Chapter

Linear Models and Matrix
Algebra (Continued)

In Chap. 4, it was shown that a linear-equation system, however large, may be written in a
compact matrix notation. Furthermore, such an equation system can be solved by finding
the inverse of the coefficicnt mairix, provided the inverse cxists. Now we must address our-
selves to the questions of how to test for the existence of the mverse and how to find that
inverse. Only afler we have answered these questions will it be possible to apply matrix
algebra meaningfully to economic medels.

5.1 Conditions for Nonsingularity of a Matrix

Example 1
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A given coefficient matrix .4 can have an inverse (i.c., can be “nonsingular”) only if 1t is
square. As was poeinted out earlier, however, the squareness condition Is necessary but not
sufficient for the existence of the inverse 4~ A matrix can be square, but singular (with-
out an inverse) nonctheless.

Necessary versus Sufficient Conditions

The concepts of “necessary condition™ and “sufficient condition” are used frequently in
economics. [t is important that we understand their precise meamngs before proceeding
further.

A necessary condition is in the nature of a prerequisite: Suppese that a statement p is
true only {f another statement ¢ is true; then g constitutes a necessary condition of p. Sym-
bolically, we express this as follows:

p=4 (5.1

which is read as “p only if ¢,” or alternatively, “il p, then ¢.” 1t is also logically correct to
interpret (5.1) to mean “p implies ¢.” 1t may happen, of course, that we also have p = w
at the same time. Then both ¢ and w arc necessary cenditions for p.

If we et p be the statement “a person is a father” and g be the statement “a person is male,”
then the logical staterent p = g applies. A person is a father only if he is male, and to be
male is a necessary condition for fatherhood. Note, however, that the converse is not true:
fatherhood is not a necessary condition for maleness.
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A dilferent type of situation is one in which a statement p is true if ¢ is (rue, but p cun
alse be true when ¢ is not true. In this case, ¢ is said to be a sufficient condition lor p. The
truth of ¢ suffices to establish the truth of p, but it is not a necessary condition for p. This
case 15 expressed symbolically by

peg (5.2)

which 15 read: “p if g7 (without the word onlv)—or alternatively, “il' ¢, then p,” as if read-
ing (5.2) backward. Tt can also be interpreted to mean “g implies p.”

If we let p be the statement “one can get to Europe” and g be the statement “one takes a
plane to Europe,” then p < g. Flying can serve to get one to Europe, but since ocean trans-
portation is also feasible, flying is not a prereguisite. We can write p & g, but not p = q.

In a third possible situation, ¢ 1s both necessary und sufficient for p. In such an event,
we write

peq (5.3}

which is read: "p if and only if ¢” (also written as “p iff ™). The double-headed arrow is
rcally a combination of the two types of arrow in (5.1) and (5.2), henee the joint use of the
two terms “if " and “only if." Note that {5.3) slates not only that p implics ¢ but algo that g
implies p,

If we let p be the statement “there are less than 30 days in the month” and g be the state-
ment “it is the month of February,” then p < q. To have less than 30 days in the month, it
is necessary that it be February, Conversely, the specification of February is sufficient to es-
tablish that there are less than 30 days in the month. Thus g is a necessary-and-sufficient
condition for p.

In order to prove p = g, it needs to be shown that g follows logically from p. Similarly,
to prove p <= g requires a demonstration that p follows logically from g. But to prove p < g
necessitates a demonstration that p and g follow from each other.

Necessary conditions and sufficient conditions arc important as screening devices. Con-
sider a pool of applicants being considered [or scholarship awards, or for job positions.
Since necessary conditions are in the nature ol prerequisites, they serve to separate the can-
didates into two groups: Those who fail to mect the necessary conditions are automatically
disqualified; those who satisty the necessary conditions remain as admissible candidates.
To remain as an admussible candidate, however, carrics no guarantee that the candidate will
eventually be successful. Thus, necessary conditions arc more conclusive in screening out
the unsuccessful candidates than in identifying the successful ones, In general, we should
hear in mind that necessary conditions are not in themselves sufficient.

In contrast to necessary conditions, sulficient conditions scrve direetly to identify suc-
cessful candidates. A candidate that satisfies a sufficient condition is automatically a
successful one. Just as necessary conditions are not m themselves sufficient, sufficient con-
ditions arc not in themselves necessary. This 1s because. along with any given sufficicnt
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condition, there may ¢xist other, less stringent, sufficient conditions, and the candidate who
fails to satisfy the given sufficient condition may yet qualify under an easier sufficient con-
dition. For example, a grade of A is sufficient for passing a course, but it is not 4 nccessary
condition since a grade of B 1s also sufficient.

The most effective screening device is found in the necessary-and-sufficient conditions.
Failure to satisfy such a condition means the candidate is definitely out, and satisfaction of
such a condition means the candidate is definitcly in. We can find an immediate application
of this in our present discussion of nonsingularity of a matrix.

Conditions for Nonsingularity
After (he squareness condition {a necessary condition) is alrcady met, a sufficient condition
for the nonsingularity of a matrix is that its rows be linearly independent (or, what amounts
to the same thing, that its columns be linearly independent). When the dual conditions
of squareness and linear independence are taken together, they constitute the necessary-
and-sufficient condition for nonsingularity (nonsingularity < squareness and lincar
independence).

An #n x # coefficicnt matrix A can be considered as an ordered set of row vectors, i.e., as
a column vector whose clements are themselves row vectors:

v
a4z e X
A @ dx - day _ ”2
dy  dy2 Uy .
LT
where v =[a1 4 -+ @], i =1.2,..., 5. For the rows (row vectors) to be lin-

early independent, none must be a linear combination of the rest. More formally, as was
mentioned in Sce. 4.3, linear row independence requires that the only set of scalars &;
which can satisfy the vector equation

Zk,-u;= 0 (5.4)
= [1xnr)
be &; = 0 forall i.
If the coefficient matrix is
34 5 Y
A=10 1 2|=|v
6 8 10 V!
3

then, since [6 8 10]=2[3 4 5], we have v; = 2v; = 2v] + 0v}. Thus the third row is
expressible as a linear combination of the first two, and the rows are not linearly indepen-
dent, Alternatively, we may write the previous equation as

v+ 0vy—v,=[6 8 10]+[0 0 0]-[6 8 10]=[0 O 0]

Inasmuch as the set of scalars that led to the zero vector of (5.4) is not k; = 0 for all J, it
follows that the rows are linearly dependent.
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Unlike the squarencss condition, the lincar-independence condition cannot normally be
ascertained at a glance. Thus a method of testing linear independence among rows (or
columns) needs o be developed. Before we concern ourselves with that task, however, it
would strengthen our motivation first to have an intuitive understanding of why the linear-
independence condition is heaped together with the squareness condition at all. From the
discussion of counting equations and unknowns in Sce. 3.4, we recall the general conclu-
sion that, for a system of equations 1o possess a unique solution, it is not sufficient to have
the same number of equations as unknowns. In addition, the equations must be consistent
with and functionally independent (meaning, in the present context of linear systems,
{inearly independent) of one another. There 1s a fairly obvious tie-in between the “samce
number of equations as unknowns” criterion and the squareness {same number of rows and
columns) of the coefficient matrix. What the “linear independence among the rows”
requirernent does s to preclude the inconsistency and the linear dependence among the
equations as well. Taken together, therefore, the dual requirement of squareness and row
independencee in the cocfficient matrix is tantamount to the conditions for the existence of
a unique solution enunciated in Sec. 3.4.

