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9
DUMMY VARIABLE
REGRESSION MODELS

In Chapter 1 we discussed briefly the four types of variables that one gener-
ally encounters in empirical analysis: These are: ratio scale, interval scale,
ordinal scale, and nominal scale. The types of variables that we have
encountered in the preceding chapters were essentially ratio scale. But this
should not give the impression that regression models can deal only with
ratio scale variables. Regression models can also handle other types of vari-
ables mentioned previously. In this chapter, we consider models that may
involve not only ratio scale variables but also nominal scale variables. Such
variables are also known as indicator variables, categorical variables,
qualitative variables, or dummy variables.1

9.1 THE NATURE OF DUMMY VARIABLES

In regression analysis the dependent variable, or regressand, is frequently
influenced not only by ratio scale variables (e.g., income, output, prices,
costs, height, temperature) but also by variables that are essentially qualita-
tive, or nominal scale, in nature, such as sex, race, color, religion, national-
ity, geographical region, political upheavals, and party affiliation. For exam-
ple, holding all other factors constant, female workers are found to earn less
than their male counterparts or nonwhite workers are found to earn less
than whites.2 This pattern may result from sex or racial discrimination, but
whatever the reason, qualitative variables such as sex and race seem to

1We will discuss ordinal scale variables in Chap. 15.
2For a review of the evidence on this subject, see Bruce E. Kaufman and Julie L. Hotchkiss,

The Economics of Labor Market, 5th ed., Dryden Press, New York, 2000.
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3It is not absolutely essential that dummy variables take the values of 0 and 1. The pair (0,1)
can be transformed into any other pair by a linear function such that Z = a + bD (b �= 0), where
a and b are constants and where D = 1 or 0. When D = 1, we have Z = a + b, and when D = 0,
we have Z = a. Thus the pair (0, 1) becomes (a, a + b). For example, if a = 1 and b = 2, the
dummy variables will be (1, 3). This expression shows that qualitative, or dummy, variables do not
have a natural scale of measurement. That is why they are described as nominal scale variables.

4ANOVA models are used to assess the statistical significance of the relationship between a
quantitative regressand and qualitative or dummy regressors. They are often used to com-
pare the differences in the mean values of two or more groups or categories, and are therefore
more general than the t test which can be used to compare the means of two groups or cate-
gories only.

influence the regressand and clearly should be included among the explana-
tory variables, or the regressors.

Since such variables usually indicate the presence or absence of a
“quality” or an attribute, such as male or female, black or white, Catholic or
non-Catholic, Democrat or Republican, they are essentially nominal scale
variables. One way we could “quantify” such attributes is by constructing
artificial variables that take on values of 1 or 0, 1 indicating the presence (or
possession) of that attribute and 0 indicating the absence of that attribute.
For example 1 may indicate that a person is a female and 0 may designate a
male; or 1 may indicate that a person is a college graduate, and 0 that the
person is not, and so on. Variables that assume such 0 and 1 values are
called dummy variables.3 Such variables are thus essentially a device to clas-
sify data into mutually exclusive categories such as male or female.

Dummy variables can be incorporated in regression models just as easily
as quantitative variables. As a matter of fact, a regression model may con-
tain regressors that are all exclusively dummy, or qualitative, in nature.
Such models are called Analysis of Variance (ANOVA) models.4

9.2 ANOVA MODELS

To illustrate the ANOVA models, consider the following example.

EXAMPLE 9.1

PUBLIC SCHOOL TEACHERS’ SALARIES BY GEOGRAPHICAL REGION

Table 9.1 gives data on average salary (in dollars) of public school teachers in 50 states and
the District of Columbia for the year 1985. These 51 areas are classified into three geo-
graphical regions: (1) Northeast and North Central (21 states in all), (2) South (17 states in
all), and (3) West (13 states in all). For the time being, do not worry about the format of the
table and the other data given in the table.

Suppose we want to find out if the average annual salary (AAS) of public school teachers
differs among the three geographical regions of the country. If you take the simple arith-
metic average of the average salaries of the teachers in the three regions, you will find that
these averages for the three regions are as follows: $24,424.14 (Northeast and North Cen-
tral), $22,894 (South), and $26,158.62 (West). These numbers look different, but are they

(Continued)
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5For an applied treatment, see John Fox, Applied Regression Analysis, Linear Models, and Re-
lated Methods, Sage Publications, 1997, Chap. 8.

statistically different from one another? There are various statistical techniques to compare
two or more mean values, which generally go by the name of analysis of variance.5 But the
same objective can be accomplished within the framework of regression analysis.

To see this, consider the following model:

Yi = β1 + β2D2i + β3iD3i + ui (9.2.1)

where Yi = (average) salary of public school teacher in state i
D2i = 1 if the state is in the Northeast or North Central

= 0 otherwise (i.e., in other regions of the country)
D3i = 1 if the state is in the South

= 0 otherwise (i.e., in other regions of the country)

EXAMPLE 9.1 (Continued)

TABLE 9.1 AVERAGE SALARY OF PUBLIC SCHOOL TEACHERS, BY STATE, 1986

Salary Spending D2 D3 Salary Spending D2 D3

19,583 3346 1 0 22,795 3366 0 1
20,263 3114 1 0 21,570 2920 0 1
20,325 3554 1 0 22,080 2980 0 1
26,800 4642 1 0 22,250 3731 0 1
29,470 4669 1 0 20,940 2853 0 1
26,610 4888 1 0 21,800 2533 0 1
30,678 5710 1 0 22,934 2729 0 1
27,170 5536 1 0 18,443 2305 0 1
25,853 4168 1 0 19,538 2642 0 1
24,500 3547 1 0 20,460 3124 0 1
24,274 3159 1 0 21,419 2752 0 1
27,170 3621 1 0 25,160 3429 0 1
30,168 3782 1 0 22,482 3947 0 0
26,525 4247 1 0 20,969 2509 0 0
27,360 3982 1 0 27,224 5440 0 0
21,690 3568 1 0 25,892 4042 0 0
21,974 3155 1 0 22,644 3402 0 0
20,816 3059 1 0 24,640 2829 0 0
18,095 2967 1 0 22,341 2297 0 0
20,939 3285 1 0 25,610 2932 0 0
22,644 3914 1 0 26,015 3705 0 0
24,624 4517 0 1 25,788 4123 0 0
27,186 4349 0 1 29,132 3608 0 0
33,990 5020 0 1 41,480 8349 0 0
23,382 3594 0 1 25,845 3766 0 0
20,627 2821 0 1

Note: D2 = 1 for states in the Northeast and North Central; 0 otherwise.
D3 = 1 for states in the South; 0 otherwise.

Source: National Educational Association, as reported by Albuquerque Tribune, Nov. 7, 1986.

(Continued)
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Note that (9.2.1) is like any multiple regression model considered previously, except that,
instead of quantitative regressors, we have only qualitative, or dummy, regressors, taking the
value of 1 if the observation belongs to a particular category and 0 if it does not belong to that
category or group. Hereafter, we shall designate all dummy variables by the letter D.
Table 9.1 shows the dummy variables thus constructed.

