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7
MULTIPLE REGRESSION
ANALYSIS: THE PROBLEM
OF ESTIMATION

The two-variable model studied extensively in the previous chapters is often
inadequate in practice. In our consumption–income example, for instance,
it was assumed implicitly that only income X affects consumption Y. But
economic theory is seldom so simple for, besides income, a number of other
variables are also likely to affect consumption expenditure. An obvious ex-
ample is wealth of the consumer. As another example, the demand for a com-
modity is likely to depend not only on its own price but also on the prices of
other competing or complementary goods, income of the consumer, social
status, etc. Therefore, we need to extend our simple two-variable regression
model to cover models involving more than two variables. Adding more
variables leads us to the discussion of multiple regression models, that is,
models in which the dependent variable, or regressand, Y depends on two or
more explanatory variables, or regressors.

The simplest possible multiple regression model is three-variable regres-
sion, with one dependent variable and two explanatory variables. In this and
the next chapter we shall study this model. Throughout, we are concerned
with multiple linear regression models, that is, models linear in the para-
meters; they may or may not be linear in the variables.

7.1 THE THREE-VARIABLE MODEL:
NOTATION AND ASSUMPTIONS

Generalizing the two-variable population regression function (PRF) (2.4.2),
we may write the three-variable PRF as

(7.1.1)Yi = β1 + β2 X2i + β3 X3i + ui
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1For notational symmetry, Eq. (7.1.1) can also be written as

Yi = β1 X1i + β2 X2i + β3 X3i + ui

with the provision that X1i = 1 for all i.
2This assumption is automatically fulfilled if X2 and X3 are nonstochastic and (7.1.2) holds.

where Y is the dependent variable, X2 and X3 the explanatory variables (or
regressors), u the stochastic disturbance term, and i the ith observation; in
case the data are time series, the subscript t will denote the tth observation.1

In Eq. (7.1.1) β1 is the intercept term. As usual, it gives the mean or aver-
age effect on Y of all the variables excluded from the model, although its
mechanical interpretation is the average value of Y when X2 and X3 are set
equal to zero. The coefficients β2 and β3 are called the partial regression
coefficients, and their meaning will be explained shortly.

We continue to operate within the framework of the classical linear
regression model (CLRM) first introduced in Chapter 3. Specifically, we
assume the following:

Zero mean value of ui , or

E (ui | X2i , X3i) = 0 for each i (7.1.2)

No serial correlation, or

cov (ui , uj ) = 0 i �= j (7.1.3)

Homoscedasticity, or

var (ui) = σ 2 (7.1.4)

Zero covariance between ui and each X variable, or

cov (ui , X2i) = cov (ui , X3i) = 0 (7.1.5)2

No specification bias, or

The model is correctly specified (7.1.6)

No exact collinearity between the X variables, or

No exact linear relationship between X2 and X3 (7.1.7)

In addition, as in Chapter 3, we assume that the multiple regression model
is linear in the parameters, that the values of the regressors are fixed in re-
peated sampling, and that there is sufficient variability in the values of the
regressors.

The rationale for assumptions (7.1.2) through (7.1.6) is the same as that
discussed in Section 3.2. Assumption (7.1.7), that there be no exact linear
relationship between X2 and X3, technically known as the assumption of
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3Mathematically speaking, α = (β2 + 2β3) is one equation in two unknowns and there is no
unique way of estimating β2 and β3 from the estimated α.

no collinearity or no multicollinearity if more than one exact linear rela-
tionship is involved, is new and needs some explanation.

Informally, no collinearity means none of the regressors can be written as
exact linear combinations of the remaining regressors in the model.

Formally, no collinearity means that there exists no set of numbers,
λ2 and λ3, not both zero such that

λ2 X2i + λ3 X3i = 0 (7.1.8)

If such an exact linear relationship exists, then X2 and X3 are said to be
collinear or linearly dependent. On the other hand, if (7.1.8) holds true only
when λ2 = λ3 = 0, then X2 and X3 are said to be linearly independent.

Thus, if

X2i = −4X3i or X2i + 4X3i = 0 (7.1.9)

the two variables are linearly dependent, and if both are included in a re-
gression model, we will have perfect collinearity or an exact linear relation-
ship between the two regressors.

Although we shall consider the problem of multicollinearity in depth in
Chapter 10, intuitively the logic behind the assumption of no multi-
collinearity is not too difficult to grasp. Suppose that in (7.1.1) Y, X2, and X3

represent consumption expenditure, income, and wealth of the consumer,
respectively. In postulating that consumption expenditure is linearly related
to income and wealth, economic theory presumes that wealth and income
may have some independent influence on consumption. If not, there is no
sense in including both income and wealth variables in the model. In the ex-
treme, if there is an exact linear relationship between income and wealth,
we have only one independent variable, not two, and there is no way to as-
sess the separate influence of income and wealth on consumption. To see
this clearly, let X3i = 2X2i in the consumption–income–wealth regression.
Then the regression (7.1.1) becomes

Yi = β1 + β2 X2i + β3(2X2i) + ui

= β1 + (β2 + 2β3)X2i + ui (7.1.10)

= β1 + αX2i + ui

where α = (β2 + 2β3). That is, we in fact have a two-variable and not a three-
variable regression. Moreover, if we run the regression (7.1.10) and obtain α,
there is no way to estimate the separate influence of X2 ( = β2) and X3 ( = β3)
on Y, for α gives the combined influence of X2 and X3 on Y.3
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4The calculus-minded reader will notice at once that β2 and β3 are the partial derivatives of
E(Y |X2, X3) with respect to X2 and X3.

In short the assumption of no multicollinearity requires that in the PRF
we include only those variables that are not exact linear functions of one or
more variables in the model. Although we will discuss this topic more fully
in Chapter 10, a couple of points may be noted here.

First, the assumption of no multicollinearity pertains to our theoretical
(i.e., PRF) model. In practice, when we collect data for empirical analysis
there is no guarantee that there will not be correlations among the regres-
sors. As a matter of fact, in most applied work it is almost impossible to find
two or more (economic) variables that may not be correlated to some
extent, as we will show in our illustrative examples later in the chapter.
What we require is that there be no exact relationships among the regres-
sors, as in Eq. (7.1.9).

Second, keep in mind that we are talking only about perfect linear rela-
tionships between two or more variables. Multicollinearity does not rule out
nonlinear relationships between variables. Suppose X3i = X2

2i . This does not
violate the assumption of no perfect collinearity, as the relationship between
the variables here is nonlinear.

7.2 INTERPRETATION OF MULTIPLE REGRESSION EQUATION

Given the assumptions of the classical regression model, it follows that, on
taking the conditional expectation of Y on both sides of (7.1.1), we obtain

E(Yi | X2i, X3i) = β1 + β2 X2i + β3i X3i (7.2.1)

In words, (7.2.1) gives the conditional mean or expected value of Y con-
ditional upon the given or fixed values of X2 and X3. Therefore, as in the
two-variable case, multiple regression analysis is regression analysis condi-
tional upon the fixed values of the regressors, and what we obtain is the
average or mean value of Y or the mean response of Y for the given values of
the regressors.

7.3 THE MEANING OF PARTIAL REGRESSION COEFFICIENTS

As mentioned earlier, the regression coefficients β2 and β3 are known as par-
tial regression or partial slope coefficients. The meaning of partial re-
gression coefficient is as follows: β2 measures the change in the mean value
of Y, E(Y), per unit change in X2, holding the value of X3 constant. Put dif-
ferently, it gives the “direct” or the “net” effect of a unit change in X2 on the
mean value of Y, net of any effect that X3 may have on mean Y. Likewise, β3

measures the change in the mean value of Y per unit change in X3, holding
the value of X2 constant.4 That is, it gives the “direct” or “net” effect of a unit
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5Incidentally, the terms holding constant, controlling for, allowing or accounting for the in-
fluence of, correcting the influence of, and sweeping out the influence of are synonymous and will
be used interchangeably in this text.

change in X3 on the mean value of Y, net of any effect that X2 may have on
mean Y.5

How do we actually go about holding the influence of a regressor constant?
To explain this, let us revert to our child mortality example. Recall that in that
example, Y = child mortality (CM), X2 = per capita GNP (PGNP), and
X3 = female literacy rate (FLR). Let us suppose we want to hold the influence
of FLR constant. Since FLR may have some effect on CM as well as PGNP in
any given concrete data, what we can do is to remove the (linear) influence of
FLR from both CM and PGNP by running the regression of CM on FLR and
that of PGNP on FLR separately and then looking at the residuals obtained
from these regressions. Using the data given in Table 6.4, we obtain the fol-
lowing regressions:

CMi = 263.8635 − 2.3905 FLRi + û1i
(7.3.1)

se = (12.2249) (0.2133) r2 = 0.6695

where û1i represents the residual term of this regression.

