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FIGURE 2.6
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y= fix)

may thus be interpreted to mean 4 rule by which the set x is “mapped” (“transformed™) into
the set y. Thus we may write
fix =y

where the arrow indicates mapping, and the letter f symbolically spectfies a rulc of map-
ping. Since frepresents a particular Tule of mapping, a different functional notation must
be employed to denote another [unction that may appear in the same model. The customary
symbols (besides /) used for this purpose are g, F', G, the Greek letters ¢ {phi) and v (psi),
and their capitals, & and ¥. For instance, two variables y and z may both be functions of x,
but if one function is written as ¥ = f(x), the other should be written as z = g(x), or
z = ¢i(x). It ig also permissible, however, to write v = p(x) and z = z(x}, therchy dis-
pensing with the symbols fand ¢ altogether.

In the function ¥ = f{x), xisreferred Lo as the argument of the function, and y 15 called
the value of the function. We shall also aliernatively reter to x as the independent variable
and y as the dependent variable. The set of all permissible values that x can take in a given
context is known as the domain ol the function, which may be a subset of the set of all real
numbers. The v value into which an ¥ value is mapped is called the image of that x value.
The set of all images is called the range of the function, which is the sct of all values that
the y variable can take. Thus the domain pertains to the independent variable x, and the
range has to do with the dependent variable y.

As illustrated in Fig. 2.7a, we may regard the function fas a rule for mapping each point
on somg¢ line scgment (the domain) into some point on another linc scgment (the range). By
placing the domain on the x axis and the range on the y axis, as in Fig. 2.75, however, we
immediately obtain the familiar two-dimensional graph, in which the association between
x values and y values 1s specified by a set of ordered pairs such as (xy, y) and (x2, ¥2).

In cconomic models, behavioral equations usually enter as functions. Since most vari-
ables in cconomic models are by their nature restricted to being nonnegative real numbers,’
their domaing are also so restricted. This is why most gcometric representations In

' we say “nonnegative” rather than “positive” when zero values are permissible.
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cconomics are drawn only in the first quadrant. In general, we shall not bother to specily
the domain of every function in every economic model. When no specification is given, il
i$ to be understood that the domain (and the range) will only include numbers for which a
function makes cconomic sense.
Example 5 The total cost C of a firm per day is a function of its daily output Q: C = 150 + 7Q. The firm
—————— has a capacity limit of 100 units of cutput per day. What are the domain and the range of
the cost function? Inasmuch as Q can vary only between 0 and 100, the domain is the set
of values 0 = Q < 100; or more formally,
Doman={Qi0=Q =100}
As for the range, since the function plots as a straight line, with the minimum Cvalue at 150
{when @ = 0} and the maxirmum C value at 850 (when Q = 100), we have
Range = (C | 150 = C = 850
Beware, however, that the extreme values of the range may not always occur where the
extreme values of the domain are attained.
EXERCISE 2.4

1. Given §) =1{3, 6,9}, 3; = {0, b}, and 53 = {m, n}, find the Cartesian products:
(@) 51 % 5 (0) S2 x 53 (O S3x 5§
2. From the information in Prob. 1, find the Cartesian product § x $ x $3.

3. In general, is it true that $; x §2 = §3 x 5?7 Under what conditions will these two
Cartesian products be equal?

4. Does any of the following, drawn in a rectangular cocrdinate plane, represent a
function?

{a) A circle (¢} Arectangle
{b) Atriangle {d) A downward-sloping straight !ine

5. If the domain of the function y = 5 + 3xis the set {x | T < x < 9}, find the range of the
function and express it as a set.
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6. For the function y = —x?, if the domain is the set of all nonnegative real numbers, what
will its range be?

7. In the theory of the firm, economists consider the total cost C to be a function of the
output level Q: C= AQ).

{a) According to the definition of a function, should each cost figure be associated with
a unique level of output?
{h) Should each level of output determine a unique cost figure?

8. If an output level Qy can be produced at a cost of Cs, then it must also be possible (by
being less efficient) to produce Q; at a cost of €y + 81, or C; + $2, and so on. Thus it
would seem that output Q does not uniquely determine total cost C. If 50, to write
C = f(Q) would violate the definition of a function. How, in spite of the this reasoning,
would you justify the use of the function C = f(Q)?

