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TWO-VARIABLE

REGRESSION ANALYSIS:
SOME BASIC IDEAS

In Chapter | we discussed the concept of regression in broad terms. In this
chapter we approach the subject somewhat formally. Specifically, this and
the following two chapters introduce the reader to the theorv underlving
the simplest possible regression analvsis, namely, the bivariate, or two-
variable, regression in which the dependent variable (the regressand) is re-
lated to a single explanatory variable (the regressor). This case is considered
first, not because of its practical adequacy, but because it presents the fumn-
damental ideas of regression analysis as simply as possible and some of
these ideas can be illustrated with the aid of two-dimensional graphs. More-
over, as we shall see, the more general multiple regression analvsis in which
the regressand is related to one or more regressors is in many ways a logical
extension of the two-variable case.

21 AHYPOTHETICAL EXAMPLE'

As noted in Section 1.2, regression analysis is largely concerned with esti-
mating and'or predicting the {population) mean value of the dependent
variable on the basis of the known or fixed values of the explanatory vari-
ahle(s).? To understand this, consider the data given in Table 2.1. The data

"The reader whise statistical knowledge hos hecome somewhat rusty may want to freshen
it up by reading the statistical appendic, App. A, before reading this chapter.

“The expecied vallee, ar expesiation, o papidaiion mean af @ randam varialble ¥ is denoted by
the symbal E(¥). On the sther hand, the mean value compusied fram a sample of valoes from
the ¥ papulation is denated as ¥, read as Y boe
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TABLE 21 WEEKLY FAMILY INCOME X, 5
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in the table refer 1o a total population of &0 families in a hypothetical com-
munity and their weekly income (X) and weekly consumption expenditure
i¥), both in dollars. The 60 families are divided into 10 income groups {(from
180 to 52600 and the weekly expenditures of each family in the various
aroups are as shown in the table. Therefore, we have 10 fived values of X and
the corresponding ¥ values against each of the X values; so to speak, there
are 10 Y subpopulations.

There is considerable variation in weekly consumption expenditure in
each income group, which can be seen cleardy from Figure 2.1. But the gen-
eral piciure that one gets is that, despite the variability of weekly consump-
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FIGURE 21  Conditional distibution of expendibure for saious levels of income (data of Table 2.1).
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tion expenditure within each income bracket, on the average, weekly con-
sumption expenditure increases as income increases. To see this clearly, in
Table 2.1 we have given the mean, or average, weekly consumption expen-
diture corresponding to each of the 10 levels of income. Thus, correspond-
ing to the weekly income level of £80, the mean consumption expenditure is
%65, while corresponding to the income level of $200, it is $137. In all we
have 10 mean values for the 10 subpopulations of ¥, We call these mean val-
ues conditional expected values, as they depend on the given values of the
(conditioning) variable X. Symbolically, we denote them as E(Y| X), which
is read as the expected value of ¥ given the value of X (see also Table 2.2).

It is important to distinguish these conditional expected values from the
unconditional expected value of weeklv consumption expenditure, (Y.
If we add the weekly consumption expenditures for all the &0 families in
the popilarion and divide this number by 60, we get the number $121.20
($7272600, which is the unconditional mean, or expected, value of weekly
consumption expenditure, E{Y); it is unconditional in the sense that in ar-
riving at this number we have disregarded the income levels of the various
families* Obwviously, the various conditional expected values of ¥ given in
Table 2.1 are different from the unconditional expected value of ¥ of
£121.20. When we ask the question, “What is the expecred value of weekly
consumption expenditure of a family,” we get the answer $121.20 (the un-
conditional mean). But if we ask the question, “What is the expected value
of weekly consumption expenditure of a family whose monthly income is,

