55 HYPOTHESIS TESTING: GENERAL COMMENTS

Having discussed the problem of point and interval estimation, we shall now
consider the topic of hypothesis testing. In this section we discuss briefly
same general aspects of this topic; Appendix A pives some additional detals

The problem of statistical hypothesis testing may be stated simply as fol-
lows: Is a given obsevarion or fisding comparible with some stated hypothe-
sis of iot? The word “compatible,” as used here, means “sufficiently” close
to the hypothesized value so that we do not reject the stated hvpothesis,
Thus, if some theory or prior experience leads us to believe that the true
slape coefficient f; of the consumption-income example is unity, is the ab-
served fa = 0.5090 obtained from the sample of Table 3.2 consistent with
the stated hypothesis? IF it is, we do not reject the hvpothesis; otherwise, we
may reject it.

In the language of statistics, the staied hypothesis is known as the null
hypothesis and is denoted by the symbol F. The null hypothesis is usu-
ally tested against an alternative hypothesis (also known a5 maintained
hypothesis) denoted by H), which may state, for example, that trug f; is
different fram unity. The alternative hypothesis may be simple or compos-
fte.® For example, Hy: f = 1.5 is a simple hypothesis, but B fy # 1.5 isa
composite hypothesis.

The theory of hvpothesis testing is concerned with developing rules or
procedures for deciding whether to reject or not reject the null hypothesis.
There are two miittially complementary approaches for devising such rules

namely, confidence interval and test of significance. Both these ap-
proaches predicate that the variable (siatistic or estimator) under consider-

ation has some probability distribution and that hypothesis testing involves
making statements or assertions about the value(s) of the parameter(s) of
such distribution. For example, we know that with the normality assump-
tion f is normally distributed with mean equal to f and variance given by
(4.3.5). 1f we hypothesize that 2 = 1, we are making an assertion about one

*A statistical bvpothesis s called a simple hypothesks if it specifies the precise value(s)

of the parameter(s) of o probability density function; otherwise, it is called @ composdte hy:
pothesls. Far example, in the normal pdfl:l.wm &ap| ;II:.T alfe B, o we nssen thai

Hyj= 15 and a = 2, it s a simple hvpothesls; but if H:p = 13 and & = 13,1t s & compasite
hypothests, hecause the standard deviation does not have o specific value,
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of the parameters of the normal disiribution, namely, the mean. Most of the
statistical hypotheses encountered in this text will be of this type—making
assertions about one or more values of the parameters of some assumed
probability distribution such as the normal, F, ¢, or ¥*. How this is accom-
plished is discussed in the following two sections.

5.6 HYPOTHESIS TESTING:
THE CONFIDENCE-INTERVAL APPROACH

Tero-Sided or Two-Tail Test

T illustrate the confidence-interval approach, once again we revert to the
consumption-income example. As we know, the estimated marginal propen-
sity 1o consume (MPC), &, is 0.5091. Suppose we postulate that

Hy:fia =03
H|f.|51 Ef-' 0.3

that is, the trug MPC is 0.3 under the null hypothesis but it is less than or
greater than 0.3 under the alternative hvpothesis. The null hyvpothesis is a
simple hypothesis, whereas the alternative hypothesis is composite; actually
it iz what is known as a two-sided hypothesis. Very often such a two-sided
alternative hyvpothesis reflects the fact that we do not have a strong a pri-
ori or theoretical expectation about the divection in which the alternative
hvpothesis should move from the null hypothesis.

Is the ohserved fi; compatible with H,? To answer this guestion, let us refer
1o the confidence interval (3.3.9). We know that in the long ran intervals like
(04268, 0.5914) will contain the true f; with 95 percent probability. Conse-
guently, in the long run (ie., repeated sampling) such intervals provide a
range or limits within which the true g; may lie with a confidence coefficient
of, say, 95%. Thus, the confidence interval provides a set of plausible null
hypotheses. Therefore, if #: under Hy falls within the 10001 - &% confidence
interval, we do not reject the null hypothesis; if it lies outside the interval, we
may reject it.” This range is illustrated schematically in Figure 5.2.