Let us illustrate how the linear dependence among the rows of the coefficient matrix can
cause inconsistency or lincar dependence among the equations themselves. Let the equa-
tion system Ax = d take the form

5 o) Lel=[]

where the coellicient matrix 4 contains linearly dependent rows: v = 2v;. (Note that
its columns arc also dependent, the first being % of the second.) We have not specified
the values of the constant terms o) and 4>, but there are only two distinct possibilities
regarding their relative values: (1) &) = 2d> and (2) dy # 2d,. Under the first—with, say,
di = 12 and ¢, = 6 -the two cquations are consistent but linearly dependent (just as the
two rows of matrix A4 arc), for the first cquation is merely the second equation times 2. One
equation 1s then redundant, and the system reduces in effect to a single equation,
5x; 4+ 2xz = 6, with an infinite number of solutions. Tor the second possibility—with, say.
d) = 12 but & = 0—the two equations arc inconsisteni, because if the first equation
(10x; + 4x; = 12) 1s true, then, by halving each term, we can deduce that 5x) 4+ 2x; = 6;
consequently the second equation (5x| + 2xy = 0) cannot possibly be truc also, Thus no
solution exists.

The upshot is that no unique solution will be available (under either possibility) so long
as the rows in the coefficient matrix 4 are linearly dependent. In fact, the only way to have
a unique solution is to have linearly independent rows {or columns} in the coefficient
matrix. In that case, matrix 4 will be nonsingular, which means that the inverse 4 ¥ docs
exist, and that a unique solution x* = 4~'¢f can be found.

Rank of a Matrix

Even though the concept of row independence has been discussed only with regard to square
matrices, it 1s equally applicable to any m x g rectangular matrix. If the maximum number
of lincarly independent rows that can be found in such a matrix is #, the matrix is said 1o be
of rank r. {The rank also tells us the maximum number of linearly independent colfumny in
the said matrix.} The rank of an s x 7 matrix can be at most s or », whichever is smaller.
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Given a matrix with only two rows (or two columns), row independence (or column
independence) is easily verified by visual inspection—one only has to check whether one
row (column) is the exact multiple of the other. But for a matrix of larger dimension, visual
inspection may not be feasible, and @ more formal method is needed. One method for find-
ing the rank of a matrix 4 (not nceessarily square), i.e., for determining the number of
independent rows in 4, involves transforming A into a so-called echelon matrix by using
certain “elementary row operations.” A particular structural feature of the ¢chelon matrix
will then tell us the rank of matrix A.

There are only three types of elementary row operations on a matrix:”

l. Interchange of any two rows in the matrix.

2. Multiplication (or division) of a row by any scalar & # 0.

3. Addition of “k times any row” to another row.

Whilc cach of these operations converts a given matrix A into a different lorm, none of
them alters the rank. It is this characteristic of elementary row operations that cnables us

to read the rank of 4 [rom its echelon matrix. The easicst way to cxplain the method of
echclon matrix 15 by a specific example.

Find the rank of the matrix

0 -1 -4
A=|2 6 2
4 1 0

from its echelan form. First, we check the first column of A for the presence of zero ele-
ments. If there are zero elements in column 1, we move those zero elements to the bottom
of the matrix. In the case of A, we want to move the © (first element of column 1) to the
bottom of that column, which can be accomplished by interchanging row 1 and row 3
(using the first elementary row operation). The result is

4 1 0
A =12 6 2
g -1 4

Our next objective is to reshape the first column of Ay into a unit vector &) as defined
in (4.7). To transform the element 4 into unity, we divide row 1 of Ay by the scalar 4
(applying the second elementary row operation), which yields

1 10
Ar=12 6 2
0 =11 -4

Then, to transform the element 2 in column 1 of Az into 0, we multiply row 1 of 4; by - 2,
and then add the result to row 2 of A; (applying the third elementary row operation). The
resulting matrix,

T 10
Az=710 5]
0 -1 -4

T Similarly to elementary row operations, there can be defined elementary column operatiens. For our
purposes, row operations are sufficient.
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now has the desired unit vector e; as its first column. Having achieved this, we now exclude
the first row of Az from further cansideration, and continue to work only on the remaining
two rows, where we want to create a two-element unit vector in the second column—by
transforming the element 51 into 1, and the element —11 into 0. To this end, we need to
divide row 2 of Az by 53, thereby changing the row into the vector [0 1 ], and then
add 11 times this vector to row 3 of A3. The end result, in the form of

1T 10
Av=10 1 %
0 0 0

exemplifies the echelon matrix, which, by definition, possesses three structural features.
First, nonzero rows (rows with at least one nonzero element) appear above the zero rows
(rows that contain only 0s). Second, in every nonzero row, the first nonzero element is
unity. Third, the unit element (the first nonzero element) in any row must appear to the left
of the counterpart unit element of the immediately foliowing row. It should be clear by now
that all the elementary raw operations we have undertaken are designed to produce these
features in A4.

Now, we can simply read the rank of A from the number of nonzero rows present in the
echelon matrix A4. Since A4 contains two nanzera rows, we can conclude that r{A) =2,
This s, of course, also the rank of matrices A7 through A4, because elementary row opera-
tions do not alter the rank of a matrix.

The method of echelon matrix transformation applies to nonsquare as well as square
matrices. We have chosen a square matrix for Example 5 because our immediate objective
is to address the question of nonsingularity, which pertains only to square matrices, By
definttion, for an n x » matrix 4 to be nonsingular, it must have # linearly independent
rows (or columns): consequently, it must be of rank &, and its cchelon matrix must contain
exacily # nonzero rows, with no zero rows at all. Conversely, an » x # matrix having rank
n must be nonsingular. Thus an n x n cchelon matrix with no zero rows must be nonsingu-
lar, as 1s the matrix from which the echelon matrix is derived via clementary row opera-
tions. In Example 3, the matrix A is 3 x 3, but #( 4) = 2; hence, 4 is not nonsingular.

EXERCISE 5.1

1. In the following paired statements, let p be the first statement and g the second.
- Indicate for each case whether (5.1), (5.2}, or (5.3) applies.

(a) Itis a holiday; it is Thanksgiving Day.

(b) A geometric figure has four sides; it is a rectangle.

() Two ordered pairs (g, b) and (b, g} are equal; a is equal to b.

(d) A number is rational; it can be expressed as a ratio of two integers.
(e) A4 x 4 matrix is nonsingwar; the rank of the 4 x 4 matrix is 4.

(f} The gasoline tank in my car is empty; { cannot start my car.

(@) The letter is returned to the sender with the marking “addressee unknown”; the
sender wraote the wrong address on the envelope,
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2. Let p be the statement "a geometric figure is a square,” and let g be as follows:
(@) it has four sides.
(b) It has four equal sides.
(¢} It has four equal sides each perpendicular to the adjacent one.
Which is true for each case: p= ¢, p =g, or p & g7
3. Are the rows linearly independent in each of the following?

24 8 20 0 4 -1 5
(")[ 9 —3] “’)[o 2] (C)[a 2} (‘”[ 2 —10]
4, Check whether the columns of each matrix in Prob, 3 are also linearly independent. Do
you get the same answer as for row independence?

5. Find the rank of each of the following matrices from its echelon matrix, and comment
on the question of nonsingularity.

1 501 7 6 3 3
@A={ 0 3 9 C=|01 21
-1 00 8 0 0 8
o -1 -4 279 -1
MHB={3 1 2 @Wo=(1 1 0 1
(6 1 0 05 9 -3

6. By definition of linear dependence among rows of a matrix, one or more rows can be
expressed as a linear cornbination of some other rews. in the echelon matrix, finear
dependenice is signified by the presence of one or more zero rows, What provides the
link between the presence of a linear combination of rows in a given matrix and the
gresence of zero rows in the echelon matrix?

5.2 Test of Nonsingularity by Use of Determinant

To ascertain whether a square matrix is nonsingular, we can also make use of the cencept
of determinant.

