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8
MULTIPLE REGRESSION
ANALYSIS: THE PROBLEM
OF INFERENCE

This chapter, a continuation of Chapter 5, extends the ideas of interval esti-
mation and hypothesis testing developed there to models involving three
or more variables. Although in many ways the concepts developed in Chap-
ter 5 can be applied straightforwardly to the multiple regression model, a
few additional features are unique to such models, and it is these features
that will receive more attention in this chapter.

8.1 THE NORMALITY ASSUMPTION ONCE AGAIN

We know by now that if our sole objective is point estimation of the para-
meters of the regression models, the method of ordinary least squares
(OLS), which does not make any assumption about the probability distrib-
ution of the disturbances ui , will suffice. But if our objective is estimation as
well as inference, then, as argued in Chapters 4 and 5, we need to assume
that the ui follow some probability distribution.

For reasons already clearly spelled out, we assumed that the ui follow the
normal distribution with zero mean and constant variance σ 2. We continue
to make the same assumption for multiple regression models. With the nor-
mality assumption and following the discussion of Chapters 4 and 7, we find
that the OLS estimators of the partial regression coefficients, which are
identical with the maximum likelihood (ML) estimators, are best linear un-
biased estimators (BLUE).1 Moreover, the estimators β̂2, β̂3, and β̂1 are

1With the normality assumption, the OLS estimators β̂2, β̂3, and β̂1 are minimum-variance
estimators in the entire class of unbiased estimators, whether linear or not. In short, they are
BUE (best unbiased estimators). See C. R. Rao, Linear Statistical Inference and Its Applications,
John Wiley & Sons, New York, 1965, p. 258.
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themselves normally distributed with means equal to true β2, β3, and β1 and
the variances given in Chapter 7. Furthermore, (n − 3)σ̂ 2/σ 2 follows the χ2

distribution with n − 3 df, and the three OLS estimators are distributed in-
dependently of σ̂ 2. The proofs follow the two-variable case discussed in
Appendix 3. As a result and following Chapter 5, one can show that, upon
replacing σ 2 by its unbiased estimator σ̂ 2 in the computation of the stan-
dard errors, each of the following variables

follows the t distribution with n − 3 df.
Note that the df are now n − 3 because in computing 

∑
û2

i and hence σ̂ 2

we first need to estimate the three partial regression coefficients, which
therefore put three restrictions on the residual sum of squares (RSS) (fol-
lowing this logic in the four-variable case there will be n − 4 df, and so on).
Therefore, the t distribution can be used to establish confidence intervals as
well as test statistical hypotheses about the true population partial regres-
sion coefficients. Similarly, the χ2 distribution can be used to test hypothe-
ses about the true σ 2. To demonstrate the actual mechanics, we use the fol-
lowing illustrative example.

8.2 EXAMPLE 8.1: CHILD MORTALITY EXAMPLE REVISITED

In Chapter 7 we regressed child mortality (CM) on per capita GNP (PGNP)
and the female literacy rate (FLR) for a sample of 64 countries. The regres-
sion results given in (7.6.2) are reproduced below with some additional
information:

ĈMi = 263.6416 − 0.0056 PGNPi − 2.2316 FLRi

se = (11.5932) (0.0019) (0.2099)

t = (22.7411) (−2.8187) (−10.6293) (8.2.1)

p value = (0.0000)* (0.0065) (0.0000)*

R2 = 0.7077 R̄2 = 0.6981

where * denotes extremely low value.

(8.1.1)

(8.1.2)

(8.1.3)

t = β̂1 − β1

se (β̂1)

t = β̂2 − β2

se (β̂2)

t = β̂3 − β3

se (β̂3)
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In Eq. (8.2.1) we have followed the format first introduced in Eq. (5.11.1),
where the figures in the first set of parentheses are the estimated standard
errors, those in the second set are the t values under the null hypothesis that
the relevant population coefficient has a value of zero, and those in the third
are the estimated p values. Also given are R2 and adjusted R2 values. We
have already interpreted this regression in Example 7.1.

What about the statistical significance of the observed results? Consider,
for example, the coefficient of PGNP of −0.0056. Is this coefficient statisti-
cally significant, that is, statistically different from zero? Likewise, is the
coefficient of FLR of −2.2316 statistically significant? Are both coefficients
statistically significant? To answer this and related questions, let us first
consider the kinds of hypothesis testing that one may encounter in the con-
text of a multiple regression model.

8.3 HYPOTHESIS TESTING IN MULTIPLE REGRESSION:
GENERAL COMMENTS

Once we go beyond the simple world of the two-variable linear regression
model, hypothesis testing assumes several interesting forms, such as the
following:

1. Testing hypotheses about an individual partial regression coefficient
(Section 8.4)

2. Testing the overall significance of the estimated multiple regression
model, that is, finding out if all the partial slope coefficients are simultane-
ously equal to zero (Section 8.5)

3. Testing that two or more coefficients are equal to one another
(Section 8.6)

4. Testing that the partial regression coefficients satisfy certain restric-
tions (Section 8.7)

5. Testing the stability of the estimated regression model over time or in
different cross-sectional units (Section 8.8)

6. Testing the functional form of regression models (Section 8.9)

Since testing of one or more of these types occurs so commonly in empiri-
cal analysis, we devote a section to each type.

8.4 HYPOTHESIS TESTING ABOUT
INDIVIDUAL REGRESSION COEFFICIENTS

If we invoke the assumption that ui ∼ N(0, σ 2), then, as noted in Section 8.1,
we can use the t test to test a hypothesis about any individual partial regres-
sion coefficient. To illustrate the mechanics, consider the child mortality re-
gression, (8.2.1). Let us postulate that

H0: β2 = 0 and H1: β2 �= 0
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2In most empirical investigations the null hypothesis is stated in this form, that is, taking
the extreme position (a kind of straw man) that there is no relationship between the dependent
variable and the explanatory variable under consideration. The idea here is to find out whether
the relationship between the two is a trivial one to begin with.

The null hypothesis states that, with X3 (female literacy rate) held con-
stant, X2 (PGNP) has no (linear) influence on Y (child mortality).2 To test the
null hypothesis, we use the t test given in (8.1.2). Following Chapter 5 (see
Table 5.1), if the computed t value exceeds the critical t value at the chosen
level of significance, we may reject the null hypothesis; otherwise, we may
not reject it. For our illustrative example, using (8.1.2) and noting that
β2 = 0 under the null hypothesis, we obtain

t = −0.0056
0.0020

= −2.8187 (8.4.1)

as shown in Eq. (8.2.1).
Notice that we have 64 observations. Therefore, the degrees of freedom in

this example are 61 (why?). If you refer to the t table given in Appendix D,
we do not have data corresponding to 61 df. The closest we have are for
60 df. If we use these df, and assume α, the level of significance (i.e., the
probability of committing a Type I error) of 5 percent, the critical t value is
2.0 for a two-tail test (look up tα/2 for 60 df) or 1.671 for a one-tail test (look
up tα for 60 df).

For our example, the alternative hypothesis is two-sided. Therefore, we
use the two-tail t value. Since the computed t value of 2.8187 (in absolute
terms) exceeds the critical t value of 2, we can reject the null hypothesis that
PGNP has no effect on child mortality. To put it more positively, with the fe-
male literacy rate held constant, per capita GNP has a significant (negative)
effect on child mortality, as one would expect a priori. Graphically, the situ-
ation is as shown in Figure 8.1.

In practice, one does not have to assume a particular value of α to con-
duct hypothesis testing. One can simply use the p value given in (8.2.2),

0
t

+2.0–2.0

f(t)

D
en

si
ty

Critical
region,
2.5%

t = –2.82

Critical region,
2.5%

95%
Region of acceptance

FIGURE 8.1 The 95% confidence interval for t (60 df).
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which in the present case is 0.0065. The interpretation of this p value (i.e.,
the exact level of significance) is that if the null hypothesis were true, the
probability of obtaining a t value of as much as 2.8187 or greater (in ab-
solute terms) is only 0.0065 or 0.65 percent, which is indeed a small proba-
bility, much smaller than the artificially adopted value of α = 5%.

This example provides us an opportunity to decide whether we want to
use a one-tail or a two-tail t test. Since a priori child mortality and per capita
GNP are expected to be negatively related (why?), we should use the one-tail
test. That is, our null and alternative hypothesis should be:

H0: β2 < 0 and H1: β2 ≥ 0

As the reader knows by now, we can reject the null hypothesis on the basis
of the one-tail t test in the present instance.

In Chapter 5 we saw the intimate connection between hypothesis testing
and confidence interval estimation. For our example, the 95% confidence in-
terval for β2 is:

β̂2 − tα/2 se (β̂2) ≤ β2 ≤ β̂2 + tα/2 se (β̂2)

which in our example becomes

−0.0056 − 2(0.0020) ≤ β2 ≤ −0.0056 + 2(0.0020)

that is,

−0.0096 ≤ β2 ≤ −0.0016 (8.4.2)

that is, the interval, −0.0096 to −0.0016 includes the true β2 coefficient with
95% confidence coefficient. Thus, if 100 samples of size 64 are selected and
100 confidence intervals like (8.4.2) are constructed, we expect 95 of them to
contain the true population parameter β2. Since the interval (8.4.2) does not
include the null-hypothesized value of zero, we can reject the null hypothe-
sis that the true β2 is zero with 95% confidence.

Thus, whether we use the t test of significance as in (8.4.1) or the confi-
dence interval estimation as in (8.4.2), we reach the same conclusion. How-
ever, this should not be surprising in view of the close connection between
confidence interval estimation and hypothesis testing.

