4.2 Standing Tree Contents Notes

Exhibit.

Geometric shapes assumed by different portions of tree boles.

Geometric Solid(s)	$:$	Formula for Volume, V	(Formula name)
Paraboloid	$:$	$\mathrm{V}=\mathrm{h}\left(\mathrm{A}_{\mathrm{m}}\right)$	(Huber's)
	$:$	$\mathrm{V}=\mathrm{h} \frac{A_{b}+A_{u}}{2}$	(Smalian's)
Conic frustum	$:$	$\mathrm{V}=\mathrm{h} \frac{1}{3}\left(A_{b}+\sqrt{A_{b} \cdot A_{u}}+A_{u}\right)$	
Neiloid frustum	$:$	$\mathrm{V}=\mathrm{h} \frac{1}{4}\left(A_{b}+\sqrt[3]{A_{b}^{2} \cdot A_{u}}+\sqrt[3]{A_{b} \cdot A_{u}^{2}}+A_{u}\right)$	
Cone, Parab., Neil. frustum	$:$	$\mathrm{V}=\mathrm{h} \frac{A_{b}+4\left(A_{m}\right)+A_{u}}{6} \quad$ (Newton's formula*)	

* Newton's formula is closely approximate for all given geometric solids where,
$A_{b}=$ cross-sectional area at base, or large end of log or section
$A_{m}=$ cross-sectional area at log or stem section midpoint
$A_{u}=$ cross-sectional area at upper, or small end of log or section
$h=\log$ or section length
NOTE: trees in cross-section are rarely circular, but always presumed so.

Volume Tables (Equations)
Volume table - tabulation that provides average stem contents of standing trees of various species and sizes

- objective: obtain estimate of volume (content) of a standing tree that would correspond to volume (content) if the tree were destructively sampled for accurate measurement
- desire estimate of volume \& value for inventory and monitoring, potential transactions, or other environmental services such as carbon credits, etc.
- units may be bd.ft, cu.ft, cords, cubic meters
- contents may be:
- total stem (including top \& stump)
- merchantable stem (up to some minimum top diameter, 4- or 6 -inches, excluding stump
- sawlog + pulp top

Weight tables - directly analogous to volume tables, except weight (green or dry) will be tabulated

- units are usually pounds, kilograms, Mg, tons

Practically speaking, equations are typically used to predict tree volumes, rather than using table look-up - use of the term "table" has persisted in forestry usage as a generic term for tables or equations that show contents of standing trees

Choosing a volume table
Species - normally apply to a single species
DBH - same everywhere (almost!). Varies from 1.3 m to 1.37 m (4.5 ft .)
Height- may be total, merchantable, height to a minimum top diameter, number of logs (trim allowance in cluded)
Form - table may assume average form or use it directly as an independent variable
Age - second growth, mature (120 + years), etc.
Locality - normally apply to a single geographic area
Units - bd ft, cu. ft, cords, etc.
Log rule - Scribner, Interagency, International, Doyle, etc.
TABLE 2.-STANDARD CUBIC-FOOT VOLUME TABLE FOR COAST MATURE DOUGLAS FIR (OVER 80 YEARS)

