Chapter

Continuous Time:
First-Order Differential
Equations

In the Domar growth model, we have solved a simple differential equation by dircect inte-
gration, For more complicated dillerential equations, there are various established methods
of solution. Even in the latter cases, however, the fundamental idea underlying the methods
of solution 1s stil] the techniques of integral calculus, For this reason, the solution to a
differential equation is often referred to as the infegral of that cquation.

Only first-order differential equations will be discussed in the present chapter. In this
context, the word order refers to the highest order of the derivatives (or ditferentials)
appearing in the differential equation; thus a first-order differential equation can contain
only the first derivative, say, dv/d1.

15.1 First-Order Linear Differential Equations with Constant
Coefficient and Constant Term

The first derivative ¢y /dt 15 the only onc that can appear in a first-order diflerential cqua-
tion, but it may enter in various powers: dv/dt, (dy/di), or{dy/d{)’. The highest power
attained by the derivative (n the equation is referred to as the degree of the differential
equation. In case the derivative dv/dr appears only in the first degree, and so does the
dependent variable y, and furthermore, no product of the form v(dy/dt) occurs. then the
cquation is said to be lineur. Thus a lirst-order linear differential equation will generally
take the form'

{v
% +ult)y = wit) (15.1)

" Note that the derivative term dy/dt in (15.1) has a unit coefficient. This is not to imply that it can
never actually have a coefficient other than one, but when such a coefficient appears, we can always
“normalize” the equation by dividing each term by the said coefficient. For this reason, the form
given in (15.1) may nonetheless be regarded as a general representation.
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where u and w are two functions of ¢, as is p. In contrast 1o dy/df and y, however, no
restriction whatsoever is placed on the independent variable £, Thus the functions # and w
may very well represent such expressions as /2 and e or some more complicated functions
of #; on the other hand, # and w may 4lso be constants.

This last point leads us to a further classification. When the function u (the coefficient of
the dependent variable ) is a constant, and when the function w 1s a constant additive term,
{15.1) reduces to the special case of a first-order linear differential equation with constant
coefficient and constant term. 1n this section, we shall deal only with this simple variety of
difterential equations.

The Homogeneous Case
If # and w are constant functions and if w happens to be identically zero, (15.1) will become

dy '
m +ay=0 (15.2)
where g is some constant. This differcntial equation is said to be homogeneous on account
of the zero constant term (compare with homogeneous-equation systems), The defining
characteristic of a homogeneous equation is that when all the variables {here, dv/dt and y)
are multiplied by a given constant, the equation remains valid. This characterstic holds if
the constant term is zero, but will be lost if the constant term is not zero.

Equation (15,2} can be written alternatively as

ldy
v dt
But you will recognize that the differential equation (14.16) we met in the Domar model is

precisely of this form. Therelore, by analogy, we should be able to write the solution of
(15.2) or {15.2) immediately as follows:

—a (15.2)

y(ty= Ae™ [general solution] (15.3)
or y{t) = pD)e [definite solution] (15.3%

In (15.3), there appears an arbitrary constant A; therefore it is a generaf solution. When any
particular value is substituted for 4, the solution becomes a particular selution of (15.2).
There is an infinite number of particular solutions, one for cach possible value of 4, in-
cluding the value y(0). This latter value, however, has a special significance: v(0} is the
only value that can make the solution satisfy the initial condition. Since this represents the
result of definitizing the arbitrary constant, we shall refer to (15.3°) as the definite solution
of the differential equation {15.2) or (15.2).

You should observe two things about the solution of a differential equation: (1) the solu-
tion is not a numerical value, but rather a function y{#)-  a time path if # symbolizes time; and
(2) the solution ¥{¢) is free of any derivative or differential expressions, so that as soon as a
specific value of ¢ is substituted into it, a corresponding value of v can be calculated dircetly.

The Nonhomogeneous Case
When a nonzero constant takes the place of the zero in {15.2), we have a nonhomogeneous
linear differential equation

dy
' s —h .
7 +ay {15.4)
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The solution of this equation will consist of the sum of two terms, one of which is called
the complementary function (which we shall denote by y,), and the other known as the
particular integral (1o be denoted by ;). As will be shown, each o thesc has a significant
economic interpretation. Here, we shall present only the method of solution; its rationale
will become clear later.

Even though our objective is to solve the norhomogeneous equation {135.4), frequently
we shall have to refer to its homogencous version, as shown in (15.2). For convenicnt ref-
crence, we call the latter the reduced equation of (15.4), The nonhomogencous cquation
(15.4) itsclf can accordingly be referred 1o as the complete equation. It turns out that the
complementary function y,. is nothing but the gencral solution of the reduced equation,
whereas the particular integral v, 1s simply any particular solution of the complete
equation.

Our discussion of the homogeneous case has already given us the general solution of the
reduced cquation, and we may therefore write

ve=Ae by (15.3)]

What about the particular integral? Since the particular integral is any particular solution
of the complete equation, we ¢an first try the simplest possible type of solution, namely, v
being some coastant { y = £). If y is 4 constant, then it follows that v /df = 0, and (15.4)
will become ap = b, with the solution y = b/a. Therefore, the constant selution will work
as long as & # 0. [n that case, we have

b .
.}",r):E (H#O}

The sum of the complementary function and the particular integral then constitutes the
gencral solution of the complete equation (15.4):

b
v(ity=y. +y,=4e“ + -  [general solution, case of ¢ £ 01 (15.5)
a

What makes this a general solution 1s the presence of the arbitrary constant 4. We may.
of course, definitize this constant by means of an initial condition, Let us say that y takes
the value y(0) when £ = 0. Then, by setting 1 = 0 in (15.5), we find that

b b
Wy =4+ - and A=y()—~
a

i

Thus we can rewrite (15.5) inte
b —a b : H
(1) = | p(0) - i T+ - [definite solution, case of ¢ # 0] {15.5)
o

1t should be noted that the use of the initial condition to definitize the arbitrary constant
is—and should be—undertaken as the final step, after we have found the general solution
to the complete equation. Since the values of both y. and y, are related to the value of y(0},
both of these must be taken into account in definitizing the constant A.

Solve the equation dy/dt+ 2y = 6, with the initial condition y{0) = 10, Here, we have
a =2 and b = 6; thus, by {15.5"), the solution is

WO =(10=3e X +3=7e %43
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Example 2

Example 3

Solve the equation dy/dt + 4y = 0, with the initial condition ¥(0)=1. Since t=4 and
b =10, we have
Kty=(1-0e+0=¢"

The same answer could have been obtained from (15.3°), the formula for the homogeneous
case. The homogeneous equation (15.2) is merely a special case of the nonhomogeneous
equation (15.4) when b = (. Consequently, the formula (15.3") is also a special case of for-
mula (15.5} under the circumstance that b= 0.

What if @ = 0, so that the solution in (15.5") is undefined? In that case, the differential
gquation is of the extremely simple form
dv
— =5 15.6
oy (15.6)

By straight integration, its general solution can be readily found to be
wWHy=ht+c (15.7)

where ¢ is an arbitrary constant. The two component terms in (15.7) can, n fact, again be
identified as the complementary function and the particular integral of the given difteren-
tial equation, respectively. Since @ = 0, the complementary function can be expressed
simply as

yo = de ™ = Ae” = 4 (A = an arbitrary constant)

As to the particular integral, the (act that the constant solution » = k fails to work in the
present case of @ = 0 suggests that we should try instead a nonconstant solution. Let us
consider the simplest possible type of the latter, namely, y = ki, If y = kr, thendy/dt = k,
and the complete equation (15.6) will reduce 10 £ = 5, so that we may write
Yp = bt {a =10)
Our new trial solution indeed works! The general solution of (13.6) is therefore
W)=y +y,=A+bt  [general solution, case of a = 0] (15.77)

which is identical with the result in (15.7), because ¢ and 4 arc but alternative notations for
an arbitrary constant. Note, however, that in the present case, y, is a constant whereas yj s
a function of time—the exact opposite of the situation in {13.5).

By definitizing the arbitrary constant, we find the definite solution to be

vty = v(0} + &1 [definite solution, case of a = 0]  (15.77)

Solve the equation dy/dt =2, with the initial condition y(0) = 5. The solution is, by
(15.7",

vty =5+ 2t

Verification of the Solution
It is true of all solutions of differential equations that their validity can always be checked
by differentiation.
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If we try that on the solution (15.3"), we can obtain the derivative

dy bl .
E = —ii l:_}){(.]} - ;} 5

When this expression for dv/dt and the expression for v(r) as shown in (15.5") are substi-
tuted into the left side of the differential equation (15.4). that side should reduce exactly
to the value of the constant term 4 on the right side of (15.4) it the solution is correct.
Performing this substitution, we indeed find that

bl _ b ) h
—d ]:y{U) - —jJ e 4y ”_L-'((]) — —} e 4 —} =4
a I3 i

Thus our solution 1s correct, provided it also satisfies the initial condition. To check the
latter, fet us set £ = 0 in the solution (15.5"). Since the result

bl ¢
W) = [y(ﬂ) - ﬂ + i = y(0)

is an identity, the mitial condition is indeed satisficd.

It 1s recommended that, as a final step in the process of solving a differential equation,
vou make il a habit to check the validity of your answer by making sure (1) that the deriv-
ative of the time path v(#) is consistent with the given dilferential cquation and (2) that the
definite solution satisfics the initial condition,

EXERCISE 15.1

15.2

1. Find ¥, yp, the general solution, and the definite solution, given:
d

(0)9%4—4}’:12;3/(0):2 © %’Hoy:w;y(mzo

dy _n . dy . _ 11

(b) = = 2y =0 (0) =9 ()27 +4y=60) =1

2. Check the validity of your answers to Preb. 1.
3, Find the solution of each of the following by using an appropriate formula developed

in the text:

@Y s y-aym-0 @Y 1 3y=2y0 =4
dy .. 3 dy — 7 —
(b)a?_zs,y{O)_1 @ -~ 7y=70)=7

d d
@ 2 -sy=0 0 =6 () 3 +6y=5;10) =0

4, Check the validity of your answers to Prob. 3,

Dynamics of Market Price

[n the {macro) Domar growth model, we found an apptication of the Aumogeneous case of
Hinear differential equations of the first order. To illustrate the nosfiomogeneous case, lel us
present a (micro) dynamic model of the market,
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The Framework
Suppose that, for a particular commodity, the demand and supply functions are as follows:

Ye=a—pP (a. 6 > 0)

\ 15.8
O=—y+5P  (7,6>0) (138)
Then, according to 3.4), the equilibrium price should be'
. ¥ty . ..
= = some positive constant 15.9
I { p ) (15.9)

Ifit happens that the initial price P(0) is precisely at the level of P*, the market will clearly
be in equilibrium already, and ne dynamic analysis will be needed. In the more interesting
case of P(0) # P*, however, P* is attainable (if ever) only after a due process of adjust-
ment, during which not only will price ¢change over time but Qg and Q. being functions of
P, must change over time as well. In this light, then, the price and quantity variables can af/
be taken to be functions of time.

Our dynamic question is this; Given sullicient time for the adjustment process to work
itself out, docs it tend to bring price to the equilibrium level P*9 That is, does the time path
(1) tend to converge to P*, asf — o7

The Time Path

To answer this question, we must first find the time path P(¢). But that, m turn, requircs 4
specific pattern of price change to be prescribed first. In general, price changes arc gov-
erncd by the relative strength of the demand and supply forces in the market. Let us assumc,
for the sake of simplicity, that the rate of price change (with respect to time) at any moment
is always directly proportional to the excess demand ( 0g — Q) prevailing at that moment.
Such a pattern of change can be expressed symbolically as

| o
5 /Wm0 U 0) (15.10)

where ; represents a (constant) adjusfment coefficient. With this pattern of change, we can
have dP/dt = 0 if and only if (J; = . In this connection, it may be instructive to nofe
two senses of the term equilibritm price: the intertemporal sense (P being constant over
time) and the market-clearing sense (the equilibrium price being one that equates gy and
;). In the present model, the two sgnses happen to coincide with each other, but this may
not be true of all models.

By virtue of the demand and supply functions in {15.8}, we can express {15.10) specifi-
cally in the form

dP
dt =jfla-fP+y—8P)=jlaty)— j{f+8P
or
{P
rdr JB+HHP = jlat+y) (15.10)

* We have switched from the symbols (¢, b, ¢, d) of (3.4) to (&, £, y, 5) here to avoid any possible
confusion with the use of a and b as parameters in the differential equation (15.4) which we shall
presently apply to the market model.
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Since this is precisely in the form of the differential equation (15.4), and since the coefli-
cient of £ 13 nonzero, we can apply the solution formula{15.5) and write the solution—the

time path of price—as
Y| sl «+y
Py =| P = il
g [U ﬁ+b‘]€ TEre
=[PO)— P L™+ P [by(15.9): k=j(B+8] (15.11)

The Dynamic Stability of Equilibrium

In the end, the question originally posed, namely, whether P(¢) — P* asf — 00, amounts
to the question of whether the first term on the right of (15.11) will tend to zero as ¢ — 0.
Since P({}) and P* are both constant, the key factor will be the exponential expression
e~ . In view of the fact thal & = 0, that expression does tend to zero as / — o0, Conse-
quently, on the assumptions of our model, the time path will indeed lead the price toward
the equilibrium position. In a situation of this sort, where the time path ot the relevant vari-
able P(1) converges to the level P*  interpreted here in its role as the intertemporal (rather
than market-clearing) equilibrium—the equilibrium is said to be dvnamically stable.