Following the procedure just described, we can test hypotheses about the
other parameters of our child mortality regression model. The necessary
data are already provided in Eq. (8.2.1). For example, suppose we want to
test the hypothesis that, with the influence of PGNP held constant, the
female literacy rate has no effect whatsoever on child mortality. We can con-
fidently reject this hypothesis, for under this null hypothesis the p value of
obtaining an absolute t value of as much as 10.6 or greater is practically zero.

Before moving on, remember that the t-testing procedure is based on the
assumption that the error term ui follows the normal distribution. Although
we cannot directly observe ui , we can observe their proxy, the ûi , that is, the
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3For our example, the skewness value is 0.2276 and the kurtosis value is 2.9488. Recall that
for a normally distributed variable the skewness and kurtosis values are, respectively, 0 and 3.

residuals. For our mortality regression, the histogram of the residuals is as
shown in Figure 8.2.

From the histogram it seems that the residuals are normally distributed.
We can also compute the Jarque–Bera (JB) test of normality, as shown in
Eq. (5.12.1). In our case the JB value is 0.5594 with a p value 0.76.3 There-
fore, it seems that the error term in our example follows the normal distrib-
ution. Of course, keep in mind that the JB test is a large-sample test and our
sample of 64 observations may not be necessarily large.

8.5 TESTING THE OVERALL SIGNIFICANCE 
OF THE SAMPLE REGRESSION

Throughout the previous section we were concerned with testing the signif-
icance of the estimated partial regression coefficients individually, that is,
under the separate hypothesis that each true population partial regression
coefficient was zero. But now consider the following hypothesis:

H0: β2 = β3 = 0 (8.5.1)

This null hypothesis is a joint hypothesis that β2 and β3 are jointly or simul-
taneously equal to zero. A test of such a hypothesis is called a test of the
overall significance of the observed or estimated regression line, that is,
whether Y is linearly related to both X2 and X3.

Can the joint hypothesis in (8.5.1) be tested by testing the significance of
β̂2 and β̂3 individually as in Section 8.4? The answer is no, and the reason-
ing is as follows.

10

8

6

4

2

0
–80 –40 0 40 80

Series: Residuals
Sample 1 64
Observations 64

Mean –4.95 x 10–14

Median  0.709227
Maximum  96.80276
Minimum –84.26686
Std. dev.  41.07980
Skewness  0.227575
Kurtosis  2.948855

Jarque–Bera  0.559405
Probability  0.756009

FIGURE 8.2 Histogram of residuals from regression (8.2.1).
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4In any given sample the cov (β̂2, β̂3) may not be zero; that is, β̂2 and β̂3 may be correlated.
See (7.4.17).

5Thomas B. Fomby, R. Carter Hill, and Stanley R. Johnson, Advanced Econometric Methods,
Springer-Verlag, New York, 1984, p. 37.

In testing the individual significance of an observed partial regression
coefficient in Section 8.4, we assumed implicitly that each test of signifi-
cance was based on a different (i.e., independent) sample. Thus, in testing
the significance of β̂2 under the hypothesis that β2 = 0, it was assumed tac-
itly that the testing was based on a different sample from the one used in
testing the significance of β̂3 under the null hypothesis that β3 = 0. But to
test the joint hypothesis of (8.5.1), if we use the same sample data, we shall
be violating the assumption underlying the test procedure.4 The matter can
be put differently: In (8.4.2) we established a 95% confidence interval for
β2. But if we use the same sample data to establish a confidence interval
for β3, say, with a confidence coefficient of 95%, we cannot assert that both
β2 and β3 lie in their respective confidence intervals with a probability of
(1 − α)(1 − α) = (0.95)(0.95).

In other words, although the statements

Pr [β̂2 − tα/2 se (β̂2) ≤ β2 ≤ β̂2 + tα/2 se (β̂2)] = 1 − α

Pr [β̂3 − tα/2 se (β̂3) ≤ β3 ≤ β̂3 + tα/2 se (β̂3)] = 1 − α

are individually true, it is not true that the probability that the intervals

[β̂2 ± tα/2 se (β̂2), β̂3 ± tα/2 se (β̂3)]

simultaneously include β2 and β3 is (1 − α)2, because the intervals may not
be independent when the same data are used to derive them. To state the
matter differently,

. . . testing a series of single [individual] hypotheses is not equivalent to testing
those same hypotheses jointly. The intuitive reason for this is that in a joint test of
several hypotheses any single hypothesis is “affected’’ by the information in the
other hypotheses.5

The upshot of the preceding argument is that for a given example (sam-
ple) only one confidence interval or only one test of significance can be
obtained. How, then, does one test the simultaneous null hypothesis that
β2 = β3 = 0? The answer follows.

The Analysis of Variance Approach to Testing the Overall
Significance of an Observed Multiple Regression: The F Test

For reasons just explained, we cannot use the usual t test to test the joint
hypothesis that the true partial slope coefficients are zero simultaneously.
However, this joint hypothesis can be tested by the analysis of variance
(ANOVA) technique first introduced in Section 5.9, which can be demon-
strated as follows.
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6See K. A. Brownlee, Statistical Theory and Methodology in Science and Engineering, John
Wiley & Sons, New York, 1960, pp. 278–280.

7Ibid.

Recall the identity
∑

y2
i = β̂2

∑
yix2i + β̂3

∑
yix3i +

∑
û2

i (8.5.2)

TSS = ESS + RSS

TSS has, as usual, n − 1 df and RSS has n − 3 df for reasons already dis-
cussed. ESS has 2 df since it is a function of β̂2 and β̂3. Therefore, following
the ANOVA procedure discussed in Section 5.9, we can set up Table 8.1.

Now it can be shown6 that, under the assumption of normal distribution
for ui and the null hypothesis β2 = β3 = 0, the variable

F =
(
β̂2

∑
yix2i + β̂3

∑
yix3i

)/
2∑

û2
i

/
(n − 3)

= ESS/df
RSS/df

(8.5.3)

is distributed as the F distribution with 2 and n − 3 df.
What use can be made of the preceding F ratio? It can be proved7 that

under the assumption that the ui ∼ N(0, σ 2),

E

∑
û2

i

n − 3
= E(σ̂ 2) = σ 2 (8.5.4)

With the additional assumption that β2 = β3 = 0, it can be shown that

E
(
β̂2

∑
yix2i + β̂3

∑
yix3i

)
2

= σ 2 (8.5.5)

Therefore, if the null hypothesis is true, both (8.5.4) and (8.5.5) give identi-
cal estimates of true σ 2. This statement should not be surprising because if
there is a trivial relationship between Y and X2 and X3, the sole source of
variation in Y is due to the random forces represented by ui . If, however, the
null hypothesis is false, that is, X2 and X3 definitely influence Y, the equal-
ity between (8.5.4) and (8.5.5) will not hold. In this case, the ESS will be

TABLE 8.1 ANOVA TABLE FOR THE THREE-VARIABLE REGRESSION

Source of variation SS df MSS

Due to regression (ESS) β̂2
∑

yi x2i + β̂3
∑

yi x3i 2
β̂2

∑
yi x2i + β̂3

∑
yi x3i

2

Due to residual (RSS)
∑

û2
i n − 3 σ̂ 2 =

∑
û2

i

n − 3
Total

∑
y2

i n − 1
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relatively larger than the RSS, taking due account of their respective df.
Therefore, the F value of (8.5.3) provides a test of the null hypothesis that
the true slope coefficients are simultaneously zero. If the F value computed
from (8.5.3) exceeds the critical F value from the F table at the α percent
level of significance, we reject H0; otherwise we do not reject it. Alterna-
tively, if the p value of the observed F is sufficiently low, we can reject H0.

Table 8.2 summarizes the F test. Turning to our illustrative example, we
obtain the ANOVA table, as shown in Table 8.3.

Using (8.5.3), we obtain

F = 128,681.2
1742.88

= 73.8325 (8.5.6)

The p value of obtaining an F value of as much as 73.8325 or greater is
almost zero, leading to the rejection of the hypothesis that together PGNP
and FLR have no effect on child mortality. If you were to use the conventional
5 percent level-of-significance value, the critical F value for 2 df in the nu-
merator and 60 df in the denominator (the actual df, however, are 61) is about
3.15 or about 4.98 if you were to use the 1 percent level of significance. Obvi-
ously, the observed F of about 74 far exceeds any of these critical F values.

TABLE 8.2 A SUMMARY OF THE F STATISTIC

Null hypothesis Alternative hypothesis Critical region
H0 H1 Reject H0 if

σ 2
1 = σ 2

2 σ 2
1 > σ 2

2

S 2
1

S 2
2

> Fα,ndf,ddf

σ 2
1 = σ 2

2 σ 2
1 �= σ 2

2

S 2
1

S 2
2

> Fα/2,ndf,ddf

or < F(1−α/2),ndf,ddf

Notes:
1. σ 2

1 and σ 2
2 are the two population variances.

2. S2
1 and S2

2 are the two sample variances.
3. ndf and ddf denote, respectively, the numerator and denominator df.
4. In computing the F ratio, put the larger S 2 value in the numerator.
5. The critical F values are given in the last column. The first subscript of F is

the level of significance and the second subscript is the numerator and
denominator df.

6. Note that F(1−α/2),n df,d df = 1/Fα/2,ddf,ndf.

TABLE 8.3 ANOVA TABLE FOR THE CHILD MORTALITY EXAMPLE

Source of variation SS df MSS

Due to regression 257,362.4 2 128,681.2
Due to residuals 106,315.6 61 1742.88

Total 363,678 63
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We can generalize the preceding F-testing procedure as follows.

