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TWO-VARIABLE
REGRESSION MODEL: THE
PROBLEM OF ESTIMATION

As noted in Chapter 2, our first task is to estimate the population regression
function (PRF) on the basis of the sample regression function (SRF) as
accurately as possible. In Appendix A we have discussed two generally used
methods of estimation: (1) ordinary least squares (OLS) and {2) maxi-
mum likelihood (ML). By and large, it is the method of OLS that is used
extensively in regression analysis primarily because it is intuitively appeal-
ing and mathematically much simpler than the method of maximum likeli-
hood. Besides, as we will show later, in the linear regression context the two
methods generally give similar results.

3.1 THE METHOD OF ORDINARY LEAST SQUARES

The method of ordinary least squares is attributed to Carl Friedrich Gauss,
a German mathematician. Under certain assumptions (discussed in Sec-
tion 3.2), the method of least squares has some very attractive statistical
properties that have made it one of the most powerful and popular methods
of regression analysis. To understand this method, we first explain the least-
squares principle.

Recall the two-variable PRF:

): = ﬂl - ﬂzx,' +U; (2‘4'2)

However, as we noted in Chapter 2, the PRF is not directly observable. We
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estimate it from the SRF:
Y=+ X 40 26.2)
=¥ +i (26.3)

where ¥, is the estimated {conditional mean) value of ¥,
But how is the SEF itsell determined? To see this, let us proceed as fol-
bows. First, express {2.6.3) as

J-J|=]"::_-.F-'I;

o (3.1.1)
=Y - f| - i

which shows that the & (the residuals) are simply the differences between
the actual and estimated ¥ values.

Now given i pairs of observations on ¥ and X, we would like 1o determine
the SEF in such a manner that it is as close as possible to the actual ¥. To
this end, we may adopt the following eriterion: Choose the SRF in such a
way that the sum of the residuals ¥"i; = Y{¥; - ¥/} is as small as possible.
Although intuitively appealing, this is not a very good criterion, as can be
seen in the hypothetical scattergram shown in Figure 3.1.

If we adopt the criterion of minimizing ¥ &, Figure 3.1 shows that the
residuals i and ds as well as the residuals & and fis receive the same weight

im the sum (& + f + i + i), althowgh the first two residuals are much
closer to the SEF than the latter two. In other words, all the residuals receive

X X

Least-squaras cribarion,
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TABLE 31

equal importance no matter how close or how widely scattered the individ-
ual ohservations are from the SRF. A consequence of this is that it is quite
possible that the algebraic sum of the &; is small (even zero) although the
it; are widely scattered about the SRE To see this, let dy, fia, s, and fis in
Figure 3.1 azsume the values of 10, -2, +2, and —10, respectively. The alge-
braic sum of these residuals is zero although &, and 4, are scattered mare
widely around the SRF than iz and #&:. We can avoid this problem if we
adapt the leasi-squares criterion, which states that the SRF can be fixed in
stich a way that

Y=Yy -5

Ce (3.1.2)
=Y 1% - - X
is as small as possible, where (i are the squared residuals. By squaring &,
this method gives more weight to residuals such as i, and fiy in Figure 3.1
than the residuals iz and . As noted previously, under the minimum ¥ i
criterion, the sum can be small even though the f are widely spread about
the SRE. But this is not possible under the least-squares procedure, for the
larger the &; (in absolute value), the larger the 372, A further justification
for the leasi-squares method lies in the fact that the estimators obtained by
it have some very desirable statistical properties, as we shall see shortly.
It is obwious from (3.1.2) that

3 i = f(h, i) (3.1.3)

that is, the sum of the squared residuals is some function of the estima-
tors £, and f. For any given set of data, choosing different values for ), and
fr will give different i's and hence different values of ¥ i, To see this
clearly, consider the hypothetical data on ¥ and X given in the first two
columns of Table 3.1. Let us now conduct two experiments. In experiment |,

EXPERIMENTAL DETERMINATION OF THE ERF

¥ -:':' ";"Ir |j|| L;rfl EIII |-:'I| I'Ji'

