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THE NATURE OF
REGRESSION ANALYSIS

As mentioned in the Introduction, regression is a main tool of econometrics,
and in this chapter we consider very briefly the nature of this tool.

1.1 HISTORICAL ORIGIN OF THE TERM REGRESSION

The term regression was introduced by Francis Galton. In a famous paper,
Galton found that, although there was a tendency for tall parents to have
tall children and for short parents to have short children, the average height
of children born of parents of a given height tended 1o move or “regress” to-
ward the average height in the population as a whole.! In other words, the
height of the children of unusually tall or unusually short parents tends to
move toward the average height of the population. Galton’s law of mniversal
repression was confirmed by his friend Karl Pearson, who collected more
than a thousand records of heights of members of family groups.? He found
that the average height of sons of a group of tall fathers was less than their
fathers’ height and the average height of sons of a group of short fathers
was greater than their fathers” height, thus “regressing” tall and short sons
alike toward the average height of all men. In the words of Galton, this was
"regression to mediocrity”

"Prancis Galian, “Family Likeness in Stature,” Proceedings of Revad Sociey, London, vol, 44,
L&A, pp. 42-72,

K. Pearson and A Lee, “On the Lows of Inheritance,” Sfomeirika, vol 2, Wow 1903,
P 3372,
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1.2 THE MODERM INTERPRETATION OF REGRESSION

Examples

FIGURE 1.1

The modern interpretation of regression is, however, quite different.
Broadly speaking, we may sav

Regression analysis is concerned with the study of the dependence of one vari-
ahle, the dependent varahle, an one or more other variables, the explaeatory var-
alles, with 1 view to estimating andlor predicting the (population) mean or aver-
age value of the lormer in terms of the known or hzed {in repeated sampling)
values of the latter.

The full import of this view of regression analyvsis will become clearer as
we progress, but a few simple examples will make the basic concept quite
clear.

1. Reconsider Galton's law of universal regression. Galton was inter-
ested in fAnding out why there was a stability in the distribution of heights
in a population. But in the modern view our concern is not with this expla-
nation but rather with finding out how the average height of sons changes,
given the fathers' height. In other words, our concern is with predicting the
average height of sons knowing the height of their fathers. To see how this
can be done, consider Figure 1.1, which iz a scatter diagram, or scatter-
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gramy. This figure shows the distribution of heights of sons in a hypothetical
population corresponding to the given or ficed values of the fathers height.
Notice that corresponding to any given height of a father is a rmnge or dis-
iribution of the heights of the sons. However, notice that despite the vari-
ability of the height of sons for a given value of fathers height, the average
height of sons generally increases as the height of the father increases. To
show this clearly, the circled crosses in the figure indicate the average height
af sons corresponding 1o a given height of the father. Connecting these
averages, we abtain the line shown in the figure. This line, as we shall see, is
known as the regression line. It shows how the average height of sons
increases with the father's height.?

2. Consider the scattergram in Figure 1.2, which gives the distribution
in a hypothetical population of heights of bovs measured at fived ages.
Corresponding to any given age, we have a range, or distribution, of heights.
Obviously, not all boys of a given age are likely to have identical heights.
But height on the averapge increases with age (of course, up to a certain age),
which can be seen clearly if we draw a line {the regression ling) through the
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Hypothetical distibution of heights cormesponding (o selected ages.

*AL this sizge of the development of the subject matier, we shall call this regression line sim.
plv the fie canwecting the meay, oF average, quurgllhu depenidert varalle (zon’s Reigl} came-
spanding i e pven value of the explonsiony vanabie (farher’s heigha ). Mote that this line hos a
pasitive slope hut the shape is less than 1, which is in confarmity with Galton regression to
mediocrity. (Whyt)
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circled points that represent the average height at the given ages. Thus,
knowing the age, we may be able to predict from the regression line the
average height corvesponding to that age.

3. Turning to economic examples, an economist may be interested in
studving the dependence of personal consumption expenditure on after-
tax or disposable real personal income. Such an analvsis may be helpful
in estimating the marginal propensity to consume {MPC), that is, average
change in consumption expenditure for, say, a dollars worth of change in
real income (zee Figure 131

4. A monopolist who can fix the price or output (but not both) may want
to find out the response of the demand for a product to changes in price.
Such an experiment may enable the estimation of the price elasticity (ie.,
price responsiveness) of the demand for the product and mav help deter-
mine the most profitable price.

5. A labor economist mav want to study the rate of change of money
wages in relation to the unemployment rate. The historical data are shown
in the scattergram given in Figure 1.3. The curve in Figure 1.3 is an example
of the celebrated Phillips curve relating changes in the money wages to the
unemplovment rate. Such a scattergram mayv enable the labor economist to
predict the average change in money wages given a certain unemploviment
rate. Such knowledge may be helphul in stating something about the infla-
tionary process in an economy, for increases in money wages are likely to be
reflected in increased prices.

