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Production With 
One Variable Input
This chapter introduces the concept of a production function and uses the concept as a basis
for the development of the factor-product  model. An agricultural production function in
presented using graphical and tabular approaches. Algebraic examples of simple production
functions with one input and one output are developed. Key features of the neoclassical
production function are outlined. The concept of marginal and average physical product is
introduced. The use of the first, second, and third derivatives in determining  the shape of the
underlying total, marginal, and average product is illustrated, and the concept of the elasticity
of production is presented.  

Key terms and definitions:

Production Function 
Domain
Range
Continuous Production Function
Discrete Production Function
Fixed Input
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Short Run 
Long Run
Intermediate Run
Sunk Costs
Law of Diminishing (Marginal) Returns
Total Physical Product (TPP)
Marginal Physical Product (MPP)
Average Physical Product (APP)
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Sign
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First Derivative
Second Derivative
Third Derivative
Elasticity of Production
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2.1 What Is a Production Function?

A production function describes the technical relationship that transforms inputs
(resources) into outputs (commodities). A mathematician  defines a function as a rule for
assigning to each value in one set of variables (the domain of the function)  a single value in
another set of variables (the range of the function). 

A general way of writing a production function is

†2.1 y = f(x)

where y is an output and x is an input. All values of x greater than or equal to zero constitute
the domain of this function. The range of the function consists of each output level (y) that
results from each level of input (x) being used.  Equation †2.1 is a very general form for a
production function. All that is known about the function f(x) so far is that it meets the
mathematician's definition of a function.  Given this general form, it is not possible to
determine exactly how much output (y) would result from a given level of input (x). The
specific form of the function f(x) would be needed, and f(x) could take on many specific forms.

Suppose the simple function

†2.2 y =  2x.

For each value of x, a unique and single value of y is assigned. For example if x = 2, then y
= 4; if x = 6 then y = 12 and so on. The domain of the function is all possible values for x, and
the range is the set of y values corresponding to each x. In equation †2.2, each unit of input
(x) produces 2 units of output (y).

Now consider the function

†23               
It is not possible to take the square root of a negative number and get a real number. Hence
the domain (x) and range (y) of equation †2.3 includes only those numbers greater than or
equal to zero. Here again the function meets the basic definition that a single value in the
range be assigned to each value in the domain of the function. This restriction would be all
right for a production function, since it is unlikely that a farmer would ever use a negative
quantity of input. It is not clear what a negative quantity of an input might be.

Functions might be expressed in other ways. The following is an example:

If x = 10, then y = 25.
If x = 20, then y = 50.
If x = 30, then y = 60.
If x = 40, then y = 65.
If x = 50, then y = 60.

Notice again that a single value for y is assigned to each x. Notice also that there are two
values for x  (30 and 50) that get assigned the same value for y (60).  The mathematician's
definition of a function allows for this. But one value for y must be assigned to each x. It does
not matter if two different x values are assigned the same y value.

The converse, however, is not true. Suppose that the example were modified only
slightly:
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If x = 25, then y = 10.
If x = 50, then y = 20.
If x = 60, then y = 30.
If x = 65, then y = 40.
If x = 60, then y = 50.

This is an example that violates the definition of a function. Notice that for the value x = 60,
two values of y are assigned, 30 and 50. This cannot be. The definition of a function stated
that a single value for y must be assigned to each x. The relationship described here represents
what is known as a correspondence,  but not a function. A correspondence describes the
relationship between two variables. All functions are correspondences, but not all
correspondences are functions.

Some of these ideas can be applied  to hypothetical data describing the production of
corn in response to the use of nitrogen fertilizer. Table 2.1 represents the relationship and
provides specific values for the general production function y = f(x).  For each nitrogen
application level,  a single yield is defined. The yield level is sometimes referred to as the total
physical product (TPP) resulting from the nitrogen that is applied.

