Decision Time Frames

People who operate firms make many decisions, and all of their decisions are aimed at achieving one overriding goal: maximum attainable profit. But not all decisions are equally critical. Some decisions are big ones. Once made, they are costly (or impossible) to reverse. If such a decision turns out to be incorrect, it might lead to the failure of the firm. Other decisions are small. They are easily changed. If one of these decisions turns out to be incorrect, the firm can change its actions and survive.

The biggest decision that an entrepreneur makes is in what industry to establish a firm. For most entrepreneurs, their background knowledge and interests drive this decision. But the decision also depends on profit prospects-on the expectation that total revenue will exceed total cost.

Cindy has already decided to set up Campus Sweaters. She has also decided the most effective method of organizing the firm. But she has not decided the quantity to produce, the factors of production to hire, or the price to charge for sweaters.

Decisions about the quantity to produce and the price to charge depend on the type of market in which the firm operates. Perfect competition, monopolistic competition, oligopoly, and monopoly all confront the firm with their own special problems. Decisions about how to produce a given output do not depend on the type of market in which the firm operates. All types of firms in all types of markets make similar decisions about how to produce.

The actions that a firm can take to influence the relationship between output and cost depend on how soon the firm wants to act. A firm that plans to change its output rate tomorrow has fewer options than one that plans to change its output rate six months or six years from now.

To study the relationship between a firm's output decision and its costs, we distinguish between two decision time frames:

- The short run
- The long run

The Short Run

The short run is a time frame in which the quantity of at least one factor of production is fixed. For most firms, capital, land, and entrepreneurship are fixed factors of production and labor is the variable factor of
production. We call the fixed factors of production the firm's plant: In the short run, a firm's plant is fixed.

For Campus Sweaters, the fixed plant is its factory building and its knitting machines. For an electric power utility, the fixed plant is its buildings, generators, computers, and control systems.

To increase output in the short run, a firm must increase the quantity of a variable factor of production, which is usually labor. So to produce more output, Campus Sweaters must hire more labor and operate its knitting machines for more hours a day. Similarly, an electric power utility must hire more labor and operate its generators for more hours a day.

Short-run decisions are easily reversed. The firm can increase or decrease its output in the short run by increasing or decreasing the amount of labor it hires.

The Long Run

The long run is a time frame in which the quantities of all factors of production can be varied. That is, the long run is a period in which the firm can change its plant.

To increase output in the long run, a firm can change its plant as well as the quantity of labor it hires. Campus Sweaters can decide whether to install more knitting machines, use a new type of machine, reorganize its management, or hire more labor. Long-run decisions are not easily reversed. Once a plant decision is made, the firm usually must live with it for some time. To emphasize this fact, we call the past expenditure on a plant that has no resale value a sunk cost. A sunk cost is irrelevant to the firm's current decisions. The only costs that influence its current decisions are the short-run cost of changing its labor inputs and the long-run cost of changing its plant.

REVIEW QUIZ

1 Distinguish between the short run and the long run.
2 Why is a sunk cost irrelevant to a firm's current decisions?
You can work these questions in Study
Plan 11.1 and get instant feedback.
myeconlab

We're going to study costs in the short run and the long run. We begin with the short run and describe a firm's technology constraint.

Short-Run Technology Constraint

To increase output in the short run, a firm must increase the quantity of labor employed. We describe the relationship between output and the quantity of labor employed by using three related concepts:

1. Total product
2. Marginal product
3. Average product

These product concepts can be illustrated either by product schedules or by product curves. Let's look first at the product schedules.

Product Schedules

Table 11.1 shows some data that describe Campus Sweaters' total product, marginal product, and average product. The numbers tell us how the quantity of sweaters produced increases as Campus Sweaters employs more workers. The numbers also tell us about the productivity of the labor that Campus Sweaters employs.

Focus first on the columns headed "Labor" and "Total product." Total product is the maximum output that a given quantity of labor can produce. You can see from the numbers in these columns that as Campus Sweaters employs more labor, total product increases. For example, when 1 worker is employed, total product is 4 sweaters a day, and when 2 workers are employed, total product is 10 sweaters a day. Each increase in employment increases total product.

The marginal product of labor is the increase in total product that results from a one-unit increase in the quantity of labor employed, with all other inputs remaining the same. For example, in Table 11.1, when Campus Sweaters increases employment from 2 to 3 workers and does not change its capital, the marginal product of the third worker is 3 sweaters-total product increases from 10 to 13 sweaters.

