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CLASSICAL NORMAL
LINEAR REGRESSION
MODEL (CNLRM)

What is known as the classical theory of statistical inference consists
of two branches, namely, estimation and hypothesis testing, We have
thus far covered the topic of estimation of the parameters of the {iwo-
variable) linear regression model. Using the method of OLS we were able
to estimate the parameters §, By, and 2. Under the assumptions of the
classical lnenr regression madel (CLEM), we were able to show that the
estimators of these parameters, fy, fr, and 4°, satisfy several desirable sta-
tistical properties, such as unbiasedness, minimum variance, ete. (Recall
the BLUE property.) Note that, since these are estimators, their values will
change from sample to sample. Therefore, these estimators are random
variables.

But estimation is half the batile. Hypothesis testing is the other half.
Recall that in regression analvsis our objective is not only to estimate the
sample regression function (SEF), but also to use it to draw inferences
about the population regression function (PRF), as emphasized in Chapter
2. Thus, we would like to find out how close f, is to the true #, or how close
&2 is to the true #2. For instance, in Example 3.2, we estimated the SRF
as shown in Eq. (3.7.2). But since this regression is based on a sample of
55 families, how do we know that the estimated MPC of 0.4368 reprezents
the {true) MPC in the population as a whaole?

Therefore, since fi, fiz, and 4* are random variables, we need to find out
their probability distributions, for without that knowledge we will not be
able to relate them to their true values.
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4.1 THE PROBABILITY DISTRIBUTION OF DISTURBANCES w;

T find out the probability distributions of the OLS estimators, we proceed
as follows. Specifically, consider . As we showed in Appendix 3A.2,

f=Y kY, (4.1.1)

where &k = x5 x’. But since the X5 are assumed fixed, or nonstochastic,
because ours is conditional regression analysis, conditional on the fixed val-
ues of X;, Eg. (4.1.1) shows that 1 is a finear function of ¥;, which is random
by assumption. But since ¥, = f; + 5,.X, + i, we can write (4.1.1) as

fr=Y kilpr + faXi + ) {4.1.2)

Because k;, the betas, and X; are all fived, fr is ultimately a linear function of
the random variable &, which iz random by assumption. Therefore, the
probability distribution of f; {and also of £, ) will depend on the assumption
made about the probability distribution of .. And since knowledge of the
probability distributions of OLS estimators is necessary to draw inferences
about their population values, the nature of the probability distribution of
i; assumes an extremely important role in hypothesis testing,

Since the method of OLS does not make any assumption about the prob-
ahilistic nature of r;, it is of litthe help for the purpose of drawing infer-
ences about the PRF from the SRF, the Gauss-Markov theorem notwith-
standing. This void can be filled il we are willing to assume that the u's
follow some probability distribution. For reasons to be explained shortly, in
the regression context it is usually assumed that the u's follow the normal
distribution. Adding the normality assumption for t; to the assumptions of
the classical linear regression model (CLRM) discussed in Chapter 3, we
obtain what is known as the classical normal linear regression model
(CNLRM).

4.2 THE NORMALITY ASSUMPTION FOR w;

The classical normal linear regression model assumes that each u; is dis-
tributed normally with

Mean: Elw)=10 4.2.1)
Variance: Elu; - E(; ) = E{uf) = o {4.2.2)
cov (i, )k B[l — Bl - Elg)]l = Bl u) =0 i#] (4.23)

The assumptions given above can be more compactly stated as

i, ~ N0, o) (4.24)
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where the symbol ~ means distribased as and N stands (or the normal distri-
beation, the terms in the parentheses representing the two parameters of the
normal distribution, namely, the mean and the variance.

As noted in Appendix A, for two normally distributed variables, zero
covariance or correlation means independence of the two variables.
Therefore, with the normality assumption, (4.2.4) means that u; and u; are
not only uncorrelated but are also independently distributed.

Therefare, we can write {(4.2.4) as

u; ~ NID(D, a%) {4.2.5)

where NID stands for rormally and indeperdently distribied.

Why the Normality Assumption?

Why do we emplov the normality assumption? There are several reasons:

1. As pointed out in Section 2.5, &; represent the combined influence
{on the dependent variable) of a large number of independent variables that
are not explicitly introduced in the regression model. As noted, we hope that
the influence of these omitted or neglected variables s small and at best
random. Now by the celebrated central limit theorem {CLT) of statistics
{see Appendix A for details), it can be shown that if there are a large num-
ber of independent and identically distributed random variables, then, with
a few exceptions, the distribution of their sum tends to a normal distribu-
tion as the number of such variables increase indefinitely.' It is the CLT that
provides a theoretical justification for the assumption of normality of .

