34 PROPERTIES OF LEAST-SQUARES ESTIMATORS:
THE GAUSS-MARKOV THEOREM™

As noted earlier, given the assumptions of the classical linear regression
midel, the least-squares estimates possess some ideal or optimum proper-
ties. These properties are contained in the well-known Gauss-Markov
theorem. To understand this theorem, we need to consider the best linear
unbiasedness property of an estimaton® As explained in Appendix A, an
estimator, say the OLS estimator f, is said to be a best linear unbiased
estimator {BLUE) af g if the following hold:

1. It is linear that is, a linear function of a random variable, such as the
dependent variable ¥ in the regression model.

2. Itis unhiased, that is, its average or expected value, E(f,), i equal o
the true value, f;.

3. It has minimum variance in the class of all such linear unbiased
estimators; an unbiased estimator with the least variance is known as an
efficient estimator.

In the regression context it can be proved that the OLS estimators are
BLUE. This is the gist of the famous Gauss-Markov theorem, which can be
stated as follows:

Gauss-Markoy Theorem: Given the assumpticns of the dassical linear regression medel,
the leasl-squanes estimatars, in fhe class of unbiased Inear estimators, bave minmuem
var@nce, that is, they are BLUE.

The prool of this theorem is sketched in Appendix 3A, Section 3A4.6. The
full import of the Gauss-Markov theorem will become clearer as we move

"Alithough known as the Gaass-Markes: theorem, ihe least-sguares approach of Gouss anie-
daies {1821} the minimum-varizsnce appeoach of Markov {1600,

*he reader should refer 1o App. El}-:ur the imporiance of linear estimatars os well as foro
general disoussion of the desirble properties of statistical sstimators.
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FIGURE 3.8  Samplng dstribution of OLS esimatar o
#lz and aliesnalive estimatar 57 e} Sampling distributions of f, and J5

along. It is sufficient to note here that the theorem has theoretical as well as
practical importance.™!

What all this means can be explained with the aid of Figure 3.8,

In Figure 3.3(2) we have shown the sampling distribution of the OLS
estimator fo, that is, the distribution of the values taken by f; in repeated
sampling experiments {recall Table 3.1). For convenience we have assumed
f to be distributed symmetrically (but more on this in Chapter 4). As the
figure shows, the mean of the f; values, E{fi;), is equal to the true g,. In this
situation we say that f is an unbiased estimator of fa. In Figure 3.8(b) we
have shown the sampling distribution of g3, an alternative estimator of fiz

Npar example, it can be proved that any Beear combination of the 0%, such as (i = 220,
can be estimated by {fy = 302, and this estimator is BLUE, For details, see Henil Theil, fefo-
daction s Ecowometrics, Prentice-Hall, Englewnod Cliffs, K1, 1978, plji'x. 401402, Noie a
technical point ahowt the Gawss-Markoy thearem: It provides anly the sufficlent (ol ot nec-
essary) candition for 013 to he efficient. | am indebted to Michael Mcdleer of the University of
Western Ausiralia for bringing this pednt 1o my attention.
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obtained by using another (i.e., other than OLS) methed. For convenience,
assume that §, like fz, is unbiased, that is, its average or expected value is
equal to 2. Assume further that both £ and # are linear estimators, that is,
they are linear functions of ¥. Which estimator, £ or 8,, would you choose?

To answer this question, superinmpose the two figures, as in Figure 3.8(c).
It is obvious that although both f; and g; are unbiased the distribution of g,
is more diffused or widespread around the mean value than the distribution
of fz. In other words, the variance of g, is larger than the variance of fs.
Now given two estimators that are both linear and unbiased, one would
choose the estimator with the smaller variance because it is more likely to
be close to g, than the alternative estimator. In short, one would choose the
BLUE estimator

The Gauss-Markov theorem is remarkable in that it makes no assump-
tions about the probability distribution of the random variable g, and there-
fore of ¥ (in the next chapter we will take this wp). As long as the
assumptions of CLRM are satished, the theorem holds. As a result, we need
not ook for another linear unbiased estimator, for we will not find such an
estimator whose variance is smaller than the OLS estimator. Of course, if one
or mote of these assumptions do not hold, the theorem is invalid. For exam-
ple, if we consider nonlinear-in-the-parameter regression models (which are
discussed in Chapter 14), we may be able to obtain estimators that may per-
form better than the OLS estimators. Also, as we will show in the chapter on
heteroscedasticity, if the assumption of homoscedastic variance is not ful-
filled, the OLS estimators, although unbiased and consistent, are no longer
minimum variance estimators even in the class of linear estimators,

