7 LONGLEY DATA

Observation y X1 X2 X3 X4 X5 Time

1947 60,323 830 234,289 2356 1590 107,608 1
1948 61,122 885 259,426 2325 1456 108,632 2
1949 60,171 882 258,054 3682 1616 109,773 3
1950 61,187 895 284,599 3351 1650 110,929 4
1951 63,221 962 328,975 2099 3099 112,075 5
1952 63,639 981 346,999 1932 3594 113,270 6
1953 64,989 990 365,385 1870 3547 115,094 7
1954 63,761 1000 363,112 3578 3350 116,219 8
1955 66,019 1012 397,469 2904 3048 117,388 9
1956 67,857 1046 419,180 2822 2857 118,734 10
1957 68,169 1084 442,769 2936 2798 120,445 11
1958 66,513 1108 444,546 4681 2637 121,950 12
1959 68,655 1126 482,704 3813 2552 123,366 13
1960 69,564 1142 502,601 3931 2514 125,368 14
1961 69,331 1157 518,173 4806 2572 127,852 15
1962 70,551 1169 554,894 4007 2827 130,081 16

Source: See footnote 44.

Assume that our objective is to predict Y on the basis of the six X vari-
ables. Using Eviews3, we obtain the following regression results:

Dependent Variable: Y
Sample: 1947–1962

Variable Coefficient Std. Error t-Statistic Prob.

C -3482259. 890420.4 -3.910803 0.0036
X1 15.06187 84.91493 0.177376 0.8631
X2 -0.035819 0.033491 -1.069516 0.3127
X3 -2.020230 0.488400 -4.136427 0.0025
X4 -1.033227 0.214274 -4.821985 0.0009
X5 -0.051104 0.226073 -0.226051 0.8262
X6 1829.151 455.4785 4.015890 0.0030

R-squared 0.995479 Mean dependent var 65317.00
Adjusted R-squared 0.992465 S.D. dependent var 3511.968
S.E. of regression 304.8541 Akaike info criterion 14.57718
Sum squared resid 836424.1 Schwarz criterion 14.91519
Log likelihood -109.6174 F-statistic 330.2853
Durbin-Watson stat 2.559488 Prob(F-statistic) 0.000000

A glance at these results would suggest that we have the collinearity prob-
lem, for the R2 value is very high, but quite a few variables are statistically
insignificant (X1, X2, and X5), a classic symptom of multicollinearity. To shed
more light on this, we show in Table 10.8 the intercorrelations among the
six regressors.
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TABLE 10.9 R2 VALUES FROM THE AUXILIARY REGRESSIONS

Dependent variable R2 value Tolerance (TOL) = 1 − R2

X1 0.9926 0.0074
X2 0.9994 0.0006
X3 0.9702 0.0298
X4 0.7213 0.2787
X5 0.9970 0.0030
X6 0.9986 0.0014

This table gives what is called the correlation matrix. In this table the
entries on the main diagonal (those running from the upper left-hand cor-
ner to the lower right-hand corner) give the correlation of one variable with
itself, which is always 1 by definition, and the entries off the main diagonal
are the pair-wise correlations among the X variables. If you take the first row
of this table, this gives the correlation of X1 with the other X variables. For
example, 0.991589 is the correlation between X1 and X2, 0.620633 is the cor-
relation between X1 and X3, and so on.

As you can see, several of these pair-wise correlations are quite high, sug-
gesting that there may be a severe collinearity problem. Of course, remem-
ber the warning given earlier that such pair-wise correlations may be a suf-
ficient but not a necessary condition for the existence of multicollinearity.

To shed further light on the nature of the multicollinearity problem, let us
run the auxiliary regressions, that is the regression of each X variable on the
remaining X variables. To save space, we will present only the R2 values
obtained from these regressions, which are given in Table 10.9. Since the R2

values in the auxiliary regressions are very high (with the possible excep-
tion of the regression of X4) on the remaining X variables, it seems that we
do have a serious collinearity problem. The same information is obtained
from the tolerance factors. As noted previously, the closer the tolerance fac-
tor is to zero, the greater is the evidence of collinearity.

Applying Klein’s rule of thumb, we see that the R2 values obtained from
the auxiliary regressions exceed the overall R2 value (that is the one ob-
tained from the regression of Y on all the X variables) of 0.9954 in 3 out of

TABLE 10.8 INTERCORRELATIONS

X1 X2 X3 X4 X5 X6

X1 1.000000 0.991589 0.620633 0.464744 0.979163 0.991149
X2 0.991589 1.000000 0.604261 0.446437 0.991090 0.995273
X3 0.620633 0.604261 1.000000 −0.177421 0.686552 0.668257
X4 0.464744 0.446437 −0.177421 1.000000 0.364416 0.417245
X5 0.979163 0.991090 0.686552 0.364416 1.000000 0.993953
X6 0.991149 0.995273 0.668257 0.417245 0.993953 1.000000
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6 auxiliary regressions, again suggesting that indeed the Longley data are
plagued by the multicollinearity problem. Incidentally, applying the F test
given in (10.7.3) the reader should verify that the R2 values given in the pre-
ceding tables are all statistically significantly different from zero.

We noted earlier that the OLS estimators and their standard errors are
sensitive to small changes in the data. In exercise 10.32 the reader is asked
to rerun the regression of Y on all the six X variables but drop the last data
observations, that is, run the regression for the period 1947–1961. You
will see how the regression results change by dropping just a single year’s
observations.

