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Comparative-Static
Analysis of General-
Function Models

The study of partial derivatives has enabled us, in Chap. 7, to handle the simpler type of
comparative-static problems, in which the cquilibrium solution of the model can be explic-
itly stated in the reduced form. In that case, partial differentiation of the solution will
directly yicld the desired comparative-static information. You will recall that the definition
of the partial derivative requires the absence of any functional relationship among the
independent variables (say, x;), so that x, can vary without affecting the values of x;.
X3, ..., Xp. As applied to comparative-static analysis, this means that the parameters and/or
exogenous variables which appear in the reduced-form selution must be mutually indepen-
dent, Sincc these are indeed defined as predetermined data for purposes of the model, the
possibility of their mutually affecting onc another is inherently ruled out. The procedure of
partial diffcrentiation adopted in Chap. 7 is therefore fully justifiable.

Howcever, no such expediency should be expected when, owing to the inclusion of gen-
eral functions in a model, no explicit reduced-form solution can be obtained. In such cases,
we will have to find the comparative-static derivatives directly from the originally given
equations in the model. Take, for instance, a simple national-income model with two
endogenous variables ¥ and C:

Y==C+ 4+ Gy
C=CY Ty) [To: exogenous taxcs]

which is reducible to a single cquation (an equilibrium condition)
Y=C(F, ) + o+ Go

to be solved for Y*. Because of the general form of the C function, however, no explicit
solution 1s available. We must, therefore, find the comparative-static derivatives directly
from this equation, How might we approach the problem? What special difficulty might we
encounter?

Let us suppose that an equilibrium solution ¥* docs exist. Then, under certain rather
general conditions (to be discussed in Section 8.5), we may take ¥ to be a diffcrentiable
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function of the exogenous variables fy, (g, and 7). Hence we may write the equation
Y' =YLy, Gy, To)

even though we are unable to determine explicitly the form which this function takes.
Furthermore, in some neighborhood of the equilibrium value Y*, the following identical
equality will hold;

V' = OV, T+ Iy + G

This type of identity will be referred 1o as an equilibrium identity because it is nothing but
the cquilibrium condition with the ¥ vartable replaced by its equilibrium valve Y*. Now
that ¥'* has entered mto the picture, It may seem at [irst blush that simple partial differentia-
tion of this identity will yield any desired comparative-statie derivative, say, 8Y*/8 7. This,
unfortunately, is not the case. Since Y'* is a function of 7. the two arguments of the € func-
tion arc not independent. Specifically, Ty can in this case atfect € not only directly, but also
indirectly via ¥*. Consequently, partial differentiation is no longer appropriate for our
purposcs, How, then, de we tackle this situation?

The answer 1s that we must resort to fotal differentiction (as against partial differentia-
tion). Based on the notion of foiad differentiuls, the process of total dificrentiation can lead
us to the related concept of totaf derivative, which measures the rate of change of a func-
tion such as C(¥*, Ty} with respect to the argument Ty, when Ty also alfects the other
argument, ¥'*. Thus, once we become familiar with these concepts, we shall be able o deal
with functions whose arguments are not all independent, and that would remove ihe major
stumbling block we have so far cncountered in our study of the comparative statics of a
general-function model. As a prelude to the discussion of these concepls, however, we
should first introduce the notion of differentials.

8.1 Differentials

The symbol dy/dx, for the derivative of the function y = f(x), has hitherto been regarded
as a single entity. We shall now reinterpret it as a ratio of two quantities, dv and dx.

Differentials and Derivatives
By definition, the dertvative y/dx = f'(x) is the Himit of a difference quotient:

dy . . Ay
dy =/ (x)_x\l.lrﬂﬂ_f_'\._x. @1

Thus, by itselt, Ay/Ax (without requiring Ax — 0} is not equal to dv/dx. If we denote
the discrepancy between the two quotients by §, we can write

A dy
s where 550 as Ax— 0 [y@®D)] (82
Ax  dx

Multiplying (8.2) through by Ax, and rearranging, we have

dv
Ay = —
4 dx

This equation describes the change i y {Ay) that resulty from a specific—not necessarily
small—change in x (Ax) from any starting value of x in the domain of the function

Ax + 8§ Ax or Ay = f'(x)Ax + 8 Ax (8.3)
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FIGURE 8.1
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y = f(x). But it also suggests that we can, by ignoring the discrepancy term 6 Ax, use the
£'(x) Ax term as an approximation to the true Ay value, where the approximation gets
progressively better as Ax gets progressively smaller.

In Fig. 8.1a, when x changes from xg to x¢ + Ax, a movemcnt from point 4 to point B
oceurs on the graph of y = f{x). The true Ay is measured by the distance CB, and the ratio
of the two distances CB/ 4C = Ay/Ax can be read from the slope of line segment A5. But
if we draw a tangent line AD through peint 4, and use AD in place of 4B to approximate the
value of Ay, we obtain distance CIJ, which leaves distance DB as the discrepancy or error
of approximation. Since the slope of AD is f*{xo}, distance CD is equal to f"(xy) Ax and,
by (8.3), distance DB is equal to 3 Ax. Obviously, as Ax decreases, point B would slide
along the curve toward point A, thereby reducing the discrepancy and making f*(x) or
dy/dx abetter approximation to Ay/Ax.

Focusing on the tangent line AD, and taking the distance CD as an approximation to CB,
lct us relabe! the distances AC and CD by dx and dy, respectively, as in Fig. 8.15. Then

d L]
d_} = slope of tangent 40 = f'(x)
X

and, after multiptying through by dx, we get
dy = f'(xydx (8.4)

The derivative f'(x) can then be reinterpreted as the factor of proportionality between the
two finite changes dy and dx. Accordingly, given a specific value of dx, we can multiply 1t
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by f*(x) to get dy as an approximation to Ay, with the understanding that the smaller the
Ax, the better the approximation. The quantities dx and dv are called the differentials of x
and y, respectively.

A few remarks are in order regarding differentials as mathematical entities. First, while
dx 1s an independent variable, dv is a dependent variable, Specifically, dy is a function of x
as well as of dx: It depends on x because a different position for x4 in Fig. 8.1 would mean
a different location for point 4 and for its tangent ling; it depends on dx because a different
magnitude of dx would mean a different posttion for point C as well as a different distance
CD. Sccond, if dx =0, then dy = (0, because point B would in that case coineide with
point 4. But if dx # 0, then it is possible to divide dy by dx to gel f'(x), just as we can
multiply dx by f'(x} to get dv, Third, the differential ¢y can be expressed only in terms of
some other differential{s)—here, dv. This is because our context calls for the coupling of a
dependent change dy with an independent change dx. While it makes sense 1o write
dv = f'(x}dx, it 15 not meaningful to chop away the dx term on the right and write
dy = f'{x). The coupling of the two changes is effected through the derivative f'(x),
which may be viewed as a “converter” that serves to translate a given change dx into a
counterpart change «y.

The process of finding the differential dy from a given function v = f{x) is called
differentiation. Recall that we have been using this term as a synonym for derivation, with-
out having given an adequate explanation. In light of our interpretation of a derivative as a
quotient of two differentials, however, the rationale of the term becomes self-evident, It is
still somewhat ambiguous, though, to use the single term “differentiation” to refer to the
process of finding the differential dy as well as to that of finding the derivative dyv/dx. To
avoid confusion, the usual practice is to quahty the word differentiation with the phrase
“with respect to x” when we take the derivative dy /dx.

