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5.9 REGRESSION ANALYSIS AND ANALYSIS OF VARIANCE

TABLE 5.3

In this section we study regression analysis from the point of view of the
analysis of variance and introduce the reader to an illuminating and com-
plementary way of looking at the statistical inference problem.

In Chapter 3, Section 3.5, we developed the following identity:

Yi-Y#+Ya-Are+Te (s

that is, T35 = ESS + R85, which decomposed the total sum of squares
{TSS] into two components: explained sum of squares (ESS) and residual
sum of squares (RS5). A study of these components of TSS is known as the
analysis of variance (ANOVA) from the regression viewpoint.

Associated with any sum of squares iz its df, the number of independent
observations on which it is based. TSS has n — 1 df because we lose 1 df in
computing the sample mean ¥. RSS has it — 2df. (Why?) (Note: This is true
anly for the two-variable regression model with the intercept & present.)
ESS has 1 df (again true of the two-variable case only), which follows from
the fact that ESS = A ¥« is a function of f; only, since ¥« is known.

Let us arvange the various sums of squares and their associated df in
Table 5.3, which is the standard form of the ADV table, sometimes called the
ANU:E! table. Given the entries of Table 5.3, we now consider the following
variable:

_ MsSof ESS

" M55 ol RSS

_ BI¥

Y E -2} (5.9.1)

_BELy
=257
T
If we assume that the disturbances i are normally distributed, which we
do under the CNLRM, and if the null hyvpothesis (Hy) is that #; =0, then i
can be shown that the F variable of (5.9.1) follows the F distribution with

AHOVATABLE FOR THE TWO-VARIABLE REGRESSION MODEL

Source of varialion a5 of mast
Due fo regression (B35 T pf= B 1 iyl
2
) . a .
Due o resichuals (ASS) T4 ne2 nE_E =i
T3 b n-1

*ES maans sum ol squans
Thaan sum of squares, wihich i5 obiained by dividing 55 by thoir of.
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1 df in the numerator and {r — 2} df in the denominator. (See Appendix 54,
Section 5A.3, for the proof. The general properties of the F distribution are
discussed in Appendix A. )

What use can be made of the preceding F ratio? It can be shown'® that

E(RY &)=’ +EY 4 (5.9.2)
and
=2
ELE _ paty= o (5.9.3)
H-2

iNote that fy and o2 appearing on the right sides of these equations are the
true parameters. ) Therefore, if #; is in fact zern, Egs. (5.9.2) and (5.9.3) bath
provide us with identical estimates of true o®. In this situation, the explana-
tory variable X has no linear influence on ¥ whatsoever and the entire vari-
ation in ¥ is explained by the random disturbances &;. If, on the other hand,
P is not zere, (5.9.2) and (3.9.3) will be different and part of the variation
in ¥ will be ascribable to X. Therefore, the F ratio of (2.9.1) provides a test
of the null hvpothesis Hy: f; = 0. Since all the quantities entering into this
equation can be obtained from the available sample, this F ratio provides a
test statistic to test the null hvpothesis that true # is zero. All that needs to
be done is to compute the F ratio and compare it with the eritical F value
obiained from the F tables at the chosen level of significance, or obtain the
p value of the computed F statistic.

To illustrate, let ws continue with our consumption-income example,
The ANOVA table for this example is as shown in Table 5.4. The computed
F value is seen to be 202,87, The p value of this F statistic corresponding
to | and & df cannot be oltained from the F table given in Appendix D, but
by using electronic statistical tables it can be shown that the p value is
L0001, an extremely small probability indeed. If vou decide 1o choose
the level-of-significance approach to hypothesis testing and fix o at 0.01, or
a | percent level, vou can see that the computed F of 20287 is obviously sig-
nificant at this level. Therefore, if we reject the mull hvpothesis that g2 = 0,
the probability of commiiting a Tvpe 1 error is very small. For all practical

AMOVA TABLE FOR THE CONSUMPTION-INCOME EXAMPLE

Source of varilion 25 df MSE

BEE2.TA
Due to regression (ES3]  BEE2TR 1 BEE2 T F—w
Due to residuals (RES) nmEyoow 42188 = 20247
T5E BAGO.LO &

BEar prool, see K. & Brownlee, Stenistica! Teary and Methodolmgy in Science and Engi-
weerng, John Wilsy & Sons, New York, 1560, pp. 278-280.
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purposes, our sample could not have come from a population with zevo 8
value and we can conclude with great confidence that X, income, does affect
¥, consumption expenditure.