Average product tells how productive workers are on average. The average product of labor is equal to total product divided by the quantity of labor employed. For example, in Table 11.1, the average product of 3 workers is 4.33 sweaters per worker13 sweaters a day divided by 3 workers.

If you look closely at the numbers in Table 11.1, you can see some patterns. As Campus Sweaters hires more labor, marginal product increases initially, and

TABLE 11.1 Total Product, Marginal Product, and Average Product

	Labor (workers per day)	Total product (sweaters per day)	Marginal product (sweaters per additional worker)	Average product (sweaters per worker
A	0	0		
B	1	4		4.00
C	2	10		5.00
D	3	13		4.33
E	4	15		3.75
F	5	16		3.20

> Total product is the total amount produced. Marginal product is the change in total product that results from a one-unit increase in labor. For example, when labor increases from 2 to 3 workers a day (row C to row D), total product increases from 10 to 13 sweaters a day. The marginal product of going from 2 to 3 workers is 3 sweaters. Average product is total product divided by the quantity of labor employed. For example, the average product of 3 workers is 4.33 sweaters per worker (13 sweaters a day divided by 3 workers).
then begins to decrease. For example, marginal product increases from 4 sweaters a day for the first worker to 6 sweaters a day for the second worker and then decreases to 3 sweaters a day for the third worker. Average product also increases at first and then decreases. You can see the relationships between the quantity of labor hired and the three product concepts more clearly by looking at the product curves.

Product Curves

The product curves are graphs of the relationships between employment and the three product concepts you've just studied. They show how total product, marginal product, and average product change as employment changes. They also show the relationships among the three concepts. Let's look at the product curves.

Total Product Curve

Figure 11.1 shows Campus Sweaters' total product curve, $T P$, which is a graph of the total product schedule. Points A through F correspond to rows A through F in Table 11.1. To graph the entire total product curve, we vary labor by hours rather than whole days.

Notice the shape of the total product curve. As employment increases from zero to 1 worker a day, the curve becomes steeper. Then, as employment increases to 3,4 , and 5 workers a day, the curve becomes less steep.

The total product curve is similar to the production possibilities frontier (explained in Chapter 2). It separates the attainable output levels from those that are unattainable. All the points that lie above the curve are unattainable. Points that lie below the curve, in the orange area, are attainable, but they are inefficient - they use more labor than is necessary to produce a given output. Only the points on the total product curve are technologically efficient.

FIGURE 11.1 Total Product Curve

The total product curve, $T P$, is based on the data in Table 11.1. The total product curve shows how the quantity of sweaters produced changes as the quantity of labor employed changes. For example, 2 workers can produce 10 sweaters a day (point C). Points A through F on the curve correspond to the rows of Table 11.1. The total product curve separates attainable outputs from unattainable outputs. Points below the TP curve are inefficient.

[^0]
Marginal Product Curve

Figure 11.2 shows Campus Sweaters' marginal product of labor. Part (a) reproduces the total product curve from Fig. 11.1 and part (b) shows the marginal product curve, MP.

In part (a), the orange bars illustrate the marginal product of labor. The height of a bar measures marginal product. Marginal product is also measured by the slope of the total product curve. Recall that the slope of a curve is the change in the value of the variable measured on the y-axis-output-divided by the change in the variable measured on the x-axis-labor-as we move along the curve. A one-unit increase in labor, from 2 to 3 workers, increases output from 10 to 13 sweaters, so the slope from point C to point D is 3 sweaters per additional worker, the same as the marginal product we've just calculated.

Again varying the amount of labor in the smallest units possible, we can draw the marginal product curve shown in Fig. 11.2(b). The height of this curve measures the slope of the total product curve at a point. Part (a) shows that an increase in employment from 2 to 3 workers increases output from 10 to 13 sweaters (an increase of 3). The increase in output of 3 sweaters appears on the y-axis of part (b) as the marginal product of going from 2 to 3 workers. We plot that marginal product at the midpoint between 2 and 3 workers. Notice that the marginal product shown in Fig. 11.2(b) reaches a peak at 1.5 workers, and at that point, marginal product is 6 sweaters per additional worker. The peak occurs at 1.5 workers because the total product curve is steepest when employment increases from 1 worker to 2 workers.