CONDITIONAL PROBABILITIES o ¥ | X} FOR THE DATA OF TABLE 2.1

AV |m o i@ w0 e 1m0 om0 om0 a0 28
- 1 1 1 1 1 1 1 1 1 1
Candtianz i § & F & & ¥ 3 & 7
probabiliies pi¥) X) | 1 1 1 1 1 1 1 1 1
i § & 7 & § 3§ 3 § 7
1 1 1 1 1 1 1 1 1 1
i § & 7 & § 3§ F § 7
1 1 1 1 1 1 1 1 1 1
L] g L] T g E T 7 E ¥
1 1 1 1 1 1 1 1 1 1
L] g L] T 8 E - 7 B T
1 1 1 1 1 1 1
- 8§ T 7 & & P8 7
_ _ _ 1 _ _ _ 1 _ 1
7 7 7
Canditianal B8 7T 83 101 M3 13 17 148 161 17
maares af ¥

"As shown in App. A, in general the conditbonal ond unconditional mean values are different,
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FIGURE 2.2

say, $140," we get the answer 3101 (the conditional mean). To put it differ-
ently, if we ask the question, "What is the best (mean) prediction of weekly
expenditure of families with a weekly income of 2140, the answer would be
%101, Thus the knowledge of the income level may enable us to better pre-
dict the mean value of consumption expenditure than if we do not have that
knowledge * This probably is the essence of regression analysis, as we shall
discover throughout this text.

The dark circled points in Figure 2.1 show the conditional mean values of
¥ against the various X values. If we join these conditional mean values, we
abtain what is known as the population regression line {PRL), or more
generally, the population regression curve.” More simply, it is the regres-
sion of ¥ on X. The adjective “population” comes [rom the fact that we are
dealing in this example with the entire population of 60 families. Of course,
in reality a population may have many families,

Geometrically, then, a population regression curve is simply the lecus of
the conditional means of the dependent variable for the ficed values of the ex-
planatory varialblelsl. More simply, it is the curve connecting the means of
the subpopulations of ¥ corresponding to the given values of the regressor
X. It can be depicted as in Figure 2.2,

¥
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Papulation regression line {data of Table 2.1).

*1 am indebied e James Davidson on this perspective. See James Davidson, Economsiric
Theory, Blackwell Publishers, Oncfard, UK., 23000, p. 11
*Ins the present example the PRL & a strakght line, bt it could be a curve (see Figure 230
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This figure shows that for each X (i.e., income level) there is a population
of ¥ values (weekly consumption expenditures) that are spread arownd the
(conditional) mean of those ¥ values. For simplicity, we are assuming that
these ¥ values are distributed symmetrically around their respective (condi-
tional) mean values. And the regression line (or curve) passes through these
{conditional) mean values.

With this background, the reader may find it instructive to reread the
definition of regression given in Section 1.2,

22 THE CONCEPT OF POPULATION REGRESSION

FUNCTION (PRF)

From the preceding discussion and Figures. 2.1 and 2.2 it is clear that each
conditional mean E(Y| X:) i= a function of X;, where X; is a given value of X,
Symbaolically,

E[‘}"|Jf.:] = HX,-] {2.1.”

where [{X;) denotes some function of the explanatory variable X In owr
example, E(Y| X;) is a linear function of X;. Equation (2.2.1} is known as the
conditional expectation function (CEF) or population regression func-
tion (PRF) or population regression (PR) for short. It states mevely that
the expected valie of the distribution of ¥ given X, is functionally related to X,
In simple terms, it tells how the mean or average response of ¥ varies with X,

What form does the function X} assume? This is an important gues-
tion because in real situations we do not have the entire population avail-
able for examination. The functional form of the PRF is therefore an empir-
ical gquestion, although in specific cases theory may have something to say.
For example, an economist might posit that consumption expenditure is
linearly related to income. Therefore, as a first approximation or a working
hvpothesis, we mav assume that the PRF E(Y | X;) is a linear function of X,
say, of the type

E(Y|X)=§ + 5:X (2.2.2)

where 8, and g, are unknown but fixed parameters known as the regression
coefficients; £ and f are also known as intercept and slope coefficients,
respectively,. Equation (2.2.1) itsell is known as the linear population
regression function. Some alternative expressions used in the literature are
linear popularion regression madel or simply linear popalazion regression. In
the sequel, the terms regression, regression equation, and regression
model will be used synonymously.