The concept of dynamic stability 15 an important one. Let us examing it further by a
more detailed analysis of (15.11). Depending on the relative magnitudes of P{{() and P*,
the solution (15.11) really encompasses three possible cascs. The first is P(0) = P*, which
implies P(¢) = P*. In that event, the time path of price can be drawn as the horizontal
straight line in Fig. 15.1. As mentioned earlier, the attainment of equilibrium is in this casc
a fait accompli. Sccond, we may have P(0) > £~ In this case, the first term on the right of
(15.11} is positive, but it will decrease as the increase in ¢ lowers the value of ¢ . Thus the
time path will approach the cquilibrium level P* from above, as illustrated by the top curve
in Fig. 15.1. Third, in the opposite case of P{0) < P*, the equilibrium level P* will be
approached from below, as illustrated by the bottom curve in the same figure. In general,
to have dyhamic stability, the deviation of the time path from equilibrium must cither be
1dentically zero (as in case 1) or steadily decrease with time (as in cases 2 and 3).

A comparison ol (15.11) with (15.5) tells us that the £* term, the counicrpart of &/a,
is nothing but the particular intcgral y,, whereas the exponential term is the (definitized)
complementary function y.. Thus, we now have an economic interpretation for y. and
Vpi Vp represents the intertemporal equilibrium level of the relevant variable, and y, is the
deviation from equifibrium. Dynamic stability requires the asymptotic vanishing of the
complementary function as ¢ becomcs infinite,

£1)

£(0)

F(1) : casc of Py = P*

Pr @ =

Fr)y - case of PIOY < 7
PN
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FIGURE 15.2

In this model, the particular integral is a constant, so we have a stationary equilibrium
in the intertemporal sensc, represented by P*. Tf the particular intcgral is nonconstant, as in
(15.7"}, on the other hand, we may interpret it as a moving equilibrium.

An Alternative Use of the Model

What we have done in the preceding is to analyze the dynamic stability of equilibrium (the
convergence of the time path), given certain sign specifications for the parameters. An al-
ternative type of inquiry is: In order to ¢nsure dynamic stability, what specific restrictions
must be imposcd upon the parameters?

The answer to that is contained in the solution (15.11). If we allow P(0} # P*, we see
that the first { v,) term in (15.11) will tend to zero as ¢ — oo if and only if & > 0—that is,
if and only if

j(B+8) =0

Thus, we can take this last inequality as the required restriction on the parameters j {the ad-
justment cocfficient of price), B (the negative of the slope of the demand curve, plotted with
O on the vertical axis), and § (the slope of the supply curve, plotted similarly).

in casc the price adjustment is of the “normal” type, with j > 0, so that excess demand
drives price up rather than down, then this restriction becomes merely (# +4) = 0 or,
¢quivalently,

8> -8

To have dynamic stability in that event, the slope of the supply must exceed the slepe of the
demand. When both demand and supply are normally sloped (=8 < 0, 8 = 0), as in
(15.8), this requircment is obviously met. But even if onc of the curves is sloped
“perversely,” the condition may still be fulfilled, such as when § = 1 and —# = 1/2 {posi-
tively sloped demand). The latter situation is illustrated in Fig, 15.2, where the equilibrium
price P* is, as usual, determined by the point of intersection of the two curves, If the initial
price happens to be at Py, then {y (distance P &) will exceed O, (distance P F), and the
excess demand (FG) will drive price up. On the other hand, if price is initially at /%, then

0
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there will be a negarive excess demand MN, which will drive the price down. As the (wo ar-
rows in the figure show, therefore, the price adjustment in this case will be roward the equi-
librium. no matter which side of P* we start from. We should emphasize. however, that
while these arrows can display the direction, they are incapable of indicating the magnitude
of change. Thus Fig. 15.2 is basically static, not dynamic, in nature, and can serve only (o
illustrate, not to replace, the dynamic analysis presented.

EXERCISE 15.2

1. If both the demand and supply in Fig. 15.2 are negatively sloped instead, which curve
should be steeper in order to have dynamic stability? Does your answer conform to the
criterion & > — B2

2. Show that {15.10") can be rewritten as dP/dt + k(P — P*}=0. ffwelet P — P* = A
(signifying deviation), so that dA /dt = dP /dt, the differential equation can be further
rewritten as
dA

= -0
d!-HcA

Find the time path A(?), and discuss the condition for dynamic stability.

3. The dynamic market model discussed in this section is closely patterned after the static
one in Sec. 3.2, What specific new feature is responsible for transforming the static
model inte a dynamic one?

4. Let the dermand and supply be
Qd={x—ﬁP+Ui—": Qs=—y+4P (o, B, 7,6 =0)

(@) Assuming that the rate of change of price over time is directly proportional to the
excess demand, find the time path P(f) (general sclution).

{b) What is the intertemporal equilibrium price? What is the market-clearing equilib-
rium price?

(¢) What restriction on the parameter o would ensure dynamic stability?

5. Let the demand and supply be
Quma=pP—nSr Q=8P (wAnb>0)

{o) Assuming that the market is cleared at every point of time, find the time path P(1)
(general solution).

{b) Does this market have a dynamically stable intertemporal equilibrium price?

{¢) The assumption of the present model that Qg = Q; for all ¢ is identical with that of
the static market model in Sec. 3.2, Nevertheless, we still have a dynamic modet
here. How come?

15.3 Variable Coefficient and Variable Term

In the more general case of a first-order lincar diffcrential equation

dv
- - P = Wit 15.1
o ulyy = wit) (15.12)
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Example 1

#(1) and wi{t) represent a variablc coelficient and a variable term, respectively. How do we
find the time path p{#) in this casc?

The Homogeneous Case

For the homogeneous case, where wi(t) = 0, the solution is still easy to obtain, Since the
differential equation is in the form

dy 1 dy
o tuly=0 - = u(t 15.13
yr + ult)y R u(f) ( )
we have, by integrating both sides in turn with respect to ¢,
1 dy d
Left side = [— = j—y =lny+c  (assumingy = 0}
y dt ¥

Right side = ]—u(r) dt = «fu(t) dt

In the fatter, the integration process cannot be carried further because #(r) has not been
given a specific form; thus we have to settle for just a general intcgral expression. When the
two sides are equated, the result is

Iny=—c— [ u(tydt
Then the desired y path can be obtained by taking the antilog of In v

yy=e" =e cgm A _ g fund e 4 = e (15.14)

This is the general solution of the diffcrential equation (15.13).

To highlight the variable nature of the cocfficient u(t), we have so far explicitly written
out the argument ¢. For notational simplicity, however, we shall from here on omit the
argument and shorten z(¢) to .

As compared with the general solution (15,3) for the constant-coefficient case, the only
modification in (15.14) is the replacement of the e expression by the more complicated

expression e J"# The rationale behind this chunge can be better understood if we inter-
pret the af term in e~ as an integral: [a dt = af (plus a constant which can be absorbed
into the 4 term, since ¢ raised to a constant power is again a constant). In this light, the dif-
ference between the two general solutions in fact turns into a similarity. For in both cascs
we are taking the coefficient of the v term in the differential equation—a constant term ¢ in
one case, and a variable term « in the other—and integrating that with respect to ¢, and then
taking the negative of the resulting integral as the exponent of e.

Once the general solution is obtained, it is a relatively simple matter to get the definite
solution with the help of an appropriate initial condition.

dy

Find the general solution of the equation pm +3t'y =0. Here we have u=3t!, and

judt= | 3t2 dt = 13 + . Therefore, by {15.14), we may write the solution as
Wt)= Ae -9 = geCe “=Be"  where 8= Ae™*

Observe that if we had omitted the constant of integration ¢, we would have lost no
information, because then we would have obtained W!) = Aet, which is really the identi-
cal solution since A and 8 both represent arbitrary constants. In other words, the expression
¢~¢, where the constant ¢ makes its only appearance, can always be subsumed under the
other constant A,
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The Nonhomogeneous Case

For the nonhomogeneous case, where w(¢) = 0, the solution 1s not as easy to obtain. We
shall try to find that solution via the concept of exact differential cquations, to be discussed
in Sec. 15.4. It does no harm, however, to state the resuit here first; Given the differential
equation (15.12), the general solution is

yty=¢e" Jua (A [ wed v a'z) (15.15)

where A is an arbitrary constant that can be definitized if we have an appropriate initial
condition.

1t is of interest that this general solution, like the solution in the constant-coefficient
constant-term case, again consists of two additive components. Furthermore, one of these
two, de f vt g nothing but the general solution of the reduced (homogeneous) equation,
derived earlier in (15.14), and is therefore in the nature of a complementary function.

. . . d
Find the general solution of the equation d_jlf + 2ty = t. Here we have

u=2t w=t and fudt:terk (k arbitrary)

Thus, by (15.15), we have
yty=e b (A + [h&'f‘z”r dt)

— otk (A + e"[re‘"zdr)

2 {1
— Aetet 4 gt (Eerz + c) [e et = 1]

1
=(Ae ¥+ et + 5

—t2

1
=8 45 where B = Ae~* 4 ¢ is arbitrary

The validity of this solution can again be checked by differentiation.

It is interesting to note that, in this example, we could again have omitted the constant
of integration &, as well as the constant of integration ¢, without affecting the final outcome.
This is because both k and ¢ may be subsumed under the arbitrary constant 8 in the final
solution. You are urged to try out the simpler process of applying (15.15) without using the
constants k and ¢, and verify that the same solution will emerge.

Solve the equation %-r— 4ty = 4t. This time we shail omit the constants of integration.
Since

u=4t w=4t and /u de =2t [constant omitted]

the general solution is, by (15.15),
y(t) = €'2r2(:4 + f4te2‘2dt) =e (A + 92‘2) [constant omitted)]

= Ae 2 11
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As may be expected, the omissicn of the constants of integration serves to simplify the pro-
cedure substantially.

The differential equation d—{ +uy=w in {15.12) is more general than the equation
dy

i +ay = b in (15.4), since ¥ and w are not necessarily constant, as are a and b. Accord-

ingly, solution formula (15.15) is also more general than sofution formula (15.5). In fact,
when we set v = g and w = b, (15.15) should reduce to (15.5). This is indeed the case. For
when we have

v=a w=5bh and f udt=at [constant omitted]
then (15.15} becomes

b
yt) = e (A 1 [llbear dt) —e ¥ (A + Ee‘“) [constant omitted]

= Ae7 % 4 L
a

which is identical with (15.5).

EXERCISE 15.3

Solve the following first-order linear differential equations; if an initial condition is given,
definitize the arbitrary constant:

dy
1. EETSV—-—]S

dy
2. = =
& +2ty=10

dy 3
L = w0 =2
3dt+2ty t; (0} 5

d
4 Ly ty =520 =6

dy — 6
5. 23?+12y+23 =0; 1{0) = 7

dy
6. — ==
dt+y t

15.4 Exact Differential Equations

We shall now introduce the concept of exact differential equations and use the solution
method pertaining thereto to obtain the solution formula (15.15) previously cited for the dif-
ferential equation {15.12). Even though our immediate purpose is to use it to solve a finear
differential equation, an exact differential cquation can be either linear or nonlincar by itself.

Exact Differential Equations
Given a function of two variables F( v, 1}, its total differential is

5 3F
dF(, 1) = — dy + = dt
iy e
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When this differential 1s set cqual to zero, the resulting equation

aF aFr

e y -+ m dt =10
is known as an exact differential equation, because its left side is exactly the differential of
the function F(v, ). For instance, given

F(y,6)=y% +4k  (kaconstant)

the total differcntial is

dF =2ytdy + 2 dt

thus the differential equation

; dy 5
2ytdy+vidr =10 or — 4+ == (15.16)
di - 2yt
18 exact,
In general, a differential equation
Mdy+Ndr =0 (15.17)

1s exact if and only if there exists a function F(y, () such that M = 47/3y and N =
¢ F/df. By Young’s theorem, which states that 82 F /8¢ dy = 82 F /3y 9t however, we can

also state that (15.17) is exact if and only if
aM SN
— = 15.18
at ay ( )

This last equation gives us a simple test for the exactness of a differential cquation. Applied
to (15.16), where M = 2y and N = ¥?, this test yields 9M /3 = 2y = 3N /3y; thus the
exactness of the said differential equation s duly verified.

Note that no restrictions have been placed on the terms M and N with regard to the man-
ner in which the variable y occurs. Thus an exact differential equation may very well be
nonlinear (in y). Nevertheless, it will always be of the first order and the first degree.

Being exact, the differcntial equation merely says

dF(y,t) =0
Thus its general solution should ¢learly be in the form
Fip,ty=c¢

To solve an exact differential equation is basically, therefore, 1o scarch for the (primitive)
function F(y, 1) and then sel it equal to an arbitrary constant. L¢t us outline a methed of
finding this for the equation M dv + N dt =10.

Method of Solution

To begin with, since M = 9F/dy, the function F must contain the integral of M with re-
spect to the vartable y; hence we can write out a preliminary result—in a yct indeterminate
form—as follows:

Fly.1) = [Mderw(!) (15.19)
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Here M, a partial derivative, is to be integrated with respect to v only; that is, £ is o be
treated as a constant in the integration process, just as it was treated as a constant in the par-
tial differentiation of F{y, ¢) that resulted in M = 9 #'/8y." Since, in differentiating F(y, ¢)
partizlly with respect to y, any additive term containing only the variable £ and/or some con-
stants (but with no ¥} would drop out, we must now take care to reinstate such terms in the
integration process. This explains why we have introduced in (15.19) a general term (/).
which, though not exacily the same as a constant of integration, has a preciscly identical
role to play as the latter. It is relatively casy to get [ M dy; but how do we pin down the
exact form of this ¥{7) term?

