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xi

TO THE STUDENT

Authors of books live with the hope that someone actually reads them. Contrary to
what you might believe, almost everything in a typical college-level mathematics
text is written for you, and not the instructor. True, the topics covered in the text are
chosen to appeal to instructors because they make the decision on whether to use it
in their classes, but everything written in it is aimed directly at you, the student. So
we want to encourage you—no, actually we want to tell you—to read this textbook!
But do not read this text like you would a novel; you should not read it fast and you
should not skip anything. Think of it as a workbook. By this we mean that mathemat-
ics should always be read with pencil and paper at the ready because, most likely, you
will have to work your way through the examples and the discussion. Before attempt-
ing any of the exercises, work all the examples in a section; the examples are con-
structed to illustrate what we consider the most important aspects of the section, and
therefore, reflect the procedures necessary to work most of the problems in the exer-
cise sets. We tell our students when reading an example, copy it down on a piece of
paper, and do not look at the solution in the book. Try working it, then compare your
results against the solution given, and, if necessary resolve, any differences. We have
tried to include most of the important steps in each example, but if something is not
clear you should always try—and here is where the pencil and paper come in again—
to fill in the details or missing steps. This may not be easy, but that is part of the learn-
ing process. The accumulation of facts followed by the slow assimilation of under-
standing simply cannot be achieved without a struggle.

Specifically for you, a Student Resource Manual (SRM) is available as an op-
tional supplement. In addition to containing solutions of selected problems from the
exercises sets, the SRM contains hints for solving problems, extra examples, and a re-
view of those areas of algebra and calculus that we feel are particularly important to
the successful study of differential equations. Bear in mind you do not have to pur-
chase the SRM; by following my pointers given at the beginning of most sections, you
can review the appropriate mathematics from your old precalculus or calculus texts.

In conclusion, we wish you good luck and success. We hope you enjoy the text
and the course you are about to embark on—as undergraduate math majors it was
one of our favorites because we liked mathematics that connected with the physical
world. If you have any comments, or if you find any errors as you read/work your
way through the text, or if you come up with a good idea for improving either it or
the SRM, please feel free to contact us through our editor at Cengage Learning:

molly.taylor@cengage.com

TO THE INSTRUCTOR

In case you are examining this book for the first time, Differential Equations with
Boundary-Value Problems, Eighth Edition can be used for either a one-semester course,
or a two-semester course that covers ordinary and partial differential equations. The
shorter version of the text, A First Course in Differential Equations with Modeling
Applications, Tenth Edition, is intended for either a one-semester or a one-quarter course
in ordinary differential equations. This book ends with Chapter 9. For a one semester
course, we assume that the students have successfully completed at least two semesters
of calculus. Since you are reading this, undoubtedly you have already examined the

Preface
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table of contents for the topics that are covered. You will not find a “suggested syl-
labus” in this preface; we will not pretend to be so wise as to tell other teachers what to
teach. We feel that there is plenty of material here to pick from and to form a course to
your liking. The textbook strikes a reasonable balance between the analytical, qualita-
tive, and quantitative approaches to the study of differential equations. As far as our
“underlying philosophy” it is this: An undergraduate textbook should be written with
the student’s understanding kept firmly in mind, which means to me that the material
should be presented in a straightforward, readable, and helpful manner, while keeping
the level of theory consistent with the notion of a “first course.

For those who are familiar with the previous editions, we would like to mention
a few of the improvements made in this edition.

• Eight new projects appear at the beginning of the book. Each project includes
a related problem set, and a correlation of the project material with a chapter
in the text. 

• Many exercise sets have been updated by the addition of new problems to
better test and challenge the students. In like manner, some exercise sets have
been improved by sending some problems into retirement.

• Additional examples and figures have been added to many sections
• Several instructors took the time to e-mail us expressing their concerns

about our approach to linear first-order differential equations. In response,
Section 2.3, Linear Equations, has been rewritten with the intent to simplify
the discussion.

• This edition contains a new section on Green’s functions in Chapter 4 for those
who have extra time in their course to consider this elegant application of
variation of parameters in the solution of initial-value and boundary-value prob-
lems. Section 4.8 is optional and its content does not impact any other section. 

• Section 5.1 now includes a discussion on how to use both trigonometric
forms 

in describing simple harmonic motion.
• At the request of users of the previous editions, a new section on the review

of power series has been added to Chapter 6. Moreover, much of this chapter
has been rewritten to improve clarity. In particular, the discussion of the
modified Bessel functions and the spherical Bessel functions in Section 6.4
has been greatly expanded.

• Several boundary-value problems involving modified Bessel functions have
been added to Exercises 13.2.

STUDENT RESOURCES

• Student Resource Manual (SRM), prepared by Warren S. Wright and Carol D.
Wright (ISBN 9781133491927 accompanies A First Course in Differential
Equations with Modeling Applications, Tenth Edition, and ISBN 9781133491958
accompanies Differential Equations with Boundary-Value Problems, Eighth
Edition), provides important review material from algebra and calculus, the
solution of every third problem in each exercise set (with the exception of the
Discussion Problems and Computer Lab Assignments), relevant command
syntax for the computer algebra systems Mathematica and Maple, lists of
important concepts, as well as helpful hints on how to start certain problems.

INSTRUCTOR RESOURCES

• Instructor’s Solutions Manual (ISM) prepared by Warren S. Wright and
Carol D. Wright (ISBN 9781133602293) provides complete, worked-out
solutions for all problems in the text.

• Solution Builder is an online instructor database that offers complete, worked-
out solutions for all exercises in the text, allowing you to create customized,

y � Asin(vt � f)  and  y � Acos(vt � f)

xii ● PREFACE

27069_fm.qxd  2/2/12  3:37 PM  Page xii

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



PREFACE ● xiii

secure solutions printouts (in PDF format) matched exactly to the problems you
assign in class. Access is available via 

www.cengage.com/solutionbuilder
• ExamView testing software allows instructors to quickly create, deliver, and

customize tests for class in print and online formats, and features automatic
grading. Included is a test bank with hundreds of questions customized di-
rectly to the text, with all questions also provided in PDF and Microsoft
Word formats for instructors who opt not to use the software component.

• Enhanced WebAssign is the most widely used homework system in higher
education. Available for this title, Enhanced WebAssign allows you to assign,
collect, grade, and record assignments via the Web. This proven homework
system includes links to textbook sections, video examples, and problem spe-
cific tutorials. Enhanced WebAssign is more than a homework system—it is
a complete learning system for students. 
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Is AIDS an Invariably 
Fatal Disease?
by Ivan Kramer

This essay will address and answer the question: Is the acquired immunodeficienc
syndrome (AIDS), which is the end stage of the human immunodeficiency virus
(HIV) infection, an invariably fatal disease?

Like other viruses, HIV has no metabolism and cannot reproduce itself outside of
a living cell. The genetic information of the virus is contained in two identical strands
of RNA. To reproduce, HIV must use the reproductive apparatus of the cell it invades
and infects to produce exact copies of the viral RNA. Once it penetrates a cell, HIV
transcribes its RNA into DNA using an enzyme (reverse transcriptase) contained in the
virus. The double-stranded viral DNA migrates into the nucleus of the invaded cell and
is inserted into the cell’s genome with the aid of another viral enzyme (integrase). The
viral DNA and the invaded cell’s DNA are then integrated, and the cell is infected.
When the infected cell is stimulated to reproduce, the proviral DNA is transcribed into
viral DNA, and new viral particles are synthesized. Since anti-retroviral drugs like zi-
dovudine inhibit the HIV enzyme reverse transcriptase and stop proviral DNA chain
synthesis in the laboratory, these drugs, usually administered in combination, slow
down the progression to AIDS in those that are infected with HIV (hosts).

What makes HIV infection so dangerous is the fact that it fatally weakens a
host’s immune system by binding to the CD4 molecule on the surface of cells vital
for defense against disease, including T-helper cells and a subpopulation of natural
killer cells. T-helper cells (CD4 T-cells, or T4 cells) are arguably the most important
cells of the immune system since they organize the body’s defense against antigens.
Modeling suggests that HIV infection of natural killer cells makes it impossible for
even modern antiretroviral therapy to clear the virus [1]. In addition to the CD4
molecule, a virion needs at least one of a handful of co-receptor molecules (e.g., CCR5
and CXCR4) on the surface of the target cell in order to be able to bind to it, pene-
trate its membrane, and infect it. Indeed, about 1% of Caucasians lack coreceptor
molecules, and, therefore, are completely immune to becoming HIV infected.

Once infection is established, the disease enters the acute infection stage, lasting
a matter of weeks, followed by an incubation period, which can last two decades or
more! Although the T-helper cell density of a host changes quasi-statically during the
incubation period, literally billions of infected T4 cells and HIV particles are
destroyed—and replaced—daily. This is clearly a war of attrition, one in which the
immune system invariably loses.

A model analysis of the essential dynamics that occur during the incubation
period to invariably cause AIDS is as follows [1]. Because HIV rapidly mutates, its
ability to infect T4 cells on contact (its infectivity) eventually increases and the
rate T4 cells become infected increases. Thus, the immune system must increase the
destruction rate of infected T4 cells as well as the production rate of new, uninfected
ones to replace them. There comes a point, however, when the production rate of T4
cells reaches its maximum possible limit and any further increase in HIV’s infectiv-
ity must necessarily cause a drop in the T4 density leading to AIDS. Remarkably,
about 5% of hosts show no sign of immune system deterioration for the first ten years
of the infection; these hosts, called long-term nonprogressors, were originally
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thought to be possibly immune to developing AIDS, but modeling evidence suggests
that these hosts will also develop AIDS eventually [1].

In over 95% of hosts, the immune system gradually loses its long battle with the
virus. The T4 cell density in the peripheral blood of hosts begins to drop from normal
levels (between 250 over 2500 cells/mm3) towards zero, signaling the end of the
incubation period. The host reaches the AIDS stage of the infection either when one
of the more than twenty opportunistic infections characteristic of AIDS develops
(clinical AIDS) or when the T4 cell density falls below 250 cells/mm3 (an additional
definition of AIDS promulgated by the CDC in 1987). The HIV infection has now
reached its potentially fatal stage.

In order to model survivability with AIDS, the time t at which a host develops
AIDS will be denoted by t � 0. One possible survival model for a cohort of AIDS
patients postulates that AIDS is not a fatal condition for a fraction of the cohort,
denoted by Si, to be called the immortal fraction here. For the remaining part of the
cohort, the probability of dying per unit time at time t will be assumed to be a con-
stant k, where, of course, k must be positive. Thus, the survival fraction S(t) for this
model is a solution of the linear first-order di ferential equation

(1)

Using the integrating-factor method discussed in Section 2.3, we see that the 
solution of equation (1) for the survival fraction is given by

(2)

Instead of the parameter k appearing in (2), two new parameters can be defined for
a host for whom AIDS is fatal: the average survival time Taver given by Taver � k�1 and
the survival half-life T1�2 given by T1�2 � ln(2)�k. The survival half-life, defined as the
time required for half of the cohort to die, is completely analogous to the half-life in
radioactive nuclear decay. See Problem 8 in Exercise 3.1. In terms of these parameters
the entire time-dependence in (2) can be written as

(3)

Using a least-squares program to fit the survival fraction function in (2) to the
actual survival data for the 159 Marylanders who developed AIDS in 1985 produces
an immortal fraction value of Si � 0.0665 and a survival half life value of T1�2 �
0.666 year, with the average survival time being Taver � 0.960 years [2]. See Figure 1.
Thus only about 10% of Marylanders who developed AIDS in 1985 survived three
years with this condition. The 1985 Maryland AIDS survival curve is virtually iden-
tical to those of 1983 and 1984. The first antiretroviral drug found to be effective
against HIV was zidovudine (formerly known as AZT). Since zidovudine was not
known to have an impact on the HIV infection before 1985 and was not common

e�kt � e�t>Taver � 2�t>T1>2

S(t) � Si � [1 � Si]e�kt.

dS(t)
dt

� �k[S(t) � Si].
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FIGURE 1 Survival fraction curve S(t).
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therapy before 1987, it is reasonable to conclude that the survival of the 1985
Maryland AIDS patients was not significantly influenced by zidovudine therap .

The small but nonzero value of the immortal fraction Si obtained from the
Maryland data is probably an artifact of the method that Maryland and other states
use to determine the survivability of their citizens. Residents with AIDS who
changed their name and then died or who died abroad would still be counted as alive
by the Maryland Department of Health and Mental Hygiene. Thus, the immortal
fraction value of Si � 0.0665 (6.65%) obtained from the Maryland data is clearly an
upper limit to its true value, which is probably zero.

Detailed data on the survivability of 1,415 zidovudine-treated HIV-infected
hosts whose T4 cell densities dropped below normal values were published by
Easterbrook et al. in 1993 [3]. As their T4 cell densities drop towards zero, these peo-
ple develop clinical AIDS and begin to die. The longest survivors of this disease live
to see their T4 densities fall below 10 cells/mm3. If the time t � 0 is redefined to
mean the moment the T4 cell density of a host falls below 10 cells/mm3, then the
survivability of such hosts was determined by Easterbrook to be 0.470, 0.316, and
0.178 at elapsed times of 1 year, 1.5 years, and 2 years, respectively.

A least-squares fit of the survival fraction function in (2) to the Easterbrook
data for HIV-infected hosts with T4 cell densities in the 0–10 cells/mm3 range yields
a value of the immortal fraction of Si � 0 and a survival half-life of T1�2 � 0.878 year
[4]; equivalently, the average survival time is Taver � 1.27 years. These results clearly
show that zidovudine is not effective in halting replication in all strains of HIV,
since those who receive this drug eventually die at nearly the same rate as those who
do not. In fact, the small difference of 2.5 months between the survival half-life
for 1993 hosts with T4 cell densities below 10 cells/mm3 on zidovudine therapy
(T1�2 � 0.878 year) and that of 1985 infected Marylanders not taking zidovudine
(T1�2 � 0.666 year) may be entirely due to improved hospitalization and improve-
ments in the treatment of the opportunistic infections associated with AIDS over the
years. Thus, the initial ability of zidovudine to prolong survivability with HIV dis-
ease ultimately wears off, and the infection resumes its progression. Zidovudine
therapy has been estimated to extend the survivability of an HIV-infected patient by
perhaps 5 or 6 months on the average [4].

Finally, putting the above modeling results for both sets of data together, we fin
that the value of the immortal fraction falls somewhere within the range 0 � Si � 0.0665
and the average survival time falls within the range 0.960 years � Taver � 1.27 years.
Thus, the percentage of people for whom AIDS is not a fatal disease is less than 6.65%
and may be zero. These results agree with a 1989 study of hemophilia-associated AIDS
cases in the USA which found that the median length of survival after AIDS diagno-
sis was 11.7 months [5]. A more recent and comprehensive study of hemophiliacs
with clinical AIDS using the model in (2) found that the immortal fraction was Si �
0, and the mean survival times for those between 16 to 69 years of age varied be-
tween 3 to 30 months, depending on the AIDS-defining condition [6]. Although
bone marrow transplants using donor stem cells homozygous for CCR5 delta32
deletion may lead to cures, to date clinical results consistently show that AIDS is
an invariably fatal disease.

Related Problems
1. Suppose the fraction of a cohort of AIDS patients that survives a time t after

AIDS diagnosis is given by S(t) � exp(�kt). Show that the average survival
time Taver after AIDS diagnosis for a member of this cohort is given by
Taver � 1�k.

2. The fraction of a cohort of AIDS patients that survives a time t after AIDS
diagnosis is given by S(t) � exp(�kt). Suppose the mean survival for a cohort
of hemophiliacs diagnosed with AIDS before 1986 was found to be Taver � 6.4
months. What fraction of the cohort survived 5 years after AIDS diagnosis?
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3. The fraction of a cohort of AIDS patients that survives a time t after AIDS diag-
nosis is given by S(t) � exp(�kt). The time it takes for S(t) to reach the value of
0.5 is defined as the survival half-life and denoted by T1�2.
(a) Show that S(t) can be written in the form .
(b) Show that T1�2 � Taver ln(2), where Taver is the average survival time define

in problem (1). Thus, it is always true that T1�2 � Taver.
4. About 10% of lung cancer patients are cured of the disease, i.e., they survive

5 years after diagnosis with no evidence that the cancer has returned. Only 14%
of lung cancer patients survive 5 years after diagnosis. Assume that the fraction
of incurable lung cancer patients that survives a time t after diagnosis is given
by exp(�kt). Find an expression for the fraction S(t) of lung cancer patients that
survive a time t after being diagnosed with the disease. Be sure to determine the
values of all of the constants in your answer. What fraction of lung cancer patients
survives two years with the disease?
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The Allee Effect
by Jo Gascoigne

The top five most famous Belgians apparently include a cyclist, a punk singer, the in-
ventor of the saxophone, the creator of Tintin, and Audrey Hepburn. Pierre François
Verhulst is not on the list, although he should be. He had a fairly short life, dying at
the age of 45, but did manage to include some excitement—he was deported from
Rome for trying to persuade the Pope that the Papal States needed a written constitu-
tion. Perhaps the Pope knew better even then than to take lectures in good gover-
nance from a Belgian. . . .

Aside from this episode, Pierre Verhulst (1804–1849) was a mathematician who
concerned himself, among other things, with the dynamics of natural populations—
fish, rabbits, buttercups, bacteria, or whatever. (I am prejudiced in favour of fish, so
we will be thinking fish from now on.) Theorizing on the growth of natural popula-
tions had up to this point been relatively limited, although scientists had reached the
obvious conclusion that the growth rate of a population (dN�dt, where N(t) is the
population size at time t) depended on (i) the birth rate b and (ii) the mortality rate m,
both of which would vary in direct proportion to the size of the population N:

(1)

After combining b and m into one parameter r, called the intrinsic rate of natural
increase—or more usually by biologists without the time to get their tongues around
that, just r—equation (1) becomes

(2)

This model of population growth has a problem, which should be clear to you—if
not, plot dN�dt for increasing values of N. It is a straightforward exponential growth
curve, suggesting that we will all eventually be drowning in fish. Clearly, something
eventually has to step in and slow down dN�dt. Pierre Verhulst’s insight was that this
something was the capacity of the environment, in other words, 

How many fish can an ecosystem actually support?

He formulated a differential equation for the population N(t) that included both
r and the carrying capacity K:

(3)

Equation (3) is called the logistic equation, and it forms to this day the basis of much
of the modern science of population dynamics. Hopefully, it is clear that the term
(1 � N�K), which is Verhulst’s contribution to equation (2), is (1 � N�K) � 1 when
N � 0, leading to exponential growth, and (1 � N�K) : 0 as N : K, hence it causes
the growth curve of N(t) to approach the horizontal asymptote N(t) � K. Thus the size
of the population cannot exceed the carrying capacity of the environment.

dN
dt

� rN�1 �
N
K�,  r � 0.

dN
dt

� rN.

dN
dt

� bN � mN.
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P-6 ● PROJECTS THE ALLEE EFFECT

The logistic equation (3) gives the overall growth rate of the population, but the
ecology is easier to conceptualize if we consider per capita growth rate—that is, the
growth rate of the population per the number of individuals in the population—some
measure of how “well” each individual in the population is doing. To get per capita
growth rate, we just divide each side of equation (3) by N:

This second version of (3) immediately shows (or plot it) that this relationship is a

straight line with a maximum value of (assuming that negative popu-

lation sizes are not relevant) and dN�dt � 0 at N � K.

Er, hang on a minute . . . “a maximum value of ” Each shark in

the population does best when there are . . . zero sharks? Here is clearly a flaw in the
logistic model. (Note that it is now a model—when it just presents a relationship be-
tween two variables dN�dt and N, it is just an equation. When we use this equation
to try and analyze how populations might work, it becomes a model.)

The assumption behind the logistic model is that as population size decreases, indi-
viduals do better (as measured by the per capita population growth rate). This assump-
tion to some extent underlies all our ideas about sustainable management of natural
resources—a fish population cannot be fished indefinitely unless we assume that when
a population is reduced in size, it has the ability to grow back to where it was before.

This assumption is more or less reasonable for populations, like many fish pop-
ulations subject to commercial fisheries, which are maintained at 50% or even 20%
of K. But for very depleted or endangered populations, the idea that individuals keep
doing better as the population gets smaller is a risky one. The Grand Banks popula-
tion of cod, which was fished down to 1% or perhaps even 0.1% of K, has been pro-
tected since the early 1990s, and has yet to show convincing signs of recovery.

Warder Clyde Allee (1885–1955) was an American ecologist at the University
of Chicago in the early 20th century, who experimented on goldfish, brittlestars, flou
beetles, and, in fact, almost anything unlucky enough to cross his path. Allee showed
that, in fact, individuals in a population can do worse when the population becomes
very small or very sparse.* There are numerous ecological reasons why this might
be—for example, they may not find a suitable mate or may need large groups to fin
food or express social behavior, or in the case of goldfish they may alter the water
chemistry in their favour. As a result of Allee’s work, a population where the per
capita growth rate declines at low population size is said to show an Allee effect. The
jury is still out on whether Grand Banks cod are suffering from an Allee effect, but
there are some possible mechanisms—females may not be able to find a mate, or a
mate of the right size, or maybe the adult cod used to eat the fish that eat the juvenile
cod. On the other hand, there is nothing that an adult cod likes more than a snack of
baby cod—they are not fish with very picky eating habits—so these arguments may
not stack up. For the moment we know very little except that there are still no cod.

Allee effects can be modelled in many ways. One of the simplest mathematical
models, a variation of the logistic equation, is:

(4)

where A is called the Allee threshold. The value N (t) � A is the population size below
which the population growth rate becomes negative due to an Allee effect—situated at

 
dN
dt

� rN�1 �
N
K��

N
A

� 1�.

1
N

 
dN
dt

 at N � 0?!

1
N

 
dN
dt

 at N � 0

1
N

 
dN
dt

� r�1 �
N
K� � r �

r
K

N.

*Population size and population density are mathematically interchangeable, assuming a fixed area i
which the population lives (although they may not necessarily be interchangeable for the individuals in
question).
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PROJECTS THE ALLEE EFFECT ● P-7

a value of N somewhere between N � 0 and N � K, that is, 0 � A � K, depending on
the species (but for most species a good bit closer to 0 than K, luckily).

Equation (4) is not as straightforward to solve for N(t) as (3), but we don’t need
to solve it to gain some insights into its dynamics. If you work through Problems 2
and 3, you will see that the consequences of equation (4) can be disastrous for endan-
gered populations.

Related Problems
1. (a) The logistic equation (3) can be solved explicitly for N(t) using the technique

of partial fractions. Do this, and plot N(t) as a function of t for 0 t 10.
Appropriate values for r, K, and N(0) are r � 1, K � 1, N(0) � 0.01 (fish per
cubic metre of seawater, say). The graph of N(t) is called a sigmoid growth
curve.

(b) The value of r can tell us a lot about the ecology of a species—sardines,
where females mature in less than one year and have millions of eggs, have
a high r, while sharks, where females bear a few live young each year, have
a low r. Play with r and see how it affects the shape of the curve. Question:
If a marine protected area is put in place to stop overfishing, which species
will recover quickest—sardines or sharks?

2. Find the population equilibria for the model in (4). [Hint: The population is at
equilibrium when dN�dt � 0, that is, the population is neither growing nor
shrinking. You should find three values of N for which the population is at equi-
librium.]

3. Population equilibria can be stable or unstable. If, when a population deviates a
bit from the equilibrium value (as populations inevitably do), it tends to return to
it, this is a stable equilibrium; if, however, when the population deviates from
the equilibrium it tends to diverge from it ever further, this is an unstable equi-
librium. Think of a ball in the pocket of a snooker table versus a ball balanced on
a snooker cue. Unstable equilibria are a feature of Allee effect models such as
(4). Use a phase portrait of the autonomous equation (4) to determine whether
the nonzero equilibria that you found in Problem 2 are stable or unstable. [Hint:
See Section 2.1 of the text.]

4. Discuss the consequences of the result above for a population N(t) fluctuatin
close to the Allee threshold A.
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Copper sharks and bronze whaler sharks
feeding on a bait ball of sardines off the
east coast of South Africa
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Project for Section 3.3

Wolf Population Dynamics
by C. J. Knickerbocker

Early in 1995, after much controversy, public debate, and a 70-year absence, gray
wolves were re introduced into Yellowstone National Park and Central Idaho. During
this 70-year absence, significant changes were recorded in the populations of other
predator and prey animals residing in the park. For instance, the elk and coyote pop-
ulations had risen in the absence of influence from the larger gray wolf. With the
reintroduction of the wolf in 1995, we anticipated changes in both the predator and
prey animal populations in the Yellowstone Park ecosystem as the success of the
wolf population is dependent upon how it influences and is influenced by the other
species in the ecosystem.

For this study, we will examine how the elk (prey) population has been influ
enced by the wolves (predator). Recent studies have shown that the elk population
has been negatively impacted by the reintroduction of the wolves. The elk population
fell from approximately 18,000 in 1995 to approximately 7,000 in 2009. This article
asks the question of whether the wolves could have such an effect and, if so, could
the elk population disappear?

Let’s begin with a more detailed look at the changes in the elk population inde-
pendent of the wolves. In the 10 years prior to the introduction of wolves, from 1985
to 1995, one study suggested that the elk population increased by 40% from 13,000
in 1985 to 18,000 in 1995. Using the simplest differential equation model for popu-
lation dynamics, we can determine the growth rate for elks (represented by the vari-
able r) prior to the reintroduction of the wolves.

(1)

In this equation, E(t) represents the elk population (in thousands) where t is measured
in years since 1985. The solution, which is left as an exercise for the reader, finds the
combined birth/death growth rate r to be approximately 0.0325 yielding:

In 1995, 21 wolves were initially released, and their numbers have risen. In
2007, biologists estimated the number of wolves to be approximately 171.

To study the interaction between the elk and wolf populations, let’s consider the
following predator-prey model for the interaction between the elk and wolf within
the Yellowstone ecosystem:

(2)

where E(t) is the elk population and W(t) is the wolf population. All populations are
measured in thousands of animals. The variable t represents time measured in years
from 1995. So, from the initial conditions, we have 18,000 elk and 21 wolves in the
year 1995. The reader will notice that we estimated the growth rate for the elk to be
the same as that estimated above r � 0.0325.

 E(0) � 18.0, W(0) � 0.021

 
dW
dt

 � �0.6W � 0.05EW

 
dE
dt

 � 0.0325E � 0.8EW

 E(t) � 13.0 e0.0325t

 E(10) � 18.0E(0) � 13.0,
dE
dt

� rE,

A gray wolf in the wild
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Before we attempt to solve the model (2), a qualitative analysis of the system
can yield a number of interesting properties of the solutions. The first equation
shows that the growth rate of the elk is positively impacted by the size of
the herd (0.0325E). This can be interpreted as the probability of breeding in-
creases with the number of elk. On the other hand the nonlinear term (0.8EW) has
a negative impact on the growth rate of the elk since it measures the interaction
between predator and prey. The second equation 
shows that the wolf population has a negative effect on its own growth which can
be interpreted as more wolves create more competition for food. But, the interac-
tion between the elk and wolves (0.05EW) has a positive impact since the wolves
are finding more food.

Since an analytical solution cannot be found to the initial-value problem (2), we
need to rely on technology to find approximate solutions. For example, below is a set
of instructions for finding a numerical solution of the initial-value problem using the
computer algebra system MAPLE.

e1 := diff(e(t),t)- 0.0325 * e(t) + 0.8 * e(t)*w(t) :
e2 := diff(w(t),t)+ 0.6 * w(t) - 0.05 * e(t)*w(t) :
sys := {e1,e2} :
ic := {e(0)=18.0,w(0)=0.021} :
ivp := sys union ic :
H:= dsolve(ivp,{e(t),w(t)},numeric) :

The graphs in Figures 1 and 2 show the populations for both species between 1995
and 2009. As predicted by numerous studies, the reintroduction of wolves into
Yellowstone had led to a decline in the elk population. In this model, we see the popula-
tion decline from 18,000 in 1995 to approximately 7,000 in 2009. In contrast, the wolf
population rose from an initial count of 21 in 1995 to a high of approximately 180 in
2004.

dW>dt � �0.6W � 0.05EW

(dE>dt)

The alert reader will note that the model also shows a decline in the wolf popu-
lation after 2004. How might we interpret this? With the decline in the elk population
over the first 10 years, there was less food for the wolves and therefore their popula-
tion begins to decline.

Figure 3 below shows the long-term behavior of both populations. The interpre-
tation of this graph is left as an exercise for the reader.

Information on the reintroduction of wolves into Yellowstone Park and central
Idaho can be found on the Internet. For example, read the U.S. Fish and Wildlife
Service news release of November 23, 1994, on the release of wolves into
Yellowstone National Park.
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Related Problems
1. Solve the pre-wolf initial-value problem (1) by first solving the differential

equation and applying the initial condition. Then apply the terminal condition to
find the growth rate

2. Biologists have debated whether the decrease in the elk from 18,000 in 1995 to
7,000 in 2009 is due to the reintroduction of wolves. What other factors might
account for the decrease in the elk population?

3. Consider the long-term changes in the elk and wolf populations. Are these cyclic
changes reasonable? Why is there a lag between the time when the elk begins to
decline and the wolf population begins to decline? Are the minimum values for
the wolf population realistic? Plot the elk population versus the wolf population
and interpret the results.

4. What does the initial-value problem (1) tell us about the growth of the elk pop-
ulation without the influence of the wolves? Find a similar model for the intro-
duction of rabbits into Australia in 1859 and the impact of introducing a prey
population into an environment without a natural predator population.
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Bungee Jumping
by Kevin Cooper

Suppose that you have no sense. Suppose that you are standing on a bridge above the
Malad River canyon. Suppose that you plan to jump off that bridge. You have no sui-
cide wish. Instead, you plan to attach a bungee cord to your feet, to dive gracefully
into the void, and to be pulled back gently by the cord before you hit the river that is
174 feet below. You have brought several different cords with which to affix your
feet, including several standard bungee cords, a climbing rope, and a steel cable. You
need to choose the stiffness and length of the cord so as to avoid the unpleasantness
associated with an unexpected water landing. You are undaunted by this task, because
you know math!

Each of the cords you have brought will be tied off so as to be 100 feet long
when hanging from the bridge. Call the position at the bottom of the cord 0, and
measure the position of your feet below that “natural length” as x(t), where x increases
as you go down and is a function of time t. See Figure 1. Then, at the time you
jump, x(0) = -100, while if your six-foot frame hits the water head first, at that time
x(t) = 174 - 100 - 6 = 68. Notice that distance increases as you fall, and so your
velocity is positive as you fall and negative when you bounce back up. Note also
that you plan to dive so your head will be six feet below the end of the chord when
it stops you. 

You know that the acceleration due to gravity is a constant, called g, so that the
force pulling downwards on your body is mg. You know that when you leap from the
bridge, air resistance will increase proportionally to your speed, providing a force in
the opposite direction to your motion of about bv, where b is a constant and v is your
velocity. Finally, you know that Hooke’s law describing the action of springs says
that the bungee cord will eventually exert a force on you proportional to its distance
past its natural length. Thus, you know that the force of the cord pulling you back
from destruction may be expressed as

The number k is called the spring constant, and it is where the stiffness of the cord
you use influences the equation. For example, if you used the steel cable, then k
would be very large, giving a tremendous stopping force very suddenly as you passed
the natural length of the cable. This could lead to discomfort, injury, or even a
Darwin award. You want to choose the cord with a k value large enough to stop you
above or just touching the water, but not too suddenly. Consequently, you are inter-
ested in finding the distance you fall below the natural length of the cord as a func-
tion of the spring constant. To do that, you must solve the differential equation that
we have derived in words above: The force mx� on your body is given by

mx� � mg + b(x) - bx	.

Here mg is your weight, 160 lb., and x	 is the rate of change of your position below
the equilibrium with respect to time; i.e., your velocity. The constant b for air resis-
tance depends on a number of things, including whether you wear your skin-tight
pink spandex or your skater shorts and XXL T-shirt, but you know that the value
today is about 1.0.

b(x) � �0
�kx

x � 0
x � 0

P-11
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This is a nonlinear differential equation, but inside it are two linear differential
equations, struggling to get out. We will work with such equations more extensively
in later chapters, but we already know how to solve such equations from our past
experience. When x � 0, the equation is mx� = mg - bx	, while after you pass the
natural length of the cord it is mx� = mg - kx - bx	. We will solve these separately,
and then piece the solutions together when x(t) = 0.

In Problem 1 you find an expression for your position t seconds after you step off
the bridge, before the bungee cord starts to pull you back. Notice that it does not
depend on the value for k, because the bungee cord is just falling with you when you
are above x(t) = 0. When you pass the natural length of the bungee cord, it does start
to pull back, so the differential equation changes. Let t1 denote the first time for which
x(t1) = 0, and let v1 denote your speed at that time. We can thus describe the motion
for x(t) � 0 using the problem x� = g - kx - bx	, x(t1) = 0, x	(t1) = v1. An illustration
of a solution to this problem in phase space can be seen in Figure 2.

This will yield an expression for your position as the cord is pulling on you. All
we have to do is to find out the time t2 when you stop going down. When you stop
going down, your velocity is zero, i.e., x	(t2) = 0. 

As you can see, knowing a little bit of math is a dangerous thing. We remind
you that the assumption that the drag due to air resistance is linear applies only for
low speeds. By the time you swoop past the natural length of the cord, that approx-
imation is only wishful thinking, so your actual mileage may vary. Moreover,
springs behave nonlinearly in large oscillations, so Hooke’s law is only an approx-
imation. Do not trust your life to an approximation made by a man who has been
dead for 200 years. Leave bungee jumping to the professionals.

Related Problems
1. Solve the equation mx� + bx	 = mg for x(t), given that you step off the bridge—no

jumping, no diving! Stepping off means x(0) = -100, x	(0) = 0. You may use
mg = 160, b = 1, and g = 32.

2. Use the solution from Problem 1 to compute the length of time t1 that you freefall
(the time it takes to go the natural length of the cord: 100 feet).

3. Compute the derivative of the solution you found in Problem 1 and evaluate it at
the time you found in Problem 2. Call the result v1. You have found your down-
ward speed when you pass the point where the cord starts to pull.

4. Solve the initial-value problem

For now, you may use the value k = 14, but eventually you will need to replace
that with the actual values for the cords you brought. The solution x(t) repre-
sents the position of your feet below the natural length of the cord after it starts
to pull back.

5. Compute the derivative of the expression you found in Problem 4 and solve for
the value of t where it is zero. This time is t2. Be careful that the time you compute
is greater than t1—there are several times when your motion stops at the top and
bottom of your bounces! After you find t2, substitute it back into the solution you
found in Problem 4 to find your lowest position

6. You have brought a soft bungee cord with k = 8.5, a stiffer cord with k = 10.7, and
a climbing rope for which k = 16.4. Which, if any, of these may you use safely
under the conditions given?

7. You have a bungee cord for which you have not determined the spring constant.
To do so, you suspend a weight of 10 lb. from the end of the 100-foot cord, caus-
ing the cord to stretch 1.2 feet. What is the k value for this cord? You may neglect
the mass of the cord itself.

x	(t1) � v1.x(t1) � 0, mx� � bx	 � kx � mg,

FIGURE 2 An example plot of x(t)
against x	(t) for a bungee jump
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The Collapse of the Tacoma
Narrows Suspension Bridge
by Gilbert N. Lewis

In the summer of 1940, the Tacoma Narrows Suspension Bridge in the State of
Washington was completed and opened to traffic.Almost immediately, observers no-
ticed that the wind blowing across the roadway would sometimes set up large verti-
cal vibrations in the roadbed. The bridge became a tourist attraction as people came
to watch, and perhaps ride, the undulating bridge. Finally, on November 7, 1940, dur-
ing a powerful storm, the oscillations increased beyond any previously observed, and
the bridge was evacuated. Soon, the vertical oscillations became rotational, as ob-
served by looking down the roadway. The entire span was eventually shaken apart by
the large vibrations, and the bridge collapsed. Figure 1 shows a picture of the bridge
during the collapse. See [1] and [2] for interesting and sometimes humorous anec-
dotes associated with the bridge. Or, do an Internet search with the key words
“Tacoma Bridge Disaster” in order to find and view some interesting videos of the
collapse of the bridge.

The noted engineer von Karman was asked to determine the cause of the col-
lapse. He and his coauthors [3] claimed that the wind blowing perpendicularly across
the roadway separated into vortices (wind swirls) alternately above and below the
roadbed, thereby setting up a periodic, vertical force acting on the bridge. It was this
force that caused the oscillations. Others further hypothesized that the frequency of
this forcing function exactly matched the natural frequency of the bridge, thus lead-
ing to resonance, large oscillations, and destruction. For almost fifty years, resonance
was blamed as the cause of the collapse of the bridge, although the von Karman
group denied this, stating that “it is very improbable that resonance with alternating
vortices plays an important role in the oscillations of suspension bridges” [3].

As we can see from equation (31) in Section 5.1.3, resonance is a linear phe-
nomenon. In addition, for resonance to occur, there must be an exact match between
the frequency of the forcing function and the natural frequency of the bridge.
Furthermore, there must be absolutely no damping in the system. It should not be
surprising, then, that resonance was not the culprit in the collapse.

If resonance did not cause the collapse of the bridge, what did? Recent research
provides an alternative explanation for the collapse of the Tacoma Narrows Bridge.
Lazer and McKenna [4] contend that nonlinear effects, and not linear resonance,
were the main factors leading to the large oscillations of the bridge (see [5] for a good
review article). The theory involves partial differential equations. However, a simpli-
fied model leading to a nonlinear ordinary differential equation can be constructed.

The development of the model below is not exactly the same as that of Lazer and
McKenna, but it results in a similar differential equation. This example shows an-
other way that amplitudes of oscillation can increase.

Consider a single vertical cable of the suspension bridge. We assume that it acts
like a spring, but with different characteristics in tension and compression, and with
no damping. When stretched, the cable acts like a spring with Hooke’s constant, b,
while, when compressed, it acts like a spring with a different Hooke’s constant, a. We
assume that the cable in compression exerts a smaller force on the roadway than
when stretched the same distance, so that 0 � a � b. Let the vertical deflectio
(positive direction downward) of the slice of the roadbed attached to this cable be

The rebuilt Tacoma Narrows bridge (1950)
and new parallel bridge (2009)

Collapse of the Tacoma Narrows Bridge
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denoted by y(t), where t represents time, and y � 0 represents the equilibrium posi-
tion of the road. As the roadbed oscillates under the influence of an applied vertical
force (due to the von Karman vortices), the cable provides an upward restoring force
equal to by when y � 0 and a downward restoring force equal to ay when y � 0. This
change in the Hooke’s Law constant at y � 0 provides the nonlinearity to the differ-
ential equation. We are thus led to consider the differential equation derived from
Newton’s second law of motion 

my � f(y) � g(t),

where f(y) is the nonlinear function given by 

g(t) is the applied force, and m is the mass of the section of the roadway. Note that
the differential equation is linear on any interval on which y does not change sign.

Now, let us see what a typical solution of this problem would look like. We will
assume that m � 1 kg, b � 4 N/m, a � 1N/m, and g(t) � sin(4t) N. Note that the fre-
quency of the forcing function is larger than the natural frequencies of the cable in
both tension and compression, so that we do not expect resonance to occur. We also
assign the following initial values to y: y(0) � 0, y	(0) � 0.01, so that the roadbed
starts in the equilibrium position with a small downward velocity.

Because of the downward initial velocity and the positive applied force, y(t) will
initially increase and become positive. Therefore, we first solve this initial-value
problem

y � 4y � sin(4t), y(0) � 0, y	(0) � 0.01. (1)

The solution of the equation in (1), according to Theorem 4.1.6, is the sum of the
complementary solution, yc(t), and the particular solution, yp(t). It is easy to see
that yc(t) � c1cos(2t) � c2sin(2t) (equation (9), Section 4.3), and yp(t) � �
(Table 4.4.1, Section 4.4). Thus,

y(t) � c1cos(2t) � c2 sin(2t) . (2)

The initial conditions give
y(0) � 0 � c1,

y	(0) � 0.01 � 2c2 � ,

so that c2 � (0.01 � )�2. Therefore, (2) becomes

(3)

We note that the first positive value of t for which y(t) is again equal to zero is .
At that point, Therefore, equation (3) holds on [0, ].

After becomes negative, so we must now solve the new problem

(4)

Proceeding as above, the solution of (4) is

(5)
 � cos t��0.01 �

2
5� �

4
15 sin t cos(2t)�.

 y(t) � �0.01 �
2
5�cos t �

1
15

sin(4t)

 y� � y � sin(4t),  y�p2� � 0,  y	�p2� � ��0.01 �
2
3�.

t � p

2 , y
p>2y	(p2) � �(0.01 � 2

3).
t � p

2

 � sin(2t)�1
2�0.01 �

1
3� �

1
6 cos(2t)�.

 y(t) �
1
2�0.01 �

1
3�sin(2t) �

1
12

sin(4t)

1
3

1
3

�
1

12
sin(4t)

1
12 sin(4t)

�

f(y) � �by  if y 
 0
ay  if y � 0	,

�
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The next positive value of t after at which y(t) � 0 is at which point
so that equation (5) holds on .

At this point, the solution has gone through one cycle in the time interval 
During this cycle, the section of the roadway started at the equilibrium with positive
velocity, became positive, came back to the equilibrium position with negative ve-
locity, became negative, and finally returned to the equilibrium position with positive
velocity. This pattern continues indefinitel , with each cycle covering time units.
The solution for the next cycle is

(6)

It is instructive to note that the velocity at the beginning of the second cycle is
(0.01 ), while at the beginning of the third cycle it is (0.01 � ). In fact, the
velocity at the beginning of each cycle is greater than at the beginning of the pre-
vious cycle. It is not surprising then that the amplitude of oscillations will increase
over time, since the amplitude of (one term in) the solution during any one cycle is
directly related to the velocity at the beginning of the cycle. See Figure 2 for a
graph of the deflection function on the interval [0, 3p]. Note that the maximum
deflection on [3p�2, 2p] is larger than the maximum deflection on [0, p�2], while
the maximum deflection on [2p, 3p] is larger than the maximum deflection on
[p�2, 3p�2].

It must be remembered that the model presented here is a very simplified one-
dimensional model that cannot take into account all of the intricate interactions of
real bridges. The reader is referred to the account by Lazer and McKenna [4] for a
more complete model. More recently, McKenna [6] has refined that model to provide
a different viewpoint of the torsional oscillations observed in the Tacoma Bridge.

Research on the behavior of bridges under forces continues. It is likely that
the models will be refined over time, and new insights will be gained from the
research. However, it should be clear at this point that the large oscillations caus-
ing the destruction of the Tacoma Narrows Suspension Bridge were not the result
of resonance.

2
15

4
15� 2

15

 y(t) � sin t���0.01 �
8

15� � 
4

15
 cos t cos(2t)�  on  [2p, 3p].

 y(t) � sin(2t)��1
2�0.01 �

7
15� �

1
6
 cos(2t)�  on  [3p>2, 2p],

3p
2

[0, 3p2 ].
[p>2, 3p>2]y	(3p

2 ) � 0.01 � 2
15,

t � 3p
2 ,t � p

2

0.2

y

t0.0
2 4 6 8

−0.2

−0.4

−0.6

FIGURE 2 Graph of deflection function y(t) 

Related Problems
1. Solve the following problems and plot the solutions for 0 t 6p. Note that reso-

nance occurs in the first problem but not in the second
(a)
(b) y� � y � cos(2t), y(0) � 0, y	(0) � 0.

y� � y � �cos t, y(0) � 0, y	(0) � 0.

��
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2. Solve the initial-value problem where

and 
(a) b � 1, a � 4, (Compare your answer with the example in this project.)
(b) b � 64, a � 4,
(c) b � 36, a � 25.
Note that, in part (a), the condition b � a of the text is not satisfied. Plot the solu-
tions. What happens in each case as t increases? What would happen in each case
if the second initial condition were replaced with y	(0) � 0.01? Can you make any
conclusions similar to those of the text regarding the long-term solution?

3. What would be the effect of adding damping (�cy	, where c � 0) to the system?
How could a bridge design engineer incorporate more damping into the bridge?
Solve the problem where

and
(a) c � 0.01
(b) c � 0.1 
(c) c � 0.5
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f(y) � �4y if y 
 0
y if y � 0	,

y� � cy	 � f(y) � sin(4t), y(0) � 0, y	(0) � 1,

f(y) � �by if y 
 0
ay if y � 0	,

y� � f(y) � sin(4t), y(0) � 0, y	(0) � 1,
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Murder at the Mayfair Diner
by Tom LoFaro

Dawn at the Mayfair Diner. The amber glow of streetlights mixed with the violent
red flash of police cruisers begins to fade with the rising of a furnace orange sun.
Detective Daphne Marlow exits the diner holding a steaming cup of hot joe in one
hand and a summary of the crime scene evidence in the other. Taking a seat on the
bumper of her tan LTD, Detective Marlow begins to review the evidence.

At 5:30 a.m. the body of one Joe D. Wood was found in the walk in refrigerator in
the diner’s basement. At 6:00 a.m. the coroner arrived and determined that the core body
temperature of the corpse was 85 degrees Fahrenheit. Thirty minutes later the coroner
again measured the core body temperature. This time the reading was 84 degrees
Fahrenheit. The thermostat inside the refrigerator reads 50 degrees Fahrenheit.

Daphne takes out a fading yellow legal pad and ketchup-stained calculator from
the front seat of her cruiser and begins to compute. She knows that Newton’s Law of
Cooling says that the rate at which an object cools is proportional to the difference
between the temperature T of the body at time t and the temperature Tm of the envi-
ronment surrounding the body. She jots down the equation

(1)

where k is a constant of proportionality, T and Tm are measured in degrees Fahrenheit,
and t is time measured in hours. Because Daphne wants to investigate the past using
positive values of time, she decides to correspond t � 0 with 6:00 a.m., and so, for
example, t � 4 is 2:00 a.m. After a few scratches on her yellow pad, Daphne realizes
that with this time convention the constant k in (1) will turn out to be positive. She
jots a reminder to herself that 6:30 a.m. is now t � �1�2.

As the cool and quiet dawn gives way to the steamy midsummer morning,
Daphne begins to sweat and wonders aloud, “But what if the corpse was moved into
the fridge in a feeble attempt to hide the body? How does this change my estimate?”
She re-enters the restaurant and finds the grease-streaked thermostat above the empty
cash register. It reads 70 degrees Fahrenheit.

“But when was the body moved?” Daphne asks. She decides to leave this ques-
tion unanswered for now, simply letting h denote the number of hours the body has
been in the refrigerator prior to 6:00 a.m. For example, if h � 6, then the body was
moved at midnight.

Daphne flips a page on her legal pad and begins calculating. As the rapidly cooling
coffee begins to do its work, she realizes that the way to model the environmental tem-
perature change caused by the move is with the unit step function �(t). She writes

Tm(t) � 50 � 20�(t � h) (2)

and below it the differential equation

(3)

Daphne’s mustard-stained polyester blouse begins to drip sweat under the blaze
of a midmorning sun. Drained from the heat and the mental exercise, she fires up
her cruiser and motors to Boodle’s Café for another cup of java and a heaping plate

dT
dt

� k(T – Tm(t)).

dT
dt

� k(T � Tm),  t � 0,

Project for Section 7.3
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of scrapple and fried eggs. She settles into the faux leather booth. The intense
air-conditioning conspires with her sweat-soaked blouse to raise goose flesh on her
rapidly cooling skin. The intense chill serves as a gruesome reminder of the tragedy
that occurred earlier at the Mayfair.

While Daphne waits for her breakfast, she retrieves her legal pad and quickly
reviews her calculations. She then carefully constructs a table that relates refrigeration
time h to time of death while eating her scrapple and eggs.

Shoving away the empty platter, Daphne picks up her cell phone to check in with
her partner Marie. “Any suspects?” Daphne asks.

“Yeah,” she replies, “we got three of ’em. The first is the late Mr. Wood’s ex-wife,
a dancer by the name of Twinkles. She was seen in the Mayfair between 5 and 6 p.m.
in a shouting match with Wood.” 

“When did she leave?” 
“A witness says she left in a hurry a little after six. The second suspect is a South

Philly bookie who goes by the name of Slim. Slim was in around 10 last night
having a whispered conversation with Joe. Nobody overheard the conversation, but
witnesses say there was a lot of hand gesturing, like Slim was upset or something.”

“Did anyone see him leave?”
“Yeah. He left quietly around 11. The third suspect is the cook.” 
“The cook?”
“Yep, the cook. Goes by the name of Shorty. The cashier says he heard Joe and

Shorty arguing over the proper way to present a plate of veal scaloppine. She said
that Shorty took an unusually long break at 10:30 p.m. He took off in a huff when the
restaurant closed at 2:00 a.m. Guess that explains why the place was such a mess.”

“Great work, partner. I think I know who to bring in for questioning.”

Related Problems
1. Solve equation (1), which models the scenario in which Joe Wood is killed in the

refrigerator. Use this solution to estimate the time of death (recall that normal liv-
ing body temperature is 98.6 degrees Fahrenheit).

2. Solve the differential equation (3) using Laplace transforms. Your solution T(t)
will depend on both t and h. (Use the value of k found in Problem 1.)

3. (CAS) Complete Daphne’s table. In particular, explain why large values of h give
the same time of death.

h time body moved time of death
12 6:00 p.m.
11
10
9
8
7
6
5
4
3
2

4. Who does Daphne want to question and why?

5. Still Curious? The process of temperature change in a dead body is known as
algor mortis (rigor mortis is the process of body stiffening), and although it is not
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perfectly described by Newton’s Law of Cooling, this topic is covered in most
forensic medicine texts. In reality, the cooling of a dead body is determined by
more than just Newton’s Law. In particular, chemical processes in the body con-
tinue for several hours after death. These chemical processes generate heat, and
thus a near constant body temperature may be maintained during this time before
the exponential decay due to Newton’s Law of Cooling begins.

A linear equation, known as the Glaister equation, is sometimes used to give
a preliminary estimate of the time t since death. The Glaister equation is

(4)

where T0 is measured body temperature (98.4� F is used here for normal living
body temperature instead of 98.6� F). Although we do not have all of the tools to
derive this equation exactly (the 1.5 degrees per hour was determined experimen-
tally), we can derive a similar equation via linear approximation.

Use equation (1) with an initial condition of T(0) � T0 to compute the equa-
tion of the tangent line to the solution through the point (0, T0). Do not use the
values of Tm or k found in Problem 1. Simply leave these as parameters. Next, let
T � 98.4 and solve for t to get

(5)

ABOUT THE AUTHOR 
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t �
98.4 � T0

k(T0 � Tm)
.

t �
98.4 � T0

1.5
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Earthquake Shaking of 
Multistory Buildings
by Gilbert N. Lewis

Large earthquakes typically have a devastating effect on buildings. For example,
the famous 1906 San Francisco earthquake destroyed much of that city. More re-
cently, that area was hit by the Loma Prieta earthquake that many people in the
United States and elsewhere experienced second-hand while watching on televi-
sion the Major League Baseball World Series game that was taking place in San
Francisco in 1989.

In this project, we attempt to model the effect of an earthquake on a multi-story
building and then solve and interpret the mathematics. Let xi represent the horizontal
displacement of the ith floor from equlibrium. Here, the equilibrium position will be
a fixed point on the ground, so that x0 � 0. During an earthquake, the ground moves
horizontally so that each floor is considered to be displaced relative to the ground.
We assume that the ith floor of the building has a mass mi, and that successive floor
are connected by an elastic connector whose effect resembles that of a spring.
Typically, the structural elements in large buildings are made of steel, a highly
elastic material. Each such connector supplies a restoring force when the floors are
displaced relative to each other. We assume that Hooke’s Law holds, with propor-
tionality constant ki between the ith and the (i � 1)st floors. That is, the restoring
force between those two floors i

F � ki(xi�1 � xi),

where xi�1 � xi is the displacement (shift) of the (i � 1)st floor relative to the ith floo .
We also assume a similar reaction between the first floor and the ground, with pro-
portionality constant k0 . Figure 1 shows a model of the building, while Figure 2
shows the forces acting on the ith floo .

mn
mn�1

�

m2
m1

ground

kn�1
kn�2

�

k1
k0

FIGURE 1 Floors of building

mi�1
mi

mi�1

ki(xi�1 � xi)

FIGURE 2 Forces on ith floo

ki�1(xi � xi�l)

Project for Section 8.2

Collapsed apartment building in San
Francisco, October 18, 1989, the day after
the massive Loma Prieta earthquake
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We can apply Newton’s second law of motion (Section 5.1), F � ma, to each
floor of the building to arrive at the following system of linear differential equations.

As a simple example, consider a two-story building with each floor having
mass m � 5000 kg and each restoring force constant having a value of k � 10000 kg/s2.
Then the differential equations are

The solution by the methods of Section 8.2 is

where and Now suppose that 
the following initial conditions are applied: 

(0) � 0. These correspond to a building in the equilibrium position with the firs
floor being given a horizontal speed of 0.2 m/s. The solution of the initial value
problem is

where See Figures 3 and 4 for
graphs of x1(t) and x2(t). Note that initially x1 moves to the right but is slowed by the
drag of x2, while x2 is initially at rest, but accelerates, due to the pull of x1, to over-
take x1 within one second. It continues to the right, eventually pulling x1 along until
the two-second mark. At that point, the drag of x1 has slowed x2 to a stop, after which
x2 moves left, passing the equilibrium point at 3.2 seconds and continues moving left,
draging x1 along with it. This back-and-forth motion continues. There is no damping
in the system, so that the oscillatory behavior continues forever.

c2 � �4 � v2
2�0.1>[�v2

1 � v2
2�v1] � 0.0317 � c4.

 x2(t) � �4 � v2
1�c2 sin v1t � �4 � v2

2�c4 sin v2t,

 x1(t) � 2c2 sin v1t � 2c4 sin v2t,

x2	
x1(0) � 0, x1	(0) � 0.2, x2(0) � 0,

v2 � 23 � 15 � 0.874.v1 � 23 � 15 � 2.288,

 � �4 � v2
2�c4 sin v2t,

 x2(t) � �4 � v2
1�c1 cos v1t � �4 � v2

1�c2 sin v1t � �4 � v2
2�c3 cos v2 t

 x1(t) � 2c1 cos v1t � 2c2 sin v1t � 2c3 cos v2t � 2c4 sin v2t,

  
d2x2

dt2  � 2x1 � 2x2.

 
d2x1

dt2  � �4x1 � 2x2

m1
d 2x1

dt 2 � �k0x1 � k1(x2 � x1)

m2
d 2x2

dt 2 � �k1(x2 � x1) � k2(x3 � x2)

o o

mn
d 2xn

dt2 � �kn�1(xn � xn�1).

P-22 ● PROJECTS EARTHQUAKE SHAKING OF MULTISTORY BUILDINGS

0.1

0.2

t
1 2 3 4 5

−0.1

x2(t)

0.05

0.10
x1(t)

t
1 2 3 4 5

−0.05

−0.10
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If a horizontal oscillatory force of frequency or is applied, we have a sit-
uation analogous to resonance discussed in Section 5.1.3. In that case, large oscil-
lations of the building would be expected to occur, possibly causing great damage
if the earthquake lasted an appreciable length of time.

Let’s define the following matrices and vector

Then the system of differential equations can be written in matrix form

Note that the matrix M is a diagonal matrix with the mass of the ith floor being
the ith diagonal element. Matrix M has an inverse given by

.

We can therefore represent the matrix differential equation by

Where the matrix M is called the mass matrix, and the matrix K is the
stiffness matrix.

The eigenvalues of the matrix A reveal the stability of the building during an earth-
quake. The eigenvalues of A are negative and distinct. In the first example, the eigen-
values are and The natural frequencies
of the building are the square roots of the negatives of the eigenvalues. If is the ith eigen-
value, then is the ith frequency, for i � 1, 2, . . . , n. During an earth-
quake, a large horizontal force is applied to the first floo . If this is oscillatory in
nature, say of the form F(t) � G cosgt, then large displacements may develop in the
building, especially if the frequency g of the forcing term is close to one of the natural
frequencies of the building. This is reminiscent of the resonance phenomenon studied
in Section 5.1.3.

vi � 1�li

li

�3 � 15 � �5.236.�3 � 15 � �0.764

A � M�1K,

X� � (M�1K)X  or  X� � AX.

M�1 � �
m�1

1

0
o

0

0
m�1

2

0

0
0

0

. . .

. . .

. . .

0
0
o

m�1
n

�

M
d2X
dt2 � KX  or  MX� � KX.

 X(t) � �
x1(t)
x2(t)

o

xn(t)
�

K � �
�(k0 � k1)

k1

0
o

0
0

k1

�(k1 � k2)
k2

0
0

0
k2

�(k2 � k3)

0
0

0
0
k3

0
0

. . .

. . .

. . .

. . .

. . .

0
0
0

kn�2

0

0
0
0

�(kn�2 � kn�1)
kn�1

0
0
0
o

kn�1

�kn�1

�
 M � �

m1

0
o

1

0
m2

0

0
0

0

. . .

. . .

. . .

0
0
o

mn

�,

v2v1
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As another example, suppose we have a 10-story building, where each floor has a
mass 10000 kg, and each ki value is 5000 kg/s2. Then

The eigenvalues of A are found easily using Mathematica or another similar computer
package. These values are �1.956, �1.826, �1.623, �1.365, �1.075, �0.777,
�0.5, �0.267, �0.099, and �0.011, with corresponding frequencies 1.399, 1.351,
1.274, 1.168, 1.037, 0.881, 0.707, 0.517, 0.315, and 0.105 and periods of oscillation
(2p/v) 4.491, 4.651, 4.932, 5.379, 6.059, 7.132, 8.887, 12.153, 19.947, and 59.840.
During a typical earthquake whose period might be in the range of 2 to 3 seconds, this
building does not seem to be in any danger of developing resonance. However, if
the k values were 10 times as large (multiply A by 10), then, for example, the sixth
period would be 2.253 seconds, while the fifth through seventh are all on the order of
2–3 seconds. Such a building is more likely to suffer damage in a typical earthquake
of period 2–3 seconds.

Related Problems
1. Consider a three-story building with the same m and k values as in the first exam-

ple. Write down the corresponding system of differential equations. What are the
matrices M, K, and A? Find the eigenvalues for A. What range of frequencies of
an earthquake would place the building in danger of destruction?

2. Consider a three-story building with the same m and k values as in the second
example. Write down the corresponding system of differential equations. What
are the matrices M, K, and A? Find the eigenvalues for A. What range of fre-
quencies of an earthquake would place the building in danger of destruction?

3. Consider the tallest building on your campus. Assume reasonable values for the
mass of each floor and for the proportionality constants between floors. If you
have trouble coming up with such values, use the ones in the example problems.
Find the matrices M, K, and A, and find the eigenvalues of A and the frequen-
cies and periods of oscillation. Is your building safe from a modest-sized period-
2 earthquake? What if you multiplied the matrix K by 10 (that is, made the
building stiffer)? What would you have to multiply the matrix K by in order to
put your building in the danger zone?

4. Solve the earthquake problem for the three-story building of Problem 1:

,

where F(t) = G cosgt, G = EB, B = [1 0 0]T, E = 10,000 lbs is the amplitude
of the earthquake force acting at ground level, and g = 3 is the frequency of the
earthquake (a typical earthquake frequency). See Section 8.3 for the method of
solving nonhomogeneous matrix differential equations. Use initial conditions
for a building at rest.

MX� � KX � F(t)

A � M�1K � � 
�1
0.5
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Modeling Arms Races
by Michael Olinick

The last hundred years have seen numerous dangerous, destabilizing, and expensive
arms races. The outbreak of World War I climaxed a rapid buildup of armaments
among rival European powers. There was a similar mutual accumulation of conven-
tional arms just prior to World War II. The United States and the Soviet Union en-
gaged in a costly nuclear arms race during the forty years of the Cold War. Stockpiling
of ever-more deadly weapons is common today in many parts of the world, including
the Middle East, the Indian subcontinent, and the Korean peninsula.

British meteorologist and educator Lewis F. Richardson (1881–1953) developed
several mathematical models to analyze the dynamics of arms races, the evolution
over time of the process of interaction between countries in their acquisition of
weapons. Arms race models generally assume that each nation adjusts its accumula-
tion of weapons in some manner dependent on the size of its own stockpile and the
armament levels of the other nations.

Richardson’s primary model of a two country arms race is based on mutual
fear: A nation is spurred to increase its arms stockpile at a rate proportional to the
level of armament expenditures of its rival. Richardson’s model takes into account
internal constraints within a nation that slow down arms buildups: The more a
nation is spending on arms, the harder it is to make greater increases, because it
becomes increasingly difficult to divert society’s resources from basic needs such
as food and housing to weapons. Richardson also built into his model other factors
driving or slowing down an arms race that are independent of levels of arms expen-
ditures.

The mathematical structure of this model is a linked system of two first-orde
linear differential equations. If x and y represent the amount of wealth being spent on
arms by two nations at time t, then the model has the form

where a, b, m, and n are positive constants while r and s are constants which can be
positive or negative. The constants a and b measure mutual fear; the constants m and
n represent proportionality factors for the “internal brakes” to further arms increases.
Positive values for r and s correspond to underlying factors of ill will or distrust that
would persist even if arms expenditures dropped to zero. Negative values for r and s
indicate a contribution based on goodwill.

The dynamic behavior of this system of differential equations depends on the
relative sizes of ab and mn together with the signs of r and s. Although the model
is a relatively simple one, it allows us to consider several different long-term out-
comes. It’s possible that two nations might move simultaneously toward mutual
disarmament, with x and y each approaching zero. A vicious cycle of unbounded
increases in x and y is another possible scenario. A third eventuality is that the arms
expenditures asymptotically approach a stable point (x*, y*) regardless of the initial
level of arms expenditures. In other cases, the eventual outcome depends on the
starting point. Figure 1 shows one possible situation with four different initial

 
dy
dt

� bx � ny � s

 
dx
dt

� ay � mx � r
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Weapons and ammunition recovered during
military operations against Taliban militants
in South Waziristan in October 2009
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levels, each of which leads to a “stable outcome,” the intersection of the nullclines
dx�dt � 0 and dy�dt � 0.

Although “real world” arms races seldom match exactly with Richardson’s model,
his pioneering work has led to many fruitful applications of differential equation models
to problems in international relations and political science. As two leading researchers in
the field note in [3], “The Richardson arms race model constitutes one of the most impor-
tant models of arms race phenomena and, at the same time, one of the most influentia
formal models in all of the international relations literature.”