In regression analysis our interest is in estimating the PRFs like {2.2.3),
that is, estimating the values of the unknowns S and 2 on the basis of ob-
servations on ¥ and X This topic will be studied in detail in Chapter 3.
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23 THE MEANING OF THE TERM LINEAR

Since this text is concerned primarily with linear models like (2.2.2), it is es-
sential to know what the term linear really means, for it can be interpreted
in two different ways.

Linearity in the Variables

The first and perhaps more "natural” meaning of linearity is that the con-
ditional expectation of ¥ is a linear function of X;, such as, for example,
{2.2.2).5 Geometrically, the regression curve in this case is a straight line,
In this interpretation, a regression function such as E(Y[X;) = g, + fhX?
is not a linear function because the variable X appears with a power or
index of 2.

Linearity in the Paramaters

The second interpretation of linearity is that the conditional expectation of
¥, Ei¥| X}, is a linear function of the parameters, the f's; it may or may not
be linear in the variable X.7 In this interpretation E(¥ | X;) = f + X7 isa
linear (in the parameter) regression model. To see this, let us suppose X
takes the value 3. Therefore, E(Y | X = 3) = # + 98, which is obviously lin-
ear in § and &. All the models shown in Figure 2.3 are thus linear regres-
sion models, that is, models linear in the parameters.

Now consider the model E[¥ | X;) = fi + 1 X;. Now suppose X = 3; then
we obtain E{Y| X;) = fi + 382, which is nonlinear in the parameter . The
preceding model is an example of a nonlinear (in the parameter) regres-
sion model. We will discuss such models in Chapter 14,

Of the two interpretations of linearity, linearity in the parameters is rele-
vant for the development of the regression theory 1o be presented shortly,
Therefore, from mow on the term “linear” regression will always mean a regres-
sion that is linear in the parameters; the §5 (that is, the parameters are raised
ior the first poer only), It may or say nof be linear in the explanatory var-
ables, the X% Schematically, we have Table 2.3, Thus, E(¥ | X )= & + £.X;,
which is linear both in the parameters and variable, is a LEM, and so is
E(Y|X;} = + g:X7, which is linear in the parameters but nonlinear in
variahle X,

A unciion ¥ = f{X) s said v be linear in X if X appears with a praver or index of 1 ealy
{that is, terms such os X°, o, and 5o an, are excloded) and is not mulitplied or divided by any
other variazhle (for example, X« 2 or X Z, where £ is another vaniable). [FY depends on X alone,
another way tostate that ¥ is linearly related to X is that the rate of change of 1 with respect to
X lie., the slope, ar derivative, of ¥ with respect 10 X, d¥/dX) is independent of the wlue of X.
Thus, if ¥ = 4X, 4¥/dX = 4, which is independent af the value of X. But if ¥ = 45 dY1dX =
8X, which is not independeni of the value taken by X, Hence this function is not linear in X.

"M function is said tohe Hoear in the parameter, say, iy, i f§; oppears with o power of 1 only
and s not multiphied or diveded by any ather parameter (for example, 88, & /0, and so ool
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FIGURE £3  Linear-ir-parameter funclions.
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24 STOCHASTIC SPECIFICATION OF PRF

It is clear from Figure 2.1 that, as family income increases, family conswmp-
tion expenditure on the average increases, too. But what about the con-
sumption expenditure of an individual family in relation to its (fixed) level
of income? It is obvious from Table 2.1 and Figure 2.1 that an individual
familv's consumption expenditure does not necessarily increase as the income
level increases. For example, from Table 2.1 we observe that comresponding
to the income level of $100 there is one family whose consumption expen-
diture of $65 is less than the consumption expenditures of two families
whase weekly income is only $50. But notice that the average consumption
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expenditure of families with a weekly income of £100 is greater than the
average consumption expenditure of families with a weekly income of %80
(877 versus $65).