The trick is to utilize the fact that N = 9 F/dz. But the procedure is best cxplained with
the help of specific examples.

Solve the exact differential equation
2ytdy+y? dt=0  [reproduced from (15.16}]
In this equation, we have
M=2yt and N=y?
STEP i By (15.19), we can first write the preliminary resuit
F(r) = [ 2ytdy + 00 = y't4900

Note that we have omitted the constant of integration, because it can automatically be
merged into the expression y(f).

STer i If we differentiate the result from Step 1 partially with respect to t, we can obtain

aF
=Yt
But since N = F /3¢, we can equate N =y and i F /ot = y2 +1/'(1), to get
p()=0

STep il Integration of the last result gives us

¥t :fw’(t) dt=f{)dt:k

and now we have a specific form of ¢ (t). It happens in the present case that (f) is simply
a constant; more generally, it can be a nonconstant function of £.

Steriv The results of Steps i and il can be combined to yield
Fly. ) =y2i+k

The solution of the exact differential equation should then be F(y, t) = c. But since the con-
stant k can be merged into ¢, we may write the solution simply as

yit=c or  pf=ct'?
where ¢ is arbitrary.

¥ Some writers employ the operatar symbot {({- ) 3y to emphasize that the integration is with respect
to y only. We shall still use the symbol f(: - -} dy here, since there is little possibility of confusion.
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Solve the equation (t+ 2y) dy+ (y+ 3t2) dt = 0. First let us check whether this is an
exact differential equation. Setting M =t +2y and N = y+ 32, we find that aM/at =
T=aN/ay. Thus the equation passes the exactress test. To find its solution, we again
follow the procedure outlined in Example 1.

Steri Apply (15.19) and write
Fly,H = f(t +2Ndy+ v =yt + y? +¢{f)  [constant merged into ¢ (1))
Sterii Differentiate this result with respect to t, to get
ar '
it ¥(D)
)
Then, equating thistc N = y + 32, we find that

P(t) = 3¢°

Stepiii - Integrate this last result to get
Yt = f3£2 dt =1t [constant may be omitted]

Step iv. Combine the results of Steps i and il to get the complete form of the function
F(y. o

Fly, ty=yt+y2 40
which implies that the solution of the given differential equation is
vty 4P =c¢

You should verify that setting the total differential of this equation equal to zero will indeed
produce the given differential equation,

This four-step procedure can be used to solve any cxact differential equation. Interest-
ingly, it may even be applicable when the given equation is zof cxact. To see this, however,
we must first introduce the concept of integrating factor.

Integrating Factor

Sometimes an inexact differential equation can be made exact by multiplying every term of
the equation by a particular common factor. Such a factor is called an integrating factor.

The differential equation
2tdy+ydt=0
is not exact, because it does not satisfy (15.18):

aM 4 oN
—=—{)=24—=—(¥)=1

T A P A

However, if we multiply each term by y, the given equation will turn into (15.16), which has
been established to be exact. Thus y is an integrating factor for the differential equation in
the present example.
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When an integrating factor can be found for an inexact differential equation, it is always
possible to render it exact, and then the four-step solution procedure can be readily put
Ty use.

Solution of First-Order Linear Differential Equations
The general first-order lingar ditferential equation

dy v
- Hy = w

which, in the format of (15.17), can b¢ expressed as

dv + (uy —w)dt = 0 (15.20)

o] " = exp ( f t a’t)

This integrating factor, whosc form is by no means intuitively obvious, can be “discov-
ered” as follows. Let 7 be the {yet unknown) integrating factor. Multiplication of (15.20)
through by / should convert it into an exact differential cquation

] d 7 Fo— W d[ =
v+ Huy —w) 0

= (15.20")
M N

has the integrating factor

The cxactness test dictates that dM/3r = N /dy. Visual inspection of the M and ¥
expressions suggests that, since M consists of / only, and since » and w are functions of £
alone, the exactness test will reduce to a very simple condition if £ is also a function of
f alonc. For then the test 80 /01 = dN /3y becomes

di dljde

— =tu or =u

dt /
Thus the special form [ = /() can indeed work, provided it has a rate of growth cqual to
11, or more explicitly, #{z). Accordingly, {(#) should take the specific form

[y = del ™ [of (15.13) and (15.14)]

As can be easily verified, however, the constant 4 can be set equal to 1 without affecting the

ability of 7{¢) to meet the exactness test. Thus we can use the simpler form ef “I as the
integrating factor.
Substitution of this integrating factor into {15.20°) vields the exact difterential equation

¥ gy el —wydi =0 (15.20)
which can then be solved by the four-step procedure.

Ster i First, we apply (15.19) to obtain
F 0= [l dy+uy = vel““ w0

The result of integration emerges in this simple form because the integrand is independent
of the variable y.
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Sterii - Next, we differentiate the result from Step i with respect to t, to get

aF .
(;_I = yuef“"ﬂ +¢'(t)  [chain rule]
And, since this can be equated to N = f“d{(uy —w), we have

Stepiii - Straight integration now yields
Wyt = —/wef“d‘ dt

Inasmuch as the functions & = u(t) and w = w(t) have not been given specific forms, noth-
ing further can be done about this integral, and we must be contented with this rather
general expression for y(t).

Ster v Substituting this (f) expression into the result of Step i, we find that
Fly, ) = yel 9 — f wel 49t gy

So the general solution of the exact differential equation (15.20")—and of the equivalent,
though inexact, first-order finear differentiat equation (15.20)—is

yef ndt _fwefudr dt = ¢

Upon rearrangement and substitution of the {arbitrary constant) symbol ¢ by 4, this can be
written as

f(ty = o~ fudt (A +]wef“°‘f dt) (15.21)

which is exactly the result given earlier in {15.15).

EXERCISE 15.4

1. Verify that each of the following differential equations is exact, and solve by the
four-step procedure:

(@) 2yt dy+ 3y?2 dt =0
(B) 3%t dy +(y* +20)dt =0
() t(1 +2y) dy + v(1 + 1) dt =0

dy 2y*t+382 -
{d) @ + A =0 [Hint: First convert to the form of (15.17}.]
2. Are the foltowing differential equations exact? If nat, try ¢, v, and y? as possible
integrating factors,

(@) 28 + 1) dy + 3yt dt =0
(b) 4y3tdy+ (2y* +30dt=0

3. By applying the four-step procedure to the general exact differential equation
M dy+ N dt =0, derive the following formula for the general solution of an exact
differential equation:

fMdyfdet*f(%fM'dy)dt:—_c
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15.5 Nonlinear Differential Equations
of the First Order and First Degree

Example 1

In a linear differential equation, we restrict to the firs: degree not only the derivative dy/dt,
but also the dependent variable v, and we do not allow the product y(dy/df) to appear.
When y appears in a power higher than one, the equation becomes nonfinear even if it only
contains the derivative dy/dt in he first degree. [n general, an equation in the form

Flyp.thdy+gly, ) di =0 (15.22)
ar
& h(v, 1) (15.22)
dr

where there is no restriction on the powers ol v and ¢, constitutes a first-order first-degree
nonlinear differential equation because dy/dt 1s a first-order derivative in the first power.
Certain varietics of such equations can be solved with relative case by more or less routine
procedures. We shall briefly discuss three cases.

Exact Differential Equations
The first is the now-familiar case of exact differential equations. As was pointed out earlier,
the y variable can appear in an exact equation in a high power, as in (13.16) 2ytdy +
y* df = 0—which you should compare with (15.22). True, the canccllation of the common
factor y from both terms on the left will reduce the equation to a lincar form, but the exact-
ness property will be lost in that event. As an exacr differential equation, therctore, it must
be regarded as nonlinear.

Since the solution method for exact differential equations has already been discussed,
no further comment 1s necessary here.

Separable Variables
The dilferential cquation in (15.22}

flp,Hdy +gv,)dt =0

may happen to possess the convenient property that the {unction £ is in the variable y alone,
while the function g invalves only the variable ¢, so that the cquation reduces to the special
form

S dy+a(tyde=0 (15.23)

In such an event, the variables are said to be separable, because the terms involving y—
consolidated into f(y) can be mathematically separated from the terms mvolving 7,
which are collected under g(¢). To solve this special type of equation, only simple integra-
tion techniques are required.

Solve the equation 3y? dy — tdt = 0. First let us rewrite the equation as

3yldy =tdt
Integrating the two sides {each of which is a differential) and equating the results, we get

1
[3y2dy=ftdt ar y3+c1=§t2+c2
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Thus the general solution can be written as

3_ 1o 1.2 V3
= —t E = —t
1% 7 +cor oyl (2 -|—c)

The notable point here is that the integration of each term is performed with respect to
a different variable; it is this which makes the separable-variable equation comparatively
easy to handle.

Solve the equation 2t dy + y dt = Q. At first glance, this differential equation does not seem
to belong in this spot, because it fails to conform to the general form of (15.23). To be
specific, the coefficients of dy and dt are seen to involve the “wrong” variables, However, a
simple transformation—dividing through by 2yt (# 0)—will reduce the equation to the
separable-variable form

i 1
Lt g dt=0

From our experience with Example 1, we can work toward the solution {without first trans-
posing a term) as follows:'

1 "1
;dyi—fz—fdt:c
1 172
$0 Iny+ilnr:c or  In(yt'“)=c

Thus the solution is
2 =e=k o yty=kt?

where & is an arbitrary constant, as are the symbols ¢ and A employed elsewhere.

Note that, instead of solving the equation in Example 2 as we did, we could also have
transformed it first into an exact ditferential cquation (by the integrating factor v) and then
solved it as such. The solution, already given in Example | of Sec. 15.4, must of course be
identical with the onc just obtained by separation of variables. The point is that 4 given dif-
ferential equation can often be solvable in more than one way, and therefore onc may have a
choice of the method to be used. In other cases, a differential equation that is not amenable
to a particular method may nonctheless become so after an appropriate transformation.

Equations Reducible to the Linear Form
If the differential equation oy /dt = h(y, 1) happens to take the specific nonlinear form

dy

— +Ry=Ty" (15.24)

dt

where & and 7' are two functions of z, and m is any number other than 0 and [ (what if
m = 0 orm = 17), then the equation -rcferred to as a Bernoulli equation—can always be
reduced to a linear differential equation and be solved as such.

" In the integration resuit, we should, strictly speaking, have written In|y| and SInfel. It yand t can
be assurmed to be positive, as is appropriate in the majority of economic contexts, then the resut
given in the text will occur,



494 Part Five  Dynawic Analvsis

Example 3

Example 4

The reduction procedure is relatively simple. First, we can divide (15.24) by v, 1o get

—M dy 1—m
T Ry =7
’ d1 e

if we adopt a shorthand variable z as follows:

then the preceding equation can be written as

1 gz
—+Rz=T
| —m dr+ ‘

Moreover, after multiplying through by (1 — m) d and rearranging, we can transform the
equation into

dz +[(1=m)Rz = (1 = m)T)di =0 (15.24)

This is seen to be a tirst-order linear diffcrential cquation of the form {15.20), in which the
variable 7 has taken the place of y.

Clearly, we can apply formula (15.21) to find its solution z{¢), Then, as a final step. we
can translate z back to y by reverse substilution.

Solve the equation dy/dt + ty = 3ty?. This is a Bernoulli equation, with m = 2 (giving us
z=yl-m= y 1), R=t,and T = 3t. Thus, by (15.24"), we can write the linearized differ-
ential equation as

dz+{-tz+30)dt=0
By applying formula (15.21), the solution can be found to be
(= Aexp(gtz) +3

(As an exercise, trace out the steps leading to this solution.)

Since our primary interest lies in the solution y (t} rather than z (t), we must perform a
reverse transformation using the equation z=y~', or y = 7. By taking the reciprocal of
z (), therefore, we get

y(t) = A_mtz) T3

as the desired solution. This is a general solution, because an arbitrary constant A is present.

Solve the equation dy/dt + (1/t)y = y3. Here, we have m =3 (thus z= y‘g), R =1/t and
T = 1; thus the equation can be linearized into the form

dz+ (_—fm 2) it =0
As you can verify, by the use of formula {15.21), the solution of this differential equation is
z(t)= At? + 2t
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It then follows, by the reverse transformation y = 7712, that the general solution in the
original variable is to be written as

y(t) = (A 4+ 26712

As an exercise, check the validity of the solutions of these last two examples by
differentiation.

EXERCISE 15.5

1. Determine, for each of the following, (1) whether the variables are separable and (2)
whether the equation is linear or else can be linearized:

dy t

(@) 2tdy+2ydt=0 (©) Fa

y 2t dy 2
——dy+ —dt=0 — =

(®) y+1t y+y-|—t @ gt 3y

2. Solve (@) and (b} in Prob. 1 by separation of variables, taking y and t to be positive.
Check your answers by differentiation.

3. Solve (¢) in Prob, 1 as a separable-variable equation and, also, as a Bernoulli equation.
4. Solve (d) in Prob. 1 as a separable-variable equation and, also, as a Bernoulli equation.

5. Verify the correctness of the intermediate solution 2(1) = At* 4 2t in Example 4 by
showing that its derivative dz/dt is consistent with the linearized differential equation.