Arms races are not limited to the interaction of nation states. They can take place
between a government and a paramilitary terrorist group within its borders as, for ex-
ample, the Tamil Tigers in Sri Lanka, the Shining Path in Peru, or the Taliban in
Afghanistan. Arms phenomena have also been observed between rival urban gangs
and between law enforcement agencies and organized crime.

The “arms” need not even be weapons. Colleges have engaged in “amenities
arms races,” often spending millions of dollars on more luxurious dormitories,
state- of-the-art athletic facilities, epicurean dining options, and the like, to be more
competitive in attracting student applications. Biologists have identified the possi-
bility of evolutionary arms races between and within species as an adaptation in one
lineage may change the selection pressure on another lineage, giving rise to a counter-
adaptation. Most generally, the assumptions represented in a Richardson-type
model also characterize many competitions in which each side perceives a need to
stay ahead of the other in some mutually important measure.

Related Problems
1. (a) By substituting the proposed solutions into the differential equations, show

that the solution of the particular Richardson arms model

 
dy
dt

� 2x � 4y � 8

 
dx
dt

� y � 3x � 3
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FIGURE 1 Expenditures approaching a stable point
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with initial condition x(0) � 12, y(0) � 15 is

What is the long-term behavior of this arms race?
(b) For the Richardson arms race model (a) with arbitrary initial conditions

x(0) � A, y(0) � B, show that the solution is given by
x(t) � Ce�5t � De�2t � 2 C � (A � B � 1)�3where
y(t) � �2Ce�5t � De�2t � 3 D � (2A � B � 7)�3

Show that this result implies that the qualitative long-term behavior of such an
arms race is the same (x(t) : 2, y(t) : 3), no matter what the initial values of x
and y are.

2. The qualitative long-term behavior of a Richardson arms race model can, in
some cases, depend on the initial conditions. Consider, for example, the system

For each of the given initial conditions below, verify that the proposed solu-
tion works and discuss the long-term behavior:
(a) x(0) � 1, y(0) � 1 : x(t) � 10 � 9et, y(t) � 10 � 9et

(b) x(0) � 1, y(0) � 22 : x(t) � 10 � 9e�6t, y(t) � 10 � 12e�6t

(c) x(0) � 1, y(0) � 29 : x(t) � �12e�6t � 3et � 10, y(t) � 16e�6t � 3et � 10
(d) x(0) � 10, y(0) � 10 : x(t) � 10, y(t) � 10 for all t

3. (a) As a possible alternative to the Richardson model, consider a stock adjustment
model for an arms race. The assumption here is that each country sets a desired
level of arms expenditures for itself and then changes its weapons stock pro-
portionally to the gap between its current level and the desired one. Show that
this assumption can be represented by the system of differential equations

where x* and y* are desired constant levels and a, b are positive constants.
How will x and y evolve over time under such a model?

(b) Generalize the stock adjustment model of (a) to a more realistic one where
the desired level for each country depends on the levels of both countries. In
particular, suppose x* has the form x* � c � dy where c and d are positive
constants and that y* has a similar format. Show that, under these assump-
tions, the stock adjustment model is equivalent to a Richardson model.

4. Extend the Richardson model to three nations, deriving a system of linear differen-
tial equations if the three are mutually fearful: each one is spurred to arm by the ex-
penditures of the other two. How might the equations change if two of the nations
are close allies not threatened by the arms buildup of each other, but fearful of the
armaments of the third. Investigate the long-term behavior of such arms races.

5. In the real world, an unbounded runaway arms race is impossible since there is
an absolute limit to the amount any country can spend on weapons; e.g. gross na-
tional product minus some amount for survival. Modify the Richardson model to
incorporate this idea and analyze the dynamics of an arms race governed by
these new differential equations.

 
dx
dt

� b(y* � y)

 
dx
dt

� a(x* � x)

 
dy
dt

� 4x � 3y � 10

 
dx
dt

� 3y � 2x � 10

 y(t) �
32
3

e�2t �
4
3

e�5t � 3

 x(t) �
32
3

e�2t �
2
3

e�5t � 2

PROJECTS MODELING ARMS RACES ● P-27

27069_00_BiosProject.qxd  2/2/12  4:30 PM  Page P-27

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



References
1. Richardson, Lewis F., Arms and Insecurity: A Mathematical Study of the Causes

and Origins of War. Pittsburgh: Boxwood Press, 1960.
2. Olinick, Michael, An Introduction to Mathematical Models in the Social and

Life Sciences. Reading, MA: Addison-Wesley, 1978.
3. Intriligator, Michael D., and Dagobert L. Brito, “Richardsonian Arms Race

Models” in Manus I. Midlarsky, ed., Handbook of War Studies. Boston: Unwin
Hyman, 1989.

P-28 ● PROJECTS MODELING ARMS RACES

ABOUT THE AUTHOR 
After earning a BA in mathematics and philosophy at the University of Michigan and
an MA and PhD from the University of Wisconsin (Madison), Michael Olinick
moved from the Midwest to New England where he joined the Middlebury College
faculty in 1970 and now serves as Professor of Mathematics. Dr. Olinick has held
visiting positions at University College Nairobi, University of California at Berkeley,
Wesleyan University, and Lancaster University in Great Britain. He is the author or
co-author of a number of books on single and multivariable calculus, mathematical
modeling, probability, topology, and principles and practice of mathematics. He is
currently developing a new textbook on mathematical models in the humanities,
social, and life sciences.C

ou
rte

sy
 o

f M
ic

ha
el

 O
lin

ic
k

27069_00_BiosProject.qxd  2/2/12  4:30 PM  Page P-28

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1

1.1 Definitions and Terminology
1.2 Initial-Value Problems
1.3 Differential Equations as Mathematical Models

Chapter 1 in Review

The words differential and equations certainly suggest solving some kind of
equation that contains derivatives y�, y�, . . . . Analogous to a course in algebra and
trigonometry, in which a good amount of time is spent solving equations such as
x2 � 5x � 4 � 0 for the unknown number x, in this course one of our tasks will be
to solve differential equations such as y� � 2y� � y � 0 for an unknown function
y � �(x).

The preceding paragraph tells something, but not the complete story, about
the course you are about to begin. As the course unfolds, you will see that there is
more to the study of differential equations than just mastering methods that
mathematicians over past centuries devised to solve them.

But first things first. In order to read, stu , and be conversant in a specialized
subject, you have to master some of the terminology of that discipline. This is the
thrust of the first two sections of this chapte . In the last section we briefly examin
the link between differential equations and the real world. Practical questions
such as

How fast does a disease spread ? How fast does a population change?

involve rates of change or derivatives. And so the mathematical description—or
mathematical model—of phenomena, experiments, observations, or theories may
be a differential equation.

1 Introduction to Differential Equations
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2 ● CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

A Definition The equation that we made up in (1) is called a differential
equation. Before proceeding any further, let us consider a more precise definition of
this concept.

DEFINITION 1.1.1 Differential Equation

An equation containing the derivatives of one or more unknown functions (or
dependent variables), with respect to one or more independent variables, is said
to be a differential equation (DE).

To talk about them, we shall classify differential equations according to type, order,
and linearity.

Classification by Type If a differential equation contains only ordinary de-
rivatives of one or more unknown functions with respect to a single independent
variable, it is said to be an ordinary differential equation (ODE). An equation in-
volving partial derivatives of one or more unknown functions of two or more inde-
pendent variables is called a partial differential equation (PDE). Our first example
illustrates several of each type of differential equation.

EXAMPLE 1 Types of Differential Equations

(a) The equations
an ODE can contain more

than one unknown function

(2)

are examples of ordinary differential equations.

dy
dx

� 5y � ex,  
d2y
dx2 �

dy
dx

� 6y � 0,  and  
dx
dt

�
dy
dt

� 2x � y

b  b

DEFINITIONS AND TERMINOLOGY

REVIEW MATERIAL
● The definition of the derivativ
● Rules of differentiation
● Derivative as a rate of change
● Connection between the first derivative and increasing/decreasin
● Connection between the second derivative and concavity

INTRODUCTION The derivative dy�dx of a function y � �(x) is itself another function ��(x)
found by an appropriate rule. The exponential function is differentiable on the interval
(��, �), and, by the Chain Rule, its first derivative is . If we replace on the
right-hand side of the last equation by the symbol y, the derivative becomes

. (1)

Now imagine that a friend of yours simply hands you equation (1)—you have no idea how it was
constructed—and asks, What is the function represented by the symbol y? You are now face to face
with one of the basic problems in this course: 

How do you solve such an equation for the function y � �(x)?

dy
dx

� 0.2xy

e0.1x2dy>dx � 0.2xe0.1x2
y � e0.1x2

1.1
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(b) The following equations are partial differential equations:*

(3)

Notice in the third equation that there are two unknown functions and two indepen-
dent variables in the PDE. This means u and v must be functions of two or more
independent variables.

Notation Throughout this text ordinary derivatives will be written by using

�2u
�x2 �

�2u
�y2 � 0,  

�2u
�x2 �

�2u
�t2 � 2

�u
�t

,  
�u
�y

� �
�v
�x

.

1.1 DEFINITIONS AND TERMINOLOGY ● 3

*Except for this introductory section, only ordinary differential equations are considered in A First Course
in Differential Equations with Modeling Applications, Tenth Edition. In that text the word equation and
the abbreviation DE refer only to ODEs. Partial differential equations or PDEs are considered in the
expanded volume Differential Equations with Boundary-Value Problems, Eighth Edition.

either the Leibniz notation dy�dx, d2y�dx2, d3y�dx3, . . . or the prime notation y�, y�,
y	, . . . . By using the latter notation, the first two differential equations in (2) can be
written a little more compactly as y� � 5y � ex and y� � y� � 6y � 0. Actually, the
prime notation is used to denote only the first three derivatives; the fourth derivative
is written y(4) instead of y��. In general, the nth derivative of y is written dny�dxn or
y(n). Although less convenient to write and to typeset, the Leibniz notation has an ad-
vantage over the prime notation in that it clearly displays both the dependent and
independent variables. For example, in the equation

it is immediately seen that the symbol x now represents a dependent variable,
whereas the independent variable is t. You should also be aware that in physical
sciences and engineering, Newton’s dot notation (derogatorily referred to by some
as the “flyspeck” notation) is sometimes used to denote derivatives with respect
to time t. Thus the differential equation d2s�dt2 � �32 becomes s̈ � �32. Partial
derivatives are often denoted by a subscript notation indicating the indepen-
dent variables. For example, with the subscript notation the second equation in
(3) becomes uxx � utt � 2ut.

Classification by Order The order of a differential equation (either ODE
or PDE) is the order of the highest derivative in the equation. For example,

is a second-order ordinary differential equation. In Example 1, the first and third
equations in (2) are first-order ODEs, whereas in (3) the first two equations are
second-order PDEs. First-order ordinary differential equations are occasionally writ-
ten in differential form M(x, y) dx � N(x, y) dy � 0. For example, if we assume that
y denotes the dependent variable in (y � x) dx � 4x dy � 0, then y� � dy�dx, so by
dividing by the differential dx, we get the alternative form 4xy� � y � x.

In symbols we can express an nth-order ordinary differential equation in one
dependent variable by the general form

, (4)

where F is a real-valued function of n � 2 variables: x, y, y�, . . . , y(n). For both prac-
tical and theoretical reasons we shall also make the assumption hereafter that it is
possible to solve an ordinary differential equation in the form (4) uniquely for the

F(x,  y,  y�, . . . , y(n)) � 0

first ordersecond order

� 5(     )3
 � 4y � exdy–––dx

d 2y––––
dx2

d 2x–––
dt2 � 16x � 0

unknown function
or dependent variable

independent variable
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highest derivative y(n) in terms of the remaining n � 1 variables. The differential
equation

, (5)

where f is a real-valued continuous function, is referred to as the normal form of (4).
Thus when it suits our purposes, we shall use the normal forms

to represent general first- and second-order ordinary differential equations. For example,
the normal form of the first-order equation 4xy� � y � x is y� � (x � y)�4x; the normal
form of the second-order equation y� � y� � 6y � 0 is y� � y� � 6y. See (iv) in the
Remarks.

Classification by Linearity An nth-order ordinary differential equation (4)

dy
dx

� f (x, y)    and    
d 2y
dx2 � f (x, y, y�)

dny
dxn � f (x, y, y�, . . . , y(n�1))

4 ● CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

EXAMPLE 2 Linear and Nonlinear ODEs

(a) The equations

are, in turn, linear first-, second-, and third-order ordinary differential equations. We
have just demonstrated that the first equation is linear in the variable y by writing it in
the alternative form 4xy� � y � x. 

(b) The equations

are examples of nonlinear first-, second-, and fourth-order ordinary differential equa-
tions, respectively.

nonlinear term:
coefficient depends on y

nonlinear term:
nonlinear function of y

nonlinear term:
power not 1

(1 � y)y� � 2y � ex, � sin y � 0, and
d 2y––––
dx2 � y 2 � 0

d 4y––––
dx 4

(y � x)dx � 4xy dy � 0,  y � � 2y � y � 0,  x3 
d 3y
dx3 � x 

dy
dx

� 5y � ex

is said to be linear if F is linear in y, y�, . . . , y(n). This means that an nth-order ODE is
linear when (4) is an(x)y(n) � an�1(x)y(n�1) � 
 
 
 � a1(x)y� � a0(x)y � g(x) � 0 or

. (6)

Two important special cases of (6) are linear first-order (n � 1) and linear second-
order (n � 2) DEs:

. (7)

In the additive combination on the left-hand side of equation (6) we see that the char-
acteristic two properties of a linear ODE are as follows:

• The dependent variable y and all its derivatives y�, y�, . . . , y(n) are of the
first degree, that is, the power of each term involving y is 1.

• The coefficients a0, a1, . . . , an of y, y�, . . . , y(n) depend at most on the
independent variable x.

A nonlinear ordinary differential equation is simply one that is not linear. Nonlinear
functions of the dependent variable or its derivatives, such as sin y or , cannot
appear in a linear equation.

ey�

a1(x) 
dy
dx

� a0(x)y � g(x)    and    a2(x) 
d 2y
dx2 � a1(x) 

dy
dx

� a0(x)y � g(x)

an(x) 
dny
dxn � an�1(x) 

dn�1y
dxn�1 � 
 
 
 � a1(x) 

dy
dx

� a0(x)y � g(x)
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Solutions As was stated before, one of the goals in this course is to solve, or
find solutions of, differential equations. In the next definition we consider the con-
cept of a solution of an ordinary differential equation.

1.1 DEFINITIONS AND TERMINOLOGY ● 5

DEFINITION 1.1.2 Solution of an ODE

Any function �, defined on an interval I and possessing at least n derivatives
that are continuous on I, which when substituted into an nth-order ordinary dif-
ferential equation reduces the equation to an identity, is said to be a solution of
the equation on the interval.

In other words, a solution of an nth-order ordinary differential equation (4) is a func-
tion � that possesses at least n derivatives and for which

We say that � satisfie the differential equation on I. For our purposes we shall also
assume that a solution � is a real-valued function. In our introductory discussion we
saw that is a solution of dy�dx � 0.2xy on the interval (��, �).

Occasionally, it will be convenient to denote a solution by the alternative
symbol y(x).

Interval of Definition You cannot think solution of an ordinary differential
equation without simultaneously thinking interval. The interval I in Definition 1.1.2
is variously called the interval of definition the interval of existence, the interval
of validity, or the domain of the solution and can be an open interval (a, b), a closed
interval [a, b], an infinite interval a, �), and so on.

y � e0.1x2

F(x, �(x), ��(x), . . . , �(n)(x)) � 0    for all x in I.

EXAMPLE 3 Verification of a Solutio

Verify that the indicated function is a solution of the given differential equation on
the interval (��, �).

(a) (b)

SOLUTION One way of verifying that the given function is a solution is to see,
after substituting, whether each side of the equation is the same for every x in the
interval.

(a) From

we see that each side of the equation is the same for every real number x. Note that
is, by definition, the nonnegative square root of .

(b) From the derivatives y� � xex � ex and y� � xex � 2ex we have, for every real
number x,

 right-hand side:   0.
 left-hand side:   y � � 2y� � y � (xex � 2ex) � 2(xex � ex) � xex � 0,

1
16 x4y1/2 � 1

4 x2

 right-hand side:     xy1/2 � x � � 1
16

 x4�
1/2

� x � �1
4
 x2� �

1
4
 x3,

 left-hand side:     
dy
dx

�
1

16
 (4 � x3) �

1
4
 x3,

y � � 2y� � y � 0; y � xexdy>dx � xy1/2; y � 1
16 x4
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Note, too, that in Example 3 each differential equation possesses the constant so-
lution y � 0, �� � x � �. A solution of a differential equation that is identically
zero on an interval I is said to be a trivial solution.

Solution Curve The graph of a solution � of an ODE is called a solution
curve. Since � is a differentiable function, it is continuous on its interval I of defini
tion. Thus there may be a difference between the graph of the function � and the
graph of the solution �. Put another way, the domain of the function � need not be
the same as the interval I of definition (or domain) of the solution �. Example 4
illustrates the difference.

6 ● CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

1

x

y

1

(a) function y � 1/x, x � 0

(b) solution y � 1/x, (0, �)

1

x

y

1

FIGURE 1.1.1 In Example 4 the
function y � 1�x is not the same as the
solution y � 1�x

EXAMPLE 4 Function versus Solution

The domain of y � 1�x, considered simply as a function, is the set of all real
numbers x except 0. When we graph y � 1�x, we plot points in the xy-plane cor-
responding to a judicious sampling of numbers taken from its domain. The ratio-
nal function y � 1�x is discontinuous at 0, and its graph, in a neighborhood of
the origin, is given in Figure 1.1.1(a). The function y � 1�x is not differentiable at
x � 0, since the y-axis (whose equation is x � 0) is a vertical asymptote of the
graph.

Now y � 1�x is also a solution of the linear first-order differential equation
xy� � y � 0. (Verify.) But when we say that y � 1�x is a solution of this DE, we
mean that it is a function defined on an interval I on which it is differentiable and
satisfies the equation. In other words, y � 1�x is a solution of the DE on any inter-
val that does not contain 0, such as (�3, �1), , (��, 0), or (0, �). Because
the solution curves defined by y � 1�x for �3 � x � �1 and are sim-
ply segments, or pieces, of the solution curves defined by y � 1�x for �� � x � 0
and 0 � x � �, respectively, it makes sense to take the interval I to be as large as
possible. Thus we take I to be either (��, 0) or (0, �). The solution curve on (0, �)
is shown in Figure 1.1.1(b).

Explicit and Implicit Solutions You should be familiar with the terms
explicit functions and implicit functions from your study of calculus. A solution in
which the dependent variable is expressed solely in terms of the independent
variable and constants is said to be an explicit solution. For our purposes, let us
think of an explicit solution as an explicit formula y � �(x) that we can manipulate,
evaluate, and differentiate using the standard rules. We have just seen in the last two
examples that , y � xex, and y � 1�x are, in turn, explicit solutions
of dy�dx � xy1/2, y� � 2y� � y � 0, and xy� � y � 0. Moreover, the trivial solu-
tion y � 0 is an explicit solution of all three equations. When we get down to
the business of actually solving some ordinary differential equations, you will
see that methods of solution do not always lead directly to an explicit solution
y � �(x). This is particularly true when we attempt to solve nonlinear first-orde
differential equations. Often we have to be content with a relation or expression
G(x, y) � 0 that defines a solution � implicitly.

y � 1
16 x4

1
2 � x � 10

(1
2, 10)

DEFINITION 1.1.3 Implicit Solution of an ODE

A relation G(x, y) � 0 is said to be an implicit solution of an ordinary
differential equation (4) on an interval I, provided that there exists at least one
function � that satisfies the relation as well as the differential equation on I.
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It is beyond the scope of this course to investigate the conditions under which a
relation G(x, y) � 0 defines a differentiable function �. So we shall assume that if
the formal implementation of a method of solution leads to a relation G(x, y) � 0,
then there exists at least one function � that satisfies both the relation (that is,
G(x, �(x)) � 0) and the differential equation on an interval I. If the implicit solution
G(x, y) � 0 is fairly simple, we may be able to solve for y in terms of x and obtain
one or more explicit solutions. See (i) in the Remarks.
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y

x
5

5

y

x
5

5

y

x
5

5

−5

(a) implicit solution

x2 � y2 � 25

(b) explicit solution

y1 � � ��25 x2, 5 � x � 5

(c) explicit solution

y2 � ��25 � x2, �5 � x � 5

(a)

FIGURE 1.1.2 An implicit solution
and two explicit solutions of (8) in
Example 5

FIGURE 1.1.3 Some solutions of DE
in part (a) of Example 6

y

x

c>0

c<0

c=0

EXAMPLE 5 Verification of an Implicit Solutio

The relation x2 � y2 � 25 is an implicit solution of the differential equation

(8)

on the open interval (�5, 5). By implicit differentiation we obtain

.

Solving the last equation for the symbol dy�dx gives (8). Moreover, solving
x2 � y2 � 25 for y in terms of x yields . The two functions

and satisfy the relation (that is,
x2 � �1

2 � 25 and x2 � �2
2 � 25) and are explicit solutions defined on the interval

(�5, 5). The solution curves given in Figures 1.1.2(b) and 1.1.2(c) are segments of
the graph of the implicit solution in Figure 1.1.2(a).

Any relation of the form x2 � y2 � c � 0 formally satisfies (8) for any constant c.
However, it is understood that the relation should always make sense in the real number
system; thus, for example, if c � �25, we cannot say that x2 � y2 � 25 � 0 is an
implicit solution of the equation. (Why not?)

Because the distinction between an explicit solution and an implicit solution
should be intuitively clear, we will not belabor the issue by always saying, “Here is
an explicit (implicit) solution.”

Families of Solutions The study of differential equations is similar to that of
integral calculus. In some texts a solution � is sometimes referred to as an integral
of the equation, and its graph is called an integral curve. When evaluating an anti-
derivative or indefinite integral in calculus, we use a single constant c of integration.
Analogously, when solving a first-order differential equation F(x, y, y�) � 0, we
usually obtain a solution containing a single arbitrary constant or parameter c. A
solution containing an arbitrary constant represents a set G(x, y, c) � 0 of solutions
called a one-parameter family of solutions. When solving an nth-order differential
equation F(x, y, y�, . . . , y(n)) � 0, we seek an n-parameter family of solutions
G(x, y, c1, c2, . . . , cn) � 0. This means that a single differential equation can possess
an infinite number of solutions corresponding to the unlimited number of choices
for the parameter(s). A solution of a differential equation that is free of arbitrary
parameters is called a particular solution.

y � �2(x) � �125 � x2y � �1(x) � 125 � x2
y � 
225 � x2

d
dx

 x2 �
d

dx
 y2 �

d
dx

 25    or    2x � 2y 
dy
dx

� 0

dy
dx

� �
x
y

EXAMPLE 6 Particular Solutions

(a) The one-parameter family is an explicit solution of the linear
first-order equation

on the interval (��, �). (Verify.) Figure 1.1.3 shows the graphs of some particular
solutions in this family for various choices of c. The solution y � �x cos x, the blue
graph in the figure, is a particular solution corresponding to c � 0. 

xy� � y � x2 sin x

y � cx � x cos x
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(b) The two-parameter family y � c1ex � c2xex is an explicit solution of the linear
second-order equation 

y� � 2y� � y � 0

in part (b) of Example 3. (Verify.) In Figure 1.1.4 we have shown seven of the “dou-
ble infinity” of solutions in the family. The solution curves in red, green, and blue
are the graphs of the particular solutions y � 5xex (cl � 0, c2 � 5), y � 3ex (cl � 3,
c2 � 0), and y � 5ex � 2xex (c1 � 5, c2 � 2), respectively.

Sometimes a differential equation possesses a solution that is not a member of a
family of solutions of the equation—that is, a solution that cannot be obtained by spe-
cializing any of the parameters in the family of solutions. Such an extra solution is called
a singular solution. For example, we have seen that and y � 0 are solutions of
the differential equation dy�dx � xy1/2 on (��, �). In Section 2.2 we shall demonstrate,
by actually solving it, that the differential equation dy�dx � xy1/2 possesses the one-
parameter family of solutions . When c � 0, the resulting particular
solution is . But notice that the trivial solution y � 0 is a singular solution, since
it is not a member of the family ; there is no way of assigning a value to
the constant c to obtain y � 0.

In all the preceding examples we used x and y to denote the independent and
dependent variables, respectively. But you should become accustomed to seeing
and working with other symbols to denote these variables. For example, we could
denote the independent variable by t and the dependent variable by x.

y � (1
4 x2 � c)2

y � 1
16 x4

y � (1
4 x2 � c)2

y � 1
16 x4

8 ● CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

FIGURE 1.1.5 Some solutions of DE
in Example 8

(a) two explicit solutions

(b) piecewise-defined solution

c = 1

c = −1
x

y

c = 1,
x 0≤

c = −1,
x < 0

x

y

FIGURE 1.1.4 Some solutions
of DE in part (b) of Example 6

y

x

EXAMPLE 7 Using Different Symbols

The functions x � c1 cos 4t and x � c2 sin 4t, where c1 and c2 are arbitrary constants
or parameters, are both solutions of the linear differential equation

For x � c1 cos 4t the first two derivatives with respect to t are x� � �4c1 sin 4t
and x� � �16c1 cos 4t. Substituting x� and x then gives

In like manner, for x � c2 sin 4t we have x� � �16c2 sin 4t, and so

Finally, it is straightforward to verify that the linear combination of solutions, or the
two-parameter family x � c1 cos 4t � c2 sin 4t, is also a solution of the differential
equation.

The next example shows that a solution of a differential equation can be a
piecewise-defined function

x� � 16x � �16c2 sin 4t � 16(c2 sin 4t) � 0.

x� � 16x � �16c1 cos 4t � 16(c1 cos 4t) � 0.

x� � 16x � 0.

EXAMPLE 8 Piecewise-Defined Solutio

The one-parameter family of quartic monomial functions y � cx4 is an explicit solu-
tion of the linear first-order equatio

xy� � 4y � 0

on the interval (��, �). (Verify.) The blue and red solution curves shown in
Figure 1.1.5(a) are the graphs of y � x4 and y � �x4 and correspond to the choices
c � 1 and c � �1, respectively.
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The piecewise-defined di ferentiable function 

is also a solution of the differential equation but cannot be obtained from the family
y � cx4 by a single choice of c. As seen in Figure 1.1.5(b) the solution is constructed
from the family by choosing c � �1 for x � 0 and c � 1 for x � 0.

Systems of Differential Equations Up to this point we have been
discussing single differential equations containing one unknown function. But
often in theory, as well as in many applications, we must deal with systems of
differential equations. A system of ordinary differential equations is two or more
equations involving the derivatives of two or more unknown functions of a single
independent variable. For example, if x and y denote dependent variables and t
denotes the independent variable, then a system of two first-orde differential
equations is given by

(9)

A solution of a system such as (9) is a pair of differentiable functions x � �1(t),
y � �2(t), defined on a common interval I, that satisfy each equation of the system
on this interval.

dy
dt

� g(t, x, y).

dx
dt

� f(t, x, y)

y � ��x4,    x � 0
x4,    x � 0

1.1 DEFINITIONS AND TERMINOLOGY ● 9

REMARKS

(i) A few last words about implicit solutions of differential equations are in
order. In Example 5 we were able to solve the relation x2 � y2 � 25 for
y in terms of x to get two explicit solutions, and

, of the differential equation (8). But don’t read too much
into this one example. Unless it is easy or important or you are instructed to,
there is usually no need to try to solve an implicit solution G(x, y) � 0 for y
explicitly in terms of x. Also do not misinterpret the second sentence following
Definition 1.1.3. An implicit solution G(x, y) � 0 can define a perfectly good
differentiable function � that is a solution of a DE, yet we might not be able to
solve G(x, y) � 0 using analytical methods such as algebra. The solution curve
of � may be a segment or piece of the graph of G(x, y) � 0. See Problems 45
and 46 in Exercises 1.1. Also, read the discussion following Example 4 in
Section 2.2.
(ii) Although the concept of a solution has been emphasized in this section,
you should also be aware that a DE does not necessarily have to possess
a solution. See Problem 39 in Exercises 1.1. The question of whether a
solution exists will be touched on in the next section.
(iii) It might not be apparent whether a first-order ODE written in differential
form M(x, y)dx � N(x, y)dy � 0 is linear or nonlinear because there is nothing
in this form that tells us which symbol denotes the dependent variable. See
Problems 9 and 10 in Exercises 1.1.
(iv) It might not seem like a big deal to assume that F(x, y, y�, . . . , y(n)) � 0 can
be solved for y(n), but one should be a little bit careful here. There are exceptions,
and there certainly are some problems connected with this assumption. See
Problems 52 and 53 in Exercises 1.1.
(v) You may run across the term closed form solutions in DE texts or in
lectures in courses in differential equations. Translated, this phrase usually

�2(x) � �125 � x2
�1(x) � 125 � x2
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10 ● CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

refers to explicit solutions that are expressible in terms of elementary (or
familiar) functions: finite combinations of integer powers of x, roots, exponen-
tial and logarithmic functions, and trigonometric and inverse trigonometric
functions.
(vi) If every solution of an nth-order ODE F(x, y, y�, . . . , y(n)) � 0 on an inter-
val I can be obtained from an n-parameter family G(x, y, c1, c2, . . . , cn) � 0 by
appropriate choices of the parameters ci, i � 1, 2, . . . , n, we then say that the
family is the general solution of the DE. In solving linear ODEs, we shall im-
pose relatively simple restrictions on the coefficients of the equation; with these
restrictions one can be assured that not only does a solution exist on an interval
but also that a family of solutions yields all possible solutions. Nonlinear ODEs,
with the exception of some first-order equations, are usually difficult or impos-
sible to solve in terms of elementary functions. Furthermore, if we happen to
obtain a family of solutions for a nonlinear equation, it is not obvious whether
this family contains all solutions. On a practical level, then, the designation
“general solution” is applied only to linear ODEs. Don’t be concerned about
this concept at this point, but store the words “general solution” in the back of
your mind—we will come back to this notion in Section 2.3 and again in
Chapter 4.

EXERCISES 1.1 Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1–8 state the order of the given ordinary differ-
ential equation. Determine whether the equation is linear or
nonlinear by matching it with (6).

1. (1 � x)y� � 4xy�� 5y � cos x

2.

3. t5y(4) � t3y� � 6y � 0

4.

5.

6.

7. (sin �)y	 � (cos �)y� � 2

8.

In Problems 9 and 10 determine whether the given 
first-order differential equation is linear in the indicated
dependent variable by matching it with the first differential
equation given in (7).

9. (y2 � 1) dx � x dy � 0; in y; in x

10. u dv � (v � uv � ueu) du � 0; in v; in u

ẍ � �1 �
x. 2

3 �x. � x � 0

d 2R
dt 2 � �

k
R2

d 2y
dx 2 �

B
1 � �dy

dx�
2

d 2u
dr 2 �

du
dr

� u � cos(r � u)

x 
d3y
dx3 � �dy

dx�
4

� y � 0

In Problems 11–14 verify that the indicated function is an
explicit solution of the given differential equation. Assume
an appropriate interval I of definition for each solution

11. 2y� � y � 0; y � e�x/2

12.

13. y� � 6y� � 13y � 0; y � e3x cos 2x

14. y� � y � tan x; y � �(cos x)ln(sec x � tan x)

In Problems 15–18 verify that the indicated function 
y � �(x) is an explicit solution of the given first-orde
differential equation. Proceed as in Example 2, by consider-
ing � simply as a function, give its domain. Then by consid-
ering � as a solution of the differential equation, give at least
one interval I of definition

15.

16. y� � 25 � y2; y � 5 tan 5x

17. y� � 2xy2; y � 1�(4 � x2)

18. 2y� � y3 cos x; y � (1 � sin x)�1/2

In Problems 19 and 20 verify that the indicated expression is
an implicit solution of the given first-order differential equa-
tion. Find at least one explicit solution y � �(x) in each case.

(y � x)y� � y � x � 8;  y � x � 42x � 2

dy
dt

� 20y � 24;  y �
6
5

�
6
5
 e�20t
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Use a graphing utility to obtain the graph of an explicit solu-
tion. Give an interval I of definition of each solution �.

19.

20. 2xy dx � (x2 � y) dy � 0; �2x2y � y2 � 1

In Problems 21–24 verify that the indicated family of func-
tions is a solution of the given differential equation. Assume
an appropriate interval I of definition for each solution

21.

22.

23.

24.

25. Verify that the piecewise-defined functio

is a solution of the differential equation xy� � 2y � 0
on (��, �).

26. In Example 5 we saw that y � �1(x) � and
are solutions of dy�dx �

�x�y on the interval (�5, 5). Explain why the piecewise-
defined functio

is not a solution of the differential equation on the
interval (�5, 5).

In Problems 27–30 find values of m so that the function
y � emx is a solution of the given differential equation. 

27. y� � 2y � 0 28. 5y� � 2y
29. y� � 5y� � 6y � 0 30. 2y� � 7y� � 4y � 0

In Problems 31 and 32 find values of m so that the function
y � xm is a solution of the given differential equation. 

31. xy� � 2y� � 0

32. x2y� � 7xy� � 15y � 0

y � �125 � x2,   
�125 � x2,

�5 � x � 0
 0 	 x � 5

y � 
2(x) � �125 � x2
125 � x2

y � ��x2, x � 0
  x2, x � 0

y � c1x�1 � c2x � c3x ln x � 4x2

x3  d
3y

dx3 � 2x2  d
2y

dx2 � x 
dy
dx

� y � 12x2;

d 2y
dx2 � 4 

dy
dx

� 4y � 0; y � c1e2x � c2xe2x

dy
dx

� 2xy � 1; y � e�x2�x

0
 et2 dt � c1e�x2

dP
dt

� P(1 � P); P �
c1et

1 � c1et

dX
dt

� (X � 1)(1 � 2X);  ln�2X � 1
X � 1 � � t
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In Problems 33–36 use the concept that y � c, �� � x � �,
is a constant function if and only if y� � 0 to determine
whether the given differential equation possesses constant
solutions.

33. 3xy� � 5y � 10

34. y� � y2 � 2y � 3

35. (y � 1)y� � 1

36. y� � 4y� � 6y � 10

In Problems 37 and 38 verify that the indicated pair of
functions is a solution of the given system of differential
equations on the interval (��, �).

37. 38.

,

Discussion Problems

39. Make up a differential equation that does not possess
any real solutions.

40. Make up a differential equation that you feel confiden
possesses only the trivial solution y � 0. Explain your
reasoning.

41. What function do you know from calculus is such that
its first derivative is itself? Its first derivative is a
constant multiple k of itself? Write each answer in
the form of a first-order differential equation with a
solution.

42. What function (or functions) do you know from calcu-
lus is such that its second derivative is itself? Its second
derivative is the negative of itself? Write each answer in
the form of a second-order differential equation with a
solution.

43. Given that y � sin x is an explicit solution of the first-

order differential equation . Find an in-

terval I of definition [Hint: I is not the interval (��, �).]

44. Discuss why it makes intuitive sense to presume that
the linear differential equation y� � 2y� � 4y � 5 sin t
has a solution of the form y � A sin t � B cos t, where
A and B are constants. Then find specific constants A
and B so that y � A sin t � B cos t is a particular solu-
tion of the DE.

dy
dx

� 11 � y2

y � �cos 2t � sin 2t � 1
5 ety � �e�2t � 5e6t

x � cos 2t � sin 2t � 1
5 etx � e�2t � 3e6t,

d 2y
dt 2 � 4x � et; 

dy
dt

� 5x � 3y;

d 2x
dt 2 � 4y � et 

dx
dt

� x � 3y

27069_01_ch01_p01-034.qxd  2/2/12  4:50 PM  Page 11

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



In Problems 45 and 46 the given figure represents the graph
of an implicit solution G(x, y) � 0 of a differential equation
dy�dx � f (x, y). In each case the relation G(x, y) � 0
implicitly defines several solutions of the DE. Carefully
reproduce each figure on a piece of paper. Use different
colored pencils to mark off segments, or pieces, on each
graph that correspond to graphs of solutions. Keep in mind
that a solution � must be a function and differentiable. Use
the solution curve to estimate an interval I of definition of
each solution �.

45.

12 ● CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

51. Discuss, and illustrate with examples, how to solve
differential equations of the forms dy�dx � f (x) and
d2y�dx2 � f (x).

52. The differential equation x(y�)2 � 4y� � 12x3 � 0 has
the form given in (4). Determine whether the equation
can be put into the normal form dy�dx � f (x, y).

53. The normal form (5) of an nth-order differential equa-
tion is equivalent to (4) whenever both forms have
exactly the same solutions. Make up a first-order differ-
ential equation for which F(x, y, y�) � 0 is not equiva-
lent to the normal form dy�dx � f (x, y).

54. Find a linear second-order differential equation 
F(x, y, y�, y�) � 0 for which y � c1x � c2x2 is a two-
parameter family of solutions. Make sure that your equa-
tion is free of the arbitrary parameters c1 and c2.

Qualitative information about a solution y � �(x) of a
differential equation can often be obtained from the
equation itself. Before working Problems 55–58, recall
the geometric significance of the derivatives dy�dx
and d2y�dx2.

55. Consider the differential equation .
(a) Explain why a solution of the DE must be an

increasing function on any interval of the x-axis.
(b) What are What does

this suggest about a solution curve as 
(c) Determine an interval over which a solution curve is

concave down and an interval over which the curve
is concave up.

(d) Sketch the graph of a solution y � �(x) of the dif-
ferential equation whose shape is suggested by
parts (a)– (c).

56. Consider the differential equation dy�dx � 5 � y.
(a) Either by inspection or by the method suggested in

Problems 33–36, find a constant solution of the DE.
(b) Using only the differential equation, find intervals on

the y-axis on which a nonconstant solution y � �(x)
is increasing. Find intervals on the y-axis on which 
y � �(x) is decreasing.

57. Consider the differential equation dy�dx � y(a � by),
where a and b are positive constants.
(a) Either by inspection or by the method suggested

in Problems 33–36, find two constant solutions of
the DE.

(b) Using only the differential equation, find intervals on
the y-axis on which a nonconstant solution y � �(x)
is increasing. Find intervals on which y � �(x) is
decreasing.

(c) Using only the differential equation, explain why 
y � a�2b is the y-coordinate of a point of inflectio
of the graph of a nonconstant solution y � �(x).

x : 
�?

lim
x : ��

 dy>dx  and lim
x : �

 dy>dx?

dy>dx � e�x2

FIGURE 1.1.6 Graph for Problem 45

FIGURE 1.1.7 Graph for Problem 46

y

x

1

1

1 x

1

y46.

47. The graphs of members of the one-parameter family
x3 � y3 � 3cxy are called folia of Descartes. Verify
that this family is an implicit solution of the first-orde
differential equation

48. The graph in Figure 1.1.7 is the member of the family of
folia in Problem 47 corresponding to c � 1. Discuss:
How can the DE in Problem 47 help in finding points
on the graph of x3 � y3 � 3xy where the tangent line
is vertical? How does knowing where a tangent line is
vertical help in determining an interval I of definitio
of a solution � of the DE? Carry out your ideas,
and compare with your estimates of the intervals in
Problem 46.

49. In Example 5 the largest interval I over which the
explicit solutions y � �1(x) and y � �2(x) are define
is the open interval (�5, 5). Why can’t the interval I of
definition be the closed interval �5, 5]?

50. In Problem 21 a one-parameter family of solutions of
the DE P� � P(1 � P) is given. Does any solution
curve pass through the point (0, 3)? Through the
point (0, 1)?

dy
dx

�
y(y3 � 2x3)
x(2y3 � x3)

.
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1.2 INITIAL-VALUE PROBLEMS ● 13

(d) On the same coordinate axes, sketch the graphs of
the two constant solutions found in part (a). These
constant solutions partition the xy-plane into three
regions. In each region, sketch the graph of a non-
constant solution y � �(x) whose shape is sug-
gested by the results in parts (b) and (c).

58. Consider the differential equation y� � y2 � 4.
(a) Explain why there exist no constant solutions of

the DE.
(b) Describe the graph of a solution y � �(x). For

example, can a solution curve have any relative
extrema?

(c) Explain why y � 0 is the y-coordinate of a point of
inflection of a solution curve

(d) Sketch the graph of a solution y � �(x) of the
differential equation whose shape is suggested by
parts (a)–(c).

Computer Lab Assignments

In Problems 59 and 60 use a CAS to compute all derivatives
and to carry out the simplifications needed to verify that the
indicated function is a particular solution of the given differ-
ential equation.

59. y(4) � 20y	 � 158y� � 580y� � 841y � 0; 
y � xe5x cos 2x

60.

y � 20 
cos(5 ln x)

x
� 3 

sin(5 ln x)
x

x3y	 � 2x2y � � 20xy� � 78y � 0;

Geometric Interpretation of IVPs The cases n � 1 and n � 2 in (1),

(2)
 Subject to:   y(x0) � y0

 Solve:   
dy
dx

� f (x, y)

INITIAL-VALUE PROBLEMS

REVIEW MATERIAL
● Normal form of a DE
● Solution of a DE
● Family of solutions

INTRODUCTION We are often interested in problems in which we seek a solution y(x) of a
differential equation so that y(x) also satisfies certain prescribed side conditions—that is, conditions
that are imposed on the unknown function y(x) and its derivatives at a point x0. On some interval I
containing x0 the problem of solving an nth-order differential equation subject to n side conditions
specified at x0:

(1)

where y0, y1, . . . , yn�1 are arbitrary real constants, is called an nth-order initial-value
problem (IVP). The values of y(x) and its first n � 1 derivatives at x0, y(x0) � y0, y�(x0) � y1, . . . ,
y(n�1)(x0) � yn�1 are called initial conditions (IC).

Solving an nth-order initial-value problem such as (1) frequently entails first finding an 
n-parameter family of solutions of the given differential equation and then using the initial-
conditions at x0 to determine the n constants in this family. The resulting particular solution is
defined on some interval I containing the initial point x0.

 Subject to:  y(x0) � y0,  y�(x0) � y1,  . . . ,  y(n�1)(x0) � yn�1,

 Solve:    
dny
dxn � f �x, y, y�, . . . , y(n�1)�

1.2
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and (3)

are examples of first and second-order initial-value problems, respectively. These
two problems are easy to interpret in geometric terms. For (2) we are seeking a solution
y(x) of the differential equation y� � f (x, y) on an interval I containing x0 so that its
graph passes through the specified point (x0, y0). A solution curve is shown in blue
in Figure 1.2.1. For (3) we want to find a solution y(x) of the differential equation 
y� � f (x, y, y�) on an interval I containing x0 so that its graph not only passes through
(x0, y0) but the slope of the curve at this point is the number y1. A solution curve is
shown in blue in Figure 1.2.2. The words initial conditions derive from physical sys-
tems where the independent variable is time t and where y(t0) � y0 and y�(t0) � y1 rep-
resent the position and velocity, respectively, of an object at some beginning, or initial,
time t0.

 Subject to:   y(x0) � y0,  y�(x0) � y1

 Solve:   
d2y
dx2 �  f (x, y, y�)

14 ● CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

FIGURE 1.2.3 Solution curves of two
IVPs in Example 1

y

x

(0, 3)

(1, −2)

FIGURE 1.2.1 Solution curve of
first-orde IVP

FIGURE 1.2.2 Solution curve of
second-order IVP

xI

solutions of the DE

( x 0 ,  y 0 ) 

y

m  = y 1 

xI

solutions of the DE

( x 0 ,  y 0 ) 

y

EXAMPLE 1 Two First-Order IVPs

(a) In Problem 41 in Exercises 1.1 you were asked to deduce that y � cex is a one-
parameter family of solutions of the simple first-order equation y� � y. All the
solutions in this family are defined on the interval (��, �). If we impose an initial
condition, say, y(0) � 3, then substituting x � 0, y � 3 in the family determines the
constant 3 � ce0 � c. Thus y � 3ex is a solution of the IVP

(b) Now if we demand that a solution curve pass through the point (1, �2) rather
than (0, 3), then y(1) � �2 will yield �2 � ce or c � �2e�1. In this case y �
�2ex�1 is a solution of the IVP

The two solution curves are shown in dark blue and dark red in Figure 1.2.3.

The next example illustrates another first-order initial-value problem. In this
example notice how the interval I of definition of the solution y(x) depends on the
initial condition y(x0) � y0.

y� � y,  y(1) � �2.

y� � y,  y(0) � 3.

EXAMPLE 2 Interval I of Definition of a Solutio

In Problem 6 of Exercises 2.2 you will be asked to show that a one-parameter family
of solutions of the first-order differential equation y� � 2xy2 � 0 is y � 1�(x2 � c).
If we impose the initial condition y(0) � �1, then substituting x � 0 and y � �1
into the family of solutions gives �1 � 1�c or c � �1. Thus y � 1�(x2 � 1). We
now emphasize the following three distinctions:

• Considered as a function, the domain of y � 1�(x2 � 1) is the set of real
numbers x for which y(x) is defined; this is the set of all real number
except x � �1 and x � 1. See Figure 1.2.4(a).

• Considered as a solution of the differential equation y� � 2xy2 � 0, the
interval I of definition of y � 1�(x2 � 1) could be taken to be any
interval over which y(x) is defined and di ferentiable. As can be seen in
Figure 1.2.4(a), the largest intervals on which y � 1�(x2 � 1) is a solution
are (��,�1), (�1, 1), and (1, �).
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• Considered as a solution of the initial-value problem y� � 2xy2 � 0,
y(0) � �1, the interval I of definition of y � 1�(x2 � 1) could be taken to
be any interval over which y(x) is defined, di ferentiable, and contains the
initial point x � 0; the largest interval for which this is true is (�1, 1). See
the red curve in Figure 1.2.4(b).

See Problems 3–6 in Exercises 1.2 for a continuation of Example 2.

1.2 INITIAL-VALUE PROBLEMS ● 15

FIGURE 1.2.4 Graphs of function
and solution of IVP in Example 2

(0, −1)

x

y

1−1

x

y

1−1

(a) function defined for all x except x = ±1

(b) solution defined on interval containing x = 0

y

y = 0

y = x4/16

(0, 0)

1

x

FIGURE 1.2.5 Two solutions curves
of the same IVP in Example 4

EXAMPLE 3 Second-Order IVP

In Example 7 of Section 1.1 we saw that x � c1 cos 4t � c2 sin 4t is a two-parameter
family of solutions of x� � 16x � 0. Find a solution of the initial-value problem

(4)

SOLUTION We first apply x(��2) � �2 to the given family of solutions: c1 cos 2� �
c2 sin 2� � �2. Since cos 2� � 1 and sin 2� � 0, we find that c1 � �2. We next apply
x�(��2) � 1 to the one-parameter family x(t) � �2 cos 4t � c2 sin 4t. Differentiating
and then setting t � ��2 and x� � 1 gives 8 sin 2� � 4c2 cos 2� � 1, from which we
see that . Hence  is a solution of (4).

Existence and Uniqueness Two fundamental questions arise in considering
an initial-value problem:

Does a solution of the problem exist?
If a solution exists, is it unique?

For the first-order initial-value problem (2) we ask

Existence {Does the differential equation dy�dx � f (x, y) possess solutions?
Do any of the solution curves pass through the point (x0, y0)?

Uniqueness {When can we be certain that there is precisely one solution curve
passing through the point (x0, y0)?

Note that in Examples 1 and 3 the phrase “a solution” is used rather than “the solu-
tion” of the problem. The indefinite article “a” is used deliberately to suggest the
possibility that other solutions may exist. At this point it has not been demonstrated
that there is a single solution of each problem. The next example illustrates an initial-
value problem with two solutions.

x � �2 cos 4t � 1
4 sin 4tc2 � 1

4

x � � 16x � 0,  x��

2� � �2,  x���

2� � 1.

EXAMPLE 4 An IVP Can Have Several Solutions

Each of the functions y � 0 and satisfies the differential equation
dy�dx � xy1/2 and the initial condition y(0) � 0, so the initial-value problem

has at least two solutions. As illustrated in Figure 1.2.5, the graphs of both functions,
shown in red and blue pass through the same point (0, 0).

Within the safe confine of a formal course in differential equations one can be
fairly confiden that most differential equations will have solutions and that solutions of
initial-value problems will probably be unique. Real life, however, is not so idyllic.
Therefore it is desirable to know in advance of trying to solve an initial-value problem

dy
dx

� xy1/2,  y(0) � 0

y � 1
16 x4
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whether a solution exists and, when it does, whether it is the only solution of the prob-
lem. Since we are going to consider first-orde differential equations in the next two
chapters, we state here without proof a straightforward theorem that gives conditions
that are sufficien to guarantee the existence and uniqueness of a solution of a first-orde
initial-value problem of the form given in (2). We shall wait until Chapter 4 to address
the question of existence and uniqueness of a second-order initial-value problem.

16 ● CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

xI0

R

a b

c

d

(x0, y0)

y

FIGURE 1.2.6 Rectangular region R

THEOREM 1.2.1 Existence of a Unique Solution

Let R be a rectangular region in the xy-plane defined by a � x � b, c � y � d
that contains the point (x0, y0) in its interior. If f (x, y) and �f ��y are continuous
on R, then there exists some interval I0: (x0 � h, x0 � h), h � 0, contained in
[a, b], and a unique function y(x), defined on I0, that is a solution of the initial-
value problem (2).

The foregoing result is one of the most popular existence and uniqueness theo-
rems for first-order differential equations because the criteria of continuity of f (x, y)
and �f��y are relatively easy to check. The geometry of Theorem 1.2.1 is illustrated
in Figure 1.2.6.

EXAMPLE 5 Example 4 Revisited

We saw in Example 4 that the differential equation dy�dx � xy1/2 possesses at least
two solutions whose graphs pass through (0, 0). Inspection of the functions

shows that they are continuous in the upper half-plane defined by y � 0. Hence
Theorem 1.2.1 enables us to conclude that through any point (x0, y0), y0 � 0 in the
upper half-plane there is some interval centered at x0 on which the given differential
equation has a unique solution. Thus, for example, even without solving it, we know
that there exists some interval centered at 2 on which the initial-value problem
dy�dx � xy1/2, y(2) � 1 has a unique solution.

In Example 1, Theorem 1.2.1 guarantees that there are no other solutions of the
initial-value problems y� � y, y(0) � 3 and y� � y, y(1) � �2 other than y � 3ex

and y � �2ex�1, respectively. This follows from the fact that f (x, y) � y and
�f��y � 1 are continuous throughout the entire xy-plane. It can be further shown that
the interval I on which each solution is defined is ��, �).

Interval of Existence/Uniqueness Suppose y(x) represents a solution of
the initial-value problem (2). The following three sets on the real x-axis may not be
the same: the domain of the function y(x), the interval I over which the solution y(x)
is defined or exists, and the interval I0 of existence and uniqueness. Example 2 of
Section 1.1 illustrated the difference between the domain of a function and the
interval I of definition. Now suppose (x0, y0) is a point in the interior of the rectan-
gular region R in Theorem 1.2.1. It turns out that the continuity of the function
f (x, y) on R by itself is sufficient to guarantee the existence of at least one solution
of dy�dx � f (x, y), y(x0) � y0, defined on some interval I. The interval I of defini
tion for this initial-value problem is usually taken to be the largest interval contain-
ing x0 over which the solution y(x) is defined and differentiable. The interval I
depends on both f (x, y) and the initial condition y(x0) � y0. See Problems 31–34 in
Exercises 1.2. The extra condition of continuity of the first partial derivative �f��y

f (x, y) � xy1/2    and    
�f
�y

�
x

2y1/2
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1.2 INITIAL-VALUE PROBLEMS ● 17

on R enables us to say that not only does a solution exist on some interval I0 con-
taining x0, but it is the only solution satisfying y(x0) � y0. However, Theorem 1.2.1
does not give any indication of the sizes of intervals I and I0; the interval I of
definition need not be as wide as the region R, and the interval I0 of existence and
uniqueness may not be as large as I. The number h � 0 that defines the interval
I0: (x0 � h, x0 � h) could be very small, so it is best to think that the solution y(x)
is unique in a local sense —that is, a solution defined near the point (x0, y0). See
Problem 50 in Exercises 1.2.

REMARKS

(i) The conditions in Theorem 1.2.1 are sufficient but not necessary. This means
that when f (x, y) and �f��y are continuous on a rectangular region R, it must
always follow that a solution of (2) exists and is unique whenever (x0, y0) is a
point interior to R. However, if the conditions stated in the hypothesis of
Theorem 1.2.1 do not hold, then anything could happen: Problem (2) may still
have a solution and this solution may be unique, or (2) may have several solu-
tions, or it may have no solution at all. A rereading of Example 5 reveals that the
hypotheses of Theorem 1.2.1 do not hold on the line y � 0 for the differential
equation dy�dx � xy1/2, so it is not surprising, as we saw in Example 4 of this
section, that there are two solutions defined on a common interval �h � x � h
satisfying y(0) � 0. On the other hand, the hypotheses of Theorem 1.2.1 do
not hold on the line y � 1 for the differential equation dy�dx � �y � 1�.
Nevertheless it can be proved that the solution of the initial-value problem
dy�dx � �y � 1�, y(0) � 1, is unique. Can you guess this solution?

(ii) You are encouraged to read, think about, work, and then keep in mind
Problem 49 in Exercises 1.2.

(iii) Initial conditions are prescribed at a single point x0. But we are also inter-
ested in solving differential equations that are subject to conditions specifie
on y(x) or its derivative at two different points x0 and x1. Conditions such as 

and called boundary conditions. A differential equation together with bound-
ary conditions is called a boundary-value problem (BVP). For example,

is a boundary-value problem. See Problems 39–44 in Exercises 1.2.
When we start to solve differential equations in Chapter 2 we will solve

only first-order equations and first-order initial-value problems. The mathe-
matical description of many problems in science and engineering involve
second-order IVPs or two-point BVPs. We will examine some of these prob-
lems in Chapters 4 and 5.  

y� � ly � 0,  y�(0) � 0,  y�(p) � 0

y(1) � 0,  y(5) � 0    or    y(p>2) � 0,  y�(p) � 1

EXERCISES 1.2 Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1 and 2, y � 1�(1 � c1e�x) is a one-parameter
family of solutions of the first-order DE y� � y � y2. Find a
solution of the first-order IVP consisting of this differential
equation and the given initial condition.

1. 2. y(�1) � 2

In Problems 3–6, y � 1�(x2 � c) is a one-parameter family
of solutions of the first-order DE y� � 2xy2 � 0. Find a

y(0) � �1
3

solution of the first-order IVP consisting of this differential
equation and the given initial condition. Give the largest
interval I over which the solution is defined

3. 4.

5. y(0) � 1 6.

In Problems 7–10, x � c1 cos t � c2 sin t is a two-parameter
family of solutions of the second-order DE x� � x � 0. Find

y(1
2) � �4

y(�2) � 1
2y(2) � 1

3
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a solution of the second-order IVP consisting of this differ-
ential equation and the given initial conditions.

7. x(0) � �1, x�(0) � 8

8. x(��2) � 0, x�(��2) � 1

9.

10.

In Problems 11–14, y � c1ex � c2e�x is a two-parameter
family of solutions of the second-order DE y� � y � 0. Find
a solution of the second-order IVP consisting of this differ-
ential equation and the given initial conditions.

11.

12. y(1) � 0, y�(1) � e

13. y(�1) � 5, y�(�1) � �5

14. y(0) � 0, y�(0) � 0

In Problems 15 and 16 determine by inspection at least two
solutions of the given first-order IV .

15. y� � 3y2/3, y(0) � 0

16. xy� � 2y, y(0) � 0

In Problems 17–24 determine a region of the xy-plane for
which the given differential equation would have a unique
solution whose graph passes through a point (x0, y0) in the
region.

17. 18.

19. 20.

21. (4 � y2)y� � x2 22. (1 � y3)y� � x2

23. (x2 � y2)y� � y2 24. (y � x)y� � y � x

In Problems 25–28 determine whether Theorem 1.2.1 guar-
antees that the differential equation pos-
sesses a unique solution through the given point.

25. (1, 4) 26. (5, 3)

27. (2, �3) 28. (�1, 1)

29. (a) By inspection find a one-parameter family of solu-
tions of the differential equation xy� � y. Verify that
each member of the family is a solution of the
initial-value problem xy� � y, y(0) � 0.

(b) Explain part (a) by determining a region R in the
xy-plane for which the differential equation xy� � y
would have a unique solution through a point (x0, y0)
in R.

y� � 1y2 � 9

dy
dx

� y � xx 
dy
dx

� y

dy
dx

� 1xy
dy
dx

� y2/3

y�(0) � 2y(0) � 1,

x(�>4) � 12,  x�(�>4) � 212

x(�>6) � 1
2, x�(�>6) � 0

18 ● CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

(c) Verify that the piecewise-defined functio

satisfies the condition y(0) � 0. Determine whether
this function is also a solution of the initial-value
problem in part (a).

30. (a) Verify that y � tan (x � c) is a one-parameter family
of solutions of the differential equation y� � 1 � y2.

(b) Since f (x, y) � 1 � y2 and �f��y � 2y are continu-
ous everywhere, the region R in Theorem 1.2.1 can
be taken to be the entire xy-plane. Use the family of
solutions in part (a) to find an explicit solution of
the first-order initial-value problem y� � 1 � y2,
y(0) � 0. Even though x0 � 0 is in the interval
(�2, 2), explain why the solution is not defined on
this interval.

(c) Determine the largest interval I of definition for the
solution of the initial-value problem in part (b).

31. (a) Verify that y � �1�(x � c) is a one-parameter
family of solutions of the differential equation 
y� � y2.

(b) Since f (x, y) � y2 and �f��y � 2y are continuous
everywhere, the region R in Theorem 1.2.1 can be
taken to be the entire xy-plane. Find a solution from
the family in part (a) that satisfies y(0) � 1. Then
find a solution from the family in part (a) that
satisfies y(0) � �1. Determine the largest interval I
of definition for the solution of each initial-value
problem.

(c) Determine the largest interval I of definition for the
solution of the first-order initial-value problem
y� � y2, y(0) � 0. [Hint: The solution is not a mem-
ber of the family of solutions in part (a).]

32. (a) Show that a solution from the family in part (a)
of Problem 31 that satisfies y� � y2, y(1) � 1, is
y � 1�(2 � x).

(b) Then show that a solution from the family in part (a)
of Problem 31 that satisfies y� � y2, y(3) � �1, is
y � 1�(2 � x).

(c) Are the solutions in parts (a) and (b) the same?

33. (a) Verify that 3x2 � y2 � c is a one-parameter fam-
ily of solutions of the differential equation 
y dy�dx � 3x.

(b) By hand, sketch the graph of the implicit solution
3x2 � y2 � 3. Find all explicit solutions y � �(x) of
the DE in part (a) defined by this relation. Give the
interval I of definition of each explicit solution

(c) The point (�2, 3) is on the graph of 3x2 � y2 � 3,
but which of the explicit solutions in part (b) satis-
fies y(�2) � 3?

34. (a) Use the family of solutions in part (a) of Problem 33
to find an implicit solution of the initial-value

y � �0,  x � 0
x,  x � 0
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FIGURE 1.2.7 Graph for Problem 35

y

x

5

−5

5

In Problems 39–44, is a two-
parameter family of solutions of the second-order DE

If possible, find a solution of the differential
equation that satisfies the given side conditions. The condi-
tions specified at two different points are called boundary
conditions.

39. 40.

41. 42.

43. 44.

Discussion Problems

In Problems 45 and 46 use Problem 51 in Exercises 1.1 and
(2) and (3) of this section.

45. Find a function y � f (x) whose graph at each point (x, y)
has the slope given by 8e2x � 6x and has the 
y-intercept (0, 9).

46. Find a function y � f (x) whose second derivative is
y� � 12x � 2 at each point (x, y) on its graph and
y � �x � 5 is tangent to the graph at the point corre-
sponding to x � 1.

47. Consider the initial-value problem y� � x � 2y,
. Determine which of the two curves shown

in Figure 1.2.11 is the only plausible solution curve.
Explain your reasoning.

y(0) � 1
2

y�(p>2) � 1, y�(p) � 0y(0) � 0, y(p) � 2

y(0) � 1, y�(p) � 5y�(0) � 0, y�(p>6) � 0

y(0) � 0, y(p) � 0y(0) � 0, y(p>4) � 3

y� � 4y � 0.

y � c1 cos 2x � c2 sin 2x

FIGURE 1.2.10 Graph for Problem 38
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5

36.

37.

38.

FIGURE 1.2.8 Graph for Problem 36

FIGURE 1.2.9 Graph for Problem 37
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FIGURE 1.2.11 Graphs for Problem 47

(0, )1
2

1

1 x

y

problem y dy�dx � 3x, y(2) � �4. Then, by hand,
sketch the graph of the explicit solution of this
problem and give its interval I of definition

(b) Are there any explicit solutions of y dy�dx � 3x that
pass through the origin?

In Problems 35–38 the graph of a member of a family
of solutions of a second-order differential equation 
d2y�dx2 � f (x, y, y�) is given. Match the solution curve with
at least one pair of the following initial conditions.

(a) y(1) � 1, y�(1) � �2
(b) y(�1) � 0, y�(�1) � �4
(c) y(1) � 1, y�(1) � 2
(d) y(0) � �1, y�(0) � 2
(e) y(0) � �1, y�(0) � 0
(f) y(0) � �4, y�(0) � �2

35.

48. Determine a plausible value of x0 for which the
graph of the solution of the initial-value problem 
y� � 2y � 3x � 6, y(x0) � 0 is tangent to the x-axis at
(x0, 0). Explain your reasoning.
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20 ● CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

49. Suppose that the first-order differential equation 
dy�dx � f (x, y) possesses a one-parameter family of
solutions and that f (x, y) satisfies the hypotheses of
Theorem 1.2.1 in some rectangular region R of the 
xy-plane. Explain why two different solution curves
cannot intersect or be tangent to each other at a point
(x0, y0) in R.

50. The functions and

have the same domain but are clearly different. See
Figures 1.2.12(a) and 1.2.12(b), respectively. Show that
both functions are solutions of the initial-value problem
dy�dx � xy1/2, y(2) � 1 on the interval (��, �).
Resolve the apparent contradiction between this fact
and the last sentence in Example 5.

y(x) � �0,
1
16 x4,

 x � 0
  x � 0

y(x) � 1
16 x4, �� � x � �

Mathematical Model

51. Population Growth Beginning in the next section
we will see that differential equations can be used to
describe or model many different physical systems. In
this problem suppose that a model of the growing popu-
lation of a small community is given by the initial-value
problem

where P is the number of individuals in the community
and time t is measured in years. How fast—that is, at
what rate—is the population increasing at t � 0? How
fast is the population increasing when the population
is 500?

dP
dt

� 0.15P(t) � 20,  P(0) � 100,

FIGURE 1.2.12 Two solutions of the IVP in Problem 50

(a)

(2, 1)

y

x

(b)

(2, 1)

y

x

Mathematical Models It is often desirable to describe the behavior of some
real-life system or phenomenon, whether physical, sociological, or even economic,
in mathematical terms. The mathematical description of a system of phenomenon is
called a mathematical model and is constructed with certain goals in mind. For ex-
ample, we may wish to understand the mechanisms of a certain ecosystem by study-
ing the growth of animal populations in that system, or we may wish to date fossils
by analyzing the decay of a radioactive substance, either in the fossil or in the stra-
tum in which it was discovered.