Determinants and Nonsingularity

The determimant of a square matrix 4, denoted by | 4|, is a uniquely definad scalar (num-
ber) associated with that matrix. Determinants are defined only for square matrices. The
smallest possible matrix is, of course, the | x 1 matrix 4 = [a);]. By definition, its detcr-
minant is cqual to the single element ay, itself [A| = |«y)[ = a);. The symbol [4|;] here
must not be confused with the look-alike symbol for the absolute value of a number. [n the
absolute-value context, we have, for instance, not only |5] = 5, but also | — 5| = 5, because
the absolute value of a number is its numerical value without regard to the algebraie sign.
In contrast, the determinant symbol preserves the sign of the element, so while |8 =8
(a positive number), we have | — 8 = —8& {4 ncgative number). This distinction proves to
be crucial in the later discussion when we apply determinantal tests whose results depend
critically on the signs of determinants of various dimensions, mctuding 1 x 1 ones, such as
len| = ayy.
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. [#) o . . . .
For g 2 x 2 mutrix 4 = L"H HIQ ], its determinant is defined to be the sum of two
2 4m

terms as follows:

£ a2

|4| = = 4y 1d73 ~ 71413 |= a scalar] (5.5)

dz

which is obtained by multiplying the two elements in the principal diagonal of A and then
subtracting the product of the two remaining elements. [n view of the dimension of matrix
A, the determinant | 4| given in (5.5} is called a second-order determinant,

. 10 4 (3 5 . :
Given A:[ 2 5] and B = 0 _1:|,th6|rdetermmant5 are
10 4
|A| = 8 5‘_10(5)—8(4)=18
and Bi=|7 _?‘:3{-1)-0(5):—3

While a determinant (enclosed by two vertical bars rather than brackets) is by definition a
scalar, a matrix as such does not have a numerical value. In other words, a determinant is
reducible to a number, but a matrix is, in contrast, a whole block of numbers. It should also
be emphasized that a determinant is defined only for a square matrix, whereas a matrix as
such does not have to be square.

Even at this early stage of discussion, it is possible to have an inkling of the relationship
between the linear dependence of the rows in a matrix 4, on the one hand, and its determi-
nant | 4|, on the other. The two matrices

‘_c.";__‘;g _Td{_Zﬁ
CEFEN = oo 4

both have linearly dependent rows, because ¢ = ¢} and & = 4d|. Both of their determi-
nants also turn out to be equal to zero:

38 o
€= 3 8‘:3{8)—3(8):(]

2 60 B
Di=g o4 =224 -8(6) =0

This result strongly suggests that a “vanishing” detcrminant {a zero-value determinant)
may have something to do with lincar dependence. We shall see that this is indeed the case.
Furthermore, the value of a delerminant |.4{ can scrve not only as a criterion for testing the
linear independence of the rows (hence the nonsingutarity) of matrix A4, but also as an input
in the calculation of the inverse 4", if' it exists.

First, however, we must widen our vista by a discussion of higher-order determinants.

Evaluating a Third-Order Determinant
A determinant of order 3 is associated with a 3 x 3 matrix. Given

i dir dp3

A=|an an an

ay  dy A3
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FIGURE 5.1

Example 2

Example 3

its determinant has the valuc

gy dpp 43
drn s dr) a3 ax  dxn
Al=|an an an|=day - a
a3 33 di] ds3 dy sz
d31 ds d33
= gty — 4 @235 T didndy — ddrdas
+ @y3dy 1) — 41302203 [= a scalar] (5.6)

Looking first at the lower line of (5.6}, we sce the value of | 4| expressed as a sum of six
product terms, three of which are prefixed by minus signs and three by plus signs.
Complicated as this sum may appear, there is nonctheless a very easy way of “calching”
all these six terms from a given third-order determinant. This 1s best explained diagram-
matically {Fig, 5.1). In the determinant shown in Fig. 5.1, each element in the top row
has been linked with two other elements via two sofid arrows as follows: aiy — ax — a3,
Q12 — (a3 — @y, and @3 — @32 — ay. Each triplet of elements so linked can be mult-
plied out, and their product taken as one of the six product terms in (5.6). The selid-arrow
product terms are to be prefixed with plus signs.

On the other hand, each top-row element has also been connected with two other ele-
ments via two broken arrows as lollows: ap — a3 — a3, @2 — dy — am, and
a3 — dyy — a31. Bach triplet of elements so connected can also be multiplied out, and
their preduct taken as one of the six terms in (5.6}, Such products are prefixed by minus
signs. The sum of all the six produets will then be the valuc of the determinant.

21 3
4 5 6] =209+ (UENTY + (3)8)4) — (2)(8)(6) — (N(@)9) - B)5)7) =9
7 8 9
-7 0 3
9 1 4| =(=7(X5) + (OO + 3)(6)9) — (=7)6)(4) — (0)(FH5) — (3)(1)(0)
6 5

=295
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This method of cross-diagonal multiplication provides a handy way of cvaluating a third-
order determinant, but unfortunately it is aof applicable 1o determinants of orders higher
than 3. For the latter, we must resort to the so-called Laplace expansion of the determinant.

Evaluating an nth-Order Determinant by Laplace Expansion

Let us first explam the Laplace-expansion process for a third-order determinant. Returning
to the first line of (5.6), we sce that the value of | 4| can also be regarded as a sum of three
terms, each of which is a product of a first-row element and a particular second-order
determinant. This latter process of cvaluating |4|—by means of certain lower-order
determinants—illustrates the Laplace expansion of the determinant,

The three second-order determinants in {5.6) are not arbitrarily determined, but are
dn on , 18 a subdeterminant of [ A|
iy a3
obtained by deleting the firsf row and first column of |A|. This 1s called the minor of the
clement & (the element at the intersection of the deleted row and column) and 1s deneted
by |M 1. [n general, the symbel | 34;;] can be used to represent the minor obtained by delet-
ing the ith row and jth column of a given determinant. Since a minor is itself a determinant,
it has 4 value. As the reader can verify, the other two second-order determinants in (5.6) are,
respectively, the minors | M| and | M3 that is,

specified by means of a definite rule, The first one,

an  dp
(3| dxn

d72  dn
diz a3

21 4n;

(M3 =
a3z

M| = |M2| =

u
i

A concept closely related to the minor is that of the cofactor. A cofactor, denoted by
|C; |, is a minor with a prescribed algebraic sign attached to it.” The rule of sign is as fol-
lows. If the sum of the two subscripts 7 and j in the minor | ;| is cven, then the cofactor
takes the same sign as the minor; that is, |C;;{ = |M;;|. If it is odd, then the cofactor takes
the opposite sign to the minor; that 1s, [C};| = —|M;;|. Tn short, we have

ICij| = (=1)* 1My

where it is obvious that the expression (—1)"/ can be positive ifand only if (i + /) is even.
The fact that a cofactor has a specific sign is of extreme importance and should always be
borne in mind.

9 8 7
In the determinant |6 5 4|, the minor of the element 8 is
3 21

6 4
Mz = ‘ - 6
31
but the cofactor of the same element is
|Cr2l = —[Mial = 6
because / + j = 14+ 2 = 3 is odd. Similarly, the cofactor of the element 4 is
9 8
|C23|=‘._|M23|=_J3 2‘:6

t Many writers use the symbols M;; and C; (without the vertical bars) for minors and cofactors. We
add the vertical bars to give visual emphasis to the fact that minors and cofactors are in the nature of
determinants and, as such, have scalar values.
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Using these new concepts, we can cxpress a third-order determinant as

|A] = @i My| — a2l Miz| + a3l My
3
=an|Cn|+anplCpl+ap;|Csl = Zaulclﬂ (3.7)
=1
i.e., as a sum of three tlerms, each of which is the product of a first-row element and its cor-
responding cofactor. Note the differcnce in the signs of the a12| Miz| and @)2|C)) terms in
(5.7). This is because 1 + 2 gives an odd number.