Differentials and Point Elasticity

To illustrate the economic application of differentials, let us consider the notion of the elas-
ticity of a function. Given a demand function © = f(P), for instance, its elasticity is
defined as (AQ/Q)/(AP/P). Using the idea of approximation explained in Fig. 8.1, we
can replace the independent change A P and the dependent change A with the differen-
tials dP and JQ), respectively, to gel an approximation clasticity measure known as the poin
elasticity of demand and denoted by &, (the Greek letter epsilon, for “elasticity”):’

.= dQ/Q  dO/dP
‘T de/p T Q/P

(8.5)

Observe that on the extreme right of the expression we have rearranged the differentials
dQ and dP into a ratio dQ/dP, which can be construed as the derivative, or the marginal
function, of the demand function ¢ = f(P). Since we can interpret similarly the ratio
@/ P in the denominator as the average function of the demand function, the point elastic-
ity of demand ¢, in (8.5) is scen to be the ratio of the marginal function to the average func-
tion of the demand function.

. _ & AQ/AP
T The point-elasticity measure can alternatively be interpreted as the limit of gfif = - giP as
. ! !

AP - 0, which gives the same result as (8.5).
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Example 1

Example 2

Indeed, this last-described relationship is valid not only for the demand function but also
for any other function, because for any given fofal function y = f(x) we can write the
formula for the point elasticity of v with respect to x as

‘ dy/dx _ marginal function 8.6)
YT y/x average function )

As a matter of convention, the absolute value of the elasticity measure is used in decid-
ing whether the function is elastic at a particular point. In the case of a demand function,

for instance, we stipulate:

elastic -
The demand 1s § of unit elasticity § at a point when ley| = I
inelastic

Find &4 if the demand function is Q = 100 — 2P, The marginal function and the average
function of the given demand are

dQ Q 100-2p
=t M T
so their ratio will give us
P
TSP

As written, the elasticity is shown as a function of P. As soon as a specific price is chosen,
however, the point elasticity will be determinate in magnitude, When P = 25, for instance,
we have 54 = —1, or |g4| = 1, so that the demand elasticity is unitary at that point, When
P =30, in contrast, we have |¢4| = 1.5; hence, demand is elastic at that price. More gen-
erally, it may be verified that we have |e4| > 1 for 25 < P < 50 and [gg] < 1for 0 < P < 25
in the present example. (Can a price P > 50 be considered meaningful here?)

Find the point elasticity of supply &, from the supply function Q = P2 + 7P, and determine
whether the supply is elastic at P = 2. Since the marginal and average functions are,
respectively,

dQ Q
_— = 2 — =
7P P+7 and p P+7
their ratio gives us the elasticity of supply
2P +7
o =
TP+7

When P = 2, this elasticity has the value 11/9 = 1; thus the supply is elastic at P = 2.

At the risk of digressing a trifle, it may also be added here that the interpretation of the
ratio of two differentials as a derivative—and the consequent transformation of the elastic-
ity formula of a function into a ratio of its marginal (o its average—makes possible a quick
way of determining the point elasticity graphically. The two diagrams in Fig. 8.2 illustrate
the cases, respectively, of a negatively sloped curve and a positively sloped curve. [n cach
case, the value of the marginal function at point 4 on the curve, or at x = xy in the domain,
is measured by the slope of the tangent line AB. The value of the average function, on the
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other hand, 1s in each case measured by the slope of line O4 (the line joining the point of
origin with the given point 4 on the curve, like a radius vector), becausc at point 4 we have
¥ =xp4 and x = Oxyp, so that the average is v/x = xy A/ Oxy = slope of 04, The elas-
ticity at point 4 can thus be readily ascertained by comparing the numerical values of the
two slopes involved: Tf AB is steeper than OA, the function is elastic al point 4; in the
opposiie case, it 1s inclastic at A. Accordingly, the function pictured in Fig. 8.2a 1s inclastic
at A (or at x = xg), whereas the one in Fig. 8.25 is clastic at 4.

Moreover, the two slopes under comparison are directly dependent on the respective
sizes of the two angles 8, and 8, (Greek letter theta; the subscripts m and ¢ indicate mar-
ginal and average, respectively). Thus we may, alternatively, compare these two angles in-
stead of the two cotresponding slopes. Referring to Fig, 8.2 again, you can see that 6,, < 8,
at point 4 in diagram a, indicating that the marginal falls short of the average in numerical
value; thus the function is inelastic at point 4. The exact opposite is frue in Fig. 8.25.

Sometimes, we are interested in locating a point of unitary elasticity on a given curve.
This can now be done easily. If the curve is negatively sloped, as in Fig. 8.3a, we should
find a point C such that the line OC and the tangent £C will make the same-sized angle with
the x axis, though in the opposite direction. In the case of a positivcly sloped curve, as in
Fig. 8.3), one has only to find a point C such that the tangent line at C, when properly
extended, passes through the point of origin,
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We must warn you that the graphical method just described is based on the assumption

that the function v = f(x} is plotted with the dependent variable v on the vertical axis. In
particular, in applying the method to a demand curve, we should make sure that € is on the
vertical axis. (Now suppose that Q is actually plotted on the horizontal axis. How shoyld
our method of reading the point elasticity be modified?)

EXERCISE 8.1

1.

Find the differential dy, given:
(@) y=—x(x*+3) B y=Gx-87x+5) (@Qy=

x2 1

. Given the import function M = f(¥), where M is imports and Y is national income,

express the income elasticity of imports sxy in terms of the propensities to import.

. Given the consumption function € =a—bY (witha > 0:0 < b< 1)

{a) Find its marginal function and its average function.

(b) Find the income elasticity of consumption z¢cy, and determine its sign, assuming
Y = 0.

(¢) Show that this consumption function is inelastic at all positive income levels.

. Find the point elasticity of demand, given Q = k/P", where  and n are positive

constants.

{a) Does the elasticity depend on the price in this case?

{h) In the special case where n= 1, what is the shape of the demand curve? What is
the point elasticity of demand?

{a) Find a positively sloped curve with a constant point elasticity everywhere on the
curve.

(b) Write the equation of the curve, and verify by (8.6) that the elasticity is indeed a
constant.

Given Q@ =100~ 2P +0.02Y, where Q is guantity demanded, P is price, and Y is

income, and given P = 20 and ¥ = 5,000, find the

(@) Price elasticity of demand.

() Income elasticity of demand.