What, then, can we sav about the relationship between an individual fam-
ily's consumption expenditure and a given level of income? We see from Fig-
ure 2.1 that, given the income level of X;, an individual Family's consump-
tion expenditure is clustered around the average consumption of all families
at that X, that is,_ around its conditional expectation. Therefore, we can ex-
press the deviation of an individual ¥ around it expected value as follows:

w; =Y, — E(Y| X))
i
¥ = E(Y | X))+ (2.4.1)

where the deviation &; is an unobservable random variable taking positive
ar negative values. Technically, u; is known as the stochastic disturbance
o stochastic error term.

How do we interpret (2.4.1)7 We can sav that the expenditure of an indi-
vidual family, given its income level, can be expressed as the sum of two
components: (11 E(¥| X1, which is simply the mean consumption expendi-
ture of all the families with the same level of income. This component is
known as the systematic, or deterministic, component, and (2} i, which
is the random, or nonsystematic, component. We shall examine shortly the
nature of the stochastic disturbance term, but for the moment assume that
it is a surrogaie or proxy for all the omitted or neglected variables that may
affect ¥ but ave not {or cannot be) included in the regression model.

If E(Y| X; ) is assumed to be linear in X;, as in ¢2.2.2), Eq. (2.4.1) may be
written as

¥, =E¥ X)+uy

=fi+hX+y (24.1)
Equation (2.4.2) posits that the consumption expenditure of a family is
linearly velated to its income plus the disturbance term. Thus, the individ-

ual consumption expenditures, given X = 580 (see Table 2.1), can be ex-
pressed as

Y1 =55=p1 + falB0) +
Yy =60 =g + fI80) + 1
Yy = 65 = fy + fa(80) + 15 (2.4.3)
Yo =T0= g + fa2(80) + 1y
Yo =T5 =g + fa(80) + 15
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MNoaw if we take the expected value of (2.4.1) on hoth sides, we obtain

ElY: | Xi)= E[EiY | X: )] + Elesi | X3
= E(Y| X))+ Elu; | X;) (2.4.4)

where use is made of the fact that the expected value of a constant is that
constant itself.? Notice carefully that in (2.4.4) we have taken the condi-
tional expectation, conditional upon the given X',

Since ENY; | X;) is the same thing as E(Y| X;), Eq. (2.4.4) implies that

Bl | X) =0 {2.4.5)

Thus, the assumption that the regression line passes through the condi-
tional means of ¥ (see Figure 2.2} implies that the conditional mean values
ol 1i; {conditional upon the given X's) are zero.

From the previous discussion, it is clear (2.2.2) and {2.4.2) are equivalent
forms if Efu; | X;) =07 But the stochastic specification (2.4.2) has the
advantage that it clearly shows that there are other variables besides income
that affect consumption expenditure and that an individual family’s con-
sumpion expenditure cannot be fully explained only by the variableis)
included in the regression model.

25 THE SIGNIFICANCE OF THE STOCHASTIC
DISTURBANCE TERM

As noted in Section 2.4, the disturbance term u; is a surrogate for all those
variables that are omitted from the model but that collectively affect ¥. The
ohvious question is: Why not introduce these variables into the model ex-
plicitly? Stated otherwise, why not develop a multiple regression miodel
with as many variables as possible? The reasons are many.

1. Vagueness of theorv: The theory, if any, determining the behavior of ¥
may be, and often is, incomplete. We might know for certain that weekly
income X influences weekly consumption expenditure ¥, but we might be
ignorant or unsure about the other variables affecting ¥ Thevefore, i, may
be used as a substitute for all the excluded or emitted variables from the
mdel.

