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As a result, another type of saddle point occurs, as illustrated in panels I and J of Figure
6.1, which appears somewhat like a bird with wings outstretched. Like the earlier saddle
points, a minimum exists in one direction and a maximum in another direction at a value for
x1 and x2 of 0.25, but the saddle no longer is parallel to one of the axes, but rather lies along
a line running between the two axes. This is the result of the product of the second cross
partials being greater than the second direct partials.  By changing the function only slightly
and making the coefficient 10 on the product of x1 and x2 a -10 results in the surface and
contour lines illustrated in panels K and L of Figure 16.1. Compare these with panels I and
J.

In the preceding examples, care was taken to develop polynomial functions  that  had
potential  maxima or minima at levels for x1 and x2 at positive but finite amounts. If a true
maximum exists, the resultant isoquant map will consist of a series of concentric rings
centered on the maximum with ridge lines intersecting at the maximum.

One is sometimes tempted to attempt the same approach for other types of functions. For
example, consider a function such as

†6.49 y = 10x1
0.5x2

0.5

In this instance

†6.50 f1 = 5x1
!0.5x2

0.5

And

†6.51 f2 = 5x1
0.5x2

!0.5

These first partial derivatives of equation †6.49 could be set equal to zero, but they would
each assume a value of zero only at x1 = 0 and x2 = 0. There is no possibility that f1 and f2
could be zero for any combination of positive values for x1 and x2. Hence the function never
achieves a maximum.

6.4 Some Matrix Algebra Principles

Matrix algebra is a useful tool for determining if a function has achieved a maximum or
minimum.A matrix consists of a series of numbers (also called values or elements) organized
into rows and columns.  The matrix

†6.52 a11  a12  a13

a21  a22  a23
  

a31  a32  a33   

is a square 3 x 3 matrix, since it has the same number of rows and columns.  For each
element, the first subscript indicates its row, the second subscript its column.  For example
a23 refers to the element or value located in the second row and third column.

Every square matrix has a number associated with it called its determinant.  For a 1 x
1 matrix with only one value or element, its determinant is a11. The determinant of a 2 x 2
matrix is a11a22 ! a12a21.  The determinant of a 3 x 3 matrix is a11a22a33 + a12a23a31 + a21a32a13
! a31a22a13 ! a11a32a23 ! a33a21a12. Determinants for matrices larger than 3 x 3 are very
difficult to calculate, and a computer routine is usually used to calculate them. 
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The principal minors of a matrix are obtained by deleting first all rows and columns of
the matrix except the element located in the first row and column (a11) and finding the
resultant determinant. In this example, the first principal minor is a11. Next, all rows and
columns except the first two rows and columns are deleted, and the determinant for the
remaining 2 x 2 matrix is calculated. In this example, the second principal minor is a11a22 !
a12a21. The third principal minor would be obtained by deleting all rows and columns with row
or column subscripts larger than 3, and then again finding the resultant determinant.

The second order conditions can better be explained with the aid of matrix algebra. The
second direct and cross partial derivatives of a two input production function could form the
square 2 x 2 matrix

†6.53 f11  f12

f21  f22

The principal minors of equation †6.53 are

†6.54 H1 = f11

H2 = f11f22 ! f12f21

Assuming that the first-order conditions have been met, The second-order condition for
a maximum requires that the principal minors H1 and H2 alternate in sign, starting with a
negative sign. In other words, H1 < 0; H2 > 0.

For a minimum, all principal minors must be positive. That is, H1, H2 > 0.

A saddle point results for either of the remaining conditions

H1 > 0; H2 < 0

or, H1 < 0; H2 < 0

6.5 A Further Illustration

A further illustration of second-order conditions is obtained from the two input
polynomial

†6.55 y = 40x1 ! 12x1
2 + 1.2x1

3 ! 0.035x1
4 + 40x2 ! 12x2

2 + 1.2x2
3 ! 0.035x2

4

This function has nine values where the first derivatives are equal to zero. Each of these
values, called critical values,  represents a  maximum, a minimum, or  a saddle point. Figure
6.2 illustrates the function. Table 6.1 illustrates the corresponding second order conditions.
In this example, H1 is f11 and H2 is f11f22 ! f12f21.

