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Geiger-Müller Counter, half-life measurement 
 
1.  Purpose:  Do some measurements in nuclear decay, notions of statistics 
 
2. Apparatus: Scaler-Timer (Spectrum Techniques model ST-350 ), 
                             Geiger-Müller tube,  
                             oscilloscope,  
                             radioactive sources. 
 
3. Introduction:  
 A typical Geiger-Müller (GM) Counter consists of a GM tube having a thin end-window (e.g. 
made of mica), a high voltage supply for the tube, a scaler to record the number of particles 
detected by the tube, and a timer which will stop the action of the scaler at the end of a preset 
interval.  
 

The sensitivity of the GM tube is such that any particle capable of ionizing a single 
atom of the filling gas of the tube will initiate an avalanche of electrons and ions in the tube.  
The collection of the charge thus produced results in the formation of a pulse of voltage at the 
output of the tube. The amplitude of this pulse, on the order of a volt or so, is sufficient to 
operate the scaler circuit with little or no further amplification.  The pulse amplitude is largely 
independent of the properties of the particle detected, and gives therefore  little information 
as to the nature of the particle.  Even so, the GM Counter is a versatile device which may be 
used for counting alpha particles, beta particles, and gamma rays, albeit with varying degrees 
of efficiency. 
 
4.  Set-up: 
Set up equipment as shown in Fig. 1.  
Scaler, Timer, and High Voltage Supply may well be contained in one package. 
 

 
Fig.1: possible set-up for Geiger-Müller experiment 
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5. Measurements to be performed: 
5.1 Characteristics of the GM counter: 
     Put a radioactive source below the GM tube.  Put the counter in counting mode and raise 
the voltage until counts are observed.  Note the shape of the pulse and what happens as the 
voltage on the GM tube is increased.  What is the minimum voltage pulse necessary to 
activate the counter? Measure the pulse height with the oscilloscope.  Sketch a picture of the 
pulse shape.  How would you describe it? 
 

Every GM tube has a characteristic response of counting rate versus voltage applied to 
the tube.  A curve representing the variation of counting rate with voltage is called a plateau 
curve because of its appearance. The plateau curve of every tube that is to be used for the 
first time should be drawn in order to determine the optimum operating voltage.  Find the 
plateau curve for your tube using the procedure outlined below. 

(a) Check to see that the high voltage as indicated by the meter on the instrument is at 
its minimum value. 

(b) Insert a radioactive source into one of the shelves of the counting chamber. Turn 
on the count switch and slowly increase the high voltage until counts just begin to 
be recorded by the scaler.  The voltage at which counts just begin is called the 
"starting voltage" of the tube.  Using the oscilloscope, measure the minimum signal 
size necessary to trigger the scaler. 

(c) Set counting time to 30 sec. Beginning at the starting voltage, take counts every 40 
volts. Choose shelf such that you have at least 1000 counts when the high voltage 
is about 50V above the starting voltage. Reset scaler to zero before each count.  
Tabulate counts versus voltage. Continue taking counts until a voltage is reached 
where a rapid increase in counts is observed (or when the maximum allowed HV 
value is reached). Do not continue raising the voltage beyond that point – reduce 
voltage to about   200V above starting voltage. 

(d) Plot the data of (c).  Identify the “plateau” (i.e. the flattest part of the curve between 
the knee and before the onset of the fast rise).   

 
The slope S of the plateau of a GM tube serves as a figure of merit for the tube.  The slope is 
defined to be the percent change in count rate per 100 volts change in applied voltage in the 
plateau region.  A slope of greater than 10% indicates that the tube should no longer be used 
for accurate work. 
 
The slope may be computed using 

                                        
4

2 1

1 2 2 1

2( ) 10
(% 100 )

( )( )

N N
S per V

N N V V

 


 
   (1)                                    

where V2 is the voltage at the high end of plateau, N2 is the number of counts at this voltage, 
V1 is the voltage at the low end of the plateau (just above the “knee”), and N1 the 
corresponding number of counts.  Do you understand this equation and can you explain it? 
In order to compare, obtain a similar plateau curve for an old tube (if available). 

 
 



 

 3

The optimum operating voltage will be about the middle of the plateau, usually some 
150 to 200 volts above the knee of the curve.  Set the high voltage to this point and record 
the value. All the subsequent measurements are to be done with the HV set to this optimum 
operating voltage. 
 