2, Unavailability of data: Even if we know what some of the excluded
variables are and therefore consider a multiple regression rather than a
simple regression, we may not have guantitative information about these

See App. A for o hrief discussion of the propenies of the expeciation operaior E. Nabe thai
EIY | X)), ance the vahee of X, s fixed, is & consiant.

“As o matter of fact, in the method of kst squares ta be developed in Chap. 3, it s assumed
expliciily that Efa | X = . See Sec. 5.2,
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variables. It is a commeon experience in empirical analysis that the data we
wotld ideally like to have often are not available. For example, in principle
we could introduce family wealth as an explanatory variable in addition to
the income variable to explain family consumption expenditure. But unfor-
tunately, information on family wealth generally is not available. Therefore,
we mav be forced 1o omit the wealth variable from our model despite its
great theoretical relevance in explaining consumption expenditure,

3. Core variahles versus peripheral variables: Assume in our consumption-
income example that besides income X1, the number of children per family
Xz, sex Xs, religion Xs, education Xz, and geographical region Xy also alfect
consurmnption expenditure. But it is quite possible that the joint influsnce of
all or some of these variables may be so small and at best nonsystematic or
randorn that as a practical matter and for cost considerations it does not pay
to introduce them into the model explicitly. One hopes that their combined
effect can be treated as a random variable w;."®

4. Inrrivsic randmnness in luonar befavior: Even if we succeed in intro-
ducing all the relevant variables into the model, there is bound to be some
“intrinsic” randomness in individual ¥'s that cannot be explained no matter
hiow hard we oy, The disturbances, the e's, may very well reflect this intrin-
sic randomness.

8. Poor proxy variables: Although the classical regression model (to be
developed in Chapter 3) assumes that the variables ¥ and X are measured
accurately, in practice the data mav be plagued by errors of measurement.
Consider, for example, Milton Friedman’s well-known theorv of the con-
sumption function.’ He regards permanent constenprion (¥7) as a function
of permanent income (X¥). But since data on these variables are not directly
observable, in practice we use proxy variables, such as current consumption
¥} and current income (X}, which can be observable. Since the observed ¥
and X mav not equal ¥ and X7, there is the problem of ervors of measure-
ment. The disturbance term & mav in this case then also represent the errors
of measurement. As we will see in a later chapter, if there are such errors of
measurement, they can have serious implications [or estimating the regres-
sion coefficients, the f'%s.

6. Principle of parsimory: Following Occam's razor," we would like to
keep our regression model as simple as possible. If we can explain the be-
havior of ¥ “substantially” with two or three explanatory variables and if

12

6 funther difficuliy is that voriohles such as sex, education, and religion are difficuli o
quandify.

Usfilon Friedman, A Theory af the Consimption Function, Princeton University Press,
Princeion, N1, 1957

3That descriptions be kept as simple as possible until proved insdequate,” The World af
Matiemnntics, val. 2, 1. B. Newman (e}, Simon & Schuster, New Yook, 1954, p. 1247, or, “Enid-
ties shauld oot ke multiplied bevand necessity,” Donald F. Momsan, Applied Livear Staistical
Merhids, Prentice Hall, Englewond Cliffs, M1, 1983, p. 38,
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our theory is not strong enough to suggest what other variables might be
included, why introduce more variables? Let u; represent all other variables.
Of course, we should not exclude relevant and important variables just to
keep the regression model simple.

7. Wrong functional form: Even il we have theoretically correct vari-
ables explaining a phenomenon and even if we can obtain data on these
variables, very often we do not know the form of the functional relation-
ship between the regressand and the regressors. Is consumption expendi-
ture a linear (invariable) function of income or a nonlinear (invariable)
function? If it is the former, ¥; = fi + B1.X; + e s the proper functional ve-
lationship between Yand X, but if it is the latter, ¥ = 8 + fX; + 557 +u;
may be the correct functional form. In two-variable models the functional
form of the relationship can often be judged from the scattergram. But in
a multiple regression model, it is not easv to determine the appropriate
functional form, for graphically we cannot visualize scattersrams in multi-
ple dimensions.