Refer to Theorem 3.7 of Appendix 541, which states that the square of the
¢ value with & df is an F value with 1 df in the numerator and & df in the de-
nominator. For our consumption-income example, if we assume Hy: gy =10,
then from {3.3.2) it can be easily verified that the estimated ¢ value is 14.26.
This ¢ value has & di. Under the same null hvpothesis, the F value was 202.87
with 1 and & df. Hence (14.24)* = F value, except for the rounding errors.

Thus, the t and the F tests provide us with two alternative but comple-
mentary ways of testing the null hypothesiz that g, = 0. If this is the case,
why not just relv on the ¢ test and not worry about the F test and the ac-
companving analysis of variance? For the two-variable model there really is
no need to resort to the F test. But when we consider the topic of multiple
regression we will see that the F test has several interesting applications that
make it a very useful and powerful method of testing statistical hypotheses.

510 APPLICATION OF REGRESSION ANALYSIS:
THE PROBLEM OF PREDICTION

On the basis of the sample data of Table 3.2 we obtained the following sam-
ple regression:

¥ = 24.4545 4 0.5091X, (3.6.2)

where ¥ is the estimator of true E(Y;) corresponding to given X. What use
can be made of this historical regression? One use is to "predict” or "fore-
cast” the future consumption expenditure ¥ corresponding to some given
level of income X Now there are two kinds of predictions: (1) prediction of
the conditional mean value of ¥ corresponding to a chosen X, say, X;, that
is the point on the population regression line itsell (see Figure 2.2), and
{2} prediction of an individual ¥ value corresponding to Xo. We shall call
these two predictions the mean prediction and individual prediction.

Mean Prediction™
To fix the ideas, assume that X; = 100 and we want to predict E(Y | X; = 100),
Now it can be shown that the historical regression (3.6.2) provides the point
estimate of this mean prediction as follows:
¥y = fy + f Xy
= 244545 + 05091100 (5.10.1)
= 753645

"For the proofs of the various statemenis made, see App. 34, Sec, SA.4.
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where ¥j = estimator of E(Y | Xa). It can be proved that this point predictor
is a best linear unhiased estimator (BLUE).

Since ¥} is an estimator, it is likely to be different from its true value. The
difference hetween the two values will give some idea about the prediction
or forecast emor. To assess this error, we need to find out the sampling
distribution of ¥5. Tt is shown in Appendix 5A, Section 344, that ¥ in
Eq. (5.10.1} is normally distributed with mean (# + f2Xo) and the variance
is given by the following formula:

Pyt x}l] (5.10.2)

var:m=u1[5+ﬂ_

Bv replacing the unknown o by its unbiased estimator 4%, we see that the
varizble

- Yo — () + frXo)

- (5.10.3)
selk)

follows the r distribution with # — 2 df. The r distribution can therefore be
used to derive confidence intervals for the true E{Ys | Xo) and test hyvpothe-
ses about it in the usual manner, namely,

Pt‘[.él +.ﬁ1,-'l'u—i'u.u ﬂ!{f’u} <+ faXo < i+ AN+ se(f))=1-u

(5.10.4)

where se{¥p) is obtained from (5.10.2).
For our data (see Tahle 3.3),

4 I il —17mf
var {}'E.l_all.lﬁg[ﬁ+ WJ

= 104750
and

se (1) = 32366

Therefore, the 95% confidence interval for true E(Y | Xo) = i + f2Xo is given
by

T5.3645 — 230603.2366) < E(¥, | X = 1000 < 753645 + 2.306(3.2366)

that is,

£7.9010 < E(Y| X = 100) < 82.8381 (5.10.5)
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Thus, given X; = 100, in repeated sampling, 95 out of 100 intervals like
{5.10.5) will include the true mean value; the single best estimate of the true
mean value is of course the point estimate 75,3645,

If we obtain 95% confidence intervals like (5.10.5) for each of the X val-
ues given in Table 3.2, we obtain what is known as the confidence interval,
or confidence band, for the population regression function, which is
shown in Figure 5.6,