D.B.H. (Inches)	TOTAL HEIGHT (FEET)																														BaslsNumberTreos)
	10	20	80	40	50	60	70	80	90	100	110	120	130	140	150	160	170	180	100	200	210	220	280	240	250	280	270	280	290	800	
	TOTAL VOLUME OF ENTIRE STEM INSIDE BARK (CUBIC FEET)																														
2	0.1	0.2	0.4	0.5	0.7																										
${ }_{8}$	0.8 0.6	0.2	1.1 2.2	1.6 3.1	2.1 4.1	2.8 8.1	3.1 8.1	3.6 7.2	1.2 8.2	4.8 9.8																					${ }^{88}$
8	1.0	2.2	3.6	8.0	8.6	8.2	8.8	11.5	13.3	15.0			20.6																		${ }_{46}^{26}$
10			5.2	7.3	9.6	11.8	14.2	16.7	19.2	21.8	24.4		20.8																		84
12				9.9	12.8	18.0	18.8	22.6	20.0	29.5	33.0	38.7	40.4	14.1	47.9																87
14				12.7	10.6	20.7	24.9	29.2	${ }^{31} \mathbf{S}^{8}$	88.1	42.7	47.4	82.1	${ }^{56.9}$		66.8															41
16 18				15.9	20.7 20.7	25.8	$\xrightarrow{31.0}$	${ }^{36.4}$	31.9 80.9	${ }^{47.8}$	${ }_{64}^{63.3}$	59.1	${ }^{65.0}$	71.1	77.2	83.4	88.0														89
28				18.3 23.0	25.2 30.0	31.4	37.7 4.9	44.2 52.7	60.9 60.7	${ }_{68.8}^{67.8}$	774.8	71.9 85.8	79.1 94.2	88.4 103	${ }_{112} 3$	121	109 130	117 139	124 148												87 41
22				26.9	95.2	43.8	52.6	${ }^{61} 7$	71.1	80.8	90.3	100	110	120	131	141	152	16.8	174	185	190	207	218								47
24 26				31.1	40.7	00.8	60.8	71.3	82.1	93.1	104	116	127	139	151	183	176	188	201	218	228	239	252								40
28 28				35.6 40.2	${ }^{48.4}$	57.7 65.3	${ }_{78.4}^{60.4}$	${ }_{0}^{81.4}$	${ }^{\text {日3.8 }}$	108 120	118	192 150	$1{ }^{145}$	159	173	187	2201	215	2290	244	2988	278 809	${ }_{328}^{288}$								29 28
80				45.1	58.9	73.2	88.0	103	118	135		168	184	202	219	286	254	272	200	${ }_{309}^{278}$	327	848	365								24
82							08.0	115	182	150	188	187	205	224	244	288	283	803	323	844	384	885	408	427	440	470	492	614	888	558	17.
84 36							108	127	146	168	186	208	227	248	288	281	813	835	357	380	408	428	449	473	486	520	644	568	598	617	$18{ }^{18}$
38							130	143	178	182	204	${ }_{248}^{227}$	250	${ }_{208}^{278}$	${ }_{328}^{298}$	-820	${ }_{878}^{814}$	888	${ }^{398}$	418	485	${ }_{612}$	${ }^{494}$	${ }_{569}$	${ }_{507}$	${ }_{626}$	${ }_{655}$	684	${ }_{718}$	74	${ }_{8}^{16}$
40							142	188	102	217		270	${ }_{207}$	${ }^{285}$	${ }^{258}$	${ }_{381}$	818	439	468	498	${ }_{528}$	558	E83	${ }_{619}$	850	${ }_{681}^{626}$	${ }_{718}^{668}$	784	718	808	85
42									208	236		293	322	352	383	413	944	476	B08	540	572	¢08	638	671	705	789	778	807	842	876	61
4									224	258	285	817	${ }^{348}$	888	418	448	480	814	548	${ }^{838}$	${ }^{618}$	${ }_{703}^{685}$	${ }^{\text {e88 }}$	728	781	788	886	872	009	947	81
48									242	274	807 380	841 868	375 402 15	410	${ }_{178}$	${ }_{5181}^{481}$	817	E83	680	${ }_{674}$	(688	708	742	781	820	889	809	${ }^{038}$	${ }^{979}$	1019	88
50									277	815	853	301	431	471	611	E52	563	635	678	721	764	808	852	808	841	986	1032	1078	1124	1170	${ }_{28}^{84}$
62											876	418	480	${ }^{0} 02$	545	689	638	678	723	769	815	E22	909	087	1004	105s	1101	1150	1200	1249	20
54												445	480	${ }_{5} 55$	581	627	674	722	770	819	868	818	068	1018	1069	1121	1172	1225	1277	1380	20
56 58												472	520	608	617	606	710	767	18	870	822	875	1028	1082	1138	1180	1245	1801	1357	1418	21
58 60												501	651	${ }_{637} 6$	${ }^{654}$	708	759	818	867	022	977	1033	1090	1147	1204	1262	1920	1378	1438	1497	11
60													588	637	601	747	803	800	817	${ }^{875}$	1034	1093	1153	1218	1274	1835	1898	1459	1521	1584	20
62														672	730	789	848	908	869	1030	1092	1154	1217	1281	1345	1409	1478	1540	1800	1672	20
${ }_{60}^{64}$														700	770	831	804													1768	
${ }_{68}^{68}$														748 784	810 851	818	${ }_{988} 81$	1007 1058	1078	1142	1211	1280 1345 185	1850 1410	1421 1493	1482 1688	1584	1988	1708 1798	1782 1872	1885	14
70														822	808	905	1037	1111	1185	1200	13as	1412	1489	1568	1845	1724	1803	1834	1904	2046	10
72																	1087	1164	1241	1820	1809	1479	1660	1041	1724	1808	1280	1874	2058	2143	
78																	1137	1218	1209	1881	1464	1548		1718	1804	1880	1978	2085	2154	2249	${ }^{8}$
78																	1189	1273	1358	1444	1531	1618	1708	1795	1885	1078	2087	2158	2251	2345	6
78 80																	1241	1328	1418	1507	1598	1689	1782	1875	1888	2083	${ }^{2158}$	${ }_{2354}$	2351	2448	${ }_{8}^{5}$
88				-																1688	1786	1835	1086	2037	2139	2241	2845	2449	2584	2660	2
84 88																				1705	1807	1010	2015	2120	2226	2383	2440	2540	2658	2768	
86 88																				1772 1841	18879	1088 2064	2095 2178	2204	2314	2428 2520	2688	2850 2753	2784 2871	2878 2000	1.
80																		\cdots		1011	2026	2142	2259	2377	2406	2616	2786	2858	2980	8104	
92																				1982	2101	2222	2848	2485	2588	2718	2838	2064	8091	8218	1
948																				2054	2178	2802	2428	2555	2882	2811	2041	${ }^{8072}$	8208	8388	1
${ }_{81}^{98}$																				2127	2255	2384	2614	2048	2778 2875	2011	88048	${ }_{8181}^{3181}$	${ }_{84317}^{8817}$	8156 8575	
100																				2276	${ }_{2418}$	2551	2000	2831	2072	8115	3259	8404	8550	8697	
																															978