DIFFERENTIAL EQUATIONS AS MATHEMATICAL MODELS

REVIEW MATERIAL
● Units of measurement for weight, mass, and density
● Newton’s second law of motion
● Hooke’s law
● Kirchhoff’s laws
● Archimedes’ principle

INTRODUCTION In this section we introduce the notion of a differential equation as a
mathematical model and discuss some specific models in biology, chemistry, and physics. Once we
have studied some methods for solving DEs in Chapters 2 and 4, we return to, and solve, some of
these models in Chapters 3 and 5.

1.3
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Construction of a mathematical model of a system starts with

(i) identification of the variables that are responsible for changing the
system. We may choose not to incorporate all these variables into the
model at first. In this step we are specifying the level of resolution of
the model.

Next

(ii) we make a set of reasonable assumptions, or hypotheses, about the
system we are trying to describe. These assumptions will also include
any empirical laws that may be applicable to the system.

For some purposes it may be perfectly within reason to be content with low-
resolution models. For example, you may already be aware that in beginning
physics courses, the retarding force of air friction is sometimes ignored in modeling
the motion of a body falling near the surface of the Earth, but if you are a scientist
whose job it is to accurately predict the flight path of a long-range projectile,
you have to take into account air resistance and other factors such as the curvature
of the Earth.

Since the assumptions made about a system frequently involve a rate of change
of one or more of the variables, the mathematical depiction of all these assumptions
may be one or more equations involving derivatives. In other words, the mathemat-
ical model may be a differential equation or a system of differential equations.

Once we have formulated a mathematical model that is either a differential
equation or a system of differential equations, we are faced with the not insignifican
problem of trying to solve it. If we can solve it, then we deem the model to be reason-
able if its solution is consistent with either experimental data or known facts about
the behavior of the system. But if the predictions produced by the solution are poor,
we can either increase the level of resolution of the model or make alternative as-
sumptions about the mechanisms for change in the system. The steps of the model-
ing process are then repeated, as shown in the diagram in Figure 1.3.1.
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Express assumptions
in terms of DEs

Display predictions
of  model 

(e.g., graphically)

Solve the DEs

If necessary,
alter assumptions

or increase resolution
of model

Assumptions
and hypotheses

Mathematical
formulation

Obtain
solutions

Check model
predictions with

known facts

FIGURE 1.3.1 Steps in the modeling process with differential equations

Of course, by increasing the resolution, we add to the complexity of the mathemati-
cal model and increase the likelihood that we cannot obtain an explicit solution.

A mathematical model of a physical system will often involve the variable time t.
A solution of the model then gives the state of the system; in other words, the values
of the dependent variable (or variables) for appropriate values of t describe the system
in the past, present, and future.

Population Dynamics One of the earliest attempts to model human pop-
ulation growth by means of mathematics was by the English clergyman and econo-
mist Thomas Malthus in 1798. Basically, the idea behind the Malthusian model is the
assumption that the rate at which the population of a country grows at a certain time is
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proportional* to the total population of the country at that time. In other words, the more
people there are at time t, the more there are going to be in the future. In mathematical
terms, if P(t) denotes the total population at time t, then this assumption can be
expressed as

, (1)

where k is a constant of proportionality. This simple model, which fails to take into
account many factors that can influence human populations to either grow or decline
(immigration and emigration, for example), nevertheless turned out to be fairly accu-
rate in predicting the population of the United States during the years 1790–1860.
Populations that grow at a rate described by (1) are rare; nevertheless, (1) is still used
to model growth of small populations over short intervals of time (bacteria growing
in a petri dish, for example).

Radioactive Decay The nucleus of an atom consists of combinations of protons
and neutrons. Many of these combinations of protons and neutrons are unstable—that
is, the atoms decay or transmute into atoms of another substance. Such nuclei are
said to be radioactive. For example, over time the highly radioactive radium, Ra-226,
transmutes into the radioactive gas radon, Rn-222. To model the phenomenon of
radioactive decay, it is assumed that the rate dA�dt at which the nuclei of a sub-
stance decay is proportional to the amount (more precisely, the number of nuclei)
A(t) of the substance remaining at time t:

. (2)

Of course, equations (1) and (2) are exactly the same; the difference is only in the in-
terpretation of the symbols and the constants of proportionality. For growth, as we
expect in (1), k � 0, and for decay, as in (2), k � 0.

The model (1) for growth can also be seen as the equation dS�dt � rS, which
describes the growth of capital S when an annual rate of interest r is compounded
continuously. The model (2) for decay also occurs in biological applications such as
determining the half-life of a drug—the time that it takes for 50% of a drug to be
eliminated from a body by excretion or metabolism. In chemistry the decay model
(2) appears in the mathematical description of a first-order chemical reaction. The
point is this:

A single differential equation can serve as a mathematical model for many
different phenomena.

Mathematical models are often accompanied by certain side conditions. For ex-
ample, in (1) and (2) we would expect to know, in turn, the initial population P0 and
the initial amount of radioactive substance A0 on hand. If the initial point in time is
taken to be t � 0, then we know that P(0) � P0 and A(0) � A0. In other words, a
mathematical model can consist of either an initial-value problem or, as we shall see
later on in Section 5.2, a boundary-value problem.

Newton’s Law of Cooling/Warming According to Newton’s empirical
law of cooling/warming, the rate at which the temperature of a body changes is
proportional to the difference between the temperature of the body and the temper-
ature of the surrounding medium, the so-called ambient temperature. If T(t) repre-
sents the temperature of a body at time t, Tm the temperature of the surrounding

dA
dt

 � A    or    
dA
dt

� kA

dP
dt

 � P    or    
dP
dt

� kP
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*If two quantities u and v are proportional, we write u � v. This means that one quantity is a constant
multiple of the other: u � kv.
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medium, and dT�dt the rate at which the temperature of the body changes, then
Newton’s law of cooling/warming translates into the mathematical statement

, (3)

where k is a constant of proportionality. In either case, cooling or warming, if Tm is a
constant, it stands to reason that k � 0.

Spread of a Disease A contagious disease—for example, a flu virus—is
spread throughout a community by people coming into contact with other people. Let
x(t) denote the number of people who have contracted the disease and y(t) denote the
number of people who have not yet been exposed. It seems reasonable to assume that
the rate dx�dt at which the disease spreads is proportional to the number of encoun-
ters, or interactions, between these two groups of people. If we assume that the num-
ber of interactions is jointly proportional to x(t) and y(t)—that is, proportional to the
product xy—then

, (4)

where k is the usual constant of proportionality. Suppose a small community has a
fixed population of n people. If one infected person is introduced into this commu-
nity, then it could be argued that x(t) and y(t) are related by x � y � n � 1. Using
this last equation to eliminate y in (4) gives us the model

. (5)

An obvious initial condition accompanying equation (5) is x(0) � 1.

Chemical Reactions The disintegration of a radioactive substance, governed
by the differential equation (1), is said to be a first-orde reaction. In chemistry
a few reactions follow this same empirical law: If the molecules of substance A
decompose into smaller molecules, it is a natural assumption that the rate at which
this decomposition takes place is proportional to the amount of the first substance
that has not undergone conversion; that is, if X(t) is the amount of substance A
remaining at any time, then dX�dt � kX, where k is a negative constant since X is
decreasing. An example of a first-order chemical reaction is the conversion of t-butyl
chloride, (CH3)3CCl, into t-butyl alcohol, (CH3)3COH:

Only the concentration of the t-butyl chloride controls the rate of reaction. But in the
reaction

one molecule of sodium hydroxide, NaOH, is consumed for every molecule of
methyl chloride, CH3Cl, thus forming one molecule of methyl alcohol, CH3OH, and
one molecule of sodium chloride, NaCl. In this case the rate at which the reaction
proceeds is proportional to the product of the remaining concentrations of CH3Cl and
NaOH. To describe this second reaction in general, let us suppose one molecule of a
substance A combines with one molecule of a substance B to form one molecule of a
substance C. If X denotes the amount of chemical C formed at time t and if � and �
are, in turn, the amounts of the two chemicals A and B at t � 0 (the initial amounts),
then the instantaneous amounts of A and B not converted to chemical C are � � X
and � � X, respectively. Hence the rate of formation of C is given by

, (6)

where k is a constant of proportionality. A reaction whose model is equation (6) is
said to be a second-order reaction.

dX
dt

� k(� � X)(� � X)

CH3Cl � NaOH : CH3OH � NaCl

(CH3)3CCl � NaOH : (CH3)3COH � NaCl.

dx
dt

� kx(n � 1 � x)

dx
dt

� kxy

dT
dt

 � T � Tm    or    
dT
dt

� k(T � Tm)
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Mixtures The mixing of two salt solutions of differing concentrations gives
rise to a first-order differential equation for the amount of salt contained in the mix-
ture. Let us suppose that a large mixing tank initially holds 300 gallons of brine (that
is, water in which a certain number of pounds of salt has been dissolved). Another
brine solution is pumped into the large tank at a rate of 3 gallons per minute; the
concentration of the salt in this inflow is 2 pounds per gallon. When the solution in
the tank is well stirred, it is pumped out at the same rate as the entering solution. See
Figure 1.3.2. If A(t) denotes the amount of salt (measured in pounds) in the tank at
time t, then the rate at which A(t) changes is a net rate:

. (7)

The input rate Rin at which salt enters the tank is the product of the inflow concentra-
tion of salt and the inflow rate of fluid. Note that Rin is measured in pounds per
minute:

Now, since the solution is being pumped out of the tank at the same rate that it is
pumped in, the number of gallons of brine in the tank at time t is a constant 300 gal-
lons. Hence the concentration of the salt in the tank as well as in the outflow is
c(t) � A(t)�300 lb/gal, so the output rate Rout of salt is

The net rate (7) then becomes

(8)

If rin and rout denote general input and output rates of the brine solutions,* then
there are three possibilities: rin � rout, rin � rout, and rin � rout. In the analysis lead-
ing to (8) we have assumed that rin � rout. In the latter two cases the number of gal-
lons of brine in the tank is either increasing (rin � rout) or decreasing (rin � rout) at
the net rate rin � rout. See Problems 10–12 in Exercises 1.3.

Draining a Tank In hydrodynamics, Torricelli’s law states that the speed v of
efflux of water though a sharp-edged hole at the bottom of a tank filled to a depth h
is the same as the speed that a body (in this case a drop of water) would acquire in
falling freely from a height h—that is, , where g is the acceleration due to
gravity. This last expression comes from equating the kinetic energy with the
potential energy mgh and solving for v. Suppose a tank filled with water is allowed to
drain through a hole under the influence of gravity. We would like to fin the depth h
of water remaining in the tank at time t. Consider the tank shown in Figure 1.3.3. If
the area of the hole is Ah (in ft2) and the speed of the water leaving the tank is

(in ft/s), then the volume of water leaving the tank per second is 
(in ft3/s). Thus if V(t) denotes the volume of water in the tank at time t, then

, (9)
dV
dt

� �Ah12gh

Ah12ghv � 12gh

1
2mv2

v � 12gh

dA
dt

� 6 �
A

100
    or    

dA
dt

�
1

100
 A � 6.

Rout � (        lb/gal) � (3 gal/min) �         lb/min.A(t)––––300
A(t)––––100

concentration
of salt

in outflo
output rate

of brine
output rate

of salt

concentration
of salt

in inflo
input rate
of brine

input rate
of salt

Rin � (2 lb/gal) � (3 gal/min) � (6 lb/min).

dA
dt

� �input rate
of salt � � �output rate

of salt � � Rin � Rout
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input rate of brine
3 gal/min

output rate of brine
3 gal/min

constant
300 gal

FIGURE 1.3.2 Mixing tank

h

Aw

Ah

FIGURE 1.3.3 Draining tank

*Don’t confuse these symbols with Rin and Rout, which are input and output rates of salt.
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where the minus sign indicates that V is decreasing. Note here that we are ignoring
the possibility of friction at the hole that might cause a reduction of the rate of flo
there. Now if the tank is such that the volume of water in it at time t can be written
V(t) � Awh, where Aw (in ft2) is the constant area of the upper surface of the water
(see Figure 1.3.3), then dV�dt � Aw dh�dt. Substituting this last expression into (9)
gives us the desired differential equation for the height of the water at time t:

. (10)

It is interesting to note that (10) remains valid even when Aw is not constant. In this
case we must express the upper surface area of the water as a function of h—that is,
Aw � A(h). See Problem 14 in Exercises 1.3.

Series Circuits Consider the single-loop LRC-series circuit shown in Fig-
ure 1.3.4(a), containing an inductor, resistor, and capacitor. The current in a circuit
after a switch is closed is denoted by i(t); the charge on a capacitor at time t is de-
noted by q(t). The letters L, R, and C are known as inductance, resistance, and capac-
itance, respectively, and are generally constants. Now according to Kirchhoff’s
second law, the impressed voltage E(t) on a closed loop must equal the sum of the
voltage drops in the loop. Figure 1.3.4(b) shows the symbols and the formulas for the
respective voltage drops across an inductor, a capacitor, and a resistor. Since current
i(t) is related to charge q(t) on the capacitor by i � dq�dt, adding the three voltages

inductor resistor capacitor

and equating the sum to the impressed voltage yields a second-order differential
equation

(11)

We will examine a differential equation analogous to (11) in great detail in
Section 5.1.

Falling Bodies To construct a mathematical model of the motion of a body
moving in a force field, one often starts with the laws of motion formulated by the
English mathematician Isaac Newton (1643–1727). Recall from elementary physics
that Newton’s first law of motion states that a body either will remain at rest or will
continue to move with a constant velocity unless acted on by an external force. In
each case this is equivalent to saying that when the sum of the forces —
that is, the net or resultant force—acting on the body is zero, then the acceleration
a of the body is zero. Newton’s second law of motion indicates that when the net
force acting on a body is not zero, then the net force is proportional to its accelera-
tion a or, more precisely, F � ma, where m is the mass of the body.

Now suppose a rock is tossed upward from the roof of a building as illustrated
in Figure 1.3.5. What is the position s(t) of the rock relative to the ground at time t?
The acceleration of the rock is the second derivative d2s�dt2. If we assume that the
upward direction is positive and that no force acts on the rock other than the force of
gravity, then Newton’s second law gives

. (12)

In other words, the net force is simply the weight F � F1 � �W of the rock near the
surface of the Earth. Recall that the magnitude of the weight is W � mg, where m is

m 
d 2s
dt2 � �mg    or    

d 2s
dt2 � �g

F � � Fk

L 
d 2q
dt2 � R 

dq
dt

�
1
C

 q � E(t).

L 
di
dt

� L 
d 2q
dt2 ,    iR � R 

dq
dt

,    and    
1
C

 q

dh
dt

� �
Ah

Aw
 12gh
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(a)

(b)

E(t)
L

C

R

(a) LRC-series circuit

(b)

L

R

Inductor
inductance L: henries (h)

voltage drop across: L di
dt

i

Capacitor
capacitance C: farads (f)

voltage drop across: 1
C

i

Resistor
resistance R: ohms (Ω)
voltage drop across: iR

i

q

C

FIGURE 1.3.4 Symbols, units, and
voltages. Current i(t) and charge q(t) are
measured in amperes (A) and coulombs
(C), respectively

ground
building

rock

s(t)
s0

v0

FIGURE 1.3.5 Position of rock
measured from ground level
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the mass of the body and g is the acceleration due to gravity. The minus sign in (12) is
used because the weight of the rock is a force directed downward, which is opposite
to the positive direction. If the height of the building is s0 and the initial velocity of the
rock is v0, then s is determined from the second-order initial-value problem

. (13)

Although we have not been stressing solutions of the equations we have con-
structed, note that (13) can be solved by integrating the constant �g twice with
respect to t. The initial conditions determine the two constants of integration.
From elementary physics you might recognize the solution of (13) as the formula

Falling Bodies and Air Resistance Before the famous experiment by the
Italian mathematician and physicist Galileo Galilei (1564–1642) from the leaning
tower of Pisa, it was generally believed that heavier objects in free fall, such as a can-
nonball, fell with a greater acceleration than lighter objects, such as a feather.
Obviously, a cannonball and a feather when dropped simultaneously from the same
height do fall at different rates, but it is not because a cannonball is heavier. The dif-
ference in rates is due to air resistance. The resistive force of air was ignored in the
model given in (13). Under some circumstances a falling body of mass m, such as a
feather with low density and irregular shape, encounters air resistance proportional
to its instantaneous velocity v. If we take, in this circumstance, the positive direction
to be oriented downward, then the net force acting on the mass is given by F � F1 �
F2 � mg � kv, where the weight F1 � mg of the body is force acting in the positive
direction and air resistance F2 � �kv is a force, called viscous damping, acting in the
opposite or upward direction. See Figure 1.3.6. Now since v is related to acceleration
a by a � dv�dt, Newton’s second law becomes F � ma � m dv�dt. By equating the
net force to this form of Newton’s second law, we obtain a first-order differential
equation for the velocity v(t) of the body at time t,

. (14)

Here k is a positive constant of proportionality. If s(t) is the distance the body falls in
time t from its initial point of release, then v � ds�dt and a � dv�dt � d2s�dt2. In
terms of s, (14) is a second-order differential equation

(15)

Suspended Cables Suppose a flexible cable, wire, or heavy rope is sus-
pended between two vertical supports. Physical examples of this could be one of the
two cables supporting the roadbed of a suspension bridge as shown in Figure 1.3.7(a)
or a long telephone wire strung between two posts as shown in Figure 1.3.7(b). Our
goal is to construct a mathematical model that describes the shape that such a cable
assumes.

To begin, let’s agree to examine only a portion or element of the cable between
its lowest point P1 and any arbitrary point P2. As drawn in blue in Figure 1.3.8, this
element of the cable is the curve in a rectangular coordinate system with y-axis cho-
sen to pass through the lowest point P1 on the curve and the x-axis chosen a units
below P1. Three forces are acting on the cable: the tensions T1 and T2 in the cable
that are tangent to the cable at P1 and P2, respectively, and the portion W of the total
vertical load between the points P1 and P2. Let T1 � �T1�, T2 � �T2�, and 
W � �W� denote the magnitudes of these vectors. Now the tension T2 resolves
into horizontal and vertical components (scalar quantities) T2 cos � and T2 sin �.

m 
d 2s
dt 2 � mg � k 

ds
dt

    or    m 
d 2s
dt 2 � k 

ds
dt

� mg.

m 
dv
dt

� mg � kv

s(t) � �1
2gt2 � v0t � s0.

d 2s
dt 2 � �g,  s(0) � s0,  s�(0) � v0
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direction

air resistance
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kv
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FIGURE 1.3.6 Falling body of mass m

(a) suspension bridge cable

(b) telephone wires

FIGURE 1.3.7 Cables suspended
between vertical supports

FIGURE 1.3.8 Element of cable
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Because of static equilibrium we can write

By dividing the last equation by the first, we eliminate T2 and get tan � � W�T1. But
because dy�dx � tan �, we arrive at

(16)

This simple first-order differential equation serves as a model for both the shape of a
flexible wire such as a telephone wire hanging under its own weight and the shape of
the cables that support the roadbed of a suspension bridge. We will come back to
equation (16) in Exercises 2.2 and Section 5.3.

What Lies Ahead Throughout this text you will see three different types of
approaches to, or analyses of, differential equations. Over the centuries differential
equations would often spring from the efforts of a scientist or engineer to describe
some physical phenomenon or to translate an empirical or experimental law into
mathematical terms. As a consequence, a scientist, engineer, or mathematician
would often spend many years of his or her life trying to fin the solutions of a DE.
With a solution in hand, the study of its properties then followed. This quest for so-
lutions is called by some the analytical approach to differential equations. Once they
realized that explicit solutions are at best difficul to obtain and at worst impossible
to obtain, mathematicians learned that a differential equation itself could be a font of
valuable information. It is possible, in some instances, to glean directly from the dif-
ferential equation answers to questions such as Does the DE actually have solutions?
If a solution of the DE exists and satisfie an initial condition, is it the only such so-
lution? What are some of the properties of the unknown solutions? What can we say
about the geometry of the solution curves? Such an approach is qualitative analysis.
Finally, if a differential equation cannot be solved by analytical methods, yet we
can prove that a solution exists, the next logical query is Can we somehow approxi-
mate the values of an unknown solution? Here we enter the realm of numerical
analysis. An affirmativ answer to the last question stems from the fact that a differ-
ential equation can be used as a cornerstone for constructing very accurate approxi-
mation algorithms. In Chapter 2 we start with qualitative considerations of first
order ODEs, then examine analytical stratagems for solving some special first-orde
equations, and conclude with an introduction to an elementary numerical method.
See Figure 1.3.9.

dy
dx

�
W
T1

.

T1 � T2 cos �    and    W � T2 sin �.
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(a) analytical (b) qualitative (c) numerical

y'=f(y)

FIGURE 1.3.9 Different approaches to the study of differential equations
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28 ● CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

REMARKS

Each example in this section has described a dynamical system—a system that
changes or evolves with the flow of time t. Since the study of dynamical
systems is a branch of mathematics currently in vogue, we shall occasionally
relate the terminology of that field to the discussion at hand

In more precise terms, a dynamical system consists of a set of time-
dependent variables, called state variables, together with a rule that enables
us to determine (without ambiguity) the state of the system (this may be a past,
present, or future state) in terms of a state prescribed at some time t0. Dynamical
systems are classifie as either discrete-time systems or continuous-time systems.
In this course we shall be concerned only with continuous-time systems—
systems in which all variables are defined over a continuous range of time. The
rule, or mathematical model, in a continuous-time dynamical system is a differ-
ential equation or a system of differential equations. The state of the system
at a time t is the value of the state variables at that time; the specified state of
the system at a time t0 is simply the initial conditions that accompany the math-
ematical model. The solution of the initial-value problem is referred to as the
response of the system. For example, in the case of radioactive decay, the rule
is dA�dt � kA. Now if the quantity of a radioactive substance at some time t0 is
known, say A(t0) � A0, then by solving the rule we find that the response of the
system for t � t0 is (see Section 3.1). The response A(t) is the
single state variable for this system. In the case of the rock tossed from the roof
of a building, the response of the system—the solution of the differential
equation d2s�dt2 � �g, subject to the initial state s(0) � s0, s�(0) � v0 , is the
function , where T represents the time
when the rock hits the ground. The state variables are s(t) and s�(t), which
are the vertical position of the rock above ground and its velocity at time t,
respectively. The acceleration s�(t) is not a state variable, since we have to know
only any initial position and initial velocity at a time t0 to uniquely determine
the rock’s position s(t) and velocity s�(t) � v(t) for any time in the interval 
t0 � t � T. The acceleration s�(t) � a(t) is, of course, given by the differential
equation s�(t) � �g, 0 � t � T.

One last point: Not every system studied in this text is a dynamical system.
We shall also examine some static systems in which the model is a differential
equation.

s(t) � �1
2gt2 � v0t � s0, 0 � t � T

A(t) � A0e(t� t0)

EXERCISES 1.3 Answers to selected odd-numbered problems begin on page ANS-1.

Population Dynamics

1. Under the same assumptions that underlie the model in
(1), determine a differential equation for the population
P(t) of a country when individuals are allowed to
immigrate into the country at a constant rate r � 0.
What is the differential equation for the population P(t)
of the country when individuals are allowed to emigrate
from the country at a constant rate r � 0?

2. The population model given in (1) fails to take death
into consideration; the growth rate equals the birth rate.
In another model of a changing population of a commu-
nity it is assumed that the rate at which the population
changes is a net rate—that is, the difference between

the rate of births and the rate of deaths in the commu-
nity. Determine a model for the population P(t) if both
the birth rate and the death rate are proportional to the
population present at time t � 0.

3. Using the concept of net rate introduced in Problem 2,
determine a model for a population P(t) if the birth rate
is proportional to the population present at time t but the
death rate is proportional to the square of the population
present at time t.

4. Modify the model in Problem 3 for net rate at which
the population P(t) of a certain kind of fish changes by
also assuming that the fish are harvested at a constant
rate h � 0.
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1.3 DIFFERENTIAL EQUATIONS AS MATHEMATICAL MODELS ● 29

Newton’s Law of Cooling/Warming

5. A cup of coffee cools according to Newton’s law of
cooling (3). Use data from the graph of the temperature
T(t) in Figure 1.3.10 to estimate the constants Tm, T0,
and k in a model of the form of a first-order initial-value
problem: dT�dt � k(T � Tm), T(0) � T0.

number of people x(t) who have adopted the innovation
at time t if it is assumed that the rate at which the innova-
tions spread through the community is jointly propor-
tional to the number of people who have adopted it and
the number of people who have not adopted it.

Mixtures

9. Suppose that a large mixing tank initially holds 300 gal-
lons of water in which 50 pounds of salt have been dis-
solved. Pure water is pumped into the tank at a rate of
3 gal/min, and when the solution is well stirred, it is
then pumped out at the same rate. Determine a differen-
tial equation for the amount of salt A(t) in the tank at
time t � 0. What is A(0)?

10. Suppose that a large mixing tank initially holds 300 gal-
lons of water is which 50 pounds of salt have been
dissolved. Another brine solution is pumped into the tank
at a rate of 3 gal/min, and when the solution is well
stirred, it is then pumped out at a slower rate of 2 gal/min.
If the concentration of the solution entering is 2 lb/gal,
determine a differential equation for the amount of salt
A(t) in the tank at time t � 0.

11. What is the differential equation in Problem 10, if the
well-stirred solution is pumped out at a faster rate of
3.5 gal/min?

12. Generalize the model given in equation (8) on page 24
by assuming that the large tank initially contains N0
number of gallons of brine, rin and rout are the input and
output rates of the brine, respectively (measured in gal-
lons per minute), cin is the concentration of the salt in
the inflo , c(t) the concentration of the salt in the tank
as well as in the outflow at time t (measured in pounds
of salt per gallon), and A(t) is the amount of salt in the
tank at time t � 0.

Draining a Tank

13. Suppose water is leaking from a tank through a circular
hole of area Ah at its bottom. When water leaks through a
hole, friction and contraction of the stream near the hole
reduce the volume of water leaving the tank per second to

where c (0 � c � 1) is an empirical constant.
Determine a differential equation for the height h of water
at time t for the cubical tank shown in Figure 1.3.12. The
radius of the hole is 2 in., and g � 32 ft/s2.

cAh12gh,

FIGURE 1.3.10 Cooling curve in Problem 5

FIGURE 1.3.11 Ambient temperature in Problem 6
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6. The ambient temperature Tm in (3) could be a function
of time t. Suppose that in an artificially controlled
environment, Tm(t) is periodic with a 24-hour period,
as illustrated in Figure 1.3.11. Devise a mathematical
model for the temperature T(t) of a body within this
environment.

Spread of a Disease/Technology

7. Suppose a student carrying a fl virus returns to an iso-
lated college campus of 1000 students. Determine a dif-
ferential equation for the number of people x(t) who have
contracted the fl if the rate at which the disease spreads
is proportional to the number of interactions between the
number of students who have the fl and the number of
students who have not yet been exposed to it.

8. At a time denoted as t � 0 a technological innovation is
introduced into a community that has a fixed population
of n people. Determine a differential equation for the

h

circular
hole

10 ft

Aw

FIGURE 1.3.12 Cubical tank in Problem 13
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14. The right-circular conical tank shown in Figure 1.3.13
loses water out of a circular hole at its bottom. Determine
a differential equation for the height of the water h at
time t � 0. The radius of the hole is 2 in., g � 32 ft/s2,
and the friction/contraction factor introduced in Problem
13 is c � 0.6.

30 ● CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

Newton’s Second Law and Archimedes’ Principle

18. A cylindrical barrel s feet in diameter of weight w lb
is floating in water as shown in Figure 1.3.17(a). After
an initial depression the barrel exhibits an up-and-
down bobbing motion along a vertical line. Using
Figure 1.3.17(b), determine a differential equation for
the vertical displacement y(t) if the origin is taken to be
on the vertical axis at the surface of the water when the
barrel is at rest. Use Archimedes’ principle: Buoyancy,
or upward force of the water on the barrel, is equal to
the weight of the water displaced. Assume that the
downward direction is positive, that the weight density
of water is 62.4 lb/ft3, and that there is no resistance
between the barrel and the water.

FIGURE 1.3.13 Conical tank in Problem 14

L

R

E

FIGURE 1.3.14 LR-series circuit in Problem 15

FIGURE 1.3.15 RC-series circuit in Problem 16

FIGURE 1.3.16 Air resistance proportional to square of
velocity in Problem 17
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FIGURE 1.3.17 Bobbing motion of floating barrel i
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Series Circuits

15. A series circuit contains a resistor and an inductor as
shown in Figure 1.3.14. Determine a differential equa-
tion for the current i(t) if the resistance is R, the induc-
tance is L, and the impressed voltage is E(t).

16. A series circuit contains a resistor and a capacitor as
shown in Figure 1.3.15. Determine a differential equa-
tion for the charge q(t) on the capacitor if the resis-
tance is R, the capacitance is C, and the impressed
voltage is E(t).

Falling Bodies and Air Resistance

17. For high-speed motion through the air—such as the
skydiver shown in Figure 1.3.16, falling before the
parachute is opened—air resistance is closer to a power
of the instantaneous velocity v(t). Determine a differen-
tial equation for the velocity v(t) of a falling body of
mass m if air resistance is proportional to the square of
the instantaneous velocity.

Newton’s Second Law and Hooke’s Law

19. After a mass m is attached to a spring, it stretches it
s units and then hangs at rest in the equilibrium position
as shown in Figure 1.3.18(b). After the spring/mass

FIGURE 1.3.18 Spring/mass system in Problem 19

unstretched
spring

equilibrium
position m

x = 0
x(t) > 0

x(t) < 0

m
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(a) (b) (c)
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1.3 DIFFERENTIAL EQUATIONS AS MATHEMATICAL MODELS ● 31

system has been set in motion, let x(t) denote the di-
rected distance of the mass beyond the equilibrium po-
sition. As indicated in Figure 1.3.17(c), assume that the
downward direction is positive, that the motion takes
place in a vertical straight line through the center of
gravity of the mass, and that the only forces acting on
the system are the weight of the mass and the restoring
force of the stretched spring. Use Hooke’s law: The
restoring force of a spring is proportional to its total
elongation. Determine a differential equation for the
displacement x(t) at time t � 0.

20. In Problem 19, what is a differential equation for the
displacement x(t) if the motion takes place in a
medium that imparts a damping force on the spring/
mass system that is proportional to the instantaneous
velocity of the mass and acts in a direction opposite to
that of motion?

Newton’s Second Law and Rocket Motion 

When the mass m of a body is changing with time, Newton’s
second law of motion becomes  

(17)

where F is the net force acting on the body and mv is its
momentum. Use (17) in Problems 21 and 22.

21. A small single-stage rocket is launched vertically as
shown in Figure 1.3.19. Once launched, the rocket con-
sumes its fuel, and so its total mass m(t) varies with time
t � 0. If it is assumed that the positive direction is up-
ward, air resistance is proportional to the instantaneous
velocity v of the rocket, and R is the upward thrust or
force generated by the propulsion system, then con-
struct a mathematical model for the velocity v(t) of the
rocket. [Hint: See (14) in Section 1.3.]

F �
d
dt

 (mv),

FIGURE 1.3.20 Satellite
in Problem 23

FIGURE 1.3.21 Hole through
Earth in Problem 24
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R
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24. Suppose a hole is drilled through the center of the Earth
and a bowling ball of mass m is dropped into the hole, as
shown in Figure 1.3.21. Construct a mathematical model
that describes the motion of the ball. At time t let r de-
note the distance from the center of the Earth to the mass
m, M denote the mass of the Earth, Mr denote the mass of
that portion of the Earth within a sphere of radius r, and
� denote the constant density of the Earth.

FIGURE 1.3.19 Single-stage rocket in Problem 21

22. In Problem 21, the mass m(t) is the sum of three differ-
ent masses: where mp is the
constant mass of the payload, mv is the constant mass of
the vehicle, and mf (t) is the variable amount of fuel.  
(a) Show that the rate at which the total mass m(t) of the

rocket changes is the same as the rate at which the
mass mf (t) of the fuel changes.

(b) If the rocket consumes its fuel at a constant rate ,
find m(t). Then rewrite the differential equation in
Problem 21 in terms of and the initial total mass
m(0) � m0.

(c) Under the assumption in part (b), show that the
burnout time tb � 0 of the rocket, or the time at
which all the fuel is consumed, is 
where mf (0) is the initial mass of the fuel.

Newton’s Second Law and the Law 
of Universal Gravitation

23. By Newton’s universal law of gravitation the free-fall
acceleration a of a body, such as the satellite shown in
Figure 1.3.20, falling a great distance to the surface is not
the constant g. Rather, the acceleration a is inversely pro-
portional to the square of the distance from the center of
the Earth, a � k�r2, where k is the constant of proportion-
ality. Use the fact that at the surface of the Earth r � R and
a � g to determine k. If the positive direction is upward,
use Newton’s second law and his universal law of gravita-
tion to find a di ferential equation for the distance r.

tb � mf (0)>l,

l

l

m(t) � mp � mv � mf (t),
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equation that describes the shape of the curve C. Such a
curve C is important in applications ranging from con-
struction of telescopes to satellite antennas, automobile
headlights, and solar collectors. [Hint: Inspection of the
figure shows that we can write � � 2�. Why? Now use
an appropriate trigonometric identity.]

Discussion Problems

30. Reread Problem 41 in Exercises 1.1 and then give an
explicit solution P(t) for equation (1). Find a one-
parameter family of solutions of (1).

31. Reread the sentence following equation (3) and assume
that Tm is a positive constant. Discuss why we would ex-
pect k � 0 in (3) in both cases of cooling and warming.
You might start by interpreting, say, T(t) � Tm in a
graphical manner.

32. Reread the discussion leading up to equation (8). If we
assume that initially the tank holds, say, 50 lb of salt, it
stands to reason that because salt is being added to the
tank continuously for t � 0, A(t) should be an increas-
ing function. Discuss how you might determine from
the DE, without actually solving it, the number of
pounds of salt in the tank after a long period of time.

33. Population Model The differential equation

where k is a positive constant, is a

model of human population P(t) of a certain commu-
nity. Discuss an interpretation for the solution of this
equation. In other words, what kind of population do
you think the differential equation describes?

34. Rotating Fluid As shown in Figure 1.3.24(a), a right-
circular cylinder partially filled with fluid is rotated
with a constant angular velocity � about a vertical y-axis
through its center. The rotating fluid forms a surface of
revolution S. To identify S, we first establish a coordinate
system consisting of a vertical plane determined by the
y-axis and an x-axis drawn perpendicular to the y-axis
such that the point of intersection of the axes (the origin)
is located at the lowest point on the surface S. We then
seek a function y � f (x) that represents the curve C of in-
tersection of the surface S and the vertical coordinate
plane. Let the point P(x, y) denote the position of a parti-
cle of the rotating fluid of mass m in the coordinate
plane. See Figure 1.3.23(b).
(a) At P there is a reaction force of magnitude F due to

the other particles of the fluid which is normal to the
surface S. By Newton’s second law the magnitude
of the net force acting on the particle is m�2x. What
is this force? Use Figure 1.3.24(b) to discuss the na-
ture and origin of the equations

(b) Use part (a) to find a first-order differential equation
that defines the function y � f (x).

F cos � � mg,    F sin � � m�2x.

dP
dt

� (k cos t)P,

32 ● CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

Additional Mathematical Models

25. Learning Theory In the theory of learning, the rate at
which a subject is memorized is assumed to be pro-
portional to the amount that is left to be memorized.
Suppose M denotes the total amount of a subject to be
memorized and A(t) is the amount memorized in time
t � 0. Determine a differential equation for the amount
A(t).

26. Forgetfulness In Problem 25 assume that the rate at
which material is forgotten is proportional to the amount
memorized in time t � 0. Determine a differential equa-
tion for the amount A(t) when forgetfulness is taken into
account.

27. Infusion of a Drug A drug is infused into a patient’s
bloodstream at a constant rate of r grams per second.
Simultaneously, the drug is removed at a rate proportional
to the amount x(t) of the drug present at time t. Determine
a differential equation for the amount x(t).

28. Tractrix A person P, starting at the origin, moves in the
direction of the positive x-axis, pulling a weight along
the curve C, called a tractrix, as shown in Figure 1.3.22.
The weight, initially located on the y-axis at (0, s), is
pulled by a rope of constant length s, which is kept taut
throughout the motion. Determine a differential equation
for the path C of motion. Assume that the rope is always
tangent to C.

FIGURE 1.3.22 Tractrix curve in Problem 28

FIGURE 1.3.23 Reflecting surface in Problem 2
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29. Reflecting Surface Assume that when the plane
curve C shown in Figure 1.3.23 is revolved about the
x-axis, it generates a surface of revolution with the
property that all light rays L parallel to the x-axis strik-
ing the surface are reflected to a single point O (the
origin). Use the fact that the angle of incidence is equal
to the angle of reflection to determine a differential

27069_01_ch01_p01-034.qxd  2/2/12  2:25 PM  Page 32

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



CHAPTER 1 IN REVIEW ● 33

35. Falling Body In Problem 23, suppose r � R � s,
where s is the distance from the surface of the Earth to
the falling body. What does the differential equation
obtained in Problem 23 become when s is very small in
comparison to R? [Hint: Think binomial series for 

(R � s)�2 � R�2 (1 � s�R)�2.]

ω

P

y

x
θ

θ mg

2xmω
P(x, y)

F

tangent line to
curve C at P

curve C of
intersection
of xy-plane
and surface
of revolution

(a)

(b)

y

FIGURE 1.3.24 Rotating fluid in Problem 3

36. Raindrops Keep Falling In meteorology the term
virga refers to falling raindrops or ice particles that
evaporate before they reach the ground. Assume that a
typical raindrop is spherical. Starting at some time,
which we can designate as t � 0, the raindrop of radius
r0 falls from rest from a cloud and begins to evaporate.
(a) If it is assumed that a raindrop evaporates in such a

manner that its shape remains spherical, then it also
makes sense to assume that the rate at which the rain-
drop evaporates—that is, the rate at which it loses
mass—is proportional to its surface area. Show that
this latter assumption implies that the rate at which
the radius r of the raindrop decreases is a constant.
Find r(t). [Hint: See Problem 51 in Exercises 1.1.]

(b) If the positive direction is downward, construct a
mathematical model for the velocity v of the falling
raindrop at time t � 0. Ignore air resistance. [Hint:
Use the form of Newton’s second law given in
(17).]

37. Let It Snow The “snowplow problem” is a classic
and appears in many differential equations texts, but it
was probably made famous by Ralph Palmer Agnew:

One day it started snowing at a heavy and steady
rate. A snowplow started out at noon, going 2 miles
the first hour and 1 mile the second hour. What time
did it start snowing?

Find the textbook Differential Equations, Ralph Palmer
Agnew, McGraw-Hill Book Co., and then discuss the
construction and solution of the mathematical model.

38. Reread this section and classify each mathematical
model as linear or nonlinear.

CHAPTER 1 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1 and 2 fill in the blank and then write this result
as a linear first-order differential equation that is free of the
symbol c1 and has the form dy�dx � f (x, y). The symbol c1
represents a constant.

1.

2.

In Problems 3 and 4 fill in the blank and then write this result
as a linear second-order differential equation that is free of
the symbols c1 and c2 and has the form F(y, y�) � 0. The
symbols c1, c2, and k represent constants.

3.

4.
d 2

dx2 (c1 cosh kx � c2 sinh kx) �

d 2

dx2 (c1 cos kx � c2 sin kx) �

d
dx

 (5 � c1e�2x) �

d
dx

 c1e10x �

In Problems 5 and 6 compute y� and y� and then combine
these derivatives with y as a linear second-order differential
equation that is free of the symbols c1 and c2 and has the form
F(y, y� y�) � 0. The symbols c1 and c2 represent constants.

5. y � c1ex � c2xex 6. y � c1ex cos x � c2ex sin x

In Problems 7–12 match each of the given differential equa-
tions with one or more of these solutions:

(a) y � 0, (b) y � 2, (c) y � 2x, (d) y � 2x2.

7. xy� � 2y 8. y� � 2
9. y� � 2y � 4 10. xy� � y

11. y� � 9y � 18 12. xy� � y� � 0

In Problems 13 and 14 determine by inspection at least one
solution of the given differential equation.
13. y� � y� 14. y� � y(y � 3)
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In Problems 27–30 verify that the indicated expression is an
implicit solution of the given differential equation.

27.

28.

29.
30.

In Problems 31–34, y � c1e3x � c2e�x � 2x is a two-
parameter family of the second-order DE y� � 2y� � 3y �
6x � 4. Find a solution of the second-order IVP consisting
of this differential equation and the given initial conditions.

31. y (0) � 0, y�(0) � 0 32. y (0) � 1, y�(0) � �3
33. y (1) � 4, y�(1) � �2 34. y (�1) � 0, y�(�1) � 1
35. The graph of a solution of a second-order initial-value

problem d2y�dx2 � f (x, y, y�), y(2) � y0, y�(2) � y1, is
given in Figure 1.R.1. Use the graph to estimate the val-
ues of y0 and y1.

(1 � xy)y� � y2;  y � exy

y� � 2y(y�)3;  y3 � 3y � 1 � 3x

�dy
dx�

2
� 1 �

1
y2 

;  (x � 5)2 � y2 � 1

x
dy
dx

� y �
1
y2;  x3y3 � x3 � 1
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In Problems 15 and 16 interpret each statement as a differen-
tial equation.

15. On the graph of y � �(x) the slope of the tangent line at
a point P(x, y) is the square of the distance from P(x, y) to
the origin.

16. On the graph of y � �(x) the rate at which the slope
changes with respect to x at a point P(x, y) is the nega-
tive of the slope of the tangent line at P(x, y).

17. (a) Give the domain of the function y � x2/3.
(b) Give the largest interval I of definition over which

y � x2/3 is solution of the differential equation 
3xy� � 2y � 0.

18. (a) Verify that the one-parameter family y2 � 2y �
x2 � x � c is an implicit solution of the differential
equation (2y � 2)y� � 2x � 1.

(b) Find a member of the one-parameter family in
part (a) that satisfies the initial condition y(0) � 1.

(c) Use your result in part (b) to find an explicit
function y � �(x) that satisfies y(0) � 1. Give the
domain of the function �. Is y � �(x) a solution of
the initial-value problem? If so, give its interval I of
definition; if not, explain

19. Given that y � x � 2�x is a solution of the DE xy� �
y � 2x. Find x0 and the largest interval I for which y(x) is
a solution of the first-order IVP xy� � y � 2x, y(x0) � 1.

20. Suppose that y(x) denotes a solution of the first-order
IVP y� � x2 � y2, y(1) � �1 and that y(x) possesses
at least a second derivative at x � 1. In some neigh-
borhood of x � 1 use the DE to determine whether
y(x) is increasing or decreasing and whether the graph
y(x) is concave up or concave down.

21. A differential equation may possess more than one fam-
ily of solutions.
(a) Plot different members of the families 

y � �1(x) � x2 � c1 and y � �2(x) � �x2 � c2.
(b) Verify that y � �1(x) and y � �2(x) are two

solutions of the nonlinear first-order differential
equation (y�)2 � 4x2.

(c) Construct a piecewise-defined function that is a
solution of the nonlinear DE in part (b) but is not a
member of either family of solutions in part (a).

22. What is the slope of the tangent line to the graph of a
solution of that passes through (�1, 4)?

In Problems 23–26 verify that the indicated function is an
explicit solution of the given differential equation. Give an
interval of definition I for each solution.

23. y� � y � 2 cos x � 2 sin x; y � x sin x � x cos x
24. y� � y � sec x; y � x sin x � (cos x)ln(cos x)
25. x2y� � xy� � y � 0; y � sin(ln x)
26. x2y� � xy� � y � sec(ln x);

y � cos(ln x) ln(cos(ln x)) � (ln x) sin(ln x)

y� � 61y � 5x3

y

x5

−5

5

FIGURE 1.R.1 Graph for Problem 35

36. A tank in the form of a right-circular cylinder of radius
2 feet and height 10 feet is standing on end. If the tank
is initially full of water and water leaks from a circular
hole of radius inch at its bottom, determine a differen-
tial equation for the height h of the water at time t � 0.
Ignore friction and contraction of water at the hole.

37. The number of field mice in a certain pasture is given by
the function 200 � 10t, where time t is measured in
years. Determine a differential equation governing a
population of owls that feed on the mice if the rate at
which the owl population grows is proportional to the
difference between the number of owls at time t and
number of field mice at time t � 0.

38. Suppose that dA�dt � �0.0004332 A(t) represents a
mathematical model for the radioactive decay of radium-
226, where A(t) is the amount of radium (measured in
grams) remaining at time t (measured in years). How
much of the radium sample remains at the time t when
the sample is decaying at a rate of 0.002 gram per year?

1
2
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35

2
2.1 Solution Curves Without a Solution

2.1.1 Direction Fields
2.1.2 Autonomous First-Order DEs

2.2 Separable Equations
2.3 Linear Equations
2.4 Exact Equations
2.5 Solutions by Substitutions
2.6 A Numerical Method

Chapter 2 in Review

The history of mathematics is rife with stories of people who devoted much of
their lives to solving equations—algebraic equations at first and then eventuall
differential equations. In Sections 2.2–2.5 we will study some of the more
important analytical methods for solving first-order DEs. Howeve , before we start
solving anything, you should be aware of two facts: It is possible for a differential
equation to have no solutions, and a differential equation can possess solutions, yet
there might not exist any analytical method for solving it. In Sections 2.1 and 2.6
we do not solve any DEs but show how to glean information about solutions
directly from the equation itself. In Section 2.1 we see how the DE yields
qualitative information about graphs that enables us to sketch renditions of solution
curves. In Section 2.6 we use the differential equation to construct a procedure,
called a numerical method, for approximating solutions.

First-Order Differential Equations
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36 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

solution 
curv e 

(a) lineal element at a point

(b) lineal element is tangent to
solution curve that passes
through the point

slope = 1.2

(2, 3)

x

y

tangent

(2, 3)

x

y

FIGURE 2.1.1 A solution curve is
tangent to lineal element at (2, 3)

SOLUTION CURVES WITHOUT A SOLUTION

REVIEW MATERIAL
● The first derivative as slope of a tangent lin
● The algebraic sign of the first derivative indicates increasing or decreasin

INTRODUCTION Let us imagine for the moment that we have in front of us a first-order differ-
ential equation dy�dx � f (x, y), and let us further imagine that we can neither find nor invent a
method for solving it analytically. This is not as bad a predicament as one might think, since the dif-
ferential equation itself can sometimes “tell” us specifics about how its solutions “behave.

We begin our study of first-order differential equations with two ways of analyzing a DE qual-
itatively. Both these ways enable us to determine, in an approximate sense, what a solution curve
must look like without actually solving the equation.

2.1

2.1.1 DIRECTION FIELDS

Some Fundamental Questions We saw in Section 1.2 that whenever f (x, y)
and �f��y satisfy certain continuity conditions, qualitative questions about existence
and uniqueness of solutions can be answered. In this section we shall see that other
qualitative questions about properties of solutions—How does a solution behave
near a certain point? How does a solution behave as ?—can often be an-
swered when the function f depends solely on the variable y. We begin, however, with
a simple concept from calculus: 

A derivative dy�dx of a differentiable function y � y(x) gives slopes of tangent
lines at points on its graph.

Slope Because a solution y � y(x) of a first-order di ferential equation

(1)

is necessarily a differentiable function on its interval I of definition, it must also be con-
tinuous on I. Thus the corresponding solution curve on I must have no breaks and must
possess a tangent line at each point (x, y(x)). The function f in the normal form (1) is
called the slope function or rate function. The slope of the tangent line at (x, y(x)) on
a solution curve is the value of the first derivative dy�dx at this point, and we know
from (1) that this is the value of the slope function f (x, y(x)). Now suppose that (x, y)
represents any point in a region of the xy-plane over which the function f is defined.The
value f (x, y) that the function f assigns to the point represents the slope of a line or, as
we shall envision it, a line segment called a lineal element. For example, consider the
equation dy�dx � 0.2xy, where f (x, y) � 0.2xy. At, say, the point (2, 3) the slope of a
lineal element is f (2, 3) � 0.2(2)(3) � 1.2. Figure 2.1.1(a) shows a line segment with
slope 1.2 passing though (2, 3). As shown in Figure 2.1.1(b), if a solution curve also
passes through the point (2, 3), it does so tangent to this line segment; in other words,
the lineal element is a miniature tangent line at that point.

Direction Field If we systematically evaluate f over a rectangular grid of
points in the xy-plane and draw a line element at each point (x, y) of the grid with
slope f (x, y), then the collection of all these line elements is called a direction fiel
or a slope fiel of the differential equation dy�dx � f (x, y). Visually, the direction
field suggests the appearance or shape of a family of solution curves of the
differential equation, and consequently, it may be possible to see at a glance certain
qualitative aspects of the solutions—regions in the plane, for example, in which a

dy
dx

� f (x, y)

x : �
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2.1 SOLUTION CURVES WITHOUT A SOLUTION ● 37

solution exhibits an unusual behavior. A single solution curve that passes through a
direction field must follow the flow pattern of the field; it is tangent to a lineal element
when it intersects a point in the grid. Figure 2.1.2 shows a computer-generated direc-
tion field of the differential equation dy�dx � sin(x � y) over a region of the xy-plane.
Note how the three solution curves shown in color follow the flow of the fiel

EXAMPLE 1 Direction Field

The direction fiel for the differential equation dy�dx � 0.2xy shown in Figure 2.1.3(a)
was obtained by using computer software in which a 5 � 5 grid of points (mh, nh),
m and n integers, was defined by letting �5 � m � 5, �5 � n � 5, and h � 1.
Notice in Figure 2.1.3(a) that at any point along the x-axis (y � 0) and the
y-axis (x � 0), the slopes are f (x, 0) � 0 and f (0, y) � 0, respectively, so the lineal
elements are horizontal. Moreover, observe in the first quadrant that for a fixed value
of x the values of f (x, y) � 0.2xy increase as y increases; similarly, for a fixed y the
values of f (x, y) � 0.2xy increase as x increases. This means that as both x and y
increase, the lineal elements almost become vertical and have positive slope ( f (x, y) �
0.2xy 	 0 for x 	 0, y 	 0). In the second quadrant, � f (x, y)� increases as �x � and y
increase, so the lineal elements again become almost vertical but this time have
negative slope ( f (x, y) � 0.2xy 
 0 for x 
 0, y 	 0). Reading from left to right,
imagine a solution curve that starts at a point in the second quadrant, moves steeply
downward, becomes flat as it passes through the y-axis, and then, as it enters the firs
quadrant, moves steeply upward—in other words, its shape would be concave
upward and similar to a horseshoe. From this it could be surmised that y : �
as x : ��. Now in the third and fourth quadrants, since f (x, y) � 0.2xy 	 0 and
f (x, y) � 0.2xy 
 0, respectively, the situation is reversed: A solution curve increases
and then decreases as we move from left to right. We saw in (1) of Section 1.1 that

is an explicit solution of the differential equation dy�dx � 0.2xy; you
should verify that a one-parameter family of solutions of the same equation is given
by . For purposes of comparison with Figure 2.1.3(a) some representative
graphs of members of this family are shown in Figure 2.1.3(b).

y � ce0.1x2

y � e0.1x2

EXAMPLE 2 Direction Field

Use a direction field to sketch an approximate solution curve for the initial-value
problem dy�dx � sin y, .

SOLUTION Before proceeding, recall that from the continuity of f (x, y) � sin y and
�f��y � cos y, Theorem 1.2.1 guarantees the existence of a unique solution curve
passing through any specifie point (x0, y0) in the plane. Now we set our computer soft-
ware again for a 5 � 5 rectangular region and specify (because of the initial condition)
points in that region with vertical and horizontal separation of unit—that is, at
points (mh, nh), , m and n integers such that �10 � m � 10, �10 � n � 10.
The result is shown in Figure 2.1.4. Because the right-hand side of dy�dx � sin y is 0
at y � 0, and at y � ��, the lineal elements are horizontal at all points whose second
coordinates are y � 0 or y � ��. It makes sense then that a solution curve passing
through the initial point (0, has the shape shown in the figure

Increasing/Decreasing Interpretation of the derivative dy�dx as a function
that gives slope plays the key role in the construction of a direction field. Another
telling property of the first derivative will be used next, namely, if dy�dx 	 0 (or
dy�dx 
 0) for all x in an interval I, then a differentiable function y � y(x) is
increasing (or decreasing) on I.

�3
2)

h � 1
2

1
2

y(0) � �3
2

c>0 

c<0 

x

y

4_4

_4

_2

2

4

_4

_2

2

4

_2 2

4_4 _2 2

x

y

c=0 

(b) some solution curves in the
family y � ce0.1x2

(a) direction field for
dy/dx � 0.2xy

FIGURE 2.1.3 Direction field an
solution curves in Example 1

FIGURE 2.1.2 Solution curves
following flow of a direction fie
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FIGURE 2.1.4 Direction field i
Example 2 on page 37
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REMARKS

Sketching a direction fiel by hand is straightforward but time consuming; it is
probably one of those tasks about which an argument can be made for doing it
once or twice in a lifetime, but it is overall most efficientl carried out by means
of computer software. Before calculators, PCs, and software the method of
isoclines was used to facilitate sketching a direction fiel by hand. For the DE
dy�dx � f (x, y), any member of the family of curves f (x, y) � c, c a constant,
is called an isocline. Lineal elements drawn through points on a specifi iso-
cline, say, f (x, y) � c1 all have the same slope c1. In Problem 15 in Exercises 2.1
you have your two opportunities to sketch a direction fiel by hand.

2.1.2 AUTONOMOUS FIRST-ORDER DEs

Autonomous First-Order DEs In Section 1.1 we divided the class of ordi-
nary differential equations into two types: linear and nonlinear. We now consider
briefly another kind of classification of ordinary differential equations, a classifica
tion that is of particular importance in the qualitative investigation of differential
equations. An ordinary differential equation in which the independent variable does
not appear explicitly is said to be autonomous. If the symbol x denotes the indepen-
dent variable, then an autonomous first-order differential equation can be written as
f (y, y�) � 0 or in normal form as

. (2)

We shall assume throughout that the function f in (2) and its derivative f � are contin-
uous functions of y on some interval I. The first-order equation

f (y) f (x, y)
p p

are autonomous and nonautonomous, respectively.
Many differential equations encountered in applications or equations that are

models of physical laws that do not change over time are autonomous. As we have
already seen in Section 1.3, in an applied context, symbols other than y and x are rou-
tinely used to represent the dependent and independent variables. For example, if t
represents time then inspection of

,

where k, n, and Tm are constants, shows that each equation is time independent.
Indeed, all of the first-order differential equations introduced in Section 1.3 are time
independent and so are autonomous.

Critical Points The zeros of the function f in (2) are of special importance. We
say that a real number c is a critical point of the autonomous differential equation (2)
if it is a zero of f—that is, f (c) � 0. A critical point is also called an equilibrium
point or stationary point. Now observe that if we substitute the constant function
y(x) � c into (2), then both sides of the equation are zero. This means:

If c is a critical point of (2), then y(x) � c is a constant solution of the
autonomous differential equation.

A constant solution y(x) � c of (2) is called an equilibrium solution; equilibria are
the only constant solutions of (2).

dA
dt

� kA,    
dx
dt

 � kx(n � 1 � x),    
dT
dt

� k(T � Tm),    
dA
dt

� 6 �
1

100
A

dy
dx

� 1 � y2    and    
dy
dx

� 0.2xy

dy
dx

� f (y)
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As was already mentioned, we can tell when a nonconstant solution y � y(x) of
(2) is increasing or decreasing by determining the algebraic sign of the derivative
dy�dx; in the case of (2) we do this by identifying intervals on the y-axis over which
the function f (y) is positive or negative.

2.1 SOLUTION CURVES WITHOUT A SOLUTION ● 39

EXAMPLE 3 An Autonomous DE

The differential equation

where a and b are positive constants, has the normal form dP�dt � f (P), which is (2)
with t and P playing the parts of x and y, respectively, and hence is autonomous.
From f (P) � P(a � bP) � 0 we see that 0 and a�b are critical points of the equation,
so the equilibrium solutions are P(t) � 0 and P(t) � a�b. By putting the critical points
on a vertical line, we divide the line into three intervals defined by �� 
 P 
 0,
0 
 P 
 a�b, a�b 
 P 
 �. The arrows on the line shown in Figure 2.1.5 indicate
the algebraic sign of f (P) � P (a � bP) on these intervals and whether a nonconstant
solution P(t) is increasing or decreasing on an interval. The following table explains
the figure

Interval Sign of f (P) P(t) Arrow

(��, 0) minus decreasing points down
(0, a�b) plus increasing points up
(a�b, �) minus decreasing points down

Figure 2.1.5 is called a one-dimensional phase portrait, or simply phase
portrait, of the differential equation dP�dt � P(a � bP). The vertical line is called a
phase line.

Solution Curves Without solving an autonomous differential equation, we
can usually say a great deal about its solution curves. Since the function f in (2) is
independent of the variable x, we may consider f defined for �� 
 x 
 � or for 
0 � x 
 �. Also, since f and its derivative f � are continuous functions of y on some
interval I of the y-axis, the fundamental results of Theorem 1.2.1 hold in some hori-
zontal strip or region R in the xy-plane corresponding to I, and so through any point
(x0, y0) in R there passes only one solution curve of (2). See Figure 2.1.6(a). For the
sake of discussion, let us suppose that (2) possesses exactly two critical points c1 and
c2 and that c1 
 c2. The graphs of the equilibrium solutions y(x) � c1 and y(x) � c2
are horizontal lines, and these lines partition the region R into three subregions R1,
R2, and R3, as illustrated in Figure 2.1.6(b). Without proof here are some conclusions
that we can draw about a nonconstant solution y(x) of (2):

• If (x0, y0) is in a subregion Ri, i � 1, 2, 3, and y(x) is a solution whose
graph passes through this point, then y(x) remains in the subregion Ri for all
x. As illustrated in Figure 2.1.6(b), the solution y(x) in R2 is bounded below
by c1 and above by c2, that is, c1 
 y(x) 
 c2 for all x. The solution curve
stays within R2 for all x because the graph of a nonconstant solution of (2)
cannot cross the graph of either equilibrium solution y(x) � c1 or y(x) � c2.
See Problem 33 in Exercises 2.1.

• By continuity of f we must then have either f (y) 	 0 or f (y) 
 0 for all x in
a subregion Ri, i � 1, 2, 3. In other words, f (y) cannot change signs in a
subregion. See Problem 33 in Exercises 2.1.

dP
dt

� P(a � bP),
P-axis

a 

0 

b 

FIGURE 2.1.5 Phase portrait of 
DE in Example 3

R

I

R1

R2
(x0, y0)

(x0, y0)

y(x) = c2

y(x) = c1

R3

y

y

x

x

(a) region R

(b) subregions R1, R2, and R3 of R

FIGURE 2.1.6 Lines y(x) � c1 and
y(x) � c2 partition R into three horizontal
subregions
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FIGURE 2.1.7 Phase portrait and
solution curves in Example 4

40 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

• Since dy�dx � f (y(x)) is either positive or negative in a subregion Ri, i � 1,
2, 3, a solution y(x) is strictly monotonic—that is, y(x) is either increasing
or decreasing in the subregion Ri. Therefore y(x) cannot be oscillatory, nor
can it have a relative extremum (maximum or minimum). See Problem 33
in Exercises 2.1.

• If y(x) is bounded above by a critical point c1 (as in subregion R1 where 
y(x) 
 c1 for all x), then the graph of y(x) must approach the graph of the
equilibrium solution y(x) � c1 either as x : � or as x : ��. If y(x) is
bounded—that is, bounded above and below by two consecutive critical
points (as in subregion R2 where c1 
 y(x) 
 c2 for all x)—then the graph
of y(x) must approach the graphs of the equilibrium solutions y(x) � c1 and 
y(x) � c2, one as x : � and the other as x : ��. If y(x) is bounded below
by a critical point (as in subregion R3 where c2 
 y(x) for all x), then the
graph of y(x) must approach the graph of the equilibrium solution y(x) � c2
either as x : � or as x : ��. See Problem 34 in Exercises 2.1.

With the foregoing facts in mind, let us reexamine the differential equation in
Example 3.

EXAMPLE 4 Example 3 Revisited

The three intervals determined on the P-axis or phase line by the critical points 0 and
a�b now correspond in the tP-plane to three subregions defined by:

R1: �� 
 P 
 0, R2: 0 
 P 
 a�b, and R3: a�b 
 P 
 �,

where �� 
 t 
 �. The phase portrait in Figure 2.1.7 tells us that P(t) is decreasing
in R1, increasing in R2, and decreasing in R3. If P(0) � P0 is an initial value, then in
R1, R2, and R3 we have, respectively, the following:

(i) For P0 
 0, P(t) is bounded above. Since P(t) is decreasing, P(t)
decreases without bound for increasing t, and so P(t) : 0 as t : ��.
This means that the negative t-axis, the graph of the equilibrium solution
P(t) � 0, is a horizontal asymptote for a solution curve.

(ii) For 0 
 P0 
 a�b, P(t) is bounded. Since P(t) is increasing, P(t) : a�b
as t : � and P(t) : 0 as t : ��. The graphs of the two equilibrium
solutions, P(t) � 0 and P(t) � a�b, are horizontal lines that are horizontal
asymptotes for any solution curve starting in this subregion.

(iii) For P0 	 a�b, P(t) is bounded below. Since P(t) is decreasing, P(t) : a�b
as t : �. The graph of the equilibrium solution P(t) � a�b is a horizontal
asymptote for a solution curve.

In Figure 2.1.7 the phase line is the P-axis in the tP-plane. For clarity the origi-
nal phase line from Figure 2.1.5 is reproduced to the left of the plane in which
the subregions R1, R2, and R3 are shaded. The graphs of the equilibrium solutions
P(t) � a�b and P(t) � 0 (the t-axis) are shown in the figure as blue dashed lines;
the solid graphs represent typical graphs of P(t) illustrating the three cases just
discussed.