What does the model (9.2.1) tell us? Assuming that the error term satisfies the usual OLS
assumptions, on taking expectation of (9.2.1) on both sides, we obtain:

Mean salary of public school teachers in the Northeast and North Central:

E(Yi |D2i = 1, D3i = 0) = β1 + β2 (9.2.2)

Mean salary of public school teachers in the South:

E(Yi |D2i = 0, D3i = 1) = β1 + β3 (9.2.3)

You might wonder how we find out the mean salary of teachers in the West. If you guessed
that this is equal to β1, you would be absolutely right, for 

Mean salary of public school teachers in the West:

E(Yi |D2i = 0, D3i = 0) = β1 (9.2.4)

In other words, the mean salary of public school teachers in the West is given by the inter-
cept, β1, in the multiple regression (9.2.1), and the “slope” coefficients β2 and β3 tell by how
much the mean salaries of teachers in the Northeast and North Central and in the South differ
from the mean salary of teachers in the West. But how do we know if these differences are
statistically significant? Before we answer this question, let us present the results based on
the regression (9.2.1). Using the data given in Table 9.1, we obtain the following results:

Ŷi = 26,158.62 − 1734.473D2i − 3264.615D3i

se = (1128.523) (1435.953)      (1499.615)

t = (23.1759)  (−1.2078)       (−2.1776)
(9.2.5)

(0.0000)*    (0.2330)*     (0.0349)* R2 = 0.0901

where * indicates the p values.
As these regression results show, the mean salary of teachers in the West is about

$26,158, that of teachers in the Northeast and North Central is lower by about $1734, and
that of teachers in the South is lower by about $3265. The actual mean salaries in the last two
regions can be easily obtained by adding these differential salaries to the mean salary of
teachers in the West, as shown in Eqs. (9.2.3) and (9.2.4). Doing this, we will find that the
mean salaries in the latter two regions are about $24,424 and $22,894.

But how do we know that these mean salaries are statistically different from the mean
salary of teachers in the West, the comparison category? That is easy enough. All we have to
do is to find out if each of the “slope” coefficients in (9.2.5) is statistically significant. As can be
seen from this regression, the estimated slope coefficient for Northeast and North Central is
not statistically significant, as its p value is 23 percent, whereas that of the South is statistically
significant, as the p value is only about 3.5 percent. Therefore, the overall conclusion is that
statistically the mean salaries of public school teachers in the West and the Northeast and
North Central are about the same but the mean salary of teachers in the South is statistically
significantly lower by about $3265. Diagrammatically, the situation is shown in Figure 9.1.

A caution is in order in interpreting these differences. The dummy variables will simply
point out the differences, if they exist, but they do not suggest the reasons for the differences.

EXAMPLE 9.1 (Continued)

(Continued)
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West Northeast and
North Central

South

β β1 + 2)$24,424 (

β1 = $26,158

β β1 + 3)$22,894 (

FIGURE 9.1
Average salary (in dollars) of public school teachers in
three regions.

6Actually you will get a message saying that the data matrix is singular.

Differences in educational levels, in cost of living indexes, in gender and race may all have
some effect on the observed differences. Therefore, unless we take into account all the other
variables that may affect a teacher’s salary, we will not be able to pin down the cause(s) of
the differences.

From the preceding discussion, it is clear that all one has to do is see if the coefficients
attached to the various dummy variables are individually statistically significant. This exam-
ple also shows how easy it is to incorporate qualitative, or dummy, regressors in the regres-
sion models.

Caution in the Use of Dummy Variables

Although they are easy to incorporate in the regression models, one must use
the dummy variables carefully. In particular, consider the following aspects:

1. In Example 9.1, to distinguish the three regions, we used only two
dummy variables, D2 and D3. Why did we not use three dummies to distin-
guish the three regions? Suppose we do that and write the model (9.2.1) as:

Yi = α + β1 D1i + β2 D2i + β3 D3i + ui (9.2.6)

where D1i takes a value of 1 for states in the West and 0 otherwise. Thus, we
now have a dummy variable for each of the three geographical regions.
Using the data in Table 9.1, if you were to run the regression (9.2.6), the com-
puter will “refuse” to run the regression (try it).6 Why? The reason is that in

EXAMPLE 9.1 (Continued)
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the setup of (9.2.6) where you have a dummy variable for each category or
group and also an intercept, you have a case of perfect collinearity, that is,
exact linear relationships among the variables. Why? Refer to Table 9.1.
Imagine that now we add the D1 column, taking the value of 1 whenever a
state is in the West and 0 otherwise. Now if you add the three D columns hor-
izontally, you will obtain a column that has 51 ones in it. But since the value
of the intercept α is (implicitly) 1 for each observation, you will have a
column that also contains 51 ones. In other words, the sum of the three D
columns will simply reproduce the intercept column, thus leading to perfect
collinearity. In this case, estimation of the model (9.2.6) is impossible.

The message here is: If a qualitative variable has m categories, intro-
duce only (m − 1) dummy variables. In our example, since the qualitative
variable “region” has three categories, we introduced only two dummies. If
you do not follow this rule, you will fall into what is called the dummy vari-
able trap, that is, the situation of perfect collinearity or perfect multi-
collinearity, if there is more than one exact relationship among the vari-
ables. This rule also applies if we have more than one qualitative variable in
the model, an example of which is presented later. Thus we should restate
the preceding rule as: For each qualitative regressor the number of
dummy variables introduced must be one less than the categories of
that variable. Thus, if in Example 9.1 we had information about the gender
of the teacher, we would use an additional dummy variable (but not two)
taking a value of 1 for female and 0 for male or vice versa.

2. The category for which no dummy variable is assigned is known as
the base, benchmark, control, comparison, reference, or omitted cate-
gory. And all comparisons are made in relation to the benchmark category.

3. The intercept value (β1) represents the mean value of the benchmark
category. In Example 9.1, the benchmark category is the Western region.
Hence, in the regression (9.2.5) the intercept value of about 26,159 repre-
sents the mean salary of teachers in the Western states.

4. The coefficients attached to the dummy variables in (9.2.1) are known
as the differential intercept coefficients because they tell by how much
the value of the intercept that receives the value of 1 differs from the inter-
cept coefficient of the benchmark category. For example, in (9.2.5), the value
of about −1734 tells us that the mean salary of teachers in the Northeast or
North Central is smaller by about $1734 than the mean salary of about
$26,159 for the benchmark category, the West.

5. If a qualitative variable has more than one category, as in our illus-
trative example, the choice of the benchmark category is strictly up to the
researcher. Sometimes the choice of the benchmark is dictated by the par-
ticular problem at hand. In our illustrative example, we could have chosen
the South as the benchmark category. In that case the regression results
given in (9.2.5) will change, because now all comparisons are made in rela-
tion to the South. Of course, this will not change the overall conclusion of
our example (why?). In this case, the intercept value will be about $22,894,
which is the mean salary of teachers in the South.
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7Peter Kennedy, A Guide to Econometrics, 4th ed., MIT Press, Cambridge, Mass., 1998, p. 223.

6. We warned above about the dummy variable trap. There is a way to
circumvent this trap by introducing as many dummy variables as the num-
ber of categories of that variable, provided we do not introduce the intercept
in such a model. Thus, if we drop the intercept term from (9.2.6), and con-
sider the following model,

Yi = β1 D1i + β2 D2i + β3 D3i + ui (9.2.7)

we do not fall into the dummy variable trap, as there is no longer perfect
collinearity. But make sure that when you run this regression, you use the no-
intercept option in your regression package.

How do we interpret regression (9.2.7)? If you take the expectation of
(9.2.7), you will find that:

β1 = mean salary of teachers in the West

β2 = mean salary of teachers in the Northeast and North Central.

β3 = mean salary of teachers in the South.

In other words, with the intercept suppressed, and allowing a dummy variable
for each category, we obtain directly the mean values of the various categories.
The results of (9.2.7) for our illustrative example are as follows:

Ŷi = 26,158.62D1i + 24,424.14D2i + 22,894D3i

se = (1128.523) (887.9170) (986.8645) (9.2.8)

t = (23.1795)* (27.5072)* (23.1987)*

R2 = 0.0901

where * indicates that the p values of these t ratios are very small.
As you can see, the dummy coefficients give directly the mean (salary) val-
ues in the three regions, West, Northeast and North Central, and South.