15.6 The Qualitative-Graphic Approach

The several cases of nonlinear differential equations previously discussed (exact differen-
tial equarions, separable-variable equations, and Bernoulli equations) have all been solved
guantitatively. That 18, we have in every case soughl and found a time path 1(z) which. for
each valuc of 7, tells the specific corresponding value of the variable v,

At times, we may not be able to find a quantitative solution from a given differential
equation. Yet, i such cases. it may nonetheless be possible to ascertain the qualfitarive
properties of the (ime path-—primarily, whether v(#) converges—by directly observing the
differential equation itself or by analyzing its graph. Even when guantitative solutions are
available, moreover, we may still cmploy the techniques of qualitative analysis if the qual-
itarive aspect of the time path ts our principal or exclusive concern.

The Phase Diagram

Given a first-order differential equation in the general form

dy
= Y

97 Sy

erther linear or noniinear in the variable v, we can plot « v/d¢ against v as in Fig. 15.3. Such
a geomefric representation, feasible whenever dy/dt is a function of y alone, is called a
phase diggram, and (he graph representing the function £, a phase fine. (A dilferential cqua-
tion of this form—in which the time variable ¢ does not appear as a separate argument of
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FIGURE 15.3

ey

dr

the function f—is said to be an aufonomous differential equation.) Once a phase linc 15
known, iis configuration will impart significant qualitative information regarding the time
path y(z). The clue to this lies in the following two general remarks:

1. Anywhere above the horizontal axis (where dy/dt = 0), v must be incrcasing over time
and, as far as the y axis is concerned, must be moving from left to right. By analogous
reasoning, any point below the horizontal axis must be associated with a lefiward move-
ment in the variable y, because the negativity of dv/dr means that y decreases over time.
These directional tendencies explain why the arrowheads on the illusirative phase fincs
in Fig. 15.3 are drawn as they are. Above the horizontal axis, the arrows are uniformly
pointed toward the right—toward the northeast or southeast or due east, as the case may
be. The opposite is true below the y axis. Moreover, these results are independent of the
algebraic sign of v, even if phase linc 4 (or any other) is transplanied to the left of the
vertical axis, the direction of the arrows will not be affected.

2. Anequilibrium level of y—in the intertemporal sense of the term il 1t exists, can occur
only on the horizontal axis, where dy /dt = 0 ( y stationary over ime). To find an cqui-
librium, therefore, it is necessary only to consider the intersection of the phase ling with
the y axis.” To test the dynamic stability of equilibrium, on the other hand, we should
also check whether, regardless of the mitial position of v, the phase line will always
guide it toward the equilibrium position at the said intersection.

Types of Time Path

On the basis of the preceding general remarks, we may observe three different types of time
path from the iflustrative phase lines in Fig. 15.3.

Phase line 4 has an equilibrium at point y,; but above as well as below that point, the
arrowheads consistently lead away from equilibrivm, Thus, although equilibrium can be
attained if it happens that p(0) = v,, the more usual case of y(0) # v, will resultin y being
ever-increasing [if ¥(0) = j,] or ever-decreasing (if y(0) < y,]. Besides, in this case the
deviation of y from y, tends to grow at an increasing pace because, as we follow the
arrowheads on the phase line, we deviate farther from the p axis, thereby encountering ever-
increasing numetical values of dy/d7 as well. The time path y(f) implied by phase line A
can therefore be represented by the curves shown in Fig. 15.4a, where y is plotted against /
(rather than dy/d¢ against y). The equilibrium v, s dynamically unstable.

t However, not all intersections represent equilibrium paositions. We shall see this when we discuss
phase line Cin Fig. 15.3.
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In contrast, phase line B implics a stable equilibrium at y,. If p{0) = vp, equilibrium
prevails at once. But the important feature of phase line 8 is that, even if v(0) £ vy, the
movement along the phase ling will guide y toward the level of y,. The time path y(¢} cor-
responding to this type of phase linc should therefore be of the form shown in Fig. [5.45,
which is reminiscent of the dynamic market model.

The preceding discussion suggests that, in general, it is the slope of the phase line at its
intersection point which holds the key to the dynamic stability of equilibrium or the con-
vergence of the time path. A {finite) positive slope, such as at point y,, makes for dynamic
instability; whereas a (finite) negative slope, such as at y,, implies dynamic stability.

This generalization can help us to draw qualitative inferences about given differential
equations without even plotting their phase lines. Take the linear differential equation in
(15.4), for instance:

dy dy
dr+a}_b or i ay + b
Since the phase line will obviously have the {constant) slope —a, here assumed nonzero,
we may immediately infer {without drawing the line) that

converges to

. , e
azl & pn ‘ diverges from }equlllbrlum
As we may expect, this result coincides perfectly with what the quantitative solution of this

gquation tells us;
b b
yit) = [y(ﬂ) - —} e + - [from(15.57]
4 a

We have learned that, starting from a nonequilibrium position, the convergence of y(t)
hinges on the prospect that e — 0 as # — oc. This can happen if and only if a > 0; if
a <0, thene ™ — oo ast — oo, and y(r} cannot converge, Thus, our conclusion is one
and the same, whether it is arrived at quantitatively or qualitatively.

It remains to discuss phase line C, which, being a closed loop sitting across the hori-
zontal axis, does not qualify as a function but shows instead a relation between dy /dr and
y." The interesting new element that emerges in this case is the possibility of a periodically
fluctuating time path. The way that phase Iine C is drawn, we shall find y fluctuating
between the two values v, and y/, in a perpetual motion. In order to generate the periedic

T This can arise from a second-degree differential equation (dy/dt)? = f(y).
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fluctuation, the Toop must, of course, straddle the hortzontal axis in such a manner that
dy/dr can alternatcly be positive and ncgative. Besides, at the two intersection points y,
and y’, the phase line shoutd have an infinite slope; otherwise the intcrscetion will resem-
ble either y, or s, ncither of which permits a continual flow of arrowheads. The type of
time path v(#) corresponding to this looped phase line 15 illustrated in Fig. 15.4¢. Note that,
whenever p(f) hits the upper bound ») or the lower bound y.. we have dy/dt = 0 (local
extrema); but these valucs certainly do not represent equilibrium values of y. In terms
of Fig. 15,3, this means that not all intersections between a phasc line and the y axis are
equilibrium positions.

It sum, for the study of the dynamic stability of equilibrium (or the convergence of the
time path), one has the alternative cither of finding the time path iself or else of simply
drawing the infercnce from its phasc line. We shall 1llustrate the application of the latter
approach with the Solow growth model. Hengeforth, we shall denote the intertemporal
cquilibrium value of p by ¥, as distinct from »*.

EXERCISE 15.6

1. Plot the phase line for each of the following, and discuss its qualitative implications:

dy _ dy . Y
() dt—}f“? (s dt—4 P

dy_ dy_ B
(b a7 =1-5y (d) at =9y —11

2. Plot the phase line for each of the following and interpret:
d
@ F =+ =16 (720

dy 1. .
(b)E—E? Y (y =0
3. Givendy/dt = (y — 3)(y—5) =y’ — By + 15

(@) Deduce that there are two possible equilibrium levels of y, one at y = 3 and the

other at y = 5.
{b) Find the sign of 4 (ﬂ!) aty = 3 and y = 5, respectively. What can you infer from
these? dy \dt

15.7 Solow Growth Model

The growth model of Profcssor Robert Solow,” a Nobel laureate, is purported to show,
among other things, that the razors-edge growth path of the Domar mode| is primarily a
result of the particular production-function assumption adopted therein and that, under
alternative circumstances, the need for delicate balancing may not arisc.

The Framework

In the Domar model, output is explicitly stated as a function of capital alone: x = pK (the
productive capacity, or potential output, is a constant multiplc of the stock of capital). The

" Robert M. Solow, “A Contribution to the Theory of Economic Growth,” Quarterly journal of
Economics, February 1956, pp. 65-94.
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absence of a labor input in the production function carries the implication that labor is
always combined with capital in a fixed proportion, so that it is feasible to consider expiic-
itly only one of these factors of production. Solow, in contrast, seeks to analyze the case
where capital and labor can be combined in varying proportions. Thus his production
function appears in the form

0= (K1) (K, L =0)

where (J 1s output {net of depreciation), K is capital, and £ is tabor—all being used in the
macra scnse. It 1s assumed that fx and f; are positive (positive marginal products), and
Jfxx and f;; are negative (diminishing returns to each input). Furthermore, the production
function fis taken to be linearly homogeneous (constant returns to scale). Conscquently, it
15 possible to write

-

O=Lf (%, 1) =Loplk)  wherek = !E (15.25)

In view of the assumed signs of fy and fxx, the newly introduced ¢ function (which, be
it noted, has only a single argument, &) must be characterized by a positive first derivative
and a negative second derivative. To verify this claim, we first recall from (12.49) that

fr =MPPg = ¢'(k)
henee fx > 0 automatically means (k) = 0. Then, since

foi=m e =2E gl e 1248

= - =—" — ) — see (12.
tr dk 3K L
the assumption fix < 0 leads directly to the result ¢”(k) < 0. Thus the ¢ function—
which, according to {12.46), gives the APP; for cvery capital-labor ratio—is one that
increases with £ at a decreasing rate.

Given that (2 depends on X and £, 1t 1s necessary now to stipulate how the latter two vari-
ablcs themselves are determined. Solow’s assumptions are:

‘ dK
K ( 7 ) =5  [constant proportion of { 1s invested]  (15.26)

£ (= dL/dt

T 7 ) =7  (A=0)  [labor force grows exponentially]  (15.27)

The symbol s represents a (constant) marginal propensity to save, and . a (constant) rate
of growth of labor. Note the dynamic nature of these assumptions; they specify not how the
levels of K and L are determined, but how their rates of change are.

Equations (15.25) through (15.27} constitute a complete model. To solve this model, we
shall first condense it into a single cquation in one variable. To begin with, substitute
{15.25) into (15.26) to get

K =sLotk) (15.28)

Since & = K /L, and K = k1., however, we can obtain another expression for K by differ-
entiating the latter identity:
K=1Lk+kL [product rule]

_ (15.29)
— L4k [by(15.27)]
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FIGURE 15.5

Dynamic Analysis

When (15.29) is equated to (15.28) and the common factor L eliminated, the result emerges
that

k=sp(k) — Ik (15.30)

This cquation—a differential equation in the variable &, with two parameters s and A—is
the fundamental equation of the Selow growth model.

A Qualitative-Graphic Analysis

Because (15.30) is stated in a general-function form, no specific quantitative solution 13
available. Nevertheless, we can analyze it qualitatively. To this end, we should plot a phase
line, with k on the vertical axis and & on the horizontal,

Since {15.30) contains two terms on (he right, however, lct us [irst plot these as two sepa-
rate curves. The Ak term, a lincar function of 4, will obviously show up in Fig. 15.5¢ as a
straight linc, with a zero vertical intcreept and a slope equal to &. The s (k) term, on the other
hand, plots as a curve that increascs al a decreasing rate, like ¢(4), since s¢ (k) is merely a
constant fraction of the ¢i{k) curve. [f we consider & to be an indispensable factor of produc-
tion, we must start the s¢ (k) curve [rom the point of origin; this is because if K = 0 and thus
k = 0, O must also be 7ero, as will be ¢{£) and s¢{k). The way the curve is actually drawn
also reflects the implicit assumption that there cxists a set of & valucs for which s¢(k)
exceeds Ak, so that the two curves intersect at some positive value of &, namely £,

Based upon these two curves, the value of £ for each value of k can be measured by the
vertical distance between the two curves. Plotting the values of k against , as in Fig. 15.55,
will then vield the phasc line we need. Note that, since the two curves in Fig. 15.5¢ inter-
seet when the capital—labor ratio is £, the phase line in Fig. 15.5b must cross the horizontal
axis at k. This marks £ as the intertemporal equilibrium capital-labor ratio.

Tnasmuch as the phase line has a negative slope at £, the equilibrium is readily identified
as a stable one; given any (positive) initial valuc of k, the dynamic movement of the mode!
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must lead us convergently to the equilibrium level k. The significant point is that once this
cquilibrium is attained—and thus the capital-labor ratio is (by definition) unvarying over
timec—capital must thereafter grow apacc with labor, at the identical vate 4. This will imply.
in turn, that net Investment must grow at the rate A (see Exercise 15.7-2). Note, however,
that the word muest is used here not in the sense of requirement, but with the implication of
automaticity, Thus, what the Solow modcl serves to show is that, given a rate of growth of
labor 4, the cconomy by itself, and without the delicate balancing i la Domar, can cventu-
ally reach a state of steady growth in which investment will grow at the rate A, the same as
K and L. Moreover, in order to satisfy (15.25), Q must grow at the same rate as well because
¢(k) is a constant when the capital-labor ratio remains unvarying at the level £. Such a
situation, 1 which the relevant variables all grow al an identical rate, is called a steady
state—a generalization of the concept of stationary state (in which the relevant variables
all remain constant, or in other words all grow at the zero rate).

Note that, in the preceding analysis, the produciion function is assumed for convenience
to be invariant over time. [f the state of technology is allowed to improve, on the other hand,
the production function will have to be duly modified. For instance, it may be writlen
Instead in the form

. . dT
=T (K L) (W > 0)

where T, some measure of technology, is an increasing function of time. Because ol the in-
creasing multiplicative term 7'(¢), a fixed amount of K and L will turn out a larger output at
a future date than at present, In this event, the s¢ (k) curve in Fig, 15.5 will be subject to a
secular upward shift, resulting in successively higher intersections with the A4 ray and
also in larger values of k. With technological improvement, therefore. it will become
possible, in a succession of steady states, o have a larger and larger amount of capitaf
equipment available to cach representative worker in the cconomy, with a concomitant rise
in productivily.

