
Lecture 9: Bayesian hypothesis testing

5 November 2007

In this lecture we’ll learn about Bayesian hypothesis testing.

1 Introduction to Bayesian hypothesis test-

ing

Before we go into the details of Bayesian hypothesis testing, let us briefly
review frequentist hypothesis testing. Recall that in the Neyman-Pearson
paradigm characteristic of frequentist hypothesis testing, there is an asym-

metric relationship between two hypotheses: the null hypothesis H0 and the
alternative hypothesis HA. A decision procedure is devised by which, on
the basis of a set of collected data, the null hypothesis will either be rejected

in favor of HA, or accepted.
In Bayesian hypothesis testing, there can be more than two hypotheses

under consideration, and they do not necessarily stand in an asymmetric
relationship. Rather, Bayesian hypothesis testing works just like any other
type of Bayesian inference. Let us consider the case where we are considering
only two hypotheses: H1 and H2. We know we will collect some data ~x but
we don’t yet know what that data will look like. We are interested in the
posterior probabilities P (H1|~x) and P (H2|~x), which can be expressed using
Bayes rule as follows:

P (H1|~x) =
P (~x|H1)P (H1)

P (~x)
(1)

P (H2|~x) = 1 − P (H1|~x) (2)

1



Crucially, the probability of our data P (~x) takes into account the possibility
of each hypothesis under consideration to be true:

P (~x) = P (~x|H1)P (H1) + P (~x|H2)P (H2) (3)

In other words, we are marginalizing over the possible hypotheses to calculate
the data probability:

P (~x) =
∑

i

P (~x|Hi)P (Hi) (4)

As an example, we will return once more to the case of the possibly
weighted coin as a case study. We will call hypothesis 1 the “fair coin”
hypothesis, that the binomial parameter π is 0.5. In Bayesian statistics,
model parameters have probabilities, so we state the fair coin hypothesis as:

H1 : P (π|H1) =

{
1 π = 0.5
0 π 6= 0.5

The probability above is a prior probability on the binomial parameter
π.

Hypothesis 2 is the “weighted coin” hypothesis. For this hypothesis we
must place a non-trivial probability distribution on π. Suppose that we did
not entertain the possibility that the coin was two-headed or two-tailed, but
we did consider it possible that the coin was weighted so that two out of three
tosses turned up either heads or tails, and that each of these two possibilities
was equally likely. This gives us:

H2 : P (π|H2) =

{
0.5 1

3

0.5 2
3

(5)

In order to complete the comparison in Equation (1), we need prior prob-
abilities on the hypotheses themselves, P (H1) and P (H2). If we had strong
beliefs one way or another about whether this coin was fair (e.g., from prior
experience with the coin vendor), we might set one of these prior probabilities
close to 1. For these purposes, we will use P (H1) = P (H2) = 0.5.

Now suppose we flip the coin six times and observe the sequence
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HHTHTH

We can summarize this dataset as Does this data favor H1 or H2?
We answer this question by completing Equation (1). We have:

P (H1) = 0.5 (6)

P (~x|H1) =

(
6

4

)

(
1

2
)4(

1

2
)2 (7)

=

(
6

4

)

0.0156P (H2) = 0.5 (8)

Now to complete the calculation of P (~x) in Equation (3), we need P (~x|H2).
To do this, we need to consider all possible values of π given H2—that is,
marginalize over π just as we are marginalizing over H to get the proba-
bility of the data. We have:

P (~x|H2) =
∑

i

P (~x|πi)P (πi) (9)

= P (~x|π =
1

3
)P (π =

1

3
)+ (10)

P (~x|π =
2

3
)P (π =

2

3
)+ (11)

=

(
6

4

)

(
1

3
)4(

2

3
)2 × 0.5 +

(
6

4

)

(
2

3
)4(

1

3
)2 × 0.5 (12)

=

(
6

4

)

× 0.0137 (13)

thus

P (~x) =

P (~x|H1)
︷ ︸︸ ︷(

6

4

)

0.0156×

P (H1)
︷︸︸︷

0.5 +

P (~x|H2)
︷ ︸︸ ︷(

6

4

)

0.0137×

P (H2)
︷︸︸︷

0.5 (14)

=

(
6

4

)

0.01465 (15)

Therefore
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P (H1|~x) =

(
6
4

)
0.0156 × 0.5
(
6
4

)
0.01465

(16)

= 0.53 (17)

Note that even though the maximum-likelihood estimate of π̂ from the data
we observed hits one of the two possible values of π under H2 on the head,
our data actually supports the “fair coin” hypothesis H1 – its support went
up from a prior probability of P (H1) = 0.5 to a posterior probability of
P (H1|~x) = 0.53.