7. Which is a better method of introducing a dummy variable: (1) intro-
duce a dummy for each category and omit the intercept term or (2) include
the intercept term and introduce only (m − 1) dummies, where m is the
number of categories of the dummy variable? As Kennedy notes:

Most researchers find the equation with an intercept more convenient because it
allows them to address more easily the questions in which they usually have the
most interest, namely, whether or not the categorization makes a difference, and
if so, by how much. If the categorization does make a difference, by how much is
measured directly by the dummy variable coefficient estimates. Testing whether
or not the categorization is relevant can be done by running a t test of a dummy
variable coefficient against zero (or, to be more general, an F test on the appro-
priate set of dummy variable coefficient estimates).7
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9.4 REGRESSION WITH A MIXTURE OF QUANTITATIVE AND
QUALITATIVE REGRESSORS: THE ANCOVA MODELS

ANOVA models of the type discussed in the preceding two sections, al-
though common in fields such as sociology, psychology, education, and
market research, are not that common in economics. Typically, in most eco-
nomic research a regression model contains some explanatory variables
that are quantitative and some that are qualitative. Regression models con-
taining an admixture of quantitative and qualitative variables are called
analysis of covariance (ANCOVA) models. ANCOVA models are an exten-
sion of the ANOVA models in that they provide a method of statistically con-
trolling the effects of quantitative regressors, called covariates or control

8The data are obtained from the data disk in Arthur S. Goldberger, Introductory Economet-
rics, Harvard University Press, Cambridge, Mass., 1998. We have already considered these data
in Chap. 2.

Which is the benchmark category here? Obviously,
it is unmarried, non-South residence. In other words,
unmarried persons who do not live in the South are the
omitted category. Therefore, all comparisons are made
in relation to this group. The mean hourly wage in this
benchmark is about $8.81. Compared with this, the
average hourly wage of those who are married is higher
by about $1.10, for an actual average wage of $9.91
( = 8.81 + 1.10). By contrast, for those who live in the
South, the average hourly wage is lower by about $1.67,
for an actual average hourly wage of $7.14.

Are the preceding average hourly wages statistically
different compared to the base category? They are, for
all the differential intercepts are statistically significant,
as their p values are quite low.

The point to note about this example is this: Once
you go beyond one qualitative variable, you have to pay
close attention to the category that is treated as the base
category, since all comparisons are made in relation to
that category. This is especially important when you
have several qualitative regressors, each with several
categories. But the mechanics of introducing several
qualitative variables should be clear by now.

9.3 ANOVA MODELS WITH TWO QUALITATIVE VARIABLES

In the previous section we considered an ANOVA model with one qualitative
variable with three categories. In this section we consider another ANOVA
model, but with two qualitative variables, and bring out some additional
points about dummy variables.

EXAMPLE 9.2

HOURLY WAGES IN RELATION TO MARITAL STATUS
AND REGION OF RESIDENCE

From a sample of 528 persons in May 1985, the follow-
ing regression results were obtained8:

Ŷi = 8.8148 + 1.0997D2i − 1.6729D3i

se = (0.4015)  (0.4642) (0.4854)

t = (21.9528)   (2.3688) (−3.4462) (9.3.1)

(0.0000)* (0.0182)* (0.0006)*

R2 = 0.0322

where Y = hourly wage ($)
D2 = married status, 1 = married, 0 = otherwise
D3 = region of residence; 1 = South, 0 = otherwise

and * denotes the p values.
In this example we have two qualitative regressors,

each with two categories. Hence we have assigned a
single dummy variable for each category.
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variables, in a model that includes both quantitative and qualitative, or
dummy, regressors. We now illustrate the ANCOVA models.

To motivate the analysis, let us reconsider Example 9.1 by maintaining
that the average salary of public school teachers may not be different in the
three regions if we take into account any variables that cannot be stan-
dardized across the regions. Consider, for example, the variable expendi-
ture on public schools by local authorities, as public education is primarily a
local and state question. To see if this is the case, we develop the following
model:

Yi = β1 + β2 D2i + β3 D3i + β4 Xi + ui (9.4.1)

where Yi = average annual salary of public school teachers in state ($)
Xi = spending on public school per pupil ($)

D2i = 1, if the state is in the Northeast or North Central
= 0, otherwise

D3i = 1, if the state is in the South
= 0, otherwise

The data on X are given in Table 9.1. Keep in mind that we are treating the
West as the benchmark category. Also, note that besides the two qualitative
regressors, we have a quantitative variable, X, which in the context of the
ANCOVA models is known as a covariate, as noted earlier.

EXAMPLE 9.3

TEACHER’S SALARY IN RELATION TO REGION AND 
SPENDING ON PUBLIC SCHOOL PER PUPIL

From the data in Table 9.1, the results of the model (9.4.1) are as follows:

Ŷi = 13,269.11 − 1673.514D2i − 1144.157D3i + 3.2889Xi

se = (1395.056) (801.1703) (861.1182)     (0.3176)
(9.4.2)

t = (9.5115)* (−2.0889)* (−1.3286)**   (10.3539)*

R2 = 0.7266

where * indicates p values less than 5 percent, and ** indicates p values greater than 5 percent.
As these results suggest, ceteris paribus: as public expenditure goes up by a dollar, on

average, a public school teacher’s salary goes up by about $3.29. Controlling for spending
on education, we now see that the differential intercept coefficient is significant for the North-
east and North-Central region, but not for the South. These results are different from those of
(9.2.5). But this should not be surprising, for in (9.2.5) we did not account for the covariate,
differences in per pupil public spending on education. Diagrammatically, we have the situa-
tion shown in Figure 9.2.

Note that although we have shown three regression lines for the three regions, statisti-
cally the regression lines are the same for the West and the South. Also note that the three
regression lines are drawn parallel (why?).

(Continued)
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9The material in this section draws on the author’s articles, “Use of Dummy Variables in
Testing for Equality between Sets of Coefficients in Two Linear Regressions: A Note,” and “Use
of Dummy Variables . . . A Generalization,” both published in the American Statistician, vol. 24,
nos. 1 and 5, 1970, pp. 50–52 and 18–21.

9.5 THE DUMMY VARIABLE ALTERNATIVE TO THE CHOW TEST9

In Section 8.8 we discussed the Chow test to examine the structural stabil-
ity of a regression model. The example we discussed there related to the
relationship between savings and income in the United States over the
period 1970–1995. We divided the sample period into two, 1970–1981 and
1982–1995, and showed on the basis of the Chow test that there was a dif-
ference in the regression of savings on income between the two periods.

However, we could not tell whether the difference in the two regressions
was because of differences in the intercept terms or the slope coefficients or
both. Very often this knowledge itself is very useful.

Referring to Eqs. (8.8.1) and (8.8.2), we see that there are four possibili-
ties, which we illustrate in Figure 9.3.

1. Both the intercept and the slope coefficients are the same in the two re-
gressions. This, the case of coincident regressions, is shown in Figure 9.3a.

2. Only the intercepts in the two regressions are different but the slopes
are the same. This is the case of parallel regressions, which is shown in
Figure 9.3b.

EXAMPLE 9.3 (Continued)

13,269

1

West

3.29

3.29

3.29

South

Northeast and

North Central

1

1

Y

X

12,125

11,595

FIGURE 9.2
Public school teacher’s salary (Y ) in relation to per pupil expenditure on education (X ).
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Savings

Income
(a) Coincident regressions

Savings

Income
(c) Concurrent regressions

Savings

Income
(b) Parallel regressions

Savings

Income
(d) Dissimilar regressions

γ1γ

y1λ
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1

1

1

1

1

1

γ2 = λ2λγ

γ2γ

γ2γ

λ2λ

γ1 = λ1γ λ λ1λ

γ1γ

γ2 = λ2λγ

γ2 = λ2λγ

γ1 = λ1λγ

λ2λ

FIGURE 9.3 Plausible savings–income regressions.

10As in the Chow test, the pooling technique assumes homoscedasticity, that is, σ 2
1 = σ 2

2 = σ 2.

3. The intercepts in the two regressions are the same, but the slopes are
different. This is the situation of concurrent regressions (Figure 9.3c).

