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TWO-VARIABLE
REGRESSION: INTERVAL
ESTIMATION AND
HYPOTHESIS TESTING

Beware of testing tog many hypotheses; the more you torbare the data, the more
likely they wre Lo conless, but confession obtained under duress may not be admis
sible in the court of scientilic opinion.”

As pointed out in Chapter 4, estimation and hvpothesis testing constitute
the two major branches of classical statistics. The theory of estimation con-
sists of two parts: point estimation and interval estimation. We have dis-
cussed point estimation thoroughly in the previous two chapters where we
introduced the OLS and ML methods of point estimation. In this chapter we
first consider interval estimation and then take up the topic of hypothesis
testing, a topic intimately related to interval estimation.

5.1 STATISTICAL PREREQUISITES

Before we demanstrate the actual mechanics of establishing confidence in-
tervals and testing statistical hypotheses, it is assumed that the reader is fa-
miliar with the fundamental concepts of probahility and statistics. Although
not a substitute for a basic course in statistics, Appendix A provides the
essentials of statistics with which the reader should be totally familiar
Key concepts such as probability, probability distributions, Type 1 and
Type I ervors, level of significance, power of a statistical test, and
confidence interval are crucial for understanding the material covered in
this and the following chapters.

'Sitephen M. Stigler, “Testing Hypothesis or Pittiing Models? Anather Look at Mass Extinc-
tions,” in Matthesw H. Mitecki and Antond Hofman, eds., Newal Madels in Biology, Oxford
University Press, Ouford, 1987, p 148,
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5.2 INTERVAL ESTIMATION: SOME BASIC IDEAS

To fix the ideas, consider the hypothetical consumption-income example
of Chapter 3. Equation (3.6.2) shows that the estimated marginal propensity
to consume (MPC) & is 0.5091, which is a single (point) estimate of the
unknown population MPC ;. How reliable is this estimate? As noted in
Chapter 3, because of sampling fluctuations, a single estimate is likely to
differ from the true value, although in repeated sampling its mean value is
expected to be equal to the true value. [Note: E(f) = fz.] Now in statistics
the reliability of a point estimator is measured by its standard error. There-
fore, instead of relying on the point estimate alone, we may construct an
interval around the point estimator, say within two or three standard errors
on either side of the point estimator, such that this interval has, say, 95 per-
cent probability of including the true parameter value, This is roughly the
idea behind interval estimation.

_ To be more specific, assurne that we want to find out how “close” is, say,
fz to fio. For this purpose we trv to find out two positive numbers § and «,
the latter lving between 0 and 1, such that the probability that the random
interval {f; — &, f; + §) contains the true fs is 1 — . Svmbolically,

Prifi-b<heh+il=1-u {(5.2.1)

Such an interval, if it exists, is known as a confidence interval: | - is
known as the confidence coefficlent; and o (0 = = 1) is known as the
level of significance.” The endpoints of the confidence interval are known
as the confidence limits (also known as critical values), fiz — & being the
lower confidence limit and f; + § the upper confidence limir. In passing,
note that in practice & and 1 — & are often expressed in percentage forms as
100 and 100{] — &) percent.

Equation (3.2.1) shows that an interval estimator, in contrast to a
point estimator, is an interval constructed in such a manner that it has a
specified probability 1 — w of including within its limits the true value of the
parameter. For example, if o =0.05, or & percent, (5.2.1) would read: The
probability that the (random) interval shown there includes the true & is
0.95, or 95 percent. The interval estimator thus gives a range of values
within which the true f; may lie.

It is very important to know the following aspects of interval estimation:

1. Equation {5.2.1) does not sav that the probability of £ lving between
the given limits is | —w. Since #&, although an unknown, is assumed to be
some fixed number, either it lies in the interval or it does not. What (3.2.1)

*Also knovn as the probability of committing a Type 1 erros. A Tipe | error conststs in
rejecting o true hypothesis, whereas a Tipe Il ervor cansists in scoepting a false hypothesis.
{This topic is disoussed mave fully in App. A.) The symbal @ s alio known as the slre of the
{siatlstical) tesi.
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states is that, for the method described in this chapter, the probability of
constructing an interval that contains f is | —a.

2, Theinterval (5.2.1) is a random interval; that is, it will vary from one
sample to the next because it is based on f2, which is random. (Why?)