The total product and marginal product curves differ across firms and types of goods. GM's product curves are different from those of PennPower, whose curves in turn are different from those of Campus Sweaters. But the shapes of the product curves are similar because almost every production process has two features:

- Increasing marginal returns initially
- Diminishing marginal returns eventually

Increasing Marginal Returns Increasing marginal returns occur when the marginal product of an additional worker exceeds the marginal product of the previous worker. Increasing marginal returns arise from increased specialization and division of labor in the production process.

FIGURE 11.2 Total Product and Marginal Product

(a) Total product

(b) Marginal product

Marginal product is illustrated by the orange bars. For example, when labor increases from 2 to 3 workers a day, marginal product is the orange bar whose height is 3 sweaters. (Marginal product is shown midway between the quantities of labor to emphasize that marginal product results from changing the quantity of labor.) The steeper the slope of the total product curve (TP) in part (a), the larger is marginal product (MP) in part (b). Marginal product increases to a maximum (in this example when 1.5 workers a day are employed) and then declines-diminishing marginal product.

myeconlab animation

For example, if Campus Sweaters employs one worker, that person must learn all the aspects of sweater production: running the knitting machines, fixing breakdowns, packaging and mailing sweaters, buying and checking the type and color of the wool. All these tasks must be performed by that one person.

If Campus Sweaters hires a second person, the two workers can specialize in different parts of the production process and can produce more than twice as much as one worker. The marginal product of the second worker is greater than the marginal product of the first worker. Marginal returns are increasing.

Diminishing Marginal Returns Most production processes experience increasing marginal returns initially, but all production processes eventually reach a point of diminishing marginal returns. Diminishing marginal returns occur when the marginal product of an additional worker is less than the marginal product of the previous worker.

Diminishing marginal returns arise from the fact that more and more workers are using the same capital and working in the same space. As more workers are added, there is less and less for the additional workers to do that is productive. For example, if Campus Sweaters hires a third worker, output increases but not by as much as it did when it hired the second worker. In this case, after two workers are hired, all the gains from specialization and the division of labor have been exhausted. By hiring a third worker, the factory produces more sweaters, but the equipment is being operated closer to its limits. There are even times when the third worker has nothing to do because the machines are running without the need for further attention. Hiring more and more workers continues to increase output but by successively smaller amounts. Marginal returns are diminishing. This phenomenon is such a pervasive one that it is called a "law"-the law of diminishing returns. The law of diminishing returns states that

As a firm uses more of a variable factor of production with a given quantity of the fixed factor of production, the marginal product of the variable factor eventually diminishes.

You are going to return to the law of diminishing returns when we study a firm's costs, but before we do that, let's look at the average product of labor and the average product curve.

Average Product Curve

Figure 11.3 illustrates Campus Sweaters' average product of labor and shows the relationship between average product and marginal product. Points B through F on the average product curve $A P$ correspond to those same rows in Table 11.1. Average product increases from 1 to 2 workers (its maximum value at point C) but then decreases as yet more workers are employed. Notice also that average product is largest when average product and marginal product are equal. That is, the marginal product curve cuts the average product curve at the point of maximum average product. For the number of workers at which marginal product exceeds average product, average product is increasing. For the number of workers at which marginal product is less than average product, average product is decreasing.

The relationship between the average product and marginal product is a general feature of the relationship between the average and marginal values of any variable-even your grades.

FIGURE 11.3 Average Product

The figure shows the average product of labor and the connection between average product and marginal product. With 1 worker, marginal product exceeds average product, so average product is increasing. With 2 workers, marginal product equals average product, so average product is at its maximum. With more than 2 workers, marginal product is less than average product, so average product is decreasing.

Economics in Action

How to Pull Up Your Average

Do you want to pull up your average grade? Then make sure that your grade this semester is better than your current average! This semester is your marginal semester. If your marginal grade exceeds your average grade (like the second semester in the figure), your average will rise. If your marginal grade equals your average grade (like the third semester in the figure), your average won't change. If your marginal grade is below your average grade (like the fourth semester in the figure), your average will fall.

The relationship between your marginal and average grades is exactly the same as that between marginal product and average product.

Marginal and Average Grade Curves

REVIEW QUIZ

1 Explain how the marginal product and average product of labor change as the labor employed increases (a) initially and (b) eventually.
2 What is the law of diminishing returns? Why does marginal product eventually diminish?
3 Explain the relationship between marginal product and average product.
You can work these questions in Study
Plan 11.2 and get instant feedback.
Campus Sweaters' product curves influence its costs, as you are now going to see.

[^0]: nyeconlab animation