4. Both the intercepts and slopes in the two regressions are different.
This is the case of dissimilar regressions, which is shown in Figure 9.3d.

The multistep Chow test procedure discussed in Section 8.8, as noted ear-
lier, tells us only if two (or more) regressions are different without telling us
what is the source of the difference. The source of difference, if any, can be
pinned down by pooling all the observations (26 in all) and running just one
multiple regression as shown below10:

Yt = α1 + α2 Dt + β1 Xt + β2(Dt Xt) + ut (9.5.1)

where Y = savings
X = income
t = time

D = 1 for observations in 1982–1995
= 0, otherwise (i.e., for observations in 1970–1981)
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TABLE 9.2 SAVINGS AND INCOME DATA, UNITED STATES, 1970–1995

Observation Savings Income Dum

1970 61 727.1 0
1971 68.6 790.2 0
1972 63.6 855.3 0
1973 89.6 965 0
1974 97.6 1054.2 0
1975 104.4 1159.2 0
1976 96.4 1273 0
1977 92.5 1401.4 0
1978 112.6 1580.1 0
1979 130.1 1769.5 0
1980 161.8 1973.3 0
1981 199.1 2200.2 0
1982 205.5 2347.3 1
1983 167 2522.4 1
1984 235.7 2810 1
1985 206.2 3002 1
1986 196.5 3187.6 1
1987 168.4 3363.1 1
1988 189.1 3640.8 1
1989 187.8 3894.5 1
1990 208.7 4166.8 1
1991 246.4 4343.7 1
1992 272.6 4613.7 1
1993 214.4 4790.2 1
1994 189.4 5021.7 1
1995 249.3 5320.8 1

Note: Dum = 1 for observations beginning in 1982; 0 otherwise.
Savings and income figures are in billions of dollars.

Source: Economic Report of the President, 1997, Table B-28, p. 332.

Table 9.2 shows the structure of the data matrix.
To see the implications of (9.5.1), and, assuming, as usual, that E(ui) = 0,

we obtain:

Mean savings function for 1970–1981:

E(Yt | Dt = 0, Xt) = α1 + β1 Xt (9.5.2)

Mean savings function for 1982–1995:

E(Yt | Dt = 1, Xt) = (α1 + α2) + (β1 + β2)Xt (9.5.3)

The reader will notice that these are the same functions as (8.8.1) and
(8.8.2), with λ1 = α1, λ2 = β1, γ1 = (α1 + α2), and γ2 = (β1 + β2). Therefore,
estimating (9.5.1) is equivalent to estimating the two individual savings
functions (8.8.1) and (8.8.2).

In (9.5.1), α2 is the differential intercept, as previously, and β2 is the
differential slope coefficient (also called the slope drifter), indicating by
how much the slope coefficient of the second period’s savings function (the
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category that receives the dummy value of 1) differs from that of the first pe-
riod. Notice how the introduction of the dummy variable D in the interac-
tive, or multiplicative, form (D multiplied by X) enables us to differentiate
between slope coefficients of the two periods, just as the introduction of the
dummy variable in the additive form enabled us to distinguish between the
intercepts of the two periods.

EXAMPLE 9.4

STRUCTURAL DIFFERENCES IN THE U.S. SAVINGS–INCOME REGRESSION,
THE DUMMY VARIABLE APPROACH

Before we proceed further, let us first present the regression results of model (9.5.1) applied
to the U.S. savings–income data.

Ŷt = 1.0161 + 152.4786Dt + 0.0803Xt − 0.0655(DtXt)

se = (20.1648)   (33.0824) (0.0144) (0.0159) (9.5.4)

t = (0.0504)** (4.6090)* (5.5413)* (−4.0963)*

R2 = 0.8819

where * indicates p values less than 5 percent and ** indicates p values greater than 5 percent.
As these regression results show, both the differential intercept and slope coefficients are

statistically significant, strongly suggesting that the savings–income regressions for the two
time periods are different, as in Figure 9.3d.

From (9.5.4), we can derive equations (9.5.2) and (9.5.3), which are:

Savings–income regression, 1970–1981:

Ŷt = 1.0161 + 0.0803Xt (9.5.5)

Savings–income regression, 1982–1995:

Ŷt = (1.0161 + 152.4786) + (0.0803 − 0.0655)Xt

= 153.4947 + 0.0148Xt (9.5.6)

These are precisely the results we obtained in (8.8.1a) and (8.8.2a), which should not be sur-
prising. These regressions are already shown in Figure 8.3.

The advantages of the dummy variable technique [i.e., estimating (9.5.1)] over the Chow
test [i.e., estimating the three regressions (8.8.1), (8.8.2), and (8.8.3)] can now be seen
readily:

1. We need to run only a single regression because the individual regressions can easily be
derived from it in the manner indicated by equations (9.5.2) and (9.5.3).

2. The single regression (9.5.1) can be used to test a variety of hypotheses. Thus if the dif-
ferential intercept coefficient α2 is statistically insignificant, we may accept the hypothesis
that the two regressions have the same intercept, that is, the two regressions are concur-
rent (see Figure 9.3c). Similarly, if the differential slope coefficient β2 is statistically in-
significant but α2 is significant, we may not reject the hypothesis that the two regressions
have the same slope, that is, the two regression lines are parallel (cf. Figure 9.3b). The
test of the stability of the entire regression (i.e., α2 = β2 = 0, simultaneously) can be made
by the usual F test (recall the restricted least-squares F test). If this hypothesis is not
rejected, the regression lines will be coincident, as shown in Figure 9.3a.

(Continued)



Gujarati: Basic 
Econometrics, Fourth 
Edition

I. Single−Equation 
Regression Models

9. Dummy Variable 
Regression Models

© The McGraw−Hill 
Companies, 2004

310 PART ONE: SINGLE-EQUATION REGRESSION MODELS

11If we were to define education as less than high school, high school, and more than high
school, we could then use two dummies to represent the three classes.

3. The Chow test does not explicitly tell us which coefficient, intercept, or slope is different,
or whether (as in this example) both are different in the two periods. That is, one can ob-
tain a significant Chow test because the slope only is different or the intercept only is dif-
ferent, or both are different. In other words, we cannot tell, via the Chow test, which one
of the four possibilities depicted in Figure 9.2 exists in a given instance. In this respect, the
dummy variable approach has a distinct advantage, for it not only tells if the two are dif-
ferent but also pinpoints the source(s) of the difference—whether it is due to the intercept
or the slope or both. In practice, the knowledge that two regressions differ in this or that
coefficient is as important as, if not more than, the plain knowledge that they are different.

4. Finally, since pooling (i.e., including all the observations in one regression) increases the
degrees of freedom, it may improve the relative precision of the estimated parameters. Of
course, keep in mind that every addition of a dummy variable will consume one degree of
freedom.

9.6 INTERACTION EFFECTS USING DUMMY VARIABLES

Dummy variables are a flexible tool that can handle a variety of interesting
problems. To see this, consider the following model:

Yi = α1 + α2 D2i + α3 D3i + βXi + ui (9.6.1)

where Y = hourly wage in dollars
X = education (years of schooling)

D2 = 1 if female, 0 otherwise
D3 = 1 if nonwhite and non-Hispanic, 0 otherwise

In this model gender and race are qualitative regressors and education is
a quantitative regressor.11 Implicit in this model is the assumption that the
differential effect of the gender dummy D2 is constant across the two cate-
gories of race and the differential effect of the race dummy D3 is also con-
stant across the two sexes. That is to say, if the mean salary is higher for
males than for females, this is so whether they are nonwhite/non-Hispanic
or not. Likewise, if, say, nonwhite/non-Hispanics have lower mean wages,
this is so whether they are females or males.