Decision Rubs: Construct a 100]1 - &% conlidence mlerval for S If the 1 under M; falls
within tis confidence interdl, da not reject M, bul if il alls culside this inbersal, reject M

Following this rule, for our hypathetical example, Hy: g2 = 0.3 clearly lies
outside the 35% conlidence interval given in(5.3.9). Therelore, we can reject

"Abways bear in mind that there is o 100e percent chance that the confidence inierval does
i eontain @y under My even though the hypothesis is carect. In shart, there is o 1ile percend
chance of committing o Type 1 ervor Thus, if o = 008, there is o § percent chance that we
oould reject the null hypothesis even thaugh it is nee.
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FIGURE 8.2 A 100(1 - )% confidence inlerval for .

the hypothesis that the true MPC is 0.3, with 95% confidence. If the null
hypothesis were true, the probability of our obtaining a value of MPC of as
much as 0.509] by sheer chance or fluke is at the most about 3 percent, a
small probability.

In statistics, when we reject the null hvpothesis, we say that our finding is
statistically significant. On the other hand, when we do not reject the null
hypothesis, we say that our finding is not statistically significant.

Some authors use a phrase such as “highly statistically significant.” By thiz
they usually mean that when they reject the null hypothesis, the probability
of committing a Tvpe [ ervor {i.e., o) is a small number, usually | percent. But
as our discussion of the p value in Section 5.8 will show, it is better to leave
it to the researcher to decide whether a statistical finding is “significant,”
“moderately significant,” or “highly significant.”

One-Sided or One-Tail Test

Sometimes we have a strong a priori or theoretical expectation (or expecta-
tions hased on some previous empirical work) that the alternative hypothe-
sis is one-sided or unidirectional rather than two-sided, as just discussed.
Thus, for our consumption-income example, one could postulate that

Hepa =03  and  Hefh =03

Perhaps economic theory or prior empirical work suggests that the mar-
ginal propensity to consume is greater than 0.3, Although the procedure to
test this hypothesis can be easily derived from (5.3.3), the actual mechanics
are better explained in terms of the test-ol-significance approach discussed
next ?

*IF vou want 1o use the confidence interval approech, construct a (100 - e one-sided o
oete-faid confidence interval for iz Why?*
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57 HYPOTHESIS TESTING:
THE TEST-OF-SIGHIFICANCE APPROACH

Testing the Significance of Regression Coefficients: The t Test

An alternative bur complementary approach to the conlidence-interval
method of testing statistical hypotheses is the test-of-significance ap-
proach developed along independent lines by R. A. Fisher and jointly by
Mevman and Pearson.” Broadly speaking, a test of significance is a pro-
cedure by which sample results are used to verify the truth or falsity of
a null hypothesis. The key idea behind tests of significance is that of a test
statistic (estimator) and the sampling distribution of such a statistic under
the null hypothesis. The decision to accept or reject H; is made on the basis
of the value of the test statistic obtained from the data at hand.

As an illustration, recall that under the normality assumption the variable

_ -
se (fiy)

(f- )N

e}

[
(5.3.2)

fallows the ¢ distribution with v = 2 df. If the value of true & is specified
under the null hvpothesis, the 1 value of (5.3.2) can readily be computed
from the available sample, and therefore it cam serve as a test statistic. And
since this test statistic follows the ¢ distribution, confidence-interval state-
menis such as the following can be made:

Fr {_anj o L_'Hl & Iu-'l] = | — i [5.?.1:
o se(fl

where fi; is the value of fz under Hy and where i,z and t,2 are the values

of 1 (the critical 1 values) obtained from the @ table for (/2] level of signifi-

cance and n — 2 df [cf. (53.2.4)]. The 1 table is given in Appendix I.
Rearranging (5.7.1}, we obtain

Prifh —tozse(fr) < fo < fo+tapnse(f)]=1-e¢  (572)

which gives the interval in which f; will fall with 1 — & probability, given
fa = 5. In the language of hvpothesis testing, the 100(1 — )% confidence
interval established in (5.7.2) is known as the region of acceptance (of

“Details may he found in B L. Lehman, Testing Staristical Hypotheses, John Wiley & Sons,
Mew Yark, 1955,
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FIGURE 5.3

the mull hypothesis) and the regions) outside the confidence interval is (are)
called the reglon(s) of rejection (of Ho) or the critical regionis). As noted
previously, the confidence limits, the endpoints of the confidence interval,
are also called critical values.