Testing the Overall Significance of a Multiple Regression:
The F Test

Decision Rule. Given the k-variable regression model:

Yi = β1 + β2 X2i + β3 X3i + · · · + βkXki + ui

To test the hypothesis

H0: β2 = β3 = · · · = βk = 0

(i.e., all slope coefficients are simultaneously zero) versus

H1: Not all slope coefficients are simultaneously zero

compute

F = ESS/df
RSS/df

= ESS/(k − 1)
RSS/(n − k)

(8.5.7)

If F > Fα(k − 1, n − k), reject H0; otherwise you do not reject it, where
Fα(k − 1, n − k) is the critical F value at the α level of significance and (k − 1)
numerator df and (n − k) denominator df. Alternatively, if the p value of F
obtained from (8.5.7) is sufficiently low, one can reject H0.

Needless to say, in the three-variable case (Y and X2, X3) k is 3, in the four-
variable case k is 4, and so on.

In passing, note that most regression packages routinely calculate the
F value (given in the analysis of variance table) along with the usual regres-
sion output, such as the estimated coefficients, their standard errors, t values,
etc. The null hypothesis for the t computation is usually assumed to be βi = 0.

Individual versus Joint Testing of Hypotheses. In Section 8.4 we
discussed the test of significance of a single regression coefficient and in
Section 8.5 we have discussed the joint or overall test of significance of the
estimated regression (i.e., all slope coefficients are simultaneously equal to
zero). We reiterate that these tests are different. Thus, on the basis of
the t test or confidence interval (of Section 8.4) it is possible to accept the
hypothesis that a particular slope coefficient, βk, is zero, and yet reject the
joint hypothesis that all slope coefficients are zero.

The lesson to be learned is that the joint “message’’ of individual confidence in-
tervals is no substitute for a joint confidence region [implied by the F test] in per-
forming joint tests of hypotheses and making joint confidence statements.8

8Fomby et al., op. cit., p. 42.
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An Important Relationship between R2 and F

There is an intimate relationship between the coefficient of determination
R2 and the F test used in the analysis of variance. Assuming the normal dis-
tribution for the disturbances ui and the null hypothesis that β2 = β3 = 0,
we have seen that

F = ESS/2
RSS/(n − 3)

(8.5.8)

is distributed as the F distribution with 2 and n − 3 df.
More generally, in the k-variable case (including intercept), if we assume

that the disturbances are normally distributed and that the null hypothesis is

H0: β2 = β3 = · · · = βk = 0 (8.5.9)

then it follows that

F = ESS/(k − 1)
RSS/(n − k)

(8.5.7) = (8.5.10)

follows the F distribution with k − 1 and n − k df. (Note: The total number of
parameters to be estimated is k, of which one is the intercept term.)

Let us manipulate (8.5.10) as follows:

where use is made of the definition R2 = ESS/TSS. Equation (8.5.11) shows
how F and R2 are related. These two vary directly. When R2 = 0, F is zero ipso
facto. The larger the R2, the greater the F value. In the limit, when R2 = 1,
F is infinite. Thus the F test, which is a measure of the overall significance of
the estimated regression, is also a test of significance of R2. In other words,
testing the null hypothesis (8.5.9) is equivalent to testing the null hypothesis
that (the population) R2 is zero.

(8.5.11)

F = n − k
k − 1

ESS
RSS

= n − k
k − 1

ESS
TSS − ESS

= n − k
k − 1

ESS/TSS
1 − (ESS/TSS)

= n − k
k − 1

R2

1 − R2

= R2/(k − 1)
(1 − R2)/(n − k)
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For the three-variable case (8.5.11) becomes

F = R2/2
(1 − R2)/(n − 3)

(8.5.12)

By virtue of the close connection between F and R2, the ANOVA Table 8.1
can be recast as Table 8.4.

For our illustrative example, using (8.5.12) we obtain:

F = 0.7077/2
(1 − 0.7077)/61

= 73.8726

which is about the same as obtained before, except for the rounding errors.
One advantage of the F test expressed in terms of R2 is its ease of compu-

tation: All that one needs to know is the R2 value. Therefore, the overall F
test of significance given in (8.5.7) can be recast in terms of R2 as shown in
Table 8.4.

Testing the Overall Significance of a Multiple Regression 
in Terms of R2

Decision Rule. Testing the overall significance of a regression in terms
of R2: Alternative but equivalent test to (8.5.7).

Given the k-variable regression model:

Yi = βi + β2 X2i + β3 X3i + · · · + βx Xki + ui

To test the hypothesis

H0: β2 = β3 = · · · = βk = 0
versus

H1: Not all slope coefficients are simultaneously zero

compute

F = R2/(k − 1)
(1 − R2)/(n − k)

(8.5.13)

TABLE 8.4 ANOVA TABLE IN TERMS OF R2

Source of variation SS df MSS*

Due to regression R2(
∑

y 2
i ) 2 R2(

∑
y 2

i )/2

Due to residuals (1 − R2)(
∑

y 2
i ) n − 3 (1 − R2)(

∑
y 2

i )/(n − 3)

Total
∑

y 2
i n − 1

*Note that in computing the F value there is no need to multiply R2 and (1 − R 2) by∑
y 2

i because it drops out, as shown in (8.5.12).
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If F > Fα(k−1,n−k) , reject H0; otherwise you may accept H0 where Fα(k−1,n−k) is
the critical F value at the α level of significance and (k − 1) numerator df and
(n − k) denominator df. Alternatively, if the p value of F obtained from
(8.5.13) is sufficiently low, reject H0.

Before moving on, return to Example 7.5 in Chapter 7. From regression
(7.10.7) we observe that RGDP (relative per capita GDP) and RGDP squared
explain only about 5.3 percent of the variation in GDPG (GDP growth rate)
in a sample of 119 countries. This R2 of 0.053 seems a “low” value. Is it re-
ally statistically different from zero? How do we find that out?

Recall our earlier discussion in “An Important Relationship between R2

and F” about the relationship between R2 and the F value as given in (8.5.11)
or (8.5.12) for the specific case of two regressors. As noted, if R2 is zero, then
F is zero ipso facto, which will be the case if the regressors have no impact
whatsoever on the regressand. Therefore, if we insert R2 = 0.053 into for-
mula (8.5.12), we obtain

F = 0.053/2
(1 − 0.053)/116

= 3.2475 (8.5.13)

Under the null hypothesis that R2 = 0, the preceding F value follows the
F distribution with 2 and 116 df in the numerator, respectively. (Note: There
are 119 observations and two regressors.) From the F table we see that this
F value is significant at about the 5 percent level; the p value is actually
0.0425. Therefore, we can reject the null hypothesis that the two regressors
have no impact on the regressand, notwithstanding the fact that the R2 is
only 0.053.

This example brings out an important empirical observation that in
cross-sectional data involving several observations, one generally obtains
low R2 because of the diversity of the cross-sectional units. Therefore, one
should not be surprised or worried about finding low R2’s in cross-sectional
regressions. What is relevant is that the model is correctly specified, that the
regressors have the correct (i.e., theoretically expected) signs, and that
(hopefully) the regression coefficients are statistically significant. The reader
should check that individually both the regressors in (7.10.7) are statistically
significant at the 5 percent or better level (i.e., lower than 5 percent).

The “Incremental” or “Marginal” Contribution
of an Explanatory Variable

In Chapter 7 we stated that generally we cannot allocate the R2 value among
the various regressors. In our child mortality example we found that the R2

was 0.7077 but we cannot say what part of this value is due to the regressor
PGNP and what part is due to female literacy rate (FLR) because of possible
correlation between the two regressors in the sample at hand. We can shed
more light on this using the analysis of covariance technique.
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For our illustrative example we found that individually X2 (PGNP) and X3

(FLR) were statistically significant on the basis of (separate) t tests. We have
also found that on the basis of the F test collectively both the regressors have
a significant effect on the regressand Y (child mortality).

Now suppose we introduce PGNP and FLR sequentially; that is, we first
regress child mortality on PGNP and assess its significance and then add
FLR to the model to find out whether it contributes anything (of course, the
order in which PGNP and FLR enter can be reversed). By contribution we
mean whether the addition of the variable to the model increases ESS (and
hence R2) “significantly” in relation to the RSS. This contribution may ap-
propriately be called the incremental, or marginal, contribution of an ex-
planatory variable.

The topic of incremental contribution is an important one in practice. In
most empirical investigations the researcher may not be completely sure
whether it is worth adding an X variable to the model knowing that several
other X variables are already present in the model. One does not wish to
include variable(s) that contribute very little toward ESS. By the same
token, one does not want to exclude variable(s) that substantially increase
ESS. But how does one decide whether an X variable significantly reduces
RSS? The analysis of variance technique can be easily extended to answer
this question.

Suppose we first regress child mortality on PGNP and obtain the follow-
ing regression:

ĈMi = 157.4244 − 0.0114 PGNP (8.5.14)

t = (15.9894) (−3.5156) r2 = 0.1662

p value = (0.0000) (0.0008) adj r2 = 0.1528

As these results show, PGNP has a significant effect on CM. The ANOVA
table corresponding to the preceding regression is given in Table 8.5.