In many applications such an assumption may be untenable. A female
nonwhite/non-Hispanic may earn lower wages than a male nonwhite/non-
Hispanic. In other words, there may be interaction between the two qualita-
tive variables D2 and D3. Therefore their effect on mean Y may not be simply
additive as in (9.6.1) but multiplicative as well, as in the following model.

Ŷi = α1 + α2 D2i + α3 D3i + α4(D2i D3i) + βXi + ui (9.6.2)

where the variables are as defined for model (9.6.1).
From (9.6.2), we obtain:

E(Yi | D2i = 1, D3i = 1, Xi) = (α1 + α2 + α3 + α4) + βXi (9.6.3)

EXAMPLE 9.4 (Continued)
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which is the mean hourly wage function for female nonwhite/non-Hispanic
workers. Observe that

α2 = differential effect of being a female
α3 = differential effect of being a nonwhite/non-Hispanic
α4 = differential effect of being a female nonwhite/non-Hispanic

which shows that the mean hourly wages of female nonwhite/non-Hispanics
is different (by α4) from the mean hourly wages of females or nonwhite/non-
Hispanics. If, for instance, all the three differential dummy coefficients are
negative, this would imply that female nonwhite/non-Hispanic workers earn
much lower mean hourly wages than female or nonwhite/non-Hispanic
workers as compared with the base category, which in the present example
is male white or Hispanic.

Now the reader can see how the interaction dummy (i.e., the product of
two qualitative or dummy variables) modifies the effect of the two attributes
considered individually (i.e., additively).

EXAMPLE 9.5

AVERAGE HOURLY EARNINGS IN RELATION TO EDUCATION, GENDER, AND RACE

Let us first present the regression results based on model (9.6.1). Using the data that were
used to estimate regression (9.3.1), we obtained the following results:

Ŷi = −0.2610 −    2.3606D2i −    1.7327D3i + 0.8028Xi

t = (−0.2357)** (−5.4873)* (−2.1803)*     (9.9094)* (9.6.4)

R2 = 0.2032 n = 528

where * indicates p values less than 5 percent and ** indicates p values greater than 5 percent.
The reader can check that the differential intercept coefficients are statistically significant,

that they have the expected signs (why?), and that education has a strong positive effect on
hourly wage, an unsurprising finding.

As (9.6.4) shows, ceteris paribus, the average hourly earnings of females are lower by
about $2.36, and the average hourly earnings of nonwhite non-Hispanic workers are also
lower by about $1.73.

We now consider the results of model (9.6.2), which includes the interaction dummy.

Ŷi = −0.26100 −   2.3606D2i −    1.7327D3i + 2.1289D2iD3i + 0.8028Xi

t = (−0.2357)** (−5.4873)* (−2.1803)*      (1.7420)** (9.9095)** (9.6.5)

R2 = 0.2032 n = 528

where * indicates p values less than 5 percent and ** indicates p values greater than 5 percent.
As you can see, the two additive dummies are still statistically significant, but the interac-

tive dummy is not at the conventional 5 percent level; the actual p value of the interaction
dummy is about the 8 percent level. If you think this is a low enough probability, then the re-
sults of (9.6.5) can be interpreted as follows: Holding the level of education constant, if you
add the three dummy coefficients you will obtain: −1.964 ( = −2.3605 − 1.7327 + 2.1289),
which means that mean hourly wages of nonwhite/non-Hispanic female workers is lower by
about $1.96, which is between the value of −2.3605 (gender difference alone) and −1.7327
(race difference alone).
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12A time series may contain four components: a seasonal, a cyclical, a trend, and one that
is strictly random.

13For the various methods of seasonal adjustment, see, for instance, Francis X. Diebod,
Elements of Forecasting, 2d ed., South-Western Publishers, 2001, Chap. 5.

The preceding example clearly reveals the role of interaction dummies
when two or more qualitative regressors are included in the model. It is
important to note that in the model (9.6.5) we are assuming that the rate of
increase of hourly earnings with respect to education (of about 80 cents per
additional year of schooling) remains constant across gender and race. But
this may not be the case. If you want to test for this, you will have to intro-
duce differential slope coefficients (see exercise 9.25)

9.7 THE USE OF DUMMY VARIABLES IN SEASONAL ANALYSIS

Many economic time series based on monthly or quarterly data exhibit
seasonal patterns (regular oscillatory movements). Examples are sales of
department stores at Christmas and other major holiday times, demand for
money (or cash balances) by households at holiday times, demand for ice
cream and soft drinks during summer, prices of crops right after harvesting
season, demand for air travel, etc. Often it is desirable to remove the sea-
sonal factor, or component, from a time series so that one can concentrate
on the other components, such as the trend.12 The process of removing
the seasonal component from a time series is known as deseasonalization
or seasonal adjustment, and the time series thus obtained is called the
deseasonalized, or seasonally adjusted, time series. Important economic
time series, such as the unemployment rate, the consumer price index (CPI),
the producer’s price index (PPI), and the index of industrial production, are
usually published in seasonally adjusted form.

There are several methods of deseasonalizing a time series, but we will
consider only one of these methods, namely, the method of dummy vari-
ables.13 To illustrate how the dummy variables can be used to deseasonalize
economic time series, consider the data given in Table 9.3. This table gives
quarterly data for the years 1978–1995 on the sale of four major appliances,
dishwashers, garbage disposers, refrigerators, and washing machines, all
data in thousands of units. The table also gives data on durable goods expen-
diture in 1982 billions of dollars.

To illustrate the dummy technique, we will consider only the sales of re-
frigerators over the sample period. But first let us look at the data, which is
shown in Figure 9.4. This figure suggests that perhaps there is a seasonal
pattern in the data associated with the various quarters. To see if this is the
case, consider the following model:

Yt = α1 D1t + α2 D2t + α3t D3t + α4 D4t + ut (9.7.1)

where Yt = sales of refrigerators (in thousands) and the D’s are the dum-
mies, taking a value of 1 in the relevant quarter and 0 otherwise. Note that
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Note: DISH = dishwashers; DISP = garbage disposers; FRIG = refrigerators; WASH = dishwashers; DUR =
durable goods expenditure, billions of 1992 dollars.

Source: Business Statistics and Survey of Current Business, Department of Commerce (various issues).

480 706 943 1036 247.7
530 582 1175 1019 249.1
557 659 1269 1047 251.8
602 837 973 918 262
658 867 1102 1137 263.3
749 860 1344 1167 280
827 918 1641 1230 288.5
858 1017 1225 1081 300.5
808 1063 1429 1326 312.6
840 955 1699 1228 322.5
893 973 1749 1297 324.3
950 1096 1117 1198 333.1
838 1086 1242 1292 344.8
884 990 1684 1342 350.3
905 1028 1764 1323 369.1
909 1003 1328 1274 356.4

to avoid the dummy variable trap, we are assigning a dummy to each quarter
of the year, but omitting the intercept term. If there is any seasonal effect in a
given quarter, that will be indicated by a statistically significant t value of the
dummy coefficient for that quarter.14
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FIGURE 9.4 Sales of refrigerators 1978–1985 (quarterly).

14Note a technical point. This method of assigning a dummy to each quarter assumes that
the seasonal factor, if present, is deterministic and not stochastic. We will revisit this topic
when we discuss time series econometrics in Part V of this book.

TABLE 9.3 QUARTERLY DATA ON APPLIANCE SALES (IN THOUSANDS) 
AND EXPENDITURE ON DURABLE GOODS (1978-I TO 1985-IV)

DISH DISP FRIG WASH DUR DISH DISP FRIG WASH DUR

841 798 1317 1271 252.6
957 837 1615 1295 272.4
999 821 1662 1313 270.9
960 858 1295 1150 273.9
894 837 1271 1289 268.9
851 838 1555 1245 262.9
863 832 1639 1270 270.9
878 818 1238 1103 263.4
792 868 1277 1273 260.6
589 623 1258 1031 231.9
657 662 1417 1143 242.7
699 822 1185 1101 248.6
675 871 1196 1181 258.7
652 791 1410 1116 248.4
628 759 1417 1190 255.5
529 734 919 1125 240.4
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Notice that in (9.7.1) we are regressing Y effectively on an intercept, ex-
cept that we allow for a different intercept in each season (i.e., quarter). As
a result, the dummy coefficient of each quarter will give us the mean refrig-
erator sales in each quarter or season (why?).