This function differs from the previous functions in that there are several combinations
of x1 and x2 that generate critical values where the slope of the function is equal to zero. There
is but one global maximum for the function, but several local maxima. A global maximum
might be thought of as the top of the highest mountain, whereas a local maximum might be
considered the top of a nearby hill. There are also numerous saddle points. The second-order
conditions can be verified by carefully studying figure 6.2.
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6.6 Maximizing a Profit Function with Two Inputs

The usefulness of the criteria for maximizing a function can be further illustrated with
an agricultural example using a profit function for corn. Suppose that the production function
for corn is given by

†6.56 y = f(x1, x2)

where y = corn yield in bushels per acre
    x1 = pounds of potash applied per acre
    x2 = pounds of phosphate applied per acre

Table 6.1   Critical Values for the Polynomial y = 40x1 ! 12x1
2 + 1.2x1

3 ! 0.035x1
4

           + 40x2 ! 12x2
2 + 1.2x2

3 ! 0.035x2
4 

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
 x1

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
   2.54 6.93   16.24

                             
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

x2  local saddle global
  maximum point maximum 

  y = 232.3 y = 209.5 y = 378.8
   16.24     H1 < 0 H1 > 0 H1 < 0

  H2 > 0 H2 < 0 H2 > 0
))))))))))))))))))))))))))))))

  saddle     local         saddle
  point minimum point

  y = 61.9 y = 39.1 y = 209.5
     6.93     H1 < 0 H1 > 0 H1 < 0

  H2 < 0 H2 > 0 H2 < 0
))))))))))))))))))))))))))))))

   local    saddle      local
  maximum  point maximum

  y = 84.8 y = 61.9 y = 232.3
     2.54     H1 < 0 H1 > 0 H1 < 0

  H2 > 0 H2 < 0 H2 > 0
))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
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Figure 6.2   Critical Values for the Polynomial y = 40x1 ! 12x1
2 + 1.2x1

3 ! 0.035x1
4

      + 40x2 ! 12x2
2 + 1.2x2

3 ! 0.035x2
4 
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All other inputs are presumed to be fixed and given, or already owned by the farm
manager. The decision faced by the farm manager is how much of the two fertilizer inputs or
factors of production to apply to maximize profits to the farm firm. The total revenue or total
value of the product from the sale of the corn from 1 acre of land is

†6.57 TVP = py  

where
p = price of corn per bushel

    y = corn yield in bushels per acre 

The total input or factor cost is

†6.58 TFC = v1x1 + v2x2

where v1 and v2 are the prices on potash and phosphate respectively in cents per pound. The
profit function is

†6.59 A = TVP ! TFC

Equation †6.59 can also be expressed as

†6.60 A = py ! v1x1 !v2x2 , or

†6.61 A = pf(x1,x2) ! v1x1 !v2x2 

The first order, or necessary conditions for a maximum are

†6.62 A1 = pf1 ! v1 = 0

†6.63 A2 = pf2 ! v2 = 0

Equations †6.62 and †6.63 require that the slope of the TVP function with respect to each
input equal the slope of the TFC function for each input, or that the difference between the
slopes of the two functions be zero for both inputs, or as

†6.64 pf1 = v1

†6.65 pf2 = v2

The value of the marginal product must equal the marginal factor cost for each input. If
the farmer is able to purchase as much of each type of fertilizer as he or she wishes at the
going market price, the marginal factor cost is the price of the input, v1 or v2. This also implies
that at the point of profit maximization the ratio of VMP to MFC for each input is 1. In other
words

†6.66 pf1/v1 = pf2/v2 = 1

The last dollar spent on each input must return exactly $1, and most if not all previous
units will have given back more than a dollar. The accumulation of the excess dollars in
returns over costs represents the profits or net revenues accruing to the farm firm.

Moreover, the equations representing the first order conditions can be divided by each
other:
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†6.67 pf1/pf2  = v1/v2.

Note that the output price cancels in equation †6.67 such that

†6.68 f1/f2 = v1/v2

Recall from Chapter 5 that f1 is the MPP of x1 and f2 is the MPP of x2. The negative ratio
of the respective marginal products is  one definition of the marginal rate of substitution of
x1 for x2 or MRSx1x2.  Then at the point of profit maximization

†6.69 MRSx1x2 = v1/v2. or

†6.70 dx2/dx1 = v1/v2

As will be seen later, equation †6.70 holds at other points on the isoquant map in addition to
the point of profit maximization.