PGNPi = −39.3033 + 28.1427 FLRi + û2i
(7.3.2)

se = (734.9526) (12.8211) r2 = 0.0721

where û2i represents the residual term of this regression.
Now

û1i = (CMi − 263.8635 + 2.3905 FLRi) (7.3.3)

represents that part of CM left after removing from it the (linear) influence
of FLR. Likewise,

û2i = (PGNPi + 39.3033 − 28.1427 FLRi) (7.3.4)

represents that part of PGNP left after removing from it the (linear) influ-
ence of FLR.

Therefore, if we now regress û1i on û2i , which are “purified” of the (linear)
influence of FLR, wouldn’t we obtain the net effect of PGNP on CM? That is
indeed the case (see Appendix 7A, Section 7A.2). The regression results are
as follows:

ˆ̂u1i = −0.0056û2i
(7.3.5)

se = (0.0019) r2 = 0.1152

Note: This regression has no intercept term because the mean value of the
OLS residuals û1i and û2i is zero (why?)
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The slope coefficient of −0.0056 now gives the “true” or net effect of a
unit change in PGNP on CM or the true slope of CM with respect to PGNP.
That is, it gives the partial regression coefficient of CM with respect to
PGNP, β2.

Readers who want to get the partial regression coefficient of CM with
respect to FLR can replicate the above procedure by first regressing CM on
PGNP and getting the residuals from this regression (û1i), then regressing
FLR on PGNP and obtaining the residuals from this regression (û2i), and
then regressing û1i on û2i . I am sure readers get the idea.

Do we have to go through this multistep procedure every time we want to
find out the true partial regression coefficient? Fortunately, we do not have
to do that, for the same job can be accomplished fairly quickly and routinely
by the OLS procedure discussed in the next section. The multistep proce-
dure just outlined is merely for pedagogic purposes to drive home the mean-
ing of “partial” regression coefficient.

7.4 OLS AND ML ESTIMATION OF
THE PARTIAL REGRESSION COEFFICIENTS

To estimate the parameters of the three-variable regression model (7.1.1), we
first consider the method of ordinary least squares (OLS) introduced in
Chapter 3 and then consider briefly the method of maximum likelihood (ML)
discussed in Chapter 4.

OLS Estimators

To find the OLS estimators, let us first write the sample regression function
(SRF) corresponding to the PRF of (7.1.1) as follows:

Yi = β̂1 + β̂2 X2i + β̂3 X3i + ûi (7.4.1)

where ûi is the residual term, the sample counterpart of the stochastic dis-
turbance term ui .

As noted in Chapter 3, the OLS procedure consists in so choosing the val-
ues of the unknown parameters that the residual sum of squares (RSS) 

∑
û2

i
is as small as possible. Symbolically,

(7.4.2)

where the expression for the RSS is obtained by simple algebraic manipula-
tions of (7.4.1).

min
∑

û2
i =

∑
(Yi − β̂1 − β̂2 X2i − β̂3 X3i)2
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6This estimator is equal to that of (7.3.5), as shown in App. 7A, Sec. 7A.2.

The most straightforward procedure to obtain the estimators that will
minimize (7.4.2) is to differentiate it with respect to the unknowns, set the
resulting expressions to zero, and solve them simultaneously. As shown in
Appendix 7A, Section 7A.1, this procedure gives the following normal equa-
tions [cf. Eqs. (3.1.4) and (3.1.5)]:

From Eq. (7.4.3) we see at once that

β̂1 = Ȳ − β̂2 X̄2 − β̂3 X̄3 (7.4.6)

which is the OLS estimator of the population intercept β1.

Following the convention of letting the lowercase letters denote devia-
tions from sample mean values, one can derive the following formulas from
the normal equations (7.4.3) to (7.4.5):

β̂2 =
(∑

yix2i
)(∑

x2
3i

) − (∑
yix3i

)(∑
x2i x3i

)
(∑

x2
2i

)(∑
x2

3i

) − (∑
x2i x3i

)2 (7.4.7)6

β̂3 =
(∑

yix3i
)(∑

x2
2i

) − (∑
yix2i

)(∑
x2i x3i

)
(∑

x2
2i

)(∑
x2

3i

) − (∑
x2i x3i

)2 (7.4.8)

which give the OLS estimators of the population partial regression coeffi-
cients β2 and β3, respectively.

In passing, note the following: (1) Equations (7.4.7) and (7.4.8) are sym-
metrical in nature because one can be obtained from the other by inter-
changing the roles of X2 and X3; (2) the denominators of these two equa-
tions are identical; and (3) the three-variable case is a natural extension of
the two-variable case.

Variances and Standard Errors of OLS Estimators

Having obtained the OLS estimators of the partial regression coefficients,
we can derive the variances and standard errors of these estimators in the
manner indicated in Appendix 3A.3. As in the two-variable case, we need the
standard errors for two main purposes: to establish confidence intervals and

(7.4.3)

(7.4.4)

(7.4.5)

Ȳ = β̂1 + β̂2 X̄2 + β̂3 X̄3∑
Yi X2i = β̂1

∑
X2i + β̂2

∑
X2

2i + β̂3

∑
X2i X3i

∑
Yi X3i = β̂1

∑
X3i + β̂2

∑
X2i X3i + β̂3

∑
X2

3i
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7The derivations of these formulas are easier using matrix notation. Advanced readers may
refer to App. C.

8Using the definition of r given in Chap. 3, we have

r2
2 3 =

(∑
x2i x3i

)2

∑
x2

2t

∑
x2

3t

to test statistical hypotheses. The relevant formulas are as follows:7

var (β̂1) =
[

1
n

+ X̄2
2

∑
x2

3i + X̄2
3

∑
x2

2i − 2X̄2 X̄3
∑

x2i x3i∑
x2

2i

∑
x2

3i − (∑
x2i x3i

)2

]
· σ 2 (7.4.9)

se (β̂1) = +
√

var (β̂1) (7.4.10)

var (β̂2) =
∑

x2
3i(∑

x2
2i

)(∑
x2

3i

) − (∑
x2i x3i

)2
σ 2 (7.4.11)

or, equivalently,

var (β̂2) = σ 2∑
x2

2i

(
1 − r2

2 3

) (7.4.12)

where r2 3 is the sample coefficient of correlation between X2 and X3 as
defined in Chapter 3.8

se (β̂2) = +
√

var (β̂2) (7.4.13)

var (β̂3) =
∑

x2
2i(∑

x2
2i

)(∑
x2

3i

) − (∑
x2i x3i

)2
σ 2 (7.4.14)

or, equivalently,

var (β̂3) = σ 2∑
x2

3i

(
1 − r2

2 3

)
(7.4.15)

se (β̂3) = +
√

var (β̂3) (7.4.16)

cov (β̂2, β̂3) = −r2 3σ
2

(
1 − r2

2 3

)√∑
x2

2i

√∑
x2

3i (7.4.17)

In all these formulas σ 2 is the (homoscedastic) variance of the population
disturbances ui .

Following the argument of Appendix 3A, Section 3A.5, the reader can ver-
ify that an unbiased estimator of σ 2 is given by

(7.4.18)σ̂ 2 =
∑

û2
i

n − 3
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Note the similarity between this estimator of σ 2 and its two-variable coun-
terpart [σ̂ 2 = (

∑
û2

i )/(n − 2)]. The degrees of freedom are now (n − 3)
because in estimating 

∑
û2

i we must first estimate β1, β2, and β3, which con-
sume 3 df. (The argument is quite general. Thus, in the four-variable case
the df will be n − 4.)

The estimator σ̂ 2 can be computed from (7.4.18) once the residuals are
available, but it can also be obtained more readily by using the following
relation (for proof, see Appendix 7A, Section 7A.3):

∑
û2

i =
∑

y2
i − β̂2

∑
yix2i − β̂3

∑
yix3i (7.4.19)

which is the three-variable counterpart of the relation given in (3.3.6).

Properties of OLS Estimators

The properties of OLS estimators of the multiple regression model parallel
those of the two-variable model. Specifically:

1. The three-variable regression line (surface) passes through the means
Ȳ, X̄2, and X̄3, which is evident from (7.4.3) [cf. Eq. (3.1.7) of the two-
variable model]. This property holds generally. Thus in the k-variable linear
regression model [a regressand and (k − 1) regressors]

Yi = β1 + β2 X2i + β3 X3i + · · · + βkXki + ui (7.4.20)

we have

β̂1 = Ȳ − β2 X̄2 − β3 X̂3 − · · · − βkX̄k (7.4.21)

2. The mean value of the estimated Yi ( = Ŷi) is equal to the mean value
of the actual Yi , which is easy to prove:

Ŷi = β̂1 + β̂2 X2i + β̂3 X3i

= (Ȳ − β̂2 X̄2 − β̂3 X̄3) + β̂2 X2i + β̂3 X3i (Why?)