=

Unemplayment rate, %

Eae of change ol maney wages

FIGURE 1.3 Hypothetical Philips curve.
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Money
Income

Infation rate

haney holding in relation to the inflation e .

6. From monetary economics it is known that, other things remaining
the same, the higher the rate of inflation =, the lower the proportion & of
their income that people would want to hold in the form of money, as de-
picted in Figure 1.4. A quantitative analysis of this relationship will enable
the monetary economist to predict the amount of money, as a proportion
of their income, that people would want to hold at various rates of inflation.

7. The marketing director of 3 company may want to know how the de-
mand for the company’s product is related to, sav, advertising expenditure.,
Such a study will be of considerable help in finding out the elasticity of
demand with respect to advertising expenditure, that is, the percent change
in demand in response to, say, a | percent change in the advertising budget.
This knowledge may be helpful in determining the "optimum” advertising
budget.

8. Finally, an agronomist may be interested in studving the dependence
of crop vield, sav, of wheat, on temperature, rainfall, amount of sunshine,
and fertilizer. Such a dependence analysis mav enable the prediction or
forecasting of the average crop vield, given information about the explana-
tory variables,

The reader can supply scoves of such examples of the dependence of one
variable on one or more other variables. The techniques of regression analy-
sis dizcussed in this text are specially designed to study such dependence
among variables,
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1.3 STATISTICAL VERSUS DETERMIMISTIC RELATIONSHIPS

From the examples cited in Section 1.2, the reader will notice that in re-
gression analysis we are concerned with what is known as the stasistical, not
functional or detersministic, dependence among variables, such as those of
classical physics. In statistical relationships among variables we essentially
deal with random or stochastic® variables, that is, variables that have prob-
ability distribations. In functional or deterministic dependency, on the
ather hand, we also deal with variables, bt these variables are not random
o stochastic,

The dependence of crop vield on temperature, rainfall, sunshine, and
fertilizer, for example, is statistical in nature in the sense that the explana-
tory variables, although certainly important, will not enable the agronomist
to predict crop vield exactly because of ervors involved in measuring these
variahles as well as a host of other factors (variables) that collectively affect
the vield but may be difficult to identify individually. Thus, there is bound
to be some “intrinsic” or random variability in the dependent-variable crop
vield that cannot be fully explained no matter how many explanatory vari-
ables we consider.

In deterministic phenomena, on the other hand, we deal with relationships
af the tvpe, say, exhibited by Newtons law of gravity, which states: Every
particle in the universe attracts every other particle with a force directly pro-
portional to the product of their masses and inversely proportional to the
square of the distance between them. Symbolically, F = ks /rt), where
F = farce, my and »e ave the masses of the two particles, r = distance, and
k = constant of proportionality. Another example is Ohm's law, which states:
For metallic conductors over a limited range of temperature the current  is
proportional to the voliage V; that is, € = {})V where | is the constant of
proportionality. Other examples of such deterministic relationships are
Bavles gas law, Kirchholfs law of electricity, and Newton's law of motion.

In this text we are not concerned with such deterministic relationships.
OF course, if there are errors of measurement, sav, in the & of Newton's law
aof gravity, the otherwise deterministic relationship becomes a statistical re-
lationshigp. In this situation, force can be predicted only approximately from
the given value of k {and my, s, and ¢), which contains errors. The variable
F in this case becomes a random variable.

1.4 REGRESSION YERSUS CAUSATION

Although regression analysis deals with the dependence of one variable on
other variables, it does not necessarily imply causation. In the words of
Kendall and Stuart, "A statistical relationship, however strong and however

he word stachastic comes from the Greek word stokfios meaning “a bulls eve” The out-
come of threwing daris onoa dan baard is o stechastic process, that &, a process frught with
misses.
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suggestive, can never establish causal connection: our ideas of causation
must come from outside statistics, ultimately from some theory or other ™

In the crop-vield example cited previously, there is no statistical reason to
assume that rainfall does not depend on crop vield. The fact that we treat
crop vield as dependent on rainfall {among other things) is due to nonsta-
tistical considerations: Common sense suggests that the relationship cannot
be reversed, for we cannot contral raintall by varving crop vield.