3. Since the confidence interval is random, the probability statements
attached fo it should be understond in the long-rnun sense, that is, repeated
sampling. More specifically, (5.2.1) means: If in repeated sampling confi-
dence intervals like it are constructed a great many times on the | — & prob-
ability basis, then, in the long run, on the average, such intervals will enclose
in | — & of the cases the true value of the parameter. )

4. Asnoted in 2, the interval (5.2.1) is random =0 long as #, is not known,
But once we have a specific sample and ance we abiain a specific numerical
value of #, the interval (3.2.1) is no longer random; it is ficed. In this case,
we cannot make the probabilistic statement (5.2.1); that is, we cannot say
that the probability is | — o that a given fired interval includes the true f2. In
this situation fz is either in the fixed imerval or outside it. Therefore, the
probability is either 1 or 0. Thus, fer our hypothetical consumption-income
example, if the 95% confidence interval were obtained as (0.4268 < §; =
0.5914}, az we do shortly in (5.3.9), we cannot sav the probability is 93%
that this interval includes the true f:. That probability is either 1 or 0.

How are the confidence intervals constructed? From the preceding dis-
cussion one may expect that if the sampling or probability distributions
of the estimators are known, one can make confidence interval statements
such as (5.2.1). In Chapter 4 we saw that under the assumption of normal-
ity of the disturbances w; the OLS estimators fy and f; are themselves
normally distributed and that the OLS estimator 4° is related to the »* (chi-
sguare] distribution. It would then seem that the task of constructing confi-
dence intervals is a simple one. And it is!

5.3 CONFIDEMNCE INTERVALS FOR REGRESSION
COEFFICIEMNTS 84 AND g

Confidence Interval for f;

It was shown in Chapter 4, Section 4.3, that, with the normality assump-
tion for &, the OLS estimators # and & are themselves normally distrib-
uted with means and variances given therein. Therefore, for example, the
variable

_ﬁ—ﬁ

s fiz)
G-l TE

e}

(5.3.1)
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as noted in (4.3.6), is a standardized normal variable. It therefore seems that
we can use the normal distribution to make probabilistic statements about f;
provided the true population variance o is known. If o is known, an impaor-
tant property of a normally distributed variable with mean p and variance o
is that the area under the normal curve between i £ o is about 63 percent,
that between the limits £ 2o is about 95 percent, and that between i + 39
is about 99.7 percent.

But #* is rarely known, and in practice it is determined by the unbiased
estimator a*. If we replace o by &, (5.3.1) may be written as

B — estimator — parameter

i — = — -
self)  estimated standard ervor of estimator

) — (5.3.2)
(fz - #::',I,"Exf

e}

where the se () now refers to the estimated standard error: It can be shown
{see Appendix BA, Section 3A.2) that the ¢ variable thus defined follows the ¢
distribution with i — 2 df. [Note the difference between (3.3.1) and (5.3.21.]
Therefore, instead of using the normal distribution, we can use the ¢ distri-
hution to establish a confidence interval for 1 as follows:

Pri-t,p=i<iy)=1-u (5.3.3)

where the f value in the middle of this double inequality is the ¢ value given
by (5.3.2) and where £, is the value of the f variable obtained from the ¢
distribution for o2 level of significance and » — 2 dF; it is often called the
critical f value at &/ 2 level of significance. Substitution of (3.3.2) into (3.3.3)
vields

Pr l-:.,,-‘ < "’ P ruﬂ] I (5.3.4)
Rearranging (5.3.4), we obtain

Prifi—tpself) <pr=hr+ipse(fo)]=1-e (5.3.5)°

"5 awihors prefer toowrite (5.5 with the df explicitly indicated, Thus, they would write

Prflz = fin-zia2 52} = o 2 fa & g se (] = 1 =t

But for simplicity we will stick taour notation; the context clarifies the appropriate df invohed.
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Equation (5.3.5) provides a 100{] — &) percent confidence interval for 4,
which can be written more compactly as

10001 — )% confidence interval for f:

fir + L2 se(fa) (5.3.6)
Arguing analogously, and using (4.3.11 and (4.3.2), we can then write:
Prif—tpse(f)p s h+tpse@ll=1-¢ (537

o, more compactly,

10001 — &)% confidence interval for £
B £ pse(f) (5.3.8)

Motice an important feature of the confidence intervals given in (5.3.6)
and (5.3.8): In both cases the width of the confidence interval is proportional
i the stamdard eevor of the estimaior. That is, the larger the standard error,
the larger is the widih of the confidence interval. Put differently, the larger
the standard error of the estimator, the greater is the uncertainty of esti-
mating the true value of the unknown parameter. Thus, the standard error
of an estimator is often described as a measure of the precision of the esti-
mator, i.e., how precisely the estimator measures the true population value,