8.2 Total Differentials

The concept of differentials can casily be extended to a function of two or more indepen-
dent variables. Consider a saving function

§=S(Y. i) (8.7)

where S is savings, ¥ 15 national income, and i is the interest rate. This function s assumed—
as all the functions we shall use here will be assumed-—to be continuous and to posscss
continuous (partial) derivatives, or, symbolically. f € C'. The partial dervative 45/8Y
measures the marginal propensity to save. Thus, for any change in Y, dY, the resulting
change in § can be approximated by the quantity (05/3Y ) d¥, which is comparable to the
right-hand expression in (8.4), Similarly. given a change in i, 4i, we may take (35/8i} di
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as the approximation to the resulting change 1 S. The total change m S 1s then approxi-
mated by the differential

3s 9
ds="22 gy +°

- 5 O (8.8)

or, in an alternative notation,
dS =8y dY + S; di

Note that the two partial derivatives Sy and S; again play the role of “converters™ that serve
to convert the changes dY and di, respectively, into a corresponding change 45, The ex-
pression 4, being the sum ol the approximate changes from both sources, is called the toral
differential of the saving function. And the process of finding such a total differential is
called total differentiation. In contrast, the two additive components to the right of the
equals sign in (8.8) are referred to as the partial differentials of the saving function,

It is possible. of course, that ¥ may change while 7 remaing constant. In that casc,
di =0, and the tolal differential will reduce to 48 = (85/3Y ) 47 Dividing bath sides by

dY, we get
08 (dS
BY B d}’ f conslant

Thus it is clear that the partial derivative 85/8Y can also be interpreted, in the spirit of
Fig, 8.15, as the ratic of two differentials dS and d¥., with the proviso that {, the other inde-
pendent variable in the function, is held constant. Analogously, we can interpret the partial
derivative 85/3i as the ratio of the differential éS (with ¥ held constant) to the differential
di. Note that although 5 and di can now each stand alone as a differential, the expression
08/9i remains as a single entity,

The more general case of a function of # independent variables can be exemplitied by,
say, a utility function in the general form

U=Uix, .. .., x,) (8.9)
The total differential of this function can be written as
al/ al/ al/
dU = —dx + —dxr + -+ —dx,
dx1 d.’CQ d.tn (8.]0)
a
or dU = Ui dl’] + LTZ dxg + v + L'?u dx_u == Z '{.z'lrg' (f’C;
i=1

in which each term on the right side indicates the approximate change in U resulting from
a change in one of the independent variables. Economically, the first term, 'y dx |, means
the marginal utility of the first commodity times the increment in consumption of that com-
modity, and similarly for the other terms. The sum of these, ¢, thus represents the total
approximate change in utility originating from all possible sources of change. As the rea-
soning in (8.3) shows, ¢d{/, as an approximation, tends toward the true change AU as all the
dx; terms tend to 7ero,

Like any other function, the saving function (8.7) and the utility function (8.9) can both
be expected to give rise to point-elasticity measures similar to that defined in (8.6). But each
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elasticity measure must in these instances be defined in terms of the change in one of the
independent variables only; there will thus be fwe such elasticity measures to the saving
function, and # of them to the utility function. These are accordingly called partia! elastic-
ities. For the saviag function, the partial clasticities may be written as
as/ay  aS ¥ assai a8 i
&5y = v T av © and £5i = T T ¢
LS/Y dY b -Sf( d{ JS

For the utility function, the » partial elasticities can be concisely denoted as follows:

gl x;
8(,-".1;':5;6;' {f:l.2,,“,ﬂ]
Example 1 Find the total differential for the following utility functions, where ¢, b = G:

(@) Ulxy, x2) = axq + bxz
(b) Ulxi, x2) = xF 4+ 23 + X1 %2
(©) Ulx, x2) = x{xb

The total differentials are as follows:

i U

(@ X ! i 2=b

and

dU =y dx +Usdxo =adx +bdxs
al aif

(B} o U =2x + x2 s z X+ X

and

dU = Usdxy + Uz dxo = (20 + X2y dxy + (3){% + X1) dxs
BU g et su GD,,_@

(©) o th=ax x; = p i Uz =bxjn; = o

ang

dy = (—°x$x§ ) dxi + (b“‘axg) dxs
X1 X7
EXERCISE 8.2

1. Express the total differentiat dU by using the gradient vector VU.
2. Find the total differential, given
(o) z=3x% 4+ xy— 2y°
(B) U =2 +9x % + X2
3. find the total differential, given
X1 2X} X3
(ﬂ)}’=)ﬁ+xZ (b y= P
4. The supply function of a certain commodity is
Q=a+bP + R  (2<0 b>0) [ rainfall]
Find the price elasticity of supply «qp, and the rainfall elasticity of supply £qs.
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5. How do the two partial elasticities in Prob. 4 vary with # and R? In a strictly monotonic
fashion {assuming positive £ and R)?

6. The foreign demand for our exports X depends on the foreign income Yy and our price
level P: X = Y:’Jz + # 2. Find the partial elasticity of foreign demand for our exports
with respect to our price Jevel.

7. Find the total differential for each of the following functions:
(@) U =5~ 12xy— 6y
(b) U = 7x%y?
(0 U=3x38x-7y)
(d) U = (5x% + 7y} 2x — 4y%)
gy’
Xy
() U=(x-3yP

(&) U=

8.3 Rules of Differentials

A straightforward way of finding the total differential dy, given a function

Y= ..fr(xi b xz)
is to find the partial derivatives f; and /> and substitute these into the equation
dy = frdx + f2dx

But sometimes it may be more convenient to apply certain rules of differentials which, in
view of their striking resemblance to the derivative formulas studied before, are very easy
to remember.

Let & be a constant and « and v be tweo functions of the variables x| and x». Then the
following rules arc valid:*

Rule [ dk =0 {cf. constant-function rule)
Rule II d{cu™) = enu” b duy (cf. power-function rule)
Rule ITI dluetvy=dutdr (ef. sum-difference rule)
Rule IV dinv) = vdu+udv (ct. product ruie)
1
Rule V d (E) = —{vdu—udv) {cf. quotient rule)
il v

Instead of proving thesc rules here, we shall merely illustrate their practical application.

T All the rules of differentials discussed in this section are also applicable when i and v are themselves
the independent variables (rather than functions of some other variables x; and x3).
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Example 1 Find the total differential dy of the function
y=5x + 3x

The straightfoward method calls for the evaluation of the partial derivatives f; = 10x and
f2 = 3, which will then enable us to write

dy = fidx + f2dx2 = 10x dx1 + 3 dxa

We may, however, let u = 5xZ and v = 3x, and apply the previously given rules to get the
identical answer as follows:

dy = d(5x,2) +d(3x)  [by Rule lll
=10x1dx + 3dx2 [by Rule II]
W Find the total differential of the function
- y=3x +x1x3
Since f = 6xy + 2 and fz = 2x Xz, the desired differential is
dy = (6x1 + xf) dxy 4+ 2x7 %3 dxz
By applying the given rules, the same result can be arrived at thus:
dy = d(3x12) + d(x. ) [by Rute Il
— 6x) dxy +x2 dxy + ;0 d(xg) [by Rules Il and IV]
= (6x1 + x%) dxy + 2x1 %3 dxz [by Rule 11]

Example 3 Find the total differential of the function

_A + X2
242
In view of the fact that the partial derivatives in this case are

- 1
f1 — M) and fZ -
2x3

(check these as an exercise), the desired differential is

B —(X1 + 2){2)

1
dy = dx1 + ——dx
14 2)(4? 1 ?