2.5 Types of Function

The expression y = f(x) is a general statement to the eflect that a mapping ts possible, but
the actual rule of mapping is not thereby made explicit. Now let us consider several specific
types of function, each representing a different rule of mapping.

Constant Functions
A function whose range consists of only one clement is called a constant fiunction. As an
example, we cite the function

y=fix)=7

which is alternatively expressible as v = 7or f(x) =7, whose valuc stays the same
regardless of the value of x. In the coordinate plane, such a function will appear as a hori-
zontal straight line. In national-income models, when investment [ is exogenously deter-
mined, we may have an investment function ol the form / = $100 million, or { = [, which
exemplifies the constant function.

Polynomial Functions
The constant function is actmally a “degenerate” case of what are known as polynamial
functions. The word polynomial means “mututerm,” and a polynomial functrion of a smgtle
variable x has the general form

v=dg4ax Faxt o ags” (2.4)

in which each term contains a coefficicnt as well as a nonnegative-integer power of the
variable x. (As will be explained later in this scction, we can write x' = x and +¥ = | in
general; thus the first two terms may be taken to be agx” and ¢.x', respectively.) Note that,
instead of the symbols @, b, ¢,.... we have cmployed the subscripted symbols gy,
ay, ..., a, for the coefficients, This is motivated by two considerations: (1) we can econo-
mize on symbaols, since only the letter « 1s “used up™ in this way; and (2) the subscript helps
to pinpoint the location of a particular coefficient in the entire cquation. For instance, in
(2.4), 4y is the coefficient of x?, and so lorth.
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Depending on the value of the integer n (which specifics the highest power of x), we
have several subclasses of polynomial function:

Case of n = U V= ay [constant function]
Cascofr=1; y=ag+ax [linear function)]
Case of n = 2: v =ag+ax + ax® [guadratic function]
Caseofn=73: y=dag+ax +ax’ + azx’ [cubic function]

and so forth, The superscript indicators of the powers of x ar¢ called exporents. The high-
est power involved, 1.e., the value of #, 1s often called the degree of the polynomial func-
tion; a quadratic function, for instance, is a second-degree polynomial, and a cubic function
is a third-degree polynomial.” The order in which the several terms appear to the right of
the equals sign is inconsequential; they may be arranged in descending order of power in-
stead. Also, cven though we have put the symbol y on the lell, it is also acceptable to write
f(x) inits place.

When plotted in the coordinate plane, a linear function will appear as a straight line, as
illustrated in Fig. 2.82. When x = 0, the linear function yields v = aq: thus the ordered pair
(0, ap) 1s on the line. This gives us the so-called v intercept (or vertical infercept), because
it is at this point that the vertical axis intersects the line. The other coeflicient, |, measures
the slope (the steepness of incling) of our line, This means that a unit increase in x will re-
sult in an increment 1n y in the amount of @, What Fig. 2.8« illustrates is the case ol'a| = 0,
ivolving a positive slope and thus an upward-sloping line; if ¢, < 0, the line will be
downward-sloping.

A quadratic function, on the other hand, plots as a parabola—roughly, a curve with a
single built-in bump or wiggle. The particular illustration in Fig. 2.85 implies a negative a»,
in the case of a; > 0, the curve will “open™ the other way, displaying a valley rather than a
hill. The graph of a cubic function will, in general, manifest two wiggles, as illustrated in
Fig. 2.8¢. These functions will be used quite frequently in the economic models subse-
quently discussed.

Rational Functions
A function such as
o ox—1

! +2x+4
m which y 1s expressed as a ratio of two polynomials in the variable x, is known as a rufio-
nal function. According to this definition, any polynomial function must itself be a rational
function, because it can always be expressed as 4 ratio to 1, and 1 is a constant function.