1) {2 EH 1 (5]} 15} 7} (8

4 i pul 1. 1.0 1.147 4 ] i}

§ 4 00 2,000 4.004 7 2 4

7 5 BAET 1.367 1.841 B 1 i

iz i 8714 2205 B2 8 3 4

Sum: 28 16 0.0 12214 L 14

Mofas: = 1572 + 1357 4., 4 = 1.572 and f; = 1.357)
For= 304+ 1.0 fLa., fi = 3and fy=1.0)
Oij=1{¥ - ?Ij
=¥ - T
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let fy = 1.572 and f; = 1357 (let us not worry right now about how we got
these values; say, it is just a puess).! Using these # values and the X values
given in column (21 of Table 3.1, we can easily compute the estimated ¥,
given in column (3) of the table as ¥y; (the subscript 1 is to denote the first
experiment). Now let us conduct another experiment, but this time using
the values of # = 3 and f = 1. The estimated values of ¥; from this experi-
ment are given as Yy in column (6) of Table 3.1. Since the # values in the
two experiments are different, we get different values for the estimated
residuals, as shown in the table; &); are the residuals from the first experi-
ment and fy from the second experiment. The squares of these residuals
are given in columns (3) and {3). Obviously, as expected from (3.1.3), these
residual sums of squares are different since they are based on diffevent sets
of # values.

Now which sets of § values should we choose? Since the £ values of the
first experiment give us a lower ¥ @ (= 12.214) than that obtained from
the fi values of the second experiment (= 14), we might say that the f5 of the
first experiment are the "hest” values, But how do we know? For, if we had
infinite time and infinite patience, we could have conducted many maore
such experiments, choosing different sets of fs each time and comparing the
resulting ¥ i and then choosing that set of f values that gives us the least
possible value of ¥ i assuming of course that we have considered all the
conceivable values of # and f. But since time, and certainly patience, are
generally in short supply, we need o consider some shortcuts 1o this trial-
and-error process. Formunately, the method of least squares provides us such
a shorteut. The principle or the method of least squares chooses £ and f
in such a manner that, for a given sample or set of data, ¥ 6 is as small as
possible. In other words, for a given sample, the method of least squares
provides us with unigue estimates of & and g that give the smallest possi-
ble value of ¥ i} How is this accomplished? This is a straight-forward exer-
cise in differential caleulus, As shown in Appendix 3A, Section 341, the

process of differentiation vields the following equations for estimating £
and fi:

YX=uh+h) X (3.14)

YEX=4Y X+hY X (3.1.5)

where n is the sample size. These simultaneous equations are known as the
normal equations.

"B the curious, these vahues are abizined by the method of least squares, discussed
shortly. See Bgs. (3,000 and (3.1.7).
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Solving the normal equations simultaneously, we obtain

] HE.IIT:_EK; E}:
b= S 3
WL X - (EX)
_ L& -XN%-1
T LE-XE (3.1.6)
_LEN
Ly

whn:rn:_.';{ and ¥ are the sample means of X and ¥ and where we define x; =
(X; = X) and v; = (¥, = ¥). Henceforth we adop the convention of letting the
lowercase letiers denote deviafions from mean values.

§  DELE-TX T
T AT X (xS (3.1.7)

=¥-fk

The last step in {3.1.7) can be olained divectly from (3.1.4) by simple alge-
biraic manipulations.

Incidentally, note that, by making use of simple algebraic identities, for-
mula {3.1.6) for estimating & can be alternatively expressed as

ﬁ _ L5
T

i¥i
= E—Elx—nx-ﬁ {3.[»&}2

The estimators obtained previously are known as the least-squares
estimators, for they are derived from the least-squares principle. Note the
following numerical properties of estimators obtained by the method of
OLS: "Numerical properties are those that hold as a consequence of the use

Wote LR = UK =X = R TN T = DX - 2T X 4 T XY since X
is & constant. Purther noting that © X = vX ond ¥ X = X7 since X is o constani, we finally
gt Tl = T AT < i

Noie 2 Ton = gl ==l =Yg =Tl =T =X =Fuk, since ¥
is o comsiand and since the sum of devintions nI'JE'.'.Lriaﬁ'E.‘ from its mean value [eg, FIX = X1
i alvmys rera. Likewdse, ¥ v = 1K = Fl =10
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of ordinary least squares, regardless of how the data were generated.”
Shortly, we will also consider the statistical properties of OLS estimators,
that is, properties “that hold only under certain assumptions about the way
the data were generated." {See the classical linear regression model in
Section 3.2.)