= Ȳ + β̂2(X2i − X̄2) + β̂3(X3i − X̄3) (7.4.22)

= Ȳ + β̂2x2i + β̂3x3i

where as usual small letters indicate values of the variables as deviations
from their respective means.

Summing both sides of (7.4.22) over the sample values and dividing
through by the sample size n gives ¯̂Y = Ȳ. (Note:

∑
x2i = ∑

x3i = 0. Why?)
Notice that by virtue of (7.4.22) we can write

ŷi = β̂2x2i + β̂3x3i (7.4.23)

where ŷi = (Ŷi − Ȳ).
Therefore, the SRF (7.4.1) can be expressed in the deviation form as

yi = ŷi + ûi = β̂2x2i + β̂3x3i + ûi (7.4.24)
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3.
∑

ûi = ¯̂u = 0, which can be verified from (7.4.24). [Hint: Sum both
sides of (7.4.24) over the sample values.]

4. The residuals ûi are uncorrelated with X2i and X3i , that is, 
∑

ûi X2i =∑
ûi X3i = 0 (see Appendix 7A.1 for proof).
5. The residuals ûi are uncorrelated with Ŷi ; that is, 

∑
ûi Ŷi = 0. Why?

[Hint: Multiply (7.4.23) on both sides by ûi and sum over the sample values.]
6. From (7.4.12) and (7.4.15) it is evident that as r2 3, the correlation

coefficient between X2 and X3, increases toward 1, the variances of β̂2 and
β̂3 increase for given values of σ 2 and

∑
x2

2i or
∑

x2
3i . In the limit, when

r2 3 = 1 (i.e., perfect collinearity), these variances become infinite. The im-
plications of this will be explored fully in Chapter 10, but intuitively the
reader can see that as r2 3 increases it is going to be increasingly difficult to
know what the true values of β2 and β3 are. [More on this in the next chap-
ter, but refer to Eq. (7.1.10).]

7. It is also clear from (7.4.12) and (7.4.15) that for given values of r2 3

and
∑

x2
2i or

∑
x2

3i , the variances of the OLS estimators are directly propor-
tional to σ 2; that is, they increase as σ 2 increases. Similarly, for given values
of σ 2 and r2 3, the variance of β̂2 is inversely proportional to 

∑
x2

2i ; that is, the
greater the variation in the sample values of X2, the smaller the variance of
β̂2 and therefore β2 can be estimated more precisely. A similar statement can
be made about the variance of β̂3.

8. Given the assumptions of the classical linear regression model, which
are spelled out in Section 7.1, one can prove that the OLS estimators of
the partial regression coefficients not only are linear and unbiased but also
have minimum variance in the class of all linear unbiased estimators. In
short, they are BLUE: Put differently, they satisfy the Gauss-Markov theo-
rem. (The proof parallels the two-variable case proved in Appendix 3A,
Section 3A.6 and will be presented more compactly using matrix notation in
Appendix C.)

Maximum Likelihood Estimators

We noted in Chapter 4 that under the assumption that ui , the population
disturbances, are normally distributed with zero mean and constant vari-
ance σ 2, the maximum likelihood (ML) estimators and the OLS estimators
of the regression coefficients of the two-variable model are identical. This
equality extends to models containing any number of variables. (For proof,
see Appendix 7A, Section 7A.4.) However, this is not true of the estimator
of σ 2. It can be shown that the ML estimator of σ 2 is

∑
û2

i/n regardless of
the number of variables in the model, whereas the OLS estimator of σ 2 is∑

û2
i/(n − 2) in the two-variable case,

∑
û2

i /(n − 3) in the three-variable case,
and

∑
û2

i/(n − k) in the case of the k-variable model (7.4.20). In short, the
OLS estimator of σ 2 takes into account the number of degrees of freedom,
whereas the ML estimator does not. Of course, if n is very large, the ML and
OLS estimators of σ 2 will tend to be close to each other. (Why?)
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7.5 THE MULTIPLE COEFFICIENT OF DETERMINATION R2

AND THE MULTIPLE COEFFICIENT OF CORRELATION R

In the two-variable case we saw that r2 as defined in (3.5.5) measures the
goodness of fit of the regression equation; that is, it gives the proportion or
percentage of the total variation in the dependent variable Y explained by
the (single) explanatory variable X. This notation of r2 can be easily extended
to regression models containing more than two variables. Thus, in the three-
variable model we would like to know the proportion of the variation in
Y explained by the variables X2 and X3 jointly. The quantity that gives this
information is known as the multiple coefficient of determination and is
denoted by R2; conceptually it is akin to r2.

To derive R2, we may follow the derivation of r2 given in Section 3.5.
Recall that

Yi = β̂1 + β̂2 X2i + β̂3 X3i + ûi

= Ŷi + ûi

(7.5.1)

where Ŷi is the estimated value of Yi from the fitted regression line and is
an estimator of true E(Yi | X2i , X3i). Upon shifting to lowercase letters to
indicate deviations from the mean values, Eq. (7.5.1) may be written as

yi = β̂2x2i + β̂3x3i + ûi

= ŷi + ûi

(7.5.2)

Squaring (7.5.2) on both sides and summing over the sample values, we
obtain

∑
y2

i =
∑

ŷ2
i +

∑
û2

i + 2
∑

ŷi ûi

=
∑

ŷ2
i +

∑
û2

i (Why?)
(7.5.3)

Verbally, Eq. (7.5.3) states that the total sum of squares (TSS) equals the
explained sum of squares (ESS) + the residual sum of squares (RSS). Now
substituting for 

∑
û2

i from (7.4.19), we obtain

∑
y2

i =
∑

ŷ2
i +

∑
y2

i − β̂2

∑
yix2i − β̂3

∑
yix3i

which, on rearranging, gives

ESS =
∑

ŷ2
i = β̂2

∑
yix2i + β̂3

∑
yix3i (7.5.4)
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9Note that R2 can also be computed as follows:

R2 = 1 − RSS
TSS

= 1 −
∑

û2
i∑

y2
i

= 1 − (n − 3)σ̂ 2

(n − 1)S2
y

Now, by definition

R2 = ESS
TSS

= β̂2
∑

yix2i + β̂3
∑

yix3i∑
y2

i

(7.5.5)9

[cf. (7.5.5) with (3.5.6)].
Since the quantities entering (7.5.5) are generally computed routinely, R2

can be computed easily. Note that R2, like r2, lies between 0 and 1. If it is 1,
the fitted regression line explains 100 percent of the variation in Y. On the
other hand, if it is 0, the model does not explain any of the variation in Y.
Typically, however, R2 lies between these extreme values. The fit of the
model is said to be “better’’ the closer is R2 to 1.

Recall that in the two-variable case we defined the quantity r as the coeffi-
cient of correlation and indicated that it measures the degree of (linear) asso-
ciation between two variables. The three-or-more-variable analogue of r is the
coefficient of multiple correlation, denoted by R, and it is a measure of the
degree of association between Y and all the explanatory variables jointly. Al-
though r can be positive or negative, R is always taken to be positive. In prac-
tice, however, R is of little importance. The more meaningful quantity is R2.

Before proceeding further, let us note the following relationship between
R2 and the variance of a partial regression coefficient in the k-variable mul-
tiple regression model given in (7.4.20):

var (β̂j ) = σ 2∑
x2

j

(
1

1 − R2
j

)
(7.5.6)

where β̂j is the partial regression coefficient of regressor Xj and R2
j is the R2

in the regression of Xj on the remaining (k − 2) regressors. [Note: There are
(k − 1) regressors in the k-variable regression model.] Although the utility of
Eq. (7.5.6) will become apparent in Chapter 10 on multicollinearity, observe
that this equation is simply an extension of the formula given in (7.4.12) or
(7.4.15) for the three-variable regression model, one regressand and two
regressors.

7.6 EXAMPLE 7.1: CHILD MORTALITY IN RELATION TO
PER CAPITA GNP AND FEMALE LITERACY RATE

In Chapter 6 we considered the behavior of child mortality (CM) in relation
to per capita GNP (PGNP). There we found that PGNP has a negative impact
on CM, as one would expect. Now let us bring in female literacy as measured
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by the female literacy rate (FLR). A priori, we expect that FLR too will have
a negative impact on CM. Now when we introduce both the variables in our
model, we need to net out the influence of each of the regressors. That is, we
need to estimate the (partial) regression coefficients of each regressor. Thus
our model is:

CMi = β1 + β2PGNPi + β3FLRi + ui (7.6.1)

The necessary data are given in Table 6.4. Keep in mind that CM is the num-
ber of deaths of children under five per 1000 live births, PGNP is per capita
GNP in 1980, and FLR is measured in percent. Our sample consists of 64
countries.