In a subregion such as R1 in Example 4, where P(t) is decreasing and unbounded
below, we must necessarily have P(t) : ��. Do not interpret this last statement to
mean P(t) : �� as t : �; we could have P(t) : �� as t : T, where T 	 0 is a
finite number that depends on the initial condition P(t0) � P0. Thinking in dynamic
terms, P(t) could “blow up” in finite time; thinking graphically, P(t) could have a
vertical asymptote at t � T 	 0. A similar remark holds for the subregion R3.

The differential equation dy�dx � sin y in Example 2 is autonomous and has an
infinite number of critical points, since sin y � 0 at y � n�, n an integer. Moreover,
we now know that because the solution y(x) that passes through is bounded(0, �3

2)
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above and below by two consecutive critical points (�� 
 y(x) 
 0) and is
decreasing (sin y 
 0 for �� 
 y 
 0), the graph of y(x) must approach the graphs
of the equilibrium solutions as horizontal asymptotes: y(x) : �� as x : � and
y(x) : 0 as x : ��.

2.1 SOLUTION CURVES WITHOUT A SOLUTION ● 41

EXAMPLE 5 Solution Curves of an Autonomous DE

The autonomous equation dy�dx � (y � 1)2 possesses the single critical point 1.
From the phase portrait in Figure 2.1.8(a) we conclude that a solution y(x) is an
increasing function in the subregions defined by �� 
 y 
 1 and 1 
 y 
 �, where
�� 
 x 
 �. For an initial condition y(0) � y0 
 1, a solution y(x) is increasing and
bounded above by 1, and so y(x) : 1 as x : �; for y(0) � y0 	 1 a solution y(x) is
increasing and unbounded.

Now y(x) � 1 � 1�(x � c) is a one-parameter family of solutions of the differ-
ential equation. (See Problem 4 in Exercises 2.2.) A given initial condition deter-
mines a value for c. For the initial conditions, say, y(0) � �1 
 1 and y(0) � 2 	 1,
we find, in turn, that y(x) � 1 � 1�(x � , and y(x) � 1 � 1�(x � 1). As shown in
Figures 2.1.8(b) and 2.1.8(c), the graph of each of these rational functions possesses

1
2)

c c c c 

y0

(d)

y0

(c)

y0

(b)

y0

(a)

FIGURE 2.1.9 Critical point c is an
attractor in (a), a repeller in (b), and semi-
stable in (c) and (d).

1 

increasing

y

increasing

(a) phase line

(0, −1)

y 1

1
2

x

x

y

(b) xy-plane
y(0) � 1

(0, 2)

y 1

x 1

x

y

(c) xy-plane
y(0) � 1

= =

=

= −

FIGURE 2.1.8 Behavior of solutions near y � 1 in Example 5

a vertical asymptote. But bear in mind that the solutions of the IVPs

are defined on special intervals. They are, respectively,

The solution curves are the portions of the graphs in Figures 2.1.8(b) and
2.1.8(c) shown in blue. As predicted by the phase portrait, for the solution curve
in Figure 2.1.8(b), y(x) : 1 as x : �; for the solution curve in Figure 2.1.8(c),
y(x) : � as x : 1 from the left.

Attractors and Repellers Suppose that y(x) is a nonconstant solution of the
autonomous differential equation given in (1) and that c is a critical point of the DE.
There are basically three types of behavior that y(x) can exhibit near c. In
Figure 2.1.9 we have placed c on four vertical phase lines. When both arrowheads on
either side of the dot labeled c point toward c, as in Figure 2.1.9(a), all solutions y(x)
of (1) that start from an initial point (x0, y0) sufficiently near c exhibit the asymp-
totic behavior . For this reason the critical point c is said to belimx:� 

 
y(x) � c

y(x) � 1 �
1

x � 1
2

,  �1
2 
 x 
 �   and   y(x) � 1 �

1
x � 1

,  �� 
 x 
 1.

dy
dx

� ( y � 1)2,  y(0) � �1    and    
dy
dx

� (y � 1)2,  y(0) � 2
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slopes of lineal
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vertical line varyslopes of lineal

elements on a horizontal
line are all the same

x

y

y 

FIGURE 2.1.10 Direction field for a
autonomous DE

x

y

y = 0

y = 3

FIGURE 2.1.11 Translated solution
curves of an autonomous DE
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asymptotically stable. Using a physical analogy, a solution that starts near c is like a
charged particle that, over time, is drawn to a particle of opposite charge, and so c is
also referred to as an attractor. When both arrowheads on either side of the dot
labeled c point away from c, as in Figure 2.1.9(b), all solutions y(x) of (1) that start
from an initial point (x0, y0) move away from c as x increases. In this case the critical
point c is said to be unstable. An unstable critical point is also called a repeller, for
obvious reasons. The critical point c illustrated in Figures 2.1.9(c) and 2.1.9(d) is
neither an attractor nor a repeller. But since c exhibits characteristics of both an
attractor and a repeller—that is, a solution starting from an initial point (x0, y0) suffi
ciently near c is attracted to c from one side and repelled from the other side—we say
that the critical point c is semi-stable. In Example 3 the critical point a�b is
asymptotically stable (an attractor) and the critical point 0 is unstable (a repeller).
The critical point 1 in Example 5 is semi-stable.

Autonomous DEs and Direction Fields If a first-order differential equa-
tion is autonomous, then we see from the right-hand side of its normal form dy�dx �
f (y) that slopes of lineal elements through points in the rectangular grid used to con-
struct a direction field for the DE depend solely on the y-coordinate of the points.
Put another way, lineal elements passing through points on any horizontal line must
all have the same slope and therefore are parallel; slopes of lineal elements along any
vertical line will, of course, vary. These facts are apparent from inspection of the hor-
izontal yellow strip and vertical blue strip in Figure 2.1.10. The figure exhibits a di-
rection field for the autonomous equation dy�dx � 2(y � 1). The red lineal elements
in Figure 2.1.10 have zero slope because they lie along the graph of the equilibrium
solution y � 1.

Translation Property You may recall from precalculus mathematics that the
graph of a function , where k is a constant, is the graph of 
rigidly translated or shifted horizontally along the x-axis by an amount the trans-
lation is to the right if k 	 0 and to the left if k 
 0. It turns out that under the condi-
tions stipulated for (2), solution curves of an autonomous first-order DE are related
by the concept of translation. To see this, let’s consider the differential equation
dy�dx � y(3 � y), which is a special case of the autonomous equation considered in
Examples 3 and 4. Because y � 0 and y � 3 are equilibrium solutions of the DE,
their graphs divide the xy-plane into three subregions 

In Figure 2.1.11 we have superimposed on a direction field of the DE six solutions
curves. The figure illustrates that all solution curves of the same color, that is, solu-
tion curves lying within a particular subregion Ri, all look alike. This is no coinci-
dence but is a natural consequence of the fact that lineal elements passing through
points on any horizontal line are parallel. That said, the following translation prop-
erty of an automonous DE should make sense:

If y(x) is a solution of an autonomous differential equation dy�dx � f (y), then
y1(x) � y(x � k), k a constant, is also a solution.

Thus, if y(x) is a solution of the initial-value problem dy�dx � f (y), y(0) � y0, then
y1(x) � y(x � x0) is a solution of the IVP dy�dx � f(y), y(x0) � y0. For example, it is easy
to verify that is a solution of the IVP dy�dx � y, y(0) � 1
and so a solution y1(x) of, say, dy�dx � y, y(5) � 1 is y(x) � ex translated 5 units to
the right:

y1(x) � y(x � 5) � ex�5, �� 
 x 
 �.

y(x) � ex, �� 
 x 
 �,

R1: �� 
  y 
  0,  R2: 0 
  y 
  3,  and  R3: 3 
  y 
  �.

R1, R2, and R3:

�k�;
y � f(x)y � f(x � k)
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FIGURE 2.1.12 Direction field for Problem 
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FIGURE 2.1.13 Direction field for Problem 

2.

(a) y(�6) � 0 (b) y(0) � 1
(c) y(0) � �4 (d) y(8) � �4

dy
dx

� e�0.01xy2

In Problems 5–12 use computer software to obtain a direc-
tion field for the given differential equation. By hand, sketch
an approximate solution curve passing through each of the
given points.

5. y� � x 6. y� � x � y
(a) y(0) � 0 (a) y(�2) � 2
(b) y(0) � �3 (b) y(1) � �3

7. 8.

(a) y(1) � 1 (a) y(0) � 1
(b) y(0) � 4 (b) y(�2) � �1

9. 10.

(a) (a) y(0) � �2

(b) y(2) � �1 (b) y(1) � 2.5

y(0) � 1
2

dy
dx

� xeydy
dx

� 0.2x2 � y

dy
dx

�
1
y

y 
dy
dx

� �x
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EXERCISES 2.1 Answers to selected odd-numbered problems begin on page ANS-1.

2.1.1 DIRECTION FIELDS

In Problems 1–4 reproduce the given computer-generated
direction field. Then sketch, by hand, an approximate solu-
tion curve that passes through each of the indicated points.
Use different colored pencils for each solution curve.

1.

(a) y(�2) � 1 (b) y(3) � 0
(c) y(0) � 2 (d) y(0) � 0

dy
dx

� x2 � y2

3.

(a) y(0) � 0 (b) y(�1) � 0
(c) y(2) � 2 (d) y(0) � �4

dy
dx

� 1 � xy

4.

(a) y(0) � 1 (b) y(1) � 0
(c) y(3) � 3 (d) y(0) � �5

2

dy
dx

� (sin x) cos y

x

y

4_4
_4

_2

2

4

_2 2

FIGURE 2.1.14 Direction field for Problem 

x

y

4_4

_4

_2

2

4

_2 2

FIGURE 2.1.15 Direction field for Problem 
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44 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

13.

11. 12.

(a) y(2) � 2 (a)

(b) y(�1) � 0 (b)

In Problems 13 and 14 the given figure represents the graph
of f (y) and f (x), respectively. By hand, sketch a direction
field over an appropriate grid for dy�dx � f (y) (Problem 13)
and then for dy�dx � f (x) (Problem 14).

y(3
2) � 0

y(�1
2) � 2

dy
dx

� 1 �
y
x

y� � y � cos 



2
 x

f

1 y

1

FIGURE 2.1.16 Graph for Problem 13

f

x1

1

FIGURE 2.1.17 Graph for Problem 14

14.

15. In parts (a) and (b) sketch isoclines f (x, y) � c (see the
Remarks on page 38) for the given differential equation
using the indicated values of c. Construct a direction fiel
over a grid by carefully drawing lineal elements with the
appropriate slope at chosen points on each isocline. In
each case, use this rough direction field to sketch an ap-
proximate solution curve for the IVP consisting of the DE
and the initial condition y(0) � 1.
(a) dy�dx � x � y; c an integer satisfying �5 � c � 5
(b) dy�dx � x2 � y2; 

Discussion Problems

16. (a) Consider the direction fiel of the differential equa-
tion dy�dx � x(y � 4)2 � 2, but do not use tech-
nology to obtain it. Describe the slopes of the lineal
elements on the lines x � 0, y � 3, y � 4, and y � 5.

(b) Consider the IVP dy�dx � x(y � 4)2 � 2, y(0) � y0,
where y0 
 4. Can a solution y(x) : � as x : �?
Based on the information in part (a), discuss.

c � 1
4, c � 1, c � 9

4, c � 4

17. For a first-orde DE dy�dx � f (x, y) a curve in the plane
define by f (x, y) � 0 is called a nullcline of the equa-
tion, since a lineal element at a point on the curve has zero
slope. Use computer software to obtain a direction fiel
over a rectangular grid of points for dy�dx � x2 � 2y,
and then superimpose the graph of the nullcline 
over the direction field. Discuss the behavior of solution
curves in regions of the plane defined by and by

. Sketch some approximate solution curves. Try
to generalize your observations.

18. (a) Identify the nullclines (see Problem 17) in
Problems 1, 3, and 4. With a colored pencil, circle
any lineal elements in Figures 2.1.12, 2.1.14, and
2.1.15 that you think may be a lineal element at a
point on a nullcline.

(b) What are the nullclines of an autonomous first-orde
DE?

2.1.2 AUTONOMOUS FIRST-ORDER DEs

19. Consider the autonomous first-order differential equa-
tion dy�dx � y � y3 and the initial condition y(0) � y0.
By hand, sketch the graph of a typical solution y(x)
when y0 has the given values.
(a) y0 	 1 (b) 0 
 y0 
 1 
(c) �1 
 y0 
 0 (d) y0 
 �1

20. Consider the autonomous first-orde differential equation
dy�dx � y2 � y4 and the initial condition y(0) � y0. By
hand, sketch the graph of a typical solution y(x) when y0
has the given values.
(a) y0 	 1 (b) 0 
 y0 
 1 
(c) �1 
 y0 
 0 (d) y0 
 �1

In Problems 21–28 find the critical points and phase portrait
of the given autonomous first-order differential equation.
Classify each critical point as asymptotically stable, unstable,
or semi-stable. By hand, sketch typical solution curves in the
regions in the xy-plane determined by the graphs of the
equilibrium solutions.

21. 22.

23. 24.

25. 26.

27. 28.

In Problems 29 and 30 consider the autonomous differential
equation dy�dx � f (y), where the graph of f is given. Use
the graph to locate the critical points of each differential

dy
dx

�
yey � 9y

ey
dy
dx

� y ln(y � 2)

dy
dx

� y(2 � y)(4 � y)
dy
dx

� y2(4 � y2)

dy
dx

� 10 � 3y � y2dy
dx

� (y � 2)4

dy
dx

� y2 � y3dy
dx

� y2 � 3y

y 	 1
2 x2

y 
 1
2 x2

y � 1
2 x2
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29. f

c y

FIGURE 2.1.18 Graph for Problem 29

30. f

y1

1

FIGURE 2.1.19 Graph for Problem 30

Discussion Problems

31. Consider the autonomous DE dy�dx � (2��)y � sin y.
Determine the critical points of the equation. Discuss
a way of obtaining a phase portrait of the equation.
Classify the critical points as asymptotically stable,
unstable, or semi-stable.

32. A critical point c of an autonomous first-order DE is
said to be isolated if there exists some open interval that
contains c but no other critical point. Can there exist an
autonomous DE of the form given in (2) for which
every critical point is nonisolated? Discuss; do not think 
profound thoughts.

33. Suppose that y(x) is a nonconstant solution of the
autonomous equation dy�dx � f (y) and that c is a
critical point of the DE. Discuss: Why can’t the graph
of y(x) cross the graph of the equilibrium solution
y � c? Why can’t f (y) change signs in one of the
subregions discussed on page 39? Why can’t y(x) be
oscillatory or have a relative extremum (maximum or
minimum)?

34. Suppose that y(x) is a solution of the autonomous equa-
tion dy�dx � f (y) and is bounded above and below by
two consecutive critical points c1 
 c2, as in subregion 
R2 of Figure 2.1.6(b). If f (y) 	 0 in the region, then 
limx:� y(x) � c2. Discuss why there cannot exist a num-
ber L 
 c2 such that limx:� y(x) � L. As part of your
discussion, consider what happens to y�(x) as x : �.

2.1 SOLUTION CURVES WITHOUT A SOLUTION ● 45

equation. Sketch a phase portrait of each differential equa-
tion. By hand, sketch typical solution curves in the subre-
gions in the xy-plane determined by the graphs of the equi-
librium solutions.

35. Using the autonomous equation (2), discuss how it is
possible to obtain information about the location of
points of inflection of a solution curve

36. Consider the autonomous DE dy�dx � y2 � y � 6. Use
your ideas from Problem 35 to find intervals on the
y-axis for which solution curves are concave up and
intervals for which solution curves are concave down.
Discuss why each solution curve of an initial-value
problem of the form dy�dx � y2 � y � 6, y(0) � y0,
where �2 
 y0 
 3, has a point of inflection with the
same y-coordinate. What is that y-coordinate? Carefully
sketch the solution curve for which y(0) � �1. Repeat
for y(2) � 2.

37. Suppose the autonomous DE in (2) has no critical
points. Discuss the behavior of the solutions.

Mathematical Models

38. Population Model The differential equation in Exam-
ple 3 is a well-known population model. Suppose the DE
is changed to

,

where a and b are positive constants. Discuss what
happens to the population P as time t increases.

39. Population Model Another population model is given 
by

,

where h and k are positive constants. For what initial
values P(0) � P0 does this model predict that the popu-
lation will go extinct?

40. Terminal Velocity In Section 1.3 we saw that the auto-
nomous differential equation

,

where k is a positive constant and g is the acceleration
due to gravity, is a model for the velocity v of a body of
mass m that is falling under the influenc of gravity.
Because the term �kv represents air resistance, the
velocity of a body falling from a great height does not in-
crease without bound as time t increases. Use a phase
portrait of the differential equation to fin the limiting, or
terminal, velocity of the body. Explain your reasoning.

41. Suppose the model in Problem 40 is modified so 
that air resistance is proportional to v2, that is,

.

See Problem 17 in Exercises 1.3. Use a phase portrait
to find the terminal velocity of the body. Explain your
reasoning.

m 
dv
dt

� mg � kv2

m 
dv
dt

� mg � kv

dP
dt

� kP � h

dP
dt

� P(aP � b)
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42. Chemical Reactions When certain kinds of chemicals
are combined, the rate at which the new compound is
formed is modeled by the autonomous differential
equation

where k 	 0 is a constant of proportionality and
� 	 � 	 0. Here X(t) denotes the number of grams of
the new compound formed in time t.
(a) Use a phase portrait of the differential equation to

predict the behavior of X(t) as t : �.

dX
dt

� k(� � X)(� � X),

(b) Consider the case when � � �. Use a phase portrait
of the differential equation to predict the behavior
of X(t) as t : � when X(0) 
 �. When X(0) 	 �.

(c) Verify that an explicit solution of the DE in the case
when k � 1 and � � � is X(t) � � � 1�(t � c).
Find a solution that satisfies X(0) � ��2. Then fin
a solution that satisfies X(0) � 2�. Graph these
two solutions. Does the behavior of the solutions as
t : � agree with your answers to part (b)?

Solution by Integration Consider the first-order differential equation dy�dx �
f (x, y). When f does not depend on the variable y, that is, f (x, y) � g(x), the differen-
tial equation

(1)

can be solved by integration. If g(x) is a continuous function, then integrating both
sides of (1) gives , where G(x) is an antiderivative (indefi
nite integral) of g(x). For example, if dy�dx � 1 � e2x, then its solution is

or .

A Definition Equation (1), as well as its method of solution, is just a special
case when the function f in the normal form dy�dx � f (x, y) can be factored into a
function of x times a function of y.

y � x � 1
2e2x � cy � �(1 � e2x) dx

y � �g(x) dx � G(x) � c

dy
dx

� g(x)

DEFINITION 2.2.1 Separable Equation

A first-order di ferential equation of the form

is said to be separable or to have separable variables.

dy
dx

� g(x)h(y)

For example, the equations

dy
dx

� y2xe3x�4y    and    
dy
dx

� y � sin x

SEPARABLE EQUATIONS

REVIEW MATERIAL
● Basic integration formulas (See inside front cover)
● Techniques of integration: integration by parts and partial fraction decomposition
● See also the Student Resource Manual.

INTRODUCTION We begin our study of how to solve differential equations with the simplest
of all differential equations: first-order equations with separable variables. Because the method in
this section and many techniques for solving differential equations involve integration, you are
urged to refresh your memory on important formulas (such as �du�u) and techniques (such as
integration by parts) by consulting a calculus text.

2.2
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are separable and nonseparable, respectively. In the first equation we can factor
f (x, y) � y2xe3x�4y as

g(x) h(y)
p p

,

but in the second equation there is no way of expressing y � sin x as a product of a
function of x times a function of y.

Observe that by dividing by the function h(y), we can write a separable equation
dy�dx � g(x)h(y) as

, (2)

where, for convenience, we have denoted 1�h(y) by p(y). From this last form we can
see immediately that (2) reduces to (1) when h(y) � 1.

Now if y � �(x) represents a solution of (2), we must have p(� (x))��(x) � g(x),
and therefore

. (3)

But dy � ��(x) dx, and so (3) is the same as

, (4)

where H(y) and G(x) are antiderivatives of p(y) � 1�h(y) and g(x), respectively.

Method of Solution Equation (4) indicates the procedure for solving separable
equations. A one-parameter family of solutions, usually given implicitly, is obtained
by integrating both sides of p(y) dy � g(x) dx.

Note There is no need to use two constants in the integration of a separable
equation, because if we write H(y) � c1 � G(x) � c2, then the difference c2 � c1 can
be replaced by a single constant c, as in (4). In many instances throughout the chap-
ters that follow, we will relabel constants in a manner convenient to a given equation.
For example, multiples of constants or combinations of constants can sometimes be
replaced by a single constant.

� p(y) dy � � g(x) dx    or    H(y) � G(x) � c

� p(� (x))��(x) dx � � g(x) dx

p(y) 
dy
dx

� g(x)

f (x, y) � y2xe3x�4y �  (xe3x )( y2e4y )

2.2 SEPARABLE EQUATIONS ● 47

EXAMPLE 1 Solving a Separable DE

Solve (1 � x) dy � y dx � 0.

SOLUTION Dividing by (1 � x)y, we can write dy�y � dx�(1 � x), from which it
follows that

; laws of exponents

Relabeling as c then gives y � c(1 � x).�ec1

 � �ec1(1 � x).

 � � 1 � x � ec1

 y � eln�1�x��c1 � eln�1�x� � ec1

 ln� y � � ln� 1 � x � � c1

 � 
dy
y

� � 
dx

1 � x

;�� 1 � x � � 1 � x,
� 1 � x � � �(1 � x),  

x ��1
x <�1
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FIGURE 2.2.1 Solution curve for the
IVP in Example 2

x

y

(4, −3)

48 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

ALTERNATIVE SOLUTION Because each integral results in a logarithm, a judicious
choice for the constant of integration is ln�c � rather than c. Rewriting the second
line of the solution as ln�y � � ln�1 � x � � ln�c � enables us to combine the terms on
the right-hand side by the properties of logarithms. From ln�y � � ln�c(1 � x) � we
immediately get y � c(1 � x). Even if the indefinite integrals are not all logarithms,
it may still be advantageous to use ln�c �. However, no firm rule can be given.

In Section 1.1 we saw that a solution curve may be only a segment or an arc of
the graph of an implicit solution G(x, y) � 0.

EXAMPLE 2 Solution Curve

Solve the initial-value problem  .

SOLUTION Rewriting the equation as y dy � �x dx, we get

.

We can write the result of the integration as x2 � y2 � c2 by replacing the constant
2c1 by c2. This solution of the differential equation represents a family of concentric
circles centered at the origin.

Now when x � 4, y � �3, so 16 � 9 � 25 � c2. Thus the initial-value problem
determines the circle x2 � y2 � 25 with radius 5. Because of its simplicity we can
solve this implicit solution for an explicit solution that satisfies the initial condition.
We saw this solution as y � �2(x) or in Example 3 of
Section 1.1. A solution curve is the graph of a differentiable function. In this case the
solution curve is the lower semicircle, shown in dark blue in Figure 2.2.1 containing
the point (4, �3).

Losing a Solution Some care should be exercised in separating variables, since
the variable divisors could be zero at a point. Specificall , if r is a zero 
of the function h(y), then substituting y � r into dy�dx � g(x)h(y) makes both sides
zero; in other words, y � r is a constant solution of the differential equation.

But after variables are separated, the left-hand side of � g(x) dx is undefined at r.

As a consequence, y � r might not show up in the family of solutions that are obtained
after integration and simplification. Recall that such a solution is called a singular
solution.

dy
h(y)

y � �125 � x2, �5 
 x 
 5

� y dy � �� x dx    and    
y2

2
� �

x2

2
� c1

dy
dx

� �
x
y
,  y(4) � �3

EXAMPLE 3 Losing a Solution

Solve  .

SOLUTION We put the equation in the form

. (5)

The second equation in (5) is the result of using partial fractions on the left-hand side
of the first equation. Integrating and using the laws of logarithms give

. ln �y � 2
y � 2 � � 4x � c2    or    

y � 2
y � 2

� �e4x�c2

1
4
 ln� y � 2 � �

1
4
 ln� y � 2 � � x � c1

dy
y2 � 4

� dx    or    � 1
4

y � 2
�

1
4

y � 2 � dy � dx

dy
dx

� y2 � 4
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EXAMPLE 4 An Initial-Value Problem

Solve .

SOLUTION Dividing the equation by ey cos x gives

.

Before integrating, we use termwise division on the left-hand side and the trigono-
metric identity sin 2x � 2 sin x cos x on the right-hand side. Then

integration by parts :

yields ey � ye�y � e�y � �2 cos x � c. (7)

The initial condition y � 0 when x � 0 implies c � 4. Thus a solution of the initial-
value problem is

ey � ye�y � e�y � 4 � 2 cos x. (8)

Use of Computers The Remarks at the end of Section 1.1 mentioned
that it may be difficult to use an implicit solution G(x, y) � 0 to find an explicit
solution y � � (x). Equation (8) shows that the task of solving for y in terms of x may
present more problems than just the drudgery of symbol pushing—sometimes it
simply cannot be done! Implicit solutions such as (8) are somewhat frustrating; nei-
ther the graph of the equation nor an interval over which a solution satisfying y(0) �
0 is defined is apparent. The problem of “seeing” what an implicit solution looks like
can be overcome in some cases by means of technology. One way* of proceeding is
to use the contour plot application of a computer algebra system (CAS). Recall from
multivariate calculus that for a function of two variables z � G(x, y) the two-
dimensional curves defined by G(x, y) � c, where c is constant, are called the level
curves of the function. With the aid of a CAS, some of the level curves of the func-
tion G(x, y) � ey � ye�y � e�y � 2 cos x have been reproduced in Figure 2.2.2. The
family of solutions defined by (7) is the level curves G(x, y) � c. Figure 2.2.3 illus-
trates the level curve G(x, y) � 4, which is the particular solution (8), in blue color.
The other curve in Figure 2.2.3 is the level curve G(x, y) � 2, which is the member
of the family G(x, y) � c that satisfies y(��2) � 0.

If an initial condition leads to a particular solution by yielding a specific value of
the parameter c in a family of solutions for a first-order differential equation, there is

� (ey � ye�y) dy � 2 � sin x dx

e2y � y
ey  dy �

sin 2x
cos x

 dx

(e2y � y) cos x 
dy
dx

� ey sin 2x, y(0) � 0

Here we have replaced 4c1 by c2. Finally, after replacing by c and solving the
last equation for y, we get the one-parameter family of solutions

. (6)

Now if we factor the right-hand side of the differential equation as 
dy�dx � (y � 2)(y � 2), we know from the discussion of critical points in Section 2.1
that y � 2 and y � �2 are two constant (equilibrium) solutions. The solution y � 2 is a
member of the family of solutions defined by (6) corresponding to the value c � 0.
However, y � �2 is a singular solution; it cannot be obtained from (6) for any choice of
the parameter c. This latter solution was lost early on in the solution process. Inspection
of (5) clearly indicates that we must preclude y � �2 in these steps.

y � 2 
1 � ce4x

1 � ce4x

�ec2

*In Section 2.6 we will discuss several other ways of proceeding that are based on the concept of a
numerical solver.

x

y

2_2
_2

_1

1

2

_1 1

FIGURE 2.2.2 Level curves of
G(x, y) � ey � ye�y � e�y � 2 cos x

FIGURE 2.2.3 Level curves 
c � 2 and c � 4
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a  =   > 0 a 0 

(0, 0) x

y

FIGURE 2.2.4 Piecewise-define
solutions of (9)

50 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

a natural inclination for most students (and instructors) to relax and be content.
However, a solution of an initial-value problem might not be unique. We saw in
Example 4 of Section 1.2 that the initial-value problem

(9)

has at least two solutions, y � 0 and . We are now in a position to solve the
equation. Separating variables and integrating y�1/2 dy � x dx gives

When x � 0, then y � 0, so necessarily, c � 0. Therefore . The trivial solution
y � 0 was lost by dividing by y1/2. In addition, the initial-value problem (9) possesses
infinitely many more solutions, since for any choice of the parameter a � 0 the
piecewise-defined functio

satisfies both the di ferential equation and the initial condition. See Figure 2.2.4.

Solutions Defined by Integrals If g is a function continuous on an open in-
terval I containing a, then for every x in I,

You might recall that the foregoing result is one of the two forms of the fundamental
theorem of calculus. In other words, is an antiderivative of the function g.
There are times when this form is convenient in solving DEs. For example, if g is
continuous on an interval I containing x0 and x, then a solution of the simple initial-
value problem , that is defined on I is given by

You should verify that y(x) defined in this manner satisfies the initial condition. Since
an antiderivative of a continuous function g cannot always be expressed in terms of
elementary functions, this might be the best we can do in obtaining an explicit
solution of an IVP. The next example illustrates this idea.

y(x) � y0 � �x

x0

g(t) dt

dy>dx � g(x), y(x0) � y0

�x
a g(t) dt

d
dx

 �x

a
g(t) dt � g(x).

y � �0,
1
16 (x2 � a2)2,

x 
 a
x � a

y � 1
16 x4

2y1/2 �
x2

2
� c1    or    y � 	x2

4
� c


2
,  c � 0.

y � 1
16 x4

dy
dx

� xy1/2,  y(0) � 0

EXAMPLE 5 An Initial-Value Problem

Solve  

SOLUTION The function is continuous on , but its antideriva-
tive is not an elementary function. Using t as dummy variable of integration, we can
write

 y(x) � y(3) � �x

3
e�t2 dt.

 y(x) � y(3) � �x

3
e�t2 dt

 y(t)]x
3  

� �x

3
e�t2 dt

 �x

3
 
dy
dt

 dt � �x

3
e�t2 dt

(��, �)g(x) � e�x2

dy
dx

� e�x2,  y(3) � 5.
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Using the initial condition y(3) � 5, we obtain the solution

The procedure demonstrated in Example 5 works equally well on separable
equations where, say, f (y) possesses an elementary antiderivative
but g(x) does not possess an elementary antiderivative. See Problems 29 and 30 in
Exercises 2.2.

dy>dx � g(x) f (y)

y(x) � 5 � �x

3
e�t2 dt.

2.2 SEPARABLE EQUATIONS ● 51

REMARKS

(i) As we have just seen in Example 5, some simple functions do not possess
an antiderivative that is an elementary function. Integrals of these kinds of
functions are called nonelementary. For example, and are
nonelementary integrals. We will run into this concept again in Section 2.3.
(ii) In some of the preceding examples we saw that the constant in the one-
parameter family of solutions for a first-order differential equation can be rela-
beled when convenient. Also, it can easily happen that two individuals solving the
same equation correctly arrive at dissimilar expressions for their answers. For
example, by separation of variables we can show that one-parameter families of
solutions for the DE (1 � y2) dx � (1 � x2) dy � 0 are

.

As you work your way through the next several sections, bear in mind that fami-
lies of solutions may be equivalent in the sense that one family may be obtained
from another by either relabeling the constant or applying algebra and trigonom-
etry. See Problems 27 and 28 in Exercises 2.2.

arctan x � arctan y � c    or    
x � y

1 � xy
� c

�sin x2 dx�x
3 e�t2 dt

EXERCISES 2.2 Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1–22 solve the given differential equation by
separation of variables.

1. 2.

3. dx � e3xdy � 0 4. dy � (y � 1)2dx � 0

5. 6.

7. 8.

9. 10.

11. csc y dx � sec2x dy � 0

12. sin 3x dx � 2y cos33x dy � 0

13. (ey � 1)2e�y dx � (ex � 1)3e�x dy � 0

14. x(1 � y2)1/2 dx � y(1 � x2)1/2 dy

dy
dx

� 	2y � 3
4x � 5


2
y ln x 

dx
dy

� 	y � 1
x 


2

exy 
dy
dx

� e�y � e�2x�ydy
dx

� e3x�2y

dy
dx

� 2xy2 � 0x 
dy
dx

� 4y

dy
dx

� (x � 1)2dy
dx

� sin 5x

15. 16.

17. 18.

19. 20.

21. 22.

In Problems 23–28 find an explicit solution of the given
initial-value problem.

23.

24.

25. x2 
dy
dx

� y � xy, y(�1) � �1

dy
dx

�
y2 � 1
x2 � 1

, y(2) � 2

dx
dt

� 4(x2 � 1), x(
>4) � 1

(ex � e�x) 
dy
dx

� y2dy
dx

� x11 � y2

dy
dx

�
xy � 2y � x � 2
xy � 3y � x � 3

dy
dx

�
xy � 3x � y � 3

xy � 2x � 4y � 8

dN
dt

� N � Ntet�2dP
dt

� P � P2

dQ
dt

� k(Q � 70)
dS
dr

� kS
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52 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

26.

27.

28. (1 � x4) dy � x(1 � 4y2) dx � 0, y(1) � 0

In Problems 29 and 30 proceed as in Example 5 and find an
explicit solution of the given initial-value problem.

29.

30.

In Problems 31–34 find an explicit solution of the given
initial-value problem. Determine the exact interval I of defi
nition by analytical methods. Use a graphing utility to plot
the graph of the solution. 

31.

32.

33.
34.
35. (a) Find a solution of the initial-value problem consist-

ing of the differential equation in Example 3 and
each of the initial-conditions: y(0) � 2, y(0) � �2,
and .

(b) Find the solution of the differential equation in
Example 4 when ln c1 is used as the constant of
integration on the left-hand side in the solution and
4 ln c1 is replaced by ln c. Then solve the same
initial-value problems in part (a).

36. Find a solution of that passes through
the indicated points.
(a) (0, 1) (b) (0, 0) (c) (d)

37. Find a singular solution of Problem 21. Of Problem 22.

38. Show that an implicit solution of

is given by ln(x2 � 10) � csc y � c. Find the constant
solutions, if any, that were lost in the solution of the dif-
ferential equation.

Often a radical change in the form of the solution of a differen-
tial equation corresponds to a very small change in either the
initial condition or the equation itself. In Problems 39–42 fin
an explicit solution of the given initial-value problem. Use a
graphing utility to plot the graph of each solution. Compare
each solution curve in a neighborhood of (0, 1).

39.
dy
dx

� (y � 1)2, y(0) � 1

2x sin2 y dx � (x2 � 10) cos y dy � 0

(2, 14)(1
2, 

1
2)

x 
dy
dx

� y2 � y

y(1
4) � 1

sin x dx � ydy � 0,  y(0) � 1
ey dx � e�x dy � 0,  y(0) � 0

(2y � 2) 
dy
dx

� 3x2 � 4x � 2,  y(1) � �2

dy
dx

�
2x � 1

2y
,  y(�2) � �1

dy
dx

� y 2 sin x2,  y(�2) � 1
3

dy
dx

� ye�x2,  y(4) � 1

11 � y2 dx � 11 � x2 dy � 0, y(0) �
13
2

dy
dt

� 2y � 1, y(0) � 5
2

40.

41.

42.

43. Every autonomous first-orde equation dy�dx � f (y)
is separable. Find explicit solutions y1(x), y2(x), y3(x),
and y4(x) of the differential equation dy�dx � y � y3

that satisfy, in turn, the initial conditions y1(0) � 2,
, , and y4(0) � �2. Use a graphing

utility to plot the graphs of each solution. Compare these
graphs with those predicted in Problem 19 of Exercises 2.1.
Give the exact interval of definitio for each solution.

44. (a) The autonomous first-order differential equation 
dy�dx � 1�(y � 3) has no critical points.
Nevertheless, place 3 on the phase line and obtain
a phase portrait of the equation. Compute d2y�dx2

to determine where solution curves are concave up
and where they are concave down (see Problems
35 and 36 in Exercises 2.1). Use the phase portrait
and concavity to sketch, by hand, some typical
solution curves.

(b) Find explicit solutions y1(x), y2(x), y3(x), and y4(x)
of the differential equation in part (a) that satisfy,
in turn, the initial conditions y1(0) � 4, y2(0) � 2,
y3(1) � 2, and y4(�1) � 4. Graph each solution
and compare with your sketches in part (a). Give
the exact interval of definition for each solution.

In Problems 45–50 use a technique of integration or a substi-
tution to find an explicit solution of the given differential
equation or initial-value problem. 

45. 46.

47. 48.

49. 50.

Discussion Problems

51. (a) Explain why the interval of definition of the explicit
solution y � �2(x) of the initial-value problem in
Example 2 is the open interval (�5, 5).

(b) Can any solution of the differential equation cross
the x-axis? Do you think that x2 � y2 � 1 is an
implicit solution of the initial-value problem 
dy�dx � �x�y, y(1) � 0?

52. (a) If a 	 0, discuss the differences, if any, between
the solutions of the initial-value problems consist-
ing of the differential equation dy�dx � x�y and

dy
dx

�
x tan�1 x

y
,  y(0) � 3

dy
dx

�
e1x

y
,  y(1) � 4

dy
dx

� y2/3 � y(1x � x)
dy
dx

� 1y � y

dy
dx

�
sin1x
1y

dy
dx

�
1

1 � sin x

y3(0) � �1
2y2(0) � 1

2

dy
dx

� (y � 1)2 � 0.01, y(0) � 1

dy
dx

� (y � 1)2 � 0.01, y(0) � 1

dy
dx

� (y � 1)2, y(0) � 1.01
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each of the initial conditions y(a) � a, y(a) � �a,
y(�a) � a, and y(�a) � �a.

(b) Does the initial-value problem dy�dx � x�y,
y(0) � 0 have a solution?

(c) Solve dy�dx � x�y, y(1) � 2 and give the exact
interval I of definition of its solution

53. In Problems 43 and 44 we saw that every autonomous
first-order differential equation dy�dx � f (y) is
separable. Does this fact help in the solution of the

initial-value problem ?

Discuss. Sketch, by hand, a plausible solution curve of
the problem.

54. (a) Solve the two initial-value problems:

and

(b) Show that there are more than 1.65 million digits in
the y-coordinate of the point of intersection of the
two solution curves in part (a).

55. Find a function whose square plus the square of its
derivative is 1.

56. (a) The differential equation in Problem 27 is equiva-
lent to the normal form

in the square region in the xy-plane defined by
�x � � 1, �y � � 1. But the quantity under the radical is
nonnegative also in the regions defined by �x � � 1,
�y � � 1. Sketch all regions in the xy-plane for
which this differential equation possesses real
solutions.

(b) Solve the DE in part (a) in the regions defined by
�x � � 1, �y � � 1. Then find an implicit and an
explicit solution of the differential equation subject
to y(2) � 2.

Mathematical Model

57. Suspension Bridge In (16) of Section 1.3 we saw that
a mathematical model for the shape of a flexible cable
strung between two vertical supports is

, (10)

where W denotes the portion of the total vertical load
between the points P1 and P2 shown in Figure 1.3.7. The

dy
dx

�
W
T1

dy
dx

�
B

1 � y2

1 � x2

dy
dx

� y �
y

x ln x
,  y(e) � 1.

dy
dx

� y,  y(0) � 1

dy
dx

� 11 � y2 sin2 y, y(0) � 1
2

DE (10) is separable under the following conditions that
describe a suspension bridge.

Let us assume that the x- and y-axes are as shown in
Figure 2.2.5—that is, the x-axis runs along the horizon-
tal roadbed, and the y-axis passes through (0, a), which
is the lowest point on one cable over the span of the
bridge, coinciding with the interval [�L�2, L�2]. In the
case of a suspension bridge, the usual assumption is that
the vertical load in (10) is only a uniform roadbed dis-
tributed along the horizontal axis. In other words, it is
assumed that the weight of all cables is negligible in
comparison to the weight of the roadbed and that the
weight per unit length of the roadbed (say, pounds per
horizontal foot) is a constant �. Use this information to
set up and solve an appropriate initial-value problem
from which the shape (a curve with equation y � �(x))
of each of the two cables in a suspension bridge is
determined. Express your solution of the IVP in terms
of the sag h and span L. See Figure 2.2.5.
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FIGURE 2.2.5 Shape of a cable in Problem 57

L/2
L (span)

h (sag)
cable 

roadbed (load)

x

(0, a)

L/2

y

Computer Lab Assignments

58. (a) Use a CAS and the concept of level curves to
plot representative graphs of members of the
family of solutions of the differential equation

. Experiment with different numbers

of level curves as well as various rectangular
regions defined by a � x � b, c � y � d.

(b) On separate coordinate axes plot the graphs of the
particular solutions corresponding to the initial
conditions: y(0) � �1; y(0) � 2; y(�1) � 4;
y(�1) � �3.

59. (a) Find an implicit solution of the IVP

(b) Use part (a) to find an explicit solution y � �(x) of
the IVP.

(c) Consider your answer to part (b) as a function only.
Use a graphing utility or a CAS to graph this func-
tion, and then use the graph to estimate its domain.

(d) With the aid of a root-finding application of a CAS,
determine the approximate largest interval I of

(2y � 2) dy � (4x3 � 6x) dx �  0, y(0) � �3.

dy
dx

� �
8x � 5
3y2 � 1
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54 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

definition of the solution y � �(x) in part (b). Use a
graphing utility or a CAS to graph the solution
curve for the IVP on this interval.

60. (a) Use a CAS and the concept of level curves to
plot representative graphs of members of the
family of solutions of the differential equation

. Experiment with different 

numbers of level curves as well as various rectan-
gular regions in the xy-plane until your result
resembles Figure 2.2.6.

(b) On separate coordinate axes, plot the graph of the
implicit solution corresponding to the initial condi-
tion . Use a colored pencil to mark off that
segment of the graph that corresponds to the solu-
tion curve of a solution � that satisfies the initial

y(0) � 3
2

dy
dx

�
x(1 � x)

y(�2 � y)

condition. With the aid of a root-finding application
of a CAS, determine the approximate largest inter-
val I of definition of the solution �. [Hint: First fin
the points on the curve in part (a) where the tangent
is vertical.]

(c) Repeat part (b) for the initial condition y(0) � �2.

x

y

FIGURE 2.2.6 Level curves in Problem 60

LINEAR EQUATIONS

REVIEW MATERIAL
● Review the definitions of linear DEs in (6) and (7) of Section 1.1

INTRODUCTION We continue our quest for solutions of first-order differential equations by
next examining linear equations. Linear differential equations are an especially “friendly” family
of differential equations, in that, given a linear equation, whether first order or a higher-order kin,
there is always a good possibility that we can find some sort of solution of the equation that we can
examine.

2.3

A Definition The form of a linear first-order DE was given in (7) of Sec-
tion 1.1. This form, the case when in (6) of that section, is reproduced here for
convenience.

n � 1

DEFINITION 2.3.1 Linear Equation

A first-order di ferential equation of the form

, (1)

is said to be a linear equation in the variable y.

a1(x) 
dy
dx

� a0(x)y � g(x)

Standard Form By dividing both sides of (1) by the lead coefficient we
obtain a more useful form, the standard form, of a linear equation:

(2)

We seek a solution of (2) on an interval I for which both coefficient functions P and
f are continuous.

dy
dx

� P(x)y � f (x).

a1(x),
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2.3 LINEAR EQUATIONS ● 55

Before we examine a general procedure for solving equations of form (2) we
note that in some instances (2) can be solved by separation of variables. For exam-
ple, you should verify that the equations 

and

are both linear and separable, but that the linear equation

is not separable.

Method of Solution The method for solving (2) hinges on a remarkable fact
that the left-hand side of the equation can be recast into the form of the exact deriva-
tive of a product by multiplying the both sides of (2) by a special function It is
relatively easy to find the function because we want

left hand side of 
product product rule (2) multipled by m(x) 
2    4  4

c c
these must be equal

The equality is true provided that

The last equation can be solved by separation of variables. Integrating

gives . Even though there are an infinite choices of (all constant
multiples of ), all produce the same desired result. Hence we can simplify life
and choose The function 

(3)

is called an integrating factor for equation (2).  
Here is what we have so far: We multiplied both sides of (2) by (3) and, by

construction, the left-hand side is the derivative of a product of the integrating factor
and y:

Finally, we discover why (3) is called an integrating factor. We can integrate both
sides of the last equation,

and solve for y. The result is a one-parameter family of solutions of (2):

(4)

We emphasize that you should not memorize formula (4). The following proce-
dure should be worked through each time. 

y � e��P(x)dx �e�P(x)dx f(x)dx � ce��P(x)dx.

e�P(x)dx y � �e�P(x)dx f(x) � c

 
d
dx

 [e�P(x)dx y] � e�P(x)dx f(x).

 e�P(x)dx 
dy
dx

� P(x)e�P(x)dx y � e�P(x)dx f(x)

�(x) � e�P(x)dx

c2 � 1.
e�P(x)dx

�(x)�(x) � c2e�P(x)dx

d�

�
� Pdx    and solving    ln��(x)� � �P(x)dx � c1

d�

dx
� �P.

d
dx

 [�(x)y] � �
dy
dx

�
d�

dx
y � �

dy
dx

� �Py.

�(x)
�(x).

dy
dx

� y � x

dy
dx

� y � 5
dy
dx

� 2xy � 0
We match each equation with (2). In the
first equation P(x) � 2x, f(x) � 0 and in
the second P(x) � �1, f(x) � 5.

�

See Problem 50 
in Exercises 2.3 �
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56 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

SOLVING A LINEAR FIRST-ORDER EQUATION 

(i) Remember to put a linear equation into the standard form (2). 
(ii) From the standard form of the equation identify P(x) and then find th

integrating factor e�P(x)dx. No constant need be used in evaluating the
indefinite integral �P(x)dx.

(iii) Multiply the both sides of the standard form equation by the integrating
factor. The left-hand side of the resulting equation is automatically the
derivative of the product of the integrating factor e�P(x)dx and y:

(iv) Integrate both sides of the last equation and solve for y.

d
dx

 [e�P(x)dxy] � e�P(x)dx f (x).

EXAMPLE 1 Solving a Linear Equation

Solve  

SOLUTION This linear equation can be solved by separation of variables.
Alternatively, since the differential equation is already in standard form (2), we iden-
tify and so the integrating factor is . We then multiply the
given equation by this factor and recognize that 

Integration of the last equation, 

then yields or y � ce3x, �� 
 x 
 �.e�3xy � c

� d
dx

 [e�3x y] dx � �0 dx

e�3x 
dy
dx

� 3e�3x y � e�3x � 0    is the same as    
d
dx

 [e�3x y] � 0.

e�(�3)dx � e�3xP(x) � �3,

dy
dx

� 3y � 0.

EXAMPLE 2 Solving a Linear Equation

Solve  

SOLUTION This linear equation, like the one in Example 1, is already in standard
form with Thus the integrating factor is again . This time multiply-
ing the given equation by this factor gives

Integrating the last equation,  

or 

When a1, a0, and g in (1) are constants, the differential equation is autonomous.
In Example 2 you can verify from the normal form dy�dx � 3(y � 2) that �2 is a
critical point and that it is unstable (a repeller). Thus a solution curve with an

y � �2 � ce3x, �� 
 x 
 �.

� d
dx

 [e�3x y] dx � 6�e�3x dx    gives    e�3x y � �6	e�3x

3 
 � c,

e�3x 
dy
dx

� 3e�3x y � 6e�3x    and so    
d
dx

 [e�3x y] � 6e�3x.

e�3xP(x) � �3.

dy
dx

� 3y � 6.

27069_02_ch02_p035-082.qxd  2/2/12  3:15 PM  Page 56

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



initial point either above or below the graph of the equilibrium solution 
y � �2 pushes away from this horizontal line as x increases. Figure 2.3.1, obtained
with the aid of a graphing utility, shows the graph of y � �2 along with some addi-
tional solution curves.

General Solution Suppose again that the functions P and f in (2) are con-
tinuous on a common interval I. In the steps leading to (4) we showed that if (2) has
a solution on I, then it must be of the form given in (4). Conversely, it is a straight-
forward exercise in differentiation to verify that any function of the form given in
(4) is a solution of the differential equation (2) on I. In other words, (4) is a one-
parameter family of solutions of equation (2) and every solution of (2) defined on I
is a member of this family. Therefore we call (4) the general solution of the
differential equation on the interval I. (See the Remarks at the end of Section 1.1.)
Now by writing (2) in the normal form y� � F (x, y), we can identify 
F (x, y) � �P(x)y � f (x) and �F��y � �P(x). From the continuity of P and f on the
interval I we see that F and �F��y are also continuous on I. With Theorem 1.2.1 as
our justification, we conclude that there exists one and only one solution of the
initial-value problem

(5)

defined on some interval I0 containing x0. But when x0 is in I, finding a solution of (5)
is just a matter of finding an appropriate value of c in (4)—that is, to each x0 in I there
corresponds a distinct c. In other words, the interval I0 of existence and uniqueness
in Theorem 1.2.1 for the initial-value problem (5) is the entire interval I.

dy
dx

� P(x)y � f (x),  y(x0) � y0

2.3 LINEAR EQUATIONS ● 57

FIGURE 2.3.1 Solution curves of DE
in Example 2

1_1 2 3 4

_2
_1

1

_3

x

y

y =_2 

EXAMPLE 3 General Solution

Solve  .

SOLUTION Dividing by x, the standard form of the given DE is

. (6)

From this form we identify P(x) � �4�x and f (x) � x5ex and further observe that P
and f are continuous on (0, �). Hence the integrating factor is

Here we have used the basic identity . Now we multiply (6) by x�4

and rewrite

It follows from integration by parts that the general solution defined on the interval
(0, �) is x�4y � xex � ex � c or y � x5ex � x4ex � cx4.

Except in the case in which the lead coefficient is 1, the recasting of equation
(1) into the standard form (2) requires division by a1(x). Values of x for which
a1(x) � 0 are called singular points of the equation. Singular points are poten-
tially troublesome. Specifically, in (2), if P(x) (formed by dividing a0(x) by a1(x))
is discontinuous at a point, the discontinuity may carry over to solutions of the
differential equation.

x�4  
dy
dx

� 4x�5y � xex    as    
d

dx
 [x�4y] � xex.

blogbN � N, N 	 0

e�4�dx/x � e�4ln x � eln x�4 � x�4.

we can use ln x instead of ln �x� since x 	 0

dy
dx

�
4
x
 y � x5ex

x 
dy
dx

� 4y � x6ex

In case you are wondering why the
interval (0, �) is important in Example 3,
read this paragraph and the paragraph
following Example 4.

�
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58 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

EXAMPLE 4 General Solution

Find the general solution of .

SOLUTION We write the differential equation in standard form

(7)

and identify P(x) � x�(x2 � 9). Although P is continuous on (��, �3), (�3, 3), and
(3, �), we shall solve the equation on the first and third intervals. On these intervals
the integrating factor is

.

After multiplying the standard form (7) by this factor, we get

. 

Integrating both sides of the last equation gives Thus for either

x 	 3 or x 
 �3 the general solution of the equation is .

Notice in Example 4 that x � 3 and x � �3 are singular points of the equation
and that every function in the general solution is discontinuous at
these points. On the other hand, x � 0 is a singular point of the differential equation
in Example 3, but the general solution y � x5ex � x4ex � cx4 is noteworthy in that
every function in this one-parameter family is continuous at x � 0 and is define
on the interval (��, �) and not just on (0, �), as stated in the solution. However,
the family y � x5ex � x4ex � cx4 defined on (��, �) cannot be considered the gen-
eral solution of the DE, since the singular point x � 0 still causes a problem. See
Problems 45 and 46 in Exercises 2.3.

y � c�1x2 � 9

y �
c

1x2 � 9

1x2 � 9 y � c.

d
dx

 �1x2 � 9 y� � 0

e�x dx/(x2�9) � e1
2 �2x dx/(x2�9) � e1

2 ln�x2�9� � 1x2 � 9

dy
dx

�
x

x2 � 9
 y � 0

(x2 � 9) 
dy
dx

� xy � 0

EXAMPLE 5 An Initial-Value Problem

Solve  .

SOLUTION The equation is in standard form, and P(x) � 1 and f (x) � x are contin-
uous on (��, �). The integrating factor is e�dx � ex, so integrating

gives exy � xex � ex � c. Solving this last equation for y yields the general solution
y � x � 1 � ce�x. But from the initial condition we know that y � 4 when x � 0.
Substituting these values into the general solution implies that c � 5. Hence the
solution of the problem is

y � x � 1 � 5e�x, �� 
 x 
 �. (8)

Figure 2.3.2, obtained with the aid of a graphing utility, shows the graph of
the solution (8) in dark blue along with the graphs of other members of the one-
parameter family of solutions y � x � 1 � ce�x. It is interesting to observe that as x
increases, the graphs of all members of this family are close to the graph of the solu-
tion The last solution corresponds to in the family and is shown inc � 0y � x � 1.

d
dx

 [exy] � xex

dy
dx

� y � x, y(0) � 4

x

y

4_4

_4

_2

2

4

_2 2

c=0 

c>0 c=5

c<0 

FIGURE 2.3.2 Solution curves of DE
in Example 5
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dark green in Figure 2.3.2. This asymptotic behavior of solutions is due to the fact
that the contribution of ce�x, , becomes negligible for increasing values of x.
We say that ce�x is a transient term, since e�x : 0 as x : �. While this behavior
is not characteristic of all general solutions of linear equations (see Example 2), the
notion of a transient is often important in applied problems.

Discontinuous Coefficients In applications, the coefficients P(x) and f (x) in
(2) may be piecewise continuous. In the next example f (x) is piecewise continuous
on [0, �) with a single discontinuity, namely, a (finite) jump discontinuity at x � 1.
We solve the problem in two parts corresponding to the two intervals over which f is
defined. It is then possible to piece together the two solutions at x � 1 so that y(x) is
continuous on [0, �).

c � 0

2.3 LINEAR EQUATIONS ● 59

EXAMPLE 6 An Initial-Value Problem

Solve  

SOLUTION The graph of the discontinuous function f is shown in Figure 2.3.3. We
solve the DE for y(x) first on the interval [0, 1] and then on the interval (1, �). For
0 � x � 1 we have

.

Integrating this last equation and solving for y gives y � 1 � c1e�x. Since y(0) � 0,
we must have c1 � �1, and therefore y � 1 � e�x, 0 � x � 1. Then for x 	 1 the
equation

leads to y � c2e�x. Hence we can write

By appealing to the definition of continuity at a point, it is possible to determine 
c2 so that the foregoing function is continuous at x � 1. The requirement that

implies that c2e�1 � 1 � e�1 or c2 � e � 1. As seen in
Figure 2.3.4, the function

(9)

is continuous on (0, �).

It is worthwhile to think about (9) and Figure 2.3.4 a little bit; you are urged to
read and answer Problem 48 in Exercises 2.3.

Functions Defined by Integrals At the end of Section 2.2 we discussed
the fact that some simple continuous functions do not possess antiderivatives that
are elementary functions and that integrals of these kinds of functions are called
nonelementary. For example, you may have seen in calculus that and
�sin x2 dx are nonelementary integrals. In applied mathematics some important func-
tions are define in terms of nonelementary integrals. Two such special functions are
the error function and complementary error function:

. (10)erf(x) �
2
1


 �x

0
 e�t2 dt    and    erfc(x) �

2
1


 ��

x
 e�t2 dt

�e�x2 dx

y � �1 � e�x,
(e � 1)e�x,

0 � x � 1,
  x 	 1

limx:1� y(x) � y(1)

y � �1 � e�x,
c2e�x,

0 � x � 1,
  x 	 1.

dy
dx

� y � 0

dy
dx

� y � 1  or, equivalently,   
d

dx
 [exy] � ex

dy
dx

� y � f (x), y(0) � 0 where f (x) � �1,
0,

0 � x � 1,
  x 	 1.

FIGURE 2.3.3 Discontinuous f(x) in
Example 6

x

y

1 x

y

FIGURE 2.3.4 Graph of (9) in
Example 6
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*This result is usually proved in the third semester of calculus.
†Certain commands have the same spelling, but in Mathematica commands begin with a capital letter
(DSolve), whereas in Maple the same command begins with a lower case letter (dsolve). When
discussing such common syntax, we compromise and write, for example, dsolve. See the Student
Resource Manual for the complete input commands used to solve a linear first-order DE

FIGURE 2.3.5 Solution curves of DE
in Example 7

x

y
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From the known result * we can write 
Then from it is seen from (10) that the complementary error func-
tion erfc(x) is related to erf(x) by erf(x) � erfc(x) � 1. Because of its importance
in probability, statistics, and applied partial differential equations, the error func-
tion has been extensively tabulated. Note that erf(0) � 0 is one obvious function
value. Values of erf(x) can also be found by using a CAS. 

��
0  � �x

0 � ��
x  

(2�1
) ��
0  e�t2 dt � 1.��

0  e�t2 dt � 1
�2

EXAMPLE 7 The Error Function

Solve the initial-value problem  .

SOLUTION Since the equation is already in standard form, we see that the integrat-
ing factor is , so from

. (11)

Applying y(0) � 1 to the last expression then gives c � 1. Hence the solution of the
problem is

The graph of this solution on the interval (��, �), shown in dark blue in Figure 2.3.5
among other members of the family defined in (11), was obtained with the aid of a
computer algebra system.

Use of Computers The computer algebra systems Mathematica and Maple
are capable of producing implicit or explicit solutions for some kinds of differential
equations using their dsolve commands.†

y � 2ex2 �x

0
 e�t2  dt � ex2    or    y � ex2 [1 � 1
 erf(x)].

d
dx

 [e�x2y] � 2e�x2    we get    y � 2ex2 �x

0
 e�t2 dt � cex2

e�x2

dy
dx

� 2xy � 2,  y(0) � 1

REMARKS

(i) A linear first-order di ferential equation

is said to be homogeneous, whereas the equation 

with not identically zero is said to be nonhomogeneous. For example, the
linear equations and are, in turn, homogeneous and
nonhomogeneous. As can be seen in this example the trivial solution is
always a solution of a homogeneous linear DE. Store this terminology in the
back of your mind because it becomes important when we study linear higher-
order ordinary differential equations in Chapter 4.

y � 0
xy� � y � exxy� � y � 0

g(x)

a1(x) 
dy
dx

� a0(x)y � g(x)

a1(x)  
dy
dx

� a0(x)y � 0
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2.3 LINEAR EQUATIONS ● 61

(ii) Occasionally, a first-order differential equation is not linear in one variable
but in linear in the other variable. For example, the differential equation

is not linear in the variable y. But its reciprocal

is recognized as linear in the variable x. You should verify that the integrating
factor and integration by parts yield the explicit solution

for the second equation. This expression is then an
implicit solution of the first equation
(iii) Mathematicians have adopted as their own certain words from engineer-
ing, which they found appropriately descriptive. The word transient, used ear-
lier, is one of these terms. In future discussions the words input and output will
occasionally pop up. The function f in (2) is called the input or driving func-
tion; a solution of the differential equation for a given input is called the
output or response.
(iv) The term special functions mentioned in conjunction with the error func-
tion also applies to the sine integral function and the Fresnel sine integral
introduced in Problems 55 and 56 in Exercises 2.3. “Special Functions” is
actually a well-defined branch of mathematics. More special functions are
studied in Section 6.4.

y(x)

x � �y2 � 2y � 2 � cey
e�(�1)dy � e�y

dx
dy

� x � y2    or    
dx
dy

� x � y2

dy
dx

�
1

x � y2

EXERCISES 2.3 Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1–24 find the general solution of the given dif-
ferential equation. Give the largest interval I over which the
general solution is defined. Determine whether there are any
transient terms in the general solution.

1. 2.

3. 4.

5. y� � 3x2y � x2 6. y� � 2xy � x3

7. x2y� � xy � 1 8. y� � 2y � x2 � 5

9. 10.

11. 12.

13. x2y� � x(x � 2)y � ex

14. xy� � (1 � x)y � e�x sin 2x

15. y dx � 4(x � y6) dy � 0

16. y dx � (yey � 2x) dy

17. cos x 
dy
dx

 � (sin x)y � 1

(1 � x) 
dy
dx

 � xy � x � x2x 
dy
dx

 � 4y � x3 � x

x 
dy
dx

 � 2y � 3x 
dy
dx

 � y � x2 sin x

3 
dy
dx

� 12y � 4
dy
dx

 � y � e3x

dy
dx

 � 2y � 0
dy
dx

 � 5y

18.

19.

20.

21.

22.

23.

24.

In Problems 25–36 solve the given initial-value problem.
Give the largest interval I over which the solution is defined

25.

26.

27. xy� � y � ex,  y(1) � 2

dy
dx

� 2x � 3y,  y(0) � 1
3

dy
dx

� x � 5y,  y(0) � 3

(x2 � 1) 
dy
dx

� 2y � (x � 1)2

x 
dy
dx

� (3x � 1)y � e�3x

dP
dt

� 2tP � P � 4t � 2

dr
d�

� r sec � � cos �

(x � 2)2 
dy
dx

� 5 � 8y � 4xy

(x � 1) 
dy
dx

� (x � 2)y � 2xe�x

cos2x sin x 
dy
dx

 � (cos3x)y � 1 
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62 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

28.

29.

30.

31.

32.

33.

34.

35.

36.

In Problems 37–40 proceed as in Example 6 to solve the
given initial-value problem. Use a graphing utility to graph
the continuous function y(x).

37. where

38. where

39. where

40. where

41. Proceed in a manner analogous to Example 6 to solve the
initial-value problem y� � P(x)y � 4x, y(0) � 3, where

Use a graphing utility to graph the continuous function
y(x).

42. Consider the initial-value problem y� � exy � f (x),
y(0) � 1. Express the solution of the IVP for x 	 0 as a
nonelementary integral when f (x) � 1. What is the so-
lution when f (x) � 0? When f (x) � ex?

43. Express the solution of the initial-value problem 
y� � 2xy � 1, y(1) � 1, in terms of erf(x).

P(x) � � 2,
�2>x,

 0 � x � 1,
x 	 1.

f (x) � �x,
�x, 

0 � x 
 1
x � 1

(1 � x2) 
dy
dx

� 2xy � f (x), y(0) � 0,

f (x) � �x,
0, 

0 � x 
 1
x � 1

dy
dx

� 2xy � f (x), y(0) � 2,

f (x) � �1,
�1, 

0 � x � 1
x 	 1

dy
dx

� y � f (x), y(0) � 1,

f (x) � �1,
0,

0 � x � 3
x 	 3

dy
dx

� 2y � f (x), y(0) � 0, 

y� � (tan x)y � cos2 x,  y(0) � �1

y� � (sin x)y � 2 sin x,  y(
>2) � 1

x(x � 1)
dy
dx

� xy � 1,  y(e) � 1

(x � 1)
dy
dx

� y � ln x,  y(1) � 10

y� � 4xy � x3ex2,  y(0) � �1

x 
dy
dx

� y � 4x � 1,  y(1) � 8

dT
dt

� k(T � Tm),  T(0) � T0,  k, Tm, T0 constants

L 
di
dt

� Ri � E,  i(0) � i0,  L, R, E, i0 constants

y 
dx
dy

� x � 2y2,  y(1) � 5
Discussion Problems

44. Reread the discussion following Example 2. Construct a
linear first-order differential equation for which all
nonconstant solutions approach the horizontal asymp-
tote y � 4 as x : �.