For all these reasons, the stochastic disturbances i; assume an extremely
critical role in regression analvsis, which we will see as we progress.

26 THE SAMPLE REGRESSION FUNCTION (SRF)

By confining our discussion so far to the population of ¥ values correspond-
ing to the fived X's, we have deliberately avoided sampling considerations
inote that the data of Table 2.1 represent the population, not a sample). But
it is about time to face up to the sampling problems, for in most practical sit-
uations what we have is but a sample of ¥ values corresponding to some
fieed X's. Thereforve, our task now is to estimate the PRF on the basis of the
sample information.

As an illustration, pretend that the population of Table 2.1 was not known
to us and the only information we had was a randomly selected sample of ¥
values for the fived X's as given in Table 2.4. Unlike Table 2.1, we now have
only one ¥ value corresponding 1o the given X's; each ¥ (given X} in
Table 2.4 iz chosen randomly fram similar Y5 comresponding to the same X;
fram the population of Table 2.1.

The question is: From the sample of Table 2.4 can we predict the aver-
age weekly consumption expenditure ¥ in the population as a whaole
corresponding to the chosen X2 In other words, can we estimate the PRF
fram the sample data? As the reader surely suspects, we may not be able to
estimate the PRF “accurately” because of sampling fluctuations. To see this,
suppose we draw another random sample from the population of Table 2.1,
as presented in Table 2.5,

Plotting the data of Tables 2.4 and 2.5, we obtain the scattergram given in
Figure 2.4. In the scattergram two sample regression lines are drawn so as
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FIGURE 2.4

TABLE 24 TABLE 2.5
A RANDOM SAMPLE FROM THE ANSTHER RANDOM SAMPLE FROM
POPLILATION OF TABLE 2.1 THE POPLILATION 0OF TABLE 2.1
¥ X ¥ X
M £ 5 an
&5 e} a8 100
ai 120 al 120
a5 140 a0 140
110 150 118 160
115 180 120 180
120 200 148 200
140 220 138 230
188 240 148 240
150 2650 178 260
0
SR,
w First samiple (Tahle 2.4) Regression based an -
-
- » Second sample {Table 2.5) the secand sarnple SRF,
E 1o |
=
1 1
E_ Regresssan hased oo
[ the first sample
B
2 I
1
E
B 'y
. ,..-"'f
% Rt
=
1 1 1 1 1 1

1 1 1 1
A 100 120 140 1&0 1A 200 2200 20 260
Weekly incmme, §

Regression lines based on two differen samples.

to “fit" the scatters reasonably well: SRF| is based on the first sample, and
SRF; is based on the second sample. Which of the two regression lines rep-
resents the “true” population regression line? If we avoid the temptation of
looking at Figure 2.1, which purportedly represents the PR, there is no way
we can be absolutely sure that either of the regression lines shown in Fig-
ure 2.4 represents the true population regression line (or curve). The re-
gression lines in Figure 2.4 are known as the sample regression lines. Sup-
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posedly they represent the population regression line, but because of sam-
pling fluctuations they are at best an approximation of the true PR. In gen-
eral, we would get N different SRFs for N different samples, and these SRFs
are not likely to be the same.

Now, analogously to the PRF that underlies the population regression
ling, we can develop the concept of the sample regression function (SRF)
to represent the sample regression line. The sample counterpart of (2.2.2)
may be written as

Y=+ hX, (2.6.1)

where ¥ is read as “Y-hat" or “¥-cap”
¥ = estimator of E(¥| X))
fi = estimatar of fy
fiz = estimataor of f

Mate that an estimator, also known as a (sample) statistic, is simply a rule
or formula or method that lls how to estimate the population parameter
from the information provided by the sample at hand. A particular numerical
value obiained by the estimator in an application is known as an estimate."?