A special rational function that has mteresting applications in economics is the function

d
y=- or xy=dqa
X

which plots as a rectangular hyperbola, as iu Fig. 2.84. Since the product of the two vari-
ables is always a fixed constant in this case, this function may be used to represent that
special demand curve—with price P and quantity Q on the two axes—for which the total

tin the several equations just cited, the last coefficient (a,) s always assurned to be nonzerg;
otherwise the function weuld degenerate into a lower-degree polynomial.
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FIGURE 2.8
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expenditure PQ is constant at all levels of price. (Such a demand curve is the one with a
unitary elasticity at each point on the curve.} Another application is to the average fixed
cost (AFC) curve. With AFC on one axis and output ¢} on the other, the AFC curve must be

(o

rectangular-hyperbolic because AFC x (= total fixed cost} 15 a fixed constant.



Chapter 2 Feonomic Models 23

The rectangular hyperbola drawn [rom xy = @ never mects the axes, cven if extended
indefinitely upward and to the right. Rather, the curve approaches the axes asymptotically:
as y becomes very large, the curve will come ever closer to the y axis but never actually
reach i, and similarly for the x axis. The axes constitute the asymprotes of this function,

Nonalgebraic Functions

Any function expressed in terms of polynomials and/or roots (such as square root) of
polynomials is an algebraic function. Accordingly, the functions discussed thus far are all
algebraic.

However, exponential functions such as y = b*, in which the independent variable ap-
pears in the exponent, are ronalgebraic. The closcly related fogarithmic functions, such as
¥ = log, x, are also nonalgebraic. These two types of function have 4 special role to play in
certain types of economic applications, and it is pedagogically desirable to postpone their
discussion to Chap. 10. Here, we simply preview their general graphic shapes in Fig, 2.8¢
and £ Other types of nonalgebraic function arc the trigerometric (or circular) functions,
which we shall discuss in Chap. 16 m connection with dynamic analysis, We should add
here that nonalgebraic functions are also known by the more csoteric name of franscen-
dental functions.

A Digression on Exponents

In discussing polynomial functions, we introduced the term exponents as indicators of the
power to which a variable (or number) is to be raised. The expression 6% means that 6 is to
be raised to the second power; that is, 6 is to be multiplied by itself. or 6° = 6 x 6 = 36. In
general, we define, for a positive integer a1,

M=E=xxxx---xx
# terms

and as a speeial case, we note that x! = x. Fram the gencral definition, it follows that for
positive integers i and xn, exponents obey the following rules:

Rule oo xt = (for cxample, ¥ x x* =x7)
Proor Axx"=(xxxx oxx)(xxxxoxx)
HEterms # RIS
i i

=X XXX X X=X
_—
o — 1 terms

Note that in this proof, we did not assign any specific value to the number x, or to the
exponents m and #. Thus the result obtained is generufly true. It is for this reason that
the demonstration given constitutes a proof, as against a mere verification. The same can be
said about the proof of Rule 11 which follows.

L 3 4
X _ . p
Rule 11 — =" (x #0) for example, — = x
xh _ x?
M oterms
S
X7 AXXY XXX -
= =X AXXN XX =X
PRODF x” X X X x - X X e ———’
— e’ M — 4 Lerms

n lptms
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because the # terms in the denominator cancel out # of the m terms in the numerator. Note
that the case of » = 0 is ruled out in the statement of this rule. This is because when x = 0,
the expression x™ /x” would involve division by zero, which is undefined.

What if m < n, say, m =2 and n = 57 In that case we get, according 10 Rule II,
X" = x 7, a negative power of x. What does this mean? The answer is actually supplied
by Rule [Titself Whenm = 2 and n = §, we have

X2 XXX 1 |

=

IXIAI KXY XX X ®xrxyx x?

Thus x * = 1 /2%, and this may be generalized into another rule:

|
Rule 111 ¥ = (x #0)
t’?

To raise a (nonzero} number Lo a power of #egarive # is to take the reciprocal ol its nth
power,

Another special case in the application of Rule [l is when m = n, which yields the cx-
pression x™™* = x® " = 1 To interpret the meaning of raising a number x to the zeroth
power, we can wiite out the term x™ ™" in accordance with Rule 11, with the resuit ihat
x™/x™ =1, Thus we may conclude (hat any (nonzero) number raised to the zeroth power
is cqual 1o 1. (The expression 0" is undefined.) This may be expressed as another rule:

Rule IV =1 (x£D

As long as we are concerned only with polynommal functions, only {nonnegative) integer
powers are required. in exponential functions, however, the exponent is a variable that can
take noninteger values as well. In order to interpret 4 number such as x'/2, let us consider
the fact that, by Rule [, we have

x!;’?