45. Reread Example 3 and then discuss, with reference
to Theorem 1.2.1, the existence and uniqueness of a
solution of the initial-value problem consisting of 
xy� � 4y � x6ex and the given initial condition.
(a) y(0) � 0 (b) y(0) � y0, y0 	 0
(c) y(x0) � y0, x0 	 0, y0 	 0

46. Reread Example 4 and then find the general solution of
the differential equation on the interval (�3, 3).

47. Reread the discussion following Example 5. Construct a
linear first-order differential equation for which all solu-
tions are asymptotic to the line y � 3x � 5 as x : �.

48. Reread Example 6 and then discuss why it is technically
incorrect to say that the function in (9) is a “solution” of
the IVP on the interval [0, �).

49. (a) Construct a linear first-order differential equation of
the form xy� � a0(x)y � g(x) for which yc � c�x3

and yp � x3. Give an interval on which 
y � x3 � c�x3 is the general solution of the DE.

(b) Give an initial condition y(x0) � y0 for the DE
found in part (a) so that the solution of the IVP
is y � x3 � 1�x3. Repeat if the solution is 
y � x3 � 2�x3. Give an interval I of definition of
each of these solutions. Graph the solution curves. Is
there an initial-value problem whose solution is
defined on ��, �)?

(c) Is each IVP found in part (b) unique? That is, can
there be more than one IVP for which, say, 
y � x3 � 1�x3, x in some interval I, is the solution?

50. In determining the integrating factor (3), we did not use
a constant of integration in the evaluation of �P(x) dx.
Explain why using �P(x) dx � c1 has no effect on the
solution of (2).

51. Suppose P(x) is continuous on some interval I and a is a
number in I. What can be said about the solution of the
initial-value problem y� � P(x)y � 0, y(a) � 0?

Mathematical Models

52. Radioactive Decay Series The following system
of differential equations is encountered in the study of the
decay of a special type of radioactive series of elements:

where �1 and �2 are constants. Discuss how to solve this
system subject to x(0) � x0, y(0) � y0. Carry out your
ideas.

 
dy
dt

� �1x � �2y,

 
dx
dt

� ��1x
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53. Heart Pacemaker A heart pacemaker consists of a
switch, a battery of constant voltage E0, a capacitor with
constant capacitance C, and the heart as a resistor with
constant resistance R. When the switch is closed, the
capacitor charges; when the switch is open, the capacitor
discharges, sending an electrical stimulus to the heart.
During the time the heart is being stimulated, the voltage
E across the heart satisfies the linear differential equation

Solve the DE, subject to E(4) � E0.

Computer Lab Assignments

54. (a) Express the solution of the initial-value problem 
y� � 2xy � �1, , in terms of erfc(x).

(b) Use tables or a CAS to find the value of y(2). Use a
CAS to graph the solution curve for the IVP on
(��, �).

55. (a) The sine integral function is defined by
, where the integrand is Si(x) � �x

0 (sin t>t) dt

y(0) � 1
 �2

dE
dt

� �
1

RC
 E.

defined to be 1 at t � 0. Express the solution y(x) of
the initial-value problem x3y� � 2x2y � 10 sin x,
y(1) � 0 in terms of Si(x).

(b) Use a CAS to graph the solution curve for the IVP
for x 	 0.

(c) Use a CAS to find the value of the absolute maxi-
mum of the solution y(x) for x 	 0.

56. (a) The Fresnel sine integral is defined by
. Express the solution y(x) 

of the initial-value problem y�� (sin x2)y � 0, 
y(0) � 5, in terms of S(x).

(b) Use a CAS to graph the solution curve for the IVP
on (��, �).

(c) It is known that S(x) : as x : � and S(x) : �
as x : �� . What does the solution y(x) approach
as x : �? As x : ��?

(d) Use a CAS to find the values of the absolute
maximum and the absolute minimum of the
solution y(x).

1
2

1
2

S(x) � �x
0 sin(pt2>2) dt

2.4 EXACT EQUATIONS ● 63

EXACT EQUATIONS

REVIEW MATERIAL
● Multivariate calculus
● Partial differentiation and partial integration
● Differential of a function of two variables

INTRODUCTION Although the simple first-order equation

y dx � x dy � 0 

is separable, we can solve the equation in an alternative manner by recognizing that the expression
on the left-hand side of the equality is the differential of the function f (x, y) � xy; that is, 

d(xy) � y dx � x dy.

In this section we examine first-order equations in differential form M(x, y) dx � N(x, y) dy � 0. By
applying a simple test to M and N, we can determine whether M(x, y) dx � N(x, y) dy is a differen-
tial of a function f (x, y). If the answer is yes, we can construct f by partial integration.

2.4

Differential of a Function of Two Variables If z � f (x, y) is a function of
two variables with continuous first partial derivatives in a region R of the xy-plane,
then its differential is

. (1)

In the special case when f (x, y) � c, where c is a constant, then (1) implies

. (2)
�f
�x

 dx �
�f
�y

 dy � 0

dz �
�f
�x

 dx �
�f
�y

 dy
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64 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

In other words, given a one-parameter family of functions f (x, y) � c, we can generate
a first-order differential equation by computing the differential of both sides of the
equality. For example, if x2 � 5xy � y3 � c, then (2) gives the first-order D

. (3)

A Definition Of course, not every first-order DE written in differential form

(2x � 5y) dx � (�5x � 3y2) dy � 0

M(x, y) dx � N(x, y) dy � 0 corresponds to a differential of f (x, y) � c. So for our
purposes it is more important to turn the foregoing example around; namely, if
we are given a first-order DE such as (3), is there some way we can recognize
that the differential expression (2x � 5y) dx � (�5x � 3y2) dy is the differential
d(x2 � 5xy � y3)? If there is, then an implicit solution of (3) is x2 � 5xy � y3 � c.
We answer this question after the next definition

DEFINITION 2.4.1 Exact Equation

A differential expression M(x, y) dx � N(x, y) dy is an exact differential in a
region R of the xy-plane if it corresponds to the differential of some function
f (x, y) defined in R. A first-order di ferential equation of the form

is said to be an exact equation if the expression on the left-hand side is an
exact differential.

M(x, y) dx � N(x, y) dy � 0

For example, x2y3 dx � x3y2 dy � 0 is an exact equation, because its left-hand
side is an exact differential:

.

Notice that if we make the identifications M(x, y) � x2y3 and N(x, y) � x3y2, then
�M��y � 3x2y2 � �N��x. Theorem 2.4.1, given next, shows that the equality of the
partial derivatives �M��y and �N��x is no coincidence.

d 	1
3 x3 y3
 � x2y3 dx � x3y2 dy

THEOREM 2.4.1 Criterion for an Exact Differential

Let M(x, y) and N(x, y) be continuous and have continuous first partial
derivatives in a rectangular region R defined by a 
 x 
 b, c 
 y 
 d. Then a
necessary and sufficient condition that M(x, y) dx � N(x, y) dy be an exact
differential is

. (4)
�M
�y

�
�N
�x

PROOF OF THE NECESSITY For simplicity let us assume that M(x, y) and
N(x, y) have continuous first partial derivatives for all (x, y). Now if the expression
M(x, y) dx � N(x, y) dy is exact, there exists some function f such that for all x in R,

.

Therefore ,M(x, y) �
�f
�x

,    N(x, y) �
�f
�y

M(x, y) dx � N(x, y) dy �
�f
�x

 dx �
�f
�y

 dy
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and .

The equality of the mixed partials is a consequence of the continuity of the first par-
tial derivatives of M(x, y) and N(x, y).

The sufficiency part of Theorem 2.4.1 consists of showing that there exists a
function f for which �f ��x � M(x, y) and �f ��y � N(x, y) whenever (4) holds. The
construction of the function f actually reflects a basic procedure for solving exact
equations.

Method of Solution Given an equation in the differential form 

�M
�y

�
�

�y
 	�f

�x
 �
�2 f

�y �x
�

�

�x
 	�f

�y
 �
�N
�x

2.4 EXACT EQUATIONS ● 65

EXAMPLE 1 Solving an Exact DE

Solve 2xy dx � (x2 � 1) dy � 0.

SOLUTION With M(x, y) � 2xy and N(x, y) � x2 � 1 we have

.
�M
�y

� 2x �
�N
�x

M(x, y) dx � N(x, y) dy � 0, determine whether the equality in (4) holds. If it does,
then there exists a function f for which

.

We can find f by integrating M(x, y) with respect to x while holding y constant:

, (5)

where the arbitrary function g(y) is the “constant” of integration. Now differentiate
(5) with respect to y and assume that �f ��y � N(x, y):

This gives . (6)

Finally, integrate (6) with respect to y and substitute the result in (5). The implicit
solution of the equation is f (x, y) � c.

Some observations are in order. First, it is important to realize that the expres-
sion N(x, y) � (���y) � M(x, y) dx in (6) is independent of x, because

.

Second, we could just as well start the foregoing procedure with the assumption that
�f ��y � N(x, y). After integrating N with respect to y and then differentiating that
result, we would find the analogues of (5) and (6) to be, respectivel ,

.

In either case none of these formulas should be memorized.

f (x, y) � � N(x, y) dy � h(x)    and    h�(x) � M(x, y) �
�

�x
 � N(x, y) dy

�

�x
 �N(x, y) �

�

�y
 � M(x, y) dx � �

�N
�x

�
�

�y
 	 �

�x
 � M(x, y) dx
 �

�N
�x

�
�M
�y

� 0

g�(y) � N(x, y) �
�

�y
 � M(x, y) dx

�f
�y

�
�

�y
 � M(x, y) dx � g�(y) � N(x, y).

f (x, y) � � M(x, y) dx � g(y)

�f
�x

� M(x, y)

27069_02_ch02_p035-082.qxd  2/2/12  3:15 PM  Page 65

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



66 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

Thus the equation is exact, and so by Theorem 2.4.1 there exists a function f (x, y)
such that

.

From the first of these equations we obtain, after integrating

.

Taking the partial derivative of the last expression with respect to y and setting the
result equal to N(x, y) gives

. ; N(x, y)

It follows that g�(y) � �1 and g(y) � �y. Hence f (x, y) � x2y � y, so the solution
of the equation in implicit form is x2y � y � c. The explicit form of the solution is
easily seen to be y � c�(1 � x2) and is defined on any interval not containing either
x � 1 or x � �1.

Note The solution of the DE in Example 1 is not f (x, y) � x2y � y. Rather, it

�f
�y

� x2 � g�(y) � x2 � 1

f (x, y) � x2y � g(y)

�f
�x

� 2xy    and    
�f
�y

� x2 � 1

EXAMPLE 2 Solving an Exact DE

Solve (e2y � y cos xy) dx � (2xe2y � x cos xy � 2y) dy � 0.

SOLUTION The equation is exact because

.

Hence a function f (x, y) exists for which

.

Now, for variety, we shall start with the assumption that �f ��y � N(x, y); that is,

.

Remember, the reason x can come out in front of the symbol � is that in the integra-
tion with respect to y, x is treated as an ordinary constant. It follows that

, ;M(x, y)

and so h�(x) � 0 or h(x) � c. Hence a family of solutions is

xe2y � sin xy � y2 � c � 0.

 
�f
�x

� e2y � y cos xy � h�(x) � e2y � y cos xy

 f (x, y) � xe2y � sin xy � y2 � h(x)

 f (x, y) � 2x � e2y dy � x � cos xy dy � 2 � y dy

 
�f
�y

� 2xe2y � x cos xy � 2y

M(x, y) �
�f
�x

    and   N(x, y) �
�f
�y

�M
�y

� 2e2y � xy sin xy � cos xy �
�N
�x

is f (x, y) � c; if a constant is used in the integration of g�(y), we can then write the
solution as f (x, y) � 0. Note, too, that the equation could be solved by separation of
variables.

27069_02_ch02_p035-082.qxd  2/2/12  3:15 PM  Page 66

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



2.4 EXACT EQUATIONS ● 67

ear equation y� � P(x)y � f (x) can be transformed into a derivative when we multi-
ply the equation by an integrating factor. The same basic idea sometimes works for a
nonexact differential equation M(x, y) dx � N(x, y) dy � 0. That is, it is sometimes
possible to find an integrating factor �(x, y) so that after multiplying, the left-hand
side of

�(x, y)M(x, y) dx � �(x, y)N(x, y) dy � 0 (8)

is an exact differential. In an attempt to find �, we turn to the criterion (4) for exact-
ness. Equation (8) is exact if and only if (�M )y � (�N )x, where the subscripts
denote partial derivatives. By the Product Rule of differentiation the last equation is
the same as �My � �yM � �Nx � �xN or

�xN � �yM � (My � Nx)�. (9)

Although M, N, My, and Nx are known functions of x and y, the difficulty here in
determining the unknown �(x, y) from (9) is that we must solve a partial differential

EXAMPLE 3 An Initial-Value Problem

Solve  .

SOLUTION By writing the differential equation in the form

(cos x sin x � xy2) dx � y(1 � x2) dy � 0,

we recognize that the equation is exact because

.

Now

The last equation implies that h�(x) � cos x sin x. Integrating gives

.

Thus , (7)

where 2c1 has been replaced by c. The initial condition y � 2 when x � 0 demands
that 4(1) � cos2 (0) � c, and so c � 3. An implicit solution of the problem is then
y2(1 � x2) � cos2 x � 3.

The solution curve of the IVP is the curve drawn in blue in Figure 2.4.1;
it is part of an interesting family of curves. The graphs of the members of the one-
parameter family of solutions given in (7) can be obtained in several ways, two of
which are using software to graph level curves (as discussed in Section 2.2) and
using a graphing utility to carefully graph the explicit functions obtained for var-
ious values of c by solving y2 � (c � cos2 x)�(1 � x2) for y.

Integrating Factors Recall from Section 2.3 that the left-hand side of the lin-

y2

2
 (1 � x2) �

1
2
 cos2 x � c1    or    y2(1 � x2) � cos2 x � c

h(x) � �� (cos x)(�sin x dx) � � 1
2
 cos2 x

 
�f
�x

� �xy2 � h�(x) � cos x sin x � xy2.

 f (x, y) �
y2

2
 (1 � x2) � h(x)

 
�f
�y

� y(1 � x2)

�M
�y

� �2xy �
�N
�x

dy
dx

�
xy2 � cos x sin x

y(1 � x2)
, y(0) � 2

x

y

FIGURE 2.4.1 Solution curves of DE
in Example 3
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68 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

equation. Since we are not prepared to do that, we make a simplifying assumption.
Suppose � is a function of one variable; for example, say that � depends only on x. In
this case, �x � d��dx and �y � 0, so (9) can be written as

. (10)

We are still at an impasse if the quotient (My � Nx)�N depends on both x and y.
However, if after all obvious algebraic simplifications are made, the quotient
(My � Nx)�N turns out to depend solely on the variable x, then (10) is a first-orde
ordinary differential equation. We can finally determine � because (10) is separa-
ble as well as linear. It follows from either Section 2.2 or Section 2.3 that 
�(x) � e�(( � )/N )dx. In like manner, it follows from (9) that if � depends only on
the variable y, then

. (11)

In this case, if (Nx � My)�M is a function of y only, then we can solve (11) for �.
We summarize the results for the differential equation

M(x, y) dx � N(x, y) dy � 0. (12)

• If (My � Nx)�N is a function of x alone, then an integrating factor for (12) is

. (13)
• If (Nx � My)�M is a function of y alone, then an integrating factor for (12) is

. (14)�(y) � e
�Nx�My

M  
dy

�(x) � e
�My�Nx

N  
dx

d�

dy
�

Nx � My

M
 �

NxMy

d�

dx
�

My � Nx

N
 �

EXAMPLE 4 A Nonexact DE Made Exact

The nonlinear first-order di ferential equation

xy dx � (2x2 � 3y2 � 20) dy � 0

is not exact. With the identifications M � xy, N � 2x2 � 3y2 � 20, we find the partial
derivatives My � x and Nx � 4x. The first quotient from (13) gets us nowhere, since

depends on x and y. However, (14) yields a quotient that depends only on y:

.

The integrating factor is then e�3dy/y � e3lny � eln � y3. After we multiply the given
DE by �(y) � y3, the resulting equation is

xy4 dx � (2x2y3 � 3y5 � 20y3) dy � 0.

You should verify that the last equation is now exact as well as show, using the
method of this section, that a family of solutions is .1

2 x2y4 � 1
2 y6 � 5y4 � c

y3

Nx � My

M
�

4x � x
xy

�
3x
xy

�
3
y

My � Nx

N
�

x � 4x
2x2 � 3y2 � 20

�
�3x

2x2 � 3y2 � 20

REMARKS

(i) When testing an equation for exactness, make sure it is of the precise
form M(x, y) dx � N(x, y) dy � 0. Sometimes a differential equation 
is written G(x, y) dx � H(x, y) dy. In this case, first rewrite it as 
G(x, y) dx � H(x, y) dy � 0 and then identify M(x, y) � G(x, y) and 
N(x, y) � �H(x, y) before using (4).
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2.4 EXACT EQUATIONS ● 69

(ii) In some texts on differential equations the study of exact equations
precedes that of linear DEs. Then the method for finding integrating factors
just discussed can be used to derive an integrating factor for 
y� � P(x)y � f (x). By rewriting the last equation in the differential form
(P(x)y � f (x)) dx � dy � 0, we see that

.

From (13) we arrive at the already familiar integrating factor e�P(x)dx used in
Section 2.3.

My � Nx

N
� P(x)

EXERCISES 2.4 Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1–20 determine whether the given differential
equation is exact. If it is exact, solve it.

1. (2x � 1) dx � (3y � 7) dy � 0

2. (2x � y) dx � (x � 6y) dy � 0

3. (5x � 4y) dx � (4x � 8y3) dy � 0

4. (sin y � y sin x) dx � (cos x � x cos y � y) dy � 0

5. (2xy2 � 3) dx � (2x2y � 4) dy � 0

6.

7. (x2 � y2) dx � (x2 � 2xy) dy � 0

8.

9. (x � y3 � y2 sin x) dx � (3xy2 � 2y cos x) dy

10. (x3 � y3) dx � 3xy2 dy � 0

11.

12. (3x2y � ey) dx � (x3 � xey � 2y) dy � 0

13.

14.

15.

16. (5y � 2x)y� � 2y � 0

17. (tan x � sin x sin y) dx � cos x cos y dy � 0

18.

� (x � sin2 x � 4xyexy2) dy

(2y sin x cos x � y � 2y2exy2) dx

	x2y3 �
1

1 � 9x2
 
dx
dy

� x3y2 � 0

	1 �
3
y

� x
 
dy
dx

� y �
3
x

� 1

x 
dy
dx

� 2xex � y � 6x2

(y ln y � e�xy) dx � 	1
y

� x ln y
 dy � 0

	1 � ln x �
y
x
 dx � (1 � ln x) dy

	2y �
1
x

� cos 3x
 
dy
dx

�
y
x2 � 4x3 � 3y sin 3x � 0

19. (4t3y � 15t2 � y) dt � (t4 � 3y2 � t) dy � 0

20.

In Problems 21–26 solve the given initial-value problem.

21. (x � y)2 dx � (2xy � x2 � 1) dy � 0, y(1) � 1

22. (ex � y) dx � (2 � x � yey) dy � 0, y(0) � 1

23. (4y � 2t � 5) dt � (6y � 4t � 1) dy � 0, y(�1) � 2

24.

25. (y2 cos x � 3x2y � 2x) dx
� (2y sin x � x3 � ln y) dy � 0, y(0) � e

26. , 

In Problems 27 and 28 find the value of k so that the given
differential equation is exact.

27. (y3 � kxy4 � 2x) dx � (3xy2 � 20x2y3) dy � 0

28. (6xy3 � cos y) dx � (2kx2y2 � x sin y) dy � 0

In Problems 29 and 30 verify that the given differential
equation is not exact. Multiply the given differential equa-
tion by the indicated integrating factor �(x, y) and verify that
the new equation is exact. Solve.

29. (�xy sin x � 2y cos x) dx � 2x cos x dy � 0;
�(x, y) � xy

30. (x2 � 2xy � y2) dx � (y2 � 2xy � x2) dy � 0;
�(x, y) � (x � y)�2

In Problems 31–36 solve the given differential equation by
finding, as in Example 4, an appropriate integrating factor.

31. (2y2 � 3x) dx � 2xy dy � 0

32. y(x � y � 1) dx � (x � 2y) dy � 0

y(0) � 1	 1
1 � y2 � cos x � 2xy
 

dy
dx

� y(y � sin x)

	3y2 � t2

y5 
 
dy
dt

�
t

2y4 � 0, y(1) � 1

	1
t

�
1
t2 �

y
t2 � y2
 dt � 	yey �

t
t2 � y2
 dy � 0
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33. 6xy dx � (4y � 9x2) dy � 0

34.

35. (10 � 6y � e�3x) dx � 2 dy � 0

36. (y2 � xy3) dx � (5y2 � xy � y3 sin y) dy � 0

In Problems 37 and 38 solve the given initial-value problem
by finding as in Example 4, an appropriate integrating factor.

37. x dx � (x2y � 4y) dy � 0, y(4) � 0

38. (x2 � y2 � 5) dx � (y � xy) dy, y(0) � 1

39. (a) Show that a one-parameter family of solutions of
the equation

(4xy � 3x2) dx � (2y � 2x2) dy � 0
is x3 � 2x2y � y2 � c.

(b) Show that the initial conditions y(0) � �2 and 
y(1) � 1 determine the same implicit solution.

(c) Find explicit solutions y1(x) and y2(x) of the dif-
ferential equation in part (a) such that y1(0) � �2
and y2(1) � 1. Use a graphing utility to graph y1(x)
and y2(x).

Discussion Problems

40. Consider the concept of an integrating factor used in
Problems 29–38. Are the two equations M dx � N dy � 0
and �M dx � �N dy � 0 necessarily equivalent in the
sense that a solution of one is also a solution of the other?
Discuss.

41. Reread Example 3 and then discuss why we can con-
clude that the interval of definition of the explicit
solution of the IVP (the blue curve in Figure 2.4.1) is
(�1, 1).

42. Discuss how the functions M(x, y) and N(x, y) can be
found so that each differential equation is exact. Carry
out your ideas.

(a)

(b)

43. Differential equations are sometimes solved by
having a clever idea. Here is a little exercise in
cleverness: Although the differential equation 
(x � ) dx � y dy � 0 is not exact, show how
the rearrangement (x dx � y dy) � dx and
the observation d(x2 � y2) � x dx � y dy can lead to
a solution.

44. True or False: Every separable first-order equation
dy�dx � g(x)h(y) is exact.

1
2

�1x2 � y2
1x2 � y2

	x�1/2y1/2 �
x

x2 � y
 dx � N(x, y) dy � 0

M(x, y) dx � 	xexy � 2xy �
1
x
 dy � 0

cos x dx � 	1 �
2
y
 sin x dy � 0

Mathematical Model

45. Falling Chain A portion of a uniform chain of length
8 ft is loosely coiled around a peg at the edge of a high
horizontal platform, and the remaining portion of the
chain hangs at rest over the edge of the platform. See
Figure 2.4.2. Suppose that the length of the overhang-
ing chain is 3 ft, that the chain weighs 2 lb/ft, and that
the positive direction is downward. Starting at t � 0
seconds, the weight of the overhanging portion causes
the chain on the table to uncoil smoothly and to fall to
the floo . If x(t) denotes the length of the chain over-
hanging the table at time t 	 0, then v � dx�dt is its
velocity. When all resistive forces are ignored, it can
be shown that a mathematical model relating v to x is
given by

.

(a) Rewrite this model in differential form. Proceed as
in Problems 31–36 and solve the DE for v in terms
of x by finding an appropriate integrating factor.
Find an explicit solution v(x).

(b) Determine the velocity with which the chain leaves
the platform.

xv 
dv
dx

� v2 � 32x

70 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

x(t)

platform edge

peg

FIGURE 2.4.2 Uncoiling chain in Problem 45

Computer Lab Assignments

46. Streamlines
(a) The solution of the differential equation

is a family of curves that can be interpreted as
streamlines of a fluid flow around a circular object
whose boundary is described by the equation
x2 � y2 � 1. Solve this DE and note the solution
f (x, y) � c for c � 0.

(b) Use a CAS to plot the streamlines for
c � 0, �0.2, �0.4, �0.6, and �0.8 in three
different ways. First, use the contourplot of a CAS.
Second, solve for x in terms of the variable y. Plot
the resulting two functions of y for the given values
of c, and then combine the graphs. Third, use the
CAS to solve a cubic equation for y in terms of x.

2xy
(x2 � y2)2 dx � �1 �

y2 � x2

(x2 � y2)2 � dy � 0
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2.5 SOLUTIONS BY SUBSTITUTIONS ● 71

SOLUTIONS BY SUBSTITUTIONS

REVIEW MATERIAL
● Techniques of integration
● Separation of variables
● Solution of linear DEs

INTRODUCTION We usually solve a differential equation by recognizing it as a certain kind of
equation (say, separable, linear, or exact) and then carrying out a procedure, consisting of equation-
specific mathematical steps, that yields a solution of the equation. But it is not uncommon to be
stumped by a differential equation because it does not fall into one of the classes of equations that
we know how to solve. The procedures that are discussed in this section may be helpful in this
situation.

2.5

Substitutions Often the first step in solving a differential equation consists
of transforming it into another differential equation by means of a substitution.
For example, suppose we wish to transform the first-order differential equation
dy�dx � f (x, y) by the substitution y � g(x, u), where u is regarded as a function of
the variable x. If g possesses first-partial derivatives, then the Chain Rul

.

If we replace dy�dx by the foregoing derivative and replace y in f (x, y) by g(x, u), then

the DE dy�dx � f (x, y) becomes gx(x, u) � gu(x, u) � f (x, g(x, u)), which, solved

for du�dx, has the form � F(x, u). If we can determine a solution u � �(x) of this 

last equation, then a solution of the original differential equation is y � g(x, �(x)).
In the discussion that follows we examine three different kinds of first-orde

differential equations that are solvable by means of a substitution.

Homogeneous Equations If a function f possesses the property f (tx, ty) �

du
dx

du
dx

dy
dx

�
�g
�x

 
dx
dx

�
�g
�u

 
du
dx

    gives    
dy
dx

� gx(x, u) � gu(x, u) 
du
dx

t� f (x, y) for some real number �, then f is said to be a homogeneous function of
degree �. For example, f (x, y) � x3 � y3 is a homogeneous function of degree 3,
since

f (tx, ty) � (tx)3 � (ty)3 � t3(x3 � y3) � t3f (x, y),

whereas f (x, y) � x3 � y3 � 1 is not homogeneous. A first-order DE in differential
form

M(x, y) dx � N(x, y) dy � 0 (1)

is said to be homogeneous* if both coefficient functions M and N are homogeneous
functions of the same degree. In other words, (1) is homogeneous if

.

In addition, if M and N are homogeneous functions of degree �, we can also write

, (2)M(x, y) � x�M(1, u)    and    N(x, y) � x�N(1, u),  where u � y>x

M(tx, ty) � t�M(x, y)    and    N(tx, ty) � t�N(x, y)

*Here the word homogeneous does not mean the same as it did in the Remarks at the end of Section 2.3.
Recall that a linear first-order equation a1(x)y� � a0(x)y � g(x) is homogeneous when g(x) � 0.
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72 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

and

. (3)

See Problem 31 in Exercises 2.5. Properties (2) and (3) suggest the substitutions that can
be used to solve a homogeneous differential equation. Specificall , either of the substi-
tutions y � ux or x � vy, where u and v are new dependent variables, will reduce a
homogeneous equation to a separable first-orde differential equation. To show this, ob-
serve that as a consequence of (2) a homogeneous equation M(x, y) dx � N(x, y) dy � 0
can be rewritten as

,

where u � y�x or y � ux. By substituting the differential dy � u dx � x du into the
last equation and gathering terms, we obtain a separable DE in the variables u and x:

or .

At this point we offer the same advice as in the preceding sections: Do not memorize
anything here (especially the last formula); rather, work through the procedure each
time. The proof that the substitutions x � vy and dx � v dy � y dv also lead to a
separable equation follows in an analogous manner from (3).

 
dx
x

�
N(1, u) du

M(1, u) � uN(1, u)
� 0

 [M(1, u) � uN(1, u)] dx � xN(1, u) du � 0

 M(1, u) dx � N(1, u)[u dx � x du] � 0

x�M(1, u) dx � x�N(1, u) dy � 0    or    M(1, u) dx � N(1, u) dy � 0

M(x, y) � y�M(v, 1)    and    N(x, y) � y�N(v, 1),  where v � x>y

EXAMPLE 1 Solving a Homogeneous DE

Solve (x2 � y2) dx � (x2 � xy) dy � 0.

SOLUTION Inspection of M(x, y) � x2 � y2 and N(x, y) � x2 � xy shows that
these coefficients are homogeneous functions of degree 2. If we let y � ux, then
dy � u dx � x du, so after substituting, the given equation becomes

.

After integration the last line gives

.

Using the properties of logarithms, we can write the preceding solution as

.

Although either of the indicated substitutions can be used for every homoge-
neous differential equation, in practice we try x � vy whenever the function M(x, y)
is simpler than N(x, y). Also it could happen that after using one substitution, we may
encounter integrals that are difficult or impossible to evaluate in closed form; switch-
ing substitutions may result in an easier problem.

ln �(x � y)2

cx � �
y
x
    or    (x � y)2 � cxey/x

 � y
x

� 2 ln �1 �
y
x � � ln� x � � ln�c �

 �u � 2 ln� 1 � u � � ln� x � � ln� c �

 ��1 �
2

1 � u� du �
dx
x

� 0

 
1 � u
1 � u

 du �
dx
x

� 0

 x2 (1 � u) dx � x3(1 � u) du � 0

 (x2 � u2x2) dx � (x2 � ux2)[u dx � x du] � 0

; long division

; resubstituting u � y�x
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Bernoulli’s Equation The differential equation

, (4)

where n is any real number, is called Bernoulli’s equation. Note that for n � 0 and
n � 1, equation (4) is linear. For n � 0 and n � 1 the substitution u � y1�n reduces
any equation of form (4) to a linear equation.

dy
dx

� P(x)y � f (x)yn

2.5 SOLUTIONS BY SUBSTITUTIONS ● 73

EXAMPLE 2 Solving a Bernoulli DE

Solve  

SOLUTION We first rewrite the equation a

by dividing by x. With n � 2 we have u � y�1 or y � u�1. We then substitute

into the given equation and simplify. The result is

.

The integrating factor for this linear equation on, say, (0, �) is

.

Integrating

gives x�1u � �x � c or u � �x2 � cx. Since u � y�1, we have y � 1�u, so a solu-
tion of the given equation is y � 1�(�x2 � cx).

Note that we have not obtained the general solution of the original nonlinear dif-
ferential equation in Example 2, since y � 0 is a singular solution of the equation.

Reduction to Separation of Variables A differential equation of the form

(5)

can always be reduced to an equation with separable variables by means of the sub-
stitution u � Ax � By � C, B � 0. Example 3 illustrates the technique.

dy
dx

� f (Ax � By � C)

d
dx

 [x�1u] � �1

e��dx/x � e�ln x � eln x�1
� x�1

du
dx

�
1
x
 u � �x

dy
dx

�
dy
du

 
du
dx

� �u�2 
du
dx

dy
dx

�
1
x
 y � xy2

x 
dy
dx

� y � x2y2.

; Chain Rule

EXAMPLE 3 An Initial-Value Problem

Solve  

SOLUTION If we let u � �2x � y, then du�dx � �2 � dy�dx, so the differential
equation is transformed into

.
du
dx

� 2 � u2 � 7    or    
du
dx

� u2 � 9

dy
dx

� (�2x � y)2 � 7,  y(0) � 0.
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; replace by ce6c1

x

y

FIGURE 2.5.1 Solutions of DE in
Example 3

74 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

The last equation is separable. Using partial fractions

and then integrating yields

.

Solving the last equation for u and then resubstituting gives the solution

. (6)

Finally, applying the initial condition y(0) � 0 to the last equation in (6) gives 
c � �1. Figure 2.5.1, obtained with the aid of a graphing utility, shows the graph of

the particular solution in dark blue, along with the graphs of

some other members of the family of solutions (6).

y � 2x �
3(1 � e6x)

1 � e6x

u �
3(1 � ce6x)

1 � ce6x     or    y � 2x �
3(1 � ce6x)

1 � ce6x

1
6
 ln �u � 3

u � 3 � � x � c1    or    
u � 3
u � 3

� e6x�6c1 � ce6x

du
(u � 3)(u � 3)

� dx    or    
1
6
 � 1

u � 3
�

1
u � 3� du � dx

EXERCISES 2.5 Answers to selected odd-numbered problems begin on page ANS-2.

Each DE in Problems 1–14 is homogeneous.

In Problems 1–10 solve the given differential equation by
using an appropriate substitution.

1. (x � y) dx � x dy � 0 2. (x � y) dx � x dy � 0

3. x dx � (y � 2x) dy � 0 4. y dx � 2(x � y) dy 

5. (y2 � yx) dx � x2 dy � 0

6. (y2 � yx) dx � x2 dy � 0

7.

8.

9.

10.

In Problems 11–14 solve the given initial-value problem.

11.

12.

13. (x � yey/x) dx � xey/x dy � 0, y(1) � 0

14. y dx � x(ln x � ln y � 1) dy � 0, y(1) � e

(x2 � 2y2) 
dx
dy

� xy, y(�1) � 1

xy2 
dy
dx

� y3 � x3, y(1) � 2

x 
dy
dx

� y � 1x2 � y2, x 	 0

�y dx � (x � 1xy) dy � 0

dy
dx

�
x � 3y
3x � y

dy
dx

�
y � x
y � x

Each DE in Problems 15–22 is a Bernoulli equation.

In Problems 15–20 solve the given differential equation by
using an appropriate substitution.

15. 16.

17. 18.

19. 20.

In Problems 21 and 22 solve the given initial-value problem.

21.

22.

Each DE in Problems 23–30 is of the form given in (5).

In Problems 23–28 solve the given differential equation by
using an appropriate substitution.

23. 24.

25. 26.

27. 28.
dy
dx

� 1 � ey�x�5dy
dx

� 2 � 1y � 2x � 3

dy
dx

� sin(x � y)
dy
dx

� tan2(x � y)

dy
dx

�
1 � x � y

x � y
dy
dx

� (x � y � 1)2

y1/2 
dy
dx

� y3/2 � 1, y(0) � 4

x2 
dy
dx

� 2xy � 3y4, y(1) � 1
2

3(1 � t2) 
dy
dt

� 2ty( y3 � 1)t2 
dy
dt

� y2 � ty

x 
dy
dx

� (1 � x)y � xy2dy
dx

� y (xy3 � 1)

dy
dx

� y � exy2x 
dy
dx

� y �
1
y2
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2.6 A NUMERICAL METHOD ● 75

In Problems 29 and 30 solve the given initial-value problem.

29.

30.

Discussion Problems

31. Explain why it is always possible to express any homoge-
neous differential equation M(x, y) dx � N(x, y) dy � 0 in
the form

.

You might start by proving that

.

32. Put the homogeneous differential equation

(5x2 � 2y2) dx � xy dy � 0

into the form given in Problem 31.
33. (a) Determine two singular solutions of the DE in

Problem 10.
(b) If the initial condition y(5) � 0 is as prescribed in

Problem 10, then what is the largest interval I over
which the solution is defined? Use a graphing util-
ity to graph the solution curve for the IVP.

34. In Example 3 the solution y(x) becomes unbounded as
x : ��. Nevertheless, y(x) is asymptotic to a curve as
x : �� and to a different curve as x : �. What are the
equations of these curves?

35. The differential equation dy�dx � P(x) � Q(x)y � R(x)y2

is known as Riccati’s equation.

(a) A Riccati equation can be solved by a succession
of two substitutions provided that we know a

M(x, y) � xaM(1, y>x)    and    N(x, y) � xaN(1, y>x)

dy
dx

� F 	y
x


dy
dx

�
3x � 2y

3x � 2y � 2
, y (�1) � �1

dy
dx

� cos(x � y), y(0) � 
>4

particular solution y1 of the equation. Show that the
substitution y � y1 � u reduces Riccati’s equation
to a Bernoulli equation (4) with n � 2. The
Bernoulli equation can then be reduced to a linear
equation by the substitution w � u�1.

(b) Find a one-parameter family of solutions for the
differential equation

where y1 � 2�x is a known solution of the equation.
36. Determine an appropriate substitution to solve

xy� � y ln(xy).

Mathematical Models

37. Falling Chain In Problem 45 in Exercises 2.4 we saw
that a mathematical model for the velocity v of a chain
slipping off the edge of a high horizontal platform is

.

In that problem you were asked to solve the DE by con-
verting it into an exact equation using an integrating
factor. This time solve the DE using the fact that it is a
Bernoulli equation.

38. Population Growth In the study of population dy-
namics one of the most famous models for a growing
but bounded population is the logistic equation

,

where a and b are positive constants. Although we
will come back to this equation and solve it by an
alternative method in Section 3.2, solve the DE this
first time using the fact that it is a Bernoulli equation.

dP
dt

� P(a � bP)

xv 
dv
dx

� v2 � 32x

dy
dx

� � 4
x2 �

1
x
 y � y2

A NUMERICAL METHOD

INTRODUCTION A first-order differential equation dy�dx � f (x, y) is a source of information.
We started this chapter by observing that we could garner qualitative information from a first-orde
DE about its solutions even before we attempted to solve the equation. Then in Sections 2.2–2.5 we
examined first-order DEs analytically—that is, we developed some procedures for obtaining explicit
and implicit solutions. But a differential equation can a possess a solution, yet we may not be able
to obtain it analytically. So to round out the picture of the different types of analyses of differential
equations, we conclude this chapter with a method by which we can “solve” the differential equa-
tion numerically—this means that the DE is used as the cornerstone of an algorithm for approximat-
ing the unknown solution.

In this section we are going to develop only the simplest of numerical methods—a method that
utilizes the idea that a tangent line can be used to approximate the values of a function in a small
neighborhood of the point of tangency. A more extensive treatment of numerical methods for ordi-
nary differential equations is given in Chapter 9.

2.6
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76 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

Using the Tangent Line Let us assume that the first-order initial-value
problem

(1)

possesses a solution. One way of approximating this solution is to use tangent lines.
For example, let y(x) denote the unknown solution of the first-order initial-value
problem The nonlinear differential equation in
this IVP cannot be solved directly by any of the methods considered in Sections 2.2,
2.4, and 2.5; nevertheless, we can still find approximate numerical values of the
unknown y(x). Specificall , suppose we wish to know the value of y(2.5). The IVP
has a solution, and as the flow of the direction field of the DE in Figure 2.6.1(a) sug-
gests, a solution curve must have a shape similar to the curve shown in blue.

The direction field in Figure 2.6.1(a) was generated with lineal elements passing
through points in a grid with integer coordinates. As the solution curve passes
through the initial point (2, 4), the lineal element at this point is a tangent line with
slope given by As is apparent in Figure 2.6.1(a)
and the “zoom in” in Figure 2.6.1(b), when x is close to 2, the points on the solution
curve are close to the points on the tangent line (the lineal element). Using the point
(2, 4), the slope f (2, 4) � 1.8, and the point-slope form of a line, we find that an equa-
tion of the tangent line is y � L(x), where L(x) � 1.8x � 0.4. This last equation,
called a linearization of y(x) at x � 2, can be used to approximate values of y(x)
within a small neighborhood of x � 2. If y1 � L(x1) denotes the y-coordinate on the
tangent line and y(x1) is the y-coordinate on the solution curve corresponding to an
x-coordinate x1 that is close to x � 2, then y(x1) � y1. If we choose, say, x1 � 2.1,
then y1 � L(2.1) � 1.8(2.1) � 0.4 � 4.18, so y(2.1) � 4.18.

f (2, 4) � 0.114 � 0.4(2)2 � 1.8.

y� � 0.11y � 0.4x2, y(2) � 4.

y� �  f (x, y), y(x0) � y0

2

(2, 4) slope 
m  = 1.8 

x

y

2

4

_2

(a) direction field for y � 0 (b) lineal element
at (2, 4)

e 
solution 
curv 

FIGURE 2.6.1 Magnification of a neighborhood about the point (2, 4

solution curv e 

x

y

x1 = +x0 hx0

L(x)

(x0, y0)
(x1, y1)

h

(x1, y(x1))

slope = f(x0, y0)

error

FIGURE 2.6.2 Approximating y(x1)
using a tangent line

Euler’s Method To generalize the procedure just illustrated, we use the lin-

*This is not an actual tangent line, since (x1, y1) lies on the first tangent and not on the solution curve

earization of the unknown solution y(x) of (1) at x � x0:

. (2)

The graph of this linearization is a straight line tangent to the graph of y � y(x) at
the point (x0, y0). We now let h be a positive increment of the x-axis, as shown in
Figure 2.6.2. Then by replacing x by x1 � x0 � h in (2), we get

,

where y1 � L(x1). The point (x1, y1) on the tangent line is an approximation to the
point (x1, y(x1)) on the solution curve. Of course, the accuracy of the approxima-
tion L(x1) � y(x1) or y1 � y(x1) depends heavily on the size of the increment h.
Usually, we must choose this step size to be “reasonably small.” We now repeat the
process using a second “tangent line” at (x1, y1).* By identifying the new starting

L(x1) � y0 � f (x0, y0)(x0 � h � x0)    or    y1 � y0 � hf (x1, y1)

L(x) � y0 � f (x0, y0)(x � x0)
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TABLE 2.6.1 h � 0.1

xn yn

2.00 4.0000
2.10 4.1800
2.20 4.3768
2.30 4.5914
2.40 4.8244
2.50 5.0768

TABLE 2.6.2 h � 0.05

xn yn

2.00 4.0000
2.05 4.0900
2.10 4.1842
2.15 4.2826
2.20 4.3854
2.25 4.4927
2.30 4.6045
2.35 4.7210
2.40 4.8423
2.45 4.9686
2.50 5.0997

2.6 A NUMERICAL METHOD ● 77

point as (x1, y1) with (x0, y0) in the above discussion, we obtain an approximation 
y2 � y(x2) corresponding to two steps of length h from x0, that is, x2 � x1 � h �
x0 � 2h, and

.

Continuing in this manner, we see that y1, y2, y3, . . . , can be defined recursively by
the general formula

, (3)

where xn � x0 � nh, n � 0, 1, 2, . . . . This procedure of using successive “tangent
lines” is called Euler’s method.

yn�1 � yn � hf (xn, yn)

y(x2) � y(x0 � 2h) � y(x1 � h) � y2 � y1 � hf (x1, y1)

EXAMPLE 1 Euler’s Method

Consider the initial-value problem Use Euler’s
method to obtain an approximation of y(2.5) using first h � 0.1 and then h � 0.05.

SOLUTION With the identification (3) becomes

.

Then for h � 0.1, x0 � 2, y0 � 4, and n � 0 we fin

,

which, as we have already seen, is an estimate to the value of y(2.1). However, if we
use the smaller step size h � 0.05, it takes two steps to reach x � 2.1. From

we have y1 � y(2.05) and y2 � y(2.1). The remainder of the calculations were
carried out by using software. The results are summarized in Tables 2.6.1 and 2.6.2,
where each entry has been rounded to four decimal places. We see in Tables 2.6.1 and
2.6.2 that it takes five steps with h � 0.1 and 10 steps with h � 0.05, respectively, to
get to x � 2.5. Intuitively, we would expect that y10 � 5.0997 corresponding to
h � 0.05 is the better approximation of y(2.5) than the value y5 � 5.0768 corre-
sponding to h � 0.1.

In Example 2 we apply Euler’s method to a differential equation for which we
have already found a solution. We do this to compare the values of the approxima-
tions yn at each step with the true or actual values of the solution y(xn) of the initial-
value problem.

y2 � 4.09 � 0.05(0.114.09 � 0.4(2.05)2) � 4.18416187

y1 � 4 � 0.05(0.114 � 0.4(2)2) � 4.09

y1 � y0 � h(0.11y0 � 0.4x0
2) � 4 � 0.1(0.114 � 0.4(2)2) � 4.18

yn�1 � yn � h(0.11yn � 0.4xn
2)

f (x, y) � 0.11y � 0.4x2,

y� � 0.11y � 0.4x2, y(2) � 4.

EXAMPLE 2 Comparison of Approximate and Actual Values

Consider the initial-value problem y� � 0.2xy, y(1) � 1. Use Euler’s method to
obtain an approximation of y(1.5) using first h � 0.1 and then h � 0.05.

SOLUTION With the identification f (x, y) � 0.2xy, (3) becomes

where x0 � 1 and y0 � 1. Again with the aid of computer software we obtain the
values in Tables 2.6.3 and 2.6.4 on page 78.

yn�1 � yn � h(0.2xn yn)
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78 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

In Example 1 the true or actual values were calculated from the known solution
(Verify.) The absolute error is defined to b

.

The relative error and percentage relative error are, in turn,

.

It is apparent from Tables 2.6.3 and 2.6.4 that the accuracy of the approximations
improves as the step size h decreases. Also, we see that even though the percentage
relative error is growing with each step, it does not appear to be that bad. But you
should not be deceived by one example. If we simply change the coefficient of the
right side of the DE in Example 2 from 0.2 to 2, then at xn � 1.5 the percentage
relative errors increase dramatically. See Problem 4 in Exercises 2.6.

A Caveat Euler’s method is just one of many different ways in which a solu-
tion of a differential equation can be approximated. Although attractive for its sim-
plicity, Euler’s method is seldom used in serious calculations. It was introduced
here simply to give you a first taste of numerical methods. We will go into greater
detail in discussing numerical methods that give significantly greater accuracy, no-
tably the fourth order Runge-Kutta method, referred to as the RK4 method, in
Chapter 9.

Numerical Solvers Regardless of whether we can actually fin an explicit
or implicit solution, if a solution of a differential equation exists, it represents a
smooth curve in the Cartesian plane. The basic idea behind any numerical method
for first-orde ordinary differential equations is to somehow approximate the
y-values of a solution for preselected values of x. We start at a specifie initial point
(x0, y0) on a solution curve and proceed to calculate in a step-by-step fashion a
sequence of points (x1, y1), (x2, y2), . . . , (xn, yn) whose y-coordinates yi approxi-
mate the y-coordinates y(xi) of points (x1, y(x1)), (x2, y(x2)), . . . , (xn, y(xn)) that lie
on the graph of the usually unknown solution y(x). By taking the x-coordinates
close together (that is, for small values of h) and by joining the points (x1, y1),
(x2, y2), . . . , (xn, yn) with short line segments, we obtain a polygonal curve whose
qualitative characteristics we hope are close to those of an actual solution curve.
Drawing curves is something that is well suited to a computer. A computer program
written to either implement a numerical method or render a visual representation of
an approximate solution curve fittin the numerical data produced by this method
is referred to as a numerical solver. Many different numerical solvers are commer-
cially available, either embedded in a larger software package, such as a computer

absolute error
� actual value �

  and  
absolute error
� actual value �

� 100

� actual value � approximation �

y � e0.1(x2�1).

TABLE 2.6.3 h � 0.1

xn yn Actual value Abs. error % Rel. error

1.00 1.0000 1.0000 0.0000 0.00
1.10 1.0200 1.0212 0.0012 0.12
1.20 1.0424 1.0450 0.0025 0.24
1.30 1.0675 1.0714 0.0040 0.37
1.40 1.0952 1.1008 0.0055 0.50
1.50 1.1259 1.1331 0.0073 0.64

TABLE 2.6.4 h � 0.05

xn yn Actual value Abs. error % Rel. error

1.00 1.0000 1.0000 0.0000 0.00
1.05 1.0100 1.0103 0.0003 0.03
1.10 1.0206 1.0212 0.0006 0.06
1.15 1.0318 1.0328 0.0009 0.09
1.20 1.0437 1.0450 0.0013 0.12
1.25 1.0562 1.0579 0.0016 0.16
1.30 1.0694 1.0714 0.0020 0.19
1.35 1.0833 1.0857 0.0024 0.22
1.40 1.0980 1.1008 0.0028 0.25
1.45 1.1133 1.1166 0.0032 0.29
1.50 1.1295 1.1331 0.0037 0.32
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algebra system, or provided as a stand-alone package. Some software packages
simply plot the generated numerical approximations, whereas others generate hard
numerical data as well as the corresponding approximate or numerical solution
curves. By way of illustration of the connect-the-dots nature of the graphs pro-
duced by a numerical solver, the two colored polygonal graphs in Figure 2.6.3 are
the numerical solution curves for the initial-value problem y� � 0.2xy, y(0) � 1 on
the interval [0, 4] obtained from Euler’s method and the RK4 method using the
step size h � 1. The blue smooth curve is the graph of the exact solution
of the IVP. Notice in Figure 2.6.3 that, even with the ridiculously large step size of
h � 1, the RK4 method produces the more believable “solution curve.” The numer-
ical solution curve obtained from the RK4 method is indistinguishable from the
actual solution curve on the interval [0, 4] when a more typical step size of h � 0.1
is used.

Using a Numerical Solver Knowledge of the various numerical methods is
not necessary in order to use a numerical solver. A solver usually requires that the dif-
ferential equation be expressed in normal form dy�dx � f (x, y). Numerical solvers
that generate only curves usually require that you supply f (x, y) and the initial data x0
and y0 and specify the desired numerical method. If the idea is to approximate the nu-
merical value of y(a), then a solver may additionally require that you state a value for
h or, equivalently, give the number of steps that you want to take to get from x � x0
to x � a. For example, if we wanted to approximate y(4) for the IVP illustrated in
Figure 2.6.3, then, starting at x � 0 it would take four steps to reach x � 4 with a step
size of h � 1; 40 steps is equivalent to a step size of h � 0.1. Although we will not
delve here into the many problems that one can encounter when attempting to ap-
proximate mathematical quantities, you should at least be aware of the fact that a nu-
merical solver may break down near certain points or give an incomplete or mislead-
ing picture when applied to some first-order differential equations in the normal
form. Figure 2.6.4 illustrates the graph obtained by applying Euler’s method to a cer-
tain first-order initial-value problem dy�dx � f (x, y), y(0) � 1. Equivalent results
were obtained using three different commercial numerical solvers, yet the graph is
hardly a plausible solution curve. (Why?) There are several avenues of recourse
when a numerical solver has difficulties; three of the more obvious are decrease the
step size, use another numerical method, and try a different numerical solver.

y � e0.1x2

FIGURE 2.6.4 A not-very helpful
numerical solution curve

x

y
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exact 
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method
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FIGURE 2.6.3 Comparison of the
Runge-Kutta (RK4) and Euler methods

EXERCISES 2.6 Answers to selected odd-numbered problems begin on page ANS-3.

In Problems 1 and 2 use Euler’s method to obtain a four-
decimal approximation of the indicated value. Carry out the
recursion of (3) by hand, first using h � 0.1 and then using
h � 0.05.

1. y� � 2x � 3y � 1, y(1) � 5; y(1.2)

2. y� � x � y2, y(0) � 0; y(0.2)

In Problems 3 and 4 use Euler’s method to obtain a four-
decimal approximation of the indicated value. First use 
h � 0.1 and then use h � 0.05. Find an explicit solution for
each initial-value problem and then construct tables similar to
Tables 2.6.3 and 2.6.4.

3. y� � y, y(0) � 1; y(1.0)

4. y� � 2xy, y(1) � 1; y(1.5)

In Problems 5–10 use a numerical solver and Euler’s
method to obtain a four-decimal approximation of the indi-
cated value. First use h � 0.1 and then use h � 0.05.

5. y� � e�y, y(0) � 0; y(0.5)

6. y� � x2 � y2, y(0) � 1; y(0.5)

7. y� � (x � y)2, y(0) � 0.5; y(0.5)

8.

9.

10. y� � y � y2, y(0) � 0.5; y(0.5)

In Problems 11 and 12 use a numerical solver to obtain a nu-
merical solution curve for the given initial-value problem.
First use Euler’s method and then the RK4 method. Use

y� � xy2 �
y
x
, y(1) � 1; y(1.5)

y� � xy � 1y, y(0) � 1; y(0.5)
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80 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

h � 0.25 in each case. Superimpose both solution curves on
the same coordinate axes. If possible, use a different color
for each curve. Repeat, using h � 0.1 and h � 0.05.

11. y� � 2(cos x)y, y(0) � 1

12. y� � y(10 � 2y), y(0) � 1

Discussion Problems

13. Use a numerical solver and Euler’s method to
approximate y(1.0), where y(x) is the solution to
y� � 2xy2, y(0) � 1. First use h � 0.1 and then use 
h � 0.05. Repeat, using the RK4 method. Discuss
what might cause the approximations to y(1.0) to
differ so greatly.

Computer Lab Assignments

14. (a) Use a numerical solver and the RK4 method to
graph the solution of the initial-value problem
y� � �2xy � 1, y(0) � 0.

(b) Solve the initial-value problem by one of the
analytic procedures developed earlier in this
chapter.

(c) Use the analytic solution y(x) found in part (b)
and a CAS to find the coordinates of all relative
extrema.

CHAPTER 2 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-3.

Answer Problems 1–12 without referring back to the text.
Fill in the blanks or answer true or false.

1. The linear DE, y� � ky � A, where k and A are constants,
is autonomous. The critical point of the equa-
tion is a(n) (attractor or repeller) for k 	 0
and a(n) (attractor or repeller) for k 
 0.

2. The initial-value problem x � 4y � 0, y(0) � k, has

an infinite number of solutions for k � and
no solution for k � .

3. The linear DE, y� � k1y � k2, where k1 and k2 are
nonzero constants, always possesses a constant 
solution.

4. The linear DE, a1(x)y� � a0(x)y � 0 is also separable.

5. An example of a nonlinear third-order differential equa-
tion in normal form is .

6. The first-order DE is not separa-
ble. 

7. Every autonomous DE is separable.

8. By inspection, two solutions of the differential equation
are .

9. If then .

10. If a differentiable function satisfies
then .y(x) �y(�1) � 2,

y� � � x �,y(x)

y �y� � exy,

y� � � y � � 2

dy>dx � f(y)

dr
du

� ru � r � u � 1

dy
dx

11. is a solution of the linear first-orde

differential equation .

12. An example of an autonomous linear first-order DE with
a single critical point is , whereas an
autonomous nonlinear first-order DE with a single criti-
cal point is .

In Problems 13 and 14 construct an autonomous first-orde
differential equation dy�dx � f (y) whose phase portrait is
consistent with the given figure

13.

�3

�3

y � ecos x�x

0
te�cos t dt

1

3

y

FIGURE 2.R.1 Graph for Problem 13

14.

0

2

4

y

FIGURE 2.R.2 Graph for Problem 14
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CHAPTER 2 IN REVIEW ● 81

15. The number 0 is a critical point of the autonomous dif-
ferential equation dx�dt � xn, where n is a positive in-
teger. For what values of n is 0 asymptotically stable?
Semi-stable? Unstable? Repeat for the differential equa-
tion dx�dt � �xn.

16. Consider the differential equation 

The function f (P) has one real zero, as shown in
Figure 2.R.3. Without attempting to solve the differen-
tial equation, estimate the value of limt:� P(t).

f (P) � �0.5P 3 � 1.7P � 3.4.

dP>dt � f (P), where

(g) y dx � (y � xy2) dy (h)

(i) xy y� � y2 � 2x ( j) 2xy y� � y2 � 2x2

(k) y dx � x dy � 0

(l)

(m) (n)

In Problems 19–26 solve the given differential equation.

19. (y2 � 1) dx � y sec2 x dy

20. y(ln x � ln y) dx � (x ln x � x ln y � y) dy

21.

22.

23.

24. (2x � y � 1)y� � 1

25. (x2 � 4) dy � (2x � 8xy) dx

26. (2r2 cos 	 sin 	 � r cos 	) d	
� (4r � sin 	 � 2r cos2 	) dr � 0

In Problems 27 and 28 solve the given initial-value problem
and give the largest interval I on which the solution is defined

27.

28.

29. (a) Without solving, explain why the initial-value
problem

has no solution for y0 
 0.
(b) Solve the initial-value problem in part (a) for 

y0 	 0 and find the largest interval I on which the
solution is defined

30. (a) Find an implicit solution of the initial-value problem

.

(b) Find an explicit solution of the problem in part (a) and
give the largest interval I over which the solution is
defined.A graphing utility may be helpful here.

dy
dx

�
y2 � x2

xy
,  y(1) � �12

dy
dx

� 1y,  y(x0) � y0

dy
dt

� 2(t � 1)y2 � 0,  y(0) � �1
8

sin x 
dy
dx

� (cos x)y � 0,  y (7p>6) � �2

t 
dQ
dt

� Q � t 4 ln t

dx
dy

� � 4y2 � 6xy
3y2 � 2x

(6x � 1)y2 
dy
dx

� 3x2 � 2y3 � 0

y
x2 

dy
dx

� e2x3�y2
� 0

dy
dx

�
x
y

�
y
x

� 1

	x2 �
2y
x

 
 dx � (3 � ln x2) dy

x 
dy
dx

� yex/y � x

FIGURE 2.R.4 Portion of a direction field for Problem 1

P1

1

f

FIGURE 2.R.3 Graph for Problem 16

17. Figure 2.R.4 is a portion of a direction field of a differ-
ential equation dy�dx � f (x, y). By hand, sketch two
different solution curves—one that is tangent to the lin-
eal element shown in black and one that is tangent to the
lineal element shown in red.

18. Classify each differential equation as separable, exact,
linear, homogeneous, or Bernoulli. Some equations may
be more than one kind. Do not solve.

(a) (b)

(c) (d)

(e) (f)
dy
dx

� 5y � y2dy
dx

�
y2 � y
x2 � x

dy
dx

�
1

x(x � y)
(x � 1) 

dy
dx

� �y � 10

dy
dx

�
1

y � x
dy
dx

�
x � y

x
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integers, �7 � m � 7, �7 � n � 7. In each direction field
sketch by hand an approximate solution curve that passes
through each of the solid points shown in red. Discuss: Does
it appear that the DE possesses critical points in the interval
�3.5 � y � 3.5? If so, classify the critical points as asymp-
totically stable, unstable, or semi-stable.

x

321_1_2_3

_3

_2

_1

1

2

3

y

FIGURE 2.R.6 Portion of a direction field for Problem 3

x

y

FIGURE 2.R.5 Graph for Problem 31
34.

FIGURE 2.R.7 Portion of a direction field for Problem 3

x

321_1_2_3

_3

_2

_1

1

2

3

y

82 ● CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

31. Graphs of some members of a family of solutions for a
first-orde differential equation dy�dx � f (x, y) are
shown in Figure 2.R.5. The graphs of two implicit
solutions, one that passes through the point (1, �1) and
one that passes through (�1, 3), are shown in blue.
Reproduce the figur on a piece of paper. With colored
pencils trace out the solution curves for the solutions
y � y1(x) and y � y2(x) define by the implicit solu-
tions such that y1(1) � �1 and y2(�1) � 3, respectively.
Estimate the intervals on which the solutions y � y1(x)
and y � y2(x) are defined

32. Use Euler’s method with step size h � 0.1 to approxi-
mate y(1.2), where y(x) is a solution of the initial-value
problem , y(1) � 9.

In Problems 33 and 34 each figure represents a portion of a
direction field of an autonomous first-order differential equa-
tion dy�dx � f (y). Reproduce the figure on a separate piece
of paper and then complete the direction field over the grid.
The points of the grid are (mh, nh), where m and nh � 1

2,

y� � 1 � x1y

33.
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83

3 Modeling with First-Order 
Differential Equations

3.1 Linear Models
3.2 Nonlinear Models
3.3 Modeling with Systems of First-Order DEs

Chapter 3 in Review

In Section 1.3 we saw how a first-order di ferential equation could be used as a
mathematical model in the study of population growth, radioactive decay,
continuous compound interest, cooling of bodies, mixtures, chemical reactions,
fluid draining from a tank, velocity of a falling bod , and current in a series circuit.
Using the methods of Chapter 2, we are now able to solve some of the linear DEs in
Section 3.1 and nonlinear DEs in Section 3.2 that commonly appear in applications.
The chapter concludes with the natural next step. In Section 3.3 we examine how
systems of first-order di ferential equations can arise as mathematical models in
coupled physical systems (for example, electrical networks, and a population of
predators such as foxes interacting with a population of prey such as rabbits).
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84 ● CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

Growth and Decay The initial-value problem

, (1)

where k is a constant of proportionality, serves as a model for diverse phenomena
involving either growth or decay. We saw in Section 1.3 that in biological applica-
tions the rate of growth of certain populations (bacteria, small animals) over short
periods of time is proportional to the population present at time t. Knowing the pop-
ulation at some arbitrary initial time t0, we can then use the solution of (1) to predict
the population in the future—that is, at times t � t0. The constant of proportional-
ity k in (1) can be determined from the solution of the initial-value problem, using a
subsequent measurement of x at a time t1 � t0. In physics and chemistry (1) is seen
in the form of a first-o der reaction —that is, a reaction whose rate, or velocity,
dx�dt is directly proportional to the amount x of a substance that is unconverted
or remaining at time t. The decomposition, or decay, of U-238 (uranium) by
radioactivity into Th-234 (thorium) is a first-order reaction

EXAMPLE 1 Bacterial Growth

A culture initially has P0 number of bacteria. At t � 1 h the number of bacteria is mea-
sured to be . If the rate of growth is proportional to the number of bacteria P(t) pre-
sent at time t, determine the time necessary for the number of bacteria to triple.

SOLUTION We first solve the differential equation in (1), with the symbol x replaced
by P. With t0 � 0 the initial condition is P(0) � P0. We then use the empirical obser-
vation that to determine the constant of proportionality k.

Notice that the differential equation dP�dt � kP is both separable and linear.
When it is put in the standard form of a linear first-order DE

,

we can see by inspection that the integrating factor is e�kt. Multiplying both sides of
the equation by this term and integrating gives, in turn,

.

Therefore P(t) � cekt. At t � 0 it follows that P0 � ce0 � c, so P(t) � P0ekt. At 
t � 1 we have or . From the last equation we get

, so P(t) � P0e0.4055t. To find the time at which the number of bac-
teria has tripled, we solve 3P0 � P0e0.4055t for t. It follows that 0.4055t � ln 3, or

.