The intimate connection between the confidence-interval and test-of-
significance approaches to hvpothesis testing can now be seen by compar-
ing (5.3.5) with {5.7.2). In the confidence-interval procedure we try to estab-
lish a range or an interval that has a certain probability of including the true
but unknown f, whereas in the test-of-significance approach we hypothe-
size some value for f2 and try to see whether the computed § lies within
reasonable {confidence) limits around the hyvpothesized value.

Once again let us revert to our consumption-income example. We know
that fi; = 0.5091, se (fh) = 0.0357, and df = &. If we assume & = 5 percent,
tez = 2.306. If we let Hy: fi = 8, =0.3 and Hy: iz # 0.3, (5.7.2) becomes

Pri0.2177 = f; = 0.3823) = 0.95 {5.7.3)"

as shown diagrammatically in Figure 5.3. Since the observed f; lies in the
critical region, we reject the null hypothesis that true g; = 0.3,

In practice, there is no need to estimate (3.7.2) explicitly. One can com-
pute the { value in the middle of the double inequality given by (5.7.1) and
zee whether it lies between the critical 1 values or outside them. For our
example,

05091 -0.3
= — T = 5.86 (5.7.4)
Fifk)
B
"
E Py = 01,5088
Critical lies in this
regan critical region
25% 2R%
' i

ELTT (% 05823

The 55% corfidence intarsal lor ."J; unter the hypothess that f; = 0.3

"I Sec. 5.2, podnt 4, it waos stated that we campcd say that the probabdliiy s 93 percent thai
the fixed interval (14262, 0.5914] includes the inee ;. Bui we can make the probaohilistic siate-
ment given in (3.7.3) because #z, heing an estimator, & & random variable.
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E 95% 1= 586
Critical Region of lies in this
reglon acceptance critical region

25%

-1.306 0 +2306

FIGURE 54  The 85% confidence nleeval for #E df).

which cleary lies in the critical region of Figure 5.4. The conclusion remains
the same; namely, we reject Hj,

Notice that if the estimated g, (= f;) is equal to the hypothesized g, the
t value in (5.7.4) will be zero. However, as the estimated p; value
departs from the hypothesized #; value, |t] (that is, the absolute r value; nore:
t can be positive as well as negative) will be increasingly large. Therefore, a
Sarge” |1| value will be evidence against the null hypothesis. Of course, we
can always use the 1 table to determine whether a particular 7 value is large
or small; the answer, as we know, depends on the degrees of freedom as well
as on the probability of Type I ervor that we are willing to accept. If you
take a look at the 7 table given in Appendix D, you will observe that for any
given value of df the probability of obtaining an increasingly large |1| value
becomes progressively smaller. Thus, for 20 df the probability of obtain-
ing a |t| value of 1.725 or greater is 0.10 or 10 percent, but for the same
df the probability of obtaining a |1| value of 3.352 or greater is only 0.002 or
0.2 percent.

Since we use the t distribution, the preceding testing procedure is called
appropriately the t test. In the language of significance tests, a statistic
is said to be statistically significant if the value of the test statistic lies
in the critical region. In this case the null hypothesis is rejected. By the
same token, a test is said to be statistically insignificant if the value of
the test statistic lies in the acceptance region. In this situation, the null
hypothesis is not rejected. In our example, the ¢ test is significant and hence
we reject the null hvpothesis.

