3.2 THE CLASSICAL LINEAR REGRESSION MODEL:
THE ASSUMPTIONS UMDERLYING THE METHOD
OF LEAST SQUARES

If our objective is to estimate f; and & only, the method of OLS discussed in
the preceding section will suffice. But recall from Chapter 2 that in regres-
sion analysis our ohjective is not only to obiain #) and f but also to draw in-
ferences about the true § and f2. For example, we would like to know how
close fiy and f are to their counterparts in the population or how close ¥; is
to the true BY | X To that end, we must not only specify the functional
form of the model, as in (2.4.2), but also make certain assumptions about

the manner in which ¥, are penerated. To see why this requirement is
needed, look at the FRF: ¥ = /) + f2 X + o I shows that ¥ depends on
both X; and w;. Therefore, unless we are specific about how X; and 1i; are
created or generated, there is no wav we can make any statistical inference
about the ¥; and also, as we shall see, about gy and gz. Thus, the assumptions
made about the X, variable{s) and the error term are extremely critical to the
valid interpretation of the regression estimates.

The Gaussian, standard, or classical linear regression model {CLEM),
which iz the comerstone of most econometric theary, makes 10 assump-
tions.” We first discuss these assumptions in the context of the two-variable
regression model; and in Chapter 7 we extend them to multiple regression
maodels, that is, models in which there is more than one regressor.

Assumption 1: Linear regression model. The regression model is linear in the parame-
ters, as shown in {2.4.2)

Fom 4 kb 1y (24.2)

We already discussed model (2 4.2) in Chapter 2. Since linear-in-parameter
regression models are the starting point of the CLEM, we will maintain this
assumption throughout this book. Keep in mind that the regressand ¥ and
the regressor X themselves may be nonlinear, as discussed in Chapter 2.*

Assumption & X values are fixed in repeated sampling. Values taken by the regrassar X
are cansidered foad in repeabed samples. More lechnically, Xis assumed 1o be nensiochastc.

This assumption is implicit in our discussion of the PRF in Chapter 2.
But it is very important to understand the concept of “Axed values in re-
peated sampling,” which can be explained in terms of cur example given in
Table 2.1. Consider the various ¥ populations corresponding to the levels of
income shown in that table. Keeping the value of income X fixed, sav, at level
280, we draw at random a family and observe its weekly family consump-
tion expenditure ¥ as, say, 360, Still keeping X at $30, we draw at random
another family and observe its ¥ value as $75. In each of these drawings
{i.e., repeated sampling), the value of X is fixed at $80. We can repeat this
process for all the X values shown in Table 2.1, As a matter of fact, the sam-
ple data shown in Tables 2.4 and 2.5 were drawn in this fashion,

What all this means is that our regression analysis is conditional regres-
sion analysis, that is, conditional on the given values of the regressoriz) X

"l is classical in the sense that it was developed first by Gauss in 1821 and since then has
served as a noem or o standard against which may he compared the regression models that do
nied satisfy the Gaussian assumpibons.

*Hawever, o hrief discussion of nonlinear-in-ihe-parnmeter regression madels is given in
Chap. 14.
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Assumption 3: Zero mean wvalue of disturbance u. Given the value of X, the mean, o
expecied, value of the rndom disturbance tam ) is zer. Technically, e condiional mean
vatlue af 1is zese. Symbelically, we hawe

By )= 0 L)

Assumption 3 states that the mean value of 1i;, conditional upon the given
X,, is zero. Geometrically, this assumption can be pictured as in Figure 3.3,
which shows a few values of the variable X and the ¥ populations associated
with each of them. As shown, each ¥ population corresponding to a given X
is distributed around its mean value (shown by the circled points on the
PEF) with some ¥ values above the mean and some below it The distances
above and below the mean values are nothing but the w;, and what (3.2.1)
requires is that the average or mean value of these deviations corresponding
to any given X should be zero ¥

This assumption should not be difficult to comprehend in view of the dis-
cussion in Section 2.4 [see Eq. (2.4.5)]. All that this assumption says is that
the factors not explicitly included in the model, and therefore subsumed in o,
do not systematically affect the mean value of ¥: so to speak, the positive &,

¥
1% Mean

PRF: ¥, = f, + fi,X,

FIGURE 3.3  Conditional distribautian of the disturbances .