The statistical properties that we have just discussed are known as finite
sample properties: These properties hold regardless of the sample size on
which the estimators are based. Later we will have occasions to consider the
asymptotic properties, that iz, properties that hold only if the sample size
is very large (technically, infinite). A general discussion of finite-sample and
large-sample properties of estimators is given in Appendix A

3.5 THE COEFFICIENT OF DETERMINATION r*:
AMEASURE OF “GOODNESS OF FIT"

Thus far we were concerned with the problem of estimating regression
coefficients, their standard errors, and some of their properties. We now con-
sider the goodness of fit of the fitted regression line 1o a set of data; that is,
we shall find out how “well” the sample regression line fits the data. From Fig-
wre 3.1 it is clear that if all the observations were to lie on the regression line,
we would obtain a "perfect” fit, but this is ravely the case. Generally, there will
be some positive f; and some negative ;. What we hope for is that these
residuals around the regression line are as small as possible. The coefficient
of determination r? {two-variable caze) or B2 (multiple regression) is a sum-
mary measure that tells how well the sample regression line fits the data.
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FIGURE 3.8  The Ballertine view af r (g} - = 0; () £ = 1.

Before we show how #* is computed, let us consider a heuristic explana-
tion of #* in terms of a graphical device, known as the Venn diagram, or the
Ballentine, as shown in Figure 3.9.2

I this figure the circle ¥ represents variation in the dependent variable ¥
and the circle X represents variation in the explanatory variable X** The
evetlap of the two circles (the shaded area) indicates the extent to which the
variation in ¥ is explained by the variation in X (say, via an OLS regression),
The greater the extent of the overlap, the greater the variation in ¥ is ex-
plained by X. The #? is simply a numerical measure of this overlap. In the
figure, as we maove from left to right, the area of the overlap increases, that
is, successively a greater proportion of the variation in ¥ is explained by X,
In shart, r* increases. When there is no overlap, ¢ is obviously zero, but
when the overlap is complete, ** is 1, since 100 percent of the variation in ¥

is explained by X. As we shall show shortly, #2 lies between 0 and 1.
To compute this ¥, we proceed as follows: Recall that
Y=Y+ (2.6.3)

ar in the deviation form
= .ill' + 'I'-‘I' {3"5"”

where use is made of (3.1.13) and {3.1.14). Squaring (3.5.1) on both sides

“8ee Peter Kennedy, “Ballentine: A Graphical Aid for Bconametrics,” Asstraiian Ecanaics
Fapers, val 20, 1981, pp. d1d=4 16 The nome Balenine is derved from the emblem of the well-
known Ballantine beer with its circles.

“¥The term vartatices and vargree are different. Variation means the sum af squares of the
deviations af o variahle fram its mean valse, Variance & this sum af squares divided by the ap-
propriste degress of fresdom. In shor, varance = variotionidf.
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and summing over the sample, we obtain

TP HAY ALY f
=2+ E (3.5.2)
NN

since ¥ iy = 0 (why?) and §; = flzx;.

The various sums of squares appearing in (3.3.2) can be described as
follows: ¥ ¥% = ¥(¥ - ¥)* = total variation of the actual ¥ values about
their sample mean, which may be called the total sum of squares (TSS).
Vit =i - =1y = 'PH_: £1 ¥« = variation of the estimated ¥
values about their mean (¥ = ¥), which appropriately may be called the
surm of squares due to regression [i.e., due to the explanatory variable(s)], or
explained by regression, or simply the explained sum of squares (ESS).
¥ = residual or unexplained variation of the ¥ values about the regres-
sion line, or simply the residual sum of squares (RSS). Thus, (3.5.2) is

T35 =ES5 + B33 (3.5.3)

and shows that the total variation in the ohserved ¥ values about their mean
value can be partitioned into two parts, one attributable to the regression
line and the other to random forces because not all actual ¥ observations lie

on the fitted line. Geometrically, we have Figure 3.10,

¥
i, = due 10 residual
¥,
"
: ESRF
: fie o,
(¥,-F) = total I

|
l {¥;-F1 = due 1o regression
|
|

T :
|
|
|
|
|
|
|
|
! X

of ¥; inta twa companents. i X
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Now dividing (3.5.3) by TSS on both sides, we obtain

_ESS RS
T TSS  TSS 154
_yG-i v o
YN -YF Y(N-FE
We now define ¢ as
._ LIFi-¥P _ESS
e T (355)
or, alternatively, as
., _Eit
¥-Y
L ¥ (3.5.54)
__Rss
T TES

The quantity #* thus defined is known as the (sample) coefficient of deter-
mination and is the most commonly used measure of the goodness of it of
a regression line. Verbally, r? measures the proportion or percentage of the
fotal variation in ¥ explained by the repression model,

Two properties of r* may be noted:

1. It is a nonnegative guantity. (Why?)

2. Its limits ave 0 = ¢ < 1. Anr? of | means a perfect fit, that is, ¥ = ¥
for each i. On the other hand, an 2 of zero means that there is no relation-
ship between the regressand and the regressor whatssever (ie., f, =10). In
this case, as (3.1.9) shows, ¥; = f; = ¥, that is, the best prediction of any ¥
value is simply its mean value. In this situation therefore the regression line
will ke horizontal to the X axis.