See Figure 3.1.1.

t �
ln 3

0.4055
� 2.71 h

k � ln 32 � 0.4055
ek � 3

2
3
2 P0 � P0ek

d
dt

 [e�ktP] � 0    and    e�ktP � c

dP
dt

� kP � 0

P(1) � 3
2 P0

3
2 P0

dx
dt

� kx,  x(t0) � x0

t

P

3P0

P0

t =  2.71

P(t) = P0e0.4055t

FIGURE 3.1.1 Time in which 
population triples in Example 1

LINEAR MODELS

REVIEW MATERIAL
● A differential equation as a mathematical model in Section 1.3
● Reread “Solving a Linear First-Order Equation” on page 56 in Section 2.3

INTRODUCTION In this section we solve some of the linear first-order models that were
introduced in Section 1.3.

3.1
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3.1 LINEAR MODELS ● 85

Notice in Example 1 that the actual number P0 of bacteria present at time t � 0
played no part in determining the time required for the number in the culture to triple.
The time necessary for an initial population of, say, 100 or 1,000,000 bacteria to
triple is still approximately 2.71 hours.

As shown in Figure 3.1.2, the exponential function ekt increases as t increases
for k � 0 and decreases as t increases for k � 0. Thus problems describing growth
(whether of populations, bacteria, or even capital) are characterized by a positive
value of k, whereas problems involving decay (as in radioactive disintegration) yield
a negative k value. Accordingly, we say that k is either a growth constant (k � 0) or
a decay constant (k � 0).

Half-Life In physics the half-life is a measure of the stability of a radioactive
substance. The half-life is simply the time it takes for one-half of the atoms in an
initial amount A0 to disintegrate, or transmute, into the atoms of another element.
The longer the half-life of a substance, the more stable it is. For example, the half-
life of highly radioactive radium, Ra-226, is about 1700 years. In 1700 years one-
half of a given quantity of Ra-226 is transmuted into radon, Rn-222. The most
commonly occurring uranium isotope, U-238, has a half-life of approximately
4,500,000,000 years. In about 4.5 billion years, one-half of a quantity of U-238 is
transmuted into lead, Pb-206.

EXAMPLE 2 Half-Life of Plutonium

A breeder reactor converts relatively stable uranium-238 into the isotope plutonium-
239. After 15 years it is determined that 0.043% of the initial amount A0 of plutonium
has disintegrated. Find the half-life of this isotope if the rate of disintegration is pro-
portional to the amount remaining.

SOLUTION Let A(t) denote the amount of plutonium remaining at time t. As in
Example 1 the solution of the initial-value problem

is A(t) � A0ekt. If 0.043% of the atoms of A0 have disintegrated, then 99.957% of the
substance remains. To find the decay constant k, we use 0.99957A0 � A(15)—that is,
0.99957A0 � A0e15k. Solving for k then gives ln 0.99957 � �0.00002867.
Hence A(t) � A0e�0.00002867t. Now the half-life is the corresponding value of time at
which . Solving for t gives , or . The
last equation yields

.

Carbon Dating About 1950, a team of scientists at the University of Chicago
led by the chemist Willard Libby devised a method using a radioactive isotope of car-
bon as a means of determining the approximate ages of carbonaceous fossilized mat-
ter. The theory of carbon dating is based on the fact that the radioisotope carbon-14
is produced in the atmosphere by the action of cosmic radiation on nitrogen-14. The
ratio of the amount of C-14 to the stable C-12 in the atmosphere appears to be a con-
stant, and as a consequence the proportionate amount of the isotope present in all liv-
ing organisms is the same as that in the atmosphere. When a living organism dies, the
absorption of C-14, by breathing, eating, or photosynthesis, ceases. By comparing
the proportionate amount of C-14, say, in a fossil with the constant amount ratio
found in the atmosphere, it is possible to obtain a reasonable estimation of its age.
The method is based on the knowledge of the half-life of C-14. Libby’s calculated

t �
ln 2

0.00002867
� 24,180 yr

1
2 � e�0.00002867t1

2 A0 � A0e�0.00002867tA(t) � 1
2 A0

k � 1
15

dA
dt

� kA,  A(0) � A0

t

ekt, k > 0
growth

ekt, k < 0
decay

y

FIGURE 3.1.2 Growth (k � 0) and
decay (k � 0)
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value of the half-life of C-14 was approximately 5600 years, but today the commonly
accepted value of the half-life is approximately 5730 years. For his work, Libby was
awarded the Nobel Prize for chemistry in 1960. Libby’s method has been used to date
wooden furniture found in Egyptian tombs, the woven flax wrappings of the Dead
Sea Scrolls, a recently discovered copy of the Gnostic Gospel of Judas written on
papyrus, and the cloth of the enigmatic Shroud of Turin. See Figure 3.1.3 and
Problem 12 in Exercises 3.1.

86 ● CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

*The number of disintegrations per minute per gram of carbon is recorded by using a Geiger counter.
The lower level of detectability is about 0.1 disintegrations per minute per gram.

EXAMPLE 3 Age of a Fossil

A fossilized bone is found to contain 0.1% of its original amount of C-14. Determine
the age of the fossil.

SOLUTION The starting point is again A(t) � A0ekt. To determine the value of
the decay constant k we use the fact that A0 � A(5730) or A0 � A0e5730k. The
last equation implies 5730k � ln � �ln2 and so we get k � �(ln2)�5730 �
�0.00012097. Therefore A(t) � A0e�0.00012097t. With A(t) � 0.001A0 we have
0.001A0 � A0e�0.00012097t and �0.00012097t � ln(0.001) � �ln 1000. Thus

.

The date found in Example 3 is really at the border of accuracy for this method.
The usual carbon-14 technique is limited to about 10 half-lives of the isotope, or
roughly years. One reason for this limitation is that the chemical analysis
needed to obtain an accurate measurement of the remaining C-14 becomes somewhat
formidable around the point Also, this analysis demands the destruction of
a rather large sample of the specimen. If this measurement is accomplished indi-
rectly, based on the actual radioactivity of the specimen, then it is very difficult to
distinguish between the radiation from the specimen and the normal background
radiation.* But recently the use of a particle accelerator has enabled scientists to
separate the C-14 from the stable C-12 directly. When the precise value of the ratio
of C-14 to C-12 is computed, the accuracy can be extended to 70,000 to 100,000
years. Other isotopic techniques, such as using potassium-40 and argon-40, can give
dates of several million years. Nonisotopic methods based on the use of amino acids
are also sometimes possible. 

Newton’s Law of Cooling/Warming In equation (3) of Section 1.3 we saw
that the mathematical formulation of Newton’s empirical law of cooling/warming of
an object is given by the linear first-order di ferential equation

, (2)

where k is a constant of proportionality, T(t) is the temperature of the object for t � 0,
and Tm is the ambient temperature—that is, the temperature of the medium around the
object. In Example 4 we assume that Tm is constant.

dT
dt

� k(T � Tm)

0.001A0.

60,000

t �
ln 1000

0.00012097
� 57,100 years

1
2

1
2

1
2

EXAMPLE 4 Cooling of a Cake

When a cake is removed from an oven, its temperature is measured at 300° F. Three
minutes later its temperature is 200° F. How long will it take for the cake to cool off
to a room temperature of 70° F?

FIGURE 3.1.3 A page of the Gnostic
Gospel of Judas
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3.1 LINEAR MODELS ● 87

SOLUTION In (2) we make the identification Tm � 70. We must then solve the
initial-value problem

(3)

and determine the value of k so that T(3) � 200.
Equation (3) is both linear and separable. If we separate variables,

,

yields ln �T � 70� � kt � c1, and so T � 70 � c2ekt. When t � 0, T � 300, so
300 � 70 � c2 gives c2 � 230; therefore T � 70 � 230ekt. Finally, the measurement
T(3) � 200 leads to , or ln . Thus

. (4)

We note that (4) furnishes no finite solution to T(t) � 70, since .
Yet we intuitively expect the cake to reach room temperature after a reasonably long
period of time. How long is “long”? Of course, we should not be disturbed by the fact
that the model (3) does not quite live up to our physical intuition. Parts (a) and (b) of
Figure 3.1.4 clearly show that the cake will be approximately at room temperature in
about one-half hour.

The ambient temperature in (2) need not be a constant but could be a function
Tm(t) of time t. See Problem 18 in Exercises 3.1.

Mixtures The mixing of two fluids sometimes gives rise to a linear first-orde
differential equation. When we discussed the mixing of two brine solutions in
Section 1.3, we assumed that the rate A�(t) at which the amount of salt in the mixing
tank changes was a net rate:

. (5)

In Example 5 we solve equation (8) of Section 1.3.

dA
dt

� (input rate of salt) � (output rate of salt) � Rin � Rout

lim t : � T (t) � 70

T (t) � 70 � 230e�0.19018t

13
23 � �0.19018k � 1

3e3k � 13
23

dT
T � 70

� k dt

dT
dt

� k(T � 70),  T(0) � 300

t

T

15 30

300

150 T = 70

(a)

T(t) t (min)

75� 20.1
74� 21.3
73� 22.8
72� 24.9
71� 28.6
70.5� 32.3

(b)

FIGURE 3.1.4 Temperature of cooling
cake in Example 4

EXAMPLE 5 Mixture of Two Salt Solutions

Recall that the large tank considered in Section 1.3 held 300 gallons of a brine
solution. Salt was entering and leaving the tank; a brine solution was being pumped
into the tank at the rate of 3 gal/min; it mixed with the solution there, and then the
mixture was pumped out at the rate of 3 gal/min. The concentration of the salt
in the inflo , or solution entering, was 2 lb/gal, so salt was entering the tank at the
rate Rin � (2 lb/gal) � (3 gal/min) � 6 lb/min and leaving the tank at the rate Rout �
(A�300 lb/gal) � (3 gal/min) � A�100 lb/min. From this data and (5) we get equa-
tion (8) of Section 1.3. Let us pose the question: If 50 pounds of salt were dissolved
initially in the 300 gallons, how much salt is in the tank after a long time?

SOLUTION To find the amount of salt A(t) in the tank at time t, we solve the initial-
value problem

.

Note here that the side condition is the initial amount of salt A(0) � 50 in the tank
and not the initial amount of liquid in the tank. Now since the integrating factor of the
linear differential equation is et/100, we can write the equation as

.
d
dt

 [et/100A] � 6et/100

dA
dt

�
1

100
A � 6,  A(0) � 50
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Integrating the last equation and solving for A gives the general solution 
A(t) � 600 � ce�t/100. When t � 0, A � 50, so we find that c � �550. Thus the
amount of salt in the tank at time t is given by

. (6)

The solution (6) was used to construct the table in Figure 3.1.5(b). Also, it can be
seen from (6) and Figure 3.1.5(a) that A(t) : 600 as t : �. Of course, this is what
we would intuitively expect; over a long time the number of pounds of salt in the
solution must be (300 gal)(2 lb/gal) � 600 lb.

In Example 5 we assumed that the rate at which the solution was pumped in was
the same as the rate at which the solution was pumped out. However, this need not be
the case; the mixed brine solution could be pumped out at a rate rout that is faster
or slower than the rate rin at which the other brine solution is pumped in. The next
example illustrates the case when the mixture is pumped out at rate that is slower
than the rate at which the brine solution is being pumped into the tank.

A(t) � 600 � 550e�t/100

88 ● CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

t

A A = 600

500

(a)

t (min) A (lb)

50 266.41
100 397.67
150 477.27
200 525.57
300 572.62
400 589.93

(b)

FIGURE 3.1.5 Pounds of salt in the
tank in Example 5

FIGURE 3.1.7 LR-series circuit

E
L

R

FIGURE 3.1.6 Graph of A(t) in
Example 6

t

A

50

250

500

100

EXAMPLE 6 Example 5 Revisited

If the well-stirred solution in Example 5 is pumped out at a slower rate of, say, 
rout � 2 gal/min, then liquid will accumulate in the tank at the rate of rin � rout � 
(3 � 2) gal/min � 1 gal/min. After t minutes,

(1 gal/min) . (t min) � t gal
will accumulate, so the tank will contain 300 � t gallons of brine. The concentration
of the outflow is then c(t) � A�(300 � t) lb/gal, and the output rate of salt is Rout �
c(t) . rout, or

.

Hence equation (5) becomes

.

The integrating factor for the last equation is 

and so after multiplying by the factor the equation is cast into the form 

Integrating the last equation gives By applying the
initial condition and solving for A yields the solution A(t) � 600 � 2t �
(4.95 	 107)(300 � t)�2. As Figure 3.1.6 shows, not unexpectedly, salt builds up in
the tank over time, that is, 

Series Circuits For a series circuit containing only a resistor and an inductor,
Kirchhoff’s second law states that the sum of the voltage drop across the inductor
(L(di�dt)) and the voltage drop across the resistor (iR) is the same as the impressed
voltage (E(t)) on the circuit. See Figure 3.1.7.

Thus we obtain the linear differential equation for the current i(t),

, (7)

where L and R are constants known as the inductance and the resistance, respectively.
The current i(t) is also called the response of the system.

L
di
dt

� Ri � E(t)

A : �  as  t : �.

A(0) � 50
(300 � t)2A � 2(300 � t)3 � c.

d
dt [(300 � t)2 A] � 6(300 � t)2.

e�2dt>(300� t) � e2 ln(300� t) � eln(300� t)2
� (300 � t)2

dA
dt

� 6 �
2A

300 � t
    or    

dA
dt

�
2

300 � t
A � 6

Rout � � A
300 � t

 lb/gal� � (2 gal/min) �
2A

300 � t
 lb/min
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R

C

E

FIGURE 3.1.8 RC-series circuit

The voltage drop across a capacitor with capacitance C is given by q(t)�C,
where q is the charge on the capacitor. Hence, for the series circuit shown in
Figure 3.1.8, Kirchhoff’s second law gives

. (8)

But current i and charge q are related by i � dq�dt, so (8) becomes the linear differ-
ential equation

. (9)R
dq
dt

�
1
C

q � E(t)

Ri �
1
C

q � E(t)

FIGURE 3.1.9 Population growth is a
discrete process

t1t1 t2

P

P0

t1

P

P0

(a)

(b)

(c)

t1

P

P0

EXAMPLE 7 Series Circuit

A 12-volt battery is connected to a series circuit in which the inductance is henry
and the resistance is 10 ohms. Determine the current i if the initial current is zero.

SOLUTION From (7) we see that we must solve

,

subject to i(0) � 0. First, we multiply the differential equation by 2 and read off the
integrating factor e20t. We then obtain

.

Integrating each side of the last equation and solving for i gives i(t) � � ce�20t.
Now i(0) � 0 implies that 0 � � c or c � � . Therefore the response is 
i(t) � � e�20t.

From (4) of Section 2.3 we can write a general solution of (7):

. (10)

In particular, when E(t) � E0 is a constant, (10) becomes

. (11)

Note that as t : �, the second term in equation (11) approaches zero. Such a term is usu-
ally called a transient term; any remaining terms are called the steady-state part of the
solution. In this case E0�R is also called the steady-state current; for large values of time
it appears that the current in the circuit is simply governed by Ohm’s law (E � iR).

i(t) �
E0

R
� ce�(R/L)t

i(t) �
e�(R/L)t

L
 � e(R/L)tE(t) dt � ce�(R/L)t

6
5

6
5

6
5

6
5

6
5

d
dt

 [e20ti] � 24e20t

1
2
 

di
dt

� 10 i � 12

1
2

REMARKS

The solution P(t) � P0e0.4055t of the initial-value problem in Example 1
described the population of a colony of bacteria at any time t � 0. Of course,
P(t) is a continuous function that takes on all real numbers in the interval
P0 
 P � �. But since we are talking about a population, common sense
dictates that P can take on only positive integer values. Moreover, we would
not expect the population to grow continuously—that is, every second, every
microsecond, and so on—as predicted by our solution; there may be intervals
of time [t1, t2] over which there is no growth at all. Perhaps, then, the graph
shown in Figure 3.1.9(a) is a more realistic description of P than is the graph
of an exponential function. Using a continuous function to describe a discrete
phenomenon is often more a matter of convenience than of accuracy. However,
for some purposes we may be satisfie if our model describes the system
fairly closely when viewed macroscopically in time, as in Figures 3.1.9(b)
and 3.1.9(c), rather than microscopically, as in Figure 3.1.9(a).
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90 ● CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

EXERCISES 3.1 Answers to selected odd-numbered problems begin on page ANS-3.

Growth and Decay

1. The population of a community is known to increase at
a rate proportional to the number of people present
at time t. If an initial population P0 has doubled in
5 years, how long will it take to triple? To quadruple?

2. Suppose it is known that the population of the commu-
nity in Problem 1 is 10,000 after 3 years. What was the
initial population P0? What will be the population in
10 years? How fast is the population growing at t � 10?

3. The population of a town grows at a rate proportional to
the population present at time t. The initial population of
500 increases by 15% in 10 years. What will be the pop-
ulation in 30 years? How fast is the population growing
at t � 30?

4. The population of bacteria in a culture grows at a rate
proportional to the number of bacteria present at time t.
After 3 hours it is observed that 400 bacteria are present.
After 10 hours 2000 bacteria are present. What was the
initial number of bacteria?

5. The radioactive isotope of lead, Pb-209, decays at a rate
proportional to the amount present at time t and has a half-
life of 3.3 hours. If 1 gram of this isotope is present ini-
tially, how long will it take for 90% of the lead to decay?

6. Initially 100 milligrams of a radioactive substance was
present. After 6 hours the mass had decreased by 3%. If
the rate of decay is proportional to the amount of the
substance present at time t, find the amount remaining
after 24 hours.

7. Determine the half-life of the radioactive substance
described in Problem 6.

8. (a) Consider the initial-value problem dA�dt � kA,
A(0) � A0 as the model for the decay of a radioac-
tive substance. Show that, in general, the half-life T
of the substance is T � �(ln 2)�k.

(b) Show that the solution of the initial-value problem
in part (a) can be written A(t) � A02�t/T.

(c) If a radioactive substance has the half-life T given
in part (a), how long will it take an initial amount A0
of the substance to decay to ?

9. When a vertical beam of light passes through a trans-
parent medium, the rate at which its intensity I
decreases is proportional to I(t), where t represents the
thickness of the medium (in feet). In clear seawater,
the intensity 3 feet below the surface is 25% of the initial
intensity I0 of the incident beam. What is the intensity of
the beam 15 feet below the surface?

10. When interest is compounded continuously, the amount
of money increases at a rate proportional to the amount

1
8 A0

S present at time t, that is, dS�dt � rS, where r is the
annual rate of interest.
(a) Find the amount of money accrued at the end of

5 years when $5000 is deposited in a savings
account drawing 5 % annual interest compounded
continuously.

(b) In how many years will the initial sum deposited
have doubled?

(c) Use a calculator to compare the amount obtained in
part (a) with the amount S � 5000(1 � (0.0575))5(4)

that is accrued when interest is compounded
quarterly.

Carbon Dating

11. Archaeologists used pieces of burned wood, or char-
coal, found at the site to date prehistoric paintings and
drawings on walls and ceilings of a cave in Lascaux,
France. See Figure 3.1.10. Use the information on page 86
to determine the approximate age of a piece of burned
wood, if it was found that 85.5% of the C-14 found in
living trees of the same type had decayed.

1
4

3
4

FIGURE 3.1.10 Cave wall painting in Problem 11
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12. The Shroud of Turin, which shows the negative image of
the body of a man who appears to have been crucified, is
believed by many to be the burial shroud of Jesus of
Nazareth. See Figure 3.1.11. In 1988 the Vatican granted
permission to have the shroud carbon-dated. Three inde-
pendent scientific laboratories analyzed the cloth and
concluded that the shroud was approximately 660 years
old,* an age consistent with its historical appearance.

FIGURE 3.1.11 Shroud image in Problem 12
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*Some scholars have disagreed with this finding. For more information o
this fascinating mystery see the Shroud of Turin home page at
http://www.shroud.com/.
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3.1 LINEAR MODELS ● 91

Using this age, determine what percentage of the origi-
nal amount of C-14 remained in the cloth as of 1988.

Newton’s Law of Cooling/Warming

13. A thermometer is removed from a room where the
temperature is 70° F and is taken outside, where the air
temperature is 10° F. After one-half minute the ther-
mometer reads 50° F. What is the reading of the ther-
mometer at t � 1 min? How long will it take for the
thermometer to reach 15° F?

14. A thermometer is taken from an inside room to the out-
side, where the air temperature is 5° F. After 1 minute
the thermometer reads 55° F, and after 5 minutes it
reads 30° F. What is the initial temperature of the inside
room?

15. A small metal bar, whose initial temperature was 20° C,
is dropped into a large container of boiling water. How
long will it take the bar to reach 90° C if it is known that
its temperature increases 2° in 1 second? How long will it
take the bar to reach 98° C?

16. Two large containers A and B of the same size are fille
with different fluids. The fluids in containers A and B
are maintained at 0° C and 100° C, respectively. A small
metal bar, whose initial temperature is 100° C, is low-
ered into container A. After 1 minute the temperature
of the bar is 90° C. After 2 minutes the bar is removed
and instantly transferred to the other container. After
1 minute in container B the temperature of the bar rises
10°. How long, measured from the start of the entire
process, will it take the bar to reach 99.9° C?

17. A thermometer reading 70° F is placed in an oven
preheated to a constant temperature. Through a glass
window in the oven door, an observer records that the
thermometer reads 110° F after minute and 145° F
after 1 minute. How hot is the oven?

18. At t � 0 a sealed test tube containing a chemical is
immersed in a liquid bath. The initial temperature of
the chemical in the test tube is 80° F. The liquid bath
has a controlled temperature (measured in degrees
Fahrenheit) given by Tm(t) � 100 � 40e�0.1t, t � 0,
where t is measured in minutes.
(a) Assume that k � �0.1 in (2). Before solving the

IVP, describe in words what you expect the temper-
ature T(t) of the chemical to be like in the short
term. In the long term.

(b) Solve the initial-value problem. Use a graphing util-
ity to plot the graph of T(t) on time intervals of var-
ious lengths. Do the graphs agree with your
predictions in part (a)?

19. A dead body was found within a closed room of a house
where the temperature was a constant 70° F. At the time
of discovery the core temperature of the body was
determined to be 85° F. One hour later a second mea-

1
2

surement showed that the core temperature of the body
was 80° F. Assume that the time of death corresponds to
t � 0 and that the core temperature at that time was
98.6° F. Determine how many hours elapsed before the
body was found. [Hint: Let t1 � 0 denote the time that
the body was discovered.]

20. The rate at which a body cools also depends on its
exposed surface area S. If S is a constant, then a modifi
cation of (2) is

where k � 0 and Tm is a constant. Suppose that two cups
A and B are filled with coffee at the same time. Initially,
the temperature of the coffee is 150° F. The exposed
surface area of the coffee in cup B is twice the surface
area of the coffee in cup A. After 30 min the temperature
of the coffee in cup A is 100° F. If Tm � 70° F, then what
is the temperature of the coffee in cup B after 30 min?

Mixtures

21. A tank contains 200 liters of fluid in which 30 grams of
salt is dissolved. Brine containing 1 gram of salt per liter
is then pumped into the tank at a rate of 4 L/min; the
well-mixed solution is pumped out at the same rate. Find
the number A(t) of grams of salt in the tank at time t.

22. Solve Problem 21 assuming that pure water is pumped
into the tank.

23. A large tank is filled to capacity with 500 gallons of pure
water. Brine containing 2 pounds of salt per gallon is
pumped into the tank at a rate of 5 gal/min. The well-
mixed solution is pumped out at the same rate. Find the
number A(t) of pounds of salt in the tank at time t.

24. In Problem 23, what is the concentration c(t) of the salt
in the tank at time t? At t � 5 min? What is the concen-
tration of the salt in the tank after a long time, that is, as
t : �? At what time is the concentration of the salt in
the tank equal to one-half this limiting value?

25. Solve Problem 23 under the assumption that the solu-
tion is pumped out at a faster rate of 10 gal/min. When
is the tank empty?

26. Determine the amount of salt in the tank at time t in
Example 5 if the concentration of salt in the inflow is
variable and given by cin(t) � 2 � sin(t�4) lb/gal.
Without actually graphing, conjecture what the solution
curve of the IVP should look like. Then use a graphing
utility to plot the graph of the solution on the interval
[0, 300]. Repeat for the interval [0, 600] and compare
your graph with that in Figure 3.1.5(a).

27. A large tank is partially filled with 100 gallons of flui
in which 10 pounds of salt is dissolved. Brine containing

dT
dt

� kS(T � Tm),
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pound of salt per gallon is pumped into the tank at a
rate of 6 gal/min. The well-mixed solution is then
pumped out at a slower rate of 4 gal/min. Find the num-
ber of pounds of salt in the tank after 30 minutes.

28. In Example 5 the size of the tank containing the salt
mixture was not given. Suppose, as in the discussion
following Example 5, that the rate at which brine is
pumped into the tank is 3 gal/min but that the well-
stirred solution is pumped out at a rate of 2 gal/min. It
stands to reason that since brine is accumulating in the
tank at the rate of 1 gal/min, any finite tank must even-
tually overflo . Now suppose that the tank has an open
top and has a total capacity of 400 gallons.
(a) When will the tank overflow
(b) What will be the number of pounds of salt in the

tank at the instant it overflows
(c) Assume that although the tank is overflowing, brine

solution continues to be pumped in at a rate of
3 gal/min and the well-stirred solution continues to
be pumped out at a rate of 2 gal/min. Devise a
method for determining the number of pounds of
salt in the tank at t � 150 minutes.

(d) Determine the number of pounds of salt in the tank as
t : �. Does your answer agree with your intuition?

(e) Use a graphing utility to plot the graph of A(t) on
the interval [0, 500).

Series Circuits

29. A 30-volt electromotive force is applied to an LR-series
circuit in which the inductance is 0.1 henry and the
resistance is 50 ohms. Find the current i(t) if i(0) � 0.
Determine the current as t : �.

30. Solve equation (7) under the assumption that 
E(t) � E0 sin vt and i(0) � i0.

31. A 100-volt electromotive force is applied to an RC-
series circuit in which the resistance is 200 ohms and
the capacitance is 10�4 farad. Find the charge q(t) on
the capacitor if q(0) � 0. Find the current i(t).

32. A 200-volt electromotive force is applied to an RC-series
circuit in which the resistance is 1000 ohms and the
capacitance is 5 	 10�6 farad. Find the charge q(t) on the
capacitor if i(0) � 0.4. Determine the charge and current
at t � 0.005 s. Determine the charge as t : �.

33. An electromotive force

is applied to an LR-series circuit in which the inductance
is 20 henries and the resistance is 2 ohms. Find the
current i(t) if i(0) � 0.

E(t) � �120,
0, 

0 
 t 
 20
    t � 20

1
2
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34. Suppose an RC-series circuit has a variable resistor. If the
resistance at time t is given by R � k1 � k2t, where k1 and
k2 are known positive constants, then (9) becomes

.

If E(t) � E0 and q(0) � q0, where E0 and q0 are
constants, show that

.

Additional Linear Models

35. Air Resistance In (14) of Section 1.3 we saw that
a differential equation describing the velocity v of a
falling mass subject to air resistance proportional to the
instantaneous velocity is

,

where k � 0 is a constant of proportionality. The positive
direction is downward.
(a) Solve the equation subject to the initial condition

v(0) � v0.
(b) Use the solution in part (a) to determine the limit-

ing, or terminal, velocity of the mass. We saw how
to determine the terminal velocity without solving
the DE in Problem 40 in Exercises 2.1.

(c) If the distance s, measured from the point where the
mass was released above ground, is related to ve-
locity v by ds�dt � v(t), find an explicit expression
for s(t) if s(0) � 0.

36. How High?—No Air Resistance Suppose a small
cannonball weighing 16 pounds is shot vertically
upward, as shown in Figure 3.1.12, with an initial veloc-
ity v0 � 300 ft/s. The answer to the question “How high
does the cannonball go?” depends on whether we take
air resistance into account.
(a) Suppose air resistance is ignored. If the positive

direction is upward, then a model for the state of
the cannonball is given by d2s�dt2 � �g (equation
(12) of Section 1.3). Since ds�dt � v(t) the last

m
dv
dt

� mg � kv

q(t) � E0C � (q0 � E0C )� k1

k1 � k2t�
1/Ck2

(k1 � k2t)
dq
dt

�
1
C

q � E(t)

FIGURE 3.1.12 Find the
maximum height of the cannonball
in Problem 36

ground
level

−mg
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3.1 LINEAR MODELS ● 93

differential equation is the same as dv�dt � �g,
where we take g � 32 ft /s2. Find the velocity v(t)
of the cannonball at time t.

(b) Use the result obtained in part (a) to determine the
height s(t) of the cannonball measured from ground
level. Find the maximum height attained by the
cannonball.

37. How High?—Linear Air Resistance Repeat Prob-
lem 36, but this time assume that air resistance is
proportional to instantaneous velocity. It stands to
reason that the maximum height attained by the cannon-
ball must be less than that in part (b) of Problem 36.
Show this by supposing that the constant of proportion-
ality is k � 0.0025. [Hint: Slightly modify the DE in
Problem 35.]

38. Skydiving A skydiver weighs 125 pounds, and her
parachute and equipment combined weigh another 35
pounds. After exiting from a plane at an altitude of
15,000 feet, she waits 15 seconds and opens her para-
chute. Assume that the constant of proportionality in
the model in Problem 35 has the value k � 0.5 during
free fall and k � 10 after the parachute is opened.
Assume that her initial velocity on leaving the plane is
zero. What is her velocity and how far has she traveled
20 seconds after leaving the plane? See Figure 3.1.13.
How does her velocity at 20 seconds compare with her
terminal velocity? How long does it take her to reach the
ground? [Hint: Think in terms of two distinct IVPs.]

and the downward direction is taken to be the positive
direction.
(a) Solve for v(t) if the raindrop falls from rest.
(b) Reread Problem 36 of Exercises 1.3 and then

show that the radius of the raindrop at time t is
r(t) � (k�r)t � r0.

(c) If r0 � 0.01 ft and r � 0.007 ft 10 seconds after the
raindrop falls from a cloud, determine the time at
which the raindrop has evaporated completely.

40. Fluctuating Population The differential equation
dP�dt � (k cos t)P, where k is a positive constant, is a
mathematical model for a population P(t) that under-
goes yearly seasonal fluctuations. Solve the equation
subject to P(0) � P0. Use a graphing utility to graph the
solution for different choices of P0.

41. Population Model In one model of the changing
population P(t) of a community, it is assumed that

,

where dB�dt and dD�dt are the birth and death rates,
respectively.
(a) Solve for P(t) if dB�dt � k1P and dD�dt � k2P.
(b) Analyze the cases k1 � k2, k1 � k2, and k1 � k2.

42. Constant-Harvest Model A model that describes the
population of a fishery in which harvesting takes place at
a constant rate is given by

where k and h are positive constants.
(a) Solve the DE subject to P(0) � P0.
(b) Describe the behavior of the population P(t) for in-

creasing time in the three cases P0 �h�k, P0 �h�k,
and 0 � P0 � h�k.

(c) Use the results from part (b) to determine whether
the fish population will ever go extinct in finit
time, that is, whether there exists a time T � 0
such that P(T) � 0. If the population goes extinct,
then find T.

43. Drug Dissemination A mathematical model for the
rate at which a drug disseminates into the bloodstream
is given by 

where r and k are positive constants. The function x(t)
describes the concentration of the drug in the blood-
stream at time t.
(a) Since the DE is autonomous, use the phase portrait

concept of Section 2.1 to find the limiting value of
x(t) as t : �.

dx
dt

� r � kx,

dP
dt

� kP � h,

dP
dt

�
dB
dt

�
dD
dt

FIGURE 3.1.13
Find the time to
reach the ground in
Problem 38

free fall

parachute opens

air resistance is 0.5v

air resistance is 10v

t = 20 s

39. Evaporating Raindrop As a raindrop falls, it evapo-
rates while retaining its spherical shape. If we make the
further assumptions that the rate at which the raindrop
evaporates is proportional to its surface area and that air
resistance is negligible, then a model for the velocity
v(t) of the raindrop is

.

Here r is the density of water, r0 is the radius of the rain-
drop at t � 0, k � 0 is the constant of proportionality,

dv
dt

�
3(k/�)

(k/�)t � r0
 v � g
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(b) Solve the DE subject to x(0) � 0. Sketch the graph
of x(t) and verify your prediction in part (a). At
what time is the concentration one-half this limiting
value?

44. Memorization When forgetfulness is taken into
account, the rate of memorization of a subject is given by

,

where k1 � 0, k2 � 0, A(t) is the amount memorized
in time t, M is the total amount to be memorized, and
M � A is the amount remaining to be memorized.
(a) Since the DE is autonomous, use the phase portrait

concept of Section 2.1 to find the limiting value of
A(t) as t : �. Interpret the result.

(b) Solve the DE subject to A(0) � 0. Sketch the graph
of A(t) and verify your prediction in part (a).

45. Heart Pacemaker A heart pacemaker, shown in
Figure 3.1.14, consists of a switch, a battery, a capacitor,
and the heart as a resistor. When the switch S is at P, the
capacitor charges; when S is at Q, the capacitor dis-
charges, sending an electrical stimulus to the heart. In
Problem 53 in Exercises 2.3 we saw that during this
time the electrical stimulus is being applied to the heart,
the voltage E across the heart satisfies the linear D

.

(a) Let us assume that over the time interval of length
t1, 0 � t � t1, the switch S is at position P shown
in Figure 3.1.14 and the capacitor is being
charged. When the switch is moved to position
Q at time t1 the capacitor discharges, sending an
impulse to the heart over the time interval of
length t2: t1 
 t � t1 � t2. Thus over the initial
charging/discharging interval 0 � t � t1 � t2 the
voltage to the heart is actually modeled by the
piecewise-defined differential equation

.
dE
dt

� �0,

�
1

RC
 E,

0 
 t � t1

t1 
 t � t1 � t2

dE
dt

� �
1

RC
 E

dA
dt

� k1(M � A) � k2A
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By moving S between P and Q, the charging and
discharging over time intervals of lengths t1 and t2
is repeated indefinitel . Suppose t1 � 4 s, t2 � 2 s,
E0 � 12 V, and E(0) � 0, E(4) � 12, E(6) � 0,
E(10) � 12, E(12) � 0, and so on. Solve for E(t)
for 0 
 t 
 24.

(b) Suppose for the sake of illustration that R � C � 1.
Use a graphing utility to graph the solution for the
IVP in part (a) for 0 
 t 
 24.

46. Sliding Box (a) A box of mass m slides down an
inclined plane that makes an angle u with the hori-
zontal as shown in Figure 3.1.15. Find a differential
equation for the velocity v(t) of the box at time t in
each of the following three cases:

(i) No sliding friction and no air resistance
(ii) With sliding friction and no air resistance
(iii) With sliding friction and air resistance

In cases (ii) and (iii), use the fact that the force of
friction opposing the motion of the box is mN,
where m is the coefficient of sliding friction and N
is the normal component of the weight of the box.
In case (iii) assume that air resistance is propor-
tional to the instantaneous velocity.

(b) In part (a), suppose that the box weighs 96 pounds,
that the angle of inclination of the plane is u� 30°,
that the coefficient of sliding friction is ,
and that the additional retarding force due to air
resistance is numerically equal to v. Solve the dif-
ferential equation in each of the three cases, assum-
ing that the box starts from rest from the highest
point 50 ft above ground.

1
4


 � 13�4

heart

C

Q

P S
switch

E0

R

FIGURE 3.1.14 Model of a pacemaker in 
Problem 45

FIGURE 3.1.15 Box sliding down inclined plane in
Problem 46

θ

50 ftmotion

friction

W = mg

47. Sliding Box—Continued (a) In Problem 46 let s(t) be
the distance measured down the inclined plane
from the highest point. Use ds�dt � v(t) and the
solution for each of the three cases in part (b) of
Problem 46 to find the time that it takes the box to
slide completely down the inclined plane. A root-
finding application of a CAS may be useful here.

(b) In the case in which there is friction (m � 0) but no
air resistance, explain why the box will not slide
down the plane starting from rest from the highest
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point above ground when the inclination angle u
satisfies tan u 
 m.

(c) The box will slide downward on the plane when
tan u 
 m if it is given an initial velocity 
v(0) � v0 � 0. Suppose that and 
u � 23°. Verify that tan u 
 m. How far will the
box slide down the plane if v0 � 1 ft /s?

(d) Using the values and u� 23°, approxi-
mate the smallest initial velocity v0 that can be given
to the box so that, starting at the highest point 50 ft
above ground, it will slide completely down the in-
clined plane. Then find the corresponding time it
takes to slide down the plane.


 � 13�4


 � 13�4
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48. What Goes Up . . . (a) It is well known that the
model in which air resistance is ignored, part (a) of
Problem 36, predicts that the time ta it takes the
cannonball to attain its maximum height is the
same as the time td it takes the cannonball to fall
from the maximum height to the ground. Moreover,
the magnitude of the impact velocity vi will be the
same as the initial velocity v0 of the cannonball.
Verify both of these results.

(b) Then, using the model in Problem 37 that takes air
resistance into account, compare the value of ta
with td and the value of the magnitude of vi with v0.
A root-finding application of a CAS (or graphic cal-
culator) may be useful here.

NONLINEAR MODELS

REVIEW MATERIAL
● Equations (5), (6), and (10) of Section 1.3 and Problems 7, 8, 13, 14, and 17 of Exercises 1.3
● Separation of variables in Section 2.2

INTRODUCTION We finish our study of single first-order differential equations with an exam-
ination of some nonlinear models.

3.2

Population Dynamics If P(t) denotes the size of a population at time t, the

P

f(P)

r

K

FIGURE 3.2.1 Simplest assumption
for f (P) is a straight line (blue color)

model for exponential growth begins with the assumption that dP�dt � kP for some
k � 0. In this model, the relative, or specific, g owth rate defined b

(1)

is a constant k. True cases of exponential growth over long periods of time are hard
to find because the limited resources of the environment will at some time exert
restrictions on the growth of a population. Thus for other models, (1) can be expected
to decrease as the population P increases in size.

The assumption that the rate at which a population grows (or decreases) is
dependent only on the number P present and not on any time-dependent mechanisms
such as seasonal phenomena (see Problem 33 in Exercises 1.3) can be stated as

. (2)

The differential equation in (2), which is widely assumed in models of animal
populations, is called the density-dependent hypothesis.

Logistic Equation Suppose an environment is capable of sustaining no more
than a fixed number K of individuals in its population. The quantity K is called the
carrying capacity of the environment. Hence for the function f in (2) we have
f (K ) � 0, and we simply let f (0) � r. Figure 3.2.1 shows three functions f that sat-
isfy these two conditions. The simplest assumption that we can make is that f (P)
is linear— that is, f (P) � c1P � c2. If we use the conditions f (0) � r and f (K ) � 0,

dP>dt
P

� f (P)    or    
dP
dt

� Pf (P)

dP>dt
P
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96 ● CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

we find, in turn, c2 � r and c1 � �r�K, and so f takes on the form f (P) � r � (r�K)P.
Equation (2) becomes

. (3)

With constants relabeled, the nonlinear equation (3) is the same as

. (4)

Around 1840 the Belgian mathematician-biologist P. F. Verhulst (1804–1849)
was concerned with mathematical models for predicting the human populations of
various countries. One of the equations he studied was (4), where a � 0 and b � 0.
Equation (4) came to be known as the logistic equation, and its solution is called the
logistic function. The graph of a logistic function is called a logistic curve.

The linear differential equation dP�dt � kP does not provide a very accurate
model for population when the population itself is very large. Overcrowded condi-
tions, with the resulting detrimental effects on the environment such as pollution and
excessive and competitive demands for food and fuel, can have an inhibiting effect
on population growth. As we shall now see, the solution of (4) is bounded as t : �.
If we rewrite (4) as dP�dt � aP � bP2, the nonlinear term �bP2, b � 0, can be in-
terpreted as an “inhibition” or “competition” term. Also, in most applications the
positive constant a is much larger than the constant b.

Logistic curves have proved to be quite accurate in predicting the growth
patterns, in a limited space, of certain types of bacteria, protozoa, water flea
(Daphnia), and fruit flies Drosophila).

Solution of the Logistic Equation One method of solving (4) is separation

dP
dt

� P(a � bP)

dP
dt

� P�r �
r
K

P�

of variables. Decomposing the left side of dP�P(a � bP) � dt into partial fractions
and integrating gives

It follows from the last equation that

.

If P(0) � P0, P0 � a�b, we find c1 � P0�(a � bP0), and so after substituting and
simplifying, the solution becomes

. (5)

Graphs of P(t) The basic shape of the graph of the logistic function P(t) can be
obtained without too much effort. Although the variable t usually represents time and
we are seldom concerned with applications in which t � 0, it is nonetheless of some in-
terest to include this interval in displaying the various graphs of P. From (5) we see that

.P(t) :
aP0

bP0
�

a
b
 as t : �    and    P(t) : 0 as t : ��

P(t) �
aP0

bP0 � (a � bP0)e�at

P(t) �
ac1eat

1 � bc1eat �
ac1

bc1 � e�at

 
P

a � bP
� c1eat.

 ln � P
a � bP � � at � ac

 
1
a
 ln� P � �

1
a
 ln� a � bP � � t � c

 �1>a
P

�
b>a

a � bP�dP � dt
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The dashed line P � a�2b shown in Figure 3.2.2 corresponds to the ordinate of a
point of inflection of the logistic curve. To show this, we differentiate (4) by the
Product Rule:

.

From calculus recall that the points where d2P�dt2 � 0 are possible points of inflec
tion, but P � 0 and P � a�b can obviously be ruled out. Hence P � a�2b is the only
possible ordinate value at which the concavity of the graph can change. For 
0 � P � a�2b it follows that P � � 0, and a�2b � P � a�b implies that P� � 0.
Thus, as we read from left to right, the graph changes from concave up to concave
down at the point corresponding to P � a�2b. When the initial value satisfies
0 � P0 � a�2b, the graph of P(t) assumes the shape of an S, as we see in
Figure 3.2.2(a). For a�2b � P0 � a�b the graph is still S-shaped, but the point of
inflection occurs at a negative value of t, as shown in Figure 3.2.2(b).

We have already seen equation (4) in (5) of Section 1.3 in the form 
dx�dt � kx(n � 1 � x), k � 0. This differential equation provides a reasonable
model for describing the spread of an epidemic brought about initially by introduc-
ing an infected individual into a static population. The solution x(t) represents the
number of individuals infected with the disease at time t.

 � 2b2P �P �
a
b��P �

a
2b�

 � P(a � bP)(a � 2bP)

 
d 2P
dt2 � P ��b 

dP
dt� � (a � bP) 

dP
dt

�
dP
dt

 (a � 2bP)
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P

P0

a/2b

a/b

t

P

P0 a/2b

a/b

t

(a)(a)

(b)

FIGURE 3.2.2 Logistic curves for
different initial conditions

(a) 

t

x x = 1000

10

500

5

(a)

t (days) x (number infected)

4 50 (observed)
5 124
6 276
7 507
8 735
9 882

10 953

(b)

FIGURE 3.2.3 Number of infected
students in Example 1

EXAMPLE 1 Logistic Growth

Suppose a student carrying a flu virus returns to an isolated college campus of 1000
students. If it is assumed that the rate at which the virus spreads is proportional not
only to the number x of infected students but also to the number of students not
infected, determine the number of infected students after 6 days if it is further
observed that after 4 days x(4) � 50.

SOLUTION Assuming that no one leaves the campus throughout the duration of the
disease, we must solve the initial-value problem

.

By making the identification a � 1000k and b � k, we have immediately from
(5) that

.

Now, using the information x(4) � 50, we determine k from

We find . Thus

.

Finally, .

Additional calculated values of x(t) are given in the table in Figure 3.2.3(b). Note that
the number of infected students x(t) approaches 1000 as t increases.

x(6) �
1000

1 � 999e�5.9436 � 276 students

x(t) �
1000

1 � 999e�0.9906t

�1000k � 1
4 ln 19

999 � �0.9906

50 �
1000

1 � 999e�4000k
.

x(t) �
1000k

k � 999ke�1000kt �
1000

1 � 999e�1000kt

dx
dt

� kx(1000 � x), x(0) � 1
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Modifications of the Logistic Equation There are many variations of the
logistic equation. For example, the differential equations

and (6)

could serve, in turn, as models for the population in a fisher where fis are harvested
or are restocked at rate h. When h � 0 is a constant, the DEs in (6) can be readily an-
alyzed qualitatively or solved analytically by separation of variables. The equations
in (6) could also serve as models of the human population decreased by emigration
or increased by immigration, respectively. The rate h in (6) could be a function of
time t or could be population dependent; for example, harvesting might be done peri-
odically over time or might be done at a rate proportional to the population P at time
t. In the latter instance, the model would look like P� � P(a � bP) � cP, c � 0. The
human population of a community might change because of immigration in such a
manner that the contribution due to immigration was large when the population P of
the community was itself small but small when P was large; a reasonable model for
the population of the community would then be P� � P(a � bP) � ce�kP, c � 0, k � 0.
See Problem 24 in Exercises 3.2. Another equation of the form given in (2),

, (7)

is a modification of the logistic equation known as the Gompertz differential equa-
tion named after the English mathematician Benjamin Gompertz (1779–1865).
This DE is sometimes used as a model in the study of the growth or decline of pop-
ulations, the growth of solid tumors, and certain kinds of actuarial predictions. See
Problem 8 in Exercises 3.2.

Chemical Reactions Suppose that a grams of chemical A are combined with
b grams of chemical B. If there are M parts of A and N parts of B formed in the com-
pound and X(t) is the number of grams of chemical C formed, then the number of
grams of chemical A and the number of grams of chemical B remaining at time t are,
respectively,

.

The law of mass action states that when no temperature change is involved, the rate
at which the two substances react is proportional to the product of the amounts of A
and B that are untransformed (remaining) at time t:

. (8)

If we factor out M�(M � N) from the first factor and N�(M � N) from the second
and introduce a constant of proportionality k � 0, (8) has the form

, (9)

where a� a(M � N)�M and b� b(M � N)�N. Recall from (6) of Section 1.3 that
a chemical reaction governed by the nonlinear differential equation (9) is said to be a
second-order reaction.

dX
dt

� k(� � X)(� � X)

dX
dt

� �a �
M

M � N
X��b �

N
M � N

X�

a �
M

M � N
X    and    b �

N
M � N

X

dP
dt

� P(a � b ln P)

dP
dt

� P(a � bP) � h
dP
dt

� P(a � bP) � h
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EXAMPLE 2 Second-Order Chemical Reaction

A compound C is formed when two chemicals A and B are combined. The resulting
reaction between the two chemicals is such that for each gram of A, 4 grams of B is
used. It is observed that 30 grams of the compound C is formed in 10 minutes.

27069_03_ch03_p083-115.qxd  2/2/12  2:32 PM  Page 98

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Determine the amount of C at time t if the rate of the reaction is proportional to the
amounts of A and B remaining and if initially there are 50 grams of A and 32 grams
of B. How much of the compound C is present at 15 minutes? Interpret the solution
as t : �.

SOLUTION Let X(t) denote the number of grams of the compound C present at
time t. Clearly, X(0) � 0 g and X(10) � 30 g.

If, for example, 2 grams of compound C is present, we must have used,
say, a grams of A and b grams of B, so a � b � 2 and b � 4a. Thus we must use
a � � 2 g of chemical A and b � � 2 g of B. In general, for X grams of
C we must use

.

The amounts of A and B remaining at time t are then

,

respectively.
Now we know that the rate at which compound C is formed satisfie

.

To simplify the subsequent algebra, we factor from the first term and from the
second and then introduce the constant of proportionality:

.

By separation of variables and partial fractions we can write

.

Integrating gives

(10)

When t � 0, X � 0, so it follows at this point that c2 � . Using X � 30 g at t � 10,
we find 210k � ln � 0.1258. With this information we solve the last equation
in (10) for X:

. (11)

From (11) we find X(15) � 34.78 grams. The behavior of X as a function of time 
is displayed in Figure 3.2.4. It is clear from the accompanying table and (11) that 
X : 40 as t : �. This means that 40 grams of compound C is formed, leaving

.50 �
1
5

(40) � 42 g of A    and    32 �
4
5

(40) � 0 g of B

X(t) � 1000
1 � e�0.1258t

25 � 4e�0.1258t

88
25

1
10

25
4

ln 
250 � X
40 � X

� 210kt � c1    or    
250 � X
40 � X

� c2e210kt.

�

1
210

250 � X
 dX �

1
210

40 � X
 dX � k dt

dX
dt

� k(250 � X )(40 � X )

4
5

1
5

dX
dt

� �50 �
1
5
 X��32 �

4
5

X�

50 �
1
5
 X and 32 �

4
5
 X

1
5
 X grams of A    and    

4
5
 X grams of B

(4
5)8

5(1
5)2

5
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10 20 30 40 t

X
X = 40

(a)

t (min) X (g)

10 30 (measured)
15 34.78
20 37.25
25 38.54
30 39.22
35 39.59

(b)

FIGURE 3.2.4 Number of grams of
compound C in Example 2

27069_03_ch03_p083-115.qxd  2/2/12  2:32 PM  Page 99

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



100 ● CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

REMARKS

The indefinite integral 	 du�(a2 � u2) can be evaluated in terms of logarithms,
the inverse hyperbolic tangent, or the inverse hyperbolic cotangent. For example,
of the two results

(12)

(13)

(12) may be convenient in Problems 15 and 26 in Exercises 3.2, whereas (13)
may be preferable in Problem 27.

 � 
du

a 2 � u 2 �
1

2a
 ln �a � u

a � u � � c, � u � � a, 

 � 
du

a 2 � u 2 �
1
a

tanh�1 
u
a

� c, � u � � a 

EXERCISES 3.2 Answers to selected odd-numbered problems begin on page ANS-3.

Logistic Equation

1. The number N(t) of supermarkets throughout the country
that are using a computerized checkout system is
described by the initial-value problem

.

(a) Use the phase portrait concept of Section 2.1 to pre-
dict how many supermarkets are expected to adopt
the new procedure over a long period of time. By
hand, sketch a solution curve of the given initial-
value problem.

(b) Solve the initial-value problem and then use a graph-
ing utility to verify the solution curve in part (a).
How many companies are expected to adopt the new
technology when t � 10?

2. The number N(t) of people in a community who are
exposed to a particular advertisement is governed by
the logistic equation. Initially, N(0) � 500, and it is
observed that N(1) � 1000. Solve for N(t) if it is pre-
dicted that the limiting number of people in the commu-
nity who will see the advertisement is 50,000.

3. A model for the population P(t) in a suburb of a large
city is given by the initial-value problem

,

where t is measured in months. What is the limiting
value of the population? At what time will the popula-
tion be equal to one-half of this limiting value?

4. (a) Census data for the United States between 1790 and
1950 are given in Table 3.2.1. Construct a logistic
population model using the data from 1790, 1850,
and 1910.

dP
dt

� P(10�1 � 10�7 P), P(0) � 5000

dN
dt

� N(1 � 0.0005N ),  N(0) � 1

(b) Construct a table comparing actual census popula-
tion with the population predicted by the model in
part (a). Compute the error and the percentage error
for each entry pair.

Modifications of the Logistic Model

5. (a) If a constant number h of fish are harvested from a
fishery per unit time, then a model for the popula-
tion P(t) of the fishery at time t is given by

,

where a, b, h, and P0 are positive constants.
Suppose a � 5, b � 1, and h � 4. Since the DE is
autonomous, use the phase portrait concept of
Section 2.1 to sketch representative solution curves

dP
dt

� P(a � bP) � h, P(0) � P0

TABLE 3.2.1

Year Population (in millions)

1790 3.929
1800 5.308
1810 7.240
1820 9.638
1830 12.866
1840 17.069
1850 23.192
1860 31.433
1870 38.558
1880 50.156
1890 62.948
1900 75.996
1910 91.972
1920 105.711
1930 122.775
1940 131.669
1950 150.697
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3.2 NONLINEAR MODELS ● 101

corresponding to the cases P0 � 4, 1 � P0 � 4, and
0 � P0 � 1. Determine the long-term behavior of
the population in each case.

(b) Solve the IVP in part (a). Verify the results of your
phase portrait in part (a) by using a graphing utility
to plot the graph of P(t) with an initial condition
taken from each of the three intervals given.

(c) Use the information in parts (a) and (b) to determine
whether the fishery population becomes extinct in
finite time. If so, find that tim

6. Investigate the harvesting model in Problem 5 both
qualitatively and analytically in the case a � 5, b � 1,
h � . Determine whether the population becomes
extinct in finite time. If so, find that tim

7. Repeat Problem 6 in the case a � 5, b � 1, h � 7.

8. (a) Suppose a � b � 1 in the Gompertz differential
equation (7). Since the DE is autonomous, use the
phase portrait concept of Section 2.1 to sketch rep-
resentative solution curves corresponding to the
cases P0 � e and 0 � P0 � e.

(b) Suppose a � 1, b � �1 in (7). Use a new phase por-
trait to sketch representative solution curves corre-
sponding to the cases P0 � e�1 and 0 � P0 � e�1.

(c) Find an explicit solution of (7) subject to P(0) � P0.

Chemical Reactions

9. Two chemicals A and B are combined to form a chemical
C. The rate, or velocity, of the reaction is proportional to
the product of the instantaneous amounts of A and B not
converted to chemical C. Initially, there are 40 grams of
A and 50 grams of B, and for each gram of B, 2 grams of
A is used. It is observed that 10 grams of C is formed in
5 minutes. How much is formed in 20 minutes? What is
the limiting amount of C after a long time? How much of
chemicals A and B remains after a long time?

10. Solve Problem 9 if 100 grams of chemical A is present
initially. At what time is chemical C half-formed?

Additional Nonlinear Models

11. Leaking Cylindrical Tank A tank in the form of a
right-circular cylinder standing on end is leaking water
through a circular hole in its bottom. As we saw in (10)
of Section 1.3, when friction and contraction of water at
the hole are ignored, the height h of water in the tank is
described by

,

where Aw and Ah are the cross-sectional areas of the
water and the hole, respectively.
(a) Solve the DE if the initial height of the water is H.

By hand, sketch the graph of h(t) and give its interval

dh
dt

� �
Ah

Aw
 12gh

25
4

I of definition in terms of the symbols Aw, Ah, and H.
Use g � 32 ft/s2.

(b) Suppose the tank is 10 feet high and has radius
2 feet and the circular hole has radius inch. If the
tank is initially full, how long will it take to empty?

12. Leaking Cylindrical Tank—Continued When fric-
tion and contraction of the water at the hole are taken
into account, the model in Problem 11 becomes

,

where 0 � c � 1. How long will it take the tank in
Problem 11(b) to empty if c � 0.6? See Problem 13 in
Exercises 1.3.

13. Leaking Conical Tank A tank in the form of a right-
circular cone standing on end, vertex down, is leaking
water through a circular hole in its bottom.
(a) Suppose the tank is 20 feet high and has radius

8 feet and the circular hole has radius 2 inches. In
Problem 14 in Exercises 1.3 you were asked to
show that the differential equation governing the
height h of water leaking from a tank is

.

In this model, friction and contraction of the water
at the hole were taken into account with c � 0.6,
and g was taken to be 32 ft/s2. See Figure 1.3.12. If
the tank is initially full, how long will it take the
tank to empty?

(b) Suppose the tank has a vertex angle of 60° and the
circular hole has radius 2 inches. Determine the dif-
ferential equation governing the height h of water.
Use c � 0.6 and g � 32 ft/s2. If the height of the
water is initially 9 feet, how long will it take the
tank to empty?

14. Inverted Conical Tank Suppose that the conical tank
in Problem 13(a) is inverted, as shown in Figure 3.2.5,
and that water leaks out a circular hole of radius 2 inches
in the center of its circular base. Is the time it takes to
empty a full tank the same as for the tank with vertex
down in Problem 13? Take the friction/contraction coef-
ficient to be c � 0.6 and g � 32 ft/s2.

dh
dt

� �
5

6h3/2

dh
dt

� �c
Ah

Aw
 12gh

1
2

8 ft

Aw

h
20 ft

FIGURE 3.2.5 Inverted conical tank in Problem 14
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15. Air Resistance A differential equation for the veloc-
ity v of a falling mass m subjected to air resistance pro-
portional to the square of the instantaneous velocity is

,

where k � 0 is a constant of proportionality. The posi-
tive direction is downward.
(a) Solve the equation subject to the initial condition

v(0) � v0.
(b) Use the solution in part (a) to determine the limit-

ing, or terminal, velocity of the mass. We saw how
to determine the terminal velocity without solving
the DE in Problem 41 in Exercises 2.1.

(c) If the distance s, measured from the point where
the mass was released above ground, is related to
velocity v by ds�dt � v(t), find an explicit expres-
sion for s(t) if s(0) � 0.

16. How High?—Nonlinear Air Resistance Consider the
16-pound cannonball shot vertically upward in Prob-
lems 36 and 37 in Exercises 3.1 with an initial velocity 
v0 � 300 ft/s. Determine the maximum height attained by
the cannonball if air resistance is assumed to be propor-
tional to the square of the instantaneous velocity. Assume
that the positive direction is upward and take k � 0.0003.
[Hint: Slightly modify the DE in Problem 15.]

17. That Sinking Feeling (a) Determine a differential 
equation for the velocity v(t) of a mass m sinking
in water that imparts a resistance proportional to
the square of the instantaneous velocity and also
exerts an upward buoyant force whose magnitude is
given by Archimedes’ principle. See Problem 18 in
Exercises 1.3. Assume that the positive direction is
downward.

(b) Solve the differential equation in part (a).
(c) Determine the limiting, or terminal, velocity of the

sinking mass.

18. Solar Collector The differential equation

describes the shape of a plane curve C that will reflect all
incoming light beams to the same point and could be a
model for the mirror of a reflecting telescope, a satellite
antenna, or a solar collector. See Problem 29 in
Exercises 1.3. There are several ways of solving this DE.
(a) Verify that the differential equation is homogeneous

(see Section 2.5). Show that the substitution y � ux
yields

.
u du

11 � u2 (1 � 11 � u2) �
dx
x

dy
dx

�
�x � 1x2 � y2

y

m
dv
dt

� mg � kv2
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Use a CAS (or another judicious substitution) to
integrate the left-hand side of the equation. Show that
the curve C must be a parabola with focus at the ori-
gin and is symmetric with respect to the x-axis.

(b) Show that the first differential equation can also be
solved by means of the substitution u � x2 � y2.

19. Tsunami (a) A simple model for the shape of a
tsunami is given by

,

where W(x) � 0 is the height of the wave expressed
as a function of its position relative to a point off-
shore. By inspection, find all constant solutions of
the DE.

(b) Solve the differential equation in part (a). A CAS
may be useful for integration.

(c) Use a graphing utility to obtain the graphs of all
solutions that satisfy the initial condition W(0) � 2.

20. Evaporation An outdoor decorative pond in the shape
of a hemispherical tank is to be filled with water pumped
into the tank through an inlet in its bottom. Suppose that
the radius of the tank is R � 10 ft, that water is pumped
in at a rate of p ft3/min, and that the tank is initially
empty. See Figure 3.2.6. As the tank fills, it loses water
through evaporation. Assume that the rate of evaporation
is proportional to the area A of the surface of the water
and that the constant of proportionality is k � 0.01.
(a) The rate of change dV�dt of the volume of the water

at time t is a net rate. Use this net rate to determine a
differential equation for the height h of the water at
time t. The volume of the water shown in the figure is
V � pRh2 � ph3, where R � 10. Express the area
of the surface of the water A � pr 2 in terms of h.

(b) Solve the differential equation in part (a). Graph the
solution.

(c) If there were no evaporation, how long would it take
the tank to fill

(d) With evaporation, what is the depth of the water at
the time found in part (c)? Will the tank ever be
filled? Prove your assertion

1
3

dW
dx

� W 14 � 2W

FIGURE 3.2.6 Decorative pond in Problem 20

Output: water evaporates
                 at rate proportional
                  to area A of surface

Input: water pumped in
         at rate    ft3

A
V

Output: water evaporates
                 at rate proportional
                  to area A of surface

Input: water pumped in
         at rate  3/minπ

(a) hemispherical tank (b) cross-section of tank

R

r

h
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21. Doomsday Equation Consider the differential equation

where and In Section 3.1 we saw that in
the case the linear differential equation

is a mathematical model of a population
P(t) that exhibits unbounded growth over the infinit
time interval , that is, See
Example 1 on page 84. 
(a) Suppose for that the nonlinear differential

equation 

is a mathematical model for a population of small
animals, where time t is measured in months. Solve
the differential equation subject to the initial condi-
tion and the fact that the animal popula-
tion has doubled in 5 months. 

(b) The differential equation in part (a) is called a
doomsday equation because the population 
exhibits unbounded growth over a finite time 
interval that is, there is some time T such

Find T.
(c) From part (a), what is 

22. Doomsday or Extinction Suppose the population
model (4) is modified to b

(a) If show by means of a phase portrait
(see page 39) that, depending on the initial condi-
tion the mathematical model could in-
clude a doomsday scenario or an extinc-
tion scenario 

(b) Solve the initial-value problem

Show that this model predicts a doomsday for the
population in a finite time T. 

(c) Solve the differential equation in part (b) subject to
the initial condition Show that this
model predicts extinction for the population as

Project Problems

23. Regression Line Read the documentation for your
CAS on scatter plots (or scatter diagrams) and least-
squares linear fit The straight line that best fits a set of

t : �.

P(0) � 100.

dP
dt

� P(0.0005P � 0.1), P(0) � 300.

(P(t) : 0).
(P(t) : �)

P(0) � P0,

a � 0, b � 0

dP
dt

� P(bP � a).

P(50)? P(100)?
P(t) : � as t : T�.

(0, T),

P(t)

P(0) � 10

dP
dt

� kP1.01, k � 0,

c � 0.01

P(t) : � as t : �.[0, �)

dP>dt � kP
c � 0

c � 0.k � 0

dP
dt

� kP1�c,
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data points is called a regression line or a least
squares line. Your task is to construct a logistic model
for the population of the United States, defining f (P)
in (2) as an equation of a regression line based on the
population data in the table in Problem 4. One way of 

doing this is to approximate the left-hand side of 

the first equation in (2), using the forward difference
quotient in place of dP�dt:

.

(a) Make a table of the values t, P(t), and Q(t) using
t � 0, 10, 20, . . . , 160 and h � 10. For example, the
first line of the table should contain t � 0, P(0), and
Q(0). With P(0) � 3.929 and P(10) � 5.308,

.

Note that Q(160) depends on the 1960 census popu-
lation P(170). Look up this value.

(b) Use a CAS to obtain a scatter plot of the data 
(P(t), Q(t)) computed in part (a). Also use a CAS to
find an equation of the regression line and to
superimpose its graph on the scatter plot.