Assuming the disturbances ui are normally distributed and the hypothe-
sis that PGNP has no effect on CM, we obtain the F value of

F = 60,449.5
4890.7822

= 12.3598 (8.5.15)

TABLE 8.5 ANOVA TABLE FOR REGRESSION (8.5.14)

Source of variation SS df MSS

ESS (due to PGNP) 60,449.5 1 604,495.1
RSS 303,228.5 62 4890.7822

Total 363,678 63
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which follows the F distribution with 1 and 62 df. This F value is highly
significant, as the computed p value is 0.0008. Thus, as before, we reject
the hypothesis that PGNP has no effect on CM. Incidentally, note that t2 =
(−3.5156)2 = 12.3594, which is approximately the same as the F value of
(8.5.15), where the t value is obtained from (8.5.14). But this should not be
surprising in view of the fact that the square of the t statistic with n df is equal
to the F value with 1 df in the numerator and n df in the denominator, a rela-
tionship first established in Chapter 5. Note that in the present example,
n = 64.

Having run the regression (8.5.14), let us suppose we decide to add FLR
to the model and obtain the multiple regression (8.2.1). The questions we
want to answer are:

1. What is the marginal, or incremental, contribution of FLR, knowing
that PGNP is already in the model and that it is significantly related to CM?

2. Is the incremental contribution of FLR statistically significant?
3. What is the criterion for adding variables to the model?

The preceding questions can be answered by the ANOVA technique. To see
this, let us construct Table 8.6. In this table X2 refers to PGNP and X3 refers
to FLR.

To assess the incremental contribution of X3 after allowing for the contri-
bution of X2, we form

(8.5.16)

F = Q2/df
Q4/df

= ESSnew − ESSold/number of new regressors
RSSnew/df ( = n − number of parameters in the new model)

= Q2/1
Q4/12

for our example

TABLE 8.6 ANOVA TABLE TO ASSESS INCREMENTAL CONTRIBUTION OF A VARIABLE(S)

Source of variation SS df MSS

ESS due to X2 alone Q1 = β̂2
1 2

∑
x2

2 1
Q1

1

ESS due to the addition of X3 Q2 = Q3 − Q1 1
Q2

1

ESS due to both X2, X3 Q3 = β̂2
∑

yi x2i + β̂3
∑

yi x3i 2
Q3

2

RSS Q4 = Q5 − Q3 n − 3
Q4

n − 3

Total Q5 = ∑
y2

i n − 1
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where ESSnew = ESS under the new model (i.e., after adding the new re-
gressors = Q3), ESSold = ESS under the old model ( = Q1) and RSSnew =
RSS under the new model (i.e., after taking into account all the regressors =
Q4). For our illustrative example the results are as shown in Table 8.7.

Now applying (8.5.16), we obtain:

F = 196,912.9
1742.8786

= 112.9814 (8.5.17)

Under the usual assumptions, this F value follows the F distribution with 1
and 62 df. The reader should check that this F value is highly significant,
suggesting that addition of FLR to the model significantly increases ESS
and hence the R2 value. Therefore, FLR should be added to the model.
Again, note that if you square the value of the FLR coefficient in the multi-
ple regression (8.2.1), which is (−10.6293)2, you will obtain the F value of
(8.5.17), save for the rounding errors.

Incidentally, the F ratio of (8.5.16) can be recast by using the R2 values
only, as we did in (8.5.13). As exercise 8.2 shows, the F ratio of (8.5.16) is
equivalent to the following F ratio:9

(8.5.18)

This F ratio follows the F distribution with the appropriate numerator and
denominator df, 1 and 61 in our illustrative example.

For our example, R2
new = 0.7077 [from Eq. (8.2.1)] and R2

old = 0.1662 [from
Eq. (8.5.14)]. Therefore,

F = (0.7077 − 0.1662)/1
(1 − 0.7077)/61

= 113.05 (8.5.19)

F =
(
R2

new − R2
old

)/
df(

1 − R2
new

)/
df

=
(
R2

new − R2
old

)/
number of new regressors(

1 − R2
new

)/
df ( = n − number of parameters in the new model)

9The following F test is a special case of the more general F test given in (8.7.9) or (8.7.10)
in Sec. 8.7.

TABLE 8.7 ANOVA TABLE FOR THE ILLUSTRATIVE EXAMPLE: INCREMENTAL ANALYSIS

Source of variation SS df MSS

ESS due to PGNP 60,449.5 1 60,449.5
ESS due to the addition of FLR 196,912.9 1 196,912.9
ESS due to PGNP and FLR 257,362.4 2 128,681.2
RSS 106,315.6 61 1742.8786

Total 363,678 63



Gujarati: Basic 
Econometrics, Fourth 
Edition

I. Single−Equation 
Regression Models

8. Multiple Regression 
Analysis: The Problem of 
Inference

© The McGraw−Hill 
Companies, 2004

264 PART ONE: SINGLE-EQUATION REGRESSION MODELS

which is about the same as that obtained from (8.5.17), except for the
rounding errors. This F is highly significant, reinforcing our earlier finding
that the variable FLR belongs in the model.

A cautionary note: If you use the R2 version of the F test given in (8.5.11),
make sure that the dependent variable in the new and the old models is the
same. If they are different, use the F test given in (8.5.16).

When to Add a New Variable. The F-test procedure just outlined pro-
vides a formal method of deciding whether a variable should be added to a
regression model. Often researchers are faced with the task of choosing from
several competing models involving the same dependent variable but
with different explanatory variables. As a matter of ad hoc choice (because
very often the theoretical foundation of the analysis is weak), these re-
searchers frequently choose the model that gives the highest adjusted R2.
Therefore, if the inclusion of a variable increases R̄2, it is retained in the
model although it does not reduce RSS significantly in the statistical sense.
The question then becomes: When does the adjusted R2 increase? It can be
shown that R̄2 will increase if the t value of the coefficient of the newly added
variable is larger than 1 in absolute value, where the t value is computed
under the hypothesis that the population value of the said coefficient is zero
[i.e., the t value computed from (5.3.2) under the hypothesis that the true β

value is zero].10 The preceding criterion can also be stated differently: R̄2 will
increase with the addition of an extra explanatory variable only if the F( = t2)
value of that variable exceeds 1.

Applying either criterion, the FLR variable in our child mortality example
with a t value of −10.6293 or an F value of 112.9814 should increase R̄2,
which indeed it does—when FLR is added to the model, R̄2 increases from
0.1528 to 0.6981.

When to Add a Group of Variables. Can we develop a similar rule for
deciding whether it is worth adding (or dropping) a group of variables from
a model? The answer should be apparent from (8.5.18): If adding (dropping)
a group of variables to the model gives an F value greater (less) than 1, R2 will
increase (decrease). Of course, from (8.5.18) one can easily find out whether
the addition (subtraction) of a group of variables significantly increases
(decreases) the explanatory power of a regression model.

8.6 TESTING THE EQUALITY OF TWO REGRESSION COEFFICIENTS

Suppose in the multiple regression

Yi = β1 + β2 X2i + β3 X3i + β4 X4i + ui (8.6.1)

10For proof, see Dennis J. Aigner, Basic Econometrics, Prentice Hall, Englewood Cliffs, N.J.,
1971, pp. 91–92.
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we want to test the hypotheses

H0: β3 = β4 or (β3 − β4) = 0

H1: β3 �= β4 or (β3 − β4) �= 0
(8.6.2)

that is, the two slope coefficients β3 and β4 are equal.
Such a null hypothesis is of practical importance. For example, let (8.6.1)

represent the demand function for a commodity where Y = amount of a
commodity demanded, X2 = price of the commodity, X3 = income of the
consumer, and X4 = wealth of the consumer. The null hypothesis in this case
means that the income and wealth coefficients are the same. Or, if Yi and the
X’s are expressed in logarithmic form, the null hypothesis in (8.6.2) implies
that the income and wealth elasticities of consumption are the same. (Why?)

How do we test such a null hypothesis? Under the classical assumptions,
it can be shown that

(8.6.3)

follows the t distribution with (n − 4) df because (8.6.1) is a four-variable
model or, more generally, with (n − k) df, where k is the total number of pa-
rameters estimated, including the constant term. The se (β̂3 − β̂4) is obtained
from the following well-known formula (see Appendix A for details):

(8.6.4)

If we substitute the null hypothesis and the expression for the se (β̂3 − β̂4)
into (8.6.3), our test statistic becomes

t = β̂3 − β̂4√
var (β̂3) + var (β̂4) − 2 cov (β̂3, β̂4)

(8.6.5)

Now the testing procedure involves the following steps:

1. Estimate β̂3 and β̂4. Any standard computer package can do that.
2. Most standard computer packages routinely compute the variances

and covariances of the estimated parameters.11 From these estimates the
standard error in the denominator of (8.6.5) can be easily obtained.

3. Obtain the t ratio from (8.6.5). Note the null hypothesis in the present
case is (β3 − β4) = 0.

4. If the t variable computed from (8.6.5) exceeds the critical t value at
the designated level of significance for given df, then you can reject the null
hypothesis; otherwise, you do not reject it. Alternatively, if the p value of the

se (β̂3 − β̂4) =
√

var (β̂3) + var (β̂4) − 2 cov (β̂3, β̂4)

t = (β̂3 − β̂4) − (β3 − β4)

se (β̂3 − β̂4)

11The algebraic expression for the covariance formula is rather involved. Appendix C pro-
vides a compact expression for it, however, using matrix notation.
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t statistic from (8.6.5) is reasonably low, one can reject the null hypothesis.
Note that the lower the p value, the greater the evidence against the null hy-
pothesis. Therefore, when we say that a p value is low or reasonably low, we
mean that it is less than the significance level, such as 10, 5, or 1 percent.
Some personal judgment is involved in this decision.