o tllusiration, we are assuming merely that the w's are dstnbuted symmetrically as
shonwn in Figure 3.3, But shorly we will assume that the g% are distribuded normally
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FIGURE 3.4

values cancel out the negative u; values so that their average or mean elfect
an ¥ is zero. "

In passing, note that the assumption Ele; | X;) = 0 implies that E(Y; | X;) =
B+ FaoXi. (Why?) Therefore, the two assumptions are equivalent.,

Assumption 4: Momoscedasticity or equal variance of v, Given the valus of X, the vari-
anoe of 4 is the same for &l chservations, Thal is, fe conditional vanances of ) are ident:
cal. Symbalicaly, wa have

war (o | X) = Efu, - o, | X)F
- E|:r.|,'.=| J'i.] because of Assumplion 3 {223
B

whese var stands for variance,

Eq. (3.2.2) states that the variance of &; for each X; (i.e., the conditional
variance of t;) is some positive constant number equal to o®. Technically,
i3.2.2) represents the assumption of homoscedasticity, or equal (homao)
spread (scedasticity) or egual variance. The word comes from the Greek verb
skedanime, which means to disperse or scatter. Stated differently, (3.2.2)
means that the ¥ populations corresponding to various X values have the
same variance. Put simply, the variation around the regression line (which
is the line of average relationship between ¥ and X is the same across the X
values, it neither increases or decreases as X varies. Diagrammatically, the
situation is as depicted in Figure 3.4,

{iul

Probability demsity of o,

PRE. ¥, f,s, LR

Homascedasticity.

"For o mare technical reason why Assumption 3 is necessary see E. Malirvaod, Siaistical
Menids af Evoncmetnics, Band McMally, Checago, 1966, p. 75 See also exercise 3.5,
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fli

Prohahility densiiv of a

Haleroscedastily.

In conirast, consider Figure 3.5, where the conditional variance of the ¥
population varies with X. This situation is known appropriately as het-
eroscedasticity, or wregual spread, or variance. Svmbolically, in this situa-
tiom (3.2.2) can be written as

var(u; | X;) = o} {3.2.3)

Notice the subscript on o® in Eq. (3.2.3), which indicates that the variance
of the ¥ population is no longer constant.

To make the difference between the two situations clear, let ¥ represent
weekly consumption expenditure and X weekly income. Figures 3.4 and 1.5
show that as income increases the average consumption expenditure also
increases. But in Figure 3.4 the variance of consumption expenditure re-
mains the same at all levels of income, whereas in Figure 3.5 it increases with
increase in income, In other words, richer families on the average consume
mcre than poorer families, but there is also more variability in the con-
sumption expenditure of the former.

Tounderstand the rationale behind this assumption, refer to Figure 3.5, As
this figure shows, var{u| X1} = var(u| Xa), ..., = var{u | X;). Therefore, the
likelihond is that the ¥ observations coming from the population with
X = X would be closer to the PRF than those coming from populations cor-
responding to X = X;, X = X;, and so on. In short, not all ¥ values corve-
sponding to the various X's will be equally reliable, reliability being judzed by
how closely or distantly the ¥ values are distributed around their means, that
is, the points on the PRF, If this is in fact the case, would we not prefer to
sample from those ¥ populations that are closer to their mean than those
that are widely spread? But doing so might restrict the variation we olitain
across X values,
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By invoking Assumption 4, we are saying that ai this stage all ¥ values
corresponding o the various X5 are equally important. In Chapter 11 we
shall see what happens if this is not the case, that is, where there is het-
eroscedasticity.

In passing, note that Assumption 4 implies that the conditional variances
of ¥: are also homoscedastic. That is,

var(¥; | Xi} = o* (3.2.4)

Of course, the wnconditional variance of ¥ is of. Later we will see the im-
pottance of distinguishing between conditional and unconditional vari-
ances of ¥ (see Appendix A for details of conditional and unconditional
variances).

Assumption B: No autocorrelation between the disturbances. Given any twa X values,
Xoand X; (i ), the comelation between any two v and o {ie ) is zom. Symbolically,

oo k. 1%, X) = Ellu - Eiu]| XHLy - Elug] | X)
- Bl X | X} fwhy?) 328
-1

whese i and | are two different cbservations and where cov means covariance.