Using the Eviews3 statistical package, we obtained the following results:

ĈMi = 263.6416 − 0.0056 PGNPi − 2.2316 FLRi

(7.6.2)se = (11.5932) (0.0019) (0.2099) R2 = 0.7077

R̄2 = 0.6981*

where figures in parentheses are the estimated standard errors. Before we
interpret this regression, observe the partial slope coefficient of PGNP,
namely, −0.0056. Is it not precisely the same as that obtained from the
three-step procedure discussed in the previous section [see Eq. (7.3.5)]? But
should that surprise you? Not only that, but the two standard errors are pre-
cisely the same, which is again unsurprising. But we did so without the
three-step cumbersome procedure.

Let us now interpret these regression coefficients: −0.0056 is the partial
regression coefficient of PGNP and tells us that with the influence of FLR
held constant, as PGNP increases, say, by a dollar, on average, child mortal-
ity goes down by 0.0056 units. To make it more economically interpretable,
if the per capita GNP goes up by a thousand dollars, on average, the number
of deaths of children under age 5 goes down by about 5.6 per thousand live
births. The coefficient −2.2316 tells us that holding the influence of PGNP
constant, on average, the number of deaths of children under 5 goes down by
about 2.23 per thousand live births as the female literacy rate increases by
one percentage point. The intercept value of about 263, mechanically inter-
preted, means that if the values of PGNP and FLR rate were fixed at zero, the
mean child mortality would be about 263 deaths per thousand live births. Of
course, such an interpretation should be taken with a grain of salt. All one
could infer is that if the two regressors were fixed at zero, child mortality will
be quite high, which makes practical sense. The R2 value of about 0.71
means that about 71 percent of the variation in child mortality is explained
by PGNP and FLR, a fairly high value considering that the maximum value
of R2 can at most be 1. All told, the regression results make sense.

*On this, see Sec. 7.8.
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What about the statistical significance of the estimated coefficients? We
will take this topic up in Chapter 8. As we will see there, in many ways this
chapter will be an extension of Chapter 5, which dealt with the two-variable
model. As we will also show, there are some important differences in statis-
tical inference (i.e., hypothesis testing) between the two-variable and multi-
variable regression models.

Regression on Standardized Variables

In the preceding chapter we introduced the topic of regression on standard-
ized variables and stated that the analysis can be extended to multivariable
regressions. Recall that a variable is said to be standardized or in standard
deviation units if it is expressed in terms of deviation from its mean and di-
vided by its standard deviation.

For our child mortality example, the results are as follows:

ĈM
* = − 0.2026 PGNP*

i − 0.7639 FLR*
i (7.6.3)

se = (0.0713) (0.0713) r2 = 0.7077

Note: The starred variables are standardized variables. Also note that there
is no intercept in the model for reasons already discussed in the previous
chapter.

As you can see from this regression, with FLR held constant, a standard
deviation increase in PGNP leads, on average, to a 0.2026 standard devia-
tion decrease in CM. Similarly, holding PGNP constant, a standard devia-
tion increase in FLR, on average, leads to a 0.7639 standard deviation de-
crease in CM. Relatively speaking, female literacy has more impact on child
mortality than per capita GNP. Here you will see the advantage of using
standardized variables, for standardization puts all variables on equal foot-
ing because all standardized variables have zero means and unit variances.

7.7 SIMPLE REGRESSION IN THE CONTEXT OF
MULTIPLE REGRESSION: INTRODUCTION TO
SPECIFICATION BIAS

Recall that assumption (7.1.6) of the classical linear regression model states
that the regression model used in the analysis is “correctly” specified; that is,
there is no specification bias or specification error (see Chapter 3 for
some introductory remarks). Although the topic of specification error will
be discussed more fully in Chapter 13, the illustrative example given in the
preceding section provides a splendid opportunity not only to drive home
the importance of assumption (7.1.6) but also to shed additional light on the
meaning of partial regression coefficient and provide a somewhat informal
introduction to the topic of specification bias.
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Assume that (7.6.1) is the “true” model explaining the behavior of child
mortality in relation to per capita GNP and female literacy rate (FLR). But
suppose we disregard FLR and estimate the following simple regression:

Yi = α1 + α2 X2i + u1i (7.7.1)

where Y = CM and X2 = PGNP.
Since (7.6.1) is the true model, estimating (7.7.1) would constitute a spec-

ification error; the error here consists in omitting the variable X3, the female
literacy rate. Notice that we are using different parameter symbols (the al-
phas) in (7.7.1) to distinguish them from the true parameters (the betas)
given in (7.6.1).

Now will α2 provide an unbiased estimate of the true impact of PGNP,
which is given by β2 in model (7.6.1)? In other words, will E(α̂2) = β2, where
α̂2 is the estimated value of α2? In other words, will the coefficient of PGNP
in (7.7.1) provide an unbiased estimate of the true impact of PGNP on CM,
knowing that we have omitted the variable X3 (FLR) from the model? As you
would suspect, in general α̂2 will not be an unbiased estimator of the true β2.

To give a glimpse of the bias, let us run the regression (7.7.1), which gave the
following results.

ĈMi = 157.4244 − 0.0114 PGNPi (7.7.2)
se = (9.8455) (0.0032) r2 = 0.1662

Observe several things about this regression compared to the “true” mul-
tiple regression (7.6.1):

1. In absolute terms (i.e., disregarding the sign), the PGNP coefficient
has increased from 0.0056 to 0.0114, almost a two-fold increase.

2. The standard errors are different.
3. The intercept values are different.
4. The r2 values are dramatically different, although it is generally the

case that, as the number of regressors in the model increases, the r2 value
increases.

Now suppose that you regress child mortality on female literacy rate,
disregarding the influence of PGNP. You will obtain the following results:

ĈMi = 263.8635 − 2.3905 FLRi

se = (21.2249) (0.2133) r2 = 0.6696
(7.7.3)

Again if you compare the results of this (misspecified) regression with the
“true” multiple regression, you will see that the results are different, although
the difference here is not as noticeable as in the case of regression (7.7.2).
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The important point to note is that serious consequences can ensue if
you misfit a model. We will look into this topic more thoroughly in Chap-
ter 13, on specification errors.

7.8 R2 AND THE ADJUSTED R2

An important property of R2 is that it is a nondecreasing function of the
number of explanatory variables or regressors present in the model; as the
number of regressors increases, R2 almost invariably increases and never
decreases. Stated differently, an additional X variable will not decrease R2.
Compare, for instance, regression (7.7.2) or (7.7.3) with (7.6.2). To see this,
recall the definition of the coefficient of determination:

R2 = ESS
TSS

= 1 − RSS
TSS

(7.8.1)

= 1 −
∑

û2
i∑

y2
i

Now
∑

y2
i is independent of the number of X variables in the model because

it is simply 
∑

(Yi − Ȳ)2. The RSS, 
∑

û2
i , however, depends on the number of

regressors present in the model. Intuitively, it is clear that as the number of
X variables increases, 

∑
û2

i is likely to decrease (at least it will not increase);
hence R2 as defined in (7.8.1) will increase. In view of this, in comparing
two regression models with the same dependent variable but differing num-
ber of X variables, one should be very wary of choosing the model with the
highest R2.

To compare two R2 terms, one must take into account the number of X
variables present in the model. This can be done readily if we consider an
alternative coefficient of determination, which is as follows:

(7.8.2)

where k = the number of parameters in the model including the intercept
term. (In the three-variable regression, k = 3. Why?) The R2 thus defined
is known as the adjusted R2, denoted by R̄2. The term adjusted means
adjusted for the df associated with the sums of squares entering into
(7.8.1):

∑
û2

i has n − k df in a model involving k parameters, which include

R̄2 = 1 −
∑

û2
i

/
(n − k)∑

y2
i

/
(n − 1)
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10Note, however, that if R2 = 1, R̄2 = R2 = 1. When R2 = 0, R̄2 = (1 − k)/(n − k), in which
case R̄2 can be negative if k > 1.

11Henri Theil, Introduction to Econometrics, Prentice Hall, Englewood Cliffs, N.J., 1978,
p. 135.

12Arthur S. Goldberger, A Course in Econometrics, Harvard University Press, Cambridge,
Mass., 1991, p. 178. For a more critical view of R2, see S. Cameron, “Why is the R Squared
Adjusted Reported?”, Journal of Quantitative Economics, vol. 9, no. 1, January 1993, pp. 183–186.
He argues that “It [R2] is NOT a test statistic and there seems to be no clear intuitive justification
for its use as a descriptive statistic. Finally, we should be clear that it is not an effective tool for
the prevention of data mining” (p. 186).

the intercept term, and 
∑

y2
i has n − 1 df. (Why?) For the three-variable

case, we know that 
∑

û2
i has n − 3 df.