[^0]
Types of Volume Tables

I. Multiple Entry -
i) Standard volume tables -

Require both DBH and Height to estimate (predict) tree volume. Assumes all other variables are accounted for by these two variables or are average in value
Examples -
Constant form factor -

$$
v=b_{1}\left(D B H^{2} H\right)
$$

where v denotes tree volume; DBH denotes diameter breast height; H denotes total tree height; b_{1} is a constant fit by regression
Combined variable model -

$$
v=b_{0}+b_{1}\left(D B H^{2} H\right)
$$

Logarithmic model -

$$
v=a D B H^{b} H^{c}
$$

where all variables as before; $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are constants fit by regression Note that if we take logarithms of both sides of the model equation,

$$
\begin{gathered}
\log (v)=\log (a)+b \log (D B H)+c \log (H) \\
y=b_{0}+b_{1} X_{1}+b_{2} X_{2}
\end{gathered}
$$

ii) Form (class) volume tables -

Tree volume is estimated (predicted) from some measure of tree Form as well as other variables, such as DBH, Height, etc.
Trees having little taper will have more volume in them than trees that taper a lot if DBH and Height are the same - higher the form class, greater the volume
Theory is that for a given total tree height, trees vary most in taper in the first log Examples -

Combined variable form-class model -

$$
v=b_{0}+b_{1} F+b_{2}\left(D B H^{2} H\right)+b_{3} F\left(D B H^{2} H\right)
$$

where all variables as before; F denotes Form Class (usually Girard's)
Short-cut form class model -

$$
v=b_{0}+b_{1} F\left(D B H^{2} H\right)
$$

Types of Volume Tables (continued)

II. Single Entry -

i) Local volume tables -

Use a single variable (DBH) to estimate (predict) tree volume. Assumes all other variables are either accounted for by DBH or are average in value
Presumes that a definitive relationship exists between DBH and Height, i.e. trees of same dbh will have similar height and form - true when trees of given species are growing under fairly uniform conditions in terms of site \& density
Example -

$$
v=b_{0}+b_{1} D B H^{b_{2}}
$$

Much research has shown that b_{2} coefficient seldom varies far from 2, giving

$$
v=b_{0}+b_{1} D B H^{2}
$$

Often, local volume tables are derived from standard volume tables through development of a relationship between diameter and height
A very robust Height-DBH function that is often used is:

$$
\begin{aligned}
& \log (H)=c_{0}+c_{1}\left(D B H^{-1}\right), \text { or, } \\
& H=e^{\left(c_{0}+\frac{c_{1}}{D B H}\right)}
\end{aligned}
$$

Then, this is substituted in the reliable standard volume equation, say, the constant form factor:

$$
\nu=b_{1} D B H^{2}\left(e^{\left(c_{0}+\frac{c_{1}}{D B H}\right)}\right)
$$

which then completely determines the local volume table.
ii) Tarif volume tables -

Collection of harmonized local volume tables ("tarif" is actually the Arabic word meaning "tabulated information"). Based on the empirical result that volume has a LINEAR relationship with basal area.

III. Composite -

Applies to diverse set of species or species groups, often including conifers and hardwoods. Provision is usually made for estimating tree form or correction factors are developed for the different species.

Douglas-fir, 18-ft and taller (Bruce and DeMars 1974):
CVTS $=0.005454154 \times$

$$
\left(0.480961+\frac{42.46542}{H^{2}}-\frac{10.99643 \cdot D B H}{H^{2}}-\frac{0.107809 \cdot D B H}{H}-0.00409083 \cdot D B H\right) \times\left[D B H^{2} H\right]
$$

Browne (1962):
A. CUBIC VOLUME INCLUDING TOP AND STUMP (CVTS)

Four methods are readily available to calculate cubic volume including top and stump.

1. British Columbia Equations

The British Columbia cubic volume equations (1) are presented in the form:
\log CVTS $=A+B(\log D B H)+C(\log H T)$
This has been changed for the computer to:
CVTS $=10 .{ }^{* *} A^{*} D B H^{* *} B^{*} \mathrm{HT}^{* *} \mathrm{C}$
$C V T S=\left(1\left(^{-1}\right)\left(D B I^{B}\right)\left(H T^{C}\right)\right.$
Table 1. British Columbia Cubic Volume Equation Coefficients

SPECIES	A	B	C
DOUGLAS FIR:			
Coastal Immature Less Than 140 Years	-2.658025	1.739925	1.133187
Coastal Mature 80 Years +	-2.712153	1.659012	1.195715
Interior	-2.734532	1.739418	1.166033
WESTERN HEMLOCK:			
Coastal Immature Less Than 140 Years	-2.702922	1.842680	1.123661
Coastal Mature 80 Years +	-2.663834	1.790230	1.124873
Interior	-2.571619	1.969710	. 977003
WESTERN RED CEDAR:			
Coastal Immature Less Than 140 Years	-2.441193	1.720761	1.049976
Coastal Mature 80 Years+	-2.379642	1.682300	1.039712
Interior	-2.464614	1.701993	$\cdot 1.067038$
BALSAM :			
Coastal	-2.575642	1.806775	1.094665
Interior	-2.502332	1.864963	1.004903
SITKA SPRUCE:			
Immature Less Than 140 Years	-2.550299	1.835678	1.042599
Mature 140 Years +	-2.700574	1.754171	1.164531
Interior	-2.539944	1.841226	1.034051
PINE:			
Ponderosa	-2.729937	1.909478	1.085681
Lodgepole	-2.615591	1.847504	1.085772
Western White	-2.480145	1.867286	. 994351
WESTERN LARCH:	-2.624325	1.847123	1.044007
YELLOW CEDAR:	-2.454348	1.741044	1.058437
HARDWOODS: Alder	-2.672775	1.920617	1.074024
Maple	-2.770324	1.885813	1.119043
Aspen	-2.635360	1.946034	1.024793
Birch	-2.757813	1.911681	1.105403
Cottonwood	-2.945047	1.803973	1.238853