The Laplace expansion of a third-order determinant serves to reducc the evaluation
problem to one of evaluating only certain second-order determinants, A similar reduction
is achicved in the Laplace expansion of higher-order determinants. In a fourth-order deter-
minant | B|, for instance, the top row will contain four elements, 2y, ... 414; thus, in the
spirit of (5.7), we may writc

F
Bl=_ hylCyl
j=1

where the cofactors |Cy ;| are of order 3. Each third-order cofactor can then be evaluated as
in (5.6). In general, the Laplace expansion of an nth-order determinant will reduce the
problem to one of evaluating # cofacters, each of which is of the (n — 1)st order, and the
repeated application of the process will methodically lead to lower and lower orders of
determinants, eventually culminating in the basic second-order determinants as defined
in (5.5). Then the value of the original determinant can be easily calculated.

Although the process of Laplace expansion has been couched in terms of the cofactors
of the first-row clements, it is also feasible to expand a determinant by the cofactor of any
row or, for that matter, of any column, For instance, if the first column of a third-order
determinant | 4] consists of the elements ,,, ¢,,, and «;,, expansion by the cofactors of
these elements will also yield the value of | 4]

3
|A] = a{Cr |+ an |Car| + a3 Cal = Zﬂii|cil|

fel

5 61
Given |A| = lZ 3 |, expansion by the first row produces the result
7 -3 0

30 2 0] |2 3
wi=s] 2 62 94 2|-ovo-z-
But expansion by the first column yields the identical answer:
30 6 1 6 1
|A|_S‘_3 0‘—2 3 0‘+7 3 0'=0—6—21=—27

Insofar as numerical calculation is concerned, this fact affords us an opportunity 1o
choose some “casy” row or column for cxpansion. A row or column with the largest num-
ber of 0s or 1s is always preferable for this purpose, because a ) times its cofactor is simply
0, 5o that the term will drop out, and a 1 times its cofactor is simply the cofactor itsell, so
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that a1 least one multiplication step can be saved. In Example 3, the casicst way to expand
the determinant is by the third column, which consists of the clements 1, 0, and 0. We
could therefore have cvalvated it thus;

12
|4l =1 .

3

-3

‘:—6—21=—27

Ta sum up, the value of a determinant 14| of order # can be found by the Laplace ex-
pansion of any row or any columa as follows:

"
|4 = Z ai{Cyl [expansion by the ith row]
=1

il
= Z ai|Cyj| [expansion by the jth column)
i=1

(5.8)

EXERCISE 5.2

1.

A

Evaluate the following determinants:

8 1 3 4.0 2

(@4 0 1 @16 03
6 0 3 8 2 3
123 11

|4 7 s () |8 11
3 6 9 0 4

4

-2

7

a
b
C

()

X
() |3
9

b
C
el

a2~

50

y 2
-1 8

. Determine the signs to be attached to the relevant rminors in order to get the following

cofactors of a determinant: {Cysl, [Czzy, |Ca3l, !Carl, and 1C34).

a b <
.Givenld e
g ko1
. Evaluate the following determinants:
1 2 0 g 2 7
2 3 4 s 5 &
W1 0 -1 @l o
Qg -5 0 8 1T =3

9 11
A= 3

i 4
27
6 10 4

15 7
Z 5

e
6.
L9 0 12)

—
—

0
4
9

1

o o -

4

. Use Laplace expansion to find the determinant of

f , find the minaors and cofactors of the elements ¢, b, and .

. In the first determinant of Prob. 4, find the value of the cofactor of the element 9.
. Find the minors and cofactors of the third row, given

93
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5.3 Basic Properties of Determinants

Example 1

Example 2

Example 3

Example 4

Example 5

We can now discuss some propertics of determinants which will enable us to “discover” the
connection between linear dependence among the rows of a square matrix and the vanish-
ing of the detcrminant of that matrix.

Five basic properties will be discussed here. These arc properties common to determi-
nants of all orders, although we shall illustrate mostly with second-order determinants:

Property I The interchange of rows and columns does not affect the value of a determi-
nant. In other words, the determinant of a matrix 4 has the same vaiue as that of its
transpose 4', that is, | 4] = | 4]

4 3|_|4 5| _,
5 6 i3 6|

g bl ‘a ¢

¢ d‘_ib g| =ad—be

Property IT The interchange of any rwo rows {or any rwo columns) will altcr the sign, but
not the numerical value, of the determinant. {This property is obviously rclated to the first
elementary row operation on a matrix.)

|
ig 2‘ = gd — be, but the interchange of the two rows yields
|

c d
a b= ch— gd = —(ad — be)
013 ‘
2 5 7|=-26, but the interchange of the first and third columns yields
30 1
31 0
7 5 2|=26.
10 3

Property ITI The multiplication of any ose row (or one column) by a scalar £ will change
the value of the determinant &-fold. (This property is related to the second clementary row
operation on a matrix. )

By multiplying the top row of the determinant in Example 3 by k, we get
a b
c d
[t is impaortant to distinguish between the two expressions &4 and £|4|. In multiplying a
matrix A by a scalar £, all the elements in A are to be multiplied by 4. But, if we read the

equation in the present example from right to left, it should be clear that, in multiplying
a determinant 14| by k, only a single row (or column) should be multiplied by 4. This

‘ka kb
|c d

= kad — kbc = k{ad — bc) =k
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cquation, therefore, in effect gives us a rule for [actoring a determinant: whenever any sin-
gle row or column contains a common divisor, it may be factored out of the determinant,

Factoring the first column and the second row in turn, we have

15¢ 7b 5a 7b 50 7b
12¢ 2d 4c 2d 2c d

The direct evaluation of the original determinant will, of course, produce the same answer.

‘:3 = 6(5ad — 14b0)

-0

In contrast, the factoring of a matrix requires the presence of a common divisor for e

its clements, as in
ka kb | pl b
ke kd | T o d

Property IV The addition (subtraction) of a multiple of any row to {from) another row will
leave the value of the determinunt unaltered. The same holds true if we replace the word
row by cofumn in the previous statement. (This property is relared to the third elementary
rOw operation on a matrix.)

Adding & times the top row of the determinant in Example 3 to its second row, we end up
with the criginal determinant:
| a b

C+ka d+kb

a b
d

‘:a(d-l—kb)—b(c—}-ka):ad—bc:

Property V If onc row (or column} is a muitiple of another row {or column), the valuc of
the determinant will be zero. As a special case of this, when two rows (or two columns) are
identical, the determinant will vanish,

2a 2b

a b :Zab—20b=0

e
d d =d—-cd=0

Additional examples of this type of “vanishing” determinant can be found in Exercise 5.2-1.

This important property is, in fact, a legical consequence of Property IV. To understand
this, let us apply Property [V to the two determinants in Example 8 and watch the outcome.
For the first one, try Lo sublract twice the second row from the top row: for the second
determinant, subtract the sccond column from the first column. Since these operations do
not alter the values of the determinants, we can write

2a 2b 0 0
a b a b

[SA

d d

|0« 1
- ‘ 0 d|
The new (reduced) determinanis now contain, respectively, 4 row and a column of zeros;
thus their Laplace expansion must yield a value of zero in both cases. [n general, when one
row (column) is a2 moltiple of another. row {cotumn), the application of Property [V can al-
ways reduce all elements of that row {column) to zero, and Property V therefore follows.
The basic properties just discussed are useful in several ways. For one thing, they can be
of great help in simplifying the task of evaluating determinants. By subtracting multiples
of one row (or column) from another, for instance, the elements of the determinant may be
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reduced to much smaller and simpler numbers. Facloring, if feasible, can alse accomplish
the same. If we can indced apply these propertics to transform some row or column into &
form containing mostly s or 1s, Laplace expansion of the determinant will become a much
more manageable task.

Determinantal Criterion for Nonsingularity

Our present concern, however, is primarily to link the linear dependence of rows with the
vanishing of 2 determinant. For this purpose, Property V can be invoked. Consider an ¢qua-
tion system Ax = d:

34 21 [y d,
1520 10]|x|=]|d
4 0 1 X3 s

This system can have a unique solution if and only if the rows in the coefficient matrix A
are linearly independent, so that A is nonsingular. But the second row 1s five times the first;
the rows are indeed dependent, and hence no unique solution exists. The detection of (his
row dependence was by visual inspection, but by virtue of Property V we could also have
discovered it through the fact that | 4] = 4.