Before concluding our discussion of hypothesis testing, note that the
testing procedure just outlined is known as a two-sided, or two-tail, test-
ol-significance procedure in that we consider the two extreme tails of the
relevant probability distribution, the rejection regions, and reject the null
hypothesis if it lies in either tail. But this happens because our H; was a
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two-sided composite hypothesis; f1 # 0.3 means f; iz either greater than
ar less than 0.3, But suppose prior experience suggests to us that the MPC
is expected to be greater than 0.3, In this case we have: My = 0.3 and
Hiz i = 0.2 Although By is still a composite hypothesis, it is now one-sided.
To test this hypothesis, we use the one-tail test ithe right tail), as shown in
Figure 5.5. {See also the discussion in Section 5.6.)

The test procedure is the same as before except that the upper confidence
lirnit or critical value now corvesponds tod, = fos, that is, the § percent level,
As Figure 5.5 shows, we need not consider the lower tail of the r distribution
in this case. Whether one uses a two- or one-tail test of significance will de-
pend upon how the alternative hypothesis is formulated, which, in tuwmn,
may depend upon some a priovi considerations ar prior empirical experi-
ence. (But more on this in Section 5.3.)

We can summarize the ¢ test of significance approach to hypothesis test-
ing as shown in Table 5.1,

fl

=

£ 955 )

jr Region of iy = 0.3081

- REcepLance lis in this
critical region
2. %%

£

0% 0. 3804

firl

[remmity

= 5.H6

lies in this
critical region
&

0 1800
(8 di)

FIGURE 55  Cne-fail lest of signilicance.
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TABLEB1 THE {TEST OF SIGNIFICANCE: DECISION RULES

Type of Hy: 1he nul Hi: 1he allemalive Decision nule:
hypathesis hypathesis hypothesis reject Hg if
Tuweelail iz = fiz # {2 HEYR
Pighl- il fa s e fla = 2 b gy
Left-tail fiz = & Ay = Mo fa iy

Mates: & & T hypothesizad remarical valua o g,

Ir maans the absolute valua of |

L or 5 maans e oriieal fealin ai tha o or a2 kvl of signicance

ot dogroes of Ieedom, |& - 2) for e teo-varable modal, |/ - 3 dor e thoe:
varlabla modal, and s on.

Thie same procedung hoids b sl hypaihesas abod g,

Testing the Significance of o*: The ;* Test

Ag another illustration of the test-of-signilicance methodology, consider the
following variable:

%)
P =ln-2). (5.4.1)
[l

which, as noted previously, follows the ¢* distribution with n — 2 df. For the
hvpothetical example, 52 = 42,1591 and df = 3. If we postulate that By o? =
8% vs. H:a? # 85, Eq. (5.4.1) provides the test statistic for H;. Substituting
the appropriate values in (5.4.1), it can be found that under H,, ¢* = 3.97. 1
we assume o = 5%, the critical ¥° values are 2.1797 and 17.5344. Since the
computed x° lies between these limits, the data support the null hypothesis
and we do not reject it (See Figure 5.1.) This test procedure is called the
chi-square test of significance. The »* test of significance approach to
hvpothesis testing is summarized in Table 5.2.

TABLE B2 A SUMMARY OF THE 4 TEST

My the rull H,: the allernalive Crifizal ragicn:
hypothesis hypalhasis rejeal My il
difa?
ﬂ'l—rl‘é -:I'z.1|'|"|;|= —:!—I-‘:"E.d‘
difa®
,,z_l.,ﬁ ,,2,_.|-.a|§ _:,_Iac;rll. et
i 3
o® = a? ¢ af —:—E b B
o 3"|I' Sid

Wala: oy is tha valus of o undar the mul hypaihsts. The first subscept on ¢ in the
last colimn is tha kvel of significance, and the second subscript 5 The dagraas of
fruedom. Thasa am criikcal ohi-squans values. Nole thai o is (n — 3} for the fwc-sariablo
ragrassion madl, (0 - 3 for tha thoe-warabi ragrassion modal, and so on.
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5.8 HYPOTHESIS TESTING: SOME PRACTICAL ASPECTS