EXAMPLE 9.6

SEASONALITY IN REFRIGERATOR SALES

From the data on refrigerator sales given in Table 9.3, we obtain the following regression
results:

Ŷt = 1222.125D1t + 1467.500D2t + 1569.750D3t + 1160.000D4t

t = (20.3720) (24.4622) (26.1666) (19.3364) (9.7.2)

R2 = 0.5317

Note: We have not given the standard errors of the estimated coefficients, as each standard
error is equal to 59.9904, because all the dummies take only a value of 1 or zero.

The estimated α coefficients in (9.7.2) represent the average, or mean, sales of refriger-
ators (in thousands of units) in each season (i.e., quarter). Thus, the average sale of refrig-
erators in the first quarter, in thousands of units, is about 1222, that in the second quarter
about 1468, that in the third quarter about 1570, and that in the fourth quarter about 1160.

(Continued)

TABLE 9.4 U.S. REFRIGERATOR SALES (THOUSANDS),1978–1995 (QUARTERLY)

FRIG DUR D2 D3 D4 FRIG DUR D2 D3 D4

1317 252.6 0 0 0 943 247.7 0 0 0
1615 272.4 1 0 0 1175 249.1 1 0 0
1662 270.9 0 1 0 1269 251.8 0 1 0
1295 273.9 0 0 1 973 262.0 0 0 1
1271 268.9 0 0 0 1102 263.3 0 0 0
1555 262.9 1 0 0 1344 280.0 1 0 0
1639 270.9 0 1 0 1641 288.5 0 1 0
1238 263.4 0 0 1 1225 300.5 0 0 1
1277 260.6 0 0 0 1429 312.6 0 0 0
1258 231.9 1 0 0 1699 322.5 1 0 0
1417 242.7 0 1 0 1749 324.3 0 1 0
1185 248.6 0 0 1 1117 333.1 0 0 1
1196 258.7 0 0 0 1242 344.8 0 0 0
1410 248.4 1 0 0 1684 350.3 1 0 0
1417 255.5 0 1 0 1764 369.1 0 1 0
919 240.4 0 0 1 1328 356.4 0 0 1

Note: FRIG = refrigerator sales, thousands
DUR = durable goods expenditure, billions of 1992 dollars

D2 = 1 in the second quarter, 0 otherwise
D3 = 1 in the third quarter, 0 otherwise
D4 = 1 in the fourth quarter, 0 otherwise

Source: Business Statistics and Survey of Current Business, Department of Commerce (various
issues).
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Incidentally, instead of assigning a dummy for each quarter and suppressing the intercept
term to avoid the dummy variable trap, we could assign only three dummies and include the
intercept term. Suppose we treat the first quarter as the reference quarter and assign dum-
mies to the second, third, and fourth quarters. This produces the following regression results
(see Table 9.4 for the data setup):

Ŷt = 1222.1250 + 245.3750D2t + 347.6250D3t − 62.1250D4t

t = (20.3720)* (2.8922)* (4.0974)* (−0.7322)** (9.7.3)

R2 = 0.5318

where * indicates p values less than 5 percent and ** indicates p values greater than 5 percent.
Since we are treating the first quarter as the benchmark, the coefficients attached to the

various dummies are now differential intercepts, showing by how much the average value of
Y in the quarter that receives a dummy value of 1 differs from that of the benchmark quarter.
Put differently, the coefficients on the seasonal dummies will give the seasonal increase or
decrease in the average value of Y relative to the base season. If you add the various differ-
ential intercept values to the benchmark average value of 1222.125, you will get the average
value for the various quarters. Doing so, you will reproduce exactly Eq. (9.7.2), except for the
rounding errors.

But now you will see the value of treating one quarter as the benchmark quarter, for
(9.7.3) shows that the average value of Y for the fourth quarter is not statistically different
from the average value for the first quarter, as the dummy coefficient for the fourth quarter is
not statistically significant. Of course, your answer will change, depending on which quarter
you treat as the benchmark quarter, but the overall conclusion will not change.

How do we obtain the deseasonalized time series of refrigerator sales? This can be done
easily. You estimate the values of Y from model (9.7.2) [or (9.7.3)] for each observation and
subtract them from the actual values of Y, that is, you obtain (Yt −Ŷt ) which are simply the
residuals from the regression (9.7.2). We show them in Table 9.5.15

What do these residuals represent? They represent the remaining components of the re-
frigerator time series, namely, the trend, cycle, and random components (but see the caution
given in footnote 15).

Since models (9.7.2) and (9.7.3) do not contain any covariates, will the picture change if
we bring in a quantitative regressor in the model? Since expenditure on durable goods has
an important factor influence on the demand for refrigerators, let us expand our model (9.7.3)
by bringing in this variable. The data for durable goods expenditure in billions of 1982 dollars
are already given in Table 9.3. This is our (quantitative) X variable in the model. The regres-
sion results are as follows

Ŷt = 456.2440 + 242.4976D2t + 325.2643D3t − 86.0804D4t + 2.7734Xt

t = (2.5593)* (3.6951)* (4.9421)* (−1.3073)** (4.4496)* (9.7.4)

R2 = 0.7298

where * indicates p values less than 5 percent and ** indicates p values greater than 5 percent.

15Of course, this assumes that the dummy variables technique is an appropriate method of
deseasonalizing a time series and that a time series (TS) can be represented as: TS = s + c +
t + u, where s represents the seasonal, t the trend, c the cyclical, and u the random component.
However, if the time series is of the form, TS = (s)(c)(t)(u), where the four components enter
multiplicatively, the preceding method of deseasonalization is inappropriate, for that method
assumes that the four components of a time series are additive. But we will have more to say
about this topic in the chapters on time series econometrics.

(Continued)

EXAMPLE 9.6 (Continued)
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TABLE 9.5
REFRIGERATOR SALES REGRESSION: ACTUAL, FITTED, AND RESIDUAL
VALUES (EQ. 9.7.3)

Residual graph
Actual Fitted Residuals 0

1978-I 1317 1222.12 94.875 . .
1978-II 1615 1467.50 147.500 . .
1978-III 1662 1569.75 92.250 . .
1978-IV 1295 1160.00 135.000 . .

1979-I 1271 1222.12 48.875 . .
1979-II 1555 1467.50 87.500 . .
1979-III 1639 1569.75 69.250 . .
1979-IV 1238 1160.00 78.000 . .

1980-I 1277 1222.12 54.875 . .
1980-II 1258 1467.50 −209.500 . .
1980-III 1417 1569.75 −152.750 . .
1980-IV 1185 1160.00 25.000 . .

1981-I 1196 1222.12 −26.125 . .
1981-II 1410 1467.50 −57.500 . .
1981-III 1417 1569.75 −152.750 . .
1981-IV 919 1160.00 −241.000 . .

1982-I 943 1222.12 −279.125 . .
1982-II 1175 1467.50 −292.500 . .
1982-III 1269 1569.75 −300.750 . .
1982-IV 973 1160.00 −187.000 . .

1983-I 1102 1222.12 −120.125 . .
1983-II 1344 1467.50 −123.500 . .
1983-III 1641 1569.75 71.250 . .
1983-IV 1225 1160.00 65.000 . .

1984-I 1429 1222.12 206.875 . .
1984-II 1699 1467.50 231.500 . .
1984-III 1749 1569.75 179.250 . .
1984-IV 1117 1160.00 −43.000 . .