2x?
However, the same result may also be obtained by appiication of the rules as fotlows:

1
dy = e [2x12d(x1 +x2) — (%1 + x2) d(zﬁz)} [by Rule V]

= 21—4[2)(%{0*1(1 + dxy) — (X7 + x3)4xy dm] [by Rules Il and ¥]
X1

1
= E;;EI:—ZM (x -|—2X2) dx) + 2)(% dKz}
_={x +2x))

1
dxy + —dx
2x13 ! 2x12 z
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These rules can naturally be extended to cases where more than two functions of x; and
x; are mvolved. In particular, we can add the following two rules to the previous collection:

Rule VI dutvitw =dutdv+dw
Rule V11 d{uvw) = vwdu + uw dv + wv dw
Ta derive Rute V11, we can employ the famitiar trick of first letting = = vw, so that
dluvw) =duz) =z du+u dz [by Rule 1V]
Then, by applying Rule TV again to dz, we get the intermediate result
dz=dvwi=wdv+vdw
which. when substituted into the preceding equation, will yicld
diuvw) = vwdu +ulwdv + v dw) = vwdy — uwdv + un dw

as the desired final result. A similar procedure can be employed to derive Rule V1.

EXERCISER.3

1. Use the rules of differentials to find (g) dz from z= 3x2 + xy — 2y* and (b) dU from
U = 2x; + 9x1x3 + x3. Check your answers against those obtained for Exercise 8.2-2.
2. Use the rules of differentials to find dy from the following functions:
X1 2X1 X3
X1+ X2 ©)y= X1+ Xz
Check your answers against those obtained for Exercise 8.2-3.
3. Given y=3x(2x; — 1)(x3 + 5}
{a) Find dy by Rule VL.
(b) Find the differential of y, if dx; = dxy = 0.
4, Prove Rules ll, #, IV, and V, assuming u and v to be the independent variables (rather
‘than functions of some other variables), .

(o) y=

8.4 Total Derivatives

We shall now tackle the question posed at the beginning of the chapter; namely, how can we
find the rate of change of the function C{¥*, Ty) with respect to Ty, when Y* and T arc
related”? As previously mentioned, the answer lies in the concept of total derivative. Unlike
a partial denvative, a toral derivative docs not require the argument ¥* to remain constant
as Ty varies, and can thus allow for the postulated relationship between the two arguments.

Finding the Total Derivative
To carry on the discussion in a general framework, let us consider any function

y=flx,w)  where x=g(w) (8.11)
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FIGURE 8.4

Example 1

oo

sy f amse sy o ggromen ey

: N : 4 I g: ,_g',

£ B + M o e
i ' L i

: you SR S ;W i§

: K 18 3 : o

o aoediann Higeonint® CPRRISERPELY + o

The two functions f and g can also be combined into a composite function
v = [flglw). w] (8.177)

The three variables v, x, and w are related to one another as shown in Fig. 8.4. in this {igure,
which we shall refer to as a channel map, it is clearly scen that w—the ultimate source of
change—can affect v through two scparate channels: (1) indirectfy, via the function g and
then f (the straight arrows), and (2) directly, via the function f (the curved atrow). The

direct effect can simply be represented by the partial derivative /. But the indirect effect
dx  dy dx by the chain rul
—, or — — by the chain rule
daw’  dx dw y

for a composite function. Adding up the two effects gives us the desired total derivative of

¥ with respect 10 we

can only be expressed by a product of two derivatives, [y

dy | dx

_ydx Dy (8.12)
ox dw  aw

This total derivative can also be obtained by an alternative method: We may first differenti-
ate the function v = f(x, w} totally, to get the total differential

dy = [, dx + f dw

and then divide through by dw. The result is identical with (8.12). Either way, the process
of finding the total derivative dv/dw is referred to as the tofal differentiation of y with
respect fo w.

It is extremely important to distinguish between the two look-alike symbols dy/dw and
av/8w in (8.12). The former is a fofai derivative, and the latter, a partial derivative. The
latter is in fact merely a component of the former.

Find the total derivative dy/dw, given the function
y=f(x,w=3x—w? where x=gW=2w'+w+4
By virtue of (8.12), the total derivative should be

% = 34w+ 1)+ (-2w) = 10w + 3

As a check, we may substitute the function g into the function f, to get
y= 32wl + w+4) —w? = 5w + 3w+ 12

which is row a function of w alone. The derivative dy/dwis then easily found to be 10w + 3,
the identical answer.
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If we have a utility function U = U{c, 5), where ¢ s the amount of coffee consumed and s is
the amount of sugar consumed, and another function s = g(c) indicating the complemen-
tarity between these two goods, then we can simply write the composite functicn

U=Vl g9l

from which it follows that
duy Al U

ac = ac T 7O

A Variation on the Theme
The situation is only slightly more complicated when we have

Xy = h(w)

y= f(xi.x,w)  where I“"' = 8(w) (8.13)

The channel map will now appear as in Fig, 8.5. This time, the variable w can affect y

through three channels: (1) indirectly, via the function g and then £, (2) again indirectly, via

the function /4 and then £, and (3) dircctly via £ From our previous experience, these three
dy dx; dy dx; dy

effects are expected to be expressible, respectively as — —. - , and —, By
ox; dw Oxr dw ow
adding these together, we get the total derivative
dy vy dxy  dydu  dy
dw  dx; dw  dxadw  dw
dx) dx
=h-—+ L=+ /] (8.14)
dw dw

which is comparable to (8.12). If we take the total differential dy, and then divide through
by dw, we can arrive at the same result.

Let the production function be

Q = Q(K.- L.- t)
where, aside from the two inputs K and £, there is a third argument {, denoting time. The
presence of the t argument indicates that the production function can shift over time in

reflection of technofogical changes. Thus this is a dynamic rather than a static praduction
function. Since capital and labor, too, can change over time, we may write

K = K(t) and L =18
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Then the rate of change of output with respect to time can be expressed, in line with the
total-derivative formula (8.14), as

dQ_an_K HQdL+aQ
dt Gk dt AL dt Ot
ar, in an alternative notation,

W ek + QL0 + 0

Another Variation on the Theme

When the ultimate source of change, w in (8.13), is replaced by two coexisting sources,
and v, the situation becomes the following:

xy = glu, v) (8.15)

y= flx),xo, 10 0 where
y= flx),x2,1,0) 50 = hlsi, 1)

While the channel map will now contain more arrows, the principle of its construction
remains the same; we shall, thercfore, leave it to you to draw. To [ind the total derivative of
3 with Tespect to u (while v is held constant), let us take the total differential of y, and then
divide through by the differential di, with the result:

dy _dydn  dpdu dvde dvdv
du  Ox;du  Oxy du  dudn  dvdu
_dydxy Oy dxy By
B d_xla axz E E

dv ) ‘
— = O yince v 18 held constant
du

In view of the fact that we are varying # while holding v constant (as a single derivative
cannot handle changes in # and v both), however, the result obtained must be modified in
two ways: {1) the derivatives dx, /du and dx,/du on the right should be rewritten with the
partial sign as 8x; /9u and dx,/du, which is in line with the functions g and 4 in (8.15); and
{2) the ratio dy/du on the left should alse be interpreted as a partia! derivative, cven
though—Dbeing derived through the process of total differentiation of - 1t 15 actually in the
nature of a total derivative. For this rcason, we shall refer to it by the explicit name of
partial total derivative, and denote it by §y/8u (with § rather than 8), in order to distin-
guish it from the simple partial derivative 8y /8% which, as our result shows, is but onc of
three component terms that add up to the partial total derivative.”
With these modifications, our result becomes

§y Ay dxy Ay B Oy

= - 8.16
Su  dxy Ju dxy du it ( )

which is comparable to (8.14). Note the appearance of the symbol dy/du on the right,
which necessitates the adoption of the new symbol §v/§u on the left to indicate the broader

T An alternative way of denoting this partial total derivative is

dy or dy

du ¥ Lonstant du tfv—0
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concept of a partial total derivative. In a perfectly analogous manner, we can derive the
other partial total derivative, §¥/8v. Inasmuch as the roles of ¥ and v are symmetrical in
(8.15), however, a simpler alternative is available to us. All we have to do to obtain §v /8§
is to replace the symbol # in (8.16) by the symbol v throughout.