EXAMPLE 8.2

THE CUBIC COST FUNCTION REVISITED

Recall the cubic total cost function estimated in Section 7.10, which for convenience is re-
produced below:

Ŷi = 141.7667 + 63.4777Xi − 12.9615X 2
i + 0.9396Xi

3

se = (6.3753) (4.7786) (0.9857) (0.0591) (7.10.6)

cov (β̂3, β̂4) = −0.0576; R2 = 0.9983

where Y is total cost and X is output, and where the figures in parentheses are the estimated
standard errors.

Suppose we want to test the hypothesis that the coefficients of the X 2 and X 3 terms in the
cubic cost function are the same, that is, β3 = β4 or (β3 − β4) = 0. In the regression (7.10.6)
we have all the necessary output to conduct the t test of (8.6.5). The actual mechanics are
as follows:

t = β̂3 − β̂4√
var (β̂3) + var (β̂4) − 2 cov (β̂3, β̂4)

= −12.9615 − 0.9396√
(0.9867)2 + (0.0591)2 − 2(−0.0576) (8.6.6)

= −13.9011
1.0442

= −13.3130

The reader can verify that for 6 df (why?) the observed t value exceeds the critical t value
even at the 0.002 (or 0.2 percent) level of significance (two-tail test); the p value is extremely
small, 0.000006. Hence we can reject the hypothesis that the coefficients of X 2 and X 3 in the
cubic cost function are identical.

8.7 RESTRICTED LEAST SQUARES: TESTING LINEAR
EQUALITY RESTRICTIONS

There are occasions where economic theory may suggest that the coefficients
in a regression model satisfy some linear equality restrictions. For instance,
consider the Cobb–Douglas production function:

Yi = β1 Xβ2
2i Xβ3

3i eui (7.9.1) = (8.7.1)

where Y = output, X2 = labor input, and X3 = capital input. Written in log
form, the equation becomes

ln Yi = β0 + β2 ln X2i + β3 ln X3i + ui (8.7.2)

where β0 = ln β1.
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Now if there are constant returns to scale (equiproportional change in
output for an equiproportional change in the inputs), economic theory
would suggest that

β2 + β3 = 1 (8.7.3)

which is an example of a linear equality restriction.12

How does one find out if there are constant returns to scale, that is, if the
restriction (8.7.3) is valid? There are two approaches.

The t-Test Approach

The simplest procedure is to estimate (8.7.2) in the usual manner without
taking into account the restriction (8.7.3) explicitly. This is called the unre-
stricted or unconstrained regression. Having estimated β2 and β3 (say, by
OLS method), a test of the hypothesis or restriction (8.7.3) can be con-
ducted by the t test of (8.6.3), namely,

t = (β̂2 + β̂3) − (β2 + β3)

se (β̂2 + β̂3)

= (β̂2 + β̂3) − 1√
var (β̂2) + var (β̂3) + 2 cov (β̂2β̂3)

(8.7.4)

where (β2 + β3) = 1 under the null hypothesis and where the denominator is
the standard error of (β̂2 + β̂3). Then following Section 8.6, if the t value
computed from (8.7.4) exceeds the critical t value at the chosen level of sig-
nificance, we reject the hypothesis of constant returns to scale; otherwise we
do not reject it.

The F-Test Approach: Restricted Least Squares

The preceding t test is a kind of postmortem examination because we try to
find out whether the linear restriction is satisfied after estimating the “unre-
stricted’’ regression. A direct approach would be to incorporate the restric-
tion (8.7.3) into the estimating procedure at the outset. In the present ex-
ample, this procedure can be done easily. From (8.7.3) we see that

β2 = 1 − β3 (8.7.5)
or

β3 = 1 − β2 (8.7.6)

Therefore, using either of these equalities, we can eliminate one of the β co-
efficients in (8.7.2) and estimate the resulting equation. Thus, if we use
(8.7.5), we can write the Cobb–Douglas production function as

ln Yi = β0 + (1 − β3) ln X2i + β3 ln X3i + ui

= β0 + ln X2i + β3(ln X3i − ln X2i) + ui

12If we had β2 + β3 < 1, this relation would be an example of a linear inequality restriction.
To handle such restrictions, one needs to use mathematical programming techniques.
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or

(ln Yi − ln X2i) = β0 + β3(ln X3i − ln X2i) + ui (8.7.7)

or

ln (Yi/X2i) = β0 + β3 ln (X3i/X2i) + ui (8.7.8)

where (Yi/X2i) = output/labor ratio and (X3i/X2i) = capital labor ratio, quan-
tities of great economic importance.

Notice how the original equation (8.7.2) is transformed. Once we esti-
mate β3 from (8.7.7) or (8.7.8), β2 can be easily estimated from the relation
(8.7.5). Needless to say, this procedure will guarantee that the sum of the
estimated coefficients of the two inputs will equal 1. The procedure outlined
in (8.7.7) or (8.7.8) is known as restricted least squares (RLS). This pro-
cedure can be generalized to models containing any number of explanatory
variables and more than one linear equality restriction. The generalization
can be found in Theil.13 (See also general F testing below.)

How do we compare the unrestricted and restricted least-squares regres-
sions? In other words, how do we know that, say, the restriction (8.7.3) is
valid? This question can be answered by applying the F test as follows. Let∑

û2
UR = RSS of the unrestricted regression (8.7.2)∑
û2

R = RSS of the restricted regression (8.7.7)
m= number of linear restrictions (1 in the present example)
k = number of parameters in the unrestricted regression
n = number of observations

Then,

follows the F distribution with m, (n − k) df. (Note: UR and R stand for un-
restricted and restricted, respectively.)

The F test above can also be expressed in terms of R2 as follows:

(8.7.10)

where R2
UR and R2

R are, respectively, the R2 values obtained from the unre-
stricted and restricted regressions, that is, from the regressions (8.7.2) and

F =
(
R2

UR − R2
R

)/
m(

1 − R2
UR

)/
(n − k)

(8.7.9)

F = (RSSR − RSSUR)/m
RSSUR/(n − k)

=
(∑

û2
R − ∑

û2
UR

)/
m∑

û2
UR

/
(n − k)

13Henri Theil, Principles of Econometrics, John Wiley & Sons, New York, 1971, pp. 43–45.
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(8.7.7). It should be noted that

R2
UR ≥ R2

R (8.7.11)

and
∑

û2
UR ≤

∑
û2

R (8.7.12)

In exercise 8.4 you are asked to justify these statements.

A Cautionary Note: In using (8.7.10) keep in mind that if the dependent
variable in the restricted and unrestricted models is not the same, R2

UR and
R2

R are not directly comparable. In that case, use the procedure described in
Chapter 7 to render the two R2 values comparable (see Example 8.3 below)
or use the F test given in (8.7.9).

EXAMPLE 8.3

THE COBB–DOUGLAS PRODUCTION FUNCTION FOR 
THE MEXICAN ECONOMY, 1955–1974

By way of illustrating the preceding discussion consider the data given in Table 8.8. Attempt-
ing to fit the Cobb–Douglas production function to these data, yielded the following results:

l̂n GDPt = −1.6524 + 0.3397 ln Labort + 0.8460 ln Capitalt (8.7.13)

t = (−2.7259) (1.8295) (9.0625)

p value = (0.0144) (0.0849) (0.0000)

R2 = 0.9951 RSSUR = 0.0136

where RSSUR is the unrestricted RSS, as we have put no restrictions on estimating (8.7.13).
We have already seen in Chapter 7 how to interpret the coefficients of the Cobb–

Douglas production function. As you can see, the output/labor elasticity is about 0.34 and
the output/capital elasticity is about 0.85. If we add these coefficients, we obtain 1.19, sug-
gesting that perhaps the Mexican economy during the stated time period was experienc-
ing increasing returns to scale. Of course, we do not know if 1.19 is statistically different
from 1.

To see if that is the case, let us impose the restriction of constant returns to scale,
which gives the following regression:

l̂n (GDP/Labor)t = −0.4947 + 1.0153 ln (Capital/Labor)t (8.7.14)

t = (−4.0612) (28.1056)

p value = (0.0007) (0.0000)

R2
R = 0.9777 RSSR = 0.0166

where RSSR is the restricted RSS, for we have imposed the restriction that there are constant
returns to scale.

(Continued)
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Since the dependent variable in the preceding two regressions is different, we have to use
the F test given in (8.7.9). We have the necessary data to obtain the F value.

F = (RSSR − RSSUR)/m
RSSUR/(n − k)

= (0.0166 − 0.0136)/1
(0.0136)/(20 − 3)

= 3.75

Note in the present case m = 1, as we have imposed only one restriction and (n − k) is 17,
since we have 20 observations and three parameters in the unrestricted regression.

This F value follows the F distribution with 1 df in the numerator and 17 df in the denomi-
nator. The reader can easily check that this F value is not significant at the 5% level. (See Ap-
pendix D, Table D.3.)

The conclusion then is that the Mexican economy was probably characterized by con-
stant returns to scale over the sample period and therefore there may be no harm in using
the restricted regression given in (8.7.14). As this regression shows, if capital/labor ratio in-
creased by 1 percent, on average, labor productivity went up by about 1 percent.