The row dependence in a matrix may, of course, assume a more intricate and secretive

pattcrn. For instance, in the matrix

!
4 1 2 Yl
B=|5 2 1|=|w

1 0 1 1_!_;

there exists row dependence because 2v) — v — 3u; = 0; yet this fact defies visual detec-
tion. Even in this case, however, Property V will give us a vanishing determinant, [8| = 0.
since by adding three times v} 10 v, and subtracting twice v} from it, the sccond row can be
reduced to a zero vector. [n general, amy pattern of lincar dependence among Tows will be
reflected in a vanishing detcrminant—and herein lics the beauty of Property V! Conversely,
if the rows are linearly independent, the determinant must have a nonzero value.

We have. in the previous two paragraphs, tied the nonsingularity of a matrix principally
to the linear independence among rows. But, on occasion, we have made the claim that, for
4 square matrix 4, row independence < column independence. We arc now equipped to
prove that claim:

According to Property I, we know that | 4| = |4'[. Since row independence in 4 < | 4| # 0,
we may also state that row independence in 4 & |A'| # 0. But | 4| 0 < row indepen-
dence in the transpose 4" < column independence in A (rows of 4” arc by definition the
columns of A). Therefore, row independence in 4 < cofinn independence in 4.

Our discussion of the test of nonsingularity can now be summarized. Given a lincar-
equation system Ax = d, where A is an n x n coefficient matrix,

| 4| # 0 < there is row (column) independence in matrix A
< A is nonsingular
& 47! exists

& 2 unigue solution x* = 4~ d exists
q
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Thus the value of the determinant of the coefficient matrix, | 4|, provides a convenient cri-
terion for testing the nonsingularity of matrix A and the existence of a unique solution to
the equation system Ax = d. Note, however, that the determinantal critetion says nothing
about the algebraic signs of the solution values; i.e., even though we are assured of a unique
solution when | 4] # 0, we may somctimes get negative solution values that are econonyi-
cally inadmissible.

Does the equation system
X1 —3xx—3x3=7
2x1+4x:4+ x3=0

—2)(2— X3=2

possess a unique selution? The determinant | Al is

7 -3 -3
2 4 1{=-8%0
0 -2 -1{

Therefore a unique solution does exist,

Rank of a Matrix Redefined

The rank of a matrix 4 was earlier defined to be the maximum number of lincarly indepen-
dent rows in 4. In view of the link between row independence and the nonvanishing of the
determinant, we can redefine the rank of an m % # matrix as the maximum order of a non-
vanishing dcterminant that can be constructed from the rows and colurmns of that matrix.
The rank of any matrix is a unique number.

Obviously, the rank can at most be m or #, whichever is smaller, becausce @ determinant
is defined only for a square matrix, and from a matrix of dimension, say, 3 x 5, the largest
possible determinants (varushing or not) will be ot order 3. Symbolically, this fact may be
expressed as follows:

r(A) < min {m, n}

which is read: “The rank of 4 is less than or equal to the minimum of the set of two num-
bers m and n” The rank of an » x # nonsingular matrix 4 must be »; in that case, we may
write 7{A) = n.

Sometimes, one may be interested in the rank of the product of two matrices. In that
case, the following rule can be of usc:

r{AB) <mm {r(4),r(8)} (5.9)

While this rule does not yield a unique value of #{ 4 B}, the application of the rule can nev-
ertheless lead to unique results. [n particular, we can use (5.9) to show that if a matrix 4,
with (4} = 7, is multiplied by any (conformable) nonsingular matrix B, the rank of the
product matrix AB (or 54, as the case may be), must be /. We shall prove this for the prod-
uct A8 (the case of B4 is analogous). First, looking at the right-hand side of (5.9). we see
only three possible cases: (i) r(4) < #(B), (if} #(4) =#(B), and (iii) »(4) = r(B).
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For cases (i) and (i), (5.9) reduces directly to r(4B) = r(4} = j. For casc (jii), we find
that r( AB) < r(B} < r{A) = j. Thus, either way, we get

F(AB) < r(A) = | (5.10)
Now consider the identity ( 48187 = 4. By (5.9), we can writc
r[LABYE™'] < min{r(4B), (B~
Applying the same reasoning that led us to (5.10), we can conclude from this that
rl(AB)B™'] < #(48)
Since the left-side expression of this incquality is cqual 1o ¥(4) = /, we may write
J=r(dB) (5.11)

But (5.10) and (5.11) cannot be satisfied simultaneousty unless r{48) = ;. Thus the rank
of the product matrix 48 must be /, as asserted.

EXERCISE 5.3
4 0 -1
1. Use the determinant |2 1 =7 to verify the first four properties of determinants.
33 9

2. Show that, when all the elements of an nth-order determinant | A} are multiplied by a
number k, the result will be k| 4.

3. Which properties of determinants enable us to write the following?

9 18 |9 18 9 27 1 3
D157 61=lo 2 B |y 2 1

4. Test whether the following matrices are nonsingular:

T4 0 1 7 -1 0
(@19 1 -3 @/ 1 1 4
13 -3 -4

=18

71 0
[ 4 -2 1 —4 9 3
wl-5 60 @] 3 0 7
7 0 3 0 8 6

S. What can you conclude about the rank of each matrix in Prob, 47

6. Can any of the given sets of 3-vectors below span the 3-space? Why or why not?
(@1 2 11 [2 3 1] [3 4 2]

(gpy8 1 3] [1 2 8 [-7 1 5]

7. Rewrite the simpte national-income modet {3.23} in the Ax = d format (with ¥ as
the first variable in the vector x), and then test whether the coefficient matrix A is
nonsingular.

8. Comment on the validity of the following statements:

(@) “Given any matrix A, we can always derive from it a transpose, and a determinant.”
(b) “Multiplying each element of an n x n determinant by 2 will double the value of
that determinant.”

() “If a square matrix A vanishes, then we can be sure that the equation system
Ax = d is nonsingular.”
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5.4 Finding the Inverse Matrix

Example 1

If the matrix 4 in the linear-equation system 4x = 4 is nonsingular, then A~' cxists, and
the solution of the system will be x* = A~'d. We have learned to test the nonsingularity of
A by the criterion | 4] #£ 0. The next question is, How can we find the inverse 4~ if 4 docs
pass that test?

Expansion of a Determinant by Alien Cofactors
Before answering this query, let us discuss another important property of determinants.

Property ¥1 The expansion of a determinant by alien cofuctors (the cofactors of a
“wrong” row or column) always yields a value of zero,

4 1 2

If we expand the determinant {5 2 1| by using its first-row elements bul the cofactors
1T 0 3

of the second-row elements

4 2

2
1 3

4 1
= -3 chz|=‘ ‘zm cal=-[% 1l

1
|C21|=—‘
O |

we get 011 [Conl + ;2|Cazl + ;3| Caz| = 4(=-3) -+ 1(10) + 2(1} = 0.