A Quantitative lllustration

The preceding analysis had to be qualitative, owing to the presence of 4 general function

@(k) in the model. But if we specify the production function to be a lincarly homegeneous

Cobb-Douglas function, for mstance, then a quantitative solution can be found as well.
Let us write the production function as

K o3
Q — KL!L].—{J‘ = L (__) — thx
L
so that (k) = &%, Then (15.30) becomes
f=sk" -k ot k+nk= sk

which 15 a Bernoulli cquation in the variable & [sce (15.24)], with R =4, T =, and
m = a. Letting = = k"%, we obtain its linearized version

dz+[(l —a)hz — {1 ~a)s)dt =0
o C 0 —whz= (] —as
it s e [

{

u h
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This is a linear differential cquation with a constant cocfficient ¢ and a constant term b,
Thus, by formula (15.5), we have
§

Z(.f.) = [_7((]) _ %}, [l—igint + -

A

The substitution ol z = &'~ will then yield the firal solution
kl—u: ;{'(O]l_d'"'i {)'(1—t2)-"n.'_|_i
A A

where (0} is the initial value of the capitat-labor ratio 4.

This solution is what determines the time path of £ Recaliing that (I - «) and 4 are
both positive. we scc that gs ¢ — oo the exponential expression will approach zero:
consequently,

¢ LA ]—uy

_ 8 8
s o or A'—}(_—) a8t — o0

A

-

Therefore, the capital-labor ratio will approach a constant as its cquilibrium value. This
equilibrium or stcady-state value, (v/4) 1" @, varies dircetly with (he propeasity to save s,
and inversely with the rate of growth of labor 7.

EXERCISE 15.7

1. Divide (15.30) through by &, and interpret the resulting equation in terms of the
growth rates of k, &, and L.

2. Show that, if capital is growing at the rate 7 (thatis, X = Ae*!), net investment | must
also be growing at the rate 4.

3. The original input variables of the Solow model are K and L, but the fundamental equa-
tion (15.30) focuses on the capital-labor ratio & instead. What assumption(s) in the
model is{are) responsible for {and make possible) this shift of focus? Explain.

4, Draw a phase diagram for each of the foliowing, and discuss the qualitative aspects of
the time path ¥(i):

(@} y=3-y-Iny &) y=e"~(y+2)



Chapter

Higher-Order Differential
Equations

In Chap. 15, we discussed the methods of solving a first-order differential equation, ong in
which there appears no derivative {or differential) of orders higher than 1. At times, how-
ever, the specification of a model may involve the second derivative or a derivative of an
even higher order. We may, for instance, be given a function describing “the rate of change
of the rate of change™ of the income variable ¥, say,

a2y
di?

from which we are supposed to find the time path of ¥. In this event, the given function con-
stitutes a second-order differential equation, and the tusk of finding the time path Y{#) is
that of soiving the second-order differential cquation. The present chapter is concerned
with the methods of solution and the economic applications of such higher-order differen-
tial equartions, but we shall confine our discussion to the /inegr case only.

A simple variety of linear differential equations of order n is of the following form:

=LY

d"y d"y dy
. w=1"7 n r=h .
o 4+ = +--tua 1(1,‘r + a3 (16.1}

or, in an alternative notation,
PN+ a4ty (A ay=b (16.1)

This equation is of order n, because the nth derivative (the first term on the Icft) is the high-
est derivative present. Tt is finear, since all the derivatives, as well as the dependent variable
¥, appear only in the first degree, and moreover, no product term occurs in which y and any
of its derivatives arc multiplied together. You will note, in addition, thai this differential
equation is characterized by constant coefficients (the a%s) and a constunt term (b). The con-
stancy of the coefficients is an assumption we shall retain throughout this chapter. The
constant term b, on the other hand, is adopted here as a first approach; later, in Sec. 16.5,
we shall drop it in favor of a variable term.

503
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16.1 Second-Order Linear Differential Equations
with Constant Coefficients and Constant Term

Example 1

For pedagogic reasons, let us first discuss the method of solution lor the second-order case
{n = 2). The relevant differential equation is then the simple one

Vi +ay (O +ay =4 (16.2)

where a|, g2, and b are all constants. If the term b is identically zero, we have a homoge-
neous equation, but if b is a nonzero constant, the equation is nonhomogenecus. Our
discussion will proceed on the assumption that (16.2) is nonhomaogeneous; in solving the
nonhomogencous version of (16.2), the solution of the homogencous versien will emerge
automatically as a by-product.

In this connection, we recall a proposition introduced in Sec, 15.1 which is equally
applicable here: 11 y, is the complementary function, i.c., the gencral selution {containing
arbitrary constants) of the reduced equation of (16.2) and if y,, is the particular infegral, i1.¢.,
any particular solution {containing no arbitrary constants) of the complete equation (16.2),
then y{2) = y. + », will be the general solution of the complete equation. As was explained
previously, the y, component provides us with the cquilibrium value of the variable y in the
intertemporal sense of the term, whereas the v, component reveals, for each pomt of time,
the deviation of the time path y(¢) from the equilibrium.

The Particular Integral

For the case of constant coefficients and constant term, the particular integral is relatively
easy to find. Since the particular intcgral can be any solution of (16.2), i.c., any valuc of v
that satisfies this nonhomogeneous cquation, we should always try the simplest possible
type: namely, = a constant. T v = a constant, it lollows that

v =y =0

so that (16.2) in effect becomes a2y = b, with the solutien v = 5/u;. Thus, the desired par-
ticular integral 1s

b

il

Vo = (casc of gy £ ) (16.3)

[

Since the process of finding the value of y, involves the condition ¥'(2) = 0, the rationale
for considering (hat value as an intertemporal equilibrium becomes self-evident.

Find the particular integral of the equation

vy +y(—-2y=-10

The relevant coefficients here are @ = -2 and b = -10. Therefore, the particular integral is

What if ¢; = 0- so that the expressien b/a 18 not defined? In such a situation, since the
constant solution for v, fails to work, we must try some nonconsiant form of solution. Taking
the simplest possibility, we may try y = &£, Since a, =, the differential equation is now

YO+ ayi(ny=>~
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but if y = kt, which implies y'(1} = & and »"(¢) = 0, this equation reduces to a k = b.
This determines the value of £ as b/«,. thereby giving us the particular integral

b
Vo= —1 (case of @z = 0; ) £ 0) (16.39)
4
[nasmuch as y, is in this case a nonconstant function of time, we shall regard it as a mov-
ing cquilibrium.

Find the y, of the equation y“(t)+ y'(f)=—10. Here, we have @ =0, ; =1, and
b= —-10. Thus, by (16.3"), we can write

yp =10t

If it happens that ¢, is also zero, then the solution form of p = & will also break down,
because the expression ¢ /a) will now be undefined. We ought, then, to try a solution of the
form y = k2. With a, = a; = 0, the differential equation now reduces to the extremely
simple form

') =b

and if y = k2, which implies v'(1) = 2ks and y“(1) = 24, the dilferential equation can be
written as 2k = b, Thus, we find & = #/2, and the particular integral is

b
Vp = -2—52 (caseofa, =a; =0) (16.3)
The equilibrium represented by this particular integral is again a moving equilibrium.

Find the y, of the equation y"(t) = —10. Since the coefficients are a; = @ =0 and
b= —10, formula (16.3") is applicable. The desired answer is y; = —5t2,

The Complementary Function

The complementary function of (16.2) is defined to be the general solution of its reduced
(homogencous) cquation

P Fay ) Fay =0 (16.4)

This is why we stated that the solution of a homogeneous equation will always be a
hv-product in the process of solving a complete equation.

Even though we have never tackled such an equation before, our experience with the
conplementary function of the first-order differential equations can supply us with a use-
ful hint. From the solutions {15.3), {15.3"), (15.5), and (15.5"), it i clear that exponential
expressions of the form de” figure very prominently in the complementary functions of
first-order differential equations with constant cocfficients. Then why net try a solution of
the form y = Ae™ in the second-order equation, too?

[f we adopt the trial solution v = Ae”, we must also accepl

yiH)=rde” and  y(5) =r’de”



506 Part Five Dynamic Anabsiy

as the derivatives of y. On the basis of these expressions for y, y (1), and y“(¢), the reduced
differential equation {16.4) can be transformed into

A" (PP +ar +ar) =0 (16.4)

As long as we choose those values of A and » that satisfy (16.4'), the trial solution p = Ae”
should work, Since ™ can never be zero, we must either let 4 = 0 or see to it that r satis-
fies the equation

rrtar+a =0 (16.4")

Since the value of the (arbitrary) constant 4 is to be definitized by usc of the initial condi-
tions of the problem, however, we cannot simply set 4 = 0 at will. Therelore, it is essential
toy look for values of » that satisty (16.4").

Equation (16.4") is known as the characteristic equation (or auxiliary equation) of the
homogeneous equation (16.4), or of the complete equation (16.2), Because 1t 1s a quadratic
equation in #, it yields two roots (solutions), referred to in the present context as character-
istic roots, as follows:"

—u £ ‘;faf — 4gs

“

Flory = 5 (16.5)

These two roots bear a simple but intercsting relationship to cach other, which can serve as
a convenicnt means of checking our calculation: The sum of the two roots is always equal to
—a, and their product is always equal 10 a2. The proof of this statement is straightforward:

—d + \/a]z — 4 —ay — \{fﬁz —4a =24
rotrn= + - -
2 2 2 (16.6)

(—G‘])z - (af —41:?2) _ i(ﬂ
4 4

The valugs of these two roots arc the only values we may assign to » in the solution
y = Ae’" . But this means that, in cffect, there are rwo solutions which will work, namely,

i = =2

yo=Ae"  and  y = A’

where A and A; are two arbitrary constants, and #) and r, are the characteristic roots
found from (16.5), Since we want only one general solution, however, there seems to be
an¢ too many. Two alternatives are now open to us: {1) pick either y or y» at random, or
{(2) combine them in somc fashion.

The first alternative, though simpler, is unacceplable. There is only one arbitrary con-
stant in y; or vz, but to qualify as a general solution of a second-order differential equation,
the expression must contain fwoe arbitrary constants. This requirement stems from the fact
that, in proceeding from a function y(#) to its second derivative y"{f), we “lose”™ two
constants during the two rounds of differentiation; therefore, to revert from a second-order
differential equation to the primitive function y(#), two constants should be reinstated.
That leaves us only the aliernative of combining vy and ys, 50 as to include both constants

' Note that the quadratic equation (16.4"} is in the normalized form; the coefficient of the rtermis 1.
In applying formula {16.5) to find the characteristic roots of a differential equation, we must first
make sure that the characteristic equation is indeed in the normalized form.
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Ay and 4>. As it turns out, we can simply take their sum, v| + 7, as the genetal solution of
{16.4). Let us demonstrate that, if ¥, and y;, respectively, satisfy (16.4), then the sum
{v1 + y2) will also do so. If yy and y» arc indeed solutions of (16.4), then by substituting
each of these into (16.4), we must find that the foilowing two equations hold:

yin+ay iy +ay =0
KO +ays() +awyp==0

By adding these equations, however, we find that
() + 12 (0] + a1 [y () + »(0)] + iy + ) =0
— —

=40y 4 p) =g+
dre :

Thus, like ) or v, the sum ( v; + y,) satisfies the equation (16.4) as well. Accordingly, the
general solution of the homogeneous equation (16.4) or the complementary function of the
complete equation (16.2) can, in general, be written as y, =y + .

A more carcful examination of the characteristic-root formula (16.5) indicates, however,
that as far as the values of vy and r; are concerned, three possible cases can arise, some of
which may necessitate 4 modification of our result v, =y + w.

Case ] (distinct real roots) When a]2 > 4aa, the square root in (16.5) is a real number,
and the two roots 11 and r; will take distinct real values, becausc the square root is added to
—a, for #y, but subtracted from —e, for 7. In this case, we can indced write

Ye=Wmthh= 14](2'”]r + Ag{%‘m (r :,é ra) (167)

Because the two roots are distinct, the two exponential expressions must be linearly inde-
pendent {neither is a multiple of the other); consequently, A| and 4, will always remain as
separate entities and provide us with two constants, as required.

Solve the differentiat equation
Yty +y() -2y =-10

The particular integral of this equation has already been found to be y, = 5, in Example 1,
Let us find the complementary function. Since the coefficients of the equation are gy = 1
and a; = —2, the characteristic roots are, by (16.5},

1148 -1£3

) > 1,-2

r,rn=

{Check: m+rz=-1=—ay; nrp=-2=a.) Since the roots are distinct real numbers,
the complementary function is y. = Are' + Aze %, Therefore, the general solution can be
written as

Y8 =yt yp= At + A 45 (16.8)

In order to definitize the constants Ay and A», there is need now for two initial condi-
tions. Let these conditions be () = 12 and y'(0) = —2. That is, when t = 0, W) and y'()
are, respectively, 12 and —2. Seiting t = 0 in (16.8), we find that

vi0)= A+ A2+ 5
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Differentiating (16.8) with respect to t and then setting t = Q in the derivative, we find that
vt = Arel - 2467 and  y'(0) = A1 - 24;

To satisfy the two initial conditions, therefore, we must set ¥(0} =12 and y'(0) = -2,
which results in the following pair of simultaneous equations:

A+ Ay =7
Ay —2A;=-2

with solutions 4; = 4 and A; = 3. Thus the definite solution of the differential equation is
yf) =det + 3¢+ 5 {16.8)

As before, we can check the validity of this solution by differentiation. The first and
second derivatives of (16.8") are

v =4 —6e ¥ and  y'(t)=4de' 4127

When these are substituted into the given differential equation atong with (16.8), the result
is an identity —10 = —10. Thus the solution is correct. As you can easily verify, (16.8') also
satisfies both of the initial conditions,

Case 2 (repeated real roots) When the coellicients in the differential equation are such
that af = da,, the square root in (16,5) will vanish, and the two characteristic roots take an
identical valuc:
[ ) i
Fl=F =r)=——
2
Such roots arc known as repeated roots, or multiple (here, double) roots.
[f we attempl to write the complementary function as ¥, = yi + v, the sum will in this
case collapse into a single expression

yo= A" + A" =(4) + Ay)e” = Aze”

Jeaving us with only one constant. This is not sufficient to lcad us from a second-order
differential equation back to its primitive lunction. The only way out is to find another ¢li-
gible component term for the sum-- a term which satisfies {16.4) and vet which is lincarly
independent of the term A3e”™, 5o as to preclude such “collapsing.”