Table 2.1 Corn Yield Response to Nitrogen Fertilizer
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

Quantity of Yield in
Nitrogen (Pounds/Acre) Bushels/Acre

)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
       0 50
      40 75
      80 105
     120 115
     160 123
    200 128
     240 124
)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

From Table 2.1, 160 pounds of nitrogen per acre will result in a corn yield or TPP of
123 bushels per acre.  The concept of a function has a good deal of impact on the basic
assumptions underlying the economics of agricultural production. 

Another possible problem exists with the interpretation of the data contained in Table
2.1. The exact amount of corn  (TPP) that will be produced if a farmer decides to apply 120
pounds of nitrogen per acre can be determined from Table 2.1, but what happens if the farmer
decides to apply 140 pounds of nitrogen per acre?  A yield has not been  assigned to this
nitrogen application level. A mathematician might say that our production function  y = f(x)
is discontinuous at any nitrogen application level other than those specifically listed in Table
2.1. 

A simple solution might be to interpolate between the known values. If 120 pounds per
acre produces 115 bushels of corn, and 160 pounds of nitrogen produces 123 bushels of corn,
the yield at 140 pounds might be (115 + 123)/2 or 119 bushels per acre.  However,
incremental increases in nitrogen application do not provide equal incremental increases in
corn production throughout the  domain of the function.  There is no doubt that some nitrogen
is available in the soil from decaying organic material and nitrogen applied in previous
seasons, and nitrogen need not be applied in order to get back the first 50 bushels of corn.

The first 40 pounds of nitrogen applied produces 25 additional bushels, for a total of 75
bushels, the next 40 pounds produces 30 bushels of corn, for a total of 105 bushels, but the
productivity of the remaining 40 pound increments in terms of corn production declines. The
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next 40 pounds increases yield by only 10 bushels per acre, the 40 pounds after that by only
8 bushels per acre, and the final 40 pounds by only 5 bushels per acre. 

Following this rationale, it seems unlikely that 140 pounds of nitrogen would produce
a yield of 119 bushels, and a more likely guess might be 120 or 121 bushels.  These are only
guesses. In reality no information about the behavior of the function is available at nitrogen
application levels other than those listed in Table 2.1. A yield of 160 bushels per acre at a
nitrogen application level of 140 pounds per acre could result- or, for that matter, any other
yield.

Suppose instead that  the relationship between the amount of nitrogen that is applied and
corn yield is described as

†2.4 y = 0.75x + 0.0042x2 ! 0.000023x3 

where     y = corn yield  (total physical product) in bushels per acre

   x = nitrogen applied in pounds per acre

Equation †2.4 has some advantages over the tabular function presented in Table 2.1.
The major advantage is that it is possible to  calculate the resultant corn yield at any fertilizer
application level. For example, the corn yield when 200 pounds of fertilizer is applied is
0.75(200) + 0.0042(2002) ! 0.000023(2003) =  134 bushels per acre.  

Moreover, a function such as this is continuous. There are no nitrogen levels where a
corn yield cannot be calculated. The yield at a nitrogen application level of  186.5 pounds per
acre can be calculated exactly. Such a function has other advantages, particularly if the
additional output resulting from an extra  pound of nitrogen is to be calculated. The yields of
corn at the nitrogen application rates shown in Table 2.1 can be calculated and are presented
in Table 2.2.

Table 2.2    Corn Yields at Alternative Nitrogen Application Rates
            for the Production Function y = 0.75x + 0.0042x2 ! 0.000023x3

))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
Quantity of Nitrogen, x       Corn Yield, y or TPP
            (lb/acre)       (bu/Acre)

))))))))))))))))))))))))))))))))))))))))))))))))))))))))))
     0 0.0
   20 16.496

  40 35.248
   60 55.152
   80 75.104 

100 94.000
120 110.736
140 124.208
160 133.312
180 136.944
200 134.000
220 123.376
240 103.968

))))))))))))))))))))))))))))))))))))))))))))))))))))))))) 
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The corn yields (TPP) generated by the production function in Table 2.2 are not the same
as those presented in Table 2.1.  There is no reason for both functions to generate the same
yields.  A continuous function that would generate exactly the same yields as those presented
in Table 2.1 would be very complicated algebraically.  Economists like to work with
continuous functions, rather than discrete production functions from tabular data, in that the
yield for any level of input use can be readily obtained without any need for interpolation.
However, a tabular presentation would probably make more sense to farmers.