Tarif Volume Tables

- Turnbull, former faculty member in the former CFR, UW developed the "Comprehensive Tree-volume Tarif System" based on principles developed by Hummel in U.K.
- collection of volume tables "harmonized" to be consistent with each other
- gives convenient way to obtain local volume table for a given stand
- works well in homogenous stands and heterogeneous stands provided cohorts within the stand can be found
Theory
When volume $\left(\mathrm{ft}^{3}\right)$ to 4 " top is plotted over basal area for trees in a stand, a straight line results
When trees from several stands are plotted, the point on the graph where volume is zero will be found at a basal area of $0.087 \mathrm{ft}^{2}$ for all such lines
The lines are identified by the volume for a tree of $1.0 \mathrm{ft}^{2}$ of basal area - Tarif Number

Note that as tarif number increases, the slope of the line increases also In practice, a number of sample trees from the stand are chosen and are measured for both height and DBH, and their tarif numbers determined
The arithmetic average of these tarif numbers are found by cohort, then the average tarif number defines the tarif line, which is the local volume equation for that cohort

Harmonization

The Comprehensive Tree-volume Tarif tables can be used to obtain total volume (entire tree stem) or volume to a different top diameter (i.e., merchantable volume)

Start by finding tarif number for 4" top first, then a volume factor is found that is the ratio of the desired volumetric units to the volume up to a 4 " top - this produces a set of consistent results, such that no illogical "crossovers" occur
Tarif 'finding' choices

1) Fell sample trees, buck them, scale them, plot volumes found over basal area
2) Non-destructively "buck" the tree while standing using optical dendrometer
3) Use a tarif "Access Table"

- Height - DBH relationship is key to the theory behind the Access table
- A larger H - DBH ratio always represents more volume for a given DBH
- A smaller H - DBH ratio may or may not represent more volume when H is fixed