1985-I 1242 1222.12 19.875 . .
1985-II 1684 1467.50 216.500 . .
1985-III 1764 1569.75 194.250 . .
1985-IV 1328 1160.00 168.000 .

− 0 +

Again, keep in mind that we are treating the first quarter as our base. As in (9.7.3), we see
that the differential intercept coefficients for the second and third quarters are statistically dif-
ferent from that of the first quarter, but the intercepts of the fourth quarter and the first quar-
ter are statistically about the same. The coefficient of X (durable goods expenditure) of about
2.77 tells us that, allowing for seasonal effects, if expenditure on durable goods goes up
by a dollar, on average, sales of refrigerators go up by about 2.77 units, that is, approximately
3 units; bear in mind that refrigerators are in thousands of units and X is in (1982) billions
of dollars.
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EXAMPLE 9.6 (Continued)
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16For proof, see Adrian C. Darnell, A Dictionary of Econometrics, Edward Elgar, Lyme, U.K.,
1995, pp. 150–152.

An interesting question here is: Just as sales of refrigerators exhibit seasonal patterns,
would not expenditure on durable goods also exhibit seasonal patterns? How then do we
take into account seasonality in X? The interesting thing about (9.7.4) is that the dummy
variables in that model not only remove the seasonality in Y but also the seasonality, if any,
in X. (This follows from a well-known theorem in statistics, known as the Frisch–Waugh
theorem.16) So to speak, we kill (deseasonalize) two birds (two series) with one stone (the
dummy technique).

If you want an informal proof of the preceding statement, just follow these steps: (1) Run
the regression of Y on the dummies as in (9.7.2) or (9.7.3) and save the residuals, say, S1;
these residuals represent deseasonalized Y. (2) Run a similar regression for X and obtain
the residuals from this regression, say, S2; these residuals represent deseasonalized X.
(3) Regress S1 on S2. You will find that the slope coefficient in this regression is precisely the
coefficient of X in the regression (9.7.4).

9.8 PIECEWISE LINEAR REGRESSION

To illustrate yet another use of dummy variables, consider Figure 9.5, which
shows how a hypothetical company remunerates its sales representatives.
It pays commissions based on sales in such a manner that up to a certain
level, the target, or threshold, level X*, there is one (stochastic) commission
structure and beyond that level another. (Note: Besides sales, other factors
affect sales commission. Assume that these other factors are represented

EXAMPLE 9.6 (Continued)
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FIGURE 9.5 Hypothetical relationship between sales commission and sales volume. (Note: The intercept on
the Y axis denotes minimum guaranteed commission.)
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by the stochastic disturbance term.) More specifically, it is assumed that
sales commission increases linearly with sales until the threshold level X*,
after which also it increases linearly with sales but at a much steeper rate.
Thus, we have a piecewise linear regression consisting of two linear
pieces or segments, which are labeled I and II in Figure 9.5, and the com-
mission function changes its slope at the threshold value. Given the data on
commission, sales, and the value of the threshold level X*, the technique of
dummy variables can be used to estimate the (differing) slopes of the two
segments of the piecewise linear regression shown in Figure 9.5. We pro-
ceed as follows:

Yi = α1 + β1 Xi + β2(Xi − X*)Di + ui (9.8.1)

where Yi = sales commission
Xi = volume of sales generated by the sales person
X* = threshold value of sales also known as a knot (known in

advance)17

D = 1 if Xi > X*

= 0 if Xi < X*

Assuming E(ui) = 0, we see at once that

E(Yi | Di = 0, Xi , X*) = α1 + β1 Xi (9.8.2)

which gives the mean sales commission up to the target level X* and

E(Yi | Di = 1, Xi , X*) = α1 − β2 X* + (β1 + β2)Xi (9.8.3)

which gives the mean sales commission beyond the target level X*.
Thus, β1 gives the slope of the regression line in segment I, and β1 + β2

gives the slope of the regression line in segment II of the piecewise linear
regression shown in Figure 9.5. A test of the hypothesis that there is no
break in the regression at the threshold value X* can be conducted easily by
noting the statistical significance of the estimated differential slope coeffi-
cient β̂2 (see Figure 9.6).

Incidentally, the piecewise linear regression we have just discussed is an
example of a more general class of functions known as spline functions.18

17The threshold value may not always be apparent, however. An ad hoc approach is to plot
the dependent variable against the explanatory variable(s) and observe if there seems to be a
sharp change in the relation after a given value of X (i.e., X*). An analytical approach to finding
the break point can be found in the so-called switching regression models. But this is an
advanced topic and a textbook discussion may be found in Thomas Fomby, R. Carter Hill, and
Stanley Johnson, Advanced Econometric Methods, Springer-Verlag, New York, 1984, Chap. 14.

18For an accessible discussion on splines (i.e., piecewise polynomials of order k), see
Douglas C. Montgomery, Elizabeth A. Peck, and G. Geoffrey Vining, Introduction to Linear
Regression Analysis, John Wiley & Sons, 3d ed., New York, 2001, pp. 228–230.
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FIGURE 9.6 Parameters of the piecewise linear regression.

EXAMPLE 9.7

TOTAL COST IN RELATION TO OUTPUT

As an example of the application of the piecewise linear
regression, consider the hypothetical total cost–total
output data given in Table 9.6. We are told that the
total cost may change its slope at the output level of
5500 units.

Letting Y in (9.8.4) represent total cost and X total
output, we obtain the following results:

Ŷi = −145.72 + 0.2791Xi + 0.0945(Xi − X *i )Di

t = (−0.8245)    (6.0669) (1.1447) (9.8.4)

R2 = 0.9737 X* = 5500

As these results show, the marginal cost of production
is about 28 cents per unit and although it is about
37 cents (28 + 9) for output over 5500 units, the differ-
ence between the two is not statistically significant be-
cause the dummy variable is not significant at, say, the

TABLE 9.6
HYPOTHETICAL DATA ON OUTPUT AND
TOTAL COST

Total cost, dollars Output, units

256 1,000
414 2,000
634 3,000
778 4,000

1,003 5,000
1,839 6,000
2,081 7,000
2,423 8,000
2,734 9,000
2,914 10,000

5 percent level. For all practical purposes, then, one can
regress total cost on total output, dropping the dummy
variable.
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9.9 PANEL DATA REGRESSION MODELS

Recall that in Chapter 1 we discussed a variety of data that are available for
empirical analysis, such as cross-section, time series, pooled (combination
of time series and cross-section data), and panel data. The technique of
dummy variable can be easily extended to pooled and panel data. Since the
use of panel data is becoming increasingly common in applied work, we will
consider this topic in some detail in Chapter 16.

9.10 SOME TECHNICAL ASPECTS OF
THE DUMMY VARIABLE TECHNIQUE

The Interpretation of Dummy Variables 
in Semilogarithmic Regressions

In Chapter 6 we discussed the log–lin models, where the regressand is loga-
rithmic and the regressors are linear. In such a model, the slope coefficients
of the regressors give the semielasticity, that is, the percentage change in the
regressand for a unit change in the regressor. This is only so if the regressor
is quantitative. What happens if a regressor is a dummy variable? To be spe-
cific, consider the following model:

ln Yi = β1 + β2 Di + ui (9.10.1)

where Y = hourly wage rate ($) and D = 1 for female and 0 for male.
How do we interpret such a model? Assuming E(ui) = 0, we obtain:

Wage function for male workers:

E(ln Yi | Di = 0) = β1 (9.10.2)

Wage function for female workers:

E(ln Yi | Di = 1) = β1 + β2 (9.10.3)

Therefore, the intercept β1 gives the mean log hourly earnings and the
“slope” coefficient gives the difference in the mean log hourly earnings of
male and females. This is a rather awkward way of stating things. But if we
take the antilog of β1, what we obtain is not the mean hourly wages of male
workers, but their median wages. As you know, mean, median, and mode
are the three measures of central tendency of a random variable. And if
we take the antilog of (β1 + β2), we obtain the median hourly wages of
female workers.
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Dummy Variables and Heteroscedasticity