Now just as we expressed the PRF in two equivalent forms, (2.2.2) and
(2.4.2), we can express the SRF (2.6.1) in its stochastic form as follows:

Y= fi + foX; 4 (2.6.2)
where, in addition to the svmbols alveady defined, & denotes the (sample)

residual term. Conceptually 4; is analogous to w and can be regarded as

an estimtate of w;. It is introduced in the SRF for the same reasons as w; was
introduced in the PRE

To sum up, then, we find our primary objective in regression analysis is to
estimate the PRF

Y=+ X+ (24.2)

on the basis of the SRF

Yi=pi+fu=iy (2.6.2)

because more often than not our analysis is based upon a single sample
from some population. But because of sampling fluctuations our estimate of

Uz noded in the Intreduction, o hat shove o varioble will signify an estimator of the rele-
vanl papulation value,
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the PEF based on the SRF is at best an approximate one. This approxima-
tion is shown diagrammatically in Figure 2.5,

For X = X, we have one (sample) observation ¥ =¥, In terms of the
SRF, the observed ¥, can be expressed as

Y =¥+ (2.6.3)
and in terms of the PRF, it can be expressed as
Y= EV | X+ (2.6.4)

Mow obviously in Figure 2.5 ¥ overestimares the true E(Y| X;) for the X
ghown therein, By the same token, for anv X; to the left of the point 4, the
SRF will snderestimate the true PRE But the reader can readilv see that
such over- and underestimation is inevitable because of sampling fluctu-
ations.

The critical question now is: Granted that the SRF is but an approxima-
tion of the FRF, can we devise a rule or a method that will make this ap-
proximation as “close” as possible? In other words, how should the SRF be
constructed so that g is as “close™ as possible to the true §, and g, is as
“close” as possible to the true & even though we will never know the true f,
and gy ?
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The answer to this question will oceupy much of our attention in Chap-
ter 3. We note here that we can develop procedures that tell us how to
construct the SRF to mirror the PRF as faithfully as possible. It is fascinat-
ing to consider that this can be done even though we never actually deter-
mine the PRF itself.

27 AN ILLUSTRATIVE EXAMPLE

We conclude this chapter with an example. Table 2.6 gives data on the level
of education (measured by the number of vears of schooling), the mean
hourly wages eamed by people at each level of education, and the number
of people at the stated level of education. Ernst Berndt originally obtained
the data presented in the table, and he derived these data from the current
population survey conducted in Mav 1985, We will explore these data
(with additional explanatory variables) in Chapter 3 (Example 3.3, p. 910

Plotting the (conditional) mean wage against education, we obtain the
picture in Figure 2.6. The regression curve in the figure shows how mean
wages vary with the level of education; they generally increase with the level
of education, a finding one should not find surprising. We will study in a
later chapter how variables besides education can also affect the mean
wage.

TABLE 26 14
MEAN HOURALY WAGE BY EDUCATION » Menn value
12
Years of schooling Mean wage, § Kumber of peaple u
T 1o
i3 4 ABET a ]
7 B7700 & i
I} BATAT 18 =
& Tamr 12 1
10 TAaz 17
1 GERLY ar 4" 1 1 1 1 1 |
i2 Taiaz 218 i d 10 12 14 1 18
13 TANE w Educoiion
14 110223 b FIGURE 2.6
:: :gﬁxi ;E Ralationship between mean wages and
education,
17 1061580 L |
18 14830 n
Total 28

Sowse Athur B Goldberger. Afroduoloy Ecanomainos, Hanard
Unkarsity Prass, Cambridge Mass., 1338, Tabla 1.1, p. 5 |adagtad].

MBmat B. Berradt, The Proctice of Econemeincs: Classic and Contemporary, Addison Wesley,
Reading, Mass., 1991, Incsdentally, this is an excellent beok that the reader moy want to read
L firud ouit b scomometricians go ohout doing research.