пв	total height（ffeti																																		
	9	17	94	96	$9{ }^{\circ}$	no	1 n 2	104	106	1×8	110	112	114	116	118	120	122	124	126	129	130	192	134	136	13.9	140	142	144	145	148	150	152	154	156	158
${ }_{1}^{12.6}$	33.7 33	34, 34.4	35.4 35.	$3 \mathrm{3n.2}$	37	37.7	$3 \mathrm{3R.8}$	39.6 39.5	${ }_{40}^{40.5}$	4	4	43.1 43.0	44.0	44.9	45.7 45.6	46．6	47.5	49.4 4.2	49.3	50.2 $50 . c$	${ }_{5}^{51.1}$	51	52.8		54.6		56.4	57.3		59.1	60.0	61.0	81.9	82．8	83.7
12.2	33.6	34	35.1	16.0	36.8	31.7	30.5	39.4	40.2	41.1	42.0	42.8	43.7	44.6	45.4	46.3	47.2	48.1	48.9	49		51.9 51.6	52.7 52		54．4		${ }_{5}^{56}$	57.1 50.9		58.9 58.7	8	60.7 60.5	${ }_{61.6}$	62.5 62.3	63.5 89.2
	31.3	34	35.7	35.9	36.7	${ }^{37.5}$	38.4	39.2	40.1	41.0	41.8	42.7	43.5		45.3	46.1		47.9																	
$\frac{12.4}{12.5}$	$\frac{12.2}{13.1}$	$\frac{34.0}{36}$	$\frac{34.9}{14.9}$	35.7	$\frac{31.6}{36.4}$	${ }^{37.4}$	$\frac{38.3}{36.1}$	39.1	4n．0	40.8	41.7	42.5	$\frac{43.4}{43.3}$	44	45.1	46．n	46	47.7	48	4		51	52		54．9		55．7	5h． 5	4	58.3 58	59.4 59.2	${ }^{60} 5$	81.2	62.1 81	62.0 62.8
$1 \bigcirc$	${ }^{23} .0$	3）．${ }^{\text {¢ }}$	74.6	35.5	${ }_{3}^{26} 5$	17.7	$3 \mathrm{~m} . \mathrm{r}$	19.9	39.7	40.5	41.4	42	43.1	4	44.8	45				49	ar	50.9	51．0	a 2	53.5		95.3	56.2	57.1						
12.7	27.9	27．1	34.5	15	th．${ }^{\text {ch }}$	17.0	37.7	$3 \mathrm{a}, 7$	39.6	4 n .4	41.3		43.6		4.7	45.5				49		52.7	51.6	52.5	52.4	54.	55.1	56.0	56.9	57：	5 S	59	${ }^{10.4}$	¢1．3	62.4 62.2
13.4	32	33.	2	35	36	36	37.9			40.3	41		42			4．			4 A .0	48.8	47.7	50.6	51.4	52.3	53.2	54.		5		57.		59	6 O	－1．1	－2．20
$\frac{12.9}{13.0}$	$\frac{32.7}{12.6}$	33.5 31.	$\frac{74.3}{34.2}$	$\frac{15}{15}$	－3t．0	3 c 36．9	17	$\frac{38.5}{30.4}$	39	$\frac{40.2}{40.0}$	40	41.	$\frac{42.7}{42.6}$	$\frac{43.5}{43.4}$	$\frac{44.4}{44.8}$	45．31		47.0 46.8	47.8	$\frac{48.7}{48.5}$	49	$\frac{50.4}{50.3}$										¢	on	60．9	81.8
12.1		＋1．3			15.9	3t．6		39.2	（9，	，	$4 \mathrm{C} \cdot \mathrm{B}$	41.6	42.4	43.3	44.1	45.6	45.8	46.7	47.5	44.	49.2	5n．1	51.0	51.	52.7		54.4	55.3	56.2	57.2					${ }^{61.6}$
13.7	37.4	71．？	2.0	$74 . \mathrm{A}$	35.6	3t． 5	37	${ }^{38.1}$	39	39.8	40.6	41.5	42.3	43.1	44.0	44.8	45	46.5	． 4	48.2		49.8	50.8	51	52.5			5		56.9					61．2
13.3	32.4	31	13．9		15．9	16.4	37.3	$3 \mathrm{~B}, 0$	x ${ }^{\text {a }}$	39.7		41.3	42.2	43.0	43.9		45	40.4	． 2	4 A .1					2.4		54.1			56.7		59.4			61．：
$\frac{13.4}{13.4}$	22．1	$\frac{33 . n}{12.9}$	13.1			$\frac{3}{10}$	17	37.9	Ta．6	39.6	${ }^{40.4}$	${ }_{4}^{41.2}$	$\frac{42.1}{41.7}$	42	43.7	44.4	45	$4{ }^{4} .1$		47			50	51	52．2	$\frac{53.1}{52.9}$	53.9	8	． 7	$\frac{56.5}{56.4}$					60．9
13.6	37.6	32．a	73．4	34	35.2	$36 . n$	$3 \mathrm{h.9}$	37.7	$3 \mathrm{B}$.	39.3	40.1	41.0	41.8	42.6	43.5	44.3	45	46.0	46.8	47.7		$4{ }^{\circ}$.	50.2	51.1	51.9		53.8								
12.1	1.	32.7	13．5		35.1	35.	35.	37		39.2	40	40.9	41.7	4	43.3	4		45.8		47.5	48.4	49.2	5 C .1	50.9	51.8	52.6	52.5	54.3	55.7	56.0	51．	57	S9．\％	9．5	
18.8 13.9 13.9		3				35	38			10．1	39	40.7	41.6	42	43.7 4.1 4	44.1 4.9	44	5	48	47.4		47.1	49.9		51，		5								6n． 2
14.8	T． 6	32.4	＋1．			35．6	${ }^{36.4}$	37	A	\％．9	39．		41.3	42.2	${ }^{43 . n}$	4．a	44.6	45.5	46.3	47.1	4 R ．	$\stackrel{4 \mathrm{~A} .9}{49.8}$	49.8	50.5	$\frac{51.5}{51.3}$	52.	$\frac{53}{53}$	$\frac{54.0}{53.9}$	$\frac{54.9}{54.1}$	55.7		57.	$\frac{58.3}{58.1}$		$\frac{60.0}{59.9}$
14.1 16.2	31.4 31.4	12：3	$1+1$ 13.0		34.7	3553	30.3 30.2	37.1 37.0 36	39.7	19.9 30.7	39.6 39.5 1	40.	${ }_{41.2}^{41.2}$	47.0	42.9 42 4	43.7	4.5	45.3	40.2	47.					51.2					55.4					59.7
14.	31.	37.1	17.4	33.7	36.5	35	3 n .1	36.9	77.	38.6	19.4	4	41	9	42.6	43.4	44.3	45.1	45	46.7	41	48.4	40.	5 n	$5{ }_{5} 5.9$	51.	52	53.6		55.1			57.9		59.5