2 1

x X X =x

Since x ' multiplied by itself is x, x> must be the square root of x. Similarly. x'* can be
shown 1o be the cube root of x. In general, therefore, we can state the following rule:

Rule V =Yy

Two other rutes obeyed by exponents are

Rule V] (xm-}n — i
Rule VI ATy = (xy)™
EXERCISE 2.5
1. Graph the functions
(@) y=16 + 2x by y=8—2x (¢) y=2x+12

{In each case, consider the domain as consisting of nannegative real numbers only.)

2. What is the major difference between {g) and (&) n Prob. 17 How is this difference re-
flected in the graphs? What is the major difference between (@) and (¢)? How do their
graphs reflect it?
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3. Graph the functions
(@) y=—x*+5x-2 (b) y= x4+ 5x-2
with the set of values —5 = x < § constituting the domain. It is well known that the
sign of the coefficient of the x? term determines whether the graph of a quadratic func-
tion will have a “hill” or a "valley,” On the basis of the present problem, which sign is
associated with the hill? Supply an intuitive explanation for this.

4. Graph the function y = 36/x, assuming that x and y can take positive values only. Next,
suppose that both variables can take negative values as well, how must the graph be
modified to refiect this change in assumption?

5. Condense the following expressions:

(@) x* x x1* {B) x% x x° x «° (0 Pxyxd
6. Find: (@) x3/x? (b) (X112 % 13y 203
. Show that x™* = J/x™ = ({/x)™. Specify the rules applied in each step.
8. Prove flule VI and Rule VII.

|

2.6 Functions of Two or More Independent Variables

Thus far, we have considered only functions of a single independent variable, v = f{x).
But the congept of a function can be readily extended to the case of two or more indepen-
dent variables. Given a function

= glx,¥)

a given pair of x and y values will uniquely determine a value of the dependent variable z.
Such a function is exemplified by

a )l
I =ax -+ hy or Z=J—mx+axt+ b]}" + b?,‘*'h

Just as the function y = f{x) maps a point in the domain into a point in the range, the
function g will do precisely the same. However, the domain is in this case no longer a sct of
numbers but a set of ordered pairs {(x, y), because we can determing z only when boih x
and y are specified. The function g ts thus a mapping from a point in & (wo-dimensional
space into a point on a line segment (1.¢.. a point in a one-dimensional spacc), such as from
the point (1, ¥,) into the point z or from (x7, ¥2) into z7 In Fig. 2.94.

If a vertical z axis 15 erected perpendicular to the xy plane, as is done in diagram A, how-
gver, there will result a three-dimensional space in which the function g can be given a
graphical representation as follows. The domain of the function will be some subset of
the points in the y v plane, and the value of the function (value of z) for a given point in the
domain—say, (x;, y1) --can be mndicated by the height of a vertical line planted on that
point. The association between the three variables is thus summarized by the ordered triple
(x1, y1. 21 ), which is a specific point in the three-dimensional space. The locus of such or-
dered triples, which will take the form of 4 surface, then constitutes the graph of the func-
tion g. Whereas the function ¥ = f{x} is a sct of ordered pairs, the function = = g(x, v)
will be a set of ordered tripfes. We shall have many occasions to usce functions of this type
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FIGURE 2.9
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in economic models. One ready application is in the arca of production lunctions. Suppose
that output is determined by the amounts of capital (X'} and labor (L) employed; then
we can writc a production function in the general form @ = Q(K. L).