Individual Prediction

If our interest lies in predicting an individual ¥ value, Y5, corresponding to
a given X value, say, Xa, then, as shown in Appendix 5, Section 5A4.3, a best
lingar unbiased estimator of ¥j is also given by (5.10.1), bt iis variance is as

follows:
. ' 1 (X -XP
var(¥, - ¥,) = HY, - 1 =|:r‘"[] +-+ %!_] (5.10.6)

It can be shown further that ¥ also follows the normal distribution with
mean and variance given by (3.10.1) and (5.10.8), respectively. Substituting &
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for the unknown 2, it follows that

. Wn-%
T se(Yy - X))

also follows the 1 distribution. Therefore, the ¢ distribution can be used 10
draw inferences about the true ¥5. Continuing with our consumption-income
example, we see that the point prediction of ¥; is 753.3645, the same as that
of ¥, and its variance is 52,6349 (the reader should verify this calculation).
Therefore, the 95% confidence interval for ¥y comesponding to Xy = 100 is
seen 1o be

(58.6345 = ¥y | Xo = 100 < 92.0945) (5.10.7)

Comparing this interval with (3.10.5), we see that the confidence interval
for individual ¥; is wider than that for the mean value of ¥y, (Why?) Com-
puting confidence intervals like (5.10.7) conditional upon the X values given
in Table 3.2, we obtain the 95% confidence band for the individual ¥ values
corresponding to these X values. This confidence band along with the confi-
dence band for ¥ associated with the same X% is shown in Figure 5.6,

Motice an important feature of the confidence bands shown in Figure 5.6.
The width of these bands is smallest when X5 = X, (Whv?) However, the
width widens sharply as X; moves away from X, (Why?) This change would
suggest that the predictive ability of the Mistorical sample regression line
falls markedly as X departs progressively from X. Therefore, one should
exercise great caution in "extrapolating” the historical regression line
to predict E(Y | Xo) or ¥; associated with a given X; that is far removed
from the sample mean X.

5.11 REPORTING THE RESULTS OF REGRESSION ANALYSIS

There are various ways of reporting the results of regression analysis, but
in this text we shall use the following format, emploving the consumption-
income example of Chapter 3 as an illustration:

¥ =244545 4+ 05001

se = (6.4138) (0.0357) = 0.3621

1= (3.E128) (14.2605) df=#
p=(0002571)  (D000ODO289)  F,,=20287

(5.10.1)

In Eq. {5.11.1) the figures in the first set of parentheses are the estimated
standard ervors of the regression coefficients, the figures in the second set
are estimated 1 values computed from (5.3.2) under the null hypothesis that
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the true population value of each regression coefficient individually is zero
feg., 38128 = 24 4545 - 6.4133), and the figures in the third set are the
estimated p values, Thus, for & df the probability of obtaining a ¢ value of
38128 or greater is 0.0026 and the probability of olaining a ¢ value of
14.2605 or larger is about 0.0000003.

By presenting the p values of the estimated t coefficients, we can see at
once the exact level of significance of each estimated 1 value. Thus, under
the null hypothesis that the true population intercept value is zero, the
exact probability (i.e., the pvalue) of obtaining a f value of 3.8128 or greater
is only about 0.0026. Therefore, if we reject this null hvpothesis, the proba-
bility of our committing a Tvpe 1 error is about 26 in 10,000, a very small
probability indeed. For all practical purposes we can sav that the troe pop-
ulation intercept is different from zero. Likewise, the p value of the esti-
mated slope coelficient is zero for all practical purposes. Il the true MPC
were in fact zern, our chances of ohtaining an MPC of 0.5091 would be
practically zero. Hence we can reject the mull hvpothesis that the true MPC
is zera.

Earlier we showed the imtimate connection between the F and ¢ statistics,
namely, Fi i =17, Under the null hypothesis that the true f: =0, (5.11.1)
shows that the F value is 202,87 (for | numerator and 8 denominator dfy
and the ¢ value is about 14.24 (8 dfy; as expected, the former value is the
square of the latter value, except for the roundolf errors. The ANOVA table
for this problem has already been discussed.

512 EVALUATING THE RESULTS OF REGRESSION AMALYSIS

In Figure 1.4 of the Intraduction we sketched the anatomy of econometric
maodeling. Now that we have presented the results of regression analysis of
our consumption-income example in (3.11.1), we would like to question the
adeguacy of the fitted model. How “good” is the fitted model? We need some
criteria with which to answer this question.