14.4	$\frac{31}{11}$	$\frac{13}{19} \cdot 1$	$\frac{32.9}{12.8}$	$\frac{33.5}{13.5}$	$\frac{14.4}{14.7}$	${ }^{35}$	$\frac{36 . r}{34.9}$	$\frac{36}{36}$ ．	$\frac{31.6}{37.5}$	$\frac{38.4}{38.7}$	19．8		$\frac{40.9}{40.8}$		$\frac{42.5}{42.4}$	${ }_{4}^{43.3}$		45.0		46		49	40	49	50.8	51		52.	54	54．9	55．8				
14.6	21.1	${ }^{11.9}$	27.1	33.5	34.3	35.1	\％．9	36.6	37.4	$3 \mathrm{~B} \cdot 2$	99．0	30	$4 \mathrm{C} \cdot 7$	41.5	42.3	43.1	43.9	4.8	45.5	46.4	$4{ }^{4}$	4 c －${ }^{\text {A．}}$	4 A －	49	50.5		52				． 5				${ }^{59.0}$
14.7	11	31．${ }^{\text {a }}$	\cdots		34.	35		3 3 .5		38.1	34.9		40.6	41.4	42.2	－ 0	4					47.7	4		50	51	52	52．8	53.7	54.5		${ }_{5}{ }^{6}$			59.7
$\begin{array}{r}14.8 \\ 14.9 \\ \hline 1.9\end{array}$	－														42	42.9	43.6			46		4			50.	51.1	51．9	57.7	，	54.		5	${ }_{56}^{51.9}$		
T5．C	10.4	क1	12.3			14.7				17．9	${ }^{38.6}$				4，		2．5	4.4		45.9		47	49.		50．										
15.1	3 c .1	31.5			31．8			36.2	31.0	31.8	39.6	39.3	40.1	40.9	41.7	42.5	43.4	44.2	45.0	45.	4 t	47.	48.2	49	49.8	5 5	51.5	52.3	53.1	4.0			50.4	57．	5A．${ }_{\text {5月，}}$
15.2 15.3		${ }_{31}^{31.4}$	37.	$\xrightarrow{31.0}$		14			36.	37.7 37.6	${ }_{38 .}^{88 .}$	39.7	4 Ca	40.8 40.7	41.6	42.4	43.2	${ }_{4}^{4} 3$.	44.9	45.7 45.6	46		48.1		40.7	5	（1）	ci．	53， 5	53.9			56		
15.4	2 n .5	11	1	T		34				37.5	38		．	40.6	41.4	42	43.0	43		45		41.	47.9	4 A	49.5	50.3	51.8	52.1 51.9	52.7	53. 53.			50.2 58.0 50.0		57.8 57.8 7
15.5	3 B .4	17.3	11． 4	13．7	37．\％	32．3		${ }^{35.9}$	3 c .6	37.4	${ }^{34}$		\％ 8	$4{ }^{40.5}$	41．3	42.1	42.9	43			46	4	47	$4 \mathrm{4} \cdot 6$	49.4	5	51.0	41.8	\＄2．6	53.4		55	55.9		
15.6 14.7	30．	31.1 31.0	31.9	． 6	11.4 31.0	14.		35.7		11.3 31.2	3a，			$4{ }_{4}^{40}$	41.	${ }^{4}$	42.8	43	44.4	45.	46	$4{ }^{5} \mathrm{~s}$	47.6	$4{ }^{4}$	49.7		50.9	51.7	52	53.3	54.1	54	55．8		57.4
15．8		1.	31.7		1．	14		35.6		37.1	37.	38	． 5	40.3	41.0	41．${ }^{\text {a }}$	42.6	43.4	44.2			46.					50	51.4	52.	53.1					57.3 57.1
$\frac{15.9}{16.4}$	20．1	$\frac{31.9}{319} 9$	21．6	${ }_{32}^{31} 1$	$\frac{37}{11}:{ }^{2}$	$\frac{37}{17} 9$	34.6	$\frac{35.5}{35.4}$	36	．	37．8．		39.3	4	40.9	41.7	42.5	$\frac{43.3}{43.2}$	44						48.9		${ }_{50}^{50}$	ड1	5	$\frac{52.9}{52}$	53.7				
$1 \times .1$	3 n ．	3 n .1	11.5	32.7	${ }_{73}{ }^{\text {c }}$ ¢	73．8	34.6	35.3	36.1	36.9	37.6	9.4	19	40．0	40.8	41.5	42.3	43.1	43.9	4	45.5	4 t	41.		48.		50	51.1	51	52.9	53				
16.2		m． 7	21.4		－	3				－	17，		39.1	39.9	40.7		42.2		43				47		48.6		50	51.0		52.6	5	54.			56.6
16.3		nor		32.1		33.6		35		36.7	31.5		39		40.6	41.3					45.	46.			48.5		50.			52.5	析	54.1	9		51.6
$\frac{16.4}{16.4}$		$\frac{310.5}{10.5}$	$\frac{31.3}{31.2}$	$\frac{12}{7}$	$\frac{12}{12} 9$	17：3			． 4	${ }_{36}^{36.5}$	${ }^{37.4}$	39.1 39.1	${ }_{3}^{31.4}$		$4{ }_{4}^{40.5} 4$	$\stackrel{41.3}{41.2}$			${ }^{43.6}$			${ }_{46}^{45}$		47.6	$\frac{48.3}{48.7}$	$\frac{49.1}{49.0}$	49.9	$\frac{50.7}{55.6}$	$\frac{51.5}{51.4}$	． 2			． 7		
15.6	29	3 n .4	${ }^{31 .}$ ？	31.7	？${ }^{2}$	\％	，	34.0	35.1	36.5	37.2	38.0	38.8	39.5	40.3	41.1	41.9	42.	43.4	4	45.0		46.6	47.3	49.1	48.	49.7	50.5	51.3	52.1	52.9	53.7	54.5		9602
16.7	29	${ }^{3}$.	${ }^{2} 1.1$	${ }^{31 .}{ }^{\text {a }}$	12	31.3	34.1	34.9	35.6	3 N	31.1	37	3 A .1	39.5	40.2	41.0 40	${ }_{4} 11.8$	42.	43.3	44.1	44.9	45.	46.5	41.2	4 A .0	48.8	49.6	50.4	5	52.0	52.8				50.7
				${ }_{31 .}{ }_{11}$	37，${ }_{3}$	37．3 37	34.0	34.8 34.8	35.5 35.5	36.3 36.7	37．1	37.8			40		41	42.			44	45.6	40．3	41.1	47			${ }_{50}^{50.3}$	ch				54.3	55.1	55.9
11.0	29.4	Bñ－1	$\frac{20.9}{}$	${ }^{11.6}$	T7，4	${ }^{17.1}$	78．9	34	34.4	36．2	36．9	37.7	38．4	$3{ }^{30 .} 2$	40.0		41.5	42.3	41.1	43.8	44.6	45.4	46.3		47.8	$4 \mathrm{4} \cdot 6$	49	$\frac{5 \mathrm{c} \cdot 2}{50.1}$	51.	$\frac{51.9}{51.9}$	$\stackrel{52}{52}$	53，	$\frac{54.7}{54.0}$	54．0	55．9
17.1	29.3	17.1	30.4	11．5	32.3	13.1	－	34.5	35.3	36.1	36.8	37.6	${ }^{19.4}$	39.1	39.9	40.0	41.4	42.2	43.0	43.7	4.5	45.	46.1	46	47.6	4 4.	40	50.0	50.9	51.6	52				