I words, (3.2.5) postulates that the disturbances w and o are uncorre-
lated. Technically, this is the assumption of no serial corvelation, or no
autocorrelation. This means that, given X;, the deviations of any two ¥ val-
ues from their mean value do not exhibit patterns such as those shown in
Figure 3.6a and b. In Figure 3.6q, we see that the u's are positively corre-
lated, a positive u followed by a positive & or a negative i followed by a
negative 1. In Figure 3.65, the u's are negatively correlated, a positive «
followed by a negative & and vice versa.

If the disturbances {deviations) follow systematic patterns, such as those
shown in Figure 3.6a and b, there is auto- or serial corvelation, and what As-
sumption 3 requires is that such correlations be absent. Figure 3.6c shows
that there is no systematic pattern to the u's, thus indicating zero correlation.

The full import of this assumption will be explained thoreughly in Chap-
ter 12, But intuitively one can explain this assumption as follows. Suppose
in our PRF (Y, = f + %X + ) that e and w,-y are positively correlated.
Then ¥, depends not only on X, but also on u,_y for &, 1o some extent
determines ii,. At this stage of the development of the subject matter, by in-
voking Assumption 3, we are saving that we will consider the systematic
effect, if any, of X; on ¥ and not worry about the other influences that might
act on ¥ as a result of the possible intercorrelations among the s, But, as
noted in Chapter 12, we will see how intercorrelations amaong the distur-
bances can be brought into the analysis and with what consequences.
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Assumption &: Zero covariance between wand X, or E[wX] = 0. Formally,
cov {u, X) = Elu, - EluX - 5X)]
= Elufi - B since Blu} =0
= EluX)} - E{XIE(wd  since E|X} is nonstochastic [4.2.8
= E[wk)  since Eju} =10
=0 by assumpion

Assumption & states that the disturbance 1 and explanatory variable X
are uncorrelated. The rationale for this assumption is as follows: When we
expressed the PRF as in (2.4.2), we assumed that X and 4 (which may rep-
resent the influence of all the omitted variables) have separate {and additive)
influence on Y, But if ¥ and & are correlated, it is not possible to assess their
individual effects on ¥. Thus, if X and & are positively correlated, X increases
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when u increases and it decreases when u decreases. Similarly, if X and u
are negatively correlated, X increases when u decreases and it decreases
when u increases. In either case, it is difficult to isolate the influence of X
and & on ¥.

Assurmption & is autematically fulfilled if X variable is nonrandom or
nonstochastic and Assumption 3 holds, for in that case, cov (w,. X,) = [X] -
E(X:)Elw; — Eiw )] = 0. (Why?) But since we have assumed that our X vari-
able not only is nonstochastic but also assumes fived values in repeated
samples," Assumption & is not very critical for us; it is stated here merely to
point out that the regression theorv presented in the sequel holds true even
if the X's are stochastic or random, provided thev are independent or at
least uncorrelated with the disturbances w;.'* {(We shall examine the conse-
quences of relaxing Assumption & in Part I1)

Assumption 7: The number of observations m musi be greater than the number of
parameters to be estimated. Altamatively, the number af absersations n must be greater
than the number ol explanaiory variables.

This assumpion is not so innocuous as it seems, In the hvpothetical
example of Table 3.1, imagine that we had only the first pair of obhservations
on ¥ and X (4 and 1). From this single observation there is no way to esti-
mate the two unknowns, fi and f2. We need at least two pairs of observa-
tions to estimate the two unknowns. In a later chapter we will see the criti-
cal importance of this assumption.

Assumption B: Variability in X values. The X valuas in a given sample must nof sl be the
same. Technically, var [X) must be a fnite posifive number, ™

This assumption too is not so innocuous as it looks. Look at Eq. (3.1.6).
If all the X values are identical, then X, = X (Whyv?) and the denominator of
that equation will be zero, making it impossible to estimate g2 and therefore
1. Intuitively, we readily see why this assumption is important. Looking at

""Recall that in chinining the samples shown in Tables 2.4 and 25, we kept the same X
vailues.

185 we will discuss in Part 11, of the X's are stechastic but distributed independently of u,,
the properties of least estimators disoussed shortly continue ta hald, bt if the stochastee Xs are
meerely uncorrelated with i, the properties of OLS estimatars bald true onldy if the samipde s
& very Large. At this stage, however, there is ne need to get hogged down with this theoretical
R

"The sample variance of X is

X - X¢

variX) = —

where 0 iz samiple sixe.
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our family consumption expenditure example in Chapter 2, if there is very
little variation in family income, we will not be able to explain muoch of the
variation in the consumption expenditure, The reader should keep in mind
that variation in hoth ¥ and X is essential to use regression analvsiz as a re-
search toal. In short, the variables must vary!