The Meaning of "Accepting” or “Rejecting” a Hypothesis

If an the basis of a test of significance, say, the ¢ test, we decide to “accept”
the null hypothesis, all we are saving is that on the basis of the sample evi-
dence we have no reason to reject it; we are not saving that the null hypoth-
esis iz true bevond any doubt. Why? To answer this, let us revert o our
consumption-income example and assume that By f2 (MPC) = 0.50. Now
the estimated value of the MPC is fi; = 0.5091 with a se {#) = 0.0357. Then
an the basis of the ¢ test we find that ¢ = (05091 - 0.50)/0.0357 = 0.25,
which is insignificant, sav, at & = 3%, Therefore, we say “accept” Hj. But
nonw et us assume Hy: f; = 0.48. Applving the 1 test, we obtain r = (05091 -
0.48),0.0357 = 0.82, which too is statistically insignificant. So now we say
“accept” this Hy. Which of these two null hypotheses is the “truth™ We do
not know. Therefore, in “accepting” a null hypothesis we should always be
aware that another null hypothesis may be equally compatible with the
data. It is therefore preferable to say that we wiay accept the null hypothesiz
rather than we (do} accept it. Better still,

o just as o courl pronounces a verdict as “not guilty” rather than “innocent,” so
the conclusion of a statistical test is "do not reject” rather than “accept.™"

The “Zero" Mull Hypothesis and the “2-1" Rule of Thumb

A null hypothesis that is commonly tested in empirical work is Hy g, =10,
that is, the slope coefficient is zero. Thiz “zero” null hypothesis is a kind of
straw man, the objective being to find out whether ¥ is related at all 0 X, the
explanatory variable. If there is no relationship between ¥ and X to begin
with, then testing a hypothesis such as & = 0.3 or any other value is mean-
ingless.

This null hvpothesis can be easily tested by the confidence interval or the
i-test approach discussed in the preceding sections. But very often such for-
mal testing can be shorteut by adopting the "2-" pule of significance, which
may be stated as

2" Rule of Thumb. If the number of degrees of freedom is 20 or moee and if o, e level
of significance, is sel al 0.05, then the null hypothesis fiz = O can be rejected # the ! value
[ = plz/se ()] computed from (5.3.2) exceads 2 in absolute value.

The rationale for this rule is not too difficult to grasp, From (5.7.1) we
know that we will reject Hy: g2 = 0 if

1= fafselfs) =tz when fiy = 0

"an Kmentn, Elowenrs of Ecansmerscs, Macmillan, New Yok, 1971, p. 114,
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t= ﬁ;fﬁeﬂﬁ;] = =iy when I|'.'}1 <1l

or when

|= = bz (5.8.1)

—

selfh

for the appropriate degrees of freedom.

Now if we examine the f table given in Appendix D, we see that for df of
about 20 or mare a computed  value in excess of 2 (in absolute terms), say,
2.1, is statistically significant at the 5 percent level, implving rejection of the
null hvpothesis, Therefore, if we find that for 20 or more df the computed
t value is, say, 2.5 or 3, we do not even have to refer to the 1 table to assess
the significance of the estimated slope coefficient. Of course, one can always
refer 1o the 1 table 1o obtain the precise level of significance, and one should
always do so when the df are fewer than, sav, 20.

In passing, note that il we are testing the one-sided hypothesiz & =0
versus fr = Dor f2 = 0, then we should reject the null hvpothesis if

it = ‘ 2., (5.8.2)

se (fiz)

1F we fix @ at 0,03, then rom the f table we observe that for 20 or more df a
tvalue in excess of 1.73 is statisticallv significant at the 5 percent level of sip-
nificance (one-tail). Hence, whenever a f value exceeds, say, 1.8 {in absolute
terms ) and the df ave 20 or more, one need not consult the 7 table for the
statistical sipnificance of the observed coefficient. Of course, if we choose o
at 0.01 or any other level, we will have to decide on the appropriate f value
as the benchmark value, But by now the reader should be able to do that.