5.2 Dead-time of the GM counter 
 

There is an interval of time following the production of a pulse in the GM tube during 
which no other pulse can be recorded. This interval is called the dead-time of the system. 
If this time is known it can be used to make a correction to the observed count rate to yield 
the true count rate. The procedure below can give a good estimate of the dead-time. 
 

(a) Obtain a dead-time source (a “split source”) from the instructor.   
                This source is split into two parts.  Remove one half of the source and set it aside. 

(b) Place the carrier containing one part on the second shelf of the counting chamber 
and make a trial count of 1 minute duration. Get the maximum count rate you can.  
This should be more than 20,000 counts per minute, but if not use what you can 
get. 

(c)  View the pulses on the oscilloscope and record the shortest time interval that you 
can see between successive pulses; this gives you an order-of-magnitude estimate 
of the dead time 

(d) Count for 200 seconds and record the counts, N1. 
(e) Put the two parts of the source back together, taking care not to disturb the position 

of the first part. Do a 200-second count of the combined parts and record as  Nc. 
(f) Remove the part initially counted and make a 200-second  count on the second 

part --  record counts as N2. 
(g) Estimate the dead-time of the GM counter using the relation: 
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Convert the time thus found to microseconds (note that T is the duration of your 
counting -- careful – use the correct time) and record.  To understand the origin 
of the equation, see refs [1 - 3]. 
 

(h) calculate the dead-time uncertainty, using Poisson uncertainty for the numbers of 
counts 

(i) The dead-time τ  may be used to correct an observed count rate using the 

expression:             
1
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                     (3)    where 

                                                                                        r = Observed count rate 
                                                                                        R = True count rate 
     Apply this dead time correction  to N1, N2, Nc  and verify that the  corrected numbers  
     N(c)   (approximately) satisfy the equation N1 

(c)  + N2 
(c) = Nc 

(c). 

(j) Calculate the rate at which the error due to dead time effects (i.e. the difference 
between raw and true counting rate) is 1%. 
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5.3 Statistical treatment of counting data 
 

The emission of particles by radioactive nuclei is a random process.  If the time over 
which the decays are observed is small compared to the (mean or half-) lifetime of the 
radioactive nucleus, the probability for a decay to occur during a given time interval is 
constant (the same for every time interval of the same length).  When, under identical 
conditions, a series of N measurements is made of the number of particles detected per unit 
time it will be observed that the individual measurements will vary about some average or 
mean value. The true mean, m, can be determined only by averaging an infinite number of 
measurements. However, for a finite number of observations (a finite “sample”) the best 
approximation of the true mean is simply the “sample mean”, i.e. the arithmetic average n   
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The magnitude of the deviations of individual measurements from the true mean is usually 
expressed in terms of a “standard deviation” ().  The standard deviation is defined to be the 
square root of the average value of the squares of the individual deviations (rms = “root-
mean-square”).  The number of counts of radioactive decays for a fixed time is a random 
variable whose probability distribution is a Poisson distribution; the Standard Deviation for 
such a distribution is simply the square root of the true mean: 
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Given a finite set of N measurements, the best approximation (the “unbiased estimator”) of  
the standard deviation  is given by the square root of the “sample variance”, 
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For values of m > 20 the Poisson distribution is very well approximated by  the Gaussian (or 
“normal”) distribution for which certain confidence levels have been established in terms of 
the standard deviation.  These confidence levels are as follows:  
                                                                           

About 68% of the number of observations made will fall within the limits of nn  .                     

About 95% of the number of observations made will fall within the limits of 2 nn                            

About 99% of the number of observations made will fall within the limits of 3 nn   

 
This means that if one additional measurement is made, it should have a 68% chance 
of falling within  nn  .           
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When circumstances permit the making of only a single observation, the number of counts 

obtained, n, is used as an estimator of the true mean m and  n  as an estimator for its 

uncertainty (standard deviation n). 
 
 
The Standard Deviation of a gross counting rate, Rg is: 
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           (7),     where t  is the duration of the counting. 

To test the statistical nature of nuclear decay, do the following experiment: 
 
 (a) Adjust the height of a source in the counting chamber to produce about 2000  

      counts per minute.  
(b)  Take a set of 10 counts of 30 seconds duration (“set A”). 
(c)  Compute the arithmetic mean n  . 

(d)  Compute the standard deviation s  for a Poisson distribution of mean n . 
(e) Compute the individual deviations from the mean ( )kn n   and record in a table.   

       Do they sum very nearly to zero? Explain why they do. 
(f) Square the ( )kn n , sum the square and apply Equation (6) to obtain the  

      standard deviation n.  Compare n with s   
(g) Count the number of measurements whose values lie within nn  . 