An cxpression that will satisfy these requirements is Asze™. Since the variable 7 has
entered into it multiplicatively, this cemponent term is obviously linearly independent of
the Ase' term; thus it will enable us to introduce another constant, 44. But does Agze”
qualify as a solution of (16.4)? If we try ¥ = Aaze", then, by the product rule, we can find
its first and secend derivatives to be

) =+ DAge™ and ¥ () = (7 + 2r) dge”
y

Substituting these expressions of y, ', and y" into the left side of (16.4), we get the
CXpression

(720 4 27) + ay (it + 1) + @] Age™
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Inasmuch as, in the present context, we have a.f =day and r = —a,/2, this last expression
vanishes identically and thus 1s always equal to the right side of (16.4); this shows that
Agte”™ does indeed qualify as a solution.

Hence, the complementary function of the double-root case can be written as

Yo = Ay + Agte” {16.9)

Solve the differential equation
y'() + 6y () + 9y =27

Here, the coefficients are &y =6 and a; = 9; since af =44, the roots will be repeated,
According to formula (16.5), we have r = —@/2 = —3. Thus, in line with the result in
(16.9), the complementary function may be written as

Ye = Aye 3t 4 Agte

The general solution of the given differential equation is now also readily obtainable.
Trying a constant solution for the particular integral, we get y, = 3. It follows that the
general solution of the complete equation is

VO =yt yp = Ase> + Agte™ +3

The two arbitrary constants can again be definitized with two initial conditions. Suppose
that the initial conditions are y(0) = 5 and ¥'(0) = —5. By setting t = 0 in the preceding
general solution, we should find W) = 5; that is,

W0y =A;+3=5

This yields A3 = 2. Next, by differentiating the general solution and then setting t = 0 and
also Az = 2, we must have y'(0) = —5. That s,

v = —3Ase73 — BAste M4 Age
and Y(0)=—-6+A;=-5

This yields A4 = 1. Thus we can finally write the definite salution of the given equation as

yity=2¢ +te™ 13

Case 3 (complex roots) There remains a third possibility regarding the relative magni-
tude of the coctlicignts @, and @z, namely, a% < 4ay. When this cventuality occurs, formula
{16.5) will involve the square toot of & regative number, which cannot be handled before
we are properly introduced to the concepts of imaginary and complex numbers. For the
time being, thercfore, we shall be content with the mere cataloging of this case and shall
leave the full discussion of it to Secs. 16.2 and 16.3.

The three cases cited can be illustrated by the three curves in Fig, 16.1, each of which
represents a different version of the quadratic function f(r}=r*+ar +a,. As we
learned earlier, when such a function is set equal to zero, the result is 4 quadratic equation
J1r) =10, and to solve the lutter equation is merely to “find the zeros of the quadratic

function” Graphically, this means that the roots of the equation are to be found on the

horizontal axis, where f{r) = 0.
The position of the lowest curve in Fig. 16.1, is such that the curve intersects the hori-
zontal axis twice; thus we can find two distinct roots # and #;, both of which satisfy the
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Complex roots

Repeated real roots

Taistinct real roots

quadratic cquation f{r) = 0 and both of which, of course, are real-valucd. Thus the lowest
curve illustrates Case 1. Turning to the middie curve, we note that it meets the horizontal
axis only once, at r3. This latter is the only value of  that can satisfy the cquation f(r) = 0.
Therefore, the middle curve illustrates Case 2. Last, we note that the top curve does not
meet the horizontal axis at all, and there is thus no real-valued root to the equation
£(#) = 0. While there exist no real roots in such 4 case, there are nevertheless two complex
numbers that can satisfy the equation, as will be shown in Sec. 16.2.

The Dynamic Stability of Equilibrium
For Cascs 1 and 2, the condition for dynamic stability of equilibrium agam depends on the
algebraic signs of the characteristic roots.

For Case |, the complementary function (16.7) consists of the two exponential expres-
sions Aje"' and 4-¢™". The coefficients 4, and A, are arbitrary constants; their values
hinge on the initial conditions of the problem. Thus we can be sure ol a dynamically stable
cquilibrivm ( y. => 0 as f — oc), regardless of what the initial conditions happen to be, if
and only if the roots 7y and r; are hoth negative. We emphasize the word both here, because
the condition for dynamic stability docs ro permit even one ef the roots to be positive or
zero. If r| = 2 and 7, = —5, for instance, it might appear at first glance that the second
root, being larger in absolute value, can outweigh the first. In actuality, howcever, it is the
positive root that must eventually dominate, because as ¢ increases, et will grow increas-
ingly larger, but ¢ will steadily dwindle away.

For Case 2, with repeated toots, the complementary function (16.9) contains not only
the familiar e?/ expression, but alse a multiplicative cxptession {e”. For the former term to
approach zcro whatever the initial conditions may be, it is necessary-and-sufficient to have
r < 0. But would that also ensure the vanishing of #e™? As it turns out, the expression ze"
(or, more generally, *e’") possesses the same general type of time path as does ™ (r # 0).
Thus the condition # < @ 1s indeed necessary-and-sufficient for the entire complemen-
tary function to approach zero as 1 — o0, yiclding a dynamically stable intertemporal
cquilibrium.
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EXERCISE 16.1
1. Find the particular integral of each equation:
@ y"(t) -2y () +5y=2 @y'+2y(t)-y=—4
By O+ y =7 & y'( =12

@y (D+3y=9

2. Find the complementary function of each equation:
@y (@ +3y(H-4y=12 @y -2y +y=3
(b) y'(} + 6y'(1)+ 5y =10 (&) y" () +8y'() + 16y =0

3. Find the general solution of each differential equation in Prob. 2, and then definitize
the solution with the initial conditions y{(0) = 4 and y'(0) = 2.

4. Are the intertemporal equilibriums found in Prab. 3 dynamically stable?

5. Verify that the definite solution in Example 5 indeed (a) satisfies the two initial condi-
tions and (b) has first and second derivatives that conform to the given differential
equation.

6. Show that, as t —- oo, the limit of te™ is zero if r < 0, but is infinite if r > 0.

16.2 Complex Numbers and Circular Functions

When the coefficients of a second-order lincar differential equation, v{t) + a) v {1+
tyy = b, are such that ¢ < day, the characteristic-root formula (16.5) would call for tak-
ing the square root of a negative number. Since the square of any positive or negative real
number is invariably positive, whereas the square of zero is vero, only a nonnegative real
number can ever yield a real-valued square root. Thus, it we contine our attention to the
real number system, as we have so far, no characteristic roots are available for this case
(Case 3). This fact motivates us to consider numbers outside of the real-number system.

Imaginary and Complex Numbers

Conceptually, it is possible to define a number / = —1, which when squared will equal
—1. Because # 15 the square root of a negative number, it is obviously not real-valued: it is
therefore referred to as an imaginary number. With it at our disposal, we may write a host
of other imaginary numbers, such as /=9 = Oy/—1 = 37 and V=2 = /2i.

Extending its application a step further, we may construct yet another type of number - -
one that contains a reaf part as well as an imaginary part, such as (8 —7) and (3 + 5i).
Known as complex mumbers, these can be represented gencrally in the form (£ + i),
where £ and v are two rcal numbers.” OF course, in case v = 0, the complex number will
reduce 1o a real number, whereas i 2 = 0, it will become an imaginary number. Thus the
set of all real numbers (call it R) constitutes a subset of the set of all complex numbers (call
it C). Smlarly, the ser of all imaginary numbers (call it 1) also comstitutes a subset of C,
That 1s. R  C, and | C €. Furthermore, since the terms real and imaginary are mutually
exclustve, the sets R and | must be disjoint; that is R = (2,

T We employ the symbals k {for horizantal) and v (for vertical) in the general complex-number
notation, because we shall presently plot the values of h and v, respectively, on the horizontal and
vertical axes of a two-dimensional diagram.
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A complex numbcr (h + v7) can be represented graphically in what is called an Argand
diagram, as illustrated in Fig. 16.2, By plotting / horizontally on the rea/ axis and v verti-
cally on the imaginary axis, the mumber (A + vi) can be specified by the point (4, v), which
we have alternatively labeled €. The values of 4 and » arc algebraically signed, of course,
so that if & < 0, the peint C will be to the left of the point of origin; similarly, a negative v
will mean 4 location below the horizontal axis.

Given the values of & and v, we can also calculate the length of the line OC by applying
Pythagoras’s theorem, which states that the square of the hypotenuse of a right-angled
triangle is the sum of the squarcs of the other two sides. Denoting the length of OC by R
(for radius veetor), we have

R=#+¥ and R=VE+1 (16.10)

where the square toot is always taken to be positive, The value of R is sometimes called the
absolute value, or modulus, of the complex number (b 4 v7 ). (Note that changing the signs
of  and v will produce no effeet on the absolute value of the complex number, R.) Like 4
and v, then, R is real-valued, but unlike these other values, R is always positive. We shall
find the number R to be of great importance in the ensuing discussion.

Complex Roots

Mcanwhile, let us return to formula (16.5) and examine the casc of complex characteristic
roots. When the coefficicnts of a second-order differential equation are such that a]z < dus,
the square-root expression in {16.5) can be written as

Jat 4y = \Jta - V=T = Jaay - ol

Hence, if we adopt the shorthand

p= 2 and ye—da

v =
2 2

the two roots can be denoted by a pair of conjugate complex numbers:

FlLrr=hTv
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These two complex roots arc said to be “conjugate” because they always appear together,
one being the sum of & and vi, and the other being the difference between £ and vi. Note
that they share the same absolute value R.

Find the roots of the characteristic equation r* + r -+ 4 = 0. Applying the familiar formula,
we have

oo TIEYETS TR VISST -1 VIS,
R A 2 2772
which constitute a pair of conjugate complex numbers.
As before, we can use (16.6) to check our calculations. If correct, we should have

n+rz=-a(=-1)and rir; = @& (= 4). Since we do find

(_1 ﬁﬁf) (--1 m;)
ntn=|5+—J}+{5 -

2 2 2 2

and fify = (_—1 + ﬂ) (:21 - \/;_5;)

cur calculation is indeed validated.

Even in the complex-root case (Casc 3), we may express the complementary function of
a differential equation according to (16.7), that is,

Ve = Ale[hﬂn){ _|_A2£__,(4'z—m')r — ea’:r(A]et.-fr 4 Aze—vr';) (16.11)

But a new feature has been introduced: the number { now appears in the exponents of the two
expressions in parentheses. How do we interpret such imaginary cxponential functions?

To facilitate their interpretation, it will prove helpful first to transform these expressiens
into equivalent circafar-function forms, As we shall presently see, the latter functions char-
acteristically involve periodic fluctuations of a variable. Consequently, the complementary
function (16.11), being translatable into circular-function forms, can also be expected to
generate a cyclical type of time path.

Circular Functions
Consider a circle with its center at the point of origin and with 4 radius of length R, as
shown in Fig. 16.3. Let the radius, like the hand of a clock, rotate in the counterclockwise
direction. Starting from the position O4, it will gradually move into the position OP, fol-
lowed successively by such positions as OB, OC, and OD: and at the end of a cycle, it will
return to OA. Thereafier, the cycle will simply repeat itself.

When in a specific position  say, OP—the clock hand will make a definitc angic 8 with
ling 04, and the tip of the hand (P) will determine 4 vertical distance v and a horizontal dis-
tance 4. As the angle 6 changes during the process of rotation, v and 4 will vary, although
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R will not, Thus the ratios v/R and 4/ R must change with §; that is, these two ratios arc
both functions of the angle #. Specifically, v/ R and #/R are called, respectively, the sine
(function) of @ and the cosine (function) of €:

.

—y

sin® =

(16.12)

costl = (16.13)

my| T R

[n view of their connection with a circle, these functions are referred to as circutar fine-
tions. Since they are also associated with a triangle, however, they arc allernatively called
wrigonometric functions. Another (and fancier) name lor them is sinusoidul functions, The
sine and cosine functions are not the only cireular functions; another frequently encoun-
tercd one is the fangent function, defined as
tang = stnf = (h #0)
cosd A

Our major concern here, however, will be with the sine and cosine lunctions.