Forming the Null and Altemative Hypotheses™

Given the null and the alternative hypotheses, testing them for statistical
significance should no longer be a mystery. But how does one formulate
these hypotheses? There are no hard-and-fast rules. Verv often the phenom-
enon under study will suggest the nature of the null and altemative hy-
potheses. For example, consider the capital market line (CML) of partfolio
theary, which postulates that E = fi + faai, where E = expected return an
portfolio and & = the standard deviation of retwrn, a measure of risk. Since
return and risk are expected to be pasitively related—the higher the visk, the

“For an interesting discussion about formulating hvpotheses, see 1. Bradined De Long
and Kevin Lang, “Are All Economic Hyprdheses False®” faumal af Palitica! Econary, vol. 100,
nie. , 1992, pp. 125721272,
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higher the return—the natural alternative hypothesis to the null hypothesis
that fz = Owould be & = 0. That is, one would not choose to consider values
af 2 less than zero,

But consider the case of the demand for money. As we shall show later,
one of the important determinants of the demand for monev is income.
Prior studies of the money demand functions have shown that the income
elasticity of demand for money (the percent change in the demand for
money for a 1 percent change in income) has tvpically ranged between 0.7
and 1.3, Therefore, in a new study of demand for money, if one postulates
that the income-elasticity coefficient gz is 1, the alternative hypothesis could
be that f; # 1, a two-sided alternative hvpothesis.,

Thus, theoretical expectations or prior empirical work or both can be
relied upon to formulate hypotheses. But no matier how the hypotheses are
formed, it is extremely important that the researcher establish these hvpoifeses
before carrving o the empivical investiparion. Otherwise, he or she will be
guilty of cireular reasoning o self-fulfilling prophesies. That iz, if one were (o
formulate hvpotheses alter examining the empirical results, there mav be the
tempation to form hvpotheses that justify one’s results. Such a practice
should be avoided at all costs, at least for the sake of scientific ohjectivity.
Keep in mind the Stigler quotation given at the beginning of this chapter!

Choosing &, the Level of Significance

Tt should be clear from the discussion so far that whether we reject or do not
reject the mull hypothesis depends critically on e, the level of significance
at the probability of commining a Type I error—the probability of rejecting
the true hypothesis. In Appendix A we discuss fully the natre of a Tvpe [
error, its relationship to a Tvpe I ervor (the probability of accepting the false
hvpothesis) and why classical statistics generally concentrates on a Type [
error. But even then, why is o commonly fixed at the 1, 5, or at the most
|0 percent levels? As a matter of fact, there is nothing sacrosanct about
these values; any other values will do just as well,

I an introductory book like this it is not possible to discuss in depth why
ane chooses the 1, 5, or 10 percent levels of significance, for that will take us
into the field of statistical decision making, a discipline unto itsell. A brief
summary, however, can be offered. As we discuss in Appendix A, for a given
sample size, if we try to reduce a Tepe §error, a Tpe I ervor increases, and vice
versa, That is, given the sample size, il we try to reduce the probability of re-
jecting the true hvpothesis, we at the same time increase the probability of ac-
cepling the false hypothesis. So there is a tradeoft involved between these two
types of errors, given the sample size. Now the only wav we can decide about
the tradeoff is to find out the relative costs of the two tvpes of ermors. Then,

I the ervor of rejecting the null hypethesis which is in fact rue (Error Tepe 1) is
costly relative to the emor of nol rejecting the null hypothesis which is in fact
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false {Ervor Type 10, it will be rational to set the probability of the fmst kind
of error low, IE, on the other hand, the cost of making Ermror Type 1 is low rela:
tive tor the cost of making Ermor Tvpe 11, it will pay to make the probability of the
first kind of ervor high (thus making the probability of the second type of ervar
lewwy, ™

Of course, the rub is that we rarely know the costs of making the two tvpes
of errars. Thus, applied econometricians generally follow the practice of set-
ting the value of e at a | ora 5or at most a 10 percent level and choose a test
statistic that would make the probability of committing a Type 11 error as
small as possible. Since one minus the probability of committing a Tvpe 11
error is known as the power of the test, this procedure amounis to maxi-
mizing the power of the test. {See Appendix A for a discussion of the power
of & test.]