Although r? can be computed directly from its definition given in (3.5.5),
it can be obtained more gquickly from the following formula:

ESS
" =15
_I#
n¥

_BES
Ly

)

(3.5.6)

— g2
= Fl
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If we divide the numerator and the denominator of {3.5.6) by the sample
size it (or i — 1 if the sample size is small}), we obiain

oo ﬂi(s_,f) (3.5.7)

where § and 5! are the sample variances of ¥ and X, respectively.
Since fiz = Y% /Y%, Eq. (3.5.6) can also be expressed as

(Esn)’
1 (]
= SRl (3.5.8)
J I
an expression that may be computationally easy 1o obtain,
Given the definition of r?, we can express ESS and RSS discussed earlier as

fiallomws:

E5s=¢" TS5

= l,,..! Z l||.3 {5‘5'9:
ESS = TSS - ESS

=T55(1 — ESS/TSS) {3.5.10)

= Z-""! 1=+

Therefore, we can write
TS5 = ESS + 558
Yo=Yy 4=y

an expression that we will find very useful later.

A quantity closely related to but conceptually very much different from !
is the coefficient of correlation, which, as noted in Chapter 1, is a measure
of the degree of association between two variables. [t can be computed either
from

(3.5.11)

r =+t {3.5.12)
or from its definition
LAY
(E+THE )
nE XY - (E XL ¥)
VIZ X~ (EX) ] ¥ - (8]

which is known as the sample correlation coefficient.”

F=

(3.5.13)

HThe population correlation cosfficient, dennted by o, is defined in App. A.
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FIGURE 3.1 Caorralation patierns {adapted fram Henri Theil, bfrodacton kb Economelnics, Prentica-Hall,
Englewood Clils, N.J., 1978, p. BE].

Some of the properties of r are as follows {see Figure 3.11}:

1. It can be positive or negative, the sign depending on the sign of the
term in the numerator of {3.5.13), which measures the sample covariation of
two variables.

2. It lies between the limits of —1 and +1; thatis, =1 =7 = L.

3. It is symmetrical in nature; that is, the coefficient of correlation be-
tween X and Yiryy) is the same as that between ¥ and Xiryy).

4. It is independent of the origin and scale; that is, if we define X, =
aXi+C and ¥ =bY, +d, wherea = 0, b= 0, and ¢ and d are constants,
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then r between X and ¥ is the same as that between the original variables
Xand ¥,

5. If X and ¥ are statistically independent {see Appendix A for the defi-
nition}, the corvelation coefficient between them is zevo; but ifr = 0, it does
not mean that two variables are independent. In other words, zero correla-
tion does not necessarily imply independence. [See Figure 3.110k).]

. Itis a measure of linear association or linear dependence only; it has no
meaning for describing nonlinear relations. Thus in Figure 3.110h), ¥ = Xx*
is an exact relationship vet r is zero. (Why?)

7. Although it is a measure of linear association between two variables,
it does not necessarily imply any cause-and-effect relationship, as noted in
Chapter 1.

In the regression context, r® is a more meaningful measure than r, for
the former tells us the proportion of variation in the dependent variable
explained by the explanatory variable{s) and therefore provides an overall
measure of the extent to which the variation in one variable determines
the variation in the other. The latter does not have such value.®® Maoreover, as
we shall see, the interpretation of ¥ (= R) in a multiple regression model is
of dubious value. However, we will have more to sav about #? in Chapter 7.

In passing, note that the »* defined previously can alse be computed as the
squared coefficient of correlation between actual Y: and the estimated ¥,
namely, ¥,. That is, using (3.5.13), we can write

o [z -hiE -
Ti¥ - FR YN - Fp

That is,

a__(Zws)
(ZyNE )

where ¥ = actual ¥, ¥, = estimated ¥, and ¥ =¥ = the mean of ¥. For
proof, see exercise 3.15. Expression (3.5.14) justifies the description of v as
a measure of goodness of fit, for it tells how close the estimated ¥ values are
1o their actual values.

{3.5.14)