2. Avariant of the CLT states that, even if the number of variables is not
verv large or if these variables are nat strictly independent, their sum may
still be normally distributed ?

3. With the normality assumption, the probability distributions of OLS
estimators can be easily derived because, as noted in Appendix A, one prop-
erty of the normal distribution is that any linear function of normally dis-
tributed variables is itself normally distributed. As we discussed earlier,
OLS estimators £ and f; are linear functions of ;. Therefore, if 4; are nor-
mally distributed, so are g, and f,, which makes our task of hypothesis
testing very straightforward.

4, The normal distribution is a comparatively simple distribution in-
volving only two parameters (mean and variance): it is very well known and

"Por o relatively simple and simightforsand disoussion of this theorem, see Sheldon
M. Raoss, fretroduction i Probabiliny amad Sfatistics for Engineers amd Sciewrisss, 2d ed., Harcourt
Acodemie Press, Mew York, 2000, pp. 193-194, One exceplion to the thearem is the Cauchy
distribution, which has no mean or higher moments. See . G, Kendall and A, Stuan, e
Advanced Tieory af Statizties, Chorles Griffin & Co., London, 1560, vol. 1, pp. 248-249.

*For the various farms of the CLT, see Harald Cromer, Mathemarical Memods of Steristics
Princeton University Press, Princeton, M1, 19dé, Chap. 17.
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its theoretical properties have been extensively studied in mathematical sta-
tistics. Besides, many phenomena seem to follow the normal distribution.

5. Finally, if we are dealing with a small, or finite, sample size, say data
of less than 100 observations, the normality assumption assumes a critical
role. Tt not only helps us to derive the exact probability distributions of OLS
estimators but also enables us to use the r, F, and 32 statistical tests for re-
aression models, The statistical properties of ¢, F, and ¢* probability dis-
tributions are discussed in Appendix A. As we will show subsequently, if
the sample size is reasonably large, we may be able to relax the normality
assumption.

A cautionary note! Since we are “imposing” the normality assumption, it
behooves us to find out in practical applications involving small sample
size data whether the normality assumption is appropriate. Later, we will
develop some tests to do just that. Also, later we will come across situations
where the normality assumption may be inappropriate. But until then
we will continue with the normality assumption for the reasons discussed
previously,

4.3 PROPERTIES OF OLS ESTIMATORS
UNDER THE NORMALITY ASSUMPTION

With the assumption that «; follow the normal distribution as in (4.2.5), the
OLS estimators have the [ollowing properties; Appendix A provides a gen-
eral discussion of the desirable statistical properties of estimators.

1. Thev are unhiased.

2. They have minimum variance. Combined with 1, this means that they
are minimum-variance unbiased, or efficient estimators.

3. Thev have consistency; that is, as the sample size increases indefi-
nitely, the estimators converge to their true population values,

4. fi| (being a linear function of t) is normally distribused with

Mean:  E(f)=f 4.3.1)
AT 3 _ EH{! 2 -
var( o} = @a =(3.3.3)(4.3.2)

Or more compactly,
By~ ,"..f[ﬁ,,n;']

Then by the properties of the normal distribution the variable 2, which is

defined as
-

T

Z= (4.3.3)
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follows the standard normal distribution, that is, a normal distribution
with zero mean and unit [ = 1) variance, or

&~ NI, 1)

8. f; {being a linear function of ;) is normally distributed with

Mean:  Eif:) = fh i4.34)
s 1 ia
varlfa): ;= e =(3.3.1)(4.3.5)

{ir, mere compactly,
bz ~ h'{ﬁz.ﬂi,?
Then, as in (4.3.3),

_ fiy - iy

4

Fd (4.3.6)

also follows the standard normal distribution.
Geometrically, the probability distributions of # and g; are shown in
Figure 4.1.
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FIGURE 4.1  Probabiffy disirbutions of f ond ;.
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6. {rn—2)at/a?) is distributed as the ¢ {chi-square) distribution with
{n — 2)di.* This knowledge will help us to draw inferences about the true #*
from the estimated #°, as we will show in Chapter 5. (The chi-square distri-
bution and its properties are discussed in Appendix A.)

7. (f1, fa) ave distributed independently of 4°. The importance of this
will be explained in the next chapter.

