
Chapter 10
Bayesian Methods
10.1 IntroductionSee [33] or Box and Tiao [6] for a general introduction to Bayesian statistics and [43]for applications of Bayesian methods in signal processing.
10.2 Bayes RuleThe distribution of a variable x conditioned on a variable y isp(x j y) = p(x; y)p(y) (10.1)Given that p(y j x) can be expressed similarly we can writep(x j y) = p(y j x)p(x)p(y) (10.2)which is Baye's rule. The density p(x) is known as the prior, p(y j x) as the likelihoodand p(y) as the evidence or marginal likelihood. Baye's rule shows how a prior distri-bution can be turned into a posterior distribution ie. how we update our distributionin the light of new information. To do this it is necessary to calculate the normalisingterm; the evidence p(y) = Z p(y j x)p(x)dx (10.3)which, being an integral, can sometimes be problematic to evaluate.119



120 Signal Processing Course, W.D. Penny, April 2000.10.2.1 ExampleFor discrete variables. Given a disease D with a prevalence of ten percent, a test forit T having a sensitivity of 95% and a speci�city of 85% we havep(D = 1) = 0:1 (10.4)p(T = 1jD = 1) = 0:95 (10.5)p(T = 0jD = 0) = 0:85 (10.6)The probability that subjects who test positive for D actually have D is then givenby Bayes' rulep(D = 1jT = 1) = p(T = 1jD = 1)p(D = 1)p(T = 1jD = 1)p(D = 1) + p(T = 1jD = 0)p(D = 0)(10.7)= 0:95� 0:10:95� 0:1 + 0:15� 0:9 (10.8)= 0:413 (10.9)10.3 Gaussian VariablesA Gaussian random variable x has the probability density function (PDF)p(x) = 1p2��2 exp "�(x� �)22�2 # (10.10)where the mean is � and the variance is �2. The inverse of the variance is known asthe precision � = 1=�2. The Gaussian PDF is written in shorthand asp(x) = N(x;�; �2) (10.11)If the prior is Gaussian p(x) = N(x; x0; 1=�0) (10.12)where x0 is the prior mean and �0 is the prior precision and the likelihood is alsoGaussian p(y j x) = N(y; x; 1=�D) (10.13)where the variable x is the mean of the likelihood and �D is the data precision thenthe posterior distribution is also Gaussian (see eg. [33],page 37).p(x j y) = N(x;m; 1=�) (10.14)where the mean and precision are given by� = �0 + �D (10.15)and m = �0� x0 + �D� y (10.16)Thus, the posterior precision is given by the sum of the prior precision and the dataprecision and the posterior mean is given by the sum of the prior data mean and thenew data value each weighted by their relative precisions 1.1This is the same as inverse variance weighting where the weights sum to one.



Signal Processing Course, W.D. Penny, April 2000. 12110.3.1 Combining EstimatesThis type of updating is relevant to the sensor fusion problem, where we have in-formation about a variable from two di�erent sources and we wish to combine thatinformation.Say, for example, we had two estimates for the amount of carbon in a given compound;method 1 estimates the percentage to be 35�4 units and method 2 estimates it to be40� 7 units. Before observing the second result we have a prior belief that the meanpercentage is x0 = 35 and the variance is 42 = 16 which corresponds to a precisionof �0 = 0:0625. Whilst the �rst result is viewed as the prior, the second result isviewed as the `data', which has mean y = 40 and precision �D = 1=72 = 0:0204. Ourposterior estimate for the amount of carbon is then estimated asm = 0:06250:0829 � 35 + 0:02040:0829 � 40 = 36:2 (10.17)and the posterior standard deviation is 3:5. If the results of method 2 were chosen asthe prior (instead of method 1) we'd get the same result.The equation for the posterior mean can be re-arranged asm = x0 + �D� (y � x0) (10.18)showing that the new estimate is the old estimate plus some fraction (which may beviewed as a learning rate) of an error term e = y � x0.10.3.2 Sequential EstimationAlso, this type of update is particularly suited to sequential estimation, where datacomes in a sample at a time and we update our estimates at each time step. Baye'srule is perfect for this because today's posterior becomes tomorrow's prior.Say, for example, we have a random variable x which we observe sequentially - thevalue at time t being xt ie. a time series - and that we wish to estimate the mean,without storing all the data points. At time t our estimate for the mean is �t andour estimate for the variance is �2t . Now our prior distribution for �t (ie. prior toobserving xt) is p(�t) = N(�t;�t; �2t =t) (10.19)where the variance is given by the usual standard error formula (see lecture 1). Thelikelihood of the new data point isp(xtj�t) = N(xt;�t; �2t ) (10.20)Adding the precisions to get the posterior precision gives (from equation 10.15)� = t�2t + 1�2t = t+ 1�2t (10.21)
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Figure 10.1: Sequential estimation of stationary mean. The graph plots datavalues xt (crosses) and the estimated mean value �t (circles) versus iteration numbert.The posterior mean is then given by equation 10.16�t+1 = tt+ 1�t + 1t + 1xt (10.22)Re-arranging gives �t+1 = �t + 1t + 1(xt � �t) (10.23)In the above procedure we have implicitly assumed that the data xt is stationaryie. that the mean at time t is equal to the mean at time t + T for all T (a moreformal de�nition of stationarity will be given later). This results in our estimate forthe mean converging to a steady value as t increases. The �nal value is exactly thesame as if we'd stored all the data and calculated it in the usual way.But what if the signal is non-stationary ? See the chapter on Kalman �lters.10.4 Multiple Gaussian VariablesA d-dimensional Gaussian random vector x has a PDF given byp(x) = 1(2�)d=2jCj1=2 exp��12(x� �x)TC�1(x� �x)� (10.24)where the mean �x is a d-dimensional vector, C is a d � d covariance matrix, andjCj denotes the determinant of C. The multivariate Gaussian PDF is written inshorthand as p(x) = N(x; �x;C) (10.25)