The use of the new symbols §y/$u and §v/§v for the partial total derivatives, if uncon-
ventional. serves the good purpose of avoiding confusion with the simple partial deriva-
tives dy/du and dy/dv that can arise from the function falone in (8.15). However, in the
special case where the f function takes the form of y = #{x;, v} without the arguments
u and v, the simple partial derivatives dy/du and dy/dv are nol defincd. Hence, it may not
B¢ inappropriate in such a case to usc the latter symbols for the partial total derivatives of v
with respect to # and v, since no confusion is likely to arisc. Even in that event, though, the
us¢ of a special symbol is advisable for the sake of greater clarity.

Some General Remarks

To conclude this section, we offer three general remarks regarding total derivative and total
diffcrentiation;

I, In the cases we have discussed, the situation involves without exception a variable that
i functionally dependent on « second variable, which is in turn dependent functionally
on a third variable. As a consequence, the notion of a chain inevitably cnters the picture,
as cvidenced by the appearance of a preduct (or products) of two derivative expressions
as the component(s) of a total derivative. For this reason, the total-derivative formulas in
(8.12}, {8.14), and (8.16} can also be regarded as expressions of the chain rule, or the
composite-function rule—a mere sophisticated version of the chain rule introduced in
Sec. 7.3.

2. The chain of derivatives does not have to be limited to only two “links™ (two derivatives
being muitiplied); the concept of total derivative should be extendible to cascs where
there are three or more links in the composite function.

3. In all cases discussed, tetal derivatives—including those which have been culled partial
total derivatives—measure rates of change with respect to some wlfimaie variables in
the chatn or, in other words, with respect to certain variables which arc in a sense
exogenous and which are not expressed as functions of some other variables, The
essence of the total derivative and of the process of total differentiation is to make
due altowance for a/f the channels, indircet as well as direct, through which the cffects
of a change in an wltimaie independent variable can possibly be carried to the particular
dependent vartabte under study.

EXERCISE B.4

1. Find the total derivative dz/dy, given
(@) 2= f(x, y) = Sx + xy — y?, where x = g(y) = 3y
(b) z=4x? — 3xy+ 2%, where x =17y
Q2=+ y)x—2y), whete x =2 -7y
2. Find the total derivative dz/dt, given
(@) z=x°—8xy— y*, wherex =3tand y=1—¢
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(h) z=7u+vt,whereu =2 andv=1t+1
(0) z= f(x, y, t), wherex=ga—-btand y=c + kt

3. Find the rate of change of cutput with respect to time, if the production function is
Q= A(DK=L?, where A(t) is an increasing function of t, and K = Ko +at, and
L=1Lg+ bt

4, Find the partial tota! derivatives §W/&u and §W/§v if
(o) W = ax? + bxy + cu, where x = cu -+ fvand y = yu
(B) W = f(x, x2), where x; = 5t° + 3vand x; = v — 43

5. Draw a channel map appropriate to the case of (8.15).

6. Derive the expression for §y/§v formally from (8.15) by taking the total ditferential of y
and then dividing through by dv.

8.5 Derivatives of Implicit Functions

The concept of total differentials can also enable us to find the derivatives of so-called
implicit functions.

Implicit Functions
A function given in the form of y = f(x), say.

y = f(x) = 3" (8.17)

is called an explicit finction, because the variable v is explicitly expressed as a function of
x. If this function is written alternatively in the equivalent form

y=3x*=0 (8.177)

however, we no longer have an explicit function, Rather, the function (8.17) is then only
implicitly defined by the cquation (8.17'). When we are (only) given an cquation in the
form of (8.17"), therefore, the tunction ¥ = f{x) which it implies, and whaose specitic form
may not even be known to us, is referred to as an implicit function.

An equation in the form of {8.17') can be denoted in general by F{y, x} = 0, becausc
its lefi side is a function of the twa variables y and x. Note that we arc using the capital lct-
ter F here to distinguish it from the function /; the function F, representing the left-side
expression in (8.17), has two arguments, v and x, whercas the function £, representing the
implicit function, has only one argument, x. There may, of course, be more than two argu-
ments in the F function. For instance, we may encounter an equation F(y. xy, ..., X)) = 0.
Such an equation may also define an implicit function y = f{x1, ..., x5}

The equivocal word may in the last sentence was used advisedly. For, whereas an explicit
function, say, ¥ = f(x)}, can always be transformed into an equation F{y, x) = 0 by sim-
ply transposing the f(x) expression to the left side of the equals sign, the reverse transfor-
mation is not always possible. Indeed, in certain cases, a given equation in the form of
F(y, x} =0 may not implicitly define a function y = f{x). For instance, the equation
x% + y? = 0 is satisfied only at the point of origin (0, 0), and hence yields no meaningtul
function to speak of. As another example, the equation

Fiy,x)=x"+3y"—9=10 (8.18)
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implies not a function, but a relation, because (8.18) plots as a circle, as shown in Fig. 8.6,
o that no unique value of ¥ corrcsponds to each value of x. Notc, however, that if we
restrict y to nonnegative values, then we will have the upper half of the circle only, and that
does constitute a function, namely, y = ++/9 — x?. Similarly, the lower half of the circle,
with y values nonpositive, constitutes another function, y = — /% — x2. In contrast, neither
the left half nor the right half of the circle can qualify as a function.

In view of this uncertainty, it becomes of interest to ask whether there arc known gen-
eral conditions under which we can be surc that a given equation in the form of

Fly,xiy...,xn) =0 (8.19)
does indeed define an implicit function
y=71x, .., %) (8.20)

locally, i.e., around some specific peint in the domain. The answer to this lics in the
so-calted implicit-function theorem, which states that;

Given (8.19), if (o) the function # has continuous partial detivatives Foo by Fpoandif
(B} ata point {yg, X10, . - ., Xpo) satisfying the equation (8.19), F,. is nonzero, then there ex-
15ts un m-dimensional neighborhood of (xyg, . . ., Xuo), N, in which v is an implicitly defined
function of the variables xy, .. ., x,, in the form of (8.20). This implicit function satisfies

yo = f{xiw, ..., Xno). It also satisties the equation {8.19) for every m-tuple (x|, ..., xy) in
the neighborhood N—thereby giving (8.19) the status of an identizy in that neighborhood.
Moreover, the implicit function f1s continuous and has continuous partial derivatives

Jiooeo S

Let us apply this theorem to the equation of the circle, (8.18), which contains only one
x variable. First, we can duly verify that £, = 2y and F, = 2x are continuous, as requircd,
Then we notc that F, is nonzero except when y = 8, that is, except at the leftmost point
(—3, 0) and the rightmost point (3, 0) on the circle. Thus, around any point on the circle
except (—3, 0) and (3, 0), we can construct a neighborhood in which the equation (8.18)
defines an implicit function y = f(x). This is easily verifiable in Fig, 8.6, where it is indeed
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possible to draw, say, a rectangle around any point on the circle- except (=3, 0) and
(3, 0)—such that the portion of the circle enclosed therein will constitute the graph of a
function, with a unigue y value for each valuc of x in that rectangle.