Assumption 9: The regression madel is correctly spacified. Altamatively, thare is ra
specification bias or error in the madel used in empincal anakysis.

As we discussed in the Introduction, the classical econometric methodal-
oy assumes implicitly, if not explicitly, that the model used to test an eco-
nomic theory is “correctly specified.” This assumption can be explained
informally as follows. An econometric investigation begins with the specifi-
cation of the econometric model underlying the phenomenon of interest.
Some important questions that arise in the specification of the model
include the following: (1) What variables should be included in the model?
(2} What is the functional form of the model? Is it linear in the parameters,
the variables, or both? (31 What are the probabilistic assumptions made
about the ¥}, the X;, and the ; entering the model?

These are extremely important questions, for, as we will show in Chap-
ter 13, by omitting important variables from the model, or by cheosing the
wrong functienal form, or by making wrong stochastic assumptions about
the variables of the model, the validity of interpreting the estimated regres-
sion will be highly questionable. To get an intuitive feeling about this, vefer
to the Phillips curve shown in Figure 1.3, Suppose we choose the following
two models to depict the underlying relationship between the rate of change
of money wages and the unemplovment rate:

F;' =i T+ n':K,- T+ {3.1..”
l
Y= o+ .HJ (?) + ki {3.1.3!

where ¥; = the rate of change of money wages, and X; = the unemployment
rate.

The regression model (3.2.7) is linear both in the parameters and the
variables, whereas {3.2.8) is linear in the parameters (hence a linear regres-
sion model by our definition) but nonlinear in the variable X. Now consider
Figure 3.7.

If model (3.2.8) is the “correct” or the “true” model, fitting the model
(3.2.7) to the scatterpoints shown in Figure 3.7 will give us wrong predic-
tions: Between points A and B, for any given X; the model {3.2.7) is going to
overestimate the true mean value of ¥, whereas to the left of A (or to the
right of ) it is going to underestimate (or overestimate, in absolute terms)
the true mean value of ¥.
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=

Raie aof change of money wages

FIGURE 3.7 Linear and nonlinear Phillips curves.

The preceding example is an instance of what is called a specification
bias or a specification ervor: heve the bias consists in choosing the wrong
functional form. We will see other tvpes of specification ervars in Chapter 13,

Unfertunately, in practice one rarely knows the correct variables to in-
clude in the model or the correct functional form of the moedel or the corvect
probahilistic assumptions about the variables entering the model for the
theory underlving the particular investigation (e.g., the Phillips-type money
wage change-unemplovment rate tradeofl) may not be strong or robust
encugh to answer all these questions. Therefore, in practice, the econome-
trician has to use some judgment in choosing the number of variables enter-
ing the model and the functional form of the model and has to make some
assumptions about the stochastic nature of the variables included in the
model. To some extent, there is some trial and error involved in choosing the
“right” model for empirical analvsis."*

If judgment is required in selecting a model, what is the need for Assump-
tion 97 Without going into details here (see Chapter 13), this assumption
is there to remind us that our regression analysis and therefore the results
based on that analysis are conditional upon the chosen model and to warn
us that we should give verv careful thought in formulating econometric

"Bt one should avod what is known os *date mining," that is, trying every possible
made] with the hope that at keast ene will [t the data well, That is why it is essential that there
he some ecammic reasoning underlying the chosen madel and that amy medifications in
the model should have some econamic jusiification. A purely ad hoc madel may be difficult io
justify on thearetical o & pricr grounds. In shon, theory showld he the hosis of sstimation. But
we will have moes 1o say aboul data mining in Chap. 1 §, far there are siume whe argue that in
simee siiuatsons data mining con serve o useful purpose.
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models, especially when there may be several competing theories trying to
explain an economic phenomenon, such as the inflation rate, or the demand
for money, or the determination of the appropriate or equilibrium value of a
stock or a bond. Thes, econametric model-biilding, as we shall discover, is
wtore offen an art rather than a scisnce.