The possibility of further extension to the cascs of three or more independent variables
is now scl-cvident. With the function y = A{w, v, w}, for example, we can map a point in
the three-dimensional space, (11, vy, 1), into a point m a one-dimensional space ().
Such a lunction might be used to indicate that a consumer’s utility is a function of his or her
consumption of three different commoditics, and the mapping is from a three-dimensional
commodily space into a one-dimensional utility space. But this time It will be physically
impossible to graph the function, because for thal task a four-dimensional diagram is
necded to picture the ordered quadruples, but the world in which we live is only three-
dimensional. Nonetheless, in view of the intuitive appeal of geometric analogy, we can con-
tinue to refer to an ordered quadruple (x;, vy, w;. ¥) as a “point™ in the four-dimensional
space. The locus of such points will give the inongraphable} “graph” of the function
y = h{u, v, w), which is called a hypersurface. These terms, viz., point and hypersurface,
are also carried over fo the general case of the #-dimensional space.

Functions of maore than onc variable can be classified into various types, too. For in-
stance, a function of the form

y=aixy + i3+ aay
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is a linear function, whose characteristic is that every variable is raised to the first power
only. A guadratic function, on the other hand, involves first and second powers of one or
more independent variables, but the sum of exponents of the variables appearing in any sin-
gle term must not exceed 2.

Note that instead of denoting the independent variables by x, u, v, w, etc., we have
switched to the symbols x, xa, .. ., x,. The latter notation, like the system of subscripted
coefficients, has the merit of economy of alphabet, as well as of an easier accounting of the
nmumber of variables involved in a function.

2.7 Levels of Generality

In discussing the various types of function, we have without explicit notice introduced
examples of functions that pertain to varying levels of generality. In certain instances, we
have written functions in the form

y=7 y=6x+4 y=x"-3x+1 (etc)

Not only are these expressed in terms of numerical cocflicients, but they alsc indicate
specifically whether each function 1s constant, linear, or quadratic. In terms of graphs, each
such function will give rise to a well-defined unique curve. In view of the numerical nature
of these functions, the solutions of the model based on them will emerge as numerical val-
ues also, The drawback is that, if we wish to know how our analytical conclusion will
change when a different set of numerical coefficients comes into eflect, we must go through
the reasoning process afresh each time. Thus, the results obtained from specific functions
have very little generality.
On a more general level of discussion and analysis, there are functions in the form

y=a y=u+bx y=a+bx +ox? (efc.)

Since parameters are used, each function represents not a single curve but a whole {family
of curves. The function y = a, for instance, encompasses not only the specific cases
y=0,y=1,andy =2butalsey = _%, y==5,..., ad infinitum. With parametric func-
tions, the outcome of mathcmatical operations will also be in terms of parameters, These
results are more general in the sense that, by assigring various values to the parameters ap-
pearing in the solution of the model, a whole family of specific answers may be obtained
without having to repeat the reasoning process anew,

In order to attain an even higher level of gencrality, we may resort to the general func-
tion statement y = f(x), or z = g(x, ¥). When expressed in this form, the function is not
resiricted to being either linear, quadratic, exponential, or trigonometric—all of which are
subsumed under the notation. The analytical result based on such a general formulation
will therefore have the most general applicability. As will be found below, however, in order
to obtain economically meaningful results, it is often necessary to imposc certain qualita-
tive restrictions on the general functions built into a model, such as the restriction that a
demand function have a negatively sloped graph or that a consumption function have a
graph with a positive slope of less than 1.

To sum up the present chapter, the structure of a mathematical economic model is
now clear. In general, it will consist of a system of equations, which may be definitional,
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behavioral, or in the nature of cquilibrium conditions.” The behavioral equations are usu-
ally in the form of functions, which may be linear or nonlinear, numerical or paramelric,
and with one independent variable or many. It is through these that the analytical assump-
tions adopted in the model are given mathemaltical expression.

In attacking an analytical problem, therefore, the first step is to select the appropriate
variables—exogenous as well as endogenous—for inclusion in the model. Next, we must
translate into equations the set of chosen analytical assumptions regarding the human, In-
stitutional, technological, legal, and other behavioral aspects of the envirenment affecting
the working of the variables. Only then can we attempt to derive a set of conclusions
through relevant mathematical operations and manipulations and to give them appropriate
geonomic interprelations.

T Inequalities may also enter as an important ingredient of a model, but we shall not worry about
them for the time being.