TABLE 8.8
REAL GDP, EMPLOYMENT, AND REAL FIXED CAPITAL—MEXICO

Year GDP* Employment† Fixed capital‡

1955 114043 8310 182113
1956 120410 8529 193749
1957 129187 8738 205192
1958 134705 8952 215130
1959 139960 9171 225021
1960 150511 9569 237026
1961 157897 9527 248897
1962 165286 9662 260661
1963 178491 10334 275466
1964 199457 10981 295378
1965 212323 11746 315715
1966 226977 11521 337642
1967 241194 11540 363599
1968 260881 12066 391847
1969 277498 12297 422382
1970 296530 12955 455049
1971 306712 13338 484677
1972 329030 13738 520553
1973 354057 15924 561531
1974 374977 14154 609825

*Millions of 1960 pesos; 
†Thousands of people;
‡Millions of 1960 pesos.
Source: Victor J. Elias, Sources of Growth: A Study of Seven Latin

American Economies, International Center for Economic Growth, ICS Press,
San Francisco, 1992. Data from Tables E5, E12, and E14.

EXAMPLE 9.3 (Continued)
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General F Testing14

The F test given in (8.7.10) or its equivalent (8.7.9) provides a general
method of testing hypotheses about one or more parameters of the k-
variable regression model:

Yi = β1 + β2 X2i + β3 X3i + · · · + βkXki + ui (8.7.15)

The F test of (8.5.16) or the t test of (8.6.3) is but a specific application of
(8.7.10). Thus, hypotheses such as

H0: β2 = β3 (8.7.16)

H0: β3 + β4 + β5 = 3 (8.7.17)

which involve some linear restrictions on the parameters of the k-variable
model, or hypotheses such as

H0: β3 = β4 = β5 = β6 = 0 (8.7.18)

which imply that some regressors are absent from the model, can all be
tested by the F test of (8.7.10).

From the discussion in Sections 8.5 and 8.7, the reader will have noticed
that the general strategy of F testing is this: There is a larger model, the
unconstrained model (8.7.15), and then there is a smaller model, the con-
strained or restricted model, which is obtained from the larger model by
deleting some variables from it, e.g., (8.7.18), or by putting some linear re-
strictions on one or more coefficients of the larger model, e.g., (8.7.16) or
(8.7.17).

We then fit the unconstrained and constrained models to the data and
obtain the respective coefficients of determination, namely, R2

UR and R2
R. We

note the df in the unconstrained model ( = n − k) and also note the df in the
constrained model ( = m), m being the number of linear restriction [e.g., 1
in (8.7.16) or (8.7.18)] or the number of regressors omitted from the model
[e.g., m= 4 if (8.7.18) holds, since four regressors are assumed to be absent
from the model]. We then compute the F ratio as indicated in (8.7.9) or
(8.7.10) and use this Decision Rule: If the computed F exceeds Fα(m, n − k),
where Fα(m, n − k) is the critical F at the α level of significance, we reject the
null hypothesis: otherwise we do not reject it.

214If one is using the maximum likelihood approach to estimation, then a test similar to
the one discussed shortly is the likelihood ratio test, which is slightly involved and is there-
fore discussed in the appendix to the chapter. For further discussion, see Theil, op. cit.,
pp. 179–184.
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Let us illustrate:

EXAMPLE 8.4

THE DEMAND FOR CHICKEN IN THE UNITED STATES, 1960–1982

In exercise 7.19, among other things, you were asked to consider the following demand func-
tion for chicken:

lnYt = β1 + β2 ln X2t + β3 ln X3t + β4 ln X4t + β5 ln X5t + ui (8.7.19)

where Y = per capita consumption of chicken, lb, X2 = real disposable per capita income, 
$, X3 = real retail price of chicken per lb, ¢, X4 = real retail price of pork per lb, ¢, and X5 =
real retail price of beef per lb, ¢.

In this model β2, β3, β4, and β5 are, respectively, the income, own-price, cross-price (pork),
and cross-price (beef) elasticities. (Why?) According to economic theory,

β2 > 0

β3 < 0

β4 > 0, if chicken and pork are competing products

< 0, if chicken and pork are complementary products (8.7.20)

= 0, if chicken and pork are unrelated products

β5 > 0, if chicken and beef are competing products

< 0, if they are complementary products

= 0, if they are unrelated products

Suppose someone maintains that chicken and pork and beef are unrelated products in
the sense that chicken consumption is not affected by the prices of pork and beef. In short,

H0: β4 = β5 = 0 (8.7.21)

Therefore, the constrained regression becomes

lnYt = β1 + β2 ln X2t + β3 ln X3t + ut (8.7.22)

Equation (8.7.19) is of course the unconstrained regression.
Using the data given in exercise 7.19, we obtain the following:

Unconstrained regression

l̂nYt = 2.1898 + 0.3425 ln X2t − 0.5046 ln X3t + 0.1485 ln X4t + 0.0911 ln X5t

(0.1557) (0.0833) (0.1109) (0.0997) (0.1007)

R2
UR = 0.9823 (8.7.23)

Constrained regression

l̂nYt = 2.0328 + 0.4515 ln X2t − 0.3772 ln X3t

(0.1162) (0.0247) (0.0635) (8.7.24)

R 2
R = 0.9801

(Continued)
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where the figures in parentheses are the estimated standard errors. Note: The R 2 values of
(8.7.23) and (8.7.24) are comparable since the dependent variable in the two models is the
same.

Now the F ratio to test the hypothesis (8.7.21) is

F =
(
R2

UR − R2
R

)
/m(

1 − R2
UR

)
/(n − k)

(8.7.10)

The value of m in the present case is 2, since there are two restrictions involved: β4 = 0 and
β5 = 0. The denominator df, (n − k), is 18, since n = 23 and k = 5 (5 β coefficients).

Therefore, the F ratio is

F = (0.9823 − 0.9801)/2
(1 − 0.9823)/18

= 1.1224

(8.7.25)

which has the F distribution with 2 and 18 df.
At 5 percent, clearly this F value is not statistically significant [F0.5 (2,18) = 3.55]. The

p value is 0.3472. Therefore, there is no reason to reject the null hypothesis—the demand for
chicken does not depend on pork and beef prices. In short, we can accept the constrained
regression (8.7.24) as representing the demand function for chicken.

Notice that the demand function satisfies a priori economic expectations in that the own-
price elasticity is negative and that the income elasticity is positive. However, the estimated
price elasticity, in absolute value, is statistically less than unity, implying that the demand for
chicken is price inelastic. (Why?) Also, the income elasticity, although positive, is also statis-
tically less than unity, suggesting that chicken is not a luxury item; by convention, an item is
said to be a luxury item if its income elasticity is greater than one.

8.8 TESTING FOR STRUCTURAL OR PARAMETER STABILITY
OF REGRESSION MODELS: THE CHOW TEST

When we use a regression model involving time series data, it may happen
that there is a structural change in the relationship between the regressand
Y and the regressors. By structural change, we mean that the values of the
parameters of the model do not remain the same through the entire time
period. Sometime the structural change may be due to external forces (e.g.,
the oil embargoes imposed by the OPEC oil cartel in 1973 and 1979 or the
Gulf War of 1990–1991), or due to policy changes (such as the switch from
a fixed exchange-rate system to a flexible exchange-rate system around
1973) or action taken by Congress (e.g., the tax changes initiated by Presi-
dent Reagan in his two terms in office or changes in the minimum wage
rate) or to a variety of other causes.

How do we find out that a structural change has in fact occurred? To be
specific, consider the data given in Table 8.9. This table gives data on dis-
posable personal income and personal savings, in billions of dollars, for the
United States for the period 1970–1995. Suppose we want to estimate a

EXAMPLE 8.4 (Continued)
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simple savings function that relates savings (Y) to disposable personal in-
come DPI (X). Since we have the data, we can obtain an OLS regression of
Y on X. But if we do that, we are maintaining that the relationship between
savings and DPI has not changed much over the span of 26 years. That may
be a tall assumption. For example, it is well known that in 1982 the United
States suffered its worst peacetime recession. The civilian unemployment
rate that year reached 9.7 percent, the highest since 1948. An event such as
this might disturb the relationship between savings and DPI. To see if this
happened, let us divide our sample data into two time periods: 1970–1981
and 1982–1995, the pre- and post-1982 recession periods.

Now we have three possible regressions:

Time period 1970–1981: Yt = λ1 + λ2 Xt + u1t n1 = 12 (8.8.1)

Time period 1982–1995: Yt = γ1 + γ2 Xt + u2t n2 = 14 (8.8.2)

Time period 1970–1995: Yt = α1 + α2 Xt + ut n = (n1 + n2) = 26 (8.8.3)

Regression (8.8.3) assumes that there is no difference between the two time
periods and therefore estimates the relationship between savings and DPI
for the entire time period consisting of 26 observations. In other words, this
regression assumes that the intercept as well as the slope coefficient re-
mains the same over the entire period; that is, there is no structural change.
If this is in fact the situation, then α1 = λ1 = γ1 and α2 = λ2 = γ2.

Regressions (8.8.1) and (8.8.2) assume that the regressions in the two
time periods are different; that is, the intercept and the slope coefficients are
different, as indicated by the subscripted parameters. In the preceding re-
gressions, the u’s represent the error terms and the n’s represent the number
of observations.