Our discussion of the assumptions underlving the classical linear regres-
sion model is now completed. It is important to note that all these assump-
tions pertain to the PRF only and not the SRE But it is interesting to observe
that the method of least squares discussed previously has some proper-
ties that are similar to the assumptions we have made about the PRF. For
example, the finding that ¥ 6; =0, and, theretore, fi =0, is akin to the as-
sumption that E(u; | X;) = 0. Likewise, the finding that ¥ i X; = 0is similar
to the assumption that coviw;, X;}=0. It is comforting to note that the
method of least squares thus tries to "duplicate” some of the assumptions
we have imposed on the PRE.

Of course, the SRF does not duplicate all the assumptions of the CLEM.
As we will show later, although covie, 1) =000 # j) by assumption, it is
ot true that the sample cov (i, &)= 00 # f). As a matter of fact, we will
show later that the residuals not only are autocorrelated but also are het-
eroscedastic {see Chapter 12),

When we go bevond the two-variable model and consider multiple re-
gression models, that is, models containing several regressors, we add the
following assumption.

Assumption 10: There is no perfect multicollinearity. Tha is, there are no perfact inear
raiationshps among e explanadary variabies.

We will discuss this assumption in Chapter 7, where we discuss multiple
regression models.

A Word about These Assumptions

The million-dollar question is; How realistic are all these assumptions? The
“reality of assumptions” is an age-old question in the philosophy of science.
Some argue that it does not matter whether the assumptions are realistic.
What matters are the predictions bazed on those assumptions. Motable
among the “irrelevance-of-assumptions thesis” is Milton Friedman. To him,
unreality of assumptions is a positive advantage: "to be important ... a
hypothesis must be descriptively false in its assumptions,”"

One may not subscribe to this viewpoint fully, but recall that in any
scientific study we make certain assumptions because thev facilitate the

YMilten Priedran, Essavs in Positive Economics, University of Chicage Press, Chicaga,
1953, . 14,
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development of the subject matter in gradual steps, not because they are
necessarily realistic in the sense that they replicate reality exactly. As one
author notes, *.. . if simplicity is a desirable criterion of good theory, all
good theories idealize and oversimplify outrageously,'®

What we plan to do is first study the properties of the CLEM thoroughly,
and then in later chapters examine in depth what happens if one or more of
the assumptions of CLRM are not fulfilled. At the end of this chapter, we
provide in Table 3.4 a guide to where one can find out what happens to the
CLREM if a particular assumption is not satisfied.

As a colleague pointed out to me, when we review research done by
athers, we need to consider whether the assumptions made by the re-
searcher are appropriate to the data and problem. All too often, published
research is based on implicit assumptions about problem and data that are
likely nmot comvect and that produce estimates based on these assumptions,
Clearly, the knowledgeable reader should, realizing these problems, adopt a
skeptical attitude toward the research. The assumptions listed in Table 3.4
therefore provide a checklist for guiding cur research and for evaluating the
research of athers.

With this backdrop, we are now ready o study the CLREM. In particular,
we want to find out the statistical properties of OLS compared with the
purely numerical properties discussed earlier. The statistical properties of
OLS are based on the assumptions of CLEM already discussed and are
enshrined in the famous Gauss-Markov theorem. But before we turn o
this theorem, which provides the theoretical justification for the popularity
of OLS, we first need to conzider the precision or standard errors of the
least-squares estimates.

33 PRECISION OR STANDARD ERRORS
OF LEAST-SQUARES ESTIMATES

From Eqgs. (3.1.6) and {3.1.7), it is evident that least-squares estimates are a
function of the sample data. But since the data are likely to change from
sample to sample, the estimates will change ipso facto. Therefore, what is
needed is some measure of “reliability” or precision of the estimators f,
and f. In statistics the precision of an estimate is measured by its standard
error (se).'” Given the Gaussian assumptions, it is shown in Appendix 34,
Section 3A.3 that the standard errors of the OLS estimates can be obtained

" ark Blaug, Mhe Methadalogy of Econemics: O How Economisis Explain, 2d ed,
Cambridge University Press, New York, 1992, po 892

""The standard error is nathing hut the standard deviatian of the sampling distribution of
the estimaton, and the sampling distribution of an estimatar is simply a probabality o fre.
quency distributiaon of the estimaton, that i, o distribution of the set of values of the estimator
ohained from all possible samples of the same size from a given population. Sampling distri-
butinns are used b draw inferenoss abeut the valwes of the popalation parameters on the basis
of the vahwes of the estimators caloulated from one o more samples. [For detoils, s App. A}
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as follows:
. a2
1-'E|'E_|E21=E—x.f (3.31)
se(fy) = —— (3.3.2)
JIeg
by = i 5
var(fil = ”E-‘f}tw 3.3.3)
. X
se(f )= EE—_;?:-' 334

where var = variance and se = standard error and where o* is the constant
or homoscedastic variance of 4; of Assumption 4.