Several things should be noted about the implicit-function theorem. First, the conditions
cited in the theorem are in the nature of sufficient (but not necessary) conditions. This
means that if we happen to find #, = 0 at a point satisfying (8.19), we cannot use the the-
orern to deny the existence of an implicit function around that point. For such a function
may in fact exist (see Exercise 8,5-7)." Second, even if an implicit function fis assured to
exist, the theorem gives no cluc as to the specific form the function f takes. Nor, for that
matter, dogs it tell us the exact size of the neighborhood & in which the implicit function is
defined. However, despite these limitations, this theorem is one of great importance. For
whenever the conditions of the theorem are satisfied, it now becomes meaningful to talk
about and make use of a function such as (8.20), cven if our mode! may contain an equa-
tion (8.19) which is difficult or impossible to solve explicitly for y in terms of the x
variables. Moreover, since the theorem also guarantces the existence of the partial deriva-
tives f1...., fu, it is now also meaningful to talk about these derivatives of the implicit
function.

Derivatives of Implicit Functions

If the equation F{y, x1,....,x,) = 0 can be solved for y, we can explicitly write out the
function y = f{(x1....,%), and find its derivatives by thc methods learned befere. For
instance, (%.18) can be solved to yield two separate functions

v =449 —x%  [upper half of circle]

8.18'
¥y = —v9—x! [lower half of circle] ( )
and their derivatives can be found as follows:
dy” d N ,
AT S N N L N L
I dx( x°) O —x)7V(=2x)
—X —X
T
VO —x2 oy
s g (8.21)
¥ 23142 22
—— = O =) = =502
-2 29
- — = — 3
/O e x? ¥y -
But what if the given equation, F{y, x|, ..., x,,) = 0, cannot be solved for y explicitly?

In this case, if under the terms of the implicit-function theorem an implicit function is
known to exist, we can still abtain the desired derivatives without having to solve for y first.
To do this, we make use of the so-called implicit-function rule—a rule that can give us
the derivatives of every implicit function defined by the given equation. The development
of this rule depends on the following basic facts: (1) if two expressions are identically

1 On the other hand, if £, = 0 in an entire neighborhood, then it can be concluded that no implicit
function is defined in that neighborhood. By the same token if £, = 0 identically, then no implicit
function exists anywhere,
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equal, their respective total differentials must be equal;’ (2) differentiation of an expres-
ston that involves y,x;,...,x, will yield an expression involving the differentials
dy,dxy, ..., dx,; and (3) the differential of v, dy, can be substituted out, so the fact that
we cannot solve for y does not matter.

Applying these facts to the cquation F(y, x1, ..., x») = 0—which, we recall, has the
status of an identity in the neighborhood N in which the implicit function is defined—we
can write d F = d0, or

Fody+Fdog+FBdaot 4+ Fydx, =0 (8.22)
Since the implicit function y = f{xy, x3, .. ., x,,) has the total differential
dy= hdxi+ frdiz+- + fudxy
we can substitute this dy expression into (8,22) to get (after collecting terms)
(Fy, A+ FYdn+(F, f+B)da+ -+ (F, fu+ Fa)de, =0 (8.22)

The fact that all the 4x; can vary independently from one another means that, for the equa-
tion (8.22') to hold, each parenthesized expression must individually vanish; i.e., we must
have

Fo i+ FE =0 (foralli)

Dividing through by F,, and solving for f;, we obtain the so-called implicit-function rule
for finding the partial derivative f; of the implicit function y = f{x1, x3,..., xp):

a3y F;
fE = =1,2,..., 8.23
e m) (8.23)
In the simple case where the given equation is F{y, x} = 0, the rule gives
dy F,
= 8.23
S (8.23)

' Take, for example, the identity

K=yt = (et Yix - y)
This is an identity because the two sides are equal for any values of x and y that one may assign.
Taking the total differential of each side, we have

dfleft side) = 2x dx — 2y dy
diright side) = (x - V) d(x + ¥} + (x + V d(x = y)
= (¥ — y)dx + dy) + (x + y)(dx — dy)
=2xdx -2y ady
The two results are indeed equal. If two expressions are not identically equal, but are equal only
for certain specific values of the variables, however, their total differentials will not be equal. The
equation
LY. J IV
for instance, is valid only for y = +1. The total differentials of the two sides are
dfleft side) = 2x dx — 2y dy
d(right side) = 2x dx + 2y dy
which are not equal. Note, in particular, that they are not equal even at y = £1.
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Example 1

Example 2

Example 3

Example 4

What this rule states is that, even if the specific form of the implicit function is not known
to us, we can nevertheless find its derivative(s) by taking the regative of the ratio of a pair of
partial derivatives of the F function which appears in the given equation that defines the im-
plicit function. Obscrve that £y always appears in the denominator of the ratio. This being
the case. it is not admissible to have F, = 0. Since the implicit-function theorcm specifies
that F, # 0 at the point around which the implicit function is defined, the problem of a zero
denominator is automatically taken care of in the relevant neighborhood of that pornt.

Find dy/dx for the implicit function defined by (8.17). Since F(y, x) takes the form of
y — 3x%, we have, by (8.23"),
dy  Fu —12x3
ax F T
In this particular case, we can easily solve the given equation for y to get y = 3x%. Thus the
correctness of the derivative is easily verified.

=12x°

Find dy/dx for the implicit functions defined by the equation of the circle (8.18). This
time we have F(y, x) = x2+ y2 - 9; thus F, =2y and F, = 2x. By (8.23"), the desired
derivative is
dy 2x b :
a—-“ZV_ v (y#Q
Earlier, it was asserted that the implicit-function rule gives us the derivative of every implicit
function defined by a given equation. Let us verify this with the two functions in (8.18") and
their derivatives in (8.21). If we substitute y* for y in the implicit-function-rule result
dytdx = —x/y, we will indeed obtain the derivative dy* /dx as shown in (8.21); similarly,
the substitution of y~ for y will yield the other derivative in (8.21). Thus our earlier assertion
is duly verified.

Find ay/#x for any implicit function(s) that may be defined by the equation F(y, x, w) =
yx% + w? + yxw — 3 = 0. This equation is not easily solved for y. But since fy, F,, and Fy
are all obviously continuous, and since Fy = 3y?x? + xw is indeed nonzero at a point such
as (1, 1, 1) which satisfies the given equation, an implicit function y = f(x, w) assuredly
exists around that point at least. It is thus meaningful to talk about the derivative ay/dx. By
(8.23), moreover, we can immediately write

By _ K 293% + yw

ax  F,  3ylxd faw
At the point (1, 1, 1), this derivative has the value 3.