First, are the signs of the estimated coefficients in accordance with theo-
retical or prior expectations? A priori, 2, the marginal propensity to con-
sume (MPC) in the consumption function, should be positive. In the present
example it is. Second, if theory savs that the relationship should be not only
positive but also statistically significant, is this the case in the present appli-
cation? As we discussed in Section 5.11, the MPC is not only positive but
also statistically significantly different fram zera: the p value of the esti-
mated ¢ value is extremely small. The same comments apply about the inter-
cept coefficient. Third, how well does the regression model explain variation
in the consumption expenditure? One can use r* to answer this question. In
the present example r? is about 0.96, which is a very high value considering
that r* can be at most 1.

Thus, the model we have chosen for explaining consumption expenditure
behavior seems quite good. But before we sign off, we would like to find out
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whether our model satisfies the assumptions of CNLEM. We will not look at
the various assumptions now because the model is patently so simple. But
there is one assumption that we would like to check, namely, the normality
of the disturbance term, u;. Recall that the ¢ and F tests used before require
that the errar term follow the normal distribution. Otherwise, the testing
procedure will not be valid in small, or finite, samples.

Although zeveral tests of normality are discussed in the literature, we will
consider just three: (1) histogram of residuals; (2} normal probability plat
({MPP), a graphical device; and {3) the Jarque-Bera test.

Histogram of Residuals. A histogram of residuals is a simple graphic
device that is used to leam something about the shape of the PDF of a ran-
dom variable, On the horizontal axis, we divide the values of the variable
ol interest (e.g., OLS residuals) into suitable intervals, and in each class
interval we erect rectangles equal in height to the number of observations
{i.e., Irequency) in that class interval. If vou mentally superimpose the bell-
shaped novmal distribution curve on the histogram, vou will get some idea
as to whether novmal (PDF) approximation mav be appropriate. A concrete
example is given in Section 5.13 (see Figure 5.8). It is always a good practice
to plot the histogram of the residuals as a rough and ready method of test-
ing for the normality assumption.

Normal Probability Plot. A comparatively simple graphical device 1o
study the shape of the probability density function (PDF) of a random vari-
able is the normal probability plot (NPP) which makes use of normal
probability paper, a specially designed graph paper. On the horizontal, or
x, axis, we plot values of the variable of interest (say, OLS residuals, &4}, and
on the vertical, or v, axis, we show the expected value of this variable if it
were normally distributed. Therefore, if the variable is in fact from the
normal population, the NPP will be approximately a straight line. The NPP
of the residuals from our consumption-income regression is shown in Fig-
wre 5.7, which iz obtained from the MINITAE software package, version 13.
&g moted earlier, if the fitted line in the NPP is approximately a straight
ling, one can conclude that the variable of interest is normally distributed.
In Figure 5.7, we see that residuals from our illustrative example are ap-
prozimately normally distributed, because a straight line seems to fit the
data reasonably well.

MINITAB also produces the Anderson-Darling normality test, known
as the A2 statistic. The underlving null hvpothesis is that the variable under
consideration is normally distributed. As Figure 5.7 shows, for our example,
the computed A* statistic is 0.394. The p value of obtaining such a value
of A* is 0.305, which is reasonably high. Therefore, we do not reject the
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hypothesis that the residuals from our consumption-income example are
normally distributed. Incidentally, Figure 5.7 shows the parameters of the
{normal} distribution, the mean is approximately 0 and the standard devia-
tion is about &.12.

Jarque-Bera (JB) Test of Normality.™ The JB test of normality is an
asvmptotic, or large-sample, test. It is also based on the OLS residuals. This
test first compuies the skewness and kurtosis (discussed in Appendix A)
measures of the OLS residuals and uses the following test statistic:

[K—SF}

5121
24 ( }

ot
IB=u|—
”[ﬁ +

where n = sample size, § = skewness coefficient, and K = kurtosis coeffi-
cient. For a normally distributed variable, 5 =0 and K = 3. Therefare, the
IB test of normality is a test of the joint hypothesis that 5 and K are 0 and 3,
respectively. In that case the value of the JB statistic is expected to be 0.
Under the null hypothesis that the residuals are normally distributed,
Jarque and Bera showed that asymiprotically (Le., in large samples) the JB
statistic given in (5,020} follos the chi-square distribuition with 2 40 IF the

computed pvalue of the JB statistic in an application is sufficiently low,
which will happen if the value of the statistic is verv different from 0, one

can reject the hvpothesis that the residuals are normally distributed, But if

*gee C. AL Jargue and A K- Bera, “A Test For Normality of Observations and Regression
Residuals,” Inrenmnional Sraristical Seview, vol. 35, 1987, pp. 183172,
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the p value is reasonably high, which will happen if the value of the statistic
is close to zero, we do not reject the normality assumption.