In all the examples cited in Section 1.2 the point 1o note is that a statisti-
cal relationship in itself cannot logically imply causation. To ascribe
causality, one must appeal to a prio or theoretical considerations. Thus, in
the third example cited, one can invoke economic theory in saving that con-
sumnption expenditure depends on real income.®

1.5 REGRESSION VERSUS CORRELATION

Closely related to but conceptually very much different from regression
analysis is correlation analysis, where the primary objective is o measure
the strength or degree of linear associarion between two variables. The cor-
relation coefficient, which we shall study in detail in Chapter 3, measures
this strength of (linear) association. For example, we mayv be interested in
finding the correlation {coefficient) between smoking and lung cancer,
between scores on statistics and mathematics examinations, between high
school grades and college grades, and so on. In regression analysis, as al-
readv noted, we are not primarilv interested in such a measure. Instead, we
try to estimate or predict the average value of one variable on the basis
of the fixed values of other variables. Thus, we may want to know whether
we can predict the average score on a statistics examination by knowing a
siudent’s score on a mathematics examination.

Regression and correlation have some fundamental differences that are
worth mentioning. In regression analysis there is an asvmmetry in the way
the dependent and explanatory variables are treated. The dependent vari-
able is assumed to be statistical, random, or stochastic, that is, to have a
probability distribution. The explanatory variables, on the other hand, are
assumed to have fixed values (in repeated sampling),” which was made ex-
plicit in the definition of regression given in Section 1.2, Thus, in Figure 1.2
we assumed that the variable age was fixed at given levels and height mea-
surements were obtained at these levels. In correlation analvsis, on the

M. G. Kendall ond A. Siuari, The Advanced Theory of Starisiics, Charles Griffin Publishers,
Mew Yark, 1961, val. i.clul:;ib. P 274

“Hat o we shall see in Chap 3, classical regression analysis is based on the assumptian that
the moded used in the analysis is the comrect midel. Therefore, the direction of cousality may
b implicit in the model postulaced.

I is crucial 1o note that the explanatory varables may be intrinsically stechastic, but far
the purpase of regressten analysis we assume thot their values are fixed in repeated sampling
{that is, X assumes the same values in various somples), thus rendering ihem in effect non-
random or nonstochastic. But more on this in Chap. 5, Se=c 3.2,
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ather hand, we treat any (two) variables svmmetrically; there is no distine-
tion between the dependent and explanatory variables. After all, the corre-
lation between scores on mathematics and statistics examinations is the
same as that between scores on statistics and mathematics examinations,
Moreover, both variables are assumed to be random. As we shall see, most
aof the correlation theory is based on the assumption of randomness of vari-
ables, whereas most of the regression theorv to be expounded in this book is
conditional upon the assumption that the dependent variable is stochastic
hut the explanatory variables are fixed or nonstochastic.?

1.6 TERMINOLOGY AND NOTATION

Before we proceed to a formal analysis of regression theory, let us dwell
briefly on the matter of terminology and notation. In the literature the terms
dependent variahle and explanatory variable are described variously. A repre-
sentative list is:

Diepandend variable Explanatary vanable
f
Explaned variable Indepandent variable
¥ |
Predictand Predictar
% |
Regressand Regressor
1 $
Respanse Stimulus
1 |
Endogenious Expgenaus
1 $
Curloome Covariale
i |
Contralled variable Cantrol varizble

Although it is a matter of personal taste and tradition, in this text we will use
the dependent variablefexplanatory variable or the more neutral, regressand
and regressor terminology.

If we are studving the dependence of a variable on only a single explana-
tory variable, such as that of consumption expenditure on real income,
such a study is known as siviple, or two-variable, regression analysis.
However, if we are studying the dependence of one variable on more than

¥In advarced treatment of econometrics, ane can relax the assumption that the explanatory
variahles are nonstechastic (see introduction to Part 1.
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one explanatory variable, as in the crop-vield, rainfall, temperature, sun-
shine, and fertilizer examples, it is known as multiple regression analysis.
In other words, in two-variable regression there is onlv one explanatory
variable, whereas in multiple regression there is more than one explana-
wory variable.

The term random is a synonym for the term stochastic. As noted earlier,
a random or stochastic variable is a variable that can take on any set of
values, positive or negative, with a given probabilite®

Unless stated otherwise, the letter ¥ will denote the dependent variable
and the X's (X1, X3, ..., X3} will denote the explanatory varables, X being
the kth explanatory variable. The subscript § or f will denote the ith or the rth
ohservation or value. X (or X, ) will denote the ith (or ith) observation on
variable Xi. N (or T will denote the total number of observations or values
in the population, and w (or 7} the wial number of observations in a sample.
As a matter of convention, the observation subscript § will be used for cross-
sectional data (i.e., data collected at one point in time) and the subscript ¢
will be used for time series data (i.e., data collected over a period of time).
The nature of cross-sectional and time series data, as well as the important
topic of the nature and sources of data for empirical analysis, is discussed in
the following section.



