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Maximization in the
Two-Input Case
This chapter develops the fundamental mathematics for the maximization or minimization of
a function with two or more inputs and a single output. The necessary and sufficient
conditions for the maximization or minimization of a function are derived in detail.
Illustrations are used to show why certain conditions are required if a function is to be
maximized or minimized. Examples of functions that fulfill and violate the rules are
illustrated. An application of the rules is made using the yield maximization problem. 
 
Key terms and definitions:

Maximization 
Minimization
First-Order Conditions
Second-Order Conditions
Young's Theorem
Necessary Conditions
Sufficient Conditions
Matrix
Matrix of Partial Derivatives
Principal Minors
Local Maximum
Global Maximum
Saddle Point
Determinant
Critical Value
Unconstrained Maximization and Minimization
Constrained Maximization and Minimization
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6.1 An Introduction to Maximization

An isoquant map might be thought of as a contour map of a hill. The height of the hill
at any point is measured by the amount of output that is produced. An isoquant connects all
points producing the  same quantity of output, or having the same elevation on the hill. In
general, isoquants consist of concentric rings, just as  there are points on all sides of the hill
that have the same elevation. Similarly, there are many different combinations of two inputs
that would all produce exactly the same amount of output. 

An infinite number of isoquants can be drawn. Each isoquant represents a slightly
different output level or elevation on the hill. Isoquants never intersect or cross each other, for
this would imply that the same combination of two inputs could produce two different levels
of output. The quantity of output produced from each combination of the two inputs is unique.
If one is standing at a particular point on a side of a hill, that particular point has one and only
one elevation. 

If the isoquants are concentric rings, any isoquant drawn inside another isoquant will
always represent a slightly greater output level than the one on the outside (Figure 5.1,
diagram A). If the isoquants are not rings, the greatest output is normally associated with the
isoquant at the greatest distance from the origin of the graph. No two isoquants can represent
exactly the same level of output. Each isoquant by definition represents a slightly different
quantity of output from any other isoquant.

If an isoquant map is drawn as a series of concentric rings, these rings become smaller
and smaller as one moves toward the center of the diagram. At comparatively low levels of
output, the possible combinations of the two inputs x1 and x2 suggest a wide range of options:
a large quantity of x2 and a  small quantity of x1: a small quantity of x2 and a large quantity
of x1, or something in between. At higher levels of output, the isoquant rings become smaller
and smaller, suggesting that the range of options becomes more restricted, but there remains
an infinite number of possible combinations on a particular isoquant within the restricted
range, each representing a slightly different combination of x1 and x2. 

The concentric rings finally become a single point. This  is the global point of maximum
output and would be the position where the farm manager would prefer to operate a farm if
inputs were free and there  were  no other restrictions on the use of the inputs. This single
point is the point where the two ridge lines intersect. The MRS for an isoquant consisting of
a single point is  undefined, but this point represents the maximum amount of output that can
be produced from any combination of the two inputs x1 and x2.

If one were standing on the top of a hill, at the very top, the place where one would be
standing would be level. Moreover, regardless of the direction that one looked from the top
of a hill, the hill would slope downward from its level top. If one were standing on the hilltop,
no other point on the hill would slope upward. If it did, one would not be on the top of the hill.
Every other point on the hill would be at a somewhat lower elevation.

The top of the highest hill represents the greatest possible elevation, or global maximum.
However, hills that are not as high are also level at the top. The tops of these hills represent
local, but not global maxima.  

Minimum points can be defined similarly.  The bottom of a valley is also level. The
bottom of the deepest valley represents a global minimum, while the bottom of other valleys
not as deep represent local but not global minima. If one were to draw contour lines for a
valley, they would be indistinguishable from the contour lines for a hill.
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The slope at both the bottom of a valley and at the top of the hill is zero in all directions.
It is not possible to distinguish the bottom of  a valley from the top of a hill simply by looking
at the slope at that point, because the slope for both is zero. Much of the mathematics of
maximization and minimization is concerned with the problem of distinguishing bottoms of
valleys from tops of hills based on second derivative tests or second order conditions.

6.2 The Maximum of a Function

The problem of finding the combination of inputs x1 and x2 that results in the true
maximum output from a two-input production function is the mathematical equivalent of
finding the top of the hill, or the point on a hill with the greatest elevation. Two conditions
need to be checked. First, the point under consideration must be level, or have a zero slope,
which is a necessary condition,  but level points are found not only at the top of hills but at
the bottom of valleys. 

The saddle for a horse provides another example and problem for the mathematician. The
saddle is level in the middle,  but it slopes upward at both ends and downward at both sides.
A saddle looks like neither a hill nor a valley, but is a combination of both. So an approach
needs to be taken that will separate the true hill from the valley and the saddle point.

Suppose again the general production function

†6.1 y = f(x1, x2)

The first-order or necessary conditions for the maximization of output are

†6.2 My/Mx1 = 0, or f1 = 0

and

†6.3 My/Mx2 = 0 or f2 = 0

Equations †6.2 and †6.3 ensure that the point is level  relative to both the x1 and the x2 axes.

The second order conditions for the maximization of output require that the partial
derivatives be obtained from the first order conditions. There are four possible second
derivatives obtained by differentiating the first equation with respect to x1 and then with
respect to x2. The second equation can also be differentiated with respect to both x1 and x2.