TABLE 8.9 SAVINGS AND PERSONAL DISPOSABLE INCOME (BILLIONS OF DOLLARS), UNITED
STATES, 1970–1995

Observation Savings Income Observation Savings Income

1970 61.0 727.1 1983 167.0 2522.4
1971 68.6 790.2 1984 235.7 2810.0
1972 63.6 855.3 1985 206.2 3002.0
1973 89.6 965.0 1986 196.5 3187.6
1974 97.6 1054.2 1987 168.4 3363.1
1975 104.4 1159.2 1988 189.1 3640.8
1976 96.4 1273.0 1989 187.8 3894.5
1977 92.5 1401.4 1990 208.7 4166.8
1978 112.6 1580.1 1991 246.4 4343.7
1979 130.1 1769.5 1992 272.6 4613.7
1980 161.8 1973.3 1993 214.4 4790.2
1981 199.1 2200.2 1994 189.4 5021.7
1982 205.5 2347.3 1995 249.3 5320.8

Source: Economic Report of the President, 1997, Table B-28, p. 332.
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For the data given in Table 8.9, the empirical counterparts of the preced-
ing three regressions are as follows:

Ŷt = 1.0161 + 0.0803 Xt

t = (0.0873) (9.6015) (8.8.1a)

R2 = 0.9021 RSS1 = 1785.032 df = 10

Ŷt = 153.4947 + 0.0148Xt

t = (4.6922) (1.7707) (8.8.2a)

R2 = 0.2971 RSS2 = 10,005.22 df = 12

Ŷt = 62.4226 + 0.0376 Xt + · · ·
t = (4.8917) (8.8937) + · · · (8.8.3a)

R2 = 0.7672 RSS3 = 23,248.30 df = 24

In the preceding regressions, RSS denotes the residual sum of squares, and
the figures in parentheses are the estimated t values.

A look at the estimated regressions suggests that the relationship between
savings and DPI is not the same in the two subperiods. The slope in the pre-
ceding savings-income regressions represents the marginal propensity to
save (MPS), that is, the (mean) change in savings as a result of a dollar’s in-
crease in disposable personal income. In the period 1970–1981 the MPS was
about 0.08, whereas in the period 1982–1995 it was about 0.02. Whether this
change was due to the economic policies pursued by President Reagan is
hard to say. This further suggests that the pooled regression (8.8.3a)—that
is, the one that pools all the 26 observations and runs a common regression,
disregarding possible differences in the two subperiods may not be appro-
priate. Of course, the preceding statements need to be supported by appro-
priate statistical test(s). Incidentally, the scattergrams and the estimated re-
gression lines are as shown in Figure 8.3.

Now the possible differences, that is, structural changes, may be caused by
differences in the intercept or the slope coefficient or both. How do we find
that out? A visual feeling about this can be obtained as shown in Figure 8.2.
But it would be useful to have a formal test.

This is where the Chow test comes in handy.15 This test assumes that:

1. u1t ∼ N(0, σ 2) and u2t ∼ N(0, σ 2). That is, the error terms in the sub-
period regressions are normally distributed with the same (homoscedastic)
variance σ 2.

15Gregory C. Chow, “Tests of Equality Between Sets of Coefficients in Two Linear Regres-
sions,” Econometrica, vol. 28, no. 3, 1960, pp. 591–605.
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2. The two error terms u1t and u2t are independently distributed. 

The mechanics of the Chow test are as follows:

1. Estimate regression (8.8.3), which is appropriate if there is no para-
meter instability, and obtain RSS3 with df = (n1 + n2 − k), where k is the
number of parameters estimated, 2 in the present case. For our example
RSS3 = 23,248.30. We call RSS3 the restricted residual sum of squares
(RSSR) because it is obtained by imposing the restrictions that λ1 = γ1 and
λ2 = γ2, that is, the subperiod regressions are not different.

2. Estimate (8.8.1) and obtain its residual sum of squares, RSS1, with
df = (n1 − k). In our example, RSS1 = 1785.032 and df = 10.

3. Estimate (8.8.2) and obtain its residual sum of squares, RSS2, with
df = (n2 − k). In our example, RSS2 = 10,005.22 with df = 12.

4. Since the two sets of samples are deemed independent, we can add
RSS1 and RSS2 to obtain what may be called the unrestricted residual
sum of squares (RSSUR), that is, obtain:

RSSUR = RSS1 + RSS2 with df = (n1 + n2 − 2k)

In the present case,

RSSUR = (1785.032 + 10,005.22) = 11,790.252

5. Now the idea behind the Chow test is that if in fact there is no struc-
tural change [i.e., regressions (8.8.1) and (8.8.2) are essentially the same],
then the RSSR and RSSUR should not be statistically different. Therefore, if
we form the following ratio:

F = (RSSR − RSSUR)/k
(RSSUR)/(n1 + n2 − 2k)

∼ F[k,(n1+n2−2k)] (8.8.4)
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then Chow has shown that under the null hypothesis the regressions (8.8.1)
and (8.8.2) are (statistically) the same (i.e., no structural change or break)
and the F ratio given above follows the F distribution with k and
(n1 + n2 − 2k) df in the numerator and denominator, respectively.

6. Therefore, we do not reject the null hypothesis of parameter stability
(i.e., no structural change) if the computed F value in an application does
not exceed the critical F value obtained from the F table at the chosen level
of significance (or the p value). In this case we may be justified in using the
pooled (restricted?) regression (8.8.3). Contrarily, if the computed F value
exceeds the critical F value, we reject the hypothesis of parameter stability
and conclude that the regressions (8.8.1) and (8.8.2) are different, in which
case the pooled regression (8.8.3) is of dubious value, to say the least.

Returning to our example, we find that

F = (23,248.30 − 11,790.252)/2
(11,790.252)/22

= 10.69
(8.8.5)

From the F tables, we find that for 2 and 22 df the 1 percent critical F value
is 5.72. Therefore, the probability of obtaining an F value of as much as or
greater than 10.69 is much smaller than 1 percent; actually the p value is
only 0.00057.

The Chow test therefore seems to support our earlier hunch that the
savings–income relation has undergone a structural change in the United
States over the period 1970–1995, assuming that the assumptions underly-
ing the test are fulfilled. We will have more to say about this shortly.

Incidentally, note that the Chow test can be easily generalized to handle
cases of more than one structural break. For example, if we believe that the
savings–income relation changed after President Clinton took office in
January 1992, we could divide our sample into three periods: 1970–1981,
1982–1991, 1992–1995, and carry out the Chow test. Of course, we will have
four RSS terms, one for each subperiod and one for the pooled data. But the
logic of the test remains the same. Data through 2001 are now available to
extend the last period to 2001.

There are some caveats about the Chow test that must be kept in mind:

1. The assumptions underlying the test must be fulfilled. For example,
one should find out if the error variances in the regressions (8.8.1) and
(8.8.2) are the same. We will discuss this point shortly.

2. The Chow test will tell us only if the two regressions (8.8.1) and
(8.8.2) are different, without telling us whether the difference is on account
of the intercepts, or the slopes, or both. But in Chapter 9, on dummy vari-
ables, we will see how we can answer this question.

3. The Chow test assumes that we know the point(s) of structural break.
In our example, we assumed it to be in 1982. However, if it is not possible to
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determine when the structural change actually took place, we may have to
use other methods.16

Before we leave the Chow test and our savings–income regression, let us
examine one of the assumptions underlying the Chow test, namely, that the
error variances in the two periods are the same. Since we cannot observe
the true error variances, we can obtain their estimates from the RSS given
in the regressions (8.8.1a) and (8.8.2a), namely,

σ̂ 2
1 = RSS1

n1 − 2
= 1785.032

10
= 178.5032 (8.8.6)

σ̂ 2
2 = RSS2

n2 − 2
= 10,005.22

14 − 2
= 833.7683 (8.8.7)

Notice that, since there are two parameters estimated in each equation, we
deduct 2 from the number of observations to obtain the df. Given the as-
sumptions underlying the Chow test, σ̂ 2

1 and σ̂ 2
2 are unbiased estimators of

the true variances in the two subperiods. As a result, it can be shown that if
σ 2

1 = σ 2
2 —that is, the variances in the two subpopulations are the same (as

assumed by the Chow test)—then it can be shown that
(
σ̂ 2

1

/
σ 2

1

)
(
σ̂ 2

1

/
σ 2

2

) ∼ F(n1−k),(n2−k) (8.8.8)

follows the F distribution with (n1 − k) and (n2 − k) df in the numerator and
the denominator, respectively, in our example k = 2, since there are only two
parameters in each subregression.

Of course, σ 2
1 = σ 2

2 , the preceding F test reduces to computing

F = σ̂ 2
1

σ̂ 2
2

(8.8.9)

Note: By convention we put the larger of the two estimated variances in the
numerator. (See Appendix A for the details of the F and other probability
distributions.)

Computing this F in an application and comparing it with the critical F
value with the appropriate df, one can decide to reject or not reject the null
hypothesis that the variances in the two subpopulations are the same. If the
null hypothesis is not rejected, then one can use the Chow test.

Returning to our savings–income regression, we obtain the following
result:

F = 833.7683
178.5032

= 4.6701 (8.8.10)

16For a detailed discussion, see William H. Greene, Econometric Analysis, 4th ed., Prentice
Hall, Englewood Cliffs, N.J., 2000, pp. 293–297.
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Under the null hypothesis of equality of variances in the two sub-
populations, this F value follows the F distribution with 12 and 10 df, in the
numerator and denominator, respectively. (Note: We have put the larger of
the two estimated variances in the numerator.) From the F tables in Appen-
dix D, we see that the 5 and 1 percent critical F values for 12 and 10 df are
2.91 and 4.71, respectively. The computed F value is significant at the 5 per-
cent level and is almost significant at the 1 percent level. Thus, our conclu-
sion would be that the two subpopulation variances are not the same and,
therefore, strictly speaking we should not use the Chow test.