Assume that the equation F(Q, K, L} =0 implicitly defines a production function Q =
f(K, L). Let us find a way of expressing the marginal physical products MPPx and MPP; in
relation to the function F. Since the marginal products are simply the partial derivatives
AQ/9K and AQ/31, we can apply the implicit-function rule and write

aQ Fr hle) _ Fi

MPP, = — = ——= d MPP;, = — = - ——
T S TR

T The restriction y 0 is of course perfectly consistent with our earlier discussion of the equation
{8.18) that follows the statement of the implicit-function theorem.



Chapter 8 Comparative-Static Analvsis of Genergl-Function Models 199

Aside from these, we can obtain yet another partial derivative,

K Ry
al g

from the equation F{Q, K, L) = 0. What is the economic meaning of 3K /dt? The partial
sign implies that the other variable, @, is being held constant; it follows that the changes in
K and L described by this derivative are in the nature of “compensatory” changes designed
to keep the output Q constant at a specified level. These are therefore the type of changes
pertaining to movements along a preduction isoquant drawn with the K variable on the ver-
tical axis and the { variable on the horizontal axis. As a matter of fact, the derivative 3K /21
is the measure of the siope of such an isoquant, which is negative in the normal case. The
absolute value of 2K /3L, on the other hand, is the measure of the margina! rate of technical
substitution between the two inputs,

Extension to the Simultaneous-Equation Case

The impheit-function theorem also comes in a more general and powerful version that
deals with the conditions under which a set of simultaneous equations

Fl(y],.‘.‘_v,f:xh‘.{,xm) =0
Fz(,via'-w}’ir:xl« coe X)) ={ (824)
Fly, o rm X X)) =0

will assuredly define a set of implicit functions'

yi= 3 )

vi= f3x), ... X (8.25)

...................

The generaiized version of the (heorem states that;

Given the equation system (8.24), if {g) the functions F', ..., 77 all have continuous partial
derivatives with respect 1o all the y and x variables, and 1f () at a point {vig, .. ., Va3
X140« - X} satisfying (8.24), the following Jacobian determinant is nonzero:
art  aF! aF!
gy dn oy,
-2 2 o 2
= GFY . Fmy| | RT3 EF oy
IR I AT T vy ¥n
AF"  dF" ar
AR dyo ‘]yn

" To view it another way, what these conditions serve to do is to assure us that the n equations in
(8.24) can in principle be solved for the n variables—y, .. ., y,—even if we may not be able to obtain
the solution (8.25) in an explicit form.



200 Part Three Comparative-Static Analysis

then there exists an m-dimensional neighborhood of (xp, ..., Xm), N, it which the variables
Vi, -+, Yo are funetions of the variables xy, ... . ¥, in the form of (8.235). These implicit
funclions satisfy

They also satisfy (8 24) for every m-tuple (x1, .. .. x,) in the neighborhood N thereby giv-

ing (8.24) the stalus of a sct of identities as far as this neizhborhood 15 concerned. Moreover,

the implicit functions /%, ..., f* are continuous and have continuous partial derivatives with
respect to all ihe x variables.

As in the single-equation case, it is possible to find the partial derivatives of the implicit
functions directly from the # equations in (8.24), without having to solve them for the y
variables. Taking advantage of the fact that, in the neighborhood N, the equations in (8.24)
have the status of identities, we can take the total differential of each of these. and write
dF7 =0(j =1,2,...,n). The result is a set of equations involving the differentials
dyi, ..., dv, anddx,, ..., dx,. Specifically, after transposing the dx; terms (o the right of
the equals signs, we have

i I F! §#! §F!
il dyy+—dp 4+ F —dyy, == —dx +- o+ —dxy
a}«’] d) dyy X Xy,

0F +8F2i N +3F2d o +£JF2!
—ly 4] —dy, = —{ —dx e — Xy
a0 e ap, o, ! i, ] (8.26)
BE dF" o g4 gF
——'—d}[ -+ ‘—d)"z + -+ !. d}-’;; = —('—d..’ﬂ 4+t .—d.xm)
ay, dya vy, 0x1 X
Moreover, from (8.25), we can wrile the differentials of the y; variables as
g 3y Ay
dw = jﬂd,\'[ + Adl‘z + }_idxm
{jXI 3x2 f}xm
Byz E}yn avz
dvy = —dx) + —d s —dxy,
e e L P (8.27)
Ay, iy, dy
dv, = ,y dy, + 'ﬁﬂ'}(g 4 - Al dxy,
11X ey dx,,,

and these can be used to eliminate the dy; expressions in (8.26). But since the result of
substitution would be unmanageably messy, let us simplify matters by considering only what
would happen when x; alone changes while all the other variables xz, ..., X remam
constant. Letting dx; # 0, bul setting dx; = - -~ = dx, =0 in (8.26) and (8.27), then
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substituting (8.27) into (8.26) and dividing through by d.x; # {, we obtain the equation system

8.‘-"1(&}’[ +a.f~'] dv; . _l_EiF‘ gy, AT
dyy \ ys \ dx Ay, \dx ) iy

DF? (8}’1) 3 (3}-‘2) §E2 (aj.r,f) JF
; — |+ = - +F+t—— =
ay \ fry iy \dx dv, x| ax) (8.28)

.....................................................

aft fan AF" {3y aF" [ dy, dF"
- , + - - + e — =
ti_L’] dx ] dyg dx 1 8}’,1 dx l ﬁxl

Even this result—for the case where x) alone changes—Ilooks lormidably complex,
because it 1s full of derivatives. But its structure is actually quite easy to comprehend, once
we learn to distinguish between the two types of derivatives that appear in (8.28). One type,
which we have parenthesized for visual distinction, consists of the partial derivalives of the
implicit functions with respect to x; that we are seeking. These, therefore, should be viewed
as the “variables” to be solved for in {8.28). The other type, on the other hand, consists ol the
partial derivalives of the F/ functions given in (8.24). Since thev would all take specific val-
ues when evaluated at the point {(yq, .. ., ¥e0i X105 - - -« Xy )—the point around which the
implicit functions are defined  they appear here not as derivative functions but as derivative
values. As such, they can be treated as given constants. This fact makes (8.28) a linear equa-
tion sysiem, with a structure similar to (4.1). What is interesting is that such a linear system
has arisen during the process of analysis ol a problem that is not necessarily linear in itself,
since no linearity restrictions have been placed on the cquation system (8.24). Thus we have
here an illustration of how linear algebra can come into play ¢ven in nonlingar problems,

Being a linear equation system, (8.28} cant be written in matrix notation 4s

CaE! o 0F T “(a«‘“")_ [ or! ]

G an e || N i

JF?  BF? 0F? (i"_%) _BF

E _3_1:2— T E dx = ax (8'28’)
o arar | 1

L i vy (Bx]) o

Since the determinant of the coelficient matrix in (8.28") is nothing but the particular
Jacobian determinant |J| which is known to be nonzero under conditions of the implicit-
function theorem, and since the sysicm must be nonhomogencous (why?), there should be
a unigue nontrivial solution 1o (8.28"). By Cramer’s rule, thig solution may be expressed
anaiytically as follows:

dxi ) 1]
By a suitable adaptation of this procedure, the partial derivatives of the implicit functions

with respect to the other variables, x-, .. ., x,,, can also be obtained. 1t is a nice feature of
(his procedure that, cach time we allow a particular x; variable to change, we can obtain in

(3}3)_@ G=12..n [see(518)] (8.29)
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one {ell swoop the partial derivatives of all the implicit functions ', ..., /™ with respect
to that particular x; variable.