The independent variable in a circular function is the angic , so the mapping involved
here is from an angle 1o a ratio of twa distances. Usually, angles are measured in degrees
{for example, 30, 45, and $0°); in analytical work. however, it is more convenient o mea-
sure angles in radians instead. The advantage of the radian measure stems from the fact
that, when # is so measured, the derivatives of circular functions will comc out in neater
expressions -much as the basc e gives us neater derivatives for exponential and logarith-
mic functions. But just how much is a radian? To ¢xplain this, let us return to Fig. 16.3,
where we have drawn the point £ so that the length of the arc AP is exaclly equal to the
radius R. A radian (abbreviated as rad) can then be defined as the size of the angle ¢
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{in Fig. 16.3} formed by such an R-length arc. Since the circumierence of the circle has
a total length of 2 R {where w = 3.14159, . ), a complete circle must involve an angle
of 27 rad altogether. In terms of degrees, however, a complete circle makes an angle
of 360°; thus, by equating 360° to 27 rad, we can arrive at the following conversion
table:

Deqgrees ‘ 360 ’270 ‘ 180 90 ‘ 45 ‘ 0
3

T

2

Radians ‘ 27 ‘ ‘ T

Properties of the Sine and Cosine Functions

Given the length of R, the vialue of siné hinges upon the way the value of v changes in re-
sponse to changes in the angle 4. In the starting position O4, we have v = 0, As the clock
hand moves counterclockwise, v starts to assume an increasing positive value, culminating
in the maximum valuc of v = R when the hand ceincides with OB, that is, when 8§ =
7 /2 rad (= 90%). Further movement will gradually shorten v, until its value becomes zero
when the hand is in the position OC, 1.e., when ¢ = 7 rad (= 1807). As the hand enters the
third quadrant, v begins to assume negative values, in the position OD, we have v = —R.
In the fourth quadrant. v is still negative, but it will increase from the value of — R toward
the value of v = 0, which is attained when the hand returns to O4—that is, when 0 =
27 rad (= 360"). The cycle then repeats itsctf,

When these illustrative values of v are substituted into (16.12), we can oblain the results
shown in the “sin#” row of Table 16.1. For a more complete description of the sine func-
tion, however, see the graph in Fig. 16.4a, where the values of sin # are plotied against those
of # {expressed in radians).

The value of cos#, n contrast, depends instead upon the way that 4 changes in response
to changes in 6. [n the starting position (04, we have & = R. Then 4 gradually shrinks, till
# =0 when ¢ = 7/2 (position OB). In the second quadrant, £ tuens negative, and when
# = m (position OC), i = —R. The valuc of & gradually increases from — R to zero in the
third quadrant, and when & = 37/2 (position OD), we find that # = 0. In the fourth quad-
rant, / turns positive again, and when the hand returns 1o position O4 (# = 27), we agamn
have # = R. The cycle then repeats itself

The substitution of these illustrative values of # into (16.13) yields the results in the
bottom row of Table 16.1, but Fig. 16.4b gives a more complete depiction of the cosine
function.

The siné and cos ¢/ Tunctions share the same domain, namely, the set of alt real numbers
(radian measurcs of &). In this connection, it may be pointed out that a regative angle
simply refers to the reverse rotation of the clock hand; for instance, 2 clockwise movement

1 3
] 0 Etr x EK n
sin @ 0 ] 0 -1 0

cos o 1 0 ~1 o [
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from Q4 to OD in Fig. 16,3 generates an angle of —/2 rad (= —90%). There is also a
common range for the two functions, namely, the closed interval [-1. 1]. For this reason,
the graphs of sin# and cos ¢ arc, in Fig. 16.4, confined to a definite horizontal band.

A major distinguishing property of the sine and cosine functions 1s that both are peri-
odic: their values will repeat themselves for cvery 2z rad (a complete cirele) the angle ¢
travels through. Each function is therefore said to have a period of 2m. In view of this
periodicity feature, the following equations hald (for any integer »):

sin{@ + 2nm) = sind cos(f + 2um ) = cosd

That is, adding (or subtracting) any integer multiple of 2: to any angle 6 will affect neither
the value of sin@ nor that of cos @,

The graphs of the sine and cosine functions indicate a constant range of fluctuation in
each period, namely, 1. This is sometimes alternatively described by saying that the
amplitude of fluctuation is 1. By virtue of the identical period and the identical amplitude,
we sec that the cos 8 curve, if shilled rightward by 7/2, will be exactly coincident with the
siné curve. These two curves are therefore said to differ only in phase, i.e., to differ only
in the location of the peak in each period. Symbolically, this fact may be stated by the

equation
cosf = sin (9 + %)
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The sine and cosine functions obey certain identities. Among these, the more frequently
used are

$in{~f) = —siné

. 16.14

cos{—#) = cos ( )

sin?f +cos*@ =1 [wheresin®f = (sin®)>, cte.]  (16.15)
gin{th & 6;) = sin# cosOh + coséy sinf

(th £67) I Y 1 5inFy (16.16)

cos(th £ 6) = cosf) cosdy F sin sinf

The pair of identitics {16.14) serves to underscore the fact that the cosing function is sym-
metrical with respect to the vertical axis (that is, 6 and —0 always yicld the same cosine
value), while the sine function is not. Shown in (16.153) is the fact that, for any magnitude
of &, the sum of the squarcs of its sine and cosine is always unity. And the set of identities
in (16.16) gives the sine and cosine of the sum and difference of two angles 8y and ¢;.

Finally, a word about derivatives. Being continuous and smooth, both sin# and cos# are
differentiable. The derivatives, d(sinf)/d¢ and d(cos&)/d6, are obtainablc by taking the
limits, respectively, of the difference quotients A{sin8)/A8 and A(cos@)/Af as A — ()
The results, stated here without proof, are

d

i sinf = cosd (16.17)
d"ﬂ— iné (16.18)
pT: cosf = — sin .

1t should be emphasized, however, that these derivative formulas are valid only when @ is
measured in radians; if measured in degrees, for instance, (16.17) will become d{sin#)/
dé = (x/180) cos instcad, Tt is for the sake of getting rid of the factor (r/180) that radian
measures are preferred to degree measures in analytical work.

Find the slope of the sin@ curve at ¢ =x/2. The slope of the sine curve is given by its
derivative (= cos#). Thus, at & = x/2, the slope should be cos (w/2) = 0. You may refer to
Fig. 16.4 for verification of this result.

Find the second derivative of sin#. From {16.17), we know that the first derivative of siné is
cost, therefore the desired second derivative is

# o
i sing = @ cosfh = —sin¢
Euler Relations
In See. 9.5, it was shown that any function which has finite, continuous derivatives up to the
desired order can be expanded into a2 polynomial function. Morcover, if the remainder term
R, m the resulting Taylor series (expansion at any point xp) or Maclaurin series (expansion
al xo = 0) happens to approach zero as the number of terms # becomes infinite, the poly-
nomial may be written as an infinite series. We shall now expand the sinc and cosine func-
tions and then allempt to show how the imaginary exponential expressions encountered in
(16.11) can be translormed into circular functions having equivalent expansions,
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For the sine function, write ¢(#) = sind; it then follows that ¢{0) =sin0 = 0. By
successive derivation, we can get

P'(#) = cosé @'(0) =cos0 =1
¢"(0) = —sin0 ¢"(0) = —sin0 = 0
¢"(0) = —cosd ¢"'(0) = —cos0 = —1
FUO) =sing [ T Y ¢"0) =sin0=0
pPNB) = cos #1(0) = cos0 =1

When substituted into (9.14), where ¢ now replaces x, these will give us the following
Maclaunn series with remainder:
s =0+640— — 404+ —+.. .+ — 9"
3! + 5! * (n+ 1)!
Now, the expression ¢!"*1( p} in the last (remainder) term, which represents the {n + 1)st
derivative evaluated at § = p, can only take the form of £cos p or £sin p and. as such, can
only take a value in the interval [—1, 1], regardless of how large » 1s. On the other hand,
(1 + 1) will grow rapidly as # — oo—in fact, much more rapidly than 6" ! as # increascs.
Hence, the remainder term will approach zero as n — o¢, and we can thercfore express the
Maclaurin scrics as an infinite series:
: A AL
smﬂzﬁ—i—kﬁ—-ﬂ—-l-m (16.19)

Similarly, if we write v(8) = cos @, then ¥{0) = cos0 = 1, and the successive deriva-

tives will be

wr(g] = —siné [ iﬁr(U) = —sind=0
Wr(8) = —cos@ ¥(0) = —cos0 = —1
W"(0) = siné Y0} =sin0 =0
PI0) = cosd [ = ' {0) = cosl = 1
¥ (0) = —sind (0} = —sin0 =0

On the basis of these derivatives, we can expand cos# as follows:

g2 g4 wm—l)(p)
088 =1+0— — +0+—+-+ 4+ ———=g"t!
2! 4 (n+1)
Since the remainder term will again tend toward zero as# — o0, the cosine function 1s also
expressible as an infinite series, as follows:
pt ot g°
cos@=l~i+a~a+m (16.20)

You must have noticed that, with (16.19) and (16.20) at hand, we are now capable of
constructing a table of sine and cosine values for all possible values of & (in radians). How-
ever, our immediate interest lies in finding the relationship between imaginary exponential
expressions and circular functions. To this end, let us now expand the two expenential
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expressions ¢’ and e, The reader will recognize that these arc bur speeial cases of the

cxpression e*, which has previously been shown. in (10.6), to have the expansion
x Lo, T 1y
¢ :1+x—|—5ix -I-E,r +4—!x +---
Letting x = {8, therefore, we can immediately obtain
2 e eend pemS
(;;) N (1;9!_) . (!;f!) N (ISQI) N
A A A X

e =1+i8+

similarly, by setting x = —i#, the following result will cmerge:

(—i8y | (—i0Y (=)t (—if)]
T T A TR TR A

_{ 92 94 (s 03 95

By substituting (16,1%) and (16.20) into these two results, the following pair of identities—
known as the Euler relations—can readily be established:

e

¢ =cost +ising (16.21)
¢ = cosf ~ising (16.21")

These will enable us to translate any imaginary exponential function into an equivalent
linear combination of sine and cosine functions, and vice versa.

Find the value of ™. First let us convert this expression into a trigonometric expression. By
setting ¢ = in (16.21), it is found that e = cosz +isinx. Since cosz = —1 and
sine =0, it follows that e = —1.

Show that e=*/? = —j, Setting # = /2 in (16.21"), we have

—ini2

T I
= — s —:0—1 = —f
€ c052 rsm2 i(1) i

Alternative Representations of Complex Numbers

5o far, we have represented a pair of conjugate complex numbers in the general form
(h + wvi). Since 4 and v refer to the abscissa and ordinate in the Cartesian coordinate sys-
tem of yn Argand diagram, the expression (k £ vi) represents the Cartesian form of a pair
of conjugate complex numbers. As a by-product of the discussion of circular functions and
Euler relations, we can now express (4 £ vi) in two other ways.
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TABLE 16.2

Referring to Fig. 16.2. we see that as soon as 4 and v are specitied, the angle 6 and the
value of R aiso become determinate, Since & given ¢ and a given R can together identify a
unique point in the Argand diagram, we may employ £ and R to specify the particular pair
of complex numbers. By rewriting the definitions of the sine and cosme functions 1n
(16.12) and (16.13) as

v=Rsinf and /i = Rcosé (16.22)
the conjugate complex numbers (A 4 vi) can be transformed as follows:
hEtvi=~Rcos8 £ Rismtf = R{cos? £4sini)

In so doing, we have in effect switched from the Cartesian coordinates of the complex
numbers (4 and v) 10 what are called their polar coordinares (R and ). The right-hand
expression in the preceding equation, accordingly, exemplifics the polar form of a pair of
conjugate complex numbers,

Furthermore, in view of the Euler relations, the polar form may also be rewritten into the
exponential form as follows: R{cosf £ isinfl) = Re'™. Hence, we have a total of three
alternative representations of the conjugate complex numbers:

h = vi = R(cos £ isinf) = Re*" (16.23)

I we are given the values of K and ¢, the transformation to /# and v s straightforward:
we use the two equations in (16.22). What about the reverse transformation? With given
values of # and v, no difficulty arises in finding the corresponding value of &, which is
cqual to /4% + v2. But a slight ambiguity arises in regard to ¢ the desired value of # {in
radians) is that which satisfies the two conditions cos# = /R and sint = /R but for
given values of 4 and v, ¢ is not unique! {Why?} Fortunately, the problem is not serious. for
hy confining our attention to the interval [0, 27) in the domain, the indetermimancy is
quickly resolved.

Find the Cartesian form of the complex number 5¢°7/4. Here we have R = Sand ¢ = 37/2;
hence, by (16.22) and Table 16.1,
3n

h:ScosT:U and v:Ssinézzrr:—S

The Cartesian form is thus simply b - vi = —5i.
Find the polar and exponential forms of {1 4 /37). In this case, we have h =1 and v = '3;

thus R = 1 +3=2. Table 16.1 is of no use in locating the value of # this time, but
Table 16.2, which lists some additional selected values of sin#t and cos#, will help. Specifically,

8 4 T T 3n
6 4 3 3

sin & ! l_ﬁ ﬁ l___‘/_i
2 JI\T 2 2 2V 2

CDS{Q _J__._B._ J..mﬁ 1_ ::.]..—-—-:ﬂ
3 VA 2 B\ T2
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we are seeking the value of # such that cosé = h/R = 1/2 and sind = v/R = +/3/2. The
value t# = /3 meets the requirements. Thus, according to (16.23), the desired transforma-
tion is

1443 :2(035% +:'sin%) _ pins3

Before leaving this topic, let us note an important extension of the result in (16.23).
Supposing that we have the nth power of a complex number—say, (1 + vi)"—how do we
write its polar and exponential forms? The exponential form is the easier to derive, Since
h+vi=Re" itfollows that

(h + w-)n — (Rer'h')n = Rner'nH

Similarly, we can write

(h _ Vf)” - (Re--fn)n — Rne—.’nu
Note that the power n has brought about two changes: (1) R now becomes ", and (2} 4
now becomes nt. When these two changes are inserted into the polar form in (16.23), we
find that

(h+ vi)® = R™(cosn# £ i sinnd) (16.239)
That is,

[R{cos# = ising)]" = R™(cosnd i sinnd)

Known as De Moivre’s theorem, this result indicates that, to raise a complex number to the

nth power, one must simply modify its polar coordinates by raising & to the nth power and
multiplying & by n.

