Phys 322
Lecture 21

Chapter 8
 Polarization

Plane of polarization

Transverse EM wave

Plane of polarization -

 plane defined by vector \vec{E} and \vec{k} :Plane of polarization $x z$:

$\vec{E}_{x}(z, t)=\hat{\mathbf{i}} E_{x}(z, t)=\hat{\mathbf{i}} E_{0 x} \cos (k z-\omega t)$
Can create another wave with polarization along y :
$\vec{E}_{y}(z, t)=\hat{\mathbf{j}} E_{y}(z, t)=\hat{\mathbf{j}} E_{0 y} \cos (k z-\omega t+\xi)$
Linearly (plane) polarized light: Electric field orientation is constant, though its amplitude can vary in time.

Superposition: in-phase \& out-of-phase

 in-phase:$$
\begin{aligned}
& +\begin{array}{l}
\vec{E}_{x}(z, t)=\hat{\mathbf{i}} E_{0 x} \cos (k z-\omega t) \quad \xi=0, \quad 2 \pi, \ldots \\
= \\
=\frac{\vec{E}_{y}(z, t)}{}=\hat{\mathbf{j}} E_{0 y} \cos (k z-\omega t+\xi) \\
\vec{E}(z, t)=\left(\hat{\mathbf{i}} E_{0 x}+\hat{\mathbf{j}} E_{0 y}\right) \cos (k z-\omega t)
\end{array}
\end{aligned}
$$

out-of-phase: $\xi=\pi, 3 \pi \ldots$

$$
\vec{E}(z, t)=\left(\hat{\mathbf{i}} E_{0 x}-\hat{\mathbf{j}} E_{0 y}\right) \cos (k z-\omega t)
$$

By changing $E_{x 0} / E_{y 0}$ can create linearly polarized light along any direction in $x y$ plane.

Circular polarization

$$
\begin{aligned}
+ & \begin{array}{l}
\vec{E}_{x}(z, t)=\hat{\mathbf{i}} E_{0} \cos (k z-\omega t) \\
\vec{E}_{y}(z, t)=\hat{\mathbf{j}} E_{0} \cos (k z-\omega t+\xi)
\end{array} \quad \begin{array}{l}
\xi=2 \pi m \pm \pi / 2, \text { where } m=0,1,2, \ldots \\
\vec{E}(z, t)=E_{0}[\hat{\mathbf{i}} \cos (k z-\omega t)+\hat{\mathbf{j}} \sin (k z-\omega t)]
\end{array} \vec{E}_{y}(z, t)=\hat{\mathbf{j}} E_{0 y} \sin (k z-\omega t)
\end{aligned}
$$

What is the magnitude of the electric field?

$$
(\vec{E})^{2}=E_{0}^{2}\left[\cos ^{2}(k z-\omega t)+\sin ^{2}(k z-\omega t)\right]=E_{0}^{2}
$$

Magnitude is constant in time!
Is it a wave?

Circular polarization

$$
\vec{E}(z, t)=E_{0}[\hat{\mathbf{i}} \cos (k z-\omega t)+\hat{\mathbf{j}} \sin (k z-\omega t)]
$$

x and y components oscillate: $E_{x}=E_{0} \cos (k z-\omega t)$

$$
E_{y}=E_{0} \sin (k z-\omega t)
$$

Angle $\alpha=k z_{0}-\omega t$
Vector E rotates in time with angular frequency $-\omega$

Vector E rotates in space with angular spatial speed k

Circular polarization

$$
\vec{E}(z, t)=E_{0}[\hat{\mathbf{i}} \cos (k z-\omega t)+\hat{\mathbf{j}} \sin (k z-\omega t)]
$$

Right circularly polarized light
E rotates clockwise as seen by observer
Vector makes full turn as wave advances one wavelength

Left circularly polarized light

$\vec{E}(z, t)=E_{0}[\hat{\mathbf{i}} \cos (k z-\omega t)-\hat{\mathbf{j}} \sin (k z-\omega t)]$
What if we have a superposition of left and right circularly polarized light of equal amplitude?
$\vec{E}(z, t)=2 E_{0} \hat{\mathbf{i}} \cos (k z-\omega t) \quad$ - linearly polarized light

Elliptic polarization

General case: $\quad E_{x}=E_{0 x} \cos (k z-\omega t) \quad E$ changes direction

$$
E_{y}=E_{0 y} \cos (k z-\omega t+\xi)
$$

What is the trajectory of the tip of vector $\left(E_{x}, E_{y}\right)$ in $x y$ plane?

