
Practical 1

To measure the unknown resistance of coil using carey foster bridge

Carey Foster bridge

 In electronics, the Carey Foster bridge is a bridge circuit used to measure medium resistances, or to measure small differences between two large resistances. It was invented by Carey Foster as a variant on the Wheatstone bridge. He first described it in his 1872 paper "On a Modified Form of Wheatstone's Bridge, and Methods of **Measuring Small Resistances**"

Use:

- In the adjacent diagram, X and Y are resistances to be compared. P and Q are nearly equal resistances, forming the other half of the bridge. The bridge wire EF has a jockey contact D placed along it and is slid until the galvanometer G measures zero. The thick-bordered areas are thick copper <u>busbars</u> of almost zero resistance.
- Place a known resistance in position Y.
- Place the unknown resistance in position X.

- Adjust the contact D along the bridge wire EF so as to null the galvanometer. This position (as a percentage of distance from E to F) is ℓ_1 .
- Swap X and Y. Adjust D to the new null point. This position is ℓ_2 .
- If the resistance of the wire per percentage is σ , then the resistance difference is the resistance of the length of bridge wire between ℓ_1 and ℓ_2

X-Y=σ (|²-|1)

- To measure a low unknown resistance X, replace Y with a copper busbar that can be assumed to be of zero resistance.
- In practical use, when the bridge is unbalanced, the galvanometer is shunted with a low resistance to avoid burning it out. It is only used at full sensitivity when the anticipated measurement is close to the null point.

To measure resistance

 To measure the unit resistance of the bridge wire EF, put a known resistance (e.g., a standard 1 ohm resistance) that is less than that of the wire as X, and a copper busbar of assumed zero resistance as Y.