More generally, applying the same type of expansion by alien cofactors as described in
gy diz dp3

da dxr di3
a3 din di3

Example | to the determinant |A| = will yield a zero sum of products as

follows:

3
Z“U|C2}| =anlCal+aplCnl + a3|Cxl
i=1
a1z dpn

iy diy a1 2

a3 daz

= —d]1 — (5.12)

+ iz

diz  d3 a3 3

= —@udpdss + andian + ddidsy — 201343

—anapdy +dapeiey =0

The reason for this outcome lies in the fact that the sum of products in (5.12) can be con-

sidered as the result of the regular expansion by the sccond row of another determinant
diy iz g
4% =

ary a2 ap |, which differs trom | 4| only in its second row and whose first

d31 d3z U413
two rows are 1dentical. As an cxercise, write out the cofactors of the sccond rows of | 4%
and verify that these are precisely the cofactors which appeared in (5.12)  and with the
correct signs. Since |4*| = 0, becausc of its two identical rows, the expansion by alicn
cofactors shown in (5.12) will of necessity yicld a value of zero also.
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Property V1 is valid for determinants of all orders and applies when a determinant is
expanded by the alien cofactors of any row or any column. Thus we may state, in gencral,
that for a determinant of order n the following holds:

"
Z“iﬂcf'j' =0  (i# [expansion by ith row and
i=1 cofactors of i'th row]
(5.13)

Y aylCyl=0  (j#j)  [expansion by jih column and

i=l cofactors of j'th column]
Carefully compare (5.13} with {3.8). In the latter (regular Laplace cxpansion), the sub-
scripts of a;; and of |C;;| must be identical in cach product term in the sum. In the expan-
ston by alien cofactors, such as in (5.13), on the other hand, one of the two subscripts {a
chosen value of i or j') is inevitably “out of place.”

Matrix Inversion
Property VI, as summarized in (5.13), is of direct help in developing a method of matrix
inversien, i.e., of linding the inverse of a matrix.

Assume that an # x # nonsingular matrix 4 is given:

dip M2 o iy
A4 = |G G dm (g 0) (5.14)
(LT . N

yl  p2 o0 thy

Since each element of 4 has a cofactor |C;, |, it is possible to form a matrix of cofactors by
replacing each element a;; in (5.14) with its cofactor | (. Such a cofactor matrix. denoted
by C = [|C;;|], must also be # x a. For our present purposes, however, the transpose of €
is of more interest, This transpose ¢ is commonly referred to as the adjoint of 4 and is
symbolized by adj 4. Written out, the adjoint takes the form

Cab 1€l oo |Gl
c =adj 4 = [Cial [ Copl - Gzl (5_15)

[ 4
[Cral 1C2l o 1Caal

The matrices 4 and C’ are conformable for multiplication, and their product AC” is
another n x # matrix in which each element is a sum of products, By utilizing the formula
for Laplace expansion as well as Property VI of determinants, the product AC™ may be
cxpressed as follows:

R "

"
ZaulC].;I Zaulczjl }:“Iﬂcnﬂ
J=1

i=1 i=1
H H "
a; [ az 10y - a2;|Cy
: )
[AC =| ;= =l =1
fK ) :

" " R
Zanj|clj| Zan_g'|(j2;'| e Zanj |'an|
i=1 i=1 J

| /=l
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r4] G 0
0 |4 0 |
=] . _ ) [by (5.8) and {5.13}]
0 0 14|
10 - 0
= |4 0 . U =14|],  [factoring]
00 -1

As the determinant | 4| is a nonzero scalar, it is permissible to divide both sides of the
equation AC" = |4|{ by | 4]. The result is
4C C’

— =1 or A— =1
|| | A]

Premultiplying both sides of the last cquation by 4=, and using the result that A=1 A4 = 1.

we can getlj| =A"" or

A = ﬁ adj 4 [by(5.15)] (5.16)
Now, we have found 4 way to invert the matrix 4!

The general procedure for finding the inverse of a square matrix 4 thus involves the fol-
lowing steps: (1) find | 4] [we need to proceed with the subsequent steps if and only if
[A] # U, forif {4] = 0, the inverse in (5.16) will be undefined]; (2) find the cofactors of all
the elements of 4, and arrange them as a matrix C = [|C};|]; (3) take the transpose of (' to
getadj 4; and (4) divide adj A by the determinant | 4|. The result will be the desired inverse
A7l

Find the inverse of A = [? S} . Since |A| = =2 # 0, the inverse A~7 exists. The cofactor

of each element is in this case a 1 x 1 determinant, which is simply defined as the scalar
element of that determinant itself (that is, |@;;| = a;;}. Thus, we have

c— [|C1'I| fozl} _ [ 0 —1]
[Cal 1€z -2 3
Observe the minus signs attached to 1 and 2, as required for cofactors. Transposing the
cofactor matrix ylelds
, 0 -2
adj A = {_] 3}

so the inverse A~1 can be written as

1 . 1 o -2
-1_ _ ! .
AT =y adiA= 2[—1 3]_[

bl — 3

|
Ml —
| IS
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Example 3 4 1 -1 .
- @ Findtheinverseof B=|0 3 2 |.Since |B| =99 0, the inverse B8 ! also exists, The
o 30 7
cofactor matrix is
[ (3 2] o 2 o 3]
o 7 3 7, 30
- 4 1 |41 =f;3f_§
o 7| |3 7] 7|30 s g 15
(R I A 4 1
(3 ¢ 2 0 3!
Therefore,
27 =7 5
adjB=| 6 31 -8
-9 3 12
and the desired inverse matrix is
1 1 1 21 -7 5
g'=—adiB=—1| 6 31 -8
] J 99 -9 3 12
You can cheek that the results in Examples 2 and 3 do satisfy 447 = A4 "4 =7 and
BB~'=RB 'B = {, respectively.
EXERCISE 5.4

1. Suppose that we expand a fourth-order determinant by its third column and the cofac-
tors of the second-column etements. How. would you write the resulting sum of prod-
ucts in 3 notation? What will be the sum of products in ), notation if we expand it by
the second row and the cofactors of the fourth-row elements?

2. Find the inverse of each of the following matrices:

(G}Az[g ﬂ (b)B:[_; g] © c:[g _ﬂ (dw:[é g]

3. (@) Drawing on your answers to Prob. 2, formulate a two-step rule for finding the ad-
joint of a given 2 x 2 matrix A: In the first step, indicate what should be done 1o the
two diagonal elements of A in order to get the diagonal elements of adj 4; in the
second step, indicate what should be done to the two off-diagonal elernents of A.
(Warning: This rule applies only to 2 x 2 matrices.}

{(b) Add a third step which, in conjunction with the previous two steps, yieids the 2 x 2
inverse matrix A~

4. Find the inverse of each of the following matrices:

4 -2 17 1 0 ©
@WE=|7 3 0 () G=[0 0 1
2 0 1] (01 ¢
1 -1 2] (1 0 0
MF=|1 0 3 (HH=|0 1 0}
4 0 2 00 1
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3. Find the inverse of

4 1 -5
A=1-2 3 1
3 -1 4

6. Solve the system Ax = d by matrix inversion, where
(a) 4x+3y =28 () 4Ax1+ x2-5x=8
2x+ 5y =42 =245+ 324+ x3=12
Bxy — xa+4dxy=5
7. ls it possible for a matrix to be its own inverse?

5.5 Cramer’s Rule

The method of matrix inversion discussed in Sec., 5.4 enables us to derive a practical, if not
always eflicient, way of solving a linear-equation system, known as Crarers rule.

Derivation of the Rule
Given an equation system 4x = d, where 4 is # x u, the solution can be written as

=4 'd= i—[lﬂ (adj A)d  [by (5.16)]

provided 4 is nonsingular. According to (5.15), this means that

x| [1Cl 1Cal - Gl |
: N 3
F_ el (Cal e 1Gal || ®
: R !
" 1l Gl 1Cul | ]

e

T Cu) + ot + -+ dy G
L1 d|Cul +diCol + -+ + dulCol

_dl1c‘lﬂ| +d2|(;2n| + - +dr.'|Cm![

- A
> di|Ca]
i=1
H
L] D diCal
i=]

3 4Gl
_‘i:l -
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Example 1

Equating the corresponding elements on the two sides of the equation, we obtain the solu-
tton values

I |A|2:d|Ch| ¥) = lA|z:d|(nl (cte)  (3.17)

The 3 terms in (5.17} look unfamiliar. What do they mean? From (3.8), we scc thal the
Laplace expansion of a determmant |4| by 1(s first column can be cxpressed in the [orm

Z a1} | If we replace the first column of | 4] by the column vector o but keep all the

i=|

other columps intact, then a new determinant will result, which we can call jA| --the sub-

script 1 indicating that the first column has been replaced by 2. The expansion of |4 by its
L)

first column (the & column) will yicld the cxpression Z ;|C; 1|, because the elements d;
i1
now take the place of the clements a;;. Returning to (5.17), we sce therefore that

. |
X = —
L4

Similarly, if we replace the second column of | 4| by the column vector &, while retaimng
all the other columns, the expansion of the new determinant | 45| by its secend column (the
1l

| 4]

¢ column) will result m the expression latter sum

i=1
will give us the solution value x3, and so on.