Equation (7.8.2) can also be written as

R̄2 = 1 − σ̂ 2

S2
Y

(7.8.3)

where σ̂ 2 is the residual variance, an unbiased estimator of true σ 2, and S2
Y

is the sample variance of Y.
It is easy to see that R̄2 and R2 are related because, substituting (7.8.1)

into (7.8.2), we obtain

R̄2 = 1 − (1 − R2)
n − 1
n − k

(7.8.4)

It is immediately apparent from Eq. (7.8.4) that (1) for k > 1, R̄2 < R2 which
implies that as the number of X variables increases, the adjusted R2 in-
creases less than the unadjusted R2; and (2) R̄2 can be negative, although R2

is necessarily nonnegative.10 In case R̄2 turns out to be negative in an appli-
cation, its value is taken as zero.

Which R2 should one use in practice? As Theil notes:

. . . it is good practice to use R̄2 rather than R2 because R2 tends to give an overly op-
timistic picture of the fit of the regression, particularly when the number of ex-
planatory variables is not very small compared with the number of observations.11

But Theil’s view is not uniformly shared, for he has offered no general theo-
retical justification for the “superiority’’ of R̄2. For example, Goldberger ar-
gues that the following R2, call it modified R2, will do just as well12:

Modified R2 = (1 − k/n)R2 (7.8.5)

His advice is to report R2, n, and k and let the reader decide how to adjust
R2 by allowing for n and k.

Despite this advice, it is the adjusted R2, as given in (7.8.4), that is
reported by most statistical packages along with the conventional R2. The
reader is well advised to treat R̄2 as just another summary statistic.
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13From the definition of R2, we know that

1 − R2 = RSS
TSS

=
∑

û2
i∑

(Yi − Ȳ)2

for the linear model and

1 − R2 =
∑

û2
i∑

(ln Yi − ln Y)2

for the log model. Since the denominators on the right-hand sides of these expressions are
different, we cannot compare the two R2 terms directly.

As shown in Example 7.2, for the linear specification, the RSS = 0.1491 (the residual sum of
squares of coffee consumption), and for the log–linear specification, the RSS = 0.0226 (the
residual sum of squares of log of coffee consumption). These residuals are of different orders
of magnitude and hence are not directly comparable.

Incidentally, for the child mortality regression (7.6.2), the reader should
verify that R̄2 is 0.6981, keeping in mind that in this example (n − 1) = 63
and (n − k) = 60. As expected, R̄2 of 0.6981 is less than R2 of 0.7077.

Besides R2 and adjusted R2 as goodness of fit measures, other criteria
are often used to judge the adequacy of a regression model. Two of these are
Akaike’s Information criterion and Amemiya’s Prediction criteria,
which are used to select between competing models. We will discuss these
criteria when we consider the problem of model selection in greater detail
in a later chapter (see Chapter 13).

Comparing Two R2 Values

It is crucial to note that in comparing two models on the basis of the coeffi-
cient of determination, whether adjusted or not, the sample size n and the de-
pendent variable must be the same; the explanatory variables may take any
form. Thus for the models

ln Yi = β1 + β2 X2i + β3 X3i + ui (7.8.6)

Yi = α1 + α2 X2i + α3 X3i + ui (7.8.7)

the computed R2 terms cannot be compared. The reason is as follows: By
definition, R2 measures the proportion of the variation in the dependent
variable accounted for by the explanatory variable(s). Therefore, in (7.8.6)
R2 measures the proportion of the variation in ln Y explained by X2 and X3,
whereas in (7.8.7) it measures the proportion of the variation in Y, and the
two are not the same thing: As noted in Chapter 6, a change in ln Y gives a
relative or proportional change in Y, whereas a change in Y gives an ab-
solute change. Therefore, var Ŷi/var Yi is not equal to var (l̂n Yi)/var (ln Yi);
that is, the two coefficients of determination are not the same.13

How then does one compare the R2’s of two models when the regressand
is not in the same form? To answer this question, let us first consider a nu-
merical example.
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EXAMPLE 7.2

COFFEE CONSUMPTION IN THE UNITED STATES, 1970–1980

Consider the data in Table 7.1. The data pertain to consumption of cups of coffee per day (Y )
and real retail price of coffee (X ) in the United States for years 1970–1980. Applying OLS to
the data, we obtain the following regression results:

Ŷt = 2.6911 − 0.4795Xt
(7.8.8)

se = (0.1216) (0.1140) RSS = 0.1491; r 2 = 0.6628

The results make economic sense: As the price of coffee increases, on average, coffee con-
sumption goes down by about half a cup per day. The r 2 value of about 0.66 means that the
price of coffee explains about 66 percent of the variation in coffee consumption. The reader
can readily verify that the slope coefficient is statistically significant.

From the same data, the following double log, or constant elasticity, model can be
estimated:

l̂nYt = 0.7774 − 0.2530 ln Xt
(7.8.9)

se = (0.0152) (0.0494) RSS = 0.0226; r 2 = 0.7448

Since this is a double log model, the slope coefficient gives a direct estimate of the price elas-
ticity coefficient. In the present instance, it tells us that if the price of coffee per pound goes
up by 1 percent, on average, per day coffee consumption goes down by about 0.25 percent.
Remember that in the linear model (7.8.8) the slope coefficient only gives the rate of change
of coffee consumption with respect to price. (How will you estimate the price elasticity for the

(Continued)

TABLE 7.1
U.S. COFFEE CONSUMPTION (Y ) IN RELATION TO AVERAGE
REAL RETAIL PRICE (X ),* 1970–1980

Y,
Cups per person X,

Year per day $ per lb

1970 2.57 0.77
1971 2.50 0.74
1972 2.35 0.72
1973 2.30 0.73
1974 2.25 0.76
1975 2.20 0.75
1976 2.11 1.08
1977 1.94 1.81
1978 1.97 1.39
1979 2.06 1.20
1980 2.02 1.17

*Note: The nominal price was divided by the Consumer Price Index
(CPI) for food and beverages, 1967 = 100.

Source: The data for Y are from Summary of National Coffee Drinking
Study, Data Group, Elkins Park, Penn., 1981; and the data on nominal X
(i.e., X in current prices) are from Nielsen Food Index, A. C. Nielsen, New
York, 1981.

I am indebted to Scott E. Sandberg for collecting the data.
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TABLE 7.2 RAW DATA FOR COMPARING TWO R2 VALUES

Antilog of
Yt Ŷt l̂nYt l̂nYt ln Yt ln (Ŷt)

Year (1) (2) (3) (4) (5) (6)

1970 2.57 2.321887 0.843555 2.324616 0.943906 0.842380
1971 2.50 2.336272 0.853611 2.348111 0.916291 0.848557
1972 2.35 2.345863 0.860544 2.364447 0.854415 0.852653
1973 2.30 2.341068 0.857054 2.356209 0.832909 0.850607
1974 2.25 2.326682 0.846863 2.332318 0.810930 0.844443
1975 2.20 2.331477 0.850214 2.340149 0.788457 0.846502
1976 2.11 2.173233 0.757943 2.133882 0.746688 0.776216
1977 1.94 1.823176 0.627279 1.872508 0.662688 0.600580
1978 1.97 2.024579 0.694089 2.001884 0.678034 0.705362
1979 2.06 2.115689 0.731282 2.077742 0.722706 0.749381
1980 2.02 2.130075 0.737688 2.091096 0.703098 0.756157

Notes: Column (1): Actual Y values from Table 7.1
Column (2): Estimated Y values from the linear model (7.8.8)
Column (3): Estimated log Y values from the double-log model (7.8.9)
Column (4): Antilog of values in column (3)
Column (5): Log values of Y in column (1)
Column (6): Log values of Ŷt in column (2)

linear model?) The r 2 value of about 0.74 means that about 74 percent of the variation in the
log of coffee demand is explained by the variation in the log of coffee price.

Since the r 2 value of the linear model of 0.6628 is smaller than the r 2 value of 0.7448 of
the log–linear model, you might be tempted to choose the latter model because of its high r 2

value. But for reasons already noted, we cannot do so. But if you do want to compare the
two r 2 values, you may proceed as follows:

1. Obtain l̂nYt from (7.8.9) for each observation; that is, obtain the estimated log value of
each observation from this model. Take the antilog of these values and then compute r 2 be-
tween these antilog values and actual Yt in the manner indicated by Eq. (3.5.14). This r 2

value is comparable to the r 2 value of the linear model (7.8.8).
2. Alternatively, assuming all Y values are positive, take logarithms of the Y values, ln Y.

Obtain the estimated Y values, Ŷt , from the linear model (7.8.8), take the logarithms of these
estimated Y values (i.e., ln Ŷt) and compute the r 2 between (ln Yt) and (ln Ŷt) in the manner
indicated in Eq. (3.5.14). This r 2 value is comparable to the r 2 value obtained from (7.8.9).