Now that we have established that we have the multicollinearity problem,
what “remedial” actions can we take? Let us reconsider our original model.
First of all, we could express GNP not in nominal terms, but in real terms,
which we can do by dividing nominal GNP by the implicit price deflator.
Second, since noninstitutional population over 14 years of age grows over
time because of natural population growth, it will be highly correlated with
time, the variable X6 in our model. Therefore, instead of keeping both these
variables, we will keep the variable X5 and drop X6. Third, there is no com-
pelling reason to include X3, the number of people unemployed; perhaps the
unemployment rate would have been a better measure of labor market con-
ditions. But we have no data on the latter. So, we will drop the variable X3.
Making these changes, we obtain the following regression results (RGNP =
real GNP)45:

Dependent Variable: Y
Sample: 1947–1962

Variable Coefficient Std. Error t-Statistic Prob.

C 65720.37 10624.81 6.185558 0.0000
RGNP 9.736496 1.791552 5.434671 0.0002
X4 -0.687966 0.322238 -2.134965 0.0541
X5 -0.299537 0.141761 -2.112965 0.0562

R-squared 0.981404 Mean dependent var 65317.00
Adjusted R-squared 0.976755 S.D. dependent var 3511.968
S.E. of regression 535.4492 Akaike info criterion 15.61641
Sum squared resid 3440470. Schwarz criterion 15.80955
Log likelihood -120.9313 F-statistic 211.0972
Durbin-Watson stat 1.654069 Prob(F-statistic) 0.000000

Although the R2 value has declined slightly compared with the original R2,
it is still very high. Now all the estimated coefficients are significant and the
signs of the coefficients make economic sense.

45The coefficient of correlation between X5 and X6 is about 0.9939, a very high correlation
indeed.
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We leave it for the reader to devise alternative models and see how the re-
sults change. Also keep in mind the warning sounded earlier about using the
ratio method of transforming the data to alleviate the problem of collinear-
ity. We will revisit this question in Chapter 11.

10.11 SUMMARY AND CONCLUSIONS

1. One of the assumptions of the classical linear regression model is
that there is no multicollinearity among the explanatory variables, the X’s.
Broadly interpreted, multicollinearity refers to the situation where there
is either an exact or approximately exact linear relationship among the X
variables.

2. The consequences of multicollinearity are as follows: If there is per-
fect collinearity among the X ’s, their regression coefficients are indetermi-
nate and their standard errors are not defined. If collinearity is high but not
perfect, estimation of regression coefficients is possible but their standard
errors tend to be large. As a result, the population values of the coefficients
cannot be estimated precisely. However, if the objective is to estimate linear
combinations of these coefficients, the estimable functions, this can be done
even in the presence of perfect multicollinearity.

3. Although there are no sure methods of detecting collinearity, there
are several indicators of it, which are as follows:

(a) The clearest sign of multicollinearity is when R2 is very high but
none of the regression coefficients is statistically significant on the
basis of the conventional t test. This case is, of course, extreme.

(b) In models involving just two explanatory variables, a fairly good
idea of collinearity can be obtained by examining the zero-order,
or simple, correlation coefficient between the two variables. If
this correlation is high, multicollinearity is generally the culprit.

(c) However, the zero-order correlation coefficients can be mislead-
ing in models involving more than two X variables since it is pos-
sible to have low zero-order correlations and yet find high multi-
collinearity. In situations like these, one may need to examine the
partial correlation coefficients.

(d) If R2 is high but the partial correlations are low, multicollinearity
is a possibility. Here one or more variables may be superfluous.
But if R2 is high and the partial correlations are also high, multi-
collinearity may not be readily detectable. Also, as pointed out by
C. Robert, Krishna Kumar, John O’Hagan, and Brendan McCabe,
there are some statistical problems with the partial correlation
test suggested by Farrar and Glauber.

(e) Therefore, one may regress each of the Xi variables on the re-
maining X variables in the model and find out the corresponding
coefficients of determination R2

i . A high R2
i would suggest that Xi
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is highly correlated with the rest of the X’s. Thus, one may drop
that Xi from the model, provided it does not lead to serious speci-
fication bias.

4. Detection of multicollinearity is half the battle. The other half is con-
cerned with how to get rid of the problem. Again there are no sure methods,
only a few rules of thumb. Some of these rules are as follows: (1) using ex-
traneous or prior information, (2) combining cross-sectional and time
series data, (3) omitting a highly collinear variable, (4) transforming data,
and (5) obtaining additional or new data. Of course, which of these rules
will work in practice will depend on the nature of the data and severity of
the collinearity problem.

5. We noted the role of multicollinearity in prediction and pointed out
that unless the collinearity structure continues in the future sample it is
hazardous to use the estimated regression that has been plagued by multi-
collinearity for the purpose of forecasting.

6. Although multicollinearity has received extensive (some would say
excessive) attention in the literature, an equally important problem encoun-
tered in empirical research is that of micronumerosity, smallness of sample
size. According to Goldberger, “When a research article complains about
multicollinearity, readers ought to see whether the complaints would be
convincing if “micronumerosity” were substituted for “multicollinearity.”46

He suggests that the reader ought to decide how small n, the number of ob-
servations, is before deciding that one has a small-sample problem, just as
one decides how high an R2 value is in an auxiliary regression before declar-
ing that the collinearity problem is very severe.

EXERCISES

Questions

10.1. In the k-variable linear regression model there are k normal equations
to estimate the k unknowns. These normal equations are given in
Appendix C. Assume that Xk is a perfect linear combination of the
remaining X variables. How would you show that in this case it is im-
possible to estimate the k regression coefficients?

10.2. Consider the set of hypothetical data in Table 10.10. Suppose you want
to fit the model

Yi = β1 + β2 X2i + β3 X3i + ui

to the data.
a. Can you estimate the three unknowns? Why or why not?
b. If not, what linear functions of these parameters, the estimable func-

tions, can you estimate? Show the necessary calculations.

46Goldberger, op. cit., p. 250.
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