Returning to our illustrative consumption-income example, in Chapter 3
{Section 3.6) we found that fa = 0.5091, se(fa) = 0.0357, and df = 8. If we
assume ¢ = 5%, that is, 95% confidence coefficient, then the 1 table shows
that for & df the critical 1, ; = t;0: = 2.306. Substituting these values in
{5.3.5), the reader should verify that the 95% confidence interval for g, is as
fallows:

04268 = fr = 05914 (5.3.9)
O, wsing (5.3.6), it is
0.5041 £ 2.306(0.0357)
that is,
0.5091 + 0.0823 (5.3.10)

The interpretation of this confidence interval is: Given the confi-
dence coefficient of 93%, in the long run, in 95 out of 100 cases intervals like
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(04268, 0.5914) will contain the true f2. But, as warned earlier, we cannot
say that the probability is 95 percent that the specific interval (04263 1o
0.5914) contains the true f; because this interval is now fixed and no longer
random; therefore, i either lies in it or does not: The probability that the
specified fived interval includes the true # is therefore 1 ar 0.

Confidence Interval for 4

Faollowing (5.3.7), the reader can easily verify that the 95% confidence inter-
val for £y of our consumption-income example is

96643 < § < 39.2448 (5.3.11)
Or, using (5.3.3), we find it is

244545 £ 2.306(6.41338)
that is,

244545+ 14.7902 (5.3.12)

Again vou should be careful in interpreting this confidence interval. In
the long run, in 95 out of 100 cases intervals like (5.3.11) will contain the
true fy: the probability that this particular fixed interval includes the true §,
is either | or 0.

Confidence Interval for §; and £ Simultaneously

There are occasions when one needs to construct a joint corfidence interval
for f; and #; such that with a confidence coefficient {1 — ), sav, 95%, that in-
terval includes fr and f simultaneously. Since this topic is involved, the in-
terested reader may want to consult appropriate veferences.* We will touch
an this topic briefly in Chapters & and 10,

54 CONFIDEMCE INTERVAL FOR o*

As pointed out in Chapter 4, Section 4.3, under the normality assumption,
the variable

i=n-25 (5.4.1)
p

Fur an pocessible disoussion, see Jahin Neter, William Wosserman, and Michael H. Kuiner,
Applied Livenr Repression Models, Richard . Inwan, Homesacd, 11, 1983, Chap. 5
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follows the ¢ distribution with n — 2 df.* Therefore, we can use the ¢* dis-
tribution to establish a confidence interval for #*
Privi p=x Sapg)=1-u (5.4.2)
where the x* value in the middle of this double inequality is as given by (5.4.1)
and where g and 3}, are two values of y* (the eritical z* values) ob-
tained from the chi-square table for v — 2 df in such a manner that they cut
off 100i,2) percent tail areas of the ¥* distribution, as shown in Figure 5.1,
Substituting ¥* from (5.4.1) into (3.4.2) and rearranging the terms, we
obiain

at it
Priln-2) 4 =a” 2n-2)4—|=1-u (5.4.3)
7! Kl_gg2

which gives the 1001 — % confidence interval for o2,

Tor illustrate, consider this example. From Chapter 3, Section 3.6, we ob-
tain #* = 42.1591 and df = 8. If & is chosen at 5 percent, the chi-square table
for & df gives the following critical values: yj .. = 17.5346, and ;7. =
2.1797. These values show that the probability of a chi-square value exceed-
ing 17.5346 is 2.5 percent and that of 2.1797 is 97.5 percent. Therefore, the
interval between these two values is the 95% confidence interval for §2, as
shown diagrammatically in Figure 5.1, {(Note the skewed characteristic of
the chi-square distribution. )

*For proo, see Rabert V. Hogg and Allen T. Craig, Jotmduictian io Mathemaiical Statisics
Id ed., Macrillan, New York, 1965, p. 144,
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Substituting the data of our example into (5.4.3), the reader should verify
that the 95% confidence interval for o is as follows:

192347 < o’ < 154.7336 (5.4.4)

The interpretation of this interval is: If we establish 95% confidence
limits on o* and if we maintain a prior that these limits will include true o2,
we shall be right in the long run 95 percent of the time.