For our coffee example, we present the necessary raw data to compute the comparable
r 2’s in Table 7.2. To compare the r 2 value of the linear model (7.8.8) with that of (7.8.9), we first
obtain log of (Ŷt) [given in column (6) of Table 7.2], then we obtain the log of actual Y values
[given in column (5) of the table], and then compute r 2 between these two sets of values using
Eq. (3.5.14). The result is an r 2 value of 0.7318, which is now comparable with the r 2 value of
the log–linear model of 0.7448. Now the difference between the two r 2 values is very small.

On the other hand, if we want to compare the r 2 value of the log–linear model with the linear
model, we obtain l̂nYt for each observation from (7.8.9) [given in column (3) of the table], obtain
their antilog values [given in column (4) of the table], and finally compute r 2 between these an-
tilog values and the actual Y values, using formula (3.5.14). This will give an r 2 value of 0.7187,
which is slightly higher than that obtained from the linear model (7.8.8), namely, 0.6628.

Using either method, it seems that the log–linear model gives a slightly better fit.

EXAMPLE 7.2 (Continued)
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14Some authors would like to deemphasize the use of R2 as a measure of goodness of fit as
well as its use for comparing two or more R2 values. See Christopher H. Achen, Interpreting and
Using Regression, Sage Publications, Beverly Hills, Calif., 1982, pp. 58–67, and C. Granger and
P. Newbold, “R2 and the Transformation of Regression Variables,” Journal of Econometrics,
vol. 4, 1976, pp. 205–210. Incidentally, the practice of choosing a model on the basis of highest
R2, a kind of data mining, introduces what is known as pretest bias, which might destroy some
of the properties of OLS estimators of the classical linear regression model. On this topic, the
reader may want to consult George G. Judge, Carter R. Hill, William E. Griffiths, Helmut
Lütkepohl, and Tsoung-Chao Lee, Introduction to the Theory and Practice of Econometrics, John
Wiley, New York, 1982, Chap. 21.

Allocating R2 among Regressors

Let us return to our child mortality example. We saw in (7.6.2) that the two
regressors PGNP and FLR explain 0.7077 or 70.77 percent of the variation
in child mortality. But now consider the regression (7.7.2) where we
dropped the FLR variable and as a result the r 2 value dropped to 0.1662.
Does that mean the difference in the r2 value of 0.5415 (0.7077 − 0.1662) is
attributable to the dropped variable FLR? On the other hand, if you con-
sider regression (7.7.3), where we dropped the PGNP variable, the r2 value
drops to 0.6696. Does that mean the difference in the r2 value of 0.0381
(0.7077 − 0.6696) is due to the omitted variable PGNP?

The question then is: Can we allocate the multiple R2 of 0.7077 between
the two regressors, PGNP and FLR, in this manner? Unfortunately, we can-
not do so, for the allocation depends on the order in which the regressors
are introduced, as we just illustrated. Part of the problem here is that the
two regressors are correlated, the correlation coefficient between the two
being 0.2685 (verify it from the data given in Table 6.4). In most applied
work with several regressors, correlation among them is a common prob-
lem. Of course, the problem will be very serious if there is perfect collinear-
ity among the regressors.

The best practical advice is that there is little point in trying to allocate
the R2 value to its constituent regressors.

The “Game’’ of Maximizing R̄2

In concluding this section, a warning is in order: Sometimes researchers play
the game of maximizing R̄2, that is, choosing the model that gives the high-
est R̄2. But this may be dangerous, for in regression analysis our objective is
not to obtain a high R̄2 per se but rather to obtain dependable estimates of
the true population regression coefficients and draw statistical inferences
about them. In empirical analysis it is not unusual to obtain a very high R̄2

but find that some of the regression coefficients either are statistically in-
significant or have signs that are contrary to a priori expectations. Therefore,
the researcher should be more concerned about the logical or theoretical rel-
evance of the explanatory variables to the dependent variable and their sta-
tistical significance. If in this process we obtain a high R̄2, well and good; on
the other hand, if R̄2 is low, it does not mean the model is necessarily bad.14
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15Arther S. Goldberger, op. cit., pp. 177–178.

As a matter of fact, Goldberger is very critical about the role of R2. He has
said:

From our perspective, R2 has a very modest role in regression analysis, being
a measure of the goodness of fit of a sample LS [least-squares] linear regression
in a body of data. Nothing in the CR [CLRM] model requires that R2 be high.
Hence a high R2 is not evidence in favor of the model and a low R2 is not evidence
against it.

In fact the most important thing about R2 is that it is not important in the CR
model. The CR model is concerned with parameters in a population, not with
goodness of fit in the sample. . . . If one insists on a measure of predictive success
(or rather failure), then σ 2 might suffice: after all, the parameter σ 2 is the ex-
pected squared forecast error that would result if the population CEF [PRF] were
used as the predictor. Alternatively, the squared standard error of forecast . . . at
relevant values of x [regressors] may be informative.15

7.9 EXAMPLE 7.3: THE COBB–DOUGLAS PRODUCTION FUNCTION:
MORE ON FUNCTIONAL FORM

In Section 6.4 we showed how with appropriate transformations we can
convert nonlinear relationships into linear ones so that we can work within
the framework of the classical linear regression model. The various trans-
formations discussed there in the context of the two-variable case can be
easily extended to multiple regression models. We demonstrate transforma-
tions in this section by taking up the multivariable extension of the two-
variable log–linear model; others can be found in the exercises and in the
illustrative examples discussed throughout the rest of this book. The specific
example we discuss is the celebrated Cobb–Douglas production function
of production theory.

The Cobb–Douglas production function, in its stochastic form, may be
expressed as

Yi = β1 Xβ2
2i Xβ3

3i eui (7.9.1)

where Y = output
X2 = labor input
X3 = capital input
u = stochastic disturbance term
e = base of natural logarithm

From Eq. (7.9.1) it is clear that the relationship between output and
the two inputs is nonlinear. However, if we log-transform this model, we
obtain:
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16To see this, differentiate (7.9.3) partially with respect to the log of each X variable. There-
fore, ∂ ln Y/∂ ln X2 = (∂Y/∂X2)(X2/Y) = β2, which, by definition, is the elasticity of Y with re-
spect to X2 and ∂ ln Y/∂ ln X3 = (∂Y/∂X3)(X3/Y) = β3, which is the elasticity of Y with respect to
X3, and so on.

17Notice that in the Cobb–Douglas production function (7.9.1) we have introduced the sto-
chastic error term in a special way so that in the resulting logarithmic transformation it enters
in the usual linear form. On this, see Sec. 6.9.

ln Yi = ln β1 + β2 ln X2i + β3 ln X3i + ui

= β0 + β2 ln X2i + β3 ln X3i + ui

(7.9.2)

where β0 = ln β1.

Thus written, the model is linear in the parameters β0, β2, and β3 and is
therefore a linear regression model. Notice, though, it is nonlinear in the
variables Y and X but linear in the logs of these variables. In short, (7.9.2) is
a log-log, double-log, or log-linear model, the multiple regression counterpart
of the two-variable log-linear model (6.5.3).

The properties of the Cobb–Douglas production function are quite well
known:

1. β2 is the (partial) elasticity of output with respect to the labor input,
that is, it measures the percentage change in output for, say, a 1 percent
change in the labor input, holding the capital input constant (see exercise 7.9).

2. Likewise, β3 is the (partial) elasticity of output with respect to the
capital input, holding the labor input constant.

3. The sum (β2 + β3) gives information about the returns to scale, that is,
the response of output to a proportionate change in the inputs. If this sum
is 1, then there are constant returns to scale, that is, doubling the inputs will
double the output, tripling the inputs will triple the output, and so on. If the
sum is less than 1, there are decreasing returns to scale—doubling the inputs
will less than double the output. Finally, if the sum is greater than 1, there
are increasing returns to scale—doubling the inputs will more than double
the output.

Before proceeding further, note that whenever you have a log–linear
regression model involving any number of variables the coefficient of each of
the X variables measures the (partial) elasticity of the dependent variable Y
with respect to that variable. Thus, if you have a k-variable log-linear model:

ln Yi = β0 + β2 ln X2i + β3 ln X3i + · · · + βk ln Xki + ui (7.9.3)

each of the (partial) regression coefficients, β2 through βk, is the (partial)
elasticity of Y with respect to variables X2 through Xk.16

To illustrate the Cobb–Douglas production function, we obtained the
data shown in Table 7.3; these data are for the agricultural sector of Taiwan
for 1958–1972.