But all this problem with choosing the appropriate value of & can be
avoided if we use what is known as the p valie of the test statistic, which is
discussed next.

The Exact Level of Significance: The p Value

As just noted, the Achilles heel of the classical approach to hvpothesis test-
ing is its arbitrariness in selecting . Onee a test statistic (e.g., the ¢ statistic)
is obtained in a given example, why not simply go to the appropriate statis-
tical table and find out the actual probability of obiaining a value of the test
statistic as much as or greater than that obtained in the example? This prob-
ahility is called the p value (i.e., probability value), also known as the
observed or exact level of significance or the exact probability of com-
mitting a Type 1 error. More technically, the p value is defined as the low-
est significance level at which a null hypothesis can be rejected.

To illustrate, let us return to our consumption-income example. Given
the null hypothesis that the true MPC is 0.3, we obtained a ¢ value of 5.86 in
i5.7.4). What is the p value of oltaining a 1 value of as much as or greater
than 5.862 Looking up the t table given in Appendix I, we observe that for
8 df the probability of obtaining such a § value must be much smaller than
L0001 {one-tail) or 0.002 (two-tail). By using the computer, it can be shown
that the probabilitv of ohtaining a ¢ value of 5.86 ar greater {for & df) is
about 0.000189.% This is the p value of the ohserved 1 statistic. This ob-
served, or exact, level of significance of the ¢ statistic is much smaller than
the conventionally, and arbitrarily, fived level of significance, such as 1,5, or
10 percent. As a matter of fact, if we were to use the p value just computed,

Ylan Kmenia, Elemenis of Eromamatrics, Mocmdllan, New Yark, 1971, pp- 126127,

“ine can obtain the p value using eecironic statistical tahles to several decimal places.,
Unfartunately, the corventsonal statistscal tables, for lack of space, cannnt be that refined. Most
statistical packages now rautinely print out the p volues.
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and reject the null hypothesis that the tue MPC is 0.3, the probability of
aur committing a Type 1 error is anly about 0.02 percent, that is, only about
Yin 10,000

As we noted earlier, if the data do not support the null hypothesis, ¢ ob-
taimed under the null hvpothesis will be “large” and therefore the p value of
obtaining such a |f| value will be "small.” In other words, for a given sample
size, as |!| increases, the p value decreases, and one can thevefore reject the
null hypothesis with increasing confidence.

What is the relationship of the p value to the level of significance &2 If we
make the hahit of fising & equal to the pvalue of a test statistic (e.g., the £ sta-
tistic), then there is no conflict between the two values. To put it differently,
it is better to give up fixing & arbitrarily at some level and simply
choose the p value of the test statistic. It is preferable to leave it to the
reader to decide whether to reject the null hvpothesis at the given p value. If
in an application the p value of a test statistic happens to be, say, 0.145, or
14.5 percent, and if the reader wants to reject the null hypothesis at this
texact) level of significance, so be it. Nothing is wrong with taking a chance
of being wrong 14.5 percent of the time if vou reject the true null hypothe-
sis. Similarly, as in our consumption=income example, there is nothing
wrong if the researcher wanis to choose a p value of about 0.02 percent and
not take a chance of being wrong more than 2 out of 10,000 times. After all,
some investigators may be risk-lovers and some risk-averters!

Tit the rest of this text, we will penerally quote the p value of a given test
statistic. Some readers may want to fix ¢ at some level and reject the null
hvpathesis if the g value is less than w. That is their choice.

Statistical Significance versus Practical Significance

Let us revert to our consumption-income example and now hyvpothesize
that the true MPC is 0.61 {Hy: 5, = 0.61). On the basis of our sample result
of fir = 0.5091, we obtained the interval (04268, 0.5914) with 95 percent
confidence. Since this interval does not include 0.61, we can, with 95 per-
cent confidence, say that our estimate is statistically significant, that is,
significantly different from 0.61.