The yields generated in Table 2.2 also differ from those in Table 2.1 in another important
way. Table 2.1 states that if a farmer applied no nitrogen to corn, a yield of 50 bushels per
acre is obtained. Of course, nitrogen is absolutely essential for corn to grow. As indicated
earlier, the data contained in Table 2.1 assume that there is some residual nitrogen in the soil
on which the corn is grown. The nitrogen is in the soil because of decaying organic material
and leftover nitrogen from fertilizers applied in years past. As a result, the data in Table 2.1
reveal higher yields at low nitrogen application levels than do the data contained in Table 2.2.

The mathematical function used as the basis for Table 2.2 could be modified to take this
residual nitrogen into account by adding a constant such as 50. The remaining coefficients of
the function (the 0.75, the 0.0042, and the !0.000023) would also need to be altered as well.
Otherwise, the production function would produce a possible but perhaps unrealistic corn
yield of 50 + 136.944 = 186.944 bushels per acre when 180 pounds of fertilizer were applied.
For many production processes in agriculture, no input produces no output. Consider the case
of the production of beef using feed as an input. No feed would indeed produce no beef. In the
case of crop production, some yield will normally result without chemical fertilizers. 

A production function thus represents the relationship that exists between inputs and
outputs.  For each level of input use, the function assigns a unique output level. When a zero
level of input is used, output might be zero, or, in some instances, output might be produced
without the input.

2.2 Fixed Versus Variable Inputs and the Length of Run

So far, examples have included only one input or factor of production. The general form
of the production function was

†2.5 y = f(x)

where y = an output 

x = an input

Equation †2.5 is an ultrasimplistic production function for agricultural commodities. Such a
function assumes that the production process can be accurately described by a function in
which only one input or factor of production is used to produce an output. Few, if any,
agricultural commodities are produced in this manner. Most agricultural commodities require
several, if not a dozen or more, inputs. As an alternative, suppose a production function where
there are several inputs and all but one are assumed to be held fixed at some constant level.
The production function would thus become

†2.6 y = f(x1, *x2, x3, x4, x5, x6, x7).

For example, y might be the yield of corn in bushels per acre, and x1 might represent the
amount of nitrogen fertilizer applied per acre. Variables x2, ..., x7 might represent each of the
other inputs used in the production of corn, such as land, labor, and machinery. 



Agricultural Production Economics18

Thus, in this example, the input x1 is treated as the "variable" input, while the remaining
inputs (x2, ..., x7) are assumed to be held constant at some fixed level. The "*" can be read as
the word "given".  As the use of x1 is "varied" or increased, units of the variable input x1 are
added to units of the fixed inputs x2, ..., x7.

How can it be determined if an input should be treated as fixed or  variable? A variable
input is often thought of as an input  that the farm manager can control or for which he or she
can alter the level of use. This implies that the farmer has sufficient time to adjust the amount
of input being used.  Nitrogen in corn production has often been cited as an example of a
variable input, in that the farmer can control the amount to be applied to the field.

A fixed input is usually defined as an input which for some reason the farmer  has no
control over the  amount available. The amount of land a farmer has might be treated as a
fixed input.

However, these distinctions become muddy and confused.  Given sufficient time, a
farmer might be able to find additional land to rent or purchase, or the farmer might sell some
of the land owned. If the length of time were sufficient to do this, the land input might be
treated as a  variable input.