(c) Construct a logistic model dP�dt � Pf (P), where f (P)
is the equation of the regression line found in part (b).

(d) Solve the model in part (c) using the initial condi-
tion P(0) � 3.929.

(e) Use a CAS to obtain another scatter plot, this time
of the ordered pairs (t, P(t)) from your table in
part (a). Use your CAS to superimpose the graph of
the solution in part (d) on the scatter plot.

(f) Look up the U.S. census data for 1970, 1980, and
1990. What population does the logistic model in part
(c) predict for these years? What does the model pre-
dict for the U.S. population P(t) as t : �?

24. Immigration Model (a) In Examples 3 and 4 of
Section 2.1 we saw that any solution P(t) of (4)
possesses the asymptotic behavior P(t) : a�b as 
t : � for P0 � a�b and for 0 � P0 � a�b; as a
consequence the equilibrium solution P � a�b is
called an attractor. Use a root-finding application of
a CAS (or a graphic calculator) to approximate the
equilibrium solution of the immigration model

.

(b) Use a graphing utility to graph the function 
F(P) � P(1 � P) � 0.3e�P. Explain how this graph
can be used to determine whether the number found
in part (a) is an attractor.

dP
dt

� P(1 � P) � 0.3e�P

Q(0) �
1

P(0)
 
P(10) � P(0)

10
� 0.035

Q(t) �
1

P(t)
 
P(t � h) � P(t)

h

1
P

 
dP
dt
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(c) Use a numerical solver to compare the solution
curves for the IVPs

for P0 � 0.2 and P0 � 1.2 with the solution curves
for the IVPs

for P0 � 0.2 and P0 � 1.2. Superimpose all curves on
the same coordinate axes but, if possible, use a differ-
ent color for the curves of the second initial-value
problem. Over a long period of time, what percentage
increase does the immigration model predict in the
population compared to the logistic model?

25. What Goes Up . . . In Problem 16 let ta be the time it
takes the cannonball to attain its maximum height and
let td be the time it takes the cannonball to fall from the
maximum height to the ground. Compare the value of
ta with the value of td and compare the magnitude of
the impact velocity vi with the initial velocity v0. See
Problem 48 in Exercises 3.1. A root-finding application
of a CAS might be useful here. [Hint: Use the model in
Problem 15 when the cannonball is falling.]

26. Skydiving A skydiver is equipped with a stopwatch
and an altimeter. As shown in Figure 3.2.7, he opens his
parachute 25 seconds after exiting a plane flying at an
altitude of 20,000 feet and observes that his altitude is
14,800 feet. Assume that air resistance is proportional to
the square of the instantaneous velocity, his initial ve-
locity on leaving the plane is zero, and g � 32 ft/s2.
(a) Find the distance s(t), measured from the plane, the

skydiver has traveled during freefall in time t.
[Hint: The constant of proportionality k in the
model given in Problem 15 is not specified. Use the
expression for terminal velocity vt obtained in part
(b) of Problem 15 to eliminate k from the IVP. Then
eventually solve for vt.]

(b) How far does the skydiver fall and what is his
velocity at t � 15 s?

dP
dt

� P(1 � P) � 0.3e�P, P(0) � P0

dP
dt

� P(1 � P), P(0) � P0
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27. Hitting Bottom A helicopter hovers 500 feet above a
large open tank full of liquid (not water). A dense com-
pact object weighing 160 pounds is dropped (released
from rest) from the helicopter into the liquid. Assume
that air resistance is proportional to instantaneous ve-
locity v while the object is in the air and that viscous
damping is proportional to v2 after the object has en-
tered the liquid. For air take k � , and for the liquid
take k � 0.1. Assume that the positive direction is
downward. If the tank is 75 feet high, determine the
time and the impact velocity when the object hits the
bottom of the tank. [Hint: Think in terms of two distinct
IVPs. If you use (13), be careful in removing the ab-
solute value sign. You might compare the velocity when
the object hits the liquid—the initial velocity for the
second problem—with the terminal velocity vt of the
object falling through the liquid.]

28. Old Man River . . . In Figure 3.2.8(a) suppose that the
y-axis and the dashed vertical line x � 1 represent, re-
spectively, the straight west and east beaches of a river
that is 1 mile wide. The river flows northward with a
velocity vr, where mi/h is a constant. A man
enters the current at the point (1, 0) on the east shore and
swims in a direction and rate relative to the river given by
the vector vs, where the speed mi/h is a constant.
The man wants to reach the west beach exactly at (0, 0)
and so swims in such a manner that keeps his velocity
vector vs always directed toward the point (0, 0). Use
Figure 3.2.8(b) as an aid in showing that a mathematical
model for the path of the swimmer in the river is

[Hint: The velocity v of the swimmer along the path or
curve shown in Figure 3.2.8 is the resultant v � vs � vr.
Resolve vs and vr into components in the x- and 

dy
dx

�
vsy � vr1x2 � y2

vsx
.

|vs| � vs

|vr| � vr

1
4

s(t)

25 s

14,800 ft

FIGURE 3.2.7 Skydiver in Problem 26

y

(0, 0) (1, 0)

y(t)

x(t)

θ

(x(t), y(t))

vr

west
beach

east
beach

swimmer

current

x

y

(0, 0) (1, 0)

vs

vr

x

(a)

(b)

FIGURE 3.2.8 Path of swimmer in Problem 28
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y-directions. If are parametric equa-
tions of the swimmer’s path, then .]

29. (a) Solve the DE in Problem 28 subject to y(1) � 0. For
convenience let 

(b) Determine the values of vs for which the swimmer
will reach the point (0, 0) by examining in
the cases k � 1, k � 1, and 0 � k � 1.

30. Old Man River Keeps Moving . . . Suppose the man in
Problem 28 again enters the current at (1, 0) but this
time decides to swim so that his velocity vector vs is
always directed toward the west beach. Assume that the
speed mi/h is a constant. Show that a mathe-
matical model for the path of the swimmer in the river
is now

31. The current speed vr of a straight river such as that in
Problem 28 is usually not a constant. Rather, an approxi-
mation to the current speed (measured in miles per hour)
could be a function such as 

whose values are small at the shores (in this
case, vr(0) � 0 and vr(1) � 0) and largest in the middle of
the river. Solve the DE in Problem 30 subject to y(1) � 0,
where vs � 2 mi/h and vr(x) is as given. When the swim-
mer makes it across the river, how far will he have to
walk along the beach to reach the point (0, 0)?

32. Raindrops Keep Falling . . . When a bottle of liquid
refreshment was opened recently, the following factoid
was found inside the bottle cap:

The average velocity of a falling raindrop is 7 miles/hour.

A quick search of the Internet found that meteorologist
Jeff Haby offers the additional information that an
“average” spherical raindrop has a radius of 0.04 in. and
an approximate volume of 0.000000155 ft3. Use this data
and, if need be, dig up other data and make other reason-
able assumptions to determine whether “average velocity
of . . . 7 mi/h” is consistent with the models in Problems
35 and 36 in Exercises 3.1 and Problem 15 in this exer-
cise set. Also see Problem 36 in Exercises 1.3.

33. Time Drips By The clepsydra, or water clock, was a
device that the ancient Egyptians, Greeks, Romans, and
Chinese used to measure the passage of time by observ-
ing the change in the height of water that was permitted
to flow out of a small hole in the bottom of a container
or tank.
(a) Suppose a tank is made of glass and has the shape of

a right-circular cylinder of radius 1 ft. Assume that
h(0) � 2 ft corresponds to water filled to the top of
the tank, a hole in the bottom is circular with radius

in., g � 32 ft/s2, and c � 0.6. Use the differential
equation in Problem 12 to find the height h(t) of the
water.

1
32

0 
 x 
 1,
vr(x) � 30x(1 � x),

dy
dx

� �
vr

vs
.

|vs| � vs

lim
x : 0�

y(x)

k � vr>vs.

v � (dx>dt, dy>dt)
x � x(t), y � y(t)
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(b) For the tank in part (a), how far up from its bottom
should a mark be made on its side, as shown in
Figure 3.2.9, that corresponds to the passage of one
hour? Next determine where to place the marks
corresponding to the passage of 2 hr, 3 hr, . . . , 12 hr.
Explain why these marks are not evenly spaced.

21 hour

2 hours

1

FIGURE 3.2.9 Clepsydra in Problem 33

2

1

FIGURE 3.2.10 Clepsydra in Problem 34

35. Suppose that r � f (h) defines the shape of a water clock
for which the time marks are equally spaced. Use the
differential equation in Problem 12 to find f (h) and
sketch a typical graph of h as a function of r. Assume
that the cross-sectional area Ah of the hole is constant.
[Hint: In this situation dh�dt � �a, where a � 0 is a
constant.]

34. (a) Suppose that a glass tank has the shape of a cone with
circular cross section as shown in Figure 3.2.10. As
in part (a) of Problem 33, assume that h(0) � 2 ft
corresponds to water filled to the top of the tank,
a hole in the bottom is circular with radius in.,
g � 32 ft/s2, and c � 0.6. Use the differential equa-
tion in Problem 12 to find the height h(t) of the
water.

(b) Can this water clock measure 12 time intervals
of length equal to 1 hour? Explain using sound
mathematics.

1
32
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106 ● CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

MODELING WITH SYSTEMS OF FIRST-ORDER DEs

REVIEW MATERIAL
● Section 1.3

INTRODUCTION This section is similar to Section 1.3 in that we are just going to discuss cer-
tain mathematical models, but instead of a single differential equation the models will be systems of
first-order differential equations. Although some of the models will be based on topics that we
explored in the preceding two sections, we are not going to develop any general methods for solv-
ing these systems. There are reasons for this: First, we do not possess the necessary mathematical
tools for solving systems at this point. Second, some of the systems that we discuss—notably the
systems of nonlinear first-order DEs—simply cannot be solved analytically. We shall examine
solution methods for systems of linear DEs in Chapters 4, 7, and 8.

3.3

Linear/Nonlinear Systems We have seen that a single differential equation
can serve as a mathematical model for a single population in an environment. But if
there are, say, two interacting and perhaps competing species living in the same
environment (for example, rabbits and foxes), then a model for their populations x(t)
and y(t) might be a system of two first-order di ferential equations such as

.
(1)

When g1 and g2 are linear in the variables x and y—that is, g1 and g2 have the forms

,

where the coefficients ci could depend on t—then (1) is said to be a linear system.
A system of differential equations that is not linear is said to be nonlinear.

Radioactive Series In the discussion of radioactive decay in Sections 1.3
and 3.1 we assumed that the rate of decay was proportional to the number A(t) of
nuclei of the substance present at time t. When a substance decays by radioactivity,
it usually doesn’t just transmute in one step into a stable substance; rather, the firs
substance decays into another radioactive substance, which in turn decays into a
third substance, and so on. This process, called a radioactive decay series, con-
tinues until a stable element is reached. For example, the uranium decay series is
U-238 : Th-234 : � � � : Pb-206, where Pb-206 is a stable isotope of lead.
The half-lives of the various elements in a radioactive series can range from
billions of years (4.5 	 109 years for U-238) to a fraction of a second. Suppose a
radioactive series is described schematically by , where k1 � �l1 � 0
and k2 � �l2 � 0 are the decay constants for substances X and Y, respectively,
and Z is a stable element. Suppose, too, that x(t), y(t), and z(t) denote amounts of
substances X, Y, and Z, respectively, remaining at time t. The decay of element X is
described by

,

whereas the rate at which the second element Y decays is the net rate

,
dy
dt

� �1x � �2y

dx
dt

� ��1x

X��1
: Y��2

: Z

g1(t, x, y) � c1 x � c2 y � f1(t)    and    g2(t, x, y) � c3 x � c4 y � f2(t)

 
dy
dt

� g2(t, x, y)

 
dx
dt

� g1(t, x, y)
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3.3 MODELING WITH SYSTEMS OF FIRST-ORDER DEs ● 107

since Y is gaining atoms from the decay of X and at the same time losing atoms
because of its own decay. Since Z is a stable element, it is simply gaining atoms from
the decay of element Y:

.

In other words, a model of the radioactive decay series for three elements is the linear
system of three first-order di ferential equations

(2)

Mixtures Consider the two tanks shown in Figure 3.3.1. Let us suppose for the
sake of discussion that tank A contains 50 gallons of water in which 25 pounds of salt
is dissolved. Suppose tank B contains 50 gallons of pure water. Liquid is pumped
into and out of the tanks as indicated in the figure; the mixture exchanged between
the two tanks and the liquid pumped out of tank B are assumed to be well stirred.
We wish to construct a mathematical model that describes the number of pounds x1(t)
and x2(t) of salt in tanks A and B, respectively, at time t.

 
dz
dt

� �2y.

 
dy
dt

� �1x � �2y

 
dx
dt

� ��1x

dz
dt

� �2y

mixture
3 gal/min

mixture
4 gal/min

BA

pure water
3 gal/min

mixture
1 gal/min

FIGURE 3.3.1 Connected mixing tanks

By an analysis similar to that on page 24 in Section 1.3 and Example 5 of
Section 3.1 we see that the net rate of change of x1(t) for tank A is

dx1–––
dt � (3 gal/min) � (0 lb/gal) � (1 gal/min) � (      lb/gal) � (4 gal/min) � (      lb/gal)

� �     x1 �      x2.

input rate
of salt

output rate
of salt

x2–––
50

1–––
50

x1–––
50

2–––
25

Similarly, for tank B the net rate of change of x2(t) is

 �
2

25
x1 �

2
25

x2.

 
dx2

dt
� 4 �

x1

50
� 3 �

x2

50
� 1 �

x2

50
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Thus we obtain the linear system

(3)

Observe that the foregoing system is accompanied by the initial conditions x1(0) � 25,
x2(0) � 0.

A Predator-Prey Model Suppose that two different species of animals interact
within the same environment or ecosystem, and suppose further that the firs species
eats only vegetation and the second eats only the first species. In other words, one
species is a predator, and the other is a prey. For example, wolves hunt grass-eating
caribou, sharks devour little fish, and the snowy owl pursues an arctic rodent called
the lemming. For the sake of discussion, let us imagine that the predators are foxes
and the prey are rabbits.

Let x(t) and y(t) denote the fox and rabbit populations, respectively, at time t.
If there were no rabbits, then one might expect that the foxes, lacking an adequate
food supply, would decline in number according to

. (4)

When rabbits are present in the environment, however, it seems reasonable that the
number of encounters or interactions between these two species per unit time is jointly
proportional to their populations x and y—that is, proportional to the product xy. Thus
when rabbits are present, there is a supply of food, so foxes are added to the system at
a rate bxy, b � 0. Adding this last rate to (4) gives a model for the fox population:

(5)

On the other hand, if there were no foxes, then the rabbits would, with an added
assumption of unlimited food supply, grow at a rate that is proportional to the num-
ber of rabbits present at time t:

. (6)

But when foxes are present, a model for the rabbit population is (6) decreased by
cxy, c � 0—that is, decreased by the rate at which the rabbits are eaten during their
encounters with the foxes:

(7)

Equations (5) and (7) constitute a system of nonlinear differential equations

(8)

where a, b, c, and d are positive constants. This famous system of equations is known
as the Lotka-Volterra predator-prey model.

Except for two constant solutions, x(t) � 0, y(t) � 0 and x(t) � d�c, y(t) � a�b,
the nonlinear system (8) cannot be solved in terms of elementary functions. However,
we can analyze such systems quantitatively and qualitatively. See Chapter 9,
“Numerical Solutions of Ordinary Differential Equations,” and Chapter 10, “Plane
Autonomous Systems.”*

dy
dt

� dy � cxy � y(d � cx),

dx
dt

� �ax � bxy � x(�a � by)

 
dy
dt

� dy � cxy.

 
dy
dt

� dy,    d � 0

dx
dt

� �ax � bxy.

dx
dt

� �ax,    a � 0

 dx2

dt
�  

2
25

 x1 �
2

25
 x2.

 
dx1

dt
�  � 2

25
 x1 �

1
50

 x2
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*Chapters 10–15 are in the expanded version of this text, Differential Equations with Boundary-Value
Problems.
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FIGURE 3.3.2 Populations of
predators (red) and prey (blue) in 
Example 1

t

po
pu

la
tio

n

x, y

time

predators 

prey 

EXAMPLE 1 Predator-Prey Model

Suppose

represents a predator-prey model. Because we are dealing with populations, we
have x(t) � 0, y(t) � 0. Figure 3.3.2, obtained with the aid of a numerical solver,
shows typical population curves of the predators and prey for this model superim-
posed on the same coordinate axes. The initial conditions used were x(0) � 4, y(0) � 4.
The curve in red represents the population x(t) of the predators (foxes), and the blue
curve is the population y(t) of the prey (rabbits). Observe that the model seems to
predict that both populations x(t) and y(t) are periodic in time. This makes intuitive
sense because as the number of prey decreases, the predator population eventually
decreases because of a diminished food supply; but attendant to a decrease in the
number of predators is an increase in the number of prey; this in turn gives rise to an
increased number of predators, which ultimately brings about another decrease in
the number of prey.

Competition Models Now suppose two different species of animals occupy
the same ecosystem, not as predator and prey but rather as competitors for the same
resources (such as food and living space) in the system. In the absence of the other,
let us assume that the rate at which each population grows is given by

, (9)

respectively.
Since the two species compete, another assumption might be that each of these

rates is diminished simply by the influence, or existence, of the other population.
Thus a model for the two populations is given by the linear system

(10)
,

where a, b, c, and d are positive constants.
On the other hand, we might assume, as we did in (5), that each growth rate in

(9) should be reduced by a rate proportional to the number of interactions between
the two species:

(11)
.

Inspection shows that this nonlinear system is similar to the Lotka-Volterra predator-
prey model. Finally, it might be more realistic to replace the rates in (9), which
indicate that the population of each species in isolation grows exponentially, with
rates indicating that each population grows logistically (that is, over a long time the
population is bounded):

. (12)
dx
dt

� a1x � b1x2    and    
dy
dt

� a2 y � b2 y2

 
dy
dt

� cy � dxy

 
dx
dt

� ax � bxy

 
dy
dt

� cy � dx

 
dx
dt

� ax � by

dx
dt

� ax    and    
dy
dt

� cy

dy
dt

� 4.5y � 0.9xy

dx
dt

� �0.16x � 0.08xy
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When these new rates are decreased by rates proportional to the number of interac-
tions, we obtain another nonlinear model:

(13)
,

where all coefficients are positive. The linear system (10) and the nonlinear systems
(11) and (13) are, of course, called competition models.

Networks An electrical network having more than one loop also gives rise to
simultaneous differential equations. As shown in Figure 3.3.3, the current i1(t) splits
in the directions shown at point B1, called a branch point of the network. By
Kirchhoff’s first la we can write

. (14)

We can also apply Kirchhoff’s second law to each loop. For loop A1B1B2A2A1,
summing the voltage drops across each part of the loop gives

. (15)

Similarly, for loop A1B1C1C2B2A2A1 we fin

. (16)

Using (14) to eliminate i1 in (15) and (16) yields two linear first-order equations for
the currents i2(t) and i3(t):

(17)

We leave it as an exercise (see Problem 14 in Exercises 3.3) to show that the sys-
tem of differential equations describing the currents i1(t) and i2(t) in the network con-
taining a resistor, an inductor, and a capacitor shown in Figure 3.3.4 is

(18)
 RC 

di2

dt
�  i2 � i1 � 0.

 L 
di1

dt
�  Ri2  � E(t) 

L2 
di3

dt
�  R1i2 � R1i3 � E(t).

L1 
di2

dt
�  (R1 � R2)i2 � R1i3 � E (t)

E (t) � i1R1 � L2  
di3

dt

E(t) � i1R1 � L1 
di2

dt
� i2R2

i1(t) � i2(t) � i3(t)

 
dy
dt

� a2y � b2y 2 � c2xy � y (a2 � b2y � c2x)

 
dx
dt

� a1x � b1x2 � c1xy � x (a1 � b1x � c1y)
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A1

L1

R1

R2

A2

B1

B2

C1

C2

i1 i2
i3

L2E

FIGURE 3.3.3 Network whose model
is given in (17)

FIGURE 3.3.4 Network whose
model is given in (18)

i1 L

R C

i2
i3

E

EXERCISES 3.3 Answers to selected odd-numbered problems begin on page ANS-4.

Radioactive Series

1. We have not discussed methods by which systems
of first-order differential equations can be solved.
Nevertheless, systems such as (2) can be solved with no
knowledge other than how to solve a single linear first
order equation. Find a solution of (2) subject to the
initial conditions x(0) � x0, y(0) � 0, z(0) � 0.

2. In Problem 1 suppose that time is measured in days,
that the decay constants are k1 � �0.138629 and 
k2 � �0.004951, and that x0 � 20. Use a graphing utility
to obtain the graphs of the solutions x(t), y(t), and z(t)

on the same set of coordinate axes. Use the graphs to
approximate the half-lives of substances X and Y.

3. Use the graphs in Problem 2 to approximate the times
when the amounts x(t) and y(t) are the same, the
times when the amounts x(t) and z(t) are the same, and
the times when the amounts y(t) and z(t) are the same.
Why does the time that is determined when the amounts
y(t) and z(t) are the same make intuitive sense?

4. Construct a mathematical model for a radioactive series
of four elements W, X, Y, and Z, where Z is a stable
element.
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3.3 MODELING WITH SYSTEMS OF FIRST-ORDER DEs ● 111

Mixtures

5. Consider two tanks A and B, with liquid being pumped in
and out at the same rates, as described by the system of
equations (3). What is the system of differential equations
if, instead of pure water, a brine solution containing
2 pounds of salt per gallon is pumped into tank A?

6. Use the information given in Figure 3.3.5 to construct a
mathematical model for the number of pounds of salt
x1(t), x2(t), and x3(t) at time t in tanks A, B, and C,
respectively.

x2(t), and x3(t) at time t in tanks A, B, and C, respectively.
Without solving the system, predict limiting values of
x1(t), x2(t), and x3(t) as t : �.

mixture
5 gal/min

mixture
6 gal/min

mixture
4 gal/min

pure water
4 gal/min

B
100 gal

C
100 gal

A
100 gal

mixture
2 gal/min

mixture
1 gal/min

FIGURE 3.3.5 Mixing tanks in Problem 6

7. Two very large tanks A and B are each partially filled
with 100 gallons of brine. Initially, 100 pounds of salt
is dissolved in the solution in tank A and 50 pounds of
salt is dissolved in the solution in tank B. The system
is closed in that the well-stirred liquid is pumped only
between the tanks, as shown in Figure 3.3.6.

mixture
2 gal/min

mixture
3 gal/min

B
100 gal

A
100 gal

FIGURE 3.3.6 Mixing tanks in Problem 7

(a) Use the information given in the figure to construct
a mathematical model for the number of pounds
of salt x1(t) and x2(t) at time t in tanks A and B,
respectively.

(b) Find a relationship between the variables x1(t)
and x2(t) that holds at time t. Explain why this
relationship makes intuitive sense. Use this rela-
tionship to help find the amount of salt in tank B at
t � 30 min.

8. Three large tanks contain brine, as shown in Figure 3.3.7.
Use the information in the figure to construct a mathe-
matical model for the number of pounds of salt x1(t),

FIGURE 3.3.7 Mixing tanks in Problem 8

mixture
4 gal/min

mixture
4 gal/min

mixture
4 gal/min

pure water
4 gal/min

B
150 gal

C
100 gal

A
200 gal

Predator-Prey Models

9. Consider the Lotka-Volterra predator-prey model
defined b

,

where the populations x(t) (predators) and y(t) (prey)
are measured in thousands. Suppose x(0) � 6 and 
y(0) � 6. Use a numerical solver to graph x(t) and y(t).
Use the graphs to approximate the time t � 0 when
the two populations are first equal. Use the graphs to
approximate the period of each population.

Competition Models

10. Consider the competition model defined by

,

where the populations x(t) and y(t) are measured in
thousands and t in years. Use a numerical solver to
analyze the populations over a long period of time for
each of the following cases:
(a) x(0) � 1.5, y(0) � 3.5
(b) x(0) � 1, y(0) � 1
(c) x(0) � 2, y(0) � 7
(d) x(0) � 4.5, y(0) � 0.5

11. Consider the competition model defined by

,

where the populations x(t) and y(t) are measured in
thousands and t in years. Use a numerical solver to

 
dy
dt

� y(1.7 � 0.1y � 0.15x)

 
dx
dt

� x(1 � 0.1x � 0.05y)

 
dy
dt

� y(1 � 0.1y � 0.3x)

 
dx
dt

� x(2 � 0.4x � 0.3y)

 
dy
dt

� 0.2y � 0.025xy

 
dx
dt

� �0.1x � 0.02xy
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analyze the populations over a long period of time for
each of the following cases:
(a) x(0) � 1, y(0) � 1
(b) x(0) � 4, y(0) � 10
(c) x(0) � 9, y(0) � 4
(d) x(0) � 5.5, y(0) � 3.5

Networks

12. Show that a system of differential equations that
describes the currents i2(t) and i3(t) in the electrical
network shown in Figure 3.3.8 is

 �R1 
di2

dt
� R2 

di3

dt
�

1
C

 i3 � 0.

 L 
di2

dt
� L 

di3

dt
� R1i2 � E(t)
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let s(t), i(t), and r(t) denote, in turn, the number of peo-
ple in the community (measured in hundreds) who are
susceptible to the disease but not yet infected with it,
the number of people who are infected with the dis-
ease, and the number of people who have recovered
from the disease. Explain why the system of differen-
tial equations

where k1 (called the infection rate) and k2 (called the
removal rate) are positive constants, is a reasonable
mathematical model, commonly called a SIR model,
for the spread of the epidemic throughout the commu-
nity. Give plausible initial conditions associated with
this system of equations.

16. (a) In Problem 15, explain why it is sufficient to
analyze only

.

(b) Suppose k1 � 0.2, k2 � 0.7, and n � 10. Choose
various values of i(0) � i0, 0 � i0 � 10. Use a
numerical solver to determine what the model pre-
dicts about the epidemic in the two cases s0 � k2�k1
and s0 
 k2�k1. In the case of an epidemic, estimate
the number of people who are eventually infected.

Project Problems

17. Concentration of a Nutrient Suppose compartments
A and B shown in Figure 3.3.10 are filled with fluids and
are separated by a permeable membrane. The figure is
a compartmental representation of the exterior and
interior of a cell. Suppose, too, that a nutrient necessary
for cell growth passes through the membrane. A model

 
di
dt

� �k2i � k1si

 
ds
dt

� �k1si

 
dr
dt

� k2i,

 
di
dt

� �k2i � k1si

 
ds
dt

� �k1si

R1E

i1 L i2
i3

C

R2

FIGURE 3.3.8 Network in Problem 12

i1 i2
i3R1

R2 R3

E L1 L2

FIGURE 3.3.9 Network in Problem 13

13. Determine a system of first-order differential equations
that describes the currents i2(t) and i3(t) in the electrical
network shown in Figure 3.3.9.

14. Show that the linear system given in (18) describes
the currents i1(t) and i2(t) in the network shown in
Figure 3.3.4. [Hint: dq�dt � i3.]

Additional Nonlinear Models

15. SIR Model Acommunicable disease is spread through-
out a small community, with a fixe population of n peo-
ple, by contact between infected individuals and people
who are susceptible to the disease. Suppose that everyone
is initially susceptible to the disease and that no one leaves
the community while the epidemic is spreading. At time t,

FIGURE 3.3.10 Nutrient flow through a membrane i
Problem 17

BA

membrane

fluid at
concentration

x(t)

fluid at
concentration

y(t)
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CHAPTER 3 IN REVIEW ● 113

solver to obtain numerical solution curves of (3) subject
to the initial conditions x1(0) � 25, x2(0) � 0.

20. Newton’s Law of Cooling/Warming As shown in
Figure 3.3.11, a small metal bar is placed inside con-
tainer A, and container A then is placed within a much
larger container B. As the metal bar cools, the ambient
temperature TA(t) of the medium within container A
changes according to Newton’s law of cooling. As
container A cools, the temperature of the medium in-
side container B does not change significantly and can
be considered to be a constant TB. Construct a mathe-
matical model for the temperatures T(t) and TA(t),
where T(t) is the temperature of the metal bar inside
container A. As in Problems 1 and 18, this model can
be solved by using prior knowledge. Find a solution of
the system subject to the initial conditions T(0) � T0,
TA(0) � T1.

FIGURE 3.3.11 Container within a container in 
Problem 20

TA (t)

container A

container B

TB  = constant

metal
bar

for the concentrations x(t) and y(t) of the nutrient in
compartments A and B, respectively, at time t is given
by the linear system of differential equations

,

where VA and VB are the volumes of the compartments,
and k � 0 is a permeability factor. Let x(0) � x0 and
y(0) � y0 denote the initial concentrations of the nutri-
ent. Solely on the basis of the equations in the system
and the assumption x0 � y0 � 0, sketch, on the same set
of coordinate axes, possible solution curves of the sys-
tem. Explain your reasoning. Discuss the behavior of
the solutions over a long period of time.

18. The system in Problem 17, like the system in (2), can be
solved with no advanced knowledge. Solve for x(t) and
y(t) and compare their graphs with your sketches in
Problem 17. Determine the limiting values of x(t) and
y(t) as t : �. Explain why the answer to the last ques-
tion makes intuitive sense.

19. Mixtures Solely on the basis of the physical descrip-
tion of the mixture problem on page 107 and in
Figure 3.3.1, discuss the nature of the functions x1(t)
and x2(t). What is the behavior of each function over a
long period of time? Sketch possible graphs of x1(t) and
x2(t). Check your conjectures by using a numerical

 
dy
dt

�
�

VB
(x � y)

 
dx
dt

�
�

VA
(y � x)

CHAPTER 3 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-4.

Answer Problems 1 and 2 without referring back to the text.
Fill in the blank or answer true or false.

1. If P(t) � P0e0.15t gives the population in an environment
at time t, then a differential equation satisfied by P(t)
is .

2. If the rate of decay of a radioactive substance is
proportional to the amount A(t) remaining at time t, then
the half-life of the substance is necessarily T � �(ln 2)�k.
The rate of decay of the substance at time t � T is one-
half the rate of decay at t � 0. 

3. In March 1976 the world population reached 4 billion.
At that time, a popular news magazine predicted that
with an average yearly growth rate of 1.8%, the world
population would be 8 billion in 45 years. How does this
value compare with the value predicted by the model
that assumes that the rate of increase in population is
proportional to the population present at time t?

4. Air containing 0.06% carbon dioxide is pumped into a
room whose volume is 8000 ft3. The air is pumped in at
a rate of 2000 ft3/min, and the circulated air is then
pumped out at the same rate. If there is an initial con-
centration of 0.2% carbon dioxide in the room, deter-
mine the subsequent amount in the room at time t. What
is the concentration of carbon dioxide at 10 minutes?
What is the steady-state, or equilibrium, concentration
of carbon dioxide?

5. Solve the differential equation

of the tractrix. See Problem 28 in Exercises 1.3. Assume
that the initial point on the y-axis in (0, 10) and that the
length of the rope is x � 10 ft.

dy
dx

� � y
1s2 � y2
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6. Suppose a cell is suspended in a solution containing a
solute of constant concentration Cs. Suppose further
that the cell has constant volume V and that the area of
its permeable membrane is the constant A. By Fick’s law the
rate of change of its mass m is directly proportional to the
area A and the difference Cs � C(t), where C(t) is the con-
centration of the solute inside the cell at time t. Find C(t) if
m � V �C(t) and C(0) � C0. See Figure 3.R.1.

114 ● CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

Find the current i(t) if the resistance is 0.2 ohm, the
impressed voltage is E(t) � 4, and i(0) � 0. Graph i(t).

10. A classical problem in the calculus of variations is to
find the shape of a curve � such that a bead, under the
influence of gravity, will slide from point A(0, 0) to
point B(x1, y1) in the least time. See Figure 3.R.2. It can
be shown that a nonlinear differential for the shape y(x)
of the path is y[1 � (y�)2] � k, where k is a constant.
First solve for dx in terms of y and dy, and then use the
substitution y � k sin2u to obtain a parametric form of
the solution. The curve � turns out to be a cycloid.concentration

C(t)
concentration

Cs

molecules of solute
diffusing through
cell membrane

FIGURE 3.R.1 Cell in Problem 6

7. Suppose that as a body cools, the temperature of the
surrounding medium increases because it completely
absorbs the heat being lost by the body. Let T(t) and
Tm(t) be the temperatures of the body and the medium
at time t, respectively. If the initial temperature of the
body is T1 and the initial temperature of the medium
is T2, then it can be shown in this case that Newton’s
law of cooling is dT�dt � k(T � Tm), k � 0, where
Tm � T2 � B(T1 � T ), B � 0 is a constant.
(a) The foregoing DE is autonomous. Use the phase

portrait concept of Section 2.1 to determine the
limiting value of the temperature T (t) as t : �.
What is the limiting value of Tm(t) as t : �?

(b) Verify your answers in part (a) by actually solving
the differential equation.

(c) Discuss a physical interpretation of your answers in
part (a).

8. According to Stefan’s law of radiation the absolute
temperature T of a body cooling in a medium at constant
absolute temperature Tm is given by

,

where k is a constant. Stefan’s law can be used over a
greater temperature range than Newton’s law of cooling.
(a) Solve the differential equation.
(b) Show that when T � Tm is small in comparison to

Tm then Newton’s law of cooling approximates
Stefan’s law. [Hint: Think binomial series of the
right-hand side of the DE.]

9. An LR-series circuit has a variable inductor with the
inductance defined by

.
L(t) � �1 �

1
10

t,

0,

0 
 t � 10

        t � 10

dT
dt

� k(T 4 � T 4
m )

FIGURE 3.R.2 Sliding bead in Problem 10

x

y

B(x1, y1)

A(0, 0)

bead

mg

11. A model for the populations of two interacting species
of animals is

Solve for x and y in terms of t.

12. Initially, two large tanks A and B each hold 100 gallons
of brine. The well-stirred liquid is pumped between the
tanks as shown in Figure 3.R.3. Use the information
given in the figure to construct a mathematical model
for the number of pounds of salt x1(t) and x2(t) at time t
in tanks A and B, respectively.

 
dy
dt

� k2xy.

 
dx
dt

� k1x (� � x)

FIGURE 3.R.3 Mixing tanks in Problem 12

2 lb/gal
7 gal/min

mixture
5 gal/min

A
100 gal

B
100 gal

mixture
3 gal/min

mixture
1 gal/min

mixture
4 gal/min

When all the curves in a family G(x, y, c1) � 0 intersect
orthogonally all the curves in another family H(x, y, c2) � 0,
the families are said to be orthogonal trajectories of each
other. See Figure 3.R.4. If dy�dx � f (x, y) is the differential
equation of one family, then the differential equation for the
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orthogonal trajectories of this family is dy�dx � �1�f (x, y).
In Problems 13 and 14 find the differential equation of the
given family. Find the orthogonal trajectories of this family.
Use a graphing utility to graph both families on the same set
of coordinate axes.
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FIGURE 3.R.4 Orthogonal trajectories

tangents

H(x, y, c2) = 0

G(x, y, c1) = 0

13. y � �x � 1 � c1ex 14.

15. Potassium-40 Decay One of the most abundant metals
found throughout the Earth’s crust and oceans is potas-
sium. Although potassium occurs naturally in the form
of three isotopes, only the isotope potassium-40 (K-40)
is radioactive. This isotope is a bit unusual in that it
decays by two different nuclear reactions. Over time,
by emitting a beta particle, a great percentage of an ini-
tial amount of K-40 decays into the stable isotope cal-
cium-40 (Ca-40), whereas by electron capture a smaller
percentage of K-40 decays into the stable isotope

y �
1

x � c1

* The knowledge of how K-40 decays is the basis for the potassium-
argon dating method. This method can be used to find the age of very ol
igneous rocks. Fossils can sometimes be dated indirectly by dating the
igneous rocks in the substrata in which the fossils are found.

argon-40 (Ar-40).* Because the rates at which the amounts
C(t) of Ca-40 and A(t) of Ar-40 increase are proportional
to the amount K(t) of potassium present, and the rate at
which potassium decreases is also proportional to K(t) we
obtain the system of linear first-order equation

where and are positive constants of proportionality.  
(a) From the foregoing system of differential equations

find if Then find and if
and 

(b) It is known that and
Find the half-life of K-40.

(c) Use your solutions for C(t) and to determine the
percentage of an initial amount of K-40 that de-
cays into Ca-40 and the percentage that decays into
Ar-40 over a very long period of time.

K0

A(t)
l2 � 0.5874 	 10�10.

l1 � 4.7526 	 10�10

A(0) � 0.C(0) � 0
A(t)C(t)K(0) � K0.K(t)

l2l1

 
dK
dt

� �(l1 � l2)K,

 
dA
dt

� l2K

 
dC
dt

� l1K
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Higher-Order Differential Equations

4.1 Preliminary Theory—Linear Equations
4.1.1 Initial-Value and Boundary-Value Problems
4.1.2 Homogeneous Equations
4.1.3 Nonhomogeneous Equations

4.2 Reduction of Order
4.3 Homogeneous Linear Equations with Constant Coefficients
4.4 Undetermined Coefficients—Superposition Approach
4.5 Undetermined Coefficients—Annihilator Approach
4.6 Variation of Parameters
4.7 Cauchy-Euler Equation
4.8 Green’s Functions

4.8.1 Initial-Value Problems
4.8.2 Boundary-Value Problems

4.9 Solving Systems of Linear DEs by Elimination
4.10 Nonlinear Differential Equations

Chapter 4 in Review

We turn now to the solution of ordinary differential equation of order two or higher.
In the first seven sections of this chapter we examine the underlying theory an
solution methods for certain kinds of linear equations. In the new, but optional,
Section 4.8 we build on the material of Section 4.6 to construct Green’s functions
for solving linear initial-value and boundary-value problems. The elimination
method of solving systems of linear equations is introduced in Section 4.9 because
this method simply uncouples a system into individual linear equations in each
dependent variable. The chapter concludes with a brief examination of nonlinear
higher-order equations in Section 4.10.

4

116
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4.1 PRELIMINARY THEORY—LINEAR EQUATIONS ● 117

PRELIMINARY THEORY—LINEAR EQUATIONS

REVIEW MATERIAL
● Reread the Remarks at the end of Section 1.1
● Section 2.3 (especially page 57)

INTRODUCTION In Chapter 2 we saw that we could solve a few first-order differential equa-
tions by recognizing them as separable, linear, exact, homogeneous, or perhaps Bernoulli equations.
Even though the solutions of these equations were in the form of a one-parameter family, this
family, with one exception, did not represent the general solution of the differential equation. Only
in the case of linear first-order differential equations were we able to obtain general solutions, by
paying attention to certain continuity conditions imposed on the coefficients. Recall that a general
solution is a family of solutions defined on some interval I that contains all solutions of the DE that
are defined on I. Because our primary goal in this chapter is to find general solutions of linear higher-
order DEs, we first need to examine some of the theory of linear equations

4.1

4.1.1 INITIAL-VALUE AND BOUNDARY-VALUE
PROBLEMS

Initial-Value Problem In Section 1.2 we defined an initial-value problem for
a general nth-order differential equation. For a linear differential equation an
nth-order initial-value problem is

Solve:

Subject to: .

(1)

Recall that for a problem such as this one we seek a function defined on some interval
I, containing x0, that satisfies the differential equation and the n initial conditions
specified at x0: y(x0) � y0, y�(x0) � y1, . . . , y(n�1)(x0) � yn�1. We have already seen
that in the case of a second-order initial-value problem a solution curve must pass
through the point (x0, y0) and have slope y1 at this point.

Existence and Uniqueness In Section 1.2 we stated a theorem that gave
conditions under which the existence and uniqueness of a solution of a first-orde
initial-value problem were guaranteed. The theorem that follows gives sufficien
conditions for the existence of a unique solution of the problem in (1).

y(x0) � y0, y�(x0) � y1 , . . . ,  y(n�1)(x0) � yn�1

an(x) 
dny
dxn � an�1(x) 

dn�1y
dxn�1 � � � � � a1(x) 

dy
dx

� a0(x)y � g(x)

THEOREM 4.1.1 Existence of a Unique Solution

Let an(x), an�1(x), . . . , a1(x), a0(x) and g(x) be continuous on an interval I and
let an(x) � 0 for every x in this interval. If x � x0 is any point in this interval,
then a solution y(x) of the initial-value problem (1) exists on the interval and is
unique.

EXAMPLE 1 Unique Solution of an IVP

The initial-value problem

3y� � 5y 	 � y� � 7y � 0, y(1) � 0, y�(1) � 0, y 	(1) � 0
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118 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

possesses the trivial solution y � 0. Because the third-order equation is linear with
constant coefficients, it follows that all the conditions of Theorem 4.1.1 are fulfilled
Hence y � 0 is the only solution on any interval containing x � 1.

FIGURE 4.1.1 Solution curves of a
BVP that pass through two points

I

solutions of the DE

(b, y1)

(a, y0)

x

y

EXAMPLE 2 Unique Solution of an IVP

You should verify that the function y � 3e2x � e�2x � 3x is a solution of the initial-
value problem

Now the differential equation is linear, the coefficients as well as g(x) � 12x are
continuous, and a2(x) � 1 � 0 on any interval I containing x � 0. We conclude from
Theorem 4.1.1 that the given function is the unique solution on I.

The requirements in Theorem 4.1.1 that ai(x), i � 0, 1, 2, . . . , n be continuous
and an(x) � 0 for every x in I are both important. Specificall , if an(x) � 0 for some x
in the interval, then the solution of a linear initial-value problem may not be unique
or even exist. For example, you should verify that the function y � cx2 � x � 3 is a
solution of the initial-value problem

on the interval (�
, 
) for any choice of the parameter c. In other words, there is no
unique solution of the problem. Although most of the conditions of Theorem 4.1.1
are satisfied, the obvious difficulties are that a2(x) � x2 is zero at x � 0 and that the
initial conditions are also imposed at x � 0.

Boundary-Value Problem Another type of problem consists of solving a lin-
ear differential equation of order two or greater in which the dependent variable y or
its derivatives are specified at different points. A problem such as

Solve:

Subject to:

is called a boundary-value problem (BVP). The prescribed values y(a) � y0 and
y(b) � y1 are called boundary conditions. A solution of the foregoing problem is a
function satisfying the differential equation on some interval I, containing a and b,
whose graph passes through the two points (a, y0) and (b, y1). See Figure 4.1.1.

For a second-order differential equation other pairs of boundary conditions
could be

where y0 and y1 denote arbitrary constants. These three pairs of conditions are just
special cases of the general boundary conditions

The next example shows that even when the conditions of Theorem 4.1.1 are
fulfilled, a boundary-value problem may have several solutions (as suggested in
Figure 4.1.1), a unique solution, or no solution at all.

 �2y(b) � �2y�(b) � 
2.

 �1y(a) � �1y�(a) � 
1

 y�(a) � y0,     y�(b) � y1,

 y(a) � y0,     y�(b) � y1

 y�(a) � y0,     y(b) � y1

y(a) � y0,  y(b) � y1

a2(x) 
d 2y
dx2 � a1(x) 

dy
dx

� a0(x )y � g(x)

x2y 	 � 2xy� � 2y � 6,  y(0) � 3,  y�(0) � 1

y 	 � 4y � 12x,  y(0) � 4,  y�(0) � 1.
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4.1 PRELIMINARY THEORY—LINEAR EQUATIONS ● 119

FIGURE 4.1.2 Solution curves for
BVP in part (a) of Example 3

x

c2 = 0

c2 = 1
c2 =

c2 =

c2 = −
(0, 0) ( /2, 0)

1

1

t

π

1
2

1
4

1
2

EXAMPLE 3 A BVP Can Have Many, One, or No Solutions

In Example 7 of Section 1.1 we saw that the two-parameter family of solutions of the
differential equation x	 � 16x � 0 is

(2)

(a) Suppose we now wish to determine the solution of the equation that further
satisfies the boundary conditions x(0) � 0, x(p�2) � 0. Observe that the firs
condition 0 � c1 cos 0 � c2 sin 0 implies that c1 � 0, so x � c2 sin 4t. But when t �
p�2, 0 � c2 sin 2p is satisfied for any choice of c2, since sin 2p � 0. Hence the
boundary-value problem

(3)

has infinitely many solutions. Figure 4.1.2 shows the graphs of some of the
members of the one-parameter family x � c2 sin 4t that pass through the two points
(0, 0) and (p�2, 0).
(b) If the boundary-value problem in (3) is changed to

, (4)

then x(0) � 0 still requires c1 � 0 in the solution (2). But applying x(p�8) � 0 to 
x � c2 sin 4t demands that 0 � c2 sin(p�2) � c2 �1. Hence x � 0 is a solution of this
new boundary-value problem. Indeed, it can be proved that x � 0 is the only solution
of (4).
(c) Finally, if we change the problem to

, (5)

we find again from x(0) � 0 that c1 � 0, but applying x(p�2) � 1 to x � c2 sin 4t leads
to the contradiction 1 � c2 sin 2p � c2 � 0 � 0. Hence the boundary-value problem (5)
has no solution.

4.1.2 HOMOGENEOUS EQUATIONS

A linear nth-order differential equation of the form

(6)

is said to be homogeneous, whereas an equation

(7)

with g(x) not identically zero, is said to be nonhomogeneous. For example, 
2y	 � 3y� � 5y � 0 is a homogeneous linear second-order differential equation,
whereas x3y� � 6y� � 10y � ex is a nonhomogeneous linear third-order differen-
tial equation. The word homogeneous in this context does not refer to coefficient
that are homogeneous functions, as in Section 2.5.

We shall see that to solve a nonhomogeneous linear equation (7), we must firs
be able to solve the associated homogeneous equation (6).

To avoid needless repetition throughout the remainder of this text, we
shall, as a matter of course, make the following important assumptions when

an(x) 
dny
dxn � an�1(x) 

dn�1y
dxn�1 � � � � � a1(x) 

dy
dx

� a0(x)y � g(x),

an(x) 
dny
dxn � an�1(x) 

dn�1y
dxn�1 � � � � � a1(x) 

dy
dx

� a0(x)y � 0

x	 � 16x � 0,  x(0) � 0,  x ��

2� � 1

x	 � 16x � 0,  x(0) � 0,  x ��

8� � 0

x	 � 16x � 0,  x(0) � 0,  x ��

2� � 0

x � c1 cos 4t � c2 sin 4t.
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120 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

stating definitions and theorems about linear equations (1). On some common
interval I,

• the coefficient functions ai(x), i � 0, 1, 2, . . . , n and g(x) are continuous;
• an(x) � 0 for every x in the interval.

Differential Operators In calculus differentiation is often denoted by the cap-
ital letter D—that is, dy�dx � Dy. The symbol D is called a differential operator
because it transforms a differentiable function into another function. For example,
D(cos 4x) � �4 sin 4x and D(5x3 � 6x2) � 15x2 � 12x. Higher-order derivatives
can be expressed in terms of D in a natural manner:

where y represents a sufficiently differentiable function. Polynomial expressions
involving D, such as D � 3, D2 � 3D � 4, and 5x3D3 � 6x2D2 � 4xD � 9, are
also differential operators. In general, we define an nth-order differential opera-
tor or polynomial operator to be

L � an(x)Dn � an�1(x)Dn�1 � � � � � a1(x)D � a0(x). (8)

As a consequence of two basic properties of differentiation, D(cf (x)) � cDf (x), c is a
constant, and D{ f (x) � g(x)} � Df (x) � Dg(x), the differential operator L possesses
a linearity property; that is, L operating on a linear combination of two differentiable
functions is the same as the linear combination of L operating on the individual func-
tions. In symbols this means that

L{a f (x) � bg(x)} � aL( f (x)) � bL(g(x)), (9)

where a and b are constants. Because of (9) we say that the nth-order differential
operator L is a linear operator.

Differential Equations Any linear differential equation can be expressed in
terms of the D notation. For example, the differential equation y	 � 5y� � 6y � 5x � 3
can be written as D2y � 5Dy � 6y � 5x � 3 or (D2 � 5D � 6)y � 5x � 3. Using (8),
we can write the linear nth-order differential equations (6) and (7) compactly as

respectively.

Superposition Principle In the next theorem we see that the sum, or super-
position, of two or more solutions of a homogeneous linear differential equation is
also a solution.

L(y) � 0    and    L(y) � g(x),

d
dx

 �dy
dx� �

d 2y
dx2 � D(Dy) � D2y    and, in general,    

dny
dxn � Dny,

Please remember
these two
assumptions. �

THEOREM 4.1.2 Superposition Principle—Homogeneous Equations

Let y1, y2, . . . , yk be solutions of the homogeneous nth-order differential equation
(6) on an interval I. Then the linear combination

where the ci, i � 1, 2, . . . , k are arbitrary constants, is also a solution on the
interval.

y � c1y1(x) � c2y2(x) � � � � � ckyk(x),

PROOF We prove the case k � 2. Let L be the differential operator defined in
(8), and let y1(x) and y2(x) be solutions of the homogeneous equation L( y) � 0. If
we define y � c1y1(x) � c2y2(x), then by linearity of L we have

L( y) � L{c1y1(x) � c2y2(x)} � c1 L(y1) � c2 L(y2) � c1 � 0 � c2 � 0 � 0.
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4.1 PRELIMINARY THEORY—LINEAR EQUATIONS ● 121

FIGURE 4.1.3 Set consisting of f1 and
f2 is linearly independent on (�
, 
)

f1  = x

x

y

f 2  = |x |

x

y

(a)

(b)

COROLLARIES TO THEOREM 4.1.2

(A) A constant multiple y � c1y1(x) of a solution y1(x) of a homogeneous
linear differential equation is also a solution.

(B) A homogeneous linear differential equation always possesses the trivial
solution y � 0.

EXAMPLE 4 Superposition—Homogeneous DE

The functions y1 � x2 and y2 � x2 ln x are both solutions of the homogeneous linear
equation x3y� � 2xy� � 4y � 0 on the interval (0, 
). By the superposition principle
the linear combination

is also a solution of the equation on the interval.

The function y � e7x is a solution of y	 � 9y� � 14y � 0. Because the differen-
tial equation is linear and homogeneous, the constant multiple y � ce7x is also a
solution. For various values of c we see that y � 9e7x, y � 0, , . . . are all
solutions of the equation.

Linear Dependence and Linear Independence The next two concepts
are basic to the study of linear differential equations.

y � �15e7x

y � c1x2 � c2x2 ln x

DEFINITION 4.1.1 Linear Dependence/Independence

A set of functions f1(x), f2(x), . . . , fn(x) is said to be linearly dependent on an
interval I if there exist constants c1, c2, . . . , cn, not all zero, such that

for every x in the interval. If the set of functions is not linearly dependent on
the interval, it is said to be linearly independent.

c1 f1(x) � c2 f2(x) � � � � � cn fn(x) � 0

In other words, a set of functions is linearly independent on an interval I if the only
constants for which

for every x in the interval are .
It is easy to understand these definitions for a set consisting of two functions 

f1(x) and f2(x). If the set of functions is linearly dependent on an interval, then
there exist constants c1 and c2 that are not both zero such that for every x in the
interval, c1 f1(x) � c2 f2(x) � 0. Therefore if we assume that c1 � 0, it follows that
f1(x) � (�c2�c1) f2(x); that is, if a set of two functions is linearly dependent, then one
function is simply a constant multiple of the other. Conversely, if f1(x) � c2 f2(x)
for some constant c2, then (�1) � f1(x) � c2 f2(x) � 0 for every x in the interval.
Hence the set of functions is linearly dependent because at least one of the constants
(namely, c1 � �1) is not zero. We conclude that a set of two functions f1(x) and f2(x)
is linearly independent when neither function is a constant multiple of the other on
the interval. For example, the set of functions f1(x) � sin 2x, f2(x) � sin x cos x is
linearly dependent on (�
, 
) because f1(x) is a constant multiple of f2(x). Recall
from the double-angle formula for the sine that sin 2x � 2 sin x cos x. On the other
hand, the set of functions f1(x) � x, f2(x) � �x � is linearly independent on (�
, 
).
Inspection of Figure 4.1.3 should convince you that neither function is a constant
multiple of the other on the interval.

c1 � c2 � � � � � cn � 0

c1 f1(x) � c2 f2(x) � � � � � cn fn(x) � 0
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122 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

It follows from the preceding discussion that the quotient f2(x)�f1(x) is not a con-
stant on an interval on which the set f1(x), f2(x) is linearly independent. This little fact
will be used in the next section.

EXAMPLE 5 Linearly Dependent Set of Functions

The set of functions f1(x) � cos2x, f2(x) � sin2x, f3(x) � sec2x, f4(x) � tan2x is
linearly dependent on the interval (�p�2, p�2) because

when c1 � c2 � 1, c3 � �1, c4 � 1. We used here cos2x � sin2x � 1 and
1 � tan2x � sec2x.

A set of functions f1(x), f2(x), . . . , fn(x) is linearly dependent on an interval if
at least one function can be expressed as a linear combination of the remaining
functions.

c1 cos2x � c2 sin2x � c3 sec2x � c4 tan2x � 0

EXAMPLE 6 Linearly Dependent Set of Functions

The set of functions , f3(x) � x � 1, f4(x) � x2 is
linearly dependent on the interval (0, 
) because f2 can be written as a linear combi-
nation of f1, f3, and f4. Observe that

for every x in the interval (0, 
).

Solutions of Differential Equations We are primarily interested in linearly
independent functions or, more to the point, linearly independent solutions of a lin-
ear differential equation. Although we could always appeal directly to Definition 4.1.1,
it turns out that the question of whether the set of n solutions y1, y2, . . . , yn of a
homogeneous linear nth-order differential equation (6) is linearly independent can be
settled somewhat mechanically by using a determinant.

f2(x) � 1 � f1(x) � 5 � f3(x) � 0 � f4(x)

f1(x) � 1x � 5, f2(x) � 1x � 5x

DEFINITION 4.1.2 Wronskian

Suppose each of the functions f1(x), f2(x), . . . , fn(x) possesses at least n � 1 
derivatives. The determinant

where the primes denote derivatives, is called the Wronskian of the
functions.

W( f1, f2, . . . , fn ) � �
f1

f 1�

�
�

�
f1

(n�1)

f2

f 2�

�
�

�
f2

(n�1)

� � �

� � �

� � �

fn

f n�

�
�

�
fn

(n�1)
�,

THEOREM 4.1.3 Criterion for Linearly Independent Solutions

Let y1, y2, . . . , yn be n solutions of the homogeneous linear nth-order
differential equation (6) on an interval I. Then the set of solutions is linearly
independent on I if and only if W(y1, y2, . . . , yn ) � 0 for every x in the
interval.
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It follows from Theorem 4.1.3 that when y1, y2, . . . , yn are n solutions of (6) on
an interval I, the Wronskian W( y1, y2, . . . , yn) is either identically zero or never zero
on the interval.

A set of n linearly independent solutions of a homogeneous linear nth-order
differential equation is given a special name.

4.1 PRELIMINARY THEORY—LINEAR EQUATIONS ● 123

DEFINITION 4.1.3 Fundamental Set of Solutions

Any set y1, y2, . . . , yn of n linearly independent solutions of the homogeneous
linear nth-order differential equation (6) on an interval I is said to be a funda-
mental set of solutions on the interval.

The basic question of whether a fundamental set of solutions exists for a linear
equation is answered in the next theorem.

THEOREM 4.1.4 Existence of a Fundamental Set

There exists a fundamental set of solutions for the homogeneous linear nth-order
differential equation (6) on an interval I.

Analogous to the fact that any vector in three dimensions can be expressed as a
linear combination of the linearly independent vectors i, j, k, any solution of an nth-
order homogeneous linear differential equation on an interval I can be expressed as a
linear combination of n linearly independent solutions on I. In other words, n linearly
independent solutions y1, y2, . . . , yn are the basic building blocks for the general
solution of the equation.

THEOREM 4.1.5 General Solution—Homogeneous Equations

Let y1, y2, . . . , yn be a fundamental set of solutions of the homogeneous linear nth-
order differential equation (6) on an interval I. Then the general solution of the
equation on the interval is

where ci, i � 1, 2, . . . , n are arbitrary constants.

y � c1y1(x) � c2y2(x) � � � � � cnyn(x),

Theorem 4.1.5 states that if Y(x) is any solution of (6) on the interval, then con-
stants C1, C2, . . . , Cn can always be found so that

We will prove the case when n � 2.

PROOF Let Y be a solution and let y1 and y2 be linearly independent solutions of
a2y	 � a1y� � a0y � 0 on an interval I. Suppose that x � t is a point in I for which
W(y1(t), y2(t)) � 0. Suppose also that Y(t) � k1 and Y�(t) � k2. If we now examine
the equations

it follows that we can determine C1 and C2 uniquely, provided that the determinant of
the coefficients satisfi

�y1(t)
y1�(t)

y2(t)
y2�(t) � � 0.

  C1y�1(t) � C2y�2(t) � k2,

  C1y1(t) � C2y2(t) � k1

Y(x) � C1y1(x) � C2y2(x) � � � � � Cnyn(x).
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124 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

But this determinant is simply the Wronskian evaluated at x � t, and by assumption,
W � 0. If we define G(x) � C1y1(x) � C2y2(x), we observe that G(x) satisfies the
differential equation since it is a superposition of two known solutions; G(x) satisfie
the initial conditions

and Y(x) satisfies the same linear equation and the same initial conditions.
Because the solution of this linear initial-value problem is unique (Theorem 4.1.1),
we have Y(x) � G(x) or Y(x) � C1y1(x) � C2y2(x).

G(t) � C1y1(t) � C2y2(t) � k1    and    G�(t) � C1y�1(t) � C2y�2(t) � k2;

EXAMPLE 7 General Solution of a Homogeneous DE

The functions y1 � e3x and y2 � e�3x are both solutions of the homogeneous linear
equation y	 � 9y � 0 on the interval (�
, 
). By inspection the solutions are lin-
early independent on the x-axis. This fact can be corroborated by observing that the
Wronskian

for every x. We conclude that y1 and y2 form a fundamental set of solutions, and
consequently, y � c1e3x � c2e�3x is the general solution of the equation on the
interval.

W(e3x, e�3x) � � e3x

3e3x
e�3x

�3e�3x � � �6 � 0

EXAMPLE 8 A Solution Obtained from a General Solution

The function y � 4sinh 3x � 5e�3x is a solution of the differential equation in
Example 7. (Verify this.) In view of Theorem 4.1.5 we must be able to obtain this
solution from the general solution y � c1e3x � c2e�3x. Observe that if we choose 
c1 � 2 and c2 � �7, then y � 2e3x � 7e�3x can be rewritten as

The last expression is recognized as y � 4 sinh 3x � 5e�3x.

y � 2e3x � 2e�3x � 5e�3x � 4�e3x � e�3x

2 � � 5e�3x.

EXAMPLE 9 General Solution of a Homogeneous DE

The functions y1 � ex, y2 � e2x, and y3 � e3x satisfy the third-order equation
y� � 6y	 � 11y� � 6y � 0. Since

for every real value of x, the functions y1, y2, and y3 form a fundamental set of solu-
tions on (�
, 
). We conclude that y � c1ex � c2e2x � c3e3x is the general solution
of the differential equation on the interval.

4.1.3 NONHOMOGENEOUS EQUATIONS

Any function yp, free of arbitrary parameters, that satisfies (7) is said to be a particular
solution or particular integral of the equation. For example, it is a straightforward
task to show that the constant function yp � 3 is a particular solution of the
nonhomogeneous equation y	 � 9y � 27.

W(ex, e2x, e3x ) � p
ex

ex

ex

e2x

2e2x

4e2x

e3x

3e3x

9e3x
p � 2e6x � 0
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Now if y1, y2, . . . , yk are solutions of (6) on an interval I and yp is any particular
solution of (7) on I, then the linear combination

(10)

is also a solution of the nonhomogeneous equation (7). If you think about it, this makes
sense, because the linear combination c1y1(x) � c2y2(x) �� � �� ckyk(x) is trans-
formed into 0 by the operator L � anDn � an�1Dn�1 � � � � � a1D � a0, whereas yp
is transformed into g(x). If we use k � n linearly independent solutions of the nth-order
equation (6), then the expression in (10) becomes the general solution of (7).

y � c1y1(x) � c2y2(x) � � � � � ckyk(x) � yp

4.1 PRELIMINARY THEORY—LINEAR EQUATIONS ● 125

THEOREM 4.1.6 General Solution—Nonhomogeneous Equations

Let yp be any particular solution of the nonhomogeneous linear nth-order differen-
tial equation (7) on an interval I, and let y1, y2, . . . , yn be a fundamental set of so-
lutions of the associated homogeneous differential equation (6) on I. Then the
general solution of the equation on the interval is

where the ci, i � 1, 2, . . . , n are arbitrary constants.

y � c1y1(x) � c2y2(x) � � � � � cn yn(x) � yp ,

PROOF Let L be the differential operator defined in (8) and let Y(x) and yp(x)
be particular solutions of the nonhomogeneous equation L(y) � g(x). If we defin
u(x) � Y(x) � yp(x), then by linearity of L we have

L(u) � L{Y(x) � yp(x)} � L(Y(x)) � L(yp(x)) � g(x) � g(x) � 0.

This shows that u(x) is a solution of the homogeneous equation L(y) � 0. Hence by
Theorem 4.1.5, , and so

or

Complementary Function We see in Theorem 4.1.6 that the general solu-
tion of a nonhomogeneous linear equation consists of the sum of two functions:

The linear combination , which is the
general solution of (6), is called the complementary function for equation (7). In
other words, to solve a nonhomogeneous linear differential equation, we first solve
the associated homogeneous equation and then find any particular solution of the
nonhomogeneous equation. The general solution of the nonhomogeneous equation
is then

y � complementary function � any particular solution
� yc � yp.

yc(x) � c1y1(x) � c2y2(x) � � � � � cnyn(x)

y � c1y1(x) � c2y2(x) � � � � � cnyn(x) � yp(x) � yc(x) � yp(x).

 Y(x) � c1y1(x) � c2y2(x) � � � � � cnyn(x) � yp(x).

 Y(x) � yp(x) � c1y1(x) � c2y2(x) � � � � � cnyn(x)

u(x) � c1y1(x) � c2y2(x) � � � � � cnyn(x)

EXAMPLE 10 General Solution of a Nonhomogeneous DE

By substitution the function is readily shown to be a particular solu-
tion of the nonhomogeneous equation

(11)y� � 6y	 � 11y� � 6y � 3x.

yp � �11
12 � 1

2 x
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126 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

To write the general solution of (11), we must also be able to solve the associated
homogeneous equation

But in Example 9 we saw that the general solution of this latter equation on the in-
terval (�
, 
) was yc � c1ex � c2e2x � c3e3x. Hence the general solution of (11)
on the interval is

Another Superposition Principle The last theorem of this discussion will
be useful in Section 4.4 when we consider a method for finding particular solutions
of nonhomogeneous equations.

y � yc � yp � c1ex � c2e2x � c3e3x �
11
12

�
1
2
 x.

y� � 6y	 � 11y� � 6y � 0.