Our purpose here has been to demonstrate the mechanics of the Chow
test, which is used popularly in applied work. If the error variances in the
two subpopulations are heteroscedastic, the Chow test can be modified. But
the procedure is beyond the scope of this book.17

Another point we made earlier was that the Chow test is sensitive to
the choice of the time at which the regression parameters might have
changed. In our example, we assumed that the change probably took place
in the recession year of 1982. If we had assumed it to be 1981, when Ronald
Reagan began his presidency, we might find that the computed F value is
different. As a matter of fact, in exercise 8.34 the reader is asked to check
this out.

If we do not want to choose the point at which the break in the underly-
ing relationship might have occurred, we could choose alternative methods,
such as the recursive residual test. We will take this topic up in Chapter
13, the chapter on model specification analysis.

8.9 PREDICTION WITH MULTIPLE REGRESSION

In Section 5.10 we showed how the estimated two-variable regression
model can be used for (1) mean prediction, that is, predicting the point on
the population regression function (PRF), as well as for (2) individual pre-
diction, that is, predicting an individual value of Y given the value of the re-
gressor X = X0, where X0 is the specified numerical value of X.

The estimated multiple regression too can be used for similar purposes,
and the procedure for doing that is a straightforward extension of the two-
variable case, except the formulas for estimating the variances and standard
errors of the forecast value [comparable to (5.10.2) and (5.10.6) of the two-
variable model] are rather involved and are better handled by the matrix
methods discussed in Appendix C. Of course, most standard regression
packages can do this routinely, so there is no need to look up the matrix for-
mulation. It is given in Appendix C for the benefit of the mathematically in-
clined students. This appendix also gives a fully worked out example.

17For a discussion of the Chow test under heteroscedasticity, see William H. Greene, Econo-
metric Analysis, 4th ed., Prentice Hall, Englewood Cliffs, N.J., 2000, pp. 292–293, and Adrian C.
Darnell, A Dictionary of Econometrics, Edward Elgar, U.K., 1994, p. 51.
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*Optional.
18For an accessible discussion, see A. Buse, “The Likelihood Ratio, Wald and Lagrange

Multiplier Tests: An Expository Note,’’ American Statistician, vol. 36, 1982, pp. 153–157.
19Russell Davidson and James G. MacKinnon, Estimation and Inference in Econometrics,

Oxford University Press, New York, 1993, p. 456.
20J. MacKinnon, H. White, and R. Davidson, “Tests for Model Specification in the Presence

of Alternative Hypothesis; Some Further Results.” Journal of Econometrics, vol. 21, 1983,
pp. 53–70. A similar test is proposed in A. K. Bera and C. M. Jarque, “Model Specification Tests:
A Simultaneous Approach,” Journal of Econometrics, vol. 20, 1982, pp. 59–82.

*8.10 THE TROIKA OF HYPOTHESIS TESTS: THE LIKELIHOOD
RATIO (LR), WALD (W), AND LAGRANGE MULTIPLIER (LM) TESTS18

In this and the previous chapters we have, by and large, used the t, F,
and chi-square tests to test a variety of hypotheses in the context of linear
(in-parameter) regression models. But once we go beyond the somewhat
comfortable world of linear regression models, we need method(s) to test
hypotheses that can handle regression models, linear or not.

The well-known trinity of likelihood, Wald, and Lagrange multiplier
tests can accomplish this purpose. The interesting thing to note is that
asymptotically (i.e., in large samples) all three tests are equivalent in that
the test statistic associated with each of these tests follows the chi-square
distribution.

Although we will discuss the likelihood ratio test in the appendix to this
chapter, in general we will not use these tests in this textbook for the prag-
matic reason that in small, or finite, samples, which is unfortunately what
most researchers deal with, the F test that we have used so far will suffice.
As Davidson and MacKinnon note:

For linear regression models, with or without normal errors, there is of course no
need to look at LM, W and LR at all, since no information is gained from doing so
over and above what is already contained in F.19

*8.11 TESTING THE FUNCTIONAL FORM OF REGRESSION:
CHOOSING BETWEEN LINEAR AND LOG–LINEAR
REGRESSION MODELS

The choice between a linear regression model (the regressand is a linear
function of the regressors) or a log–linear regression model (the log of the
regressand is a function of the logs of the regressors) is a perennial question
in empirical analysis. We can use a test proposed by MacKinnon, White, and
Davidson, which for brevity we call the MWD test to choose between the
two models.20

To illustrate this test, assume the following

H0: Linear Model: Y is a linear function of regressors, the X’s.
H1: Log–Linear Model: ln Y is a linear function of logs of regressors, the

logs of X’s.

where, as usual, H0 and H1 denote the null and alternative hypotheses.
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21This discussion is based on William H. Greene, ET. The Econometrics Toolkit Version 3,
Econometric Software, Bellport, New York, 1992, pp. 245–246.

(Continued)

The MWD test involves the following steps21:

Step I: Estimate the linear model and obtain the estimated Y values. Call
them Yf (i.e., Ŷ).

Step: II: Estimate the log–linear model and obtain the estimated ln Y
values; call them ln f (i.e., l̂n Y).

Step III: Obtain Z1 = (ln Y f − ln f ).
Step IV: Regress Y on X ’s and Z1 obtained in Step III. Reject H0 if the co-

ficient of Z1 is statistically significant by the usual t test.
Step V: Obtain Z2 = (antilog of ln f − Y f ).
Step VI: Regress log of Y on the logs of X’s and Z2. Reject H1 if the coeffi-

cient of Z2 is statistically significant by the usual t test.

Although the MWD test seems involved, the logic of the test is quite simple.
If the linear model is in fact the correct model, the constructed variable Z1

should not be statistically significant in Step IV, for in that case the estimated
Y values from the linear model and those estimated from the log–linear
model (after taking their antilog values for comparative purposes) should
not be different. The same comment applies to the alternative hypothesis H1.

EXAMPLE 8.5

THE DEMAND FOR ROSES

Refer to exercise 7.16 where we have presented data on the demand for roses in the Detroit
metropolitan area for the period 1971–II to 1975–II. For illustrative purposes, we will consider
the demand for roses as a function only of the prices of roses and carnations, leaving out the
income variable for the time being. Now we consider the following models:

Linear model: Yt = α1 + α2X2t + α3X3t + ut (8.11.1)

Log–linear model: lnYt = β1 + β2 lnX2t + β3 lnX3t + ut (8.11.2)

where Y is the quantity of roses in dozens, X2 is the average wholesale price of roses
($/dozen), and X3 is the average wholesale price of carnations ($/dozen). A priori, α2 and β2
are expected to be negative (why?), and α3 and β3 are expected to be positive (why?). As we
know, the slope coefficients in the log–linear model are elasticity coefficients.

The regression results are as follows:

Ŷt = 9734.2176 − 3782.1956X2t + 2815.2515X3t

t = (3.3705) (−6.6069) (2.9712) (8.11.3)

F = 21.84 R 2 = 0.77096

̂ln Yt = 9.2278 − 1.7607 lnX2t + 1.3398 lnX3t

t = (16.2349) (−5.9044) (2.5407) (8.11.4)

F = 17.50 R 2 = 0.7292
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EXAMPLE 8.5 (Continued)

As these results show, both the linear and the log–linear models seem to fit the data reasonably
well: The parameters have the expected signs and the t and R2 values are statistically signifi-
cant.

To decide between these models on the basis of the MWD test, we first test the hypoth-
esis that the true model is linear. Then, following Step IV of the test, we obtain the following
regression:

Ŷt = 9727.5685 − 3783.0623X2t + 2817.7157X3t + 85.2319Z1t

t = (3.2178) (−6.3337) (2.8366) (0.0207) (8.11.5)

F = 13.44 R 2 = 0.7707

Since the coefficient of Z1 is not statistically significant (the p value of the estimated t is 0.98),
we do not reject the hypothesis that the true model is linear.

Suppose we switch gears and assume that the true model is log–linear. Following step VI
of the MWD test, we obtain the following regression results:

l̂n Yt = 9.1486 − 1.9699 ln Xt + 1.5891 ln X2t − 0.0013Z2t

t = (17.0825) (−6.4189) (3.0728) (−1.6612) (8.11.6)

F = 14.17 R2 = 0.7798

The coefficient of Z2 is statistically significant at about the 12 percent level (p value is 0.1225).
Therefore, we can reject the hypothesis that the true model is log–linear at this level of sig-
nificance. Of course, if one sticks to the conventional 1 or 5 percent significance levels, then
one cannot reject the hypothesis that the true model is log–linear. As this example shows, it
is quite possible that in a given situation we cannot reject either of the specifications.

8.12 SUMMARY AND CONCLUSIONS

1. This chapter extended and refined the ideas of interval estimation
and hypothesis testing first introduced in Chapter 5 in the context of the
two-variable linear regression model.

2. In a multiple regression, testing the individual significance of a partial
regression coefficient (using the t test) and testing the overall significance of
the regression (i.e., H0: all partial slope coefficients are zero or R2 = 0) are
not the same thing.

3. In particular, the finding that one or more partial regression coeffi-
cients are statistically insignificant on the basis of the individual t test does
not mean that all partial regression coefficients are also (collectively) statis-
tically insignificant. The latter hypothesis can be tested only by the F test.

4. The F test is versatile in that it can test a variety of hypotheses, such
as whether (1) an individual regression coefficient is statistically significant,
(2) all partial slope coefficients are zero, (3) two or more coefficients are
statistically equal, (4) the coefficients satisfy some linear restrictions, and
(5) there is structural stability of the regression model.

5. As in the two-variable case, the multiple regression model can be
used for the purpose of mean and or individual prediction.
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