EXERCISE 16.2

1. Find the roots of the following quadratic equations:
(@) r?-3r+9=0 Q2% +x+8=0
By r2+2r+17=0 ()22 —x+1=0
2. {a) How many degrees are there in a radian?
{b) How many radians are there in a degree?
3. With reference to Fig. 16.3, and by using Pythagoras’s theorem, prove that
(@) siné +cos?h=1  (b) sfn% :cos% =%
4. By means of the identities {16.14), (16.15), and (16.16), show that;
{(a) sin 26 = 2sind cosé
{b) cos26 =1 - 2sin’p
(€) sin{fh + &) + sin{tr — ) = 2siny costy

i
2 =
@1 +1an’s =

(e) sin (% —9} = costt (f) cos(g —{J) =sind
5. By applying the chain rule:

d
{a) Write out the derivative formulas for d% sin f{#) and @ cos f{#), where f{8) is a
function of #.

() Find the derivatives of cos#?, sin(#? + 38}, cose”, and sin(1/8),
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6. From the Euler relations, deduce that;

(@) e7" = -1 (0 ™t = ‘2—5(1 +1)
(b) e = 12(1 +V30) (e ¥ = —?(1 +1)
7. Find the Cartesian form of each complex number:
@2(cosg isn ) (B e () Ve
8. Find the polar and exponential forms of the following complex numbers:
(@) % + 3—2@ (b) 4(V3+1)

16.3 Analysis of the Complex-Root Case

With the concepts of complex numbers and circular functions at our disposal, we ar¢ now
prepared to approach the complex-root casc {Case 3), referred to in Sec. 16.1. You will re-
call that the classification of the three cascs, according to the nature of the characteristic
roots, is concerned only with the complementary function of a differential equation. Thus,
we can continue to focus our attention on the reduced equation

YU +av'(ty+ay =0 [reproduced from (16.4)]

The Complementary Function

When the values of the coefficients ¢; and ¢; are such that af < 4a, the characteristic
roots will be the pair of conjugate complex numbers

ri.oF=htvi
1

1 :
wherc h= —-z—m and = E\leag — 4y

—

The complementary function, as was already previewed, will thus be in the form
v, =" Ae" + A7) [reproduced from (16.113]

Let us first transform the imaginary exponential expressions in the parentheses mto
equivalent trigonometric cxpressions, so that we may interpret the complementary function
as @ circular function. This may be accomplished by using the Euler rclations. Letting
A =wvtin(16.21)and (16.21"), we find that

e =cosvt +~isinvr and ¢ " =cosvi — i sinut

From these, it follows that the complementary function in (16,11} can be rewritten as

o= &[A(cos vt + i sinvi) + Ax{cos vt ~ 7 sin vt
e )+ leosu W 620y
=" [(A + Ay)cos vt + (A4 — A2)i sinvt]
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ArcAB =1

Y (radians)

Furthermore, if we employ the shorthand symbols
As= A+ 4; and Ag= (4, — A
it is possible to simplily (16.24) into’
v = " (Ascos vt + A sinvi) {16.24")

where the new arbitrary constanis As and A, arc later to be definitized.

[ you are meticulous, you may feel somewhat uneasy about the substitution of & by vt
in the foregoing procedure. The variable # measures an angle, but vz is a magnitude in units
of ¢ (in our context, time). Thetefore, how can we make the substitution # = v17? The answer
to this question can best be explained with reference to the unit circle (a circle with radius
R =1)inFig. 16.5. True, we have been using 0 to designate an angle; but since the angle
is measured in radian units, the value ol ¢ 1s always the ratio of the length of arc A8 to the
radivs R. When R = 1, we have specifically
arc 4B arc AB

= =arc 48

&
R 1

In other words, & is not only the radian measure of the angle, but also the length of the
arc AR, which is a number rather than an angle. [f the passing of time 1s charted on the
circumference of the unit circle (counterclockwise), rather than on a straight line as we do
in plotting a time series, it really makes no difference whatsoever whether we consider the

¥ The fact that in defining Ag, we include in it the imaginary number i is by no means an attempt to
“sweep the dirt under the rug.” Because A4 is an arbitrary constant, it can take an imaginary as well
as a real value. Nor is it true that, as defined, Ag will necessarily turn out to be imaginary. Actually,
if A7 and Az are a pair of conjugate complex numbers, say, m + ni, then As and Ag will both be
real: As = Ay + Ag =(m+ni) +{m-ni)=2m, and 45 = {4 — A2} = [{m+ni) —(m—ni)])i =
(2nm)i = -2n.
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lapse of time as an increase in the radian measure of the angle # or as a lengthening of the
arc AB. Even if R # 1, moreover, the same line of rcasoning can apply, except that in that
case & will be cqual to (arc 4B)/ R instead; i.e., the angle & and the arc 48 will bear a fixed
proportion to cach other, instead of being equal. Thus, the substitution ¢ = vf is indeed
legitimate.

An Example of Solution
Let us find the solution of the differcntial equation
}JH(I) -+ 2}}’(?) + 1?} =34

with the initial conditions y(0) = 3 and y/(0) = 11.

Since g; = 2, @y = 17, and b = 34, we can immediately find the particular integral to be

M
=== =2 [by(l63
AT [by (16.3)]
Morcover, since af =4 < 4a, = 68, the characteristic roots will be the pair of conjugate
complex numbers (# £ vi), where
1 i |
h:_ialz_l and UZE 4a2~af':§~@=4
Hence, by (16.24"), the complementary function is
yo = e '(Ascosdt + Agsinde)
Combining y. and y,, the gencral solution can be expressed as
(1) = e (Ascosdt + Agsindt) + 2

To definitize the constants As and 4g, we utilize the two initial conditions. First, by

setting + = 0 in the general soiution, we find that
¥(0) = (45 cos 0+ Agsin0) +2
=(As+0)+2=As+2 [cos = 1;sin( = 0]

By the initial condition »(0) = 3, we can thus specify A5 = 1. Next, let us differentiate the
general solution with respect to t—using the product rule and the derivative formulas
(16.17) and (16.18) while bearing in mind the chain rule [Exercise 16.2-5]—to find v'(r)
and then v'(0):

Y1) = —e'(Ascosdi + Ag sindt) + e~ [As(—4sindr) + 44 cos 4]
s0 that
v(0) = =(AscosO+ Agsin Q) + (—4Assin 0+ 445 cos )
= —(As +0) + {0+ 44¢) =445 - 45

By the secand initial condition y(0) = 11, and in view that 45 = 1, it then becomes clear
that 45 = 3.” The definite solution is, therefore,

y(t) = e '(cosdt + 3sindt) +2 (16.25)

¥ Note that, here, Ag indeed turns out to be a real number, even though we have Included the
imaginary number fin its definition.
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Ag before, the y, component (= 2) can be interpreted as the interfemporal equilibrium
level of y, whereas the v, component represents the deviation from equilibrium. Because of
the presence of eircular functions in y,, the time path (16.25) may be expected to exhibit a
fluctuating pattern, But what specific pattern will it involve?

The Time Path

We arc familiar with the paths of a simple sine or cosine function, as shown in Fig. 16.4.
Now we must study the paths of certain variants and combinations of sine and cosine func-
tions 8o that we can interpret, in general, the complementary [unction (16.24')

y. = e™(As cos vt + Agsinut)

and, in particular, the v, component of (16.25).

Let us first examine the term (45 cos vt). By itself, the expression {cos u#) is a circular
function of (vt), with period 27 (= 6.2832) and amplitude 1. The period of 27 means that
the graph will repeal its configuration every time that (v/) increases by 2. When £ alone is
taken as the independent variable, howcver, repetition wilt occur every (ime £ increases by
2m /v, so that with reference to ¢ as is appropriste in dynamic economic analysis  we
shall consider the period of (cos vt) to be 27 /v. (The amplitude, however, remains at .)
Now, when a multiplicative constant As is attached to (cosvs), it causes the range of
fluctuation to change from £l to £As. Thus the amplitude now becomes 45, though
the period is unaffected by this constant. In shott, (45 cos u¢) is a cosine function of ¢, with
period 2n /v and amphtude 4s. By the same token, (4¢ sinvr) is a sine function of 1,
with period 27 /v and amplitude As.

There being a commen peried, the sum (As cos vt + A sinwe) will also display a re-
peating cycle cvery time / increases by 2 /v. To show this more rigorously, let us note that
for given values of 45 and 4, we can always find two constants 4 and £, such that

As = Acose and Ay =—Asine
Thus we may express the said sum as

Ascosvf + Agsinuf = A cosecosnt — Asing sin v
= A{cos vt cose — sin v/ sing)
= Acos{vt + £) [by (16.10)]

This is a modified cosine function of 1, with amplitude 4 and period 2/ v, because every
time that r increases by 27 /v, (v¢ + &) will increase by 2w, which will complete a cycle on
the cosinc curve,

Had y. consisted only of the expression (A5 cos vt + A4 sin vz), the implication would
have been that the time path of y would be a never-ending, constant-amplitude tluctuation
around the cquilibrium value of y, as represented by y,. But there is, in fact, also the mul-
tiplicative term e to consider. This latter term is of major importance, for, 2s we shall see,
it holds the key to the question of whether the time path will converge.

If & > 0, the value of e™ will increase continually as ¢ increases, This will produce a
magnifying effect on the amplitude of (A5 cos vi + Ag sinvt) and cause ever-greater devi-
ations from the equilibrium in cach successive cycle. As illustrated in Fig. 16.64, the time
path will in this case be characterized by explosive fluctuation. I h = 0, on the other hand,
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FIGURE 16.6
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then e = 1, and the complementary function will simply be (Ascosuf 4+ Agsinvi),
which has been shown to have a constant amplitude. In this second case, each cycle will
display a uniform pattern of deviation from the equilibrium as illustrated by the time path
in Fig. 16.6h. This is a time path with unjform fluctuation. Last, if & < 0, the term &* will
continually decrease as £ increases, and each successive cycle will have a smaller amplitude
than the preceding one, much as the way a ripple dies down. This case is illustrated in
Fig. 16.6¢, where the time path is characterized by damped fluctuation, The solution in
(16.25), with & = —1, exemplifies this last casc. It should be clear that only the casc of
damped fluctuation can produce a convergent time path; in the other two cases, the time
path is nonconvergent or divergent.”

[n all three diagrams of Fig. 16.6, the intertemporal equilibrium is assumed to be sta-
tionary. Tf it is a moving one, the three types of time path depicted will still fluctuate around
it, but since a moving equilibrium generally plots as a curve rather than a horizontal straight

"We shall use the two words nonconvergent and divergent interchangeably, although the latter is
more strictly applicable to the explosive than to the uniform variety of nonconvergence.
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line, the fluctuation will take on the nature of, say, a scries of business cyceles around a
secular trend,

The Dynamic Stability of Equilibrium

The concept of convergence of the time path of a variable is inextricably tied to the concept
of dynamic stability of the intertemporal equilibrium of that variable, Specitically, the cqui-
librium 15 dynamically stable if, and only if, the time path is convergent. The condition for
convergence of the yw(¢) path, namely, & < 0 (Fig. 16.6¢), is therefore also the condition
for dynamic stability of the intcrtemporal equilibrium of v.

You will recall that, for Cases | and 2 where the characleristic roots are reql, the condi-
tion for dynamic stability of equilibrium is that every characteristic root be negative, [n the
present case (Case 3), with compiex roots, the condition seems to be more specialized; it
stipulates only that the real part () of the complex roots (h + i) be negative, However, it
is possible to unify all three cases and consolidate the seemingly different conditions into &
single, generally applicable one. Just interpret any real root r as a complex root whose
imaginary part is zero (1 = (). Then the condition “the rea! part of every characteristic
root be ncgative” clearly becomes applicable to all three cases and emcrges as the only
condition we need,

EXERCISE 16.3

Find the y, and the y,, the general solution, and the definite solution of each of the
following:

Y-y 8y =0, W0 =3, y'(0)=7

Y0+ 4y’ (5 +8y =2; W0) = 21, y'(0) = 4

(0 +3y () ~4y=12, 0) =2,y (0) = 2

YO =2y () 10y = 5; 0) = 6, y'(0) = 8;

YU +9y =3 K0) =1, 7(0) = 3

L2y =12y (H 4+ 20y = 40; Y(Q) = 4, (D) = 5

. Which of the differential equations in Probs. 1 to 6 yield time paths with (a) damped
fluctuation; (b) uniform fluctuation; (¢) explosive fluctuation?

N b W —

16.4 A Market Model with Price Expectations

In the earlier formulation of the dynamic market model, both Q4 and (), arc taken to be
functions of the current price P alone. But sometinmes buyers and sellers may base their
market behavior not only on the current price but also on the price wrend prevailing at the
time, for the price trend is hikely 1o lead them to certain capectations regarding the price
level in the tuture, and these expectations can, in turn, influence their demand and supply
decisions,

Price Trend and Price Expectations

In the continuous-time context. the price-trend information is to be found primarily in the
two derivatives dP/di (whether price is rising} and d° P/dt* (whether increasing at an