The categorization of inputs as either fixed or variable is closely intertwined with the
concept of time. Economists sometimes define the long run as  time of sufficient length such
that all inputs to the production function can be treated as variable. The very short run can
be defined as a period of time so short that none of the inputs are variable. Other lengths of
time can also be defined. For example, the short run is a period of time long enough such that
a few of the inputs can be treated as variable, but most are fixed. The intermediate run is long
enough so that many, but not all inputs are treated as variable. 

These categories again are somewhat arbitrary. If an economist  were asked "How long
is the short run?", the answer would probably be that the short run is a period of time
sufficiently long that some inputs can be treated as variable, but sufficiently short such that
some inputs can be treated as fixed. Does this imply a length of time of a day, a week, a
month, or  a crop production season? The length of time involved could be any of these.

Once fertilizer has been applied, a farmer no longer has control over application levels.
The input that was previously classified as variable becomes fixed. Seed before planting is
classified as a variable input.  Once it is planted in the ground, seed can no longer be treated
as a variable input.

Some production economists have argued that inputs should not be arbitrarily
categorized as either fixed or variable. These arbitrary categories can be highly misleading.
Production economists argue  that in the case of crop production, prior to planting, nearly all
inputs are variable. Farmers might rent additional land, buy or sell machinery, or adjust
acreages of crops.  Here is where real decision making can take place. Once planting begins,
more and more of the inputs previously treated as variable become fixed. Tractor time and
labor for tillage operations cannot be recovered once used.  Acreages of crops once planted
largely cannot be altered.  Insecticides and herbicides are variable inputs before application,
but must be treated as fixed or "sunk" once they have been applied.  At the start of harvest,
the only variable input is the labor, fuel, and repairs to run the harvesting equipment and  to
move the grain to market.

This view treats the input categories as a continuum rather than as a dichotomy. As
inputs are used,  costs  are treated as sunk. Inputs, once used, can no longer be sold, or used
on the farm for a different enterprise, such as another crop.



Production with One Variable Input 19

2.3 The Law of Diminishing Returns

The law of diminishing returns is fundamental to all of production economics.  The law
is misnamed. It should be called the law of diminishing MARGINAL returns, for the law deals
with what happens to the incremental or marginal product as units of input or resource are
added. The law of diminishing marginal returns states that as units of an variable input are
added to units of one or more  fixed inputs, after a point, each incremental unit of the variable
input produces less and less additional output. As units of the variable input are added to units
of the fixed inputs, the proportions change between fixed and variable inputs.  The law of
diminishing returns has sometimes been referred to as the law of variable proportions. 

For example, if incremental units of nitrogen fertilizer were applied to corn, after a point,
each incremental unit of nitrogen fertilizer would produce less and less additional corn. Were
it not for the law of diminishing returns, a single farmer could produce all the corn required
in the world, merely by acquiring all of the available nitrogen fertilizer and applying it to his
or her farm.

The key word in the law of diminishing returns  is additional.  The law of diminishing
returns does not state that as units of a variable input are added, each incremental unit of input
produces less output in total. If it did, a production function would need to have a negative
slope in order for the law of diminishing returns to hold.  Rather, the law of diminishing
returns refers to the rate of change in the slope of the production function. This is sometimes
referred to as the curvature of the production function.

Figure 2.1 illustrates three production functions. The production function  labeled A has
no curvature at all.  The law of diminishing returns does not hold here.  Each incremental unit
of input use produces the exact same incremental output, regardless of where one is at on the
function.  An example of a function such as this is

†2.7 y = 2x.

Each incremental unit of x produces 2 units of y, regardless of the initial value for x, whether
it be 0, 24, 100 or 5000. 

A slightly more general form of this function is

†2.8 y = bx.

where b is some positive number. If b is a positive number, the function is said to exhibit
constant marginal returns to the variable input x, and the law of diminishing returns does not
hold. Each incremental unit of x produces bx units of y.