But what is the practical or substantive significance of our finding? That
is, what dilference does it make if we take the MPC to be 0,61 rather than
0.50917 s the 0.1009 difference between the two MPCs that important prac-
tically?

The answer to this question depends on what we really do with these es-
timates. For example, [rom macroeconomics we know that the income mul-
tiplier is 1/(1 — MPC). Thus, if MPC is 0.5091, the multiplier is 2.04, but it is
2.56 il MPC is equal 1o 061, That is, if the government were to increase its
expenditire by 1 to lilt the economy out of a recession, income will even-
tually increase by 5204 if the MPC is 05091 but by 32.56 if the MPC is 0.61.
And that difference could very well be erucial to resuscitating the economy.
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The point af all this discussion is thar ane showdd wor confuse staristical
signtificance with practical, or economie, significance. As Goldberger notes:

When a null, say, & = 1, is specilied, the likely intent is that g is clese 1o 1, 50

close that for all practical purposes it may be treated as i were 1. Bul whether

1.1 ix “practically the same as” 1.0 6% a matier of economics, nol of statistics. One

canmil resolve the matter by relying on o hypothesis test, because the et stais-

Lie: [# =]y — 1}jm, measures the estimated coeflicient in standard ermor units,

which are net meaningful units in which o measure the economic parameter

Bi = 1.1 mav be a good idea wo reserve the term “significance” for the statistical

concept, adopting “substantial” for the economic concept.”

The point made by Goldberger is important. As sample size becomes very
large, issues of statistical significance become much less important but is-
sues of economic significance become critical. Indeed, since with verv large
samples almost any null hvpothesis will be rejected, there may be studies in
which the magnitude of the point estimates may be the only issue,

The Choice between Confidence-Interval and
Test-of-Significance Approaches to Hypothesis Testing

In most applied economic analyses, the null hvpothesis is set up as a straw
man and the ohijective of the empirical work is to knock it down, that is, re-
ject the null hvpothesis. Thus, in our consumption-income example, the
null hypothesis that the MPC g, = 0 is patentlv absurd, but we often use it
to dramatize the empirical results. Apparently editors of reputed journals
do not find it exciting to publish an empirical piece that does not reject the
nall hypothesis. Somehow the finding that the MPC is statistically different
from zero is more newsworthy than the finding that it is equal to, say, 0.7!

Thus, 1. Bradford De Long and Kevin Lang argue that it is better for
economists

oo o concentrate on the magnitudes of coellicients and w report conlidence
levels and ned signifieance tests, 1 all or almest all null hypotheses are flse, there
iz little point in concentrating on whether or not an estimate is indistinguishable
[resm s predicted value under the null. Instead, we wish o cast light on wha
muodels are good approximations, which requires that we know runges of para-
mieter values that e excluded by empirical estimates. '

In short, these authors prefer the confidence-interval approach to the test-of-
significance approach. The reader mav want to keep this advice in mind."”

Barihur §. Gabdberger, A Couirse i Economelrics, Harvard University Press, Cambridge,
Massachusetis, 1991, p. 240 Kote by isithe OLS estimator of 8 and &, is its standard emar: Far
a cormoboraiing view, see [, N, McCloskey, “The Loss Function Has Been Mislaid: The Rhetoric
of Signtficance Tests,” Amencan Economic Beview, val. 75, 1585, pp. 201-203. See also D, N
MoCloskey and & T. Ziliak, “The Stondard Error of Regression,” Jeamal of Econonzic Liferd-
feire, vol. 57, 1594, pp. 99-114.

l#5ee their articke cited in feotnate 12, po 1271,

"Por o somewhat different perspective, see Carter Hill, Willinm Griffnihs, and George Judge,
Undergradisate Econameracs, Wiley & Sons, New York, 2001, po 108,