Assuming that the model (7.9.2) satisfies the assumptions of the classical
linear regression model,17 we obtained the following regression by the OLS
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TABLE 7.3 REAL GROSS PRODUCT, LABOR DAYS, AND REAL CAPITAL INPUT IN THE AGRICULTURAL
SECTOR OF TAIWAN, 1958–1972

Real gross product Labor days Real capital input
Year (millions of NT $)*, Y (millions of days), X2 (millions of NT $), X3

1958 16,607.7 275.5 17,803.7
1959 17,511.3 274.4 18,096.8
1960 20,171.2 269.7 18,271.8
1961 20,932.9 267.0 19,167.3
1962 20,406.0 267.8 19,647.6
1963 20,831.6 275.0 20,803.5
1964 24,806.3 283.0 22,076.6
1965 26,465.8 300.7 23,445.2
1966 27,403.0 307.5 24,939.0
1967 28,628.7 303.7 26,713.7
1968 29,904.5 304.7 29,957.8
1969 27,508.2 298.6 31,585.9
1970 29,035.5 295.5 33,474.5
1971 29,281.5 299.0 34,821.8
1972 31,535.8 288.1 41,794.3

Source: Thomas Pei-Fan Chen, “Economic Growth and Structural Change in Taiwan—1952–1972, A
Production Function Approach,” unpublished Ph.D. thesis, Dept. of Economics, Graduate Center, City University
of New York, June 1976, Table II.

*New Taiwan dollars.

18We abstain from the question of the appropriateness of the model from the theoretical view-
point as well as the question of whether one can measure returns to scale from time series data.

method (see Appendix 7A, Section 7A.5 for the computer printout):

l̂n Yi = −3.3384 + 1.4988 ln X2i + 0.4899 ln X3i

(2.4495) (0.5398) (0.1020)

t = (−1.3629) (2.7765) (4.8005)

R2 = 0.8890 df = 12

R̄2 = 0.8705
(7.9.4)

From Eq. (7.9.4) we see that in the Taiwanese agricultural sector for the
period 1958–1972 the output elasticities of labor and capital were 1.4988
and 0.4899, respectively. In other words, over the period of study, holding
the capital input constant, a 1 percent increase in the labor input led on the
average to about a 1.5 percent increase in the output. Similarly, holding
the labor input constant, a 1 percent increase in the capital input led on the
average to about a 0.5 percent increase in the output. Adding the two output
elasticities, we obtain 1.9887, which gives the value of the returns to scale
parameter. As is evident, over the period of the study, the Taiwanese agri-
cultural sector was characterized by increasing returns to scale.18
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FIGURE 7.1 The U-shaped marginal cost curve.

From a purely statistical viewpoint, the estimated regression line fits the
data quite well. The R2 value of 0.8890 means that about 89 percent of the
variation in the (log of) output is explained by the (logs of) labor and capi-
tal. In Chapter 8, we shall see how the estimated standard errors can be used
to test hypotheses about the “true” values of the parameters of the Cobb–
Douglas production function for the Taiwanese economy.

7.10 POLYNOMIAL REGRESSION MODELS

We now consider a class of multiple regression models, the polynomial
regression models, that have found extensive use in econometric research
relating to cost and production functions. In introducing these models, we
further extend the range of models to which the classical linear regression
model can easily be applied.

To fix the ideas, consider Figure 7.1, which relates the short-run marginal
cost (MC) of production (Y) of a commodity to the level of its output (X).
The visually-drawn MC curve in the figure, the textbook U-shaped curve,
shows that the relationship between MC and output is nonlinear. If we were
to quantify this relationship from the given scatterpoints, how would we go
about it? In other words, what type of econometric model would capture
first the declining and then the increasing nature of marginal cost?

Geometrically, the MC curve depicted in Figure 7.1 represents a parabola.
Mathematically, the parabola is represented by the following equation:

Y = β0 + β1 X + β2 X2 (7.10.1)

which is called a quadratic function, or more generally, a second-degree poly-
nomial in the variable X—the highest power of X represents the degree of
the polynomial (if X3 were added to the preceding function, it would be a
third-degree polynomial, and so on).
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The stochastic version of (7.10.1) may be written as

Yi = β0 + β1 Xi + β2 X2
i + ui (7.10.2)

which is called a second-degree polynomial regression.
The general kth degree polynomial regression may be written as

Yi = β0 + β1 Xi + β2 X2
i + · · · + βkXk

i + ui (7.10.3)

Notice that in these types of polynomial regressions there is only one
explanatory variable on the right-hand side but it appears with various pow-
ers, thus making them multiple regression models. Incidentally, note that if
Xi is assumed to be fixed or nonstochastic, the powered terms of Xi also
become fixed or nonstochastic.

Do these models present any special estimation problems? Since the
second-degree polynomial (7.10.2) or the kth degree polynomial (7.10.13) is
linear in the parameters, the β ’s, they can be estimated by the usual OLS or
ML methodology. But what about the collinearity problem? Aren’t the vari-
ous X’s highly correlated since they are all powers of X? Yes, but remember
that terms like X2, X3, X4, etc., are all nonlinear functions of X and hence,
strictly speaking, do not violate the no multicollinearity assumption. In
short, polynomial regression models can be estimated by the techniques
presented in this chapter and present no new estimation problems.

TABLE 7.4 TOTAL COST (Y ) AND OUTPUT (X )

Output Total cost, $

1 193
2 226
3 240
4 244
5 257
6 260
7 274
8 297
9 350

10 420

EXAMPLE 7.4

ESTIMATING THE TOTAL COST FUNCTION

As an example of the polynomial regression, consider
the data on output and total cost of production of a com-
modity in the short run given in Table 7.4. What type of
regression model will fit these data? For this purpose,
let us first draw the scattergram, which is shown in
Figure 7.2.

From this figure it is clear that the relationship be-
tween total cost and output resembles the elongated
S curve; notice how the total cost curve first increases
gradually and then rapidly, as predicted by the cele-
brated law of diminishing returns. This S shape of the
total cost curve can be captured by the following cubic or
third-degree polynomial:

Yi = β0 + β1 Xi + β2 X 2
i + β3 X 3

i + ui (7.10.4)

where Y = total cost and X = output.

Given the data of Table 7.4, we can apply the OLS
method to estimate the parameters of (7.10.4). But be-
fore we do that, let us find out what economic theory has
to say about the short-run cubic cost function (7.10.4).
Elementary price theory shows that in the short run the

(Continued)
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EXAMPLE 7.4 (Continued)

marginal cost (MC) and average cost (AC) curves of
production are typically U-shaped—initially, as output
increases both MC and AC decline, but after a certain
level of output they both turn upward, again the conse-
quence of the law of diminishing return. This can be seen
in Figure 7.3 (see also Figure 7.1). And since the MC and
AC curves are derived from the total cost curve, the
U-shaped nature of these curves puts some restrictions
on the parameters of the total cost curve (7.10.4). As a
matter of fact, it can be shown that the parameters of
(7.10.4) must satisfy the following restrictions if one is to
observe the typical U-shaped short-run marginal and
average cost curves:19

1. β0, β1, and β3 > 0

2. β2 < 0 (7.10.5)

3. β2
2 < 3β1β3

All this theoretical discussion might seem a bit te-
dious. But this knowledge is extremely useful when we
examine the empirical results, for if the empirical results
do not agree with prior expectations, then, assuming we
have not committed a specification error (i.e., chosen the

19See Alpha C. Chiang, Fundamental Methods of Mathematical Economics, 3d ed., McGraw-
Hill, New York, 1984, pp. 250–252.

FIGURE 7.3 Short-run cost functions.

wrong model), we will have to modify our theory or look
for a new theory and start the empirical enquiry all over
again. But as noted in the Introduction, this is the nature
of any empirical investigation.

Empirical Results

When the third-degree polynomial regression was fitted
to the data of Table 7.4, we obtained the following
results:

Ŷi =141.7667 + 63.4776Xi − 12.9615X 2
i + 0.9396X 3

i

(6.3753) (4.7786) (0.9857) (0.0591)

R2 = 0.9983

(7.10.6)
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FIGURE 7.2 The total cost curve.

(Continued)
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EXAMPLE 7.5

GDP GROWTH RATE, 1960–1985 AND RELATIVE PER CAPITA GDP,
IN 119 DEVELOPING COUNTRIES

As an additional economic example of the polynomial regression model, consider the follow-
ing regression results20:

ĜDPGi = 0.013 + 0.062 RGDP − 0.061 RGDP2

se = (0.004) (0.027) (0.033) (7.10.7)

R2 = 0.053 adj R2 = 0.036

where GDPG = GDP growth rate, percent (average for 1960–1985), and RGDP = relative
per capita GDP, 1960 (percentage of U.S. GDP per capita, 1960). The adjusted R2 (adj R2)
tells us that, after taking into account the number of regressors, the model explains only
about 3.6 percent of the variation in GDPG. Even the unadjusted R2 of 0.053 seems low. This
might sound a disappointing value but, as we shall show in the next chapter, such low R2’s
are frequently encountered in cross-sectional data with a large number of observations.
Besides, even an apparently low R2 value can be statistically significant (i.e., different from
zero), as we will show in the next chapter.