The production function labeled B represents another kind of relationship.
Here each incremental unit of x produces more and more additional y. Hence the law of
diminishing returns does not hold here either.  Notice that as the use of input x is increased,
x becomes more productive, producing more and more additional y. An example of a function
that would represent this kind of a relationship is

†2.9 y = x2.
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Figure 2.1   Three Production Functions

A slightly more general form of the function might be

†2.10 y = axb, 

where both a and b are positive numbers, and b is greater than 1.  Notice that if b = 1, the
function is the same as the one depicted in diagram A of figure 2.1. The value of a must be
positive if the input is to produce a positive quantity of output.

The production function labeled C represents the law of diminishing returns throughout
its range.  Here each incremental unit of x produces less and less additional y. Thus each unit
of x becomes less and less productive. An example of a function that represents this kind of
relationship is
 

†2.11 .

Another way of writing equation †2.11 is
†2.12  y = x0.5.
 
Both are exactly the same thing. For this production function, total product (TPP or y) will
never decline.

A slightly more general form of the function is

†2.13 y = axb, 

where a and b are positive numbers. However, here b must be less than 1 but greater than
zero, if diminishing (marginal) returns are to hold. This function will forever increase, but at
a decreasing rate.
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2.4 Marginal and Average Physical Product

The marginal physical product (MPP) refers to the change in output associated with an
incremental change in the use of an input. The incremental increase in input use is usually
taken to be 1 unit.  Thus MPP is the change in output associated with a 1 unit increase in the
input. The MPP of input xi might be referred to as MPPxi.  Notice that MPP, representing the
incremental change in TPP, can be either positive or negative.

Average physical product (APP) is defined as the ratio of output to input. That is, APP
= y/x. For any level of input use (x), APP represents the average amount of output per unit of
x being used.

Suppose that the production function is 

†2.14 y = f(x).

One way of expressing MPP is by the expression )y/)x, where the ) denotes change. The
expression )y/)x can be read as "the change in y ()y) with respect to a change in x ()x)."
For the same function APP is expressed either as y/x or as f(x)/x.

 For the production function

†2.15 y = 2x, 

MPP is equal to 2. The change in y with respect to a 1 unit change in x is 2 units. That is, each
additional or incremental unit of x produces 2 additional or incremental units of y. For each
additional unit of x that is used, TPP increases by 2 units. In this example APP  equals  y/x,
or APP equals 2x/x, or APP equals 2. For this simple production function MPP = APP = 2 for
all positive  values for x.

For the production function

†2.16 y = bx, 

MPP  is equal to the constant coefficient  b. The change in y with respect to a change in x is
b. Each incremental or additional unit of x produces b incremental or additional units of y.
That is, the change in TPP resulting from a 1 unit change in x is b. Moreover, APP = bx/x.
Thus, MPP = APP = b everywhere.

Marginal and average physical products for the tabular data presented in Table 2.1 may
be calculated based on the definition that MPP is the change in output ()y)  arising from an
incremental change in the use of the input ()x) and that APP is simply output (y) divided by
input (x). These data are presented in Table 2.3. MPP is calculated by first making up a
column representing the rate of change in corn yield. This rate of change might be referred to
as )y or perhaps )TPP. Then the rate of change in nitrogen use is calculated. This might be
referred to as )x. Since 40 pound units were used in this example, the rate of change in each
case for x is 40. The corresponding MPP over the increment is )y/)x. MPP might also be
thought of as )TPP/)x.  The corresponding  calculations are shown  under the column
labeled MPP in Table 2.3. For example, if nitrogen use increases from 120 to 160 pounds per
acre, or 40 pounds, the corresponding increase in corn yield will be from 123 to 128 bushels
per acre, or 5 bushels. The MPP over this range is approximately 5/40 or 0.125. 

The MPP's are positioned at the midpoint between each fertilizer increment. The MPP's
calculated here are averages that apply only approximately at the midpoints between each
increment, that is at nitrogen application levels of  approximately 20, 60, 100, 140 and 180
pounds per acre. Since no information is available with respect to what corn might have
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