1.1 More complex hypotheses

We might also want to consider more complex hypotheses than H2 above as
the “weighted coin” hypothesis. For example, we might think all possible
values of π in [0, 1] are equally probable a priori :

H3 : P (π|H2) = 1 0 ≤ π ≤ 1

(In Hypothesis 3, the probability distribution over π is continuous, not dis-
crete, so H3 is still a proper probability distribution.) Let us discard H2 and
now compare H1 against H3.

Let us compare H3 against H1 for the same data. To do so, we need to
calculate the likelihood P (~x|H2), and to do this, we need to marginalize over
π. Since π can take on a continuous range of values, this marginalization
takes the form of an integral:1

1In general, the following relation holds:

∫ 1

0

π
a(1 − π)b

dπ =
Γ(a + 1)Γ(b + 1)

Γ(a + b + 2)

=
a!b!

(a + b + 1)!
when a and b are integers

The quantity Γ(a)Γ(b)
Γ(a+b+1) is also called the beta function with parameters a + 1,b + 1,

accessible in R as beta().
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P (~x|H2) =

(
6

4

) ∫ 1

0

π4(1 − π)2dπ

=

(
6

4

)

0.0095

If we plug this result back in, we find that

P (H1|~x) =

(
6
4

)
0.0156 × 0.5
(
6
4

)
0.01255

= 1.243

So H3 fares even worse than H2 against the fair-coin hypothesis H1. Corre-
spondingly, we would find that H2 is favored over H3.

Would our hypothesis-testing results be changed at all if we did
not consider the data as summarized by the number of successes
and failures, and instead used the likelihood of the specific se-
quence HHTHTH instead?

1.2 Bayes factor

Sometimes we do not have strong feelings about the prior probabilities P (Hi).
Nevertheless, we can quantify how strongly a given dataset supports one
hypothesis over another in terms of

P (~x|H1)

P (~x|H2)

that is, the likelihood ratio for the two hypotheses. This likelihood ratio
is also called the Bayes factor.

2 Learning contextual contingencies in sequences

Consider a sequence (e.g., phonemes) of length 20.

ABABBAAAAABBBABBBAAAA
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Let us entertain two hypotheses. The first hypothesis H1, is that the
probability of an A is independent of the context. The second hypothesis,
H2, is that the probability of an A is dependent on the preceding token. How
might this data influence the learner?

We can make these hypotheses precise in terms of the parameters that
each entails. H1 involves only one parameter P (A), which we will call π. H2

involves three parameters:

1. P (A|∅) (the probability that the sequence will start with A), which we
will call π∅;

2. P (A|A) (the probability that an A will appear after an A), which we
will call πA

3. P (A|B) (the probability that an A will appear after an B), which we
will call πB.

Let us assume that H1 and H2 are equally likely; we will be concerned
with the likelihood ratio between the two hypotheses. We will put a uniform
prior distribution on all model parameters.

There are 21 observations, 12 of which are A and 9 of which are B . The
likelihood of H1 is therefore simply

∫ 1

0

π12(1 − π9)dπ = 1.546441 × 10−07 (18)

To calculate the likelihood of H2 it helps to break down the results into
a table:

Outcome
A B

∅ 1 0
A 7 4
B 4 5

So the likelihood of H2 is

∫ 1

0

π1
∅dπ∅ ×

∫ 1

0

π7
A
(1 − π4

A
)dπA ×

∫ 1

0

π4
B
(1 − π5

B
)dπB (19)

= 0.5 × 0.00025 × 0.00079 (20)

= 1.002084 × 10−07 (21)
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This dataset provides some support for the simpler hypothesis of statis-
tical independence—the Bayes factor is about 1.5 in favor of H1.
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