As this regression shows, GDPG in developing countries increased as RGDP increased,
but at a decreasing rate; that is, developing economies were not catching up with advanced
economies.21 This example shows how relatively simple econometric models can be used to
shed light on important economic phenomena.

*7.11 PARTIAL CORRELATION COEFFICIENTS

Explanation of Simple and Partial Correlation Coefficients

In Chapter 3 we introduced the coefficient of correlation r as a measure of
the degree of linear association between two variables. For the three-variable

20Source: The East Asian Economic Miracle: Economic Growth and Public Policy, A World
Bank Policy Research Report, Oxford University Press, U.K, 1993, p. 29.

21If you take the derivative of (7.10.7), you will obtain

dGDPG
dRGDP

= 0.062 − 0.122 RGDP

showing that the rate of change of GDPG with respect to RGDP is declining. If you set this de-
rivative to zero, you will get RGDP ≈ 0.5082. Thus, if a country’s GDP reaches about 51 percent
of the U.S. GDP, the rate of growth of GDPG will crawl to zero.

*Optional.

EXAMPLE 7.4 (Continued)

(Note: The figures in parentheses are the estimated
standard errors.) Although we will examine the statisti-
cal significance of these results in the next chapter, the
reader can verify that they are in conformity with the

theoretical expectations listed in (7.10.5). We leave it as
an exercise for the reader to interpret the regression
(7.10.6).
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22Most computer programs for multiple regression analysis routinely compute the simple
correlation coefficients; hence the partial correlation coefficients can be readily computed.

regression model we can compute three correlation coefficients: r1 2 (corre-
lation between Y and X2), r1 3 (correlation coefficient between Y and X3), and
r2 3 (correlation coefficient between X2 and X3); notice that we are letting the
subscript 1 represent Y for notational convenience. These correlation coeffi-
cients are called gross or simple correlation coefficients, or correlation
coefficients of zero order. These coefficients can be computed by the defi-
nition of correlation coefficient given in (3.5.13).

But now consider this question: Does, say, r1 2 in fact measure the “true”
degree of (linear) association between Y and X2 when a third variable X3

may be associated with both of them? This question is analogous to the fol-
lowing question: Suppose the true regression model is (7.1.1) but we omit
from the model the variable X3 and simply regress Y on X2, obtaining the
slope coefficient of, say, b1 2. Will this coefficient be equal to the true coeffi-
cient β2 if the model (7.1.1) were estimated to begin with? The answer
should be apparent from our discussion in Section 7.7. In general, r1 2 is not
likely to reflect the true degree of association between Y and X2 in the pres-
ence of X3. As a matter of fact, it is likely to give a false impression of the na-
ture of association between Y and X2, as will be shown shortly. Therefore,
what we need is a correlation coefficient that is independent of the influ-
ence, if any, of X3 on X2 and Y. Such a correlation coefficient can be obtained
and is known appropriately as the partial correlation coefficient. Concep-
tually, it is similar to the partial regression coefficient. We define

r1 2.3 = partial correlation coefficient between Y and X2, holding X3 constant

r1 3.2 = partial correlation coefficient between Y and X3, holding X2 constant

r2 3.1 = partial correlation coefficient between X2 and X3, holding Y constant

These partial correlations can be easily obtained from the simple or zero-
order, correlation coefficients as follows (for proofs, see the exercises)22:

r1 2.3 = r1 2 − r1 3r2 3√(
1 − r2

1 3

) (
1 − r2

2 3

) (7.11.1)

r1 3.2 = r1 3 − r1 2r2 3√(
1 − r2

1 2

) (
1 − r2

2 3

) (7.11.2)

r2 3.1 = r2 3 − r1 2r1 3√(
1 − r2

1 2

) (
1 − r2

1 3

) (7.11.3)

The partial correlations given in Eqs. (7.11.1) to (7.11.3) are called first-
order correlation coefficients. By order we mean the number of secondary
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subscripts. Thus r1 2.3 4 would be the correlation coefficient of order two,
r1 2.3 4 5 would be the correlation coefficient of order three, and so on. As
noted previously, r1 2, r1 3, and so on are called simple or zero-order correla-
tions. The interpretation of, say, r1 2.3 4 is that it gives the coefficient of corre-
lation between Y and X2, holding X3 and X4 constant.

Interpretation of Simple and Partial Correlation Coefficients 

In the two-variable case, the simple r had a straightforward meaning: It
measured the degree of (linear) association (and not causation) between the
dependent variable Y and the single explanatory variable X. But once we go
beyond the two-variable case, we need to pay careful attention to the inter-
pretation of the simple correlation coefficient. From (7.11.1), for example,
we observe the following:

1. Even if r1 2 = 0, r1 2.3 will not be zero unless r1 3 or r2 3 or both are zero.
2. If r1 2 = 0 and r1 3 and r2 3 are nonzero and are of the same sign, r1 2.3

will be negative, whereas if they are of the opposite signs, it will be positive.
An example will make this point clear. Let Y = crop yield, X2 = rainfall, and
X3 = temperature. Assume r1 2 = 0, that is, no association between crop yield
and rainfall. Assume further that r1 3 is positive and r2 3 is negative. Then, as
(7.11.1) shows, r1 2.3 will be positive; that is, holding temperature constant,
there is a positive association between yield and rainfall. This seemingly
paradoxical result, however, is not surprising. Since temperature X3 affects
both yield Y and rainfall X2, in order to find out the net relationship between
crop yield and rainfall, we need to remove the influence of the “nuisance”
variable temperature. This example shows how one might be misled by the
simple coefficient of correlation.

3. The terms r1 2.3 and r1 2 (and similar comparisons) need not have the
same sign.

4. In the two-variable case we have seen that r2 lies between 0 and 1. The
same property holds true of the squared partial correlation coefficients.
Using this fact, the reader should verify that one can obtain the following
expression from (7.11.1):

0 ≤ r2
1 2 + r2

1 3 + r2
2 3 − 2r1 2r1 3r2 3 ≤ 1 (7.11.4)

which gives the interrelationships among the three zero-order correla-
tion coefficients. Similar expressions can be derived from Eqs. (7.9.3) and
(7.9.4).

5. Suppose that r1 3 = r2 3 = 0. Does this mean that r1 2 is also zero? The
answer is obvious from (7.11.4). The fact that Y and X3 and X2 and X3 are
uncorrelated does not mean that Y and X2 are uncorrelated.

In passing, note that the expression r2
1 2.3 may be called the coefficient of

partial determination and may be interpreted as the proportion of the
variation in Y not explained by the variable X3 that has been explained
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by the inclusion of X2 into the model (see exercise 7.5). Conceptually it is
similar to R2.

Before moving on, note the following relationships between R2, simple
correlation coefficients, and partial correlation coefficients:

R2 = r2
1 2 + r2

1 3 − 2r1 2r1 3r2 3

1 − r2
2 3

(7.11.5)

R2 = r2
1 2 + (

1 − r2
1 2

)
r2

1 3.2 (7.11.6)

R2 = r2
1 3 + (

1 − r2
1 3

)
r2

1 2.3 (7.11.7)

In concluding this section, consider the following: It was stated previously
that R2 will not decrease if an additional explanatory variable is introduced
into the model, which can be seen clearly from (7.11.6). This equation states
that the proportion of the variation in Y explained by X2 and X3 jointly is the
sum of two parts: the part explained by X2 alone ( = r2

1 2) and the part not ex-
plained by X2 ( = 1 − r2

1 2) times the proportion that is explained by X3 after
holding the influence of X2 constant. Now R2 > r2

1 2 so long as r2
1 3.2 > 0. At

worst, r2
1 3.2 will be zero, in which case R2 = r2

1 2.

7.12 SUMMARY AND CONCLUSIONS

1. This chapter introduced the simplest possible multiple linear regres-
sion model, namely, the three-variable regression model. It is understood
that the term linear refers to linearity in the parameters and not necessarily
in the variables.

2. Although a three-variable regression model is in many ways an ex-
tension of the two-variable model, there are some new concepts involved,
such as partial regression coefficients, partial correlation coefficients, multiple
correlation coefficient, adjusted and unadjusted (for degrees of freedom) R2,
multicollinearity, and specification bias.

3. This chapter also considered the functional form of the multiple re-
gression model, such as the Cobb–Douglas production function and the poly-
nomial regression model.

4. Although R2 and adjusted R2 are overall measures of how the chosen
model fits a given set of data, their importance should not be overplayed.
What is critical is the underlying theoretical expectations about the model in
terms of a priori signs of the coefficients of the variables entering the model
and, as it is shown in the following chapter, their statistical significance.

5. The results presented in this chapter can be easily generalized to a
multiple linear regression model involving any number of regressors. But
the algebra becomes very tedious. This tedium can be avoided by resorting
to matrix algebra. For the interested reader, the extension to the k-variable
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