Let us revisit our savings–income regression for the United States for the
periods 1970–1981 and 1982–1995 and for the entire period 1970–1995. In
testing for structural stability using the dummy technique, we assumed that
the error var (u1i) = var (u2i) = σ 2, that is, the error variances in the two
periods were the same. This was also the assumption underlying the Chow
test. If this assumption is not valid—that is, the error variances in the two
subperiods are different—it is quite possible to draw misleading conclu-
sions. Therefore, one must first check on the equality of variances in the
subperiod, using suitable statistical techniques. Although we will discuss
this topic more thoroughly in the chapter on heteroscedasticity, in
Chapter 8 we showed how the F test can be used for this purpose.20 (See our
discussion of the Chow test in that chapter.) As we showed there, it seems
the error variances in the two periods are not the same. Hence, the results
of both the Chow test and the dummy variable technique presented before
may not be entirely reliable. Of course, our purpose here is to illustrate the
various techniques that one can use to handle a problem (e.g., the problem
of structural stability). In any particular application, these techniques may
not be valid. But that is par for most statistical techniques. Of course, one
can take appropriate remedial actions to resolve the problem, as we will do
in the chapter on heteroscedasticity later (however, see exercise 9.28).

19Robert Halvorsen and Raymond Palmquist, “The Interpretation of Dummy Variables in
Semilogarithmic Equations,” American Economic Review, vol. 70, no. 3, pp. 474–475.

20The Chow test procedure can be performed even in the presence of heteroscedasticity, but
then one will have to use the Wald test. The mathematics involved behind the test is somewhat
involved. But in the chapter on heteroscedasticity, we will revisit this topic.

we obtain 6.8796 ($), which is the median hourly earnings
of female workers. Thus, the female workers’ median
hourly earnings is lower by about 21.94 percent com-
pared to their male counterparts [(8.8136 − 6.8796)/
8.8136].

Interestingly, we can obtain semielasticity for a
dummy regressor directly by the device suggested by
Halvorsen and Palmquist.19 Take the antilog (to base e)
of the estimated dummy coefficient and subtract 1 from it
and multiply the difference by 100. (For the underlying
logic, see Appendix 9.A.1.) Therefore, if you take the
antilog of −0.2437, you will obtain 0.78366. Subtracting 1
from this gives −0.2163, after multiplying this by 100, we
get −21.63 percent, suggesting that a female worker’s
(D = 1) median salary is lower than that of her male
counterpart by about 21.63 percent, the same as we
obtained previously, save the rounding errors.

EXAMPLE 9.8

LOGARITHM OF HOURLY WAGES
IN RELATION TO GENDER

To illustrate (9.10.1), we use the data that underlie
Example 9.2. The regression results based on 528 ob-
servations are as follows:

̂ln Yi = 2.1763 − 0.2437Di

t = (72.2943)*    (−5.5048)* (9.10.4)

R2 = 0.0544

where * indicates p values are practically zero.
Taking the antilog of 2.1763, we find 8.8136 ($),

which is the median hourly earnings of male workers,
and taking the antilog of [(2.1763 − 0.2437) = 1.92857],
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21P. A.V. B. Swamy, Statistical Inference in Random Coefficient Regression Models, Springer-
Verlag, Berlin, 1971.

Dummy Variables and Autocorrelation

Besides homoscedasticity, the classical linear regression model assumes
that the error term in the regression models is uncorrelated. But what hap-
pens if that is not the case, especially in models involving dummy regres-
sors? Since we will discuss the topic of autocorrelation in depth in the chap-
ter on autocorrelation, we will defer the answer to this question until then.

What Happens if the Dependent Variable Is a Dummy Variable?

So far we have considered models in which the regressand is quantitative
and the regressors are quantitative or qualitative or both. But there are
occasions where the regressand can also be qualitative or dummy. Consider,
for example, the decision of a worker to participate in the labor force. The
decision to participate is of the yes or no type, yes if the person decides to
participate and no otherwise. Thus, the labor force participation variable is
a dummy variable. Of course, the decision to participate in the labor force
depends on several factors, such as the starting wage rate, education, and
conditions in the labor market (as measured by the unemployment rate).

Can we still use OLS to estimate regression models where the regressand
is dummy? Yes, mechanically, we can do so. But there are several statistical
problems that one faces in such models. And since there are alternatives
to OLS estimation that do not face these problems, we will discuss this topic
in a later chapter (see Chapter 15 on logit and probit models). In that chap-
ter we will also discuss models in which the regressand has more than two
categories; for example, the decision to travel to work by car, bus, or train,
or the decision to work part-time, full time, or not work at all. Such models
are called polytomous dependent variable models in contrast to dichoto-
mous dependent variable models in which the dependent variable has
only two categories.

9.11 TOPICS FOR FURTHER STUDY

Several topics related to dummy variables are discussed in the literature that
are rather advanced, including (1) random, or varying, parameters mod-
els, (2) switching regression models, and (3) disequilibrium models.

In the regression models considered in this text it is assumed that the
parameters, the β ’s, are unknown but fixed entities. The random coefficient
models—and there are several versions of them—assume the β ’s can be ran-
dom too. A major reference work in this area is by Swamy.21

In the dummy variable model using both differential intercepts and
slopes, it is implicitly assumed that we know the point of break. Thus, in
our savings–income example for 1970–1995, we divided the period into
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22S. Goldfeld and R. Quandt, Nonlinear Methods in Econometrics, North Holland, Amsterdam,
1972.

23Richard E. Quandt, The Econometrics of Disequilibrium, Basil Blackwell, New York, 1988.

1970–1981 and 1982–1995, the pre- and postrecession periods, under the
belief that the recession in 1982 changed the relation between savings and
income. Sometimes it is not easy to pinpoint when the break took place. The
technique of switching regression models (SRM) is developed for such
situations. SRM treats the breakpoint as a random variable and through an
iterative process determines when the break might have actually taken
place. The seminal work in this area is by Goldfeld and Quandt.22

Special estimation techniques are required to deal with what are known
as disequilibrium situations, that is, situations where markets do not
clear (i.e., demand is not equal to supply). The classic example is that of
demand for and supply of a commodity. The demand for a commodity is a
function of its price and other variables, and the supply of the commodity
is a function of its price and other variables, some of which are different
from those entering the demand function. Now the quantity actually bought
and sold of the commodity may not necessarily be equal to the one obtained
by equating the demand to supply, thus leading to disequilibrium. For a
thorough discussion of disequilibrium models, the reader may refer to
Quandt.23

9.12 SUMMARY AND CONCLUSIONS 

1. Dummy variables, taking values of 1 and zero (or their linear trans-
forms), are a means of introducing qualitative regressors in regression
models.

2. Dummy variables are a data-classifying device in that they divide a
sample into various subgroups based on qualities or attributes (gender,
marital status, race, religion, etc. ) and implicitly allow one to run individual
regressions for each subgroup. If there are differences in the response of the
regressand to the variation in the qualitative variables in the various sub-
groups, they will be reflected in the differences in the intercepts or slope
coefficients, or both, of the various subgroup regressions.

3. Although a versatile tool, the dummy variable technique needs to be
handled carefully. First, if the regression contains a constant term, the num-
ber of dummy variables must be one less than the number of classifications
of each qualitative variable. Second, the coefficient attached to the dummy
variables must always be interpreted in relation to the base, or reference,
group—that is, the group that receives the value of zero. The base chosen
will depend on the purpose of research at hand. Finally, if a model has sev-
eral qualitative variables with several classes, introduction of dummy vari-
ables can consume a large number of degrees of freedom. Therefore, one
should always weigh the number of dummy variables to be introduced
against the total number of observations available for analysis.
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