All the quantities entering into the preceding equations except o2 can be
estimated from the data. As zhown in Appendix 3A, Section 3A5, o % itself is
estimated by the follwwing formula:

,;,1_E_ﬂ'!

335
n-12 ( )

where 62 is the OLS estimator of the true but unknown o2 and where the
expression 1 — 2 is known as the number of degrees of freedom (df), ¥ i}
being the sum of the residuals squared or the residual sum of squares
[HSSLIH

Once ¥ i¢ is known, % can be easilv computed. ¥ ii? itself can be com-
puted either from {3.1.2) or from the following expression {see Section 1.5

for the proof):
Y=Y i -Ay (3.3.6)

Compared with Eq. (3.1.2), Eq. (3.3.6) is easy to use, for it does not require
computing & for each observation although such a computation will be use-
ful in its own right {as we shall see in Chapters 11 and 12).

Since

hIE ]

™

a1 =

¥The ierm number of degrees of freedom means the total number of shservations in the
samiple (= 1) less the mumber of independent (linear) constraints ar restrictions put an them.
In other words, i is the number of independent observations aut of o wtal of o ehesrvations,
For example, before the BSS (3.1.2) can be computed, 7 ond @ must first he ablained. These
twn estimates therefore put two restrictions on the BSS, Therefore, there are s = 2, oot », in-
dependent absermtians io compute the RES Pollowing this logic, in the three-variohle regres-
sinn BSS wall have w = 3 df, ond for the k-variable model it will have o = & df. The general mle
ks this: df = {1~ number of parameters estimated).
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an alternative expression for computing ¥ iF is

(L)’
Yo=Y (33.7)
L
In passing, note that the positive square root of &2

d = E (3.3.8)
H—2

is known as the standard ervor of estimate or the standard error of the
regression (se). It is simply the standard deviation of the ¥ values about
the estimated regression line and is often used as a summary measure of
the “goodness of fit” of the estimated regression line, a topic discussed in
Section 3.5

Earlier we noted that, given X, o represents the {conditional} variance
af bath &, and ¥.. Therefore, the standard ervor of the estimate can also be
called the (conditional) standard deviation of s and ¥. Of course, as usual,
oy and oy represent, respectively, the unconditional variance and uncondi-
tional standard deviation of ¥,

Note the lollowing features of the variances (and therefore the standard
ervors) of f, and f,.

1. The variance of f is divectly proportional to o® but inversely propor-
tional to ¥ x%. That is, given o2, the larger the variation in the X values, the
smaller the variance of f; and hence the greater the precision with which f;
can be estimated. In short, given o, if there is substantial variation in the X
values {recall Assumption &), £ can be measured more accurately than
when the X; do not vary substantially. Also, given ¥+, the larger the vari-
ance of o, the larger the variance of f. Note that as the sample size n
increases, the number of terms in the sum, ¥ x?, will increase. As n in-
creases, the precision with which g can be estimated also increases, (Why?)

2. The variance of f is directly proportional to «® and ¥ X7 but in-
versely proportional to 3«7 and the sample size n.

3. Since fiy and fh ave estimators, they will not only vary from sample to
sample but in a given sample thev are likely to be dependent on each other,
this dependence being measured by the covariance between them. It is
shown in Appendix 3A, Section 3A.4 that

cov(fy, fir) = —Xvar ()
i gl (3.3.9)
==X
(=)
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Since varif) is always positive, as is the variance of any variable, the nature
ol the covariance between f; and f; depends on the sign of X. If ¥ is posi-
tive, then as the formula shows, the covariance will be negative. Thus, if the
slope coefficient g is cierestinated (i.e., the slope is too steep), the intercept
coefficient # will be underestimared (i.e., the intercept will be too small).
Later on (especially in the chapter on multicollinearity, Chapter 10), we will
see the utility of studving the covariances between the estimated regression
coelficients.

How da the variances and standard ervors of the estimated regression
coelficients enable one to judge the reliability of these estimates? This is a
problem in statistical infevence, and it will be pursued in Chapters 4 and 5.