 
Now take a second set of ten measurements (“set B”) and repeat the same analysis.  
Compare the two mean values and  sigmas. How many measurements of set (B) fall within 
the one-sigma interval of set (A)? 
 
5.4  Background Measurements 
 

Extraneous radiation called background radiation is always present.  Gamma rays 
emitted by certain radioisotopes in the ground, the air, and various building materials as well 
as cosmic radiation can all provide counts in a detector in addition to those from a sample 
being measured.  This background counting rate should always be subtracted from a sample 
counting rate if you need to obtain the rate from the sample alone.  Obtain a background 
counting rate using a 5-minute sample time.   
 
5.5  Decay constant of an unknown radioisotope 
 

The activity (number of disintegrations per unit time) of a radioisotope is expressed as 

2 1 2 1( ) ( )exp( ( ))A t A t t t                 (10) 

 
where 

A(t)  =  activity at time  t 
  =  decay constant, characteristic of the radioisotope = probability per unit time 

                   for a  radioactive decay to occur (the mean-life  = 1/) 
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The half-life, T½ of a radioisotope is defined to be that interval during which the activity 
decreases to one-half its value at the beginning of the internal.  The half-life is given by 
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The counting rate of a sample of a radioisotope may be considered to be directly 

proportional to the activity at the moment of measurement provided that the counting interval 
is short compared to the half-life.  Reasonably short half-lives can be determined by 
measuring activity at regular intervals. 
The logarithm of the activity when plotted as a function of elapsed time should yield points 
falling on a straight line.  Explain why. 
Obtain your unknown sample from the instructor, measure the activity as a function of time 
and find the decay constant. You should take at least 20 measurements of the activity, for 
half-minute intervals,  making sure that the time between counting periods is minimized (why 
is that important?) For the decay constant determination, you should correct the counts for 
dead-time and background (explain why you should do this). 
 
 
6. Analysis, error estimation: 
Dead-time: 
  Estimate the uncertainty on your dead-time measurement from the uncertainties on the 
number of counts (use Poisson uncertainties for these); are there any other sources of error 
that could influence this measurement? 
 
Decay constant measurement:  
  Having N measurements of activity gives you N-1 independent measurements of the 
decay constant. Estimate the uncertainty on each individual decay constant measurement 
from the uncertainties on the number of counts (remember that they are Poisson-distributed!). 
Determine the average of the N-1 values for the decay constant, and calculate the standard 
deviation.  In addition, determine also a weighted mean of these values, with weight = (1/σi

2).  
Taking a weighted average like this is the appropriate method if the uncertainties of the 
individual measurements are very different from each other.  Furthermore, you should also 
determine the decay constant from the slope of the straight line fitted to a graph of the 
logarithm of the activity versus elapsed time. The uncertainty on this slope gives you another 
estimate of the uncertainty on the decay constant. (See the statistics hand-out or the 
statistical methods chapter of the textbook on how to determine the uncertainty on the slope). 
From the decay constant, derive the mean life and the half-life (with their uncertainties). 
Compare the values and uncertainties obtained by the different methods, and discuss their 
relative merits. 
 
 
7. Report: 
You should treat every step in this experiment as a different measurement, with its data, 
analysis and conclusion together in one section. 
Your report should have a clear and complete discussion of the principles underlying the 
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functioning of a GM Counter, as well as its characteristics as determined from your 
experimental data. In addition, you should have a complete description of the data analysis, 
including determination of uncertainties. You need to have a calculation of the uncertainty on 
dead-time, decay constant and half-life (for all methods of determining the decay constant 
and  half-life). 
 
You must also answer the following questions: 

(1)  what  are physical phenomena that are initiated by  the passage of an  ionizing particle 
in the GM tube? 

(2)  What makes it possible for the GM tube to also count  X-rays and -rays (photons)? 
(3)  what is the size (in V) of the smallest signal from the GM tube that is big enough to   
      trigger the counter circuit? 
(4)  what is the smallest time between two successive GM tube output signals that you can 

see on the oscilloscope? 
(5)  Given the dead-time determined by you, what is the counting rate at which the error 

due to the finite dead-time is 1% of the rate?  
(6) When taking the counts for the decay constant measurement, why is it important that 

the time between two successive measurement periods be minimized? If you had 
appreciable delays between successive counting periods (without correcting for this), 
would that cause you to over- or underestimate the half-life? (Explain) 
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