This procedure can now be generalized. To find the solution value of the jth variable x7,

we can mercly replace the jth column of the determinant | 4| by the constant terms - - - ),
eterminant | A4|. Thus,

the solution of the system Ax = 4 can be exprcsﬁed as

ay diz o dr oo dg
|4, 1 lan an - dy oo an,
VETOTA . . 5.18)
P14 T4l s : _ (
Gnl n2 T dﬂ DRI

{ sth column replaced by )

The result in (5.18) is the statement of Cramer’s rule. Note that, whercas the matrix inver-
sion method yields the solution values of aff the endogenous variables af once (x* 15 a vec-
tor), Cramer’s rule can give us the solution value of only 4 single endogenous variable at a
time (7 is a scalar); this is why it may not be efficient.

Find the solution of the equation system

5% 4 3% =30
bxp —2x2= 8
The coefficients and the constant terms give the following determinants:
3 3¢ 3
Al= - — _
A ‘6 = i ‘ g _2‘ 84
|A2|=‘5 30‘: 140

6 8
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Therefore, by virtue of (5.18), we can immediately write

. [A1] —84 . 1A5] -140
P = — d = — = =
ST T nd =TT T T
Find the solution of the equation system
X1~ X — x3=10
10X1—2X2+ x3=28
6X1+3x3 - 2X3=7
The relevant determinants |A| and A, are found to be
I | 0 -1 -1
Al ={10 -2 1:i=-61 |A=|8 -2 1|=-61
6 3 -2 7 3 -2
70 -1 7 =10
A2l =[10 8 1/=-183 |As|=|10 -2 8|=_244
6 7 —2‘ 6 3 7
thus the solution values of the variables are
L L . R - L
T 61 TTA 61 T PTlAL T -6

Notice that in each of these examples we find | 4] # 0. This is a necessary condition for
the application of Cramer’s rule, as it is for the existence of the inverse 4~'. Cramer’s rule
is, after all, based vpen the concept of the inverse matrix, even though in practice it by-
passcs the process of matrix inversion.

Note on Homogeneous-Equation Systems

The equation systems Ay = 4 considered before can have any constants in the vector . [f
d =0, thatis, it dy =d, = - = d, =0, however, the cquation system will become

Ax ={

where 0 1s a zero vector. This special case is referred to as a homogeneous-equation system.
The word homogeneous here relates to the property that when all the vanables, xq, ..., x,
are multiplied by the same number, the equation system will remain valid. This is possible
only if the constant terms of the system—those unattached 1o any x;  are all zero,

If the matrix 4 15 honsingular, a homogeneous-equation system can yicld only a “trivial
solution,” namely, x] = xJ =--- =x; = 0. This follows from the fact that the solution
x* = A7'd will in this case become

=47 0 = 0

(nx1y (nxabiaxd)  (ax1)

Alternatively, this outcome can be derived from Cramer’s rule. The fact that & = (¢ implies
that |4, ], for all j, must contain a whole column of zeros, and thus the solution will turn

out to be
| 4] 0

3 F=1,2,...
1‘"_',: |A| {} g =y 1”)

=0
(4] ’
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TABLE 5.1
Solution
Qutcomes

for a Linear-
Equation
System Ax =4

Curiously enough, the onfy way to get a nontrivial solution from a homogeneous-
A| = 0, that is, to have a singular coefficient matrix 4! In that

cquation systen 1s to have
event, we have
oAl 0
S |
where the (/0 cxpression is not equal to zero but is, rather, something undefined. Conse-
quently, Cramer’s rule is not applicable. This does not mean that we cannot obtain solu-

tions; it means only that we cannot get a unigue solution.
Consider the homogeneous-cquation system

any +ﬂL2I2=U (519)

anxy) +apx =10

It is sclf-cvident that x7 = x§ = 0 is a solution, but that solution is trivial. Now. assume that
the coctficient matrix 4 is singular, so that |4| = 0. This implies that the row vector
[a7  a2] is 2 multiple of the tow vector [az)  a2]; consequenty, one of the two equa-
tions 1s redundant. By deleting, say, the second equation from (5.19), we end up with one
(the first) equation in two variables, the solution of which is x] = (—app/a)a;. This
sobution is nontrivial and well defined if @)y = 0, but it really represents an infinite number
of solutions becausc, for every possible value ol x3, there is a corresponding value xj
such that the pair constitutes a solution. Thus no unique nontrivial solution exists for this
homogeneous-equation system. This last statement is also generally valid for the a-vanable
case.

Solution Qutcomes for a Linear-Equation System

Our discussion of the several variants of the linear-equation system Ax = d reveals that as
many as four diffcrent types of solution cutcome are possible, Tor a better overall view of
these variants, we list them in tabular form in Table 3.1.

As a first possibility. the system may yicld a unique, nontrivial solution. This type of
outcome can arisc only when we have a nonhomogeneous system with a nonsingular cocl-
ficient matrix A. The second possible outcome is a unigue, trivial solution, and this i3

Vector d
4o B

Determinant |A| =~ = (nonhomogeneous system) (homogeneous system)
|A| # 0 - There exists a unigue, There exists a unique,
{matrix A nonsingular) nontrivial solution x* # Q, - trivial solution x* = C.
|Al =0
(matrix A singular) _ - .

Equations dependent There existan infinite. - - There exist an infinite

rumber of solutions (not ~  number of solutions
~including the trivial one). {including the trivial one).

Equations inconsistent”  No selution exists. [Not possible.]
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associated with a homogencous system with a nonsingular matrix A. As a third possibility,
we may have an infinite number of solutions, This eventuality is linked exclusively to a sys-
tem in which the cquations are dependent (i.e., in which there are redundant equations).
Depending on whether the system is homogeneous, the trivial solution may or may not be
included in the set of infinite number of solutions. Finally, in the case of an inconsistent
equation system, there exists no solution at all. From the point of view of a model builder,
the most useful and desirable outcome is, of course, that of a unique, nontrivial solution

x* £
EXERCISE 5.5
1. Use Cramer’s rule to solve the following equation systems:
(g} 3x —2x: = & () 8x — 7X2 =9
20+ x=11 X1+ xz=3
by —x1 +3x=-3 (d) 5% +9x; = 14
4x1— x> =12 7x1—3Xx;= 4

2. For each of the equation systems in Prob. 1, find the inverse of the coefficient matrix,
and get the solution by the formula x* = A~'d.

3. Use Cramer’s rule to solve the following equation systems:

(G) 8xy — xo =16 {c) 4X—|—3}’—22=1

2%+ 5x3= 5 X+ 2y =6

2 +3x3= 7 3x + z=4
D) —x1+30+26:=24 (@ —-x+yv+z=a
X + Xz = 6 X=y+2=0
S5k - x3= 8 xt+y—z=¢

4. Show that Cramer’s rule can be derived alternatively by the following procedure. Mul-
tiply both sides of the first equation in the system Ax = d by the cofactor |Cy;{, and
then muitiply both sides of the second equation by the cofactor [Cy;l, etc. Add all the
newly obtained equations. Then assign the values 1, 2,..., n to the index j, succes-
sively, to get the solutior: values x}, x5, ..., x4 as shown in (5.17).