L. The OLS estimators are expressed solely in terms of the observable (ie.,

sample) quantities {i.e., X and ¥). Therefore, they can be easily computed.

I1. They arc point estimators; that is, given the sample, each estimator

will provide only a single (point) value of the relevant population para-

meter. (In Chapter 5 we will consider the so-called interval estimators,

which provide a range of possible values for the unknown population
parameters.)

M1 Once the OLS estimates are oliained [rom the sample data, the sample
regression line {Figure 3.1) can be easily obtained. The regression line
thus obtained has the following properties:

1. Tt passes through the sample means of ¥ and X. This fact is obvious
from (3.1.7), for the latter can be written as ¥ = §, + g X, which is
shown diagrammatically in Figure 3.2,

K

FIGURE 3.2  Diagram showing that the sample regression e passes throughthe sample mean valwes of ¥and X

szl Davidson and James G. MacKinnon, Esiimarion ard Inference iv Econometnics
Ouford University Press, Mew York, 1993, o 5
Hibid.
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2. The mean value of the estimated ¥ = ¥ is equal to the mean value of
the actual ¥ for

Y= f +hX,
=¥ - X+ feX; (3.1.9)
= ]T'+,|':-f11xr' -1

Summing both sides of this last equality aver the sample values and
dividing through by the sample size n gives

F=7 (3.1.10)°

where use is made of the fact that T(X; — X1 = 0. (Why?)
3. The mean value of the residuals f; is zero. From Appendiz 34,
Section 3A.1, the first equation is

—EZ{?E - fii - fX;) =0
But since i; =¥ -, — f1X;, the preceding equation reduces to

2% i, =0, whence i = 0.8
As a result of the preceding property, the sample regression

Y= + X + i (2.6.2)
can be expressed in an alternative form where both ¥ and X are ex-

pressed as deviations from their mean values. To see this, sum {2.6.2)
on both sides 1o give

ET‘E =Hﬁ1+ﬁzzxf+ztl's

.. ERNEY
=Hﬁ1+ﬂgz}{; since Eﬂ.:ﬂ {
Dividing Eq. (3.1.11) through by s, we obtain
V=5 +5hX (3.1.12)

which is the same as (3.1.7). Subtracting Eq. {3.1.12) from (2.6.2),
we obtain

Y- ¥ = X, - X)+i

Mot thai this result is true only when the regression model has the intercept term gy in ii.
s App. 6A, Sec. 6.1 shows, this result need not hold when iy §s ahsent from the mode],

“This result alse requires that the inercept term ) be present in the model (see App. G,
Ser. bAl).
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ol
¥ = fax; + iy (3.1.13)

where ¥; and x;, following our convention, are deviations from their
respective (sample) mean values.

Equation (3.1.13) is known as the deviation form. Notice that the
intercept term f is no longer present in it. But the intercept term
can always be estimated by (3.1.7), that is, from the fact that the
sample regression line passes through the sample means of ¥ and X,
An advantage of the deviation form is that it often simplifies com-
puting formulas.

In passing, note that in the deviation form, the SRF can be writ-
ten as

i = fax; (3.1.14)

whereas in the original units of measurement it was ¥ = f, + f X,
as shown in (2.6.1).

. The residuals &; are uncorrelated with the predicted ¥:. This state-

ment can be verified as follows: using the deviation form, we can write

E_I.'r,:':, =y Ex,:’:_:

= ¥ xlw — faxi)

= fia EIJ_'I'F .y Ex,-! (3.1.15)
=fhy 5-AYy«
=0

where use is made of the fact that A = T 5w/ ah

5. The residuals it; are uncorrelated with X;: that is, ¥ 6;X; = 0. This

fact follows from Eq. (2) in Appendix 3A, Section 3A.1.