The sample size in our consumption-income example is rather small.
Hence, strictly speaking one should not use the IB statistic. If we mechani-
callv apply the JB formula to our example, the IB statistic turns out to be
0.7769. The p value of obtaining such a value from the chi-square distribu-
tion with 2 df is about 0.68, which is quite high. In other words, we may not
reject the normality assumption for our example. Of course, bear in mind
the warning about the sample size.

Other Tests of Model Adequacy

Remernber that the CNLRM makes many more assumptions than the nor-
mality of the error term. As we examine econometric theory further, we will
consider several tests of model adequacy (see Chapter 13). Until then, keep
in mind that our regression modeling s based on several simplifyving as-

sumptions that may not hold in each and every case.

A CONCLUDING EXAMPLE

Ll us redurn to Example 3.2 about food expandiure n
India. Using the data given in [3.7.2) and adapting the
fomat of {5.11.1), we obiain the following expandiure
equatian:

FocdExp,= S4.2087 4 04368 TolalExp,

5o - (BOBSEY}  0.0703)
1= (1B524) [BETTO) s
B (00685} (0.0000
Fa 00608 di-83

Fim= 311004 (pvake = 0.0000)

whese * denotas extremely small.

Firsl, let us emprel tis regression. As epecied,
thare is a posife relalionship betwsen axpendiune on
food and |otal mpendiura. If ntal ependiune went up by
& rupse, on average, expendilure on food increased by
about 44 pasa. ¥ tolal expendiure were 2em, the average
eaxpendiiure on food would be about 54 rupees. O coursa,
this mechanical merprelation of the inbercept may nol
make much econamic sense, The < value of abaut 0,37
means thal 37 percent of the vanaiion n food expenditure
is explained by |otal experdiura, & proay for income.

Supposa we want fo tast the nul hypothesis that
there is mo relationship betwsen food expenditee and
fortal expentiture, that is, he e slope coefficient i, = 0.
The estimated valua af & is 0.4368, 1 the null hypothesis

wens true, whal is the probability of oblaining a value of
(.43687 Undar the null hypalhesis, we absare fom
[B.12:2) that the { value is 58770 and the g valee of ob-
{aining such a ¢ walue & practically zerm. In offer words,
we can reject fhe nul hypothesis resoundingly. But sup:-

posa the null hypathesis were that i = 0.6, Mow whai?
Lising the f lest we obain:

(.4360 - 5

—FE {.80M

The probatility of chtaining a || of 080T is graater than
20 paroant. Henoa we do not reject fie hypathesis that
the e fi; is 0.5,

Metice that, under the null hypothesis, $e e gope
coefficient i zeso, the Fvalhee is 31,1034, a5 shown in
[B.12:2). Under the same mull hypothesis, we abtained a
f value of 56770, H we square tis value, we oblain
311024, which is aboul fhe same as the Fvalue, again
showing the dose relafionship betwean the and the F
statistic. {Nole: The numerstor &f for the £ slabstc must
be 1, which is the case here.)

Using the aslimated residuals from the regression,
what can we say aboul the probability disirbution of
the errar term® The information & ghven in Figure 5.8,
A the fiqure shows, the residuals fram the tood axpen-
diture regression seem to be symmedncally disirbutad
Applcation of the Jarque-Bera test shows that the JB
statistic is sboul (L2876, ard the prabiabilty of abtaming
such a stalislic under the normality assumptian i abaut

{ Continued)
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A CUOMULULHMNG EXAMPLE  (Confinued|
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FIGURE 6.8 HAesduals from the food expenditure regression.
BB percent. Therafore, we do not reject the hypothesis We leava it (o the reader to eslablish confidence in-

that tha errar lerms are rammally distribeted. Bt keep in - lervals for the two regression coeffidents as well as o
mind that the sampla sioe of 55 chservalions may notbe  cbiain the normal probability plol and do mean and indi-
large enaugh. viduz predictions.