Similarly, to the implicit-function rule (8.23) for the single-cquation case, the procedure
just described calls only for the use of the partial derivatives of the F functions—evaluated
at the point{ ¥|g, ..., Yuii X10s - - - » Xmo)}—in the calculation of the partial derivatives of the
implicit functions f!, ..., /. Thus the matrix equation (8.28') and its analytical solution
(8.29) are in effcet a statement of the simultancous-cquation version of the implicit-
function rule,

Note that the requirement |J/| # 0 rules out a zero denominator in (8.29), just as the
requirement F, # 0 did in the implicit-function rule (8.23) and (8.23). Also, the role
played by the condition | /| # 0 in guaranteeing a unique (albeit implicit) solution (8.25) to
the gencral (possibly nonlinear) system (8.24) is very similar to the role of the nonsingu-
larity condition | 4| # 0 in a linear system Ax = d.

The following three equations
xy—w=0 Fl=(x,y,w;0=0
y—w?—3z=0  Fl=(x,yw;0=0
wi+ 22 —2z2w=0 Fi=(x,yw:=0

are satisfied at point P: {(x, y,w, 2) = (]—“ 4,1,1), The F' functions obviously possess con-
tinuous derivatives. Thus, if the Jacobian | /| is nonzero at point £, we can use the implicit-
function theorem to find the comparative-static derivative (3x/d2).

To do this, we can first take the total differential of the system:

ydx+xdy—dw=0
dy — 3w’ dw—3dz=0
w? - 27) dw+ (327 - 2wy dz=0

Moving the exogenous differential (and its coefficients) to the right-hand side and writing
in matrix form, we get

y X -1 dx 0
0 1 -3w? dy { = 3 dz
0 0 (3w?—23) clw 2w — 322

where the coefficient matrix on the left-hand side is the Jacobian

Fo Fyo Fy

¥ X -1
Ji=|F2 F2 FRl=10 1 3w |=y(3w'-22
F? }:3 'Elif 0 0 (3w?-2)

At the point P, the Jacobian determinant |/ | = 4 (# 0). Therefore, the implicit-function rule
applies and

-1 (]

—3w?

y X
01
00 (3w?-22
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Using Cramer’s rule to find an expression for (3x/#2), we obtain

0 X —1 0 alt =1
3 1 —3w? 3 1 -3
dxy _[2w-322 0 (wl-27| -1 0
(a_z)“ I - 4
: i
0 1 1 -3
=0+(-3—7p S
-3 -1
~ 16 16
1
~ T4

Let the national-income model {7.17) be rewritten in the form
Y-C—ly—Gg=0
C—a-8(Y-T=0
T— ¥y — Y =0

(8.30)

If we take the endogenous variables (Y, C, T) to be {y, y2, y3), and take the exogenous
variables and parameters (Jo, Go, o, B, v, 8) to be (x1, xz, ..., Xs), then the left-side expres-
sion in each equation can be regarded as a specific £ function, in the form of F(Y, C, T: |,
G o, A, v, 6). Thus (8.30} is a specific case of (8.24), with n = 3 and m = 6. Since the func-
tions F!, F2, and F? do have continuous partial derivatives, and since the relevant Jacobian
determinant (the one involving only the endogenous variables},

gF!  gF!  af!
8y aC AT : 0
aF aF? aF? N
= 3 9T g 1 Bl=1-8+8 (831
-5 01
9F> 5F3 ap
By  aC o7

is always nonzero (both A and 8 being restricted to be positive fractions), we can take ¥, C,
and T to be implicit functions of (fo, Go, &, 8, v, 8) at and around any point that satisfies
{8.30). But a point that satisfies (8.30) would be an equilibrium solution, relating to ¥*, C*
and T*. Hence, what the implicit-function theorem tells us is that we are justified in writing

Y* = (o, Go, e, B, 7, 9)
C* = f2{h, Go,, §,7,8)
T = 3(lo, Go, @, B, 7, 9)
indicating that the equilibrium values of the endogenous variables are implicit functions of
the exogenous variables and the parameters.
The partial derivatives of the implicit functions, such as ¥* /31y and 8Y* /3Gy, are in the
nature of comparative-static derivatives. To find these, we need only the partial derivatives

of the F functions, evaluated at the equilibrium state of the model. Moreover, since 7= 3,
three of these can be found in one operation. Suppose we now hold all exogenous variables
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and parameters fixed except Go. Then, by adapting the result in (8.28"), we may write the

equation
1T =1 0|8y /oGy ¥
-5 1 glleCyaGe f=|0
-5 01 87" /3Gy 0

from which three comparative-static derivatives (all with respect to Go} can be calculated.
The first ane, representing the govemment-expenditure multiplier, wilt for instance come
out to be

T =1 0
0 1 8
;JY“__ 0 Q0 1 _ 1

4Gy 1} 1B+ p

[by (8.31)]

This is, of course, nothing but the result obtained earlier in (7.19), Note, however, that in
the present approach we have worked only with implicit functions, and have completely
bypassed the step of solving the system (8.30} explicitly for ¥~, C*, and 7™, [tis this par-
ticular feature of the method that will now enable us to tuckle the comparative statics of
general-function models which, by their very nature, can yicld no explicit solution.

EXERCISE 8.5

1. For each £ (x, y) = 0, find dy/dx for each of the faitlowing:
(@) y —6x4 7 =0

) 3y+12x 4+ 17 =0

) K2 +6x—13~y=0
2. For each F{x, y) = 0 use the implicit-function rule to find dy/dx:

(@ F(x, ) =3x2+2xy+4y> =0

(BYF(x, ) =12x3 =2y =0

QO F(x,Y) =72+ 2xy? +9¥ =0

(D F{x,y)=6x3 ~3y=0

3. For each F(x, y, 2) = 0 use the implicit-function rule to find dy/dx and dy/dz:

(@D FX,y, 2 =xy + 22 + xyz=0

(DYF(x,y, =222+ + 4xyz=0

() F(x,y, D) =32 +x22y? + P + y'z2=0
4, Assuming that the equation F(U, x;, x2, ..., x;) = 0 implicitly defines a utility func-

tien U = f(x1, %2, ..., xn):

{a) Find the expressions for U /dx;, U /#xp, dx3/dX2, and xq/8xn.

(b} Interpret their respective economic meanings.
5. For each of the given equations F(y, x) = 0, is an implicit function y = () defined

around the point (y = 3, x = 1}?7

(@) X~ 2%y +3xy? =22 =0

(b) 2x° +4xy— ' +67=0