The second order conditions also play a role. Assuming fixed input prices (v1 and v2), the
second order conditions for the profit function are

†6.71 A11 = pf11

†6.72 A22 = pf22

†6.73 A12 = A21 = pf12 = pf21 (by Young's theorem)

Or in the form of a matrix

†6.74
pf11  pf12

pf21  pf22

For a maximum

†6.75 pf11 < 0, and

†6.76 pf11pf22 ! pf12pf21 > 0

The principal minors must alternate in sign starting with a minus. Equations †6.75 and†6.76 require that the VMP functions for both x1 and x2 be downsloping. With fixed input
prices, the input cost function will have a constant slope, or the slope of MFC will be zero.

The conditions that have been outlined determine a single point of global profit
maximization, assuming that the underlying production function itself has but a single
maximum. This single profit-maximization point will require less of both x1 and x2 than would
be required to maximize output, unless one or both of the inputs were free.

6.7 A Comparison with Output- or Yield-Maximization Criteria

A comparison can be made of the criteria for profit maximization versus the criteria for
yield maximization.  If the production function is
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†6.77 y = f(x1,x2)

Maximum yield occurs where

†6.78 f1 = MPPx1 = 0

†6.79 f2 = MPPx2 = 0,  or

†6.80 f1 = f2 = 0

The second-order conditions for maximum output require that f11 <0; and f11f22 > f12f21.
The MPP for both inputs must be downward sloping. 

The first- and second-order conditions comprise the necessary and sufficient conditions
for the maximization of output or yield and are the mathematical conditions that define the
center of an isoquant map that consists of a series of concentric rings.

Since zero can be multiplied or divided by any number other than zero, and zero would
still result, when MPP  for x1 and x2 is zero,

†6.81 pf1/v1 = pf2/v2 = 0

To be at maximum output, the last dollar spent on each input must produce no additional
output,  yield, or revenue.

Recall that the first-order, or necessary conditions for maximum profit  occur at the point
where

†6.82 pf1 ! v1 = 0

†6.83 pf2 ! v2 = 0

†6.84 pf1/v1 = pf2/v2 = 1

and the corresponding second order conditions for maximum profit require that

†6.85 pf11 < 0

†6.86 pf11pf22 ! pf12pf21 > 0

†6.87 p2(f11f22 !f12f21) > 0

Since p2 is positive, the required signs on the second-order conditions are the same for both
profit and yield maximization.

6.8 Concluding Comments

This chapter has developed some of the fundamental rules for determining if a function
is at a maximum or a minimum.  The rules developed here are useful in finding a solution to
the unconstrained maximization problem. These rules also provide the basis for  finding the
solution to the problem of constrained maximization or minimization.  The constrained
maximization or minimization problem makes it possible to determine the combination of
inputs that is required to produce a given level of output for the least cost, or to maximize the
level of output for a given cost. The constrained maximization problem is presented in  further
detail in Chapters 7 and 8.  
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Notes
1.   A simple example can be used to illustrate that Young's theorem does indeed  hold in

a specific case.  Suppose that a production function

y = x1
2x2

3.   Then

f1 = 2x1x2
3

f2 = 3x1
2x2

2

f12 = 6x1x2
2

f21 = 6x1x2
2

A formal proof of Young's theorem in the general case can be found in most intermediate
calculus texts.

Problems and Exercises

1. Does the function y = x1x2 ever achieve a maximum? Explain.  

2. Does the function y = x1
2  ! 2x2

2 ever achieve a maximum? Explain.

3. Does the function y = x1 + 0.1x1
2 ! 0.05x1

3 + x2 + 0.1x2
2 ! 0.05x2

3 ever achieve a
maximum? If so, at what level of input use is output maximized.

4. Suppose that price of the output is $2. For the function given in Problem 3, what level of
input use will maximize the total value of the product?

5. Assume that the following conditions exist

f1 = 0

f2 = 0

Does a maximum, minimum, or saddle point exist in each case?

a. f11 > 0

   f11Af22 ! f12Af21 < 0

b. f11 < 0

   f11Af22 ! f12Af21  > 0

c. f11 > 0

   f11Af22 ! f12Af21  > 0

d. f11 < 0

   f11Af22 ! f12Af21  < 0

6. Suppose that the  price of the output is $3,  the price of the input x1 is $5, and the price of
input x2 is $4. Is it possible to produce and achieve a profit? Explain. What are the necessary
and sufficient conditions for profit maximization?
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