17.	${ }_{29}^{29.3}$	30	30.9	11.5	32．${ }^{2}$		71．7	34．5	35．	36．0	${ }^{36.8}$	37.5 37.4	$3 \mathrm{3a}$	39.0	T	－5	41.3	42	9			45.	46.0		47.	48.	49.	49.	50.	51.4	52	53	53	54	55.4
17.4	29	29.9	30	11.	12		1			35.9	36.6	37.4	38.1	$3 \mathrm{~B}, 9$	39.6	40.4	41.2	41.9	42.7	43.5										51．3		52.9 52.8			
17.5	39．1	39．8	30．6	T1．3	T2．	12．A	${ }^{31} .5$	34	5．	35．8	${ }^{36.5}$	17.	т．${ }^{\text {\％}}$	38．8	39.6	2n． 3	41.1	41.8	42.6	43.4	44.	44	45	4 C	47.2	48.	4R．	40.6	50.	डा． 1	51．3	52.	53.5	54.3	55.1
17.6 17.7	72.0	39．p	30.	31.	3．${ }^{1}$	32.7	11.5	34.2	35.9	55.7 35	36.	37.2	78．0	38.7	39.5	40.2	41.0	41.8	42.5	43．3	4.	44	45.	46	47.1		4 A	49.	5 c .3	51.0	51.9	52.6	53.4	121	55．0
17．${ }^{\text {a }}$	2 P	70.7	30.4	X1， 1	1．\％	x		34.1		35.6	36	37.1		3 B .6	39	40	40.8	41.7		43	43		45		47.			49	5 sn	50.9	${ }_{51}$			4.1	5
17.9	2R．9	Pa	20						34		${ }^{36.2}$			39．	$\frac{39.2}{19.2}$	40		41	42	43.	，				46.9					50．7					
： H .1	${ }_{\text {RR．}}$	73.5	10．7	30.9	31.1	12.4	37.1	33.9	34.6	35.4	36.1	36.	37.6	$3 \mathrm{B}.{ }^{\text {3 }}$	39.1	39.	40.6	41.	42.1	42.9	${ }_{4}^{43.1}$		45.2	45	$4{ }^{40.9}$	47.5		49.1	49.9	50.6	51.4	E2．2	37.8	57.7	54.5
1 A	29.7	29.4	3 n .2	30.9	31.6	12	3.1	${ }^{33.8}$		35.3			37.5	38.3	39.0	39	40.5	41.3	42.0	42.8	43.5	44	45.1	45	46.6		4 A		49.7	50.5	51.1 51.2	52.1 52.0 51	52.9 32.9	\％	54.4 54.3
18．3	29.7	29：4					32.0 33.0	33.8 33.7	． 4	35.2 35.2	36．0	${ }^{36}$	37.5 37.4	38.2 38.1	38.9 38.7	${ }_{39} 3$	40.	41.	$4 \begin{aligned} & 4.9 \\ & 41.9\end{aligned}$	42	4	促	45	4	46.5	1	4	4 4		5.3	51.1	51.9			54．3
19.5	78．6	$\frac{29}{29} 3$	30．c	3．7	1.1 .4	ग3．	12.0	${ }^{33.6}$	34.4	－35．1	35.8	36.6	37.3	38.1	38.8	39.5	$4{ }^{4} .3$	41.0	द1．8	42.5	43.3	${ }_{44}^{4 .}$	44．9	45.6	46.4	4.	47	4 4．7	49.5	$5{ }^{5}$	5				54．1
1 A .6	$2 \mathrm{~A}, 5$	29.2	29.9	30.1	31.4	32.1	37．${ }^{\text {a }}$	33.8	14.3	35.0	${ }^{35.4}$	36.9	37.2	38.0	38.7	39.5	40.2	41.0	41.7	42.5	43.2	44.	44.7	45.5	46.2	47.0	47	48.5	49	50.1	50				
19.7	29．4	${ }^{20.2}$	29.7	30.6	31.3	${ }^{32-6}$		33.5	34.2	35.0	． 7	． 4	37.2	37.9	38.7	39.4	40.1	40.9	41.6	42.4	${ }^{43.1}$	4.	44		45.2			49.4	49.2	50.0		51.5	52.3	33.0	53.9
18.8 18.9 18.	28.4 28.3	79.1 29.0	79.9 79.8 8	． 5	11.3 31.2 1.1		，		34.2	34.9 34.9		36.3	37.1 37.0	37.8 37.8 18.8	38.6 39.5	39.3	40.1 40.0	40.8 40 4	41.6 41.5		${ }^{43.1}$		4		46.1			4 A	1	49.9		51.4	52.2	5．	53.7
10．0	$2{ }^{29} \cdot 3$	${ }^{20.6}$	39．？	T． 4	11.1	31.9	12.6	33.3	34.0	34.8	33.5	36.2	17.0	37.7	38.4	39．7	39.9	$4 \mathrm{C} \cdot 1$	41.4	42.2	42.9	43	44.4	45.2	45.9	46	47.4	48.2	$4{ }^{4} \cdot 9$	40.7	50.3	51.2	$\frac{52.1}{32.0}$	52.8	$\frac{53.6}{53.5}$
19.1	2R．？	29.9	29.7	30.4	31.1	31．${ }^{\text {a }}$	12.5	33.3	34.0	34.7	35.4	36.2	36.9	37.6	38.4	39.1	39.9	4 T .6	41.3	42.1	42.8	47.6	44.3	45.1	45.8	46.6	47.3	$4 \mathrm{~A} \cdot 1$	48.9	49.6		51.1	51.9		53.4
19.2 19.3	28．2	28.9 29.8	29.6	30.3	31.0		32.5		． 9		35	36.1 36.0		37.6 37.5		30	39.9 39	40	${ }_{41.3}^{41.2}$	42.	${ }_{4}^{42.8}$	${ }^{33.5}$	44.2	45.0	45.7	48.5	4.3	${ }^{48.0}$	$4{ }^{48}$	49.5		55.0	51		53.3
－17．4	2a．				20.9	31.0					35．3	36.0	36.7	37.4	38.2	38.9	39．6	4	41.1	41.9		43.	44	44.8	5.7	46		47	${ }_{48.5}^{48.7}$						
19.5	2a．？	${ }^{29.7}$	？	${ }^{30}$	3	，	＋	－	${ }^{33.7}$	34.5	35．2	35.9	36．6	${ }^{37.4}$	38．1	38．8	39.6	40.3	41.0	41.8	42.5	43.	44.7	44.8	45.5	$4{ }^{46}$	47.	47.8	48.5	49.	5	50．a	51．6	2．3	53.8
19.	27：9	29	29	3		31	32.3 32.2		33.7 3×6	34.4 34.4 34.2	35.1	35.9 35.9	36.6	37.3 37 37		${ }^{38.8}$	339.5	40.2	41.0 40.9	41.7	42.5		43.9 43.9		45.4		4		48.4 48.3 48	－			5		53.7 52.0 52.0
19.	27	28	20	30.0	＊n． 7	31.4	1	32.9	33.6	34.3	35.0	35.7	36.5	37.2	17.9		39.4	40.1	40.8	41.6	$4{ }^{4} 2.3$		43.9		45.3										52.9
19.9		29.5	29.3	3.0	3 n .7	31.4	32.1	32.9	33.5	． 2	5.0	35.7	36.	17.1	31．9			4 C ．	40.8		42.	43.								48.	49.7	59.4	51	51.9	52.