Signal Processing Course, W.D. Penny, April 2000. 123If the prior distribution is Gaussianp(x) = N(x;x0;�0) (10.26)where x0 is the prior mean and �0 is the prior covariance and the likelihood isp(y j x) = N(y;x;�D) (10.27)where the variable x is the mean of the likelihood and �D is the data covariance thenthe posterior distribution is given by [40]p(x j y) = N(x;m;�) (10.28)where the mean and covariance are given by��1 = ��10 +��1D (10.29)and m = ���10 x0 +���1D y (10.30)These updates are similar in form to the updates for the univariate case. Again, theseupdate formulae are useful for both sequential estimation and sensor fusion. In thesequential estimation case we have a Kalman �lter (see next lecture).10.5 General Linear ModelsGiven a set of input variables zn (a row vector) where n = 1::N and a �xed, possiblynonlinear, function of them xn = F (zn) (10.31)the output variable is then given as a linear combinationyn = xnw + en (10.32)where w is a column vector of coe�cients and e is zero mean Gaussian noise withprecision �. This type of model is su�ciently general to include (i) autoregressivemodels if F is the identity function and xn = [yn�1; yn�2; :::; yn�p], (ii) Fourier-typemodels if F are sine and cosine functions and (iii) wavelet models if F are the waveletbases.Given a data set D = fzn; yng where n = 1::N the likelihood of the data is given byp(D j w; �) =  �2�!N=2 exp(��ED) (10.33)where ED = 12(Y �Xw)T (Y �Xw) (10.34)



124 Signal Processing Course, W.D. Penny, April 2000.and Y is a column vector with entries yn and the nth row of the matrixX contains xn.The weights are drawn from a zero-mean Gaussian prior with an isotropic covariancehaving precision � p(w j �) = � �2��p=2 exp(��EW ) (10.35)where EW = 12 pXi=1w2i (10.36)= 12wTwThe posterior distribution over the unknown coe�cients is then given by Bayes' rulep(wjD;�; �) = p(Djw; �)p(wj�)R p(Djw; �)p(wj�)dw (10.37)As the prior is normal with mean w0 = 0 and covariance �0 = (1=�)I, the likelihoodis normal with mean wD =X�1Y and covariance �D = (�XTX)�1 then the poste-rior is also a normal with mean and covariance given by equations 10.30 and 10.29.The posterior is therefore given byp(wjD;�; �) = N(w; ŵ; �̂) (10.38)where �̂ = (�XTX + �I)�1 (10.39)ŵ = �̂XT�Y10.5.1 The evidence frameworkIf the 'hyperparameters' � and � are unknown (they almost always are) they canbe set according to following method known as either the evidence framework [35]or Maximimum Likelihood II (ML II) [2]. In this approach � and � are set so as tomaximise the evidence (also known as marginal likelihood)p(Dj�; �) = Z p(Djw; �)p(wj�)dw (10.40)Substituting in our earlier expressions for the prior and likelihood givesp(Dj�; �) =  �2�!�N=2 � �2���p=2 Z exp(�E(w))dw (10.41)where E(w) = �ED + �Ew (10.42)



Signal Processing Course, W.D. Penny, April 2000. 125Bishop shows that ([3], page 398 and further details in Appendix B) the integral inequation 10.41 can be evaluated asZ exp(�E(w))dw = (2�)p=2j�j1=2 exp(�E(w)) (10.43)The log of the evidence can then be written asEV (p) = ��EW � �ED + 0:5 log j�j+ p2 log� + N2 log � � N2 log 2� (10.44)The values of � and � which maximise the evidence are� = 2EW (10.45)� = N � 2ED (10.46)where , the number of `well-determined' coe�cients, is given by = p� �Trace(�) (10.47)which is calculated using the `old' value of �. The update for � is therefore an implicitequation. We can also write it as the explicit update� = p2EW + Trace(�) (10.48)See Bishop ([3], chapter 10) or Mackay [35] for a derivation of the above equations.To summarise, the evidence framework works as follows. The weights are �rst es-timated using equation 10.40. The hyperparmeters are then estimated using equa-tions 10.46 and 10.48. This weights are then re-estimated and so are the hyperpa-rameters until the procedure converges. This usually takes ten or so cycles.Once the above procedure has converged we can use the evidence as a model orderselection criterion.10.5.2 ExampleThe following �gures compare the MDL and Bayesian Evidence model order selectioncriteria. The �rst �gure shows that, for low model order (relative to the numberof data samples) both methods work equally well. The second �gure shows that,at high model order, the Bayesian evidence is superior. The last �gure shows thatEEG recordings from an awake subject can be di�erentiated from those of an anaes-thetised subject. Di�erentiation was good using the Bayesian evidence criterion butinsigni�cant using MDL.
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Figure 10.2: Model Order Selection for AR(6) data with (a) MDL and (b) BayesianEvidence with 3-second blocks of data.

(a) 18 20 22 24 26 28
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

(b) 18 20 22 24 26 28
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Figure 10.3: Model Order Selection for AR(25) data with (a) MDL and (b) BayesianEvidence with 3-second blocks of data.
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Figure 10.4: Bayesian Evidence model order selection on EEG data from (a) awakesubject and (b) anaesthetised subject.