These four second partial derivatives are

†6.4 M(My/Mx1)/Mx1 = M2y/Mx1
2 = f11

†6.5 M(My/Mx1)/Mx2 = M2y/Mx1Mx2 = f12

†6.6 M(My/Mx2)/Mx1 = M2y/Mx2Mx1 = f21

†6.7 M(My/Mx2)/Mx2 = M2y/Mx2
2 = f22

Young's theorem states that the order of the partial differentiation makes no difference and
that f12 = f21. 1

The second order conditions for a maximum require that

†6.8 f11 < 0
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and 

†6.9 f11f22  > f12f21.

Since f12f21 is non!negative, f11f22 must be positive for equation  †6.9 to hold, and f11f22 can
be positive only if f22 is also negative.  Taken together, these first- and second-order conditions
provide the necessary and sufficient conditions for the maximization of a two-input production
function that has one maximum.

6.3 Some Illustrative Examples

Some specific examples will further illustrate these points.  Suppose that the production
function is

†6.10 y = 10x1 +10x2 ! x1
2 ! x2

2

The first order or necessary conditions for a maximum are

†6.11 f1 = 10 ! 2x1 = 0

†6.12 x1 = 5

†6.13 f2 = 10 ! 2x2 = 0

†6.14 x2 = 5

The critical values for a function is a point where the slope of the function is equal to
zero.  The critical values for this function occur at the point where x1 = 5, and x2 = 5. This
point could be a maximum, a minimum or a saddle point.

For a maximum, the second order conditions require that

†6.15 f11 < 0 and f11f22 > f12f21

For equation †6.10
†6.16 f11 = !2 < 0

†6.17 f22 = !2

†6.18 f12 = f21 = 0, since x2 does not appear in f1, nor x1 in f2.

Hence

†6.19 f11f22 ! f12f21 = 4 > 0

The necessary and sufficient conditions have been met for the maximization of equation†6.10 at x1 = 5, x2 = 5. This function and its contour lines are illustrated in  panels A and B
of Figure 6.1.

Now consider a production function

†6.20 y = !10x1 ! 10x2 + x1
2 + x2

2
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B  The Contour LinesA  The Surface

D  The Contour Lines
C  The Surface

E  The Surface F  The Contour Lines
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L  The Contour Lines

H  The Contour Lines

I  The Surface J  The Contour Lines

G The Surface

K  The Surface

Figure 6.1  Alternative Surfaces and Contours Illustrating Second-Order Conditions
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The first-order conditions are

†6.21  f1 = !10 + 2x1 = 0

†6.22  x1 = 5

†6.23  f2 = !10 + 2x2 = 0

†6.24  x2 = 5

The second order conditions for a minimum require that

†6.25 f11 > 0

†6.26 f11 f22 > f12 f21

For equation †6.20 the second order conditions are

†6.27 f11 = 2 > 0

†6.28 f22 = 2

Moreover

†6.29 f11f22 ! f12f21  = 4 > 0

The necessary and sufficient conditions have been met for the minimization of equation†6.20 at x1 =5, x2 = 5. This function and its contour lines are illustrated in panels C and D of
Figure 6.1.

Now consider a function

†6.30 y =  10x1  ! 10x2 ! x1
2 + x2

2

The first order conditions are

†6.31  f1 = 10 ! 2x1 = 0

†6.32  x1 = 5

†6.33  f2 = !10 + 2x2 = 0

†6.34  x2 = 5

For equation †6.30, the second order conditions are

†6.35 f11 = !2 < 0

†6.36 f22 = 2

Moreover

†6.37 f11f22 ! f12f21  = !4 < 0



Maximization in the Two-Input Case 109

The necessary and sufficient conditions have not been met for the minimization or
maximization of equation †6.30 at x1 = 5, x2 = 5. This function is the unique saddle point
illustrated panels E and F of Figure 6.1 that represents a maximum in the direction parallel
to the x1 axis, but a minimum in the direction parallel to the x2 axis.

The function 

†6.38 y = ! 10x1 +10x2 +x1
2 !x2

2

results in a very similar saddle point with the axes reversed. That is, a minimum occurs
parallel to the x1 axis, but a maximum occurs parallel to the x2 axis. The surface of this
function is illustrated in panels G and H of Figure 6.1. Now consider a function

†6.39 y = !2x1 ! 2x2 ! x1
2 ! x2

2 + 10x1x2

The first order conditions are

†6.40  f1 = !2 ! 2x1 + 10x2 = 0

 †6.41  f2 = !2 ! 2x2 + 10x1 = 0

Solving for x2 in equation †6.41 for f2 gives us
 †6.42 !2x2 = 2 ! 10x1

†6.43 x2 = 5x1 ! 1

Inserting equation †6.43 x2 into equation †6.40 for f1 results in

†6.44 x1 = 0.25

Since x2 = 5x1 ! 5, x2 also equals 0.25.

In this instance the second order conditions are

†6.45 f11 = !2  < 0

†6.46 f22 = !2  < 0

However

†6.47 f12 = f21 = 10

Thus

†6.48 f11f22 ! f12f21  = 4 ! 100 = !96 < 0

Although these conditions may at first appear to be sufficient for a maximum at x1 =x2
= 0.25, the second order conditions have not been fully met. In this example, the product of
the direct second partial derivatives f11f22 is less than the product of the second cross partial
derivatives f12f21, and therefore f11f22 !f12f21 is less than zero. In the earlier examples, the
second cross partial derivatives were always zero, since an interaction term such as 10x1x2 did
not appear in the original production function. 
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