Some tarif Equations
Finding tarif
If CVTS is known:

Finding various volumes (known turif)

$$
\begin{aligned}
& \text { CV4 }=\frac{\text { tarif (BA-.087266) }}{.912733} \\
& \text { CV6 }=\text { CVH }\left\{.993-.993\left[.62^{(\mathrm{DBH}-6)}\right]\right\} \\
& \text { SV6 }=\operatorname{CV6}\left(10^{x}\right) \text {, where } \\
& X=.174439+.117594\left(\log _{10} D B H\right)\left(\log _{10} T\right) \\
& -8.210585 / D B H^{2}+.236693\left(\log _{10} T\right) \\
& -.00001345\left(T^{2}\right)-.00001937\left(D B H^{2}\right) \\
& \text { and } T=\text { tarif/.912733 } \\
& \begin{array}{rl|l}
\text { SV8 } & =\text { SV6 }\left[.990-.58\left(.484^{\{D B H-9,5\}}\right)\right] & \text { SV8 } \\
\text { SV632 } & \left.=\text { SV6 } 61.001491-\frac{.6924097}{\operatorname{tarif}}+.00001351\left(\text { DBH }^{2}\right)\right] & \begin{array}{r}
\text { SV632 }
\end{array} \\
&
\end{array}
\end{aligned}
$$

Using the Tarif System

1. Measure DBH and Height on tarif subsample.
2. Estimate Cubic-foot Volume including Top \& Stump (CVTS) for tarif trees using an applicable standard volume equation
3. Use CVTS to derive tarim number for each sample (tarif) tree
4. Average derived tarif numbers from (3) by species
5. Use species average to derive desired vol. units.
Example.
An estimate of Cubic-foot Volume to 4" top (CV4) is desired for a particular Douglasfir stand. Three tarif trees were measured. An applicable standard CVTS equation is found in Bell \& Dilworth appdx. C. II. A. CUTS $=10^{-2,658025} \mathrm{DBH}^{1.739925} \mathrm{HT}^{1.133187}$ The following table is then derived (steps circled):

circled):			(2)	(3)	(3)
tree	$\frac{D B H}{1}$	$\frac{H T}{15.2}$	$\frac{C V T S}{94}$	$\frac{\text { tarif }}{43.1}$	$\frac{C V 4}{32.2}$
2	10.1	86	19.1	34.4	17.3
3	12.5	92	29.9	34.2	28.2

(4) avg. tarif: 33.6

Summary

1. Volume equations / tables typically refer to volume in the main stem or bole, apply to a particular species or species group, a particular age class, and a particular geographic region, and are based on one or more individual tree dimensions, such as DBH or Height
2. Volume units are many: bd.ft., merchantable cubic-ft to a 4 " top, etc.
3. There are three main types of volume tables (equations): Multiple Entry, Single Entry, and Composite
4. There are two main sub-types of Multiple Entry volume tables: standard and form class
5. There are two main sub-types of Single Entry tables: local and tarif; tarif equations are used in the PNW quite a lot, particularly among state agencies

[^0]: Tablo shows total volume of entire stem, inside bark, including stump and top, without allowance for defect, trim, or breakage.
 Tablo volumes obtained by means of logarithmic equation derived by method of least squares: $\log \mathrm{V}=-2.712153+1.659012 \log \mathrm{D}+1.195715 \log \mathrm{H}$ Tabla volumes obtained by means of logarithmic equation derived
 Standard error of estimated volume for single trees: ± 12.1 per cent.
 Aggregato difference: 0.57 per cent low.