$$
E_{y} / E_{0 y}=\cos (k z-\omega t) \cos \xi-\sin (k z-\omega t) \sin \xi
$$

$$
\frac{E_{y}}{E_{0 y}}-\frac{E_{x}}{E_{0 x}} \cos \xi=-\sin (k z-\omega t) \sin \xi \quad \sin ^{2}(k z-\omega t)=1-\left(\frac{E_{x}}{E_{0 x}}\right)^{2}
$$

$$
\left(\frac{E_{y}}{E_{0 y}}-\frac{E_{x}}{E_{0 x}} \cos \xi\right)^{2}=\left[1-\left(\frac{E_{x}}{E_{0 x}}\right)^{2}\right] \sin ^{2} \xi
$$

$$
\left(\frac{E_{y}}{E_{0 y}}\right)^{2}+\left(\frac{E_{x}}{E_{0 x}}\right)^{2}-2\left(\frac{E_{y}}{E_{0 y}}\right)\left(\frac{E_{x}}{E_{0 x}}\right) \cos \xi=\sin ^{2} \xi
$$

Elliptic polarization

$$
\begin{aligned}
& \left(\frac{E_{y}}{E_{0 y}}\right)^{2}+\left(\frac{E_{x}}{E_{0 x}}\right)^{2}-2\left(\frac{E_{y}}{E_{0 y}}\right)\left(\frac{E_{x}}{E_{0 x}}\right)^{\prime} \cos \xi=\sin ^{2} \xi \\
& \left(\frac{E_{y}}{E_{0 y}}\right)^{2}+\left(\frac{E_{x}}{E_{0 x}}\right)^{2}=1
\end{aligned}
$$

Circular polarization: $E_{0 x}=E_{0 y}$

Elliptic polarization

$$
\left(\frac{E_{y}}{E_{0 y}}\right)^{2}+\left(\frac{E_{x}}{E_{0 x}}\right)^{2}-2\left(\frac{E_{y}}{E_{0 y}}\right)\left(\frac{E_{x}}{E_{0 x}}\right)^{2} \cos \xi=\sin ^{2} \xi
$$

State of polarization:
P - linearly polarized
R - right circular polarization
L - left circular polarization
E - elliptical polarization

Superposition of L and R

P-state can be represented as superposition of L - and R-states of the same amplitude
E-state can be represent as superposition of L and R-states:

Circular polarization and angular momentum

What would happen with an electron under circularly polarized light?

Angular velocity ω - angular momentum
Light is absorbed, and if it was circularly polarized:

Photon and angular momentum

$$
L=\frac{E}{\omega} \quad \text { Photon has energy: } E=h v=\frac{h}{2 \pi} \omega=\hbar \omega
$$

Angular momentum of a photon is independent of its energy:

$$
L= \pm \hbar
$$

Photon has a spin, $+\hbar-L$-state

$$
-\hbar-R \text {-state }
$$

Whenever a photon is absorbed or emitted by a charged particle, along with the change in its energy the electron will undergo a change in its angular momentum First measured in 1935 by Richard Beth
Linearly polarized light: photons exist in either spin state with equal probability

Polarizer

An optical device that transmits (or reflects) only light polarized in a certain way.

Linear polarizer: passes (reflects) only light that is linearly polarized in certain direction (plane).

Unpolarized light

Is sun light polarized?

Unpolarized light = randomly polarized

Atoms emit wavepackets ~ 10 ns long

Unpolarized light on polarizer

- Most light comes from electrons accelerating in random directions and is unpolarized.
- Averaging over all directions $\mathrm{I}_{\text {transmitted }}=1 / 2 \mathrm{I}_{\text {incident }}$

Polarized light on polarizer: Malus’s law

θ is the angle between the incoming light's polarization, and the transmission axis

Incident E

Example: crossed polarizers

How much light passes through two crossed polarizers?

Example: three polarizers

Dichroism

= selective absorption of light of certain polarization

Linear dichroism - selective absorption of one of the two P-state (linear) orthogonal polarizations

Circular dichroism - selective absorption of L-state or R-state circular polarizations

Using dichroic materials one can build a polarizer

Wire-grid polarizer

What is the transmission axis of this wire-grid polarizer
Can we use such a polarizer for light?
1960, George R. Bird and Maxfield Parish: 2160 wires per mm

Wire grid polarizer in the visible

Using semiconductor fabrication techniques, a wire-grid polarizer was recently developed for the visible.

The spacing is less than 1 micron.

The wires need not be very long.

Hoya has designed a wire-grid polarizer for telecom applications that uses small elongated copper particles.

Copper Particles

Extinction coefficient > 10,000

Transmission > 99\%

Dichroic crystals

Anisotropic crystal structure: one polarization is absorbed more than the other

Example: tourmaline

$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ $0 \bigcirc 00 \bigcirc 00$ $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$ Elastic constants for electrons may be different along two axes