5.6 Application to Market and National-Income Models

Simple equilibrium models such as those discussed in Chap. 3 can be solved with ease by
Cramer’s rule or by matrix inversion,

Market Model

The two-commodity model described in (3.12) can be written (after eliminating the quan-
tity variables) as a system of two linear equations, as in (3.13"):

albi e Py = —o
P+ yPr=—-w
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The three determinants needed—]| 4|, | 41|, and | A;|—have the following values:

Al =

|41 =

|4;] =

©ao 1Y — 2
Yion i
-y 2

=~y T 20
-V W i 4 i
€1 =

= 1Yy ¢
M1 1Y T ol

Thercfore the equilibrium prices must be

_ [ 4] oYy — )2

. Al ey —an

P

Al T ay— oy

T4l an—an

which are precisely those obtained in (3.14) and {3.15). The equilibrium quantities can be
found, as before, by setting Py = P;* and P» = P in the demand or supply functions.

National-Income Model

The simple national-income modcl cited in (3.23) can also be solved by the use of Cramer’s
rule, As written in (3.23), the mode] consists of the following two simultaneous ¢quations:

Y=C+ 1+ Gy
C=a+hY (¢ =0, O=h=l)
These can be rearranged into the form
Y-C=hL+ Gy

—b¥Y4+(C=a

so that the endogenous variables ¥ and € appear only on the lelt of the equals signs,
whereas the exogenous variables and the unatiached parameter appear only on the right.

The coellicient matrix now takes the form

I+ G
constants (data), U-; ‘

and the column vector of

I —1
b 1

. Notc that the sum /y + Gy is considered as a singlc cntity,

i.e., a single element in the constant vector.
Cramer’s rule now leads immediately to the following solution:

(fo+Go) -1
. a

ll_fU+G|J‘|'a

¥
1 -1 [
o
‘ 1 (Ip+ Gy
O —h a _a-l-b(fﬂ—}—G{})
B | =1 - 1 —=h
—b 1‘

You should check that the solution values just obtained are identical with those shown in

(3.24) and (3.25).

Let vs now try to solve this model by inverting the coefficient matrix. Since the

|

coefficient matrix is 4 = [ b

—1 | . oL | ]
} , its cofactor matrix 1s I:

b:|, and we therefore

1 11
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have adj 4 = I:él’ } ] It follows that the inverse matrix is

_ [ l 1
A7 = —adjd = —
1479 = 7 [b 1 ]
We know that, for the equation system Ax = 4, the solution is expressible as x* = 4~ 'd/.
Applied to the present model, this means that

o 1 1 I+ Gy _ I I+ Gy+ua
C*| t-p|d 1 i T =b| bty + Gy +a

[t is easy to see that this is again the same solution as obtained before.

I5-LM Model: Closed Economy

As another linear model of the economy, we can think of the economy as being made up of
two sectors: the real goods sector and the monetary sector.
The goods market involves the following equations:

Y=C+{4+G
C=a+b(l-0Y
f=d—ei

G =0y

The endogenous variables arc ¥, C, 7, and i {(where  is the rate of interest). The exogenous
variable is Gy, while a4, 4, e, b, and r are structural parameters.
In the newly intreduced money market, we have:

Equilibrium condition: M, = M,
Money demand: My = kY — i
Money supply: M, = My

where M, is the exogenous stock of money and & and / are parameters. These three equa-
tions can be condensed into:

My=FkY —1i

Together, the two sectors give us the following system of equations:

Y—C-1=0aGy
bl=0Y—C=—a
I4+ei=4d

kY —li = My

Note that by further substitution the system could be further reduced to a 2 x 2 systemn
of equations. For now, we will leave it as a 4 x 4 system. In matrix form, we have

1 -1 -1 o]y Go
Bl—t) =1 0 of{|lc|_|-a
0 0 1 elli]| | ¢
k 0 0 /|| My
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To find the determinant of the coefficient matrix, we can use Laplace expansion on onc
of the columns { preferably one with the most zeros). Expanding the fourth column, we find

1 o — 1 -1 -1
Al ={=e}|b(l —1) —1 O|—{|p(1-1) -1 O
k 0 0 0 0 1

I -1

- I
:(_e)(k')‘—l U‘_f‘b(l—z) —1‘

=ek —I{-1) - (-1)h(1 —1)]
=ek +1[1—5(1 —1}]

We can use Cramer’s rule to find the equilibrium income ¥*. This is done by replacing
the first column of the coefficient matrix 4 with the vector of exogenous variables and tak-
ing the ratio of the determinant of the new matrix to the original determinant, ot

(o —1 —1 0
—a -1 0 0
d 0 1l e
Al M, 0 0 -

Yt = =
| Al ek +1[1 —b(1 —1)]

Using Laplace expansion on the second column of the numcrator produces

- 0 0 Gy -1 0
(—D(=1Y¥jad 1 e ~H=-D1ad 1 e

R My 0 —i My, 0 —f
ek +1[1 = b(1 — 1)] ek +i[1 — B(1 = 1)]

-a 0 0 Gg —1 0
d 1 e|l—| d 1 e
My O - My O
ek +1[1 —h(1 — )]
By further expansion, we obtain

—a 0 d ¢
e _E‘—{Pl}("l)} e
ek 11— bl —1)]
al —{d(—1) — eMy] — Go(-])
T kI =B 1)
fla+d+ Gy) +eMy
T ek L= b1 — 1]

+(=1)

|

0 My

Y* =

Since the solution fo ¥* is linear with respect to the exogenous variables, we can rewrite
Y*as

* £ , !
' _(ek+fu—b<1—r)1) MU+(ek-l—![l—b(l—r)])(a+d+6“)
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In this form, we can sce that the Keynesian policy multipliers with respect to the moncy
supply and government expenditure are the coefficients of 3, and Gy, that is,
[

ek +1[1 - K1 =1)]

Money-supply multiplier:

and
!

ek +I[{ — {1 — 1]

Government-expenditure multiplier:

Matrix Algebra versus Elimination of Variables

The ceonomic models used for iilustration above involve two or four cquations only, and
thus only fourth or lower-order determinants need 1o be evaluated. For large equation sys-
tems, higher-order determinants will appear, and their evaluation will be mare compli-
cated. And so will be the inversion of large matrices. From the computational point of view,
in fact, matrix inversion and Cramer’s rule are nol necessarily more efficient than the
method of successive eliminations of variables.

However, matrix mcthods have other merits. As we have seen from the preceding
pages, matrix algebra gives us a compact notation for any linear-cquation system, and
also furnishes a determinantal criterion for testing the existence of a unique solution. These
are advantages not otherwise available. In addition, it should be noted that, unlike the
elimination-of-variable method, which affords no means of analytically expressing
the solution, the matrix-inversion method and Cramer’s rule do provide the handy solution
expressions x* = A~ 'd and x T =14,1/14]. Such analytical expresstons of the solution arc
usetul not only because they are in themselves a summary statement of the actual solution
procedure, but also because they make possible the performance of further mathematical
operations on the solution as written, if calted for.

Under cerlain circumstances, matrix metheds can even claim a compulational advan-
tage. such as when the task is to solve af the same time several equation systems having
an identical coefficient matrix 4 but different constant-term vectors. In such cascs, the
elimination-of-variable method would require that the computational procedure be re-
peated each time a new equation system is considered. With the matrix-inversion method,
however, we are required to find the common inverse matrix 4~ only once, then the same
inverse can be used to premultiply all the constant-term veetors pertaining to the various
cquation systems involved, in order to obtain their respective solutions, This particular
computational advantage will take on greai practical significance when we consider the
solutton of the Leontief input-output models in Sec. 5.7.

EXERCISE 5.6

1. Solve the nationat-income model in Exercise 3.5-1:
{&) By matrix inversion  {b) By Cramer’s rule
{List the variables in the order ¥, C, T))

2. Solve the national-income model in Exercise 3.5-2;
{a) By matrix inversion  (b) By Cramer’s rule
(List the variables in the order ¥, C, G.)