8. j, and f; have mivineeon variance in the entive class of wnbinsed esti-
wtators, whether linear or noi. This vesult, due to Rao, is very powerful be-
cause, unlike the Gauss-Markov thearem, it is not restricted to the class of
linear estimators only.* Therefore, we can say that the least-squares estima-
tors are best unbiased estimators (BUE); that is, they have minimum vari-
ance in the entire class of unbiased estimators,

Tov sum up: The important point to note is that the nomality assumption
enables us to derive the probability, or sampling, distributions of # and f;
{both normal) and 4° (related to the chi square). As we will see in the next
chapter, this simplilies the task of establishing confidence intervals and test-
ing {statistical) hvpotheses.,

In passing, note that, with the assumption that & ~ N0, #2), ¥, being a
linear function of &, is itself normally distributed with the mean and vari-

ance given by
E(Y) =i+ X (4.3.7)
var(¥) = o* 4.3.8)
Maore neatly, we can write
¥~ Nif + g X, 0% 4.3.9)

44 THE METHOD OF MAXIMUM LIKELIHOOD (ML)

A method of point estimation with some stronger theoretical properties
than the method of OLS is the method of maximum likelihood (ML)
Since this method is slightly invalved, it is discussed in the appendix to this
chapter, For the general reader; it will suffice to note that if «; are assumed
to be normally distributed, as we have done for reasons already discussed,
the ML and OLS estimators of the regression coelficients, the #s, are identi-
cal, and this is true of simple as well as multiple regressions. The ML esti-
mator of &% is ¥} /n. This estimator is biased, whereas the OLS estimator

"The proof af this stntement is slightly invalved. An accessible source for the proof is Rober
V. Hogg and Allen T. Crulg, Jntradiiction e Mathematicnd Statzrics, 2d ed., Macmillan, New
York, 1948, p. 144,

AC. B R, Livewr Stadistical Tnfercnce and Tis Applications, Jahn Wilsy & Sons, New York,
1983, p. 258,



Dugarak: Basic
Ecaingdiiteies, Foaith
Edifai

| | Einple-Equatien | A Classical Nesmal Liniar BV Tha M- Hil

Fpeassion Wi Fpeasiion Wadil Companis, F04
([MLAMI

CHAPTER FOUR: CLASEICAL NOAMAL UMEAR REGREEEION MODEL (CHLRM 113

of o = ¥ i /(- 2), as we have seen, is unbiased. But comparing these two
estimators of #°, we see that as the sample size n gets larger the two esti-
mators of o7 tend to be equal. Thus, asvmptotically {ie., as n increases
indefinitely), the ML estimator of o is also unbiased.

Since the method of least squares with the added assumption of normal-
ity of 1, provides us with all the toals necessary for both estimation and
hvpothesis testing of the linear regression models, there is no loss for read-
ers who may not want to pursue the maximum likelihood method because
of its slight mathematical complexity.

4.5 SUMMARY AND CONCLUSIONS

1. This chapter discussed the classical normal linear regression model
(CHLEM).

2. This model differs from the classical linear regression model {CLEM)
in that it specifically assumes that the disturbance term 1w entering the
regression model is normally distributed. The CLRM does not require any
assumption about the probability distribution of 4, it only requires that the
mean value of 4; iz zero and its variance is a finite constant.

3. The theoretical justification for the normality assumption is the
central limit theorem.

4. Without the normality assumption, under the other assumptions dis-
cussed in Chapter 3, the Gauss-Markov theorem showed that the OLS esti-
mators are BLUE.

5. With the additional assumption of normality, the OLS estimators are
not only best unbiased estimators (BUE) bui also follow well-known
probability distributions. The OLS estimators of the intercept and slope are
themselves normally distributed and the OLS estimator of the variance of
ity { = 6} is related w the chi-square distribution.

6. In Chapters 5 and 8 we show how this knowledge is useful in drawing
inferences about the values of the population parameters.

7. An alternative to the leasi-squares method is the method of maxi-
mum likelihood (ML), To use this method, however, one must make an
assumption about the probability distribution of the disturbance term u;.
In the regression context, the assumption most popularly made is that o,
follows the normal distribution.

8. Under the normality assumption, the ML and OLS estimators of the
intercept and slope parameters of the regression model are identical. How-
evet, the OLS and ML estimators of the variance of i; are different, In large
samples, however, these two estimators converge,

9, Thus the ML method is generally called a larpe-sample meethad. The
ML methed is of broader application in that it can also be applied 1o re-
gression models that ave nonlinear in the parameters. In the latter case, OLS
is generally not used. For more on this, see Chapter 14,