THEOREM 4.1.7 Superposition Principle—Nonhomogeneous Equations
Let , , . . . , be k particular solutions of the nonhomogeneous linear nth-
order differential equation (7) on an interval I corresponding, in turn, to k dis-
tinct functions g1, g2, . . . , gk. That is, suppose denotes a particular solution
of the corresponding differential equation

(12)

where i � 1, 2, . . . , k. Then

(13)

is a particular solution of

(14)� g1(x) � g2(x) � � � � � gk(x).

 an(x)y(n) � an�1(x)y(n�1) � � � � � a1(x)y� � a0(x)y

yp � yp1
(x) � yp2

(x) � � � � � ypk
(x)

an(x)y(n) � an�1(x)y(n�1) � � � � � a1(x)y� � a0(x)y � gi(x),

ypi

ypk
yp2

yp1

PROOF We prove the case k � 2. Let L be the differential operator defined in (8)
and let and be particular solutions of the nonhomogeneous equations
L( y) � g1(x) and L( y) � g2(x), respectively. If we define , we
want to show that yp is a particular solution of L( y) � g1(x) � g2(x). The result
follows again by the linearity of the operator L:

L(yp) � L{yp1
(x) � yp2

(x)} � L( yp1
(x)) � L( yp2

(x)) � g1(x) � g2(x).

yp � yp1
(x) � yp2

(x)
yp2

(x)yp1
(x)

EXAMPLE 11 Superposition—Nonhomogeneous DE

You should verify that

It follows from (13) of Theorem 4.1.7 that the superposition of , and ,

is a solution of

y 	 � 3y� � 4y � �16x2 � 24x � 8 � 2e2x � 2xex � ex.

g1(x) g3(x)g2(x)

y � yp1
� yp2

� yp3
� �4x2 � e2x � xex,

yp3
yp1

, yp2

  yp3
� xex  is a particular solution of  y	 � 3y� � 4y � 2xex � ex.

  yp2
� e2x  is a particular solution of  y	 � 3y� � 4y � 2e2x,

  yp1
� �4x2  is a particular solution of  y	 � 3y� � 4y � �16x2 � 24x � 8,
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Note If the are particular solutions of (12) for i � 1, 2, . . . , k, then the linear
combination

where the ci are constants, is also a particular solution of (14) when the right-hand
member of the equation is the linear combination

Before we actually start solving homogeneous and nonhomogeneous linear
differential equations, we need one additional bit of theory, which is presented in the
next section.

c1g1(x) � c2g2(x) � � � � � ckgk(x).

yp � c1yp1
� c2yp2

� � � � � ckypk
,

ypi

4.1 PRELIMINARY THEORY—LINEAR EQUATIONS ● 127

REMARKS

This remark is a continuation of the brief discussion of dynamical systems
given at the end of Section 1.3.

A dynamical system whose rule or mathematical model is a linear nth-order
differential equation

is said to be an nth-order linear system. The n time-dependent functions y(t),
y�(t), . . . , y(n�1)(t) are the state variables of the system. Recall that their val-
ues at some time t give the state of the system. The function g is variously
called the input function, forcing function, or excitation function. A solu-
tion y(t) of the differential equation is said to be the output or response of the
system. Under the conditions stated in Theorem 4.1.1, the output or response
y(t) is uniquely determined by the input and the state of the system prescribed
at a time t0 —that is, by the initial conditions y(t0), y�(t0), . . . , y(n�1)(t0).

For a dynamical system to be a linear system, it is necessary that the super-
position principle (Theorem 4.1.7) holds in the system; that is, the response of
the system to a superposition of inputs is a superposition of outputs. We have
already examined some simple linear systems in Section 3.1 (linear first-orde
equations); in Section 5.1 we examine linear systems in which the mathe-
matical models are second-order differential equations.

an(t)y(n) � an�1(t)y(n�1) � � � � � a1(t)y� � a0(t)y � g(t)

EXERCISES 4.1 Answers to selected odd-numbered problems begin on page ANS-4.

4.1.1 INITIAL-VALUE AND BOUNDARY-VALUE
PROBLEMS

In Problems 1–4 the given family of functions is the general
solution of the differential equation on the indicated interval.
Find a member of the family that is a solution of the initial-
value problem.

1. y � c1ex � c2e�x, (�
, 
);
y	 � y � 0, y(0) � 0, y�(0) � 1

2. y � c1e4x � c2e�x, (�
, 
);
y	 � 3y� � 4y � 0, y(0) � 1, y�(0) � 2

3. y � c1x � c2x ln x, (0, 
); 
x2y	 � xy� � y � 0, y(1) � 3, y�(1) � �1

4. y � c1 � c2 cos x � c3 sin x, (�
, 
); 
y� � y� � 0, y(p) � 0, y�(p) � 2, y	(p) � �1

5. Given that y � c1 � c2x2 is a two-parameter family of
solutions of xy	 � y� � 0 on the interval (�
, 
),
show that constants c1 and c2 cannot be found so that a
member of the family satisfies the initial conditions
y(0) � 0, y�(0) � 1. Explain why this does not violate
Theorem 4.1.1.

6. Find two members of the family of solutions in
Problem 5 that satisfy the initial conditions y(0) � 0,
y�(0) � 0.

7. Given that x(t) � c1 cos vt � c2 sin vt is the general
solution of x	 � v2x � 0 on the interval (�
, 
),
show that a solution satisfying the initial conditions
x(0) � x0, x�(0) � x1 is given by

x(t) � x0 cos �t �
x1

�
 sin �t.
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128 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

8. Use the general solution of x	 � v2x � 0 given in
Problem 7 to show that a solution satisfying the initial
conditions x(t0) � x0, x�(t0) � x1 is the solution given in
Problem 7 shifted by an amount t0:

In Problems 9 and 10 find an interval centered about x � 0 for
which the given initial-value problem has a unique solution.

9. (x � 2)y	 � 3y � x, y(0) � 0, y�(0) � 1
10. y	 � (tan x)y � ex, y(0) � 1, y�(0) � 0
11. (a) Use the family in Problem 1 to find a solution of

y	 � y � 0 that satisfies the boundary conditions
y(0) � 0, y(1) � 1.

(b) The DE in part (a) has the alternative general solu-
tion y � c3 cosh x � c4 sinh x on (�
, 
). Use this
family to find a solution that satisfies the boundary
conditions in part (a).

(c) Show that the solutions in parts (a) and (b) are
equivalent

12. Use the family in Problem 5 to find a solution of
xy	 � y� � 0 that satisfies the boundary conditions
y(0) � 1, y�(1) � 6.

In Problems 13 and 14 the given two-parameter family is a
solution of the indicated differential equation on the interval
(�
, 
). Determine whether a member of the family can be
found that satisfies the boundary conditions

13. y � c1ex cos x � c2ex sin x; y	 � 2y� � 2y � 0
(a) y(0) � 1, y�(p) � 0
(b) y(0) � 1, y(p) � �1
(c) y(0) � 1, y(p�2)
(d) y(0) � 0, y(p) � 0.

14. y � c1x2 � c2x4 � 3; x2y	 � 5xy� � 8y � 24
(a) y(�1) � 0, y(1) � 4
(b) y(0) � 1, y(1) � 2
(c) y(0) � 3, y(1) � 0
(d) y(1) � 3, y(2) � 15

4.1.2 HOMOGENEOUS EQUATIONS

In Problems 15–22 determine whether the given set of func-
tions is linearly independent on the interval (�
, 
).

15. f1(x) � x, f2(x) � x2, f3(x) � 4x � 3x2

16. f1(x) � 0, f2(x) � x, f3(x) � ex

17. f1(x) � 5, f2(x) � cos2x, f3(x) � sin2x

18. f1(x) � cos 2x, f2(x) � 1, f3(x) � cos2x

19. f1(x) � x, f2(x) � x � 1, f3(x) � x � 3
20. f1(x) � 2 � x, f2(x) � 2 � �x �

� 1

x(t) � x0 cos �(t � t0 ) �
x1

�
 sin �(t � t0 ).

21. f1(x) � 1 � x, f2(x) � x, f3(x) � x2

22. f1(x) � ex, f2(x) � e�x, f3(x) � sinh x

In Problems 23–30 verify that the given functions form a
fundamental set of solutions of the differential equation on
the indicated interval. Form the general solution.

23. y	 � y� � 12y � 0; e�3x, e4x, (�
, 
)

24. y	 � 4y � 0; cosh 2x, sinh 2x, (�
, 
)

25. y	 � 2y� � 5y � 0; ex cos 2x, ex sin 2x, (�
, 
)

26. 4y	 � 4y� � y � 0; ex/2, xex/2, (�
, 
)

27. x2y	 � 6xy� � 12y � 0; x3, x4, (0, 
)

28. x2y	 � xy� � y � 0; cos(ln x), sin(ln x), (0, 
)

29. x3y� � 6x2y	 � 4xy� � 4y � 0; x, x�2, x�2 ln x, (0, 
)

30. y(4) � y	 � 0; 1, x, cos x, sin x, (�
, 
)

4.1.3 NONHOMOGENEOUS EQUATIONS

In Problems 31–34 verify that the given two-parameter fam-
ily of functions is the general solution of the nonhomoge-
neous differential equation on the indicated interval.

31. y	 � 7y� � 10y � 24ex;
y � c1e2x � c2e5x � 6ex, (�
, 
)

32. y	 � y � sec x;
y � c1 cos x � c2 sin x � x sin x � (cos x) ln(cos x),
(�p�2, p�2)

33. y	 � 4y� � 4y � 2e2x � 4x � 12;
y � c1e2x � c2xe2x � x2e2x � x � 2, (�
, 
)

34. 2x2y	 � 5xy� � y � x2 � x;

35. (a) Verify that and are, respec-
tively, particular solutions of

and

(b) Use part (a) to find particular solutions o

and

36. (a) By inspection find a particular solution of 

y	 � 2y � 10.

(b) By inspection find a particular solution of 

y	 � 2y � �4x.

(c) Find a particular solution of y	 � 2y � �4x � 10.
(d) Find a particular solution of y	 � 2y � 8x � 5.

 y 	 � 6y� � 5y � �10x2 � 6x � 32 � e2x.

 y 	 � 6y� � 5y � 5x2 � 3x � 16 � 9e2x

 y 	 � 6y� � 5y � 5x2 � 3x � 16.

 y 	 � 6y� � 5y � �9e2x

yp2
� x2 � 3xyp1

� 3e2x

y � c1x�1/2 � c2x�1 � 1
15 x2 � 1

6 x, (0, 
)
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Discussion Problems

37. Let n � 1, 2, 3, . . . . Discuss how the observations
Dnxn�1 � 0 and Dnxn � n! can be used to find the gen-
eral solutions of the given differential equations.
(a) y	 � 0 (b) y� � 0 (c) y(4) � 0
(d) y	 � 2 (e) y� � 6 (f) y(4) � 24

38. Suppose that y1 � ex and y2 � e�x are two solutions of
a homogeneous linear differential equation. Explain
why y3 � cosh x and y4 � sinh x are also solutions of
the equation.

39. (a) Verify that y1 � x3 and y2 � �x �3 are linearly
independent solutions of the differential equation
x2y	 � 4xy� � 6y � 0 on the interval (�
, 
).

(b) Show that W( y1, y2) � 0 for every real number x.
Does this result violate Theorem 4.1.3? Explain.

(c) Verify that Y1 � x3 and Y2 � x2 are also linearly
independent solutions of the differential equation
in part (a) on the interval (�
, 
).

(d) Find a solution of the differential equation satisfy-
ing y(0) � 0, y�(0) � 0.

4.2 REDUCTION OF ORDER ● 129

(e) By the superposition principle, Theorem 4.1.2,
both linear combinations y � c1y1 � c2y2 and
Y � c1Y1 � c2Y2 are solutions of the differential
equation. Discuss whether one, both, or neither of
the linear combinations is a general solution of the
differential equation on the interval (�
, 
).

40. Is the set of functions f1(x) � ex�2, f2(x) � ex�3 lin-
early dependent or linearly independent on (�
, 
)?
Discuss.

41. Suppose y1, y2, . . . , yk are k linearly independent solu-
tions on (�
, 
) of a homogeneous linear nth-order
differential equation with constant coefficients. By
Theorem 4.1.2 it follows that yk�1 � 0 is also a solution
of the differential equation. Is the set of solutions
y1, y2, . . . , yk, yk�1 linearly dependent or linearly inde-
pendent on (�
, 
)? Discuss.

42. Suppose that y1, y2, . . . , yk are k nontrivial solutions of
a homogeneous linear nth-order differential equation
with constant coefficients and that k � n � 1. Is the set
of solutions y1, y2, . . . , yk linearly dependent or linearly
independent on (�
, 
)? Discuss.

REDUCTION OF ORDER

REVIEW MATERIAL
● Section 2.5 (using a substitution)
● Section 4.1

INTRODUCTION In the preceding section we saw that the general solution of a homogeneous
linear second-order differential equation

(1)

is a linear combination y � c1y1 � c2y2, where y1 and y2 are solutions that constitute a linearly inde-
pendent set on some interval I. Beginning in the next section, we examine a method for determining
these solutions when the coefficients of the differential equation in (1) are constants. This method,
which is a straightforward exercise in algebra, breaks down in a few cases and yields only a single
solution y1 of the DE. It turns out that we can construct a second solution y2 of a homogeneous equa-
tion (1) (even when the coefficients in (1) are variable) provided that we know a nontrivial solution
y1 of the DE. The basic idea described in this section is that equation (1) can be reduced to a linear
first-o der DE by means of a substitution involving the known solution y1. A second solution y2 of
(1) is apparent after this first-order di ferential equation is solved.

a2(x)y 	 � a1(x)y� � a0(x)y � 0

4.2

Reduction of Order Suppose that y1 denotes a nontrivial solution of (1) and
that y1 is defined on an interval I. We seek a second solution y2 so that the set consist-
ing of y1 and y2 is linearly independent on I. Recall from Section 4.1 that if y1 and
y2 are linearly independent, then their quotient y2�y1 is nonconstant on I—that is,
y2(x)�y1(x) � u(x) or y2(x) � u(x)y1(x). The function u(x) can be found by substituting
y2(x) � u(x)y1(x) into the given differential equation. This method is called reduction
of order because we must solve a linear first-order di ferential equation to find u.
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130 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

EXAMPLE 1 A Second Solution by Reduction of Order

Given that y1 � ex is a solution of y	 � y � 0 on the interval (�
, 
), use reduction
of order to find a second solution y2.

SOLUTION If y � u(x)y1(x) � u(x)ex, then the Product Rule gives

and so

Since ex � 0, the last equation requires u	 � 2u� � 0. If we make the substitution
w � u�, this linear second-order equation in u becomes w� � 2w � 0, which is a
linear first-order equation in w. Using the integrating factor e2x, we can write

. After integrating, we get w � c1e�2x or u� � c1e�2x. Integrating

again then yields Thus

. (2)

By picking c2 � 0 and c1 � �2, we obtain the desired second solution, y2 � e�x.
Because W(ex, e�x) � 0 for every x, the solutions are linearly independent on
(�
, 
).

Since we have shown that y1 � ex and y2 � e�x are linearly independent solu-
tions of a linear second-order equation, the expression in (2) is actually the general
solution of y	 � y � 0 on (�
, 
).

General Case Suppose we divide by a2(x) to put equation (1) in the standard
form

(3)

where P(x) and Q(x) are continuous on some interval I. Let us suppose further that
y1(x) is a known solution of (3) on I and that y1(x) � 0 for every x in the interval. If
we define y � u(x)y1(x), it follows that

This implies that we must have

(4)

where we have let w � u�. Observe that the last equation in (4) is both linear and
separable. Separating variables and integrating, we obtain

.

We solve the last equation for w, use w � u�, and integrate again:

.u � c1 � 
e��P dx

y1
2  dx � c2

ln� wy1
2 � � �� P dx � c    or    wy1

2 � c1e��P dx

dw
w

� 2 
y�1
y1

 dx � P dx � 0

y1u 	 � (2y�1 � Py1)u� � 0    or    y1w� � (2y�1 � Py1)w � 0,

y 	 � Py� � Qy � u[y1 � Py1 � Qy1] � y1u	 � (2y1 � Py1)u� � 0.	 � �

zero

  y� � uy�1 � y1u�, y 	 � uy	1 � 2y�1u� � y1u 	

y 	 � P(x)y� � Q(x)y � 0,

y � u(x)ex � � c1

2
 e�x � c2ex

u � �1
2 c1e�2x � c2.

d
dx

 [e2xw] � 0

y 	 � y � ex(u 	 � 2u�) � 0.

y� � uex � exu�, y 	 � uex � 2exu� � exu 	,
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4.2 REDUCTION OF ORDER ● 131

By choosing c1 � 1 and c2 � 0, we find from y � u(x)y1(x) that a second solution of
equation (3) is

(5)

It makes a good review of differentiation to verify that the function y2(x) defined in
(5) satisfies equation (3) and that y1 and y2 are linearly independent on any interval
on which y1(x) is not zero.

y2 � y1(x) � 
e��P(x) dx

y1
2(x)

 dx.

EXAMPLE 2 A Second Solution by Formula (5)

The function y1 � x2 is a solution of x2y	 � 3xy� � 4y � 0. Find the general solu-
tion of the differential equation on the interval (0, 
).

SOLUTION From the standard form of the equation,

we find from (5

.

The general solution on the interval (0, 
) is given by y � c1y1 � c2y2; that is,
y � c1x2 � c2x2 ln x.

� x2 � 
dx
x

� x2 ln x

; e3�d x /x � eln x3
� x3y2 � x2 � 

e3�dx /x

x4  dx

y 	 �
3
x
 y� �

4
x2 y � 0,

REMARKS

(i) The derivation and use of formula (5) have been illustrated here because this
formula appears again in the next section and in Sections 4.7 and 6.3. We use (5)
simply to save time in obtaining a desired result. Your instructor will tell you
whether you should memorize (5) or whether you should know the first princi-
ples of reduction of order.
(ii) Reduction of order can be used to find the general solution of a nonhomo-
geneous equation a2(x)y	 � a1(x)y� � a0(x)y � g(x) whenever a solution y1 of
the associated homogeneous equation is known. See Problems 17–20 in
Exercises 4.2.

EXERCISES 4.2 Answers to selected odd-numbered problems begin on page ANS-5.

In Problems 1–16 the indicated function y1(x) is a solution
of the given differential equation. Use reduction of order or
formula (5), as instructed, to find a second solution y2(x).

1. y	 � 4y� � 4y � 0; y1 � e2x

2. y	 � 2y� � y � 0; y1 � xe�x

3. y	 � 16y � 0; y1 � cos 4x

4. y	 � 9y � 0; y1 � sin 3x

5. y	 � y � 0; y1 � cosh x

6. y	 � 25y � 0; y1 � e5x

7. 9y	 � 12y� � 4y � 0; y1 � e2x/3

8. 6y	 � y� � y � 0; y1 � ex/3

9. x2y	 � 7xy� � 16y � 0; y1 � x4

10. x2y	 � 2xy� � 6y � 0; y1 � x2

11. xy	 � y� � 0; y1 � ln x

12. 4x2y	 � y � 0; y1 � x1/2 ln x

13. x2y	 � xy� � 2y � 0; y1 � x sin(ln x)

14. x2y	 � 3xy� � 5y � 0; y1 � x2 cos(ln x)
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132 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

15. (1 � 2x � x2)y	 � 2(1 � x)y� � 2y � 0; y1 � x � 1
16. (1 � x2)y	 � 2xy� � 0; y1 � 1

In Problems 17–20 the indicated function y1(x) is a solution
of the associated homogeneous equation. Use the method
of reduction of order to find a second solution y2(x) of the
homogeneous equation and a particular solution of the given
nonhomogeneous equation.

17. y	 � 4y � 2; y1 � e�2x

18. y	 � y� � 1; y1 � 1
19. y	 � 3y� � 2y � 5e3x; y1 � ex

20. y	 � 4y� � 3y � x; y1 � ex

Discussion Problems

21. (a) Give a convincing demonstration that the second-
order equation ay	 � by� � cy � 0, a, b, and c con-
stants, always possesses at least one solution of the
form , m1 a constant.

(b) Explain why the differential equation in part (a)
must then have a second solution either of the form

y1 � em1x

or of the form , m1 and m2
constants.

(c) Reexamine Problems 1–8. Can you explain why the
statements in parts (a) and (b) above are not
contradicted by the answers to Problems 3–5?

22. Verify that y1(x) � x is a solution of xy	 � xy� � y � 0.
Use reduction of order to find a second solution y2(x) in
the form of an infinite series. Conjecture an interval of
definition for y2(x).

Computer Lab Assignments

23. (a) Verify that y1(x) � ex is a solution of 

xy	 � (x � 10)y� � 10y � 0.

(b) Use (5) to find a second solution y2(x). Use a CAS to
carry out the required integration.

(c) Explain, using Corollary (A) of Theorem 4.1.2, why
the second solution can be written compactly as

.y2(x) � �
10

n�0

  1
n!

 xn

y2 � xem1xy2 � em2 x

HOMOGENEOUS LINEAR EQUATIONS 
WITH CONSTANT COEFFICIENTS

REVIEW MATERIAL
● Review Problems 27–30 in Exercises 1.1 and Theorem 4.1.5
● Review the algebra of solving polynomial equations (see the Student Resource Manual)

INTRODUCTION As a means of motivating the discussion in this section, let us return to first
order differential equations—more specificall , to homogeneous linear equations ay� � by � 0,
where the coefficients a � 0 and b are constants. This type of equation can be solved either by
separation of variables or with the aid of an integrating factor, but there is another solution method,
one that uses only algebra. Before illustrating this alternative method, we make one observation:
Solving ay� � by � 0 for y� yields y� � ky, where k is a constant. This observation reveals the
nature of the unknown solution y; the only nontrivial elementary function whose derivative is a
constant multiple of itself is an exponential function emx. Now the new solution method: If we substi-
tute y � emx and y� � memx into ay� � by � 0, we get

Since emx is never zero for real values of x, the last equation is satisfied only when m is a solution or
root of the first-degree polynomial equation am � b � 0. For this single value of m, y � emx is a
solution of the DE. To illustrate, consider the constant-coefficient equation 2y� � 5y � 0. It is not
necessary to go through the differentiation and substitution of y � emx into the DE; we merely have
to form the equation 2m � 5 � 0 and solve it for m. From we conclude that is a
solution of 2y� � 5y � 0, and its general solution on the interval (�
, 
) is 

In this section we will see that the foregoing procedure can produce exponential solutions for
homogeneous linear higher-order DEs,

(1)
where the coefficients ai, i � 0, 1, . . . , n are real constants and an � 0.

any(n) � an�1y(n�1) � � � � � a2y	 � a1y� � a0y � 0,

y � c1e�5x/2.
y � e�5x/2m � �5

2

amemx � bemx � 0    or    emx (am � b) � 0.

4.3
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Auxiliary Equation We begin by considering the special case of the second-
order equation

(2)

where a, b, and c are constants. If we try to find a solution of the form y � emx, then
after substitution of y� � memx and y	 � m2emx, equation (2) becomes

As in the introduction we argue that because emx � 0 for all x, it is apparent that the
only way y � emx can satisfy the differential equation (2) is when m is chosen as a
root of the quadratic equation

(3)

This last equation is called the auxiliary equation of the differential equa-
tion (2). Since the two roots of (3) are and

there will be three forms of the general solution of
(2) corresponding to the three cases:

• m1 and m2 real and distinct (b2 � 4ac � 0),
• m1 and m2 real and equal (b2 � 4ac � 0), and
• m1 and m2 conjugate complex numbers (b2 � 4ac � 0).

We discuss each of these cases in turn.

Case I: Distinct Real Roots Under the assumption that the auxiliary equation
(3) has two unequal real roots m1 and m2, we find two solutions, and 
We see that these functions are linearly independent on (�
, 
) and hence form a fun-
damental set. It follows that the general solution of (2) on this interval is

(4)

Case II: Repeated Real Roots When m1 � m2, we necessarily obtain only
one exponential solution, . From the quadratic formula we find that
m1 � �b�2a since the only way to have m1 � m2 is to have b2 � 4ac � 0. It follows
from (5) in Section 4.2 that a second solution of the equation is

(5)

In (5) we have used the fact that �b�a � 2m1. The general solution is then

(6)

Case III: Conjugate Complex Roots If m1 and m2 are complex, then we can
write m1 � a� ib and m2 � a� ib, where a and b� 0 are real and i2 � �1.
Formally, there is no difference between this case and Case I, and hence

However, in practice we prefer to work with real functions instead of complex
exponentials. To this end we use Euler’s formula:

where u is any real number.* It follows from this formula that

(7)ei�x � cos �x � i sin �x    and    e�i�x � cos �x � i sin �x,

ei� � cos � � i sin �,

y � C1e(a�i�)x � C2e(a�i�)x.

y � c1em1x � c2xem1x.

y2 � em1x � 
e2m1x

e2m1x
 dx � em1x � dx � xem1x.

y1 � em1x

y � c1em1x � c2em2x.

y2 � em2x.y1 � em1x

m2 � (�b � 1b2 � 4ac)�2a,
m1 � (�b � 1b2 � 4ac)�2a

am2 � bm � c � 0.

am2emx � bmemx � cemx � 0    or    emx(am2 � bm � c) � 0.

ay	 � by� � cy � 0,

4.3 HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS ● 133

*A formal derivation of Euler’s formula can be obtained from the Maclaurin series by

substituting x � iu, using i2 � �1, i3 � �i, . . . , and then separating the series into real and imaginary
parts. The plausibility thus established, we can adopt cos u � i sin u as the definitio of eiu.

ex � �



n�0
 
xn

n!
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134 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

where we have used cos(�bx) � cos bx and sin(�bx) � �sin bx. Note that by firs
adding and then subtracting the two equations in (7), we obtain, respectively,

Since y � C1e(a�ib)x � C2e(a�ib)x is a solution of (2) for any choice of the constants C1
and C2, the choices C1 � C2 � 1 and C1 � 1, C2 � �1 give, in turn, two solutions:

But

and

Hence from Corollary (A) of Theorem 4.1.2 the last two results show that eax cos bx
and eax sin bx are real solutions of (2). Moreover, these solutions form a fundamen-
tal set on (�
, 
). Consequently, the general solution is

(8)y � c1eax cos �x � c2eax sin �x � eax(c1 cos �x � c2 sin �x).

y2 � eax(ei�x � e�i�x) � 2ieax sin �x.

y1 � eax(ei�x � e�i�x) � 2eax cos �x

y1 � e(a�i�)x � e(a�i�)x    and    y2 � e(a�i�)x � e(a�i�)x.

ei�x � e�i�x � 2 cos �x    and    ei�x � e�i�x � 2i sin �x.

FIGURE 4.3.1 Solution curve of IVP
in Example 2

x

y
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EXAMPLE 1 Second-Order DEs

Solve the following differential equations.

(a) 2y	 � 5y� � 3y � 0 (b) y	 � 10y� � 25y � 0 (c) y	 � 4y� � 7y � 0

SOLUTION We give the auxiliary equations, the roots, and the corresponding gen-
eral solutions.

(a) 2m2 � 5m � 3 � (2m � 1)(m � 3) � 0, , m2 � 3

From (4), y � c1e�x/2 � c2e3x.

(b) m2 � 10m � 25 � (m � 5)2 � 0, m1 � m2 � 5

From (6), y � c1e5x � c2xe5x.

(c)

From (8) with � � �2, � � 23, y � e�2x (c1 cos 23x � c2 sin 23x).
m2 � 4m � 7 � 0, m1 � �2 � 23i,  m2 � �2 � 23i

m1 � �1
2

EXAMPLE 2 An Initial-Value Problem

Solve 4y	 � 4y� � 17y � 0, y(0) � �1, y�(0) � 2.

SOLUTION By the quadratic formula we find that the roots of the auxiliary
equation 4m2 � 4m � 17 � 0 are . Thus from
(8) we have y � e�x/2(c1 cos 2x � c2 sin 2x). Applying the condition y(0) � �1,
we see from e0(c1 cos 0 � c2 sin 0) � �1 that c1 � �1. Differentiating
y � e�x/2(�cos 2x � c2 sin 2x) and then using y�(0) � 2 gives 2c2 � � 2 or c2 � .
Hence the solution of the IVP is y � e�x/2(�cos 2x � sin 2x). In Figure 4.3.1 we see
that the solution is oscillatory, but y : 0 as x : 
.

Two Equations Worth Knowing The two differential equations

,y 	 � k2y � 0    and    y 	 � k2y � 0

3
4

3
4

1
2

m1 � �1
2 � 2i and m2 � �1

2 � 2i
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where k is real, are important in applied mathematics. For y	 � k2y � 0 the auxiliary
equation m2 � k2 � 0 has imaginary roots m1 � ki and m2 � �ki. With a� 0 and
b� k in (8) the general solution of the DE is seen to be

(9)

On the other hand, the auxiliary equation m2 � k2 � 0 for y	 � k2y � 0 has distinct
real roots m1 � k and m2 � �k, and so by (4) the general solution of the DE is

(10)

Notice that if we choose in (10), we get the particu-
lar solutions . Since
cosh kx and sinh kx are linearly independent on any interval of the x-axis, an alterna-
tive form for the general solution of y	 � k2y � 0 is

(11)

See Problems 41 and 42 in Exercises 4.3.

Higher-Order Equations In general, to solve an nth-order differential equa-
tion (1), where the ai, i � 0, 1, . . . , n are real constants, we must solve an nth-degree
polynomial equation

(12)

If all the roots of (12) are real and distinct, then the general solution of (1) is

It is somewhat harder to summarize the analogues of Cases II and III because the
roots of an auxiliary equation of degree greater than two can occur in many combi-
nations. For example, a fifth-degree equation could have five distinct real roots, or
three distinct real and two complex roots, or one real and four complex roots, or fiv
real but equal roots, or five real roots but two of them equal, and so on. When m1 is a
root of multiplicity k of an nth-degree auxiliary equation (that is, k roots are equal
to m1), it can be shown that the linearly independent solutions are

and the general solution must contain the linear combination

Finally, it should be remembered that when the coefficients are real, complex
roots of an auxiliary equation always appear in conjugate pairs. Thus, for example,
a cubic polynomial equation can have at most two complex roots.

c1em1x � c2xem1x � c3x2em1x � � � � � ckxk�1em1x.

em1x,  xem1x,  x2em1x, . . . ,  xk�1em1x

y � c1em1x � c2em2x � � � � � cnemnx.

anmn � an�1mn�1 � � � � � a2m2 � a1m � a0 � 0.

y � c1 cosh kx � c2 sinh kx.

y � 1
2 (ekx � e�kx) � cosh kx and y � 1

2 (ekx � e�kx) � sinh kx
c1 � c2 � 1

2 and c1 � 1
2, c2 � �1

2

y � c1ekx � c2e�kx.

y � c1 cos kx � c2 sin kx.

4.3 HOMOGENEOUS LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS ● 135

EXAMPLE 3 Third-Order DE

Solve y� � 3y	 � 4y � 0.

SOLUTION It should be apparent from inspection of m3 � 3m2 � 4 � 0 that one
root is m1 � 1, so m � 1 is a factor of m3 � 3m2 � 4. By division we fin

so the other roots are m2 � m3 � �2. Thus the general solution of the DE is
y � c1ex � c2e�2x � c3xe�2x.

m3 � 3m2 � 4 � (m � 1)(m2 � 4m � 4) � (m � 1)(m � 2)2,
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136 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

EXAMPLE 4 Fourth-Order DE

Solve 

SOLUTION The auxiliary equation m4 � 2m2 � 1 � (m2 � 1)2 � 0 has roots
m1 � m3 � i and m2 � m4 � �i. Thus from Case II the solution is

By Euler’s formula the grouping C1eix � C2e�ix can be rewritten as

after a relabeling of constants. Similarly, x(C3eix � C4e�ix) can be expressed as
x(c3 cos x � c4 sin x). Hence the general solution is

Example 4 illustrates a special case when the auxiliary equation has repeated
complex roots. In general, if m1 � a � ib, b � 0 is a complex root of multiplicity k
of an auxiliary equation with real coefficients, then its conjugate m2 � a � ib is also
a root of multiplicity k. From the 2k complex-valued solutions

we conclude, with the aid of Euler’s formula, that the general solution of the corre-
sponding differential equation must then contain a linear combination of the 2k real
linearly independent solutions

In Example 4 we identify k � 2, a � 0, and b � 1.
Of course the most difficult aspect of solving constant-coefficient differential equa-

tions is finding roots of auxiliary equations of degree greater than two. For example,
to solve 3y� � 5y	 � 10y� � 4y � 0, we must solve 3m3 � 5m2 � 10m � 4 � 0.
Something we can try is to test the auxiliary equation for rational roots. Recall that
if m1 � p�q is a rational root (expressed in lowest terms) of an auxiliary equation

with integer coefficients, then p is a factor of a0 and q is
a factor of an. For our specific cubic auxiliary equation, all the factors of a0 � �4 and
an � 3 are p: �1, �2, �4 and q: �1, �3, so the possible rational roots are

. Each of these numbers can then be tested—say, by
synthetic division. In this way we discover both the root and the factorization

The quadratic formula then yields the remaining roots m2 � �1 � i and
m3 � �1 � i. Therefore the general solution of 3y� � 5y	 � 10y� � 4y � 0 is
y � c1ex/3 � e�x(c2 cos x � c3 sin x).

Use of Computers Finding roots or approximation of roots of auxiliary equa-
tions is a routine problem with an appropriate calculator or computer software.
Polynomial equations (in one variable) of degree less than five can be solved by
means of algebraic formulas using the solve commands in Mathematica and Maple.
For auxiliary equations of degree five or greater it might be necessary to resort to nu-
merical commands such as NSolve and FindRoot in Mathematica. Because of their
capability of solving polynomial equations, it is not surprising that these computer

2323
23

23

3m3 � 5m2 � 10m � 4 � (m � 1
3)(3m2 � 6m � 12).

m1 � 1
3

p>q: �1, �2, �4, �1
3, �

2
3, �

4
3

anmn � � � � � a1m � a0 � 0

 eax sin �x,  xeax sin �x,  x2eax sin �x,   . . . ,  xk�1eax sin �x.

 eax cos �x,  xeax cos �x,  x2eax cos �x,  . . . ,  xk�1eax cos �x,

 e(a�i�)x, xe(a�i�)x, x2e(a�i�)x,  . . . , xk�1e(a�i�)x,

 e(a�i�)x, xe(a�i�)x, x2e(a�i�)x,  . . . , xk�1e(a�i�)x,

y � c1 cos x � c2 sin x � c3x cos x � c4x sin x.

c1 cos x � c2 sin x

y � C1eix � C2e�ix � C3xeix � C4xe�ix.

d 4y
dx4 � 2 

d 2y
dx2 � y � 0.

There is more on
this in the SRM. �
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algebra systems are also able, by means of their dsolve commands, to provide explicit
solutions of homogeneous linear constant-coefficient di ferential equations.

In the classic text Differential Equations by Ralph Palmer Agnew* (used by the
author as a student) the following statement is made:

It is not reasonable to expect students in this course to have computing skill and
equipment necessary for efficient solving of equations such a

(13)

Although it is debatable whether computing skills have improved in the intervening
years, it is a certainty that technology has. If one has access to a computer algebra sys-
tem, equation (13) could now be considered reasonable. After simplification and some
relabeling of output, Mathematica yields the (approximate) general solution

Finally, if we are faced with an initial-value problem consisting of, say, a
fourth-order equation, then to fit the general solution of the DE to the four initial
conditions, we must solve four linear equations in four unknowns (the c1, c2, c3, c4
in the general solution). Using a CAS to solve the system can save lots of time. See
Problems 69 and 70 in Exercises 4.3 and Problem 41 in Chapter 4 in Review.

 � c3e0.476478x cos(0.759081x) � c4e0.476478x sin(0.759081x).

 y � c1e�0.728852x cos(0.618605x) � c2e�0.728852x sin(0.618605x)

4.317 
d 4y
dx4 � 2.179 

d 3y
dx3 � 1.416 

d 2y
dx2 � 1.295 

dy
dx

� 3.169y � 0.
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*McGraw-Hill, New York, 1960.

EXERCISES 4.3 Answers to selected odd-numbered problems begin on page ANS-5.

In Problems 1–14 find the general solution of the given
second-order differential equation.

1. 4y	 � y� � 0 2. y	 � 36y � 0

3. y	 � y� � 6y � 0 4. y	 � 3y� � 2y � 0

5. y	 � 8y� � 16y � 0 6. y	 � 10y� � 25y � 0

7. 12y	 � 5y� � 2y � 0 8. y	 � 4y� � y � 0

9. y	 � 9y � 0 10. 3y	 � y � 0

11. y	 � 4y� � 5y � 0 12. 2y	 � 2y� � y � 0

13. 3y	 � 2y� � y � 0 14. 2y	 � 3y� � 4y � 0

In Problems 15–28 find the general solution of the given
higher-order differential equation.

15. y� � 4y	 � 5y� � 0

16. y� � y � 0

17. y� � 5y	 � 3y� � 9y � 0

18. y� � 3y	 � 4y� � 12y � 0

19.
d3u
dt3 �

d 2u
dt2 � 2u � 0

20.

21. y� � 3y	 � 3y� � y � 0

22. y� � 6y	 � 12y� � 8y � 0

23. y(4) � y� � y	 � 0

24. y(4) � 2y	 � y � 0

25.

26.

27.

28.

In Problems 29–36 solve the given initial-value problem.

29. y	 � 16y � 0, y(0) � 2, y�(0) � �2

30.
d 2y
d�2 � y � 0, y(p>3) � 0, y�(p>3) � 2

2 
d 5x
ds5 � 7 

d 4x
ds4 � 12 

d 3x
ds3 � 8 

d 2x
ds2 � 0

d 5u
dr5 � 5 

d 4u
dr4 � 2 

d 3u
dr3 � 10 

d 2u
dr2 �

du
dr

� 5u � 0

d 4y
dx4 � 7 

d 2y
dx2 � 18y � 0

16 
d 4y
dx4 � 24 

d 2y
dx2 � 9y � 0

d 3x
dt3 �

d 2x
dt2 � 4x � 0
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138 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

31.

32. 4y	 � 4y� � 3y � 0, y(0) � 1, y�(0) � 5

33. y	 � y� � 2y � 0, y(0) � y�(0) � 0

34. y	 � 2y� � y � 0, y(0) � 5, y�(0) � 10

35. y� � 12y	 � 36y� � 0, y(0) � 0, y�(0) � 1, y	(0) � �7

36. y� � 2y	 � 5y� � 6y � 0, y(0) � y�(0) � 0, y	(0) � 1

In Problems 37–40 solve the given boundary-value problem.

37. y	 � 10y� � 25y � 0, y(0) � 1, y(1) � 0

38. y	 � 4y � 0, y(0) � 0, y(p) � 0

39.

40. y	 � 2y� � 2y � 0, y(0) � 1, y(p) � 1

In Problems 41 and 42 solve the given problem first using
the form of the general solution given in (10). Solve again,
this time using the form given in (11).

41. y	 � 3y � 0, y(0) � 1, y�(0) � 5

42. y	 � y � 0, y(0) � 1, y�(1) � 0

In Problems 43–48 each figure represents the graph of a
particular solution of one of the following differential
equations:

(a) y	 � 3y� � 4y � 0 (b) y	 � 4y � 0
(c) y	 � 2y� � y � 0 (d) y	 � y � 0
(e) y	 � 2y� � 2y � 0 (f) y 	 � 3y� � 2y � 0

Match a solution curve with one of the differential equations.
Explain your reasoning.

y 	 � y � 0, y�(0) � 0, y�(p>2) � 0

d 2y
dt2 � 4 

dy
dt

� 5y � 0, y(1) � 0, y�(1) � 2

In Problems 49–58 find a homogeneous linear differential equa-
tion with constant coefficients whose general solution is given.
49. 50.

51. 52.

53. 54.

55.

56.

57.

58. y � c1cos x � c2sin x � c3cos 2 x � c4sin 2x

y � c1 � c2x � c3e8x

y � c1 � c2e2xcos5x �  c3e2xsin5x

y � c1e�xcosx � c2e�xsinx

y � c1 cosh7x � c2 sinh7xy � c1 cos3x � c2 sin3x

y � c1e10x � c2xe10xy � c1 � c2e2x

y � c1e�4x � c2e�3xy � c1ex � c2e5x

x

y

x

y

FIGURE 4.3.2 Graph for Problem 43

FIGURE 4.3.3 Graph for Problem 44

43.

44.

x

y

FIGURE 4.3.4 Graph for Problem 45

45.

x

y

FIGURE 4.3.5 Graph for Problem 46

46.

π x

y

π x

y

FIGURE 4.3.6 Graph for Problem 47

FIGURE 4.3.7 Graph for Problem 48

47.

48.
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Discussion Problems

59. Two roots of a cubic auxiliary equation with real coeffi
cients are and What is the corre-
sponding homogeneous linear differential equation?
Discuss: Is your answer unique?

60. Find the general solution of 
if is one root of its auxiliary equation.

61. Find the general solution of y� � 6y	 � y� � 34y � 0
if it is known that y1 � e�4x cos x is one solution.

62. To solve y(4) � y � 0, we must find the roots of
m4 � 1 � 0. This is a trivial problem using a CAS
but can also be done by hand working with complex
numbers. Observe that m4 � 1 � (m2 � 1)2 � 2m2.
How does this help? Solve the differential equation.

63. Verify that is a particular
solution of y(4) � y � 0. Reconcile this particular solu-
tion with the general solution of the DE.

64. Consider the boundary-value problem y	 � ly � 0,
y(0) � 0, y(p�2) � 0. Discuss: Is it possible to
determine values of l so that the problem possesses
(a) trivial solutions? (b) nontrivial solutions?

y � sinh x � 2 cos (x � p>6)

m1 � 1
2

2y� � 7y	 � 4y� � 4y � 0

m2 � 3 � i.m1 � �1
2
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Computer Lab Assignments

In Problems 65–68 use a computer either as an aid in solving
the auxiliary equation or as a means of directly obtaining the
general solution of the given differential equation. If you use
a CAS to obtain the general solution, simplify the output and,
if necessary, write the solution in terms of real functions.

65. y� � 6y	 � 2y� � y � 0

66. 6.11y� � 8.59y	 � 7.93y� � 0.778y � 0

67. 3.15y(4) � 5.34y	 � 6.33y� � 2.03y � 0

68. y(4) � 2y	 � y� � 2y � 0

In Problems 69 and 70 use a CAS as an aid in solving the aux-
iliary equation. Form the general solution of the differential
equation. Then use a CAS as an aid in solving the system of
equations for the coefficients ci, i � 1, 2, 3, 4 that results when
the initial conditions are applied to the general solution.

69. 2y(4) � 3y� � 16y	 � 15y� � 4y � 0,
y(0) � �2, y�(0) � 6, y	(0) � 3, y�(0) �

70. y(4) � 3y� � 3y	 � y� � 0,
y(0) � y�(0) � 0, y	(0) � y�(0) � 1

1
2

*Note to the Instructor: In this section the method of undetermined coefficients is developed from th
viewpoint of the superposition principle for nonhomogeneous equations (Theorem 4.7.1). In Section 4.5
an entirely different approach will be presented, one utilizing the concept of differential annihilator
operators. Take your pick.

UNDETERMINED COEFFICIENTS—SUPERPOSITION
APPROACH*

REVIEW MATERIAL
● Review Theorems 4.1.6 and 4.1.7 (Section 4.1)

INTRODUCTION To solve a nonhomogeneous linear differential equation

(1)

we must do two things: 
• find the complementary function yc and 
• find any particular solution yp of the nonhomogeneous equation (1). 
Then, as was discussed in Section 4.1, the general solution of (1) is y � yc � yp. The complemen-
tary function yc is the general solution of the associated homogeneous DE of (1), that is,

. 

In Section 4.3 we saw how to solve these kinds of equations when the coefficients were constants.
Our goal in the present section is to develop a method for obtaining particular solutions.

an y(n) � an�1 y(n�1) � � � � � a1 y� � a0 y � 0

an y(n) � an�1 y(n�1) � � � � � a1 y� � a0y � g(x),

4.4
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140 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Method of Undetermined Coefficients The first of two ways we shall
consider for obtaining a particular solution yp for a nonhomogeneous linear DE is
called the method of undetermined coefficients The underlying idea behind
this method is a conjecture about the form of yp, an educated guess really, that is
motivated by the kinds of functions that make up the input function g(x). The general
method is limited to linear DEs such as (1) where

• the coefficients ai, i � 0, 1, . . . , n are constants and
• g(x) is a constant k, a polynomial function, an exponential function eax,

a sine or cosine function sin bx or cos bx, or finite sums and product
of these functions.

Note Strictly speaking, g(x) � k (constant) is a polynomial function. Since a
constant function is probably not the first thing that comes to mind when you think
of polynomial functions, for emphasis we shall continue to use the redundancy
“constant functions, polynomials, . . . . ”

The following functions are some examples of the types of inputs g(x) that are
appropriate for this discussion:

That is, g(x) is a linear combination of functions of the type

  g(x) � sin 3x � 5x cos 2x,  g(x) � xex sin x � (3x2 � 1)e�4x.

  g(x) � 10, g(x) � x2 � 5x,     g(x) � 15x � 6 � 8e�x,

P(x) � an xn � an�1 xn�1 � � � � � a1x � a0,    P(x) eax,  P(x) eax sin �x,  and  P(x) eax cos �x,

where n is a nonnegative integer and a and b are real numbers. The method of
undetermined coefficients is not applicable to equations of form (1) whe

and so on. Differential equations in which the input g(x) is a function of this last kind
will be considered in Section 4.6.

The set of functions that consists of constants, polynomials, exponentials
eax, sines, and cosines has the remarkable property that derivatives of their sums
and products are again sums and products of constants, polynomials, exponen-
tials eax, sines, and cosines. Because the linear combination of derivatives 

must be identical to g(x), it seems
reasonable to assume that yp has the same form as g(x).

The next two examples illustrate the basic method.

an y(n)
p � an�1 yp

(n�1) � � � � � a1 yp� � a0 yp

g(x) � ln x, g(x) �
1
x
, g(x) � tan x, g(x) � sin�1x,

EXAMPLE 1 General Solution Using Undetermined Coefficient

Solve (2)

SOLUTION Step 1. We first solve the associated homogeneous equation
y	 � 4y� � 2y � 0. From the quadratic formula we find that the roots of the auxil-
iary equation m2 � 4m � 2 � 0 are and . Hence
the complementary function is

Step 2. Now, because the function g(x) is a quadratic polynomial, let us assume a
particular solution that is also in the form of a quadratic polynomial:

yp � Ax2 � Bx � C.

yc � c1e�(2�16)x � c2e(�2�16)x.

m2 � �2 � 16m1 � �2 � 16

y 	 � 4y� � 2y � 2x2 � 3x � 6.
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We seek to determine specifi coefficients A, B, and C for which yp is a solution
of (2). Substituting yp and the derivatives

into the given differential equation (2), we get

Because the last equation is supposed to be an identity, the coefficients of like powers
of x must be equal:

That is,

Solving this system of equations leads to the values A � �1, , and C � �9.
Thus a particular solution is

Step 3. The general solution of the given equation is

y � yc � yp � c1e�(2�16)x � c2e(�2�16)x � x2 �
5
2
 x � 9.

yp � �x2 �
5
2
 x � 9.

B � �5
2

�2A � 2,    8A � 2B � �3,    2A � 4B � 2C � 6.

equal

�2A x2 � 8A � 2B x � 2A � 4B � 2C � 2x2 � 3x � 6

y 	p � 4y�p � 2yp � 2A � 8Ax � 4B � 2Ax2 � 2Bx � 2C � 2x2 � 3x � 6.

y�p � 2Ax � B    and    y	p � 2A
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EXAMPLE 2 Particular Solution Using Undetermined Coefficient

Find a particular solution of y	 � y� � y � 2 sin 3x.

SOLUTION A natural first guess for a particular solution would be A sin 3x. But
because successive differentiations of sin 3x produce sin 3x and cos 3x, we are
prompted instead to assume a particular solution that includes both of these terms:

Differentiating yp and substituting the results into the differential equation gives,
after regrouping,

or

From the resulting system of equations,

we get and . A particular solution of the equation is

As we mentioned, the form that we assume for the particular solution yp is an
educated guess; it is not a blind guess. This educated guess must take into consider-
ation not only the types of functions that make up g(x) but also, as we shall see in
Example 4, the functions that make up the complementary function yc.

yp �
6

73
 cos 3x �

16
73

 sin 3x.

B � �16
73A � 6

73

�8A � 3B � 0,    3A � 8B � 2,

equal

�8A � 3B cos 3x � 3A � 8B sin 3x � 0 cos 3x � 2 sin 3x.

y 	p � y�p � yp � (�8A � 3B) cos 3x � (3A � 8B) sin 3x � 2 sin 3x

yp � A cos 3x � B sin 3x.
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142 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

(4)y 	p � 2y�p � 3yp � �3Ax � 2A � 3B � 3Cxe2x � (2C � 3E )e2x � 4x � 5 � 6xe2x.

From this identity we obtain the four equations

The last equation in this system results from the interpretation that the coefficient of
e2x in the right member of (4) is zero. Solving, we find , , C � �2, and

. Consequently,

Step 3. The general solution of the equation is

In light of the superposition principle (Theorem 4.1.7) we can also approach
Example 3 from the viewpoint of solving two simpler problems. You should verify
that substituting

and

yields, in turn, . A particular solution of (3)
is then .

The next example illustrates that sometimes the “obvious” assumption for the
form of yp is not a correct assumption.

yp � yp1
� yp2

yp1
� �4

3 x � 23
9  and yp2

� ��2x � 4
3�e2x

 yp2
� Cxe2x � Ee2x     into     y 	 � 2y� � 3y � 6xe2x

 yp1
� Ax � B  into  y 	 � 2y� � 3y � 4x � 5

y � c1e�x � c2e3x �
4
3
 x �

23
9

� �2x �
4
3� e2x.

yp � �
4
3
 x �

23
9

� 2xe2x �
4
3
 e2x.

E � �4
3

B � 23
9A � �4

3

�3A � 4,    �2A � 3B � �5,    �3C � 6,    2C � 3E � 0.

EXAMPLE 3 Forming yp by Superposition

Solve (3)

SOLUTION Step 1. First, the solution of the associated homogeneous equation 
y	 � 2y� � 3y � 0 is found to be yc � c1e�x � c2e3x.

Step 2. Next, the presence of 4x � 5 in g(x) suggests that the particular solution
includes a linear polynomial. Furthermore, because the derivative of the product xe2x

produces 2xe2x and e2x, we also assume that the particular solution includes both
xe2x and e2x. In other words, g is the sum of two basic kinds of functions:

Correspondingly, the superposition principle for nonhomogeneous equations
(Theorem 4.1.7) suggests that we seek a particular solution

where . Substituting

into the given equation (3) and grouping like terms gives

yp � Ax � B � Cxe2x � Ee2x

yp1
� Ax � B and yp2

� Cxe2x � Ee2x

yp � yp1
� yp2

,

g(x) � g1(x) � g2(x) � polynomial � exponentials.

y 	 � 2y� � 3y � 4x � 5 � 6xe2x.

EXAMPLE 4 A Glitch in the Method

Find a particular solution of y	 � 5y� � 4y � 8ex.

SOLUTION Differentiation of ex produces no new functions. Therefore proceeding
as we did in the earlier examples, we can reasonably assume a particular solution of
the form yp � Aex. But substitution of this expression into the differential equation
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yields the contradictory statement 0 � 8ex, so we have clearly made the wrong guess
for yp.

The difficulty here is apparent on examining the complementary function
yc � c1ex � c2e4x. Observe that our assumption Aex is already present in yc. This
means that ex is a solution of the associated homogeneous differential equation, and
a constant multiple Aex when substituted into the differential equation necessarily
produces zero.

What then should be the form of yp? Inspired by Case II of Section 4.3, let’s see
whether we can find a particular solution of the for

Substituting and into the differential equation
and simplifying gives

From the last equality we see that the value of A is now determined as A � � .
Therefore a particular solution of the given equation is 

The difference in the procedures used in Examples 1 – 3 and in Example 4
suggests that we consider two cases. The first case reflects the situation in
Examples 1 – 3.

Case I No function in the assumed particular solution is a solution of the asso-
ciated homogeneous differential equation.

In Table 4.4.1 we illustrate some specific examples of g(x) in (1) along with the
corresponding form of the particular solution. We are, of course, taking for granted
that no function in the assumed particular solution yp is duplicated by a function in
the complementary function yc.

yp � �8
3 xex.

8
3

y 	p � 5y�p � 4yp � �3Aex � 8ex.

y	p � Axex � 2Aexy�p � Axex � Aex

yp � Axex.
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TABLE 4.4.1 Trial Particular Solutions

g(x) Form of yp

1. 1 (any constant) A
2. 5x � 7 Ax � B
3. 3x2 � 2 Ax2 � Bx � C
4. x3 � x � 1 Ax3 � Bx2 � Cx � E
5. sin 4x A cos 4x � B sin 4x
6. cos 4x A cos 4x � B sin 4x
7. e5x Ae5x

8. (9x � 2)e5x (Ax � B)e5x

9. x2e5x (Ax2 � Bx � C)e5x

10. e3x sin 4x Ae3x cos 4x � Be3x sin 4x
11. 5x2 sin 4x (Ax2 � Bx � C) cos 4x � (Ex2 � Fx � G ) sin 4x
12. xe3x cos 4x (Ax � B)e3x cos 4x � (Cx � E)e3x sin 4x

EXAMPLE 5 Forms of Particular Solutions—Case I

Determine the form of a particular solution of

(a) y	 � 8y� � 25y � 5x3e�x � 7e�x (b) y	 � 4y � x cos x

SOLUTION (a) We can write g(x) � (5x3 � 7)e�x. Using entry 9 in Table 4.4.1 as
a model, we assume a particular solution of the form

Note that there is no duplication between the terms in yp and the terms in the comple-
mentary function yc � e4x(c1 cos 3x � c2 sin 3x).

yp � (Ax3 � Bx2 � Cx � E)e�x.
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144 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

(b) The function g(x) � x cos x is similar to entry 11 in Table 4.4.1 except, of course,
that we use a linear rather than a quadratic polynomial and cos x and sin x instead of
cos 4x and sin 4x in the form of yp:

Again observe that there is no duplication of terms between yp and 
yc � c1 cos 2x � c2 sin 2x.

If g(x) consists of a sum of, say, m terms of the kind listed in the table, then (as in
Example 3) the assumption for a particular solution yp consists of the sum of the trial
forms corresponding to these terms:

The foregoing sentence can be put another way.

Form Rule for Case I The form of yp is a linear combination of all linearly
independent functions that are generated by repeated differentiations of g(x).

yp � yp1
� yp2

� � � � � ypm
.

yp1
, yp2

, . . . , ypm

yp � (Ax � B) cos x � (Cx � E) sin x.

EXAMPLE 6 Forming yp by Superposition—Case I

Determine the form of a particular solution of

SOLUTION

Corresponding to 3x2 we assume

Corresponding to � 5 sin 2x we assume

Corresponding to 7xe6x we assume

The assumption for the particular solution is then

No term in this assumption duplicates a term in yc � c1e2x � c2e7x.

Case II A function in the assumed particular solution is also a solution of the
associated homogeneous differential equation.

The next example is similar to Example 4.

yp � yp1
� yp2

� yp3
� Ax2 � Bx � C � E cos 2x � F sin 2x � (Gx � H)e6x.

yp3
� (Gx � H)e6x.

yp2
� E cos 2x � F sin 2x.

yp1
� Ax2 � Bx � C.

y 	 � 9y� � 14y � 3x2 � 5 sin 2x � 7xe6x.

EXAMPLE 7 Particular Solution—Case II

Find a particular solution of y	 � 2y� � y � ex.

SOLUTION The complementary function is yc � c1ex � c2xex. As in Example 4,
the assumption yp � Aex will fail, since it is apparent from yc that ex is a solution of
the associated homogeneous equation y	 � 2y� � y � 0. Moreover, we will not be
able to find a particular solution of the form yp � Axex, since the term xex is also
duplicated in yc. We next try

Substituting into the given differential equation yields 2Aex � ex, so Thus a
particular solution is yp � 1

2 x2ex.
A � 1

2.

yp � Ax2ex.
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Suppose again that g(x) consists of m terms of the kind given in Table 4.4.1, and
suppose further that the usual assumption for a particular solution is

where the are the trial particular solution forms corresponding to
these terms. Under the circumstances described in Case II, we can make up the
following general rule.

Multiplication Rule for Case II If any contains terms that duplicate terms in
yc, then that must be multiplied by xn, where n is the smallest positive integer
that eliminates that duplication.

ypi

ypi

ypi 
, i � 1, 2, . . . , m

yp � yp1
� yp2

� � � � � ypm
,
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EXAMPLE 8 An Initial-Value Problem

Solve y	 � y � 4x � 10 sin x, y(p) � 0, y�(p) � 2.

SOLUTION The solution of the associated homogeneous equation y	 � y � 0
is yc � c1 cos x � c2 sin x. Because g(x) � 4x � 10 sin x is the sum of a linear
polynomial and a sine function, our normal assumption for yp, from entries 2 and 5
of Table 4.4.1, would be the sum of and :

(5)

But there is an obvious duplication of the terms cos x and sin x in this assumed form
and two terms in the complementary function. This duplication can be eliminated by
simply multiplying by x. Instead of (5) we now use

(6)

Differentiating this expression and substituting the results into the differential
equation gives

and so A � 4, B � 0, �2C � 10, and 2E � 0. The solutions of the system are
immediate: A � 4, B � 0, C � �5, and E � 0. Therefore from (6) we obtain
yp � 4x � 5x cos x. The general solution of the given equation is

We now apply the prescribed initial conditions to the general solution of the
equation. First, y(p) � c1 cos p � c2 sin p � 4p � 5p cos p � 0 yields c1 � 9p,
since cos p � �1 and sin p � 0. Next, from the derivative

and

we find c2 � 7. The solution of the initial-value is then

y � 9� cos x � 7 sin x � 4x � 5x cos x.

 y�(�) � �9� sin � � c2 cos � � 4 � 5� sin � � 5 cos � � 2

 y� � �9� sin x � c2 cos x � 4 � 5x sin x � 5 cos x

y � yc � yp � c1 cos x � c2 sin x � 4x � 5x cos x.

y 	p � yp � Ax � B � 2C sin x � 2E cos x � 4x � 10 sin x,

yp � Ax � B � Cx cos x � Ex sin x.

yp2

yp � Ax � B � C cos x � E sin x.

yp2
� C cos x � E sin xyp1

� Ax � B

EXAMPLE 9 Using the Multiplication Rule

Solve y	 � 6y� � 9y � 6x2 � 2 � 12e3x.

SOLUTION The complementary function is yc � c1e3x � c2xe3x. And so, based on
entries 3 and 7 of Table 4.4.1, the usual assumption for a particular solution would be

yp � Ax2 � Bx � C � Ee3x.

yp1
yp2
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146 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Inspection of these functions shows that the one term in is duplicated in yc. If
we multiply by x, we note that the term xe3x is still part of yc. But multiplying

by x2 eliminates all duplications. Thus the operative form of a particular
solution is

Differentiating this last form, substituting into the differential equation, and collecting
like terms gives

yp � Ax2 � Bx � C � Ex2e3x.

yp2

yp2

yp2

y 	p � 6y�p � 9yp � 9Ax2 � (�12A � 9B)x � 2A � 6B � 9C � 2Ee3x � 6x2 � 2 � 12e3x.

It follows from this identity that A � , B � , C � , and E � �6. Hence the general
solution y � yc � yp is y � c1e3x � c2xe3x � x2 � x � � 6x2e3x.2

3
8
9

2
3

2
3

8
9

2
3

EXAMPLE 10 Third-Order DE—Case I

Solve y� � y	 � ex cos x.

SOLUTION From the characteristic equation m3 � m2 � 0 we find m1 � m2 � 0
and m3 � �1. Hence the complementary function of the equation is 
yc � c1 � c2x � c3e�x. With g(x) � ex cos x, we see from entry 10 of Table 4.4.1
that we should assume that

Because there are no functions in yp that duplicate functions in the complementary
solution, we proceed in the usual manner. From

we get �2A � 4B � 1 and �4A � 2B � 0. This system gives and ,
so a particular solution is . The general solution of the
equation is

y � yc � yp � c1 � c2x � c3e�x �
1

10
 ex cos x �

1
5
 ex sin x.

yp � � 1
10 ex cos x � 1

5 ex sin x
B � 1

5A � � 1
10

y 	�p � y 	p � (�2A � 4B)ex cos x � (�4A � 2B)ex sin x � ex cos x

yp � Aex cos x � Bex sin x.

EXAMPLE 11 Fourth-Order DE—Case II

Determine the form of a particular solution of y(4) � y� � 1 � x2e�x.

SOLUTION Comparing yc � c1 � c2x � c3x2 � c4e�x with our normal assumption
for a particular solution

we see that the duplications between yc and yp are eliminated when is multiplied
by x3 and is multiplied by x. Thus the correct assumption for a particular solution
is yp � Ax3 � Bx3e�x � Cx2e�x � Exe�x.

yp2

yp1

yp � A � Bx2e�x � Cxe�x � Ee�x,

yp1
yp2
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REMARKS

(i) In Problems 27–36 in Exercises 4.4 you are asked to solve initial-value
problems, and in Problems 37–40 you are asked to solve boundary-value
problems. As illustrated in Example 8, be sure to apply the initial conditions or
the boundary conditions to the general solution y � yc � yp. Students often
make the mistake of applying these conditions only to the complementary
function yc because it is that part of the solution that contains the constants
c1, c2, . . . , cn.
(ii) From the “Form Rule for Case I” on page 144 of this section you see why
the method of undetermined coefficients is not well suited to nonhomogeneous
linear DEs when the input function g(x) is something other than one of the four
basic types highlighted in color on page 140. For example, if P(x) is a polyno-
mial, then continued differentiation of P(x)eax sin bx will generate an indepen-
dent set containing only a finit number of functions—all of the same type,
namely, a polynomial times eax sin bx or a polynomial times eax cos bx. On
the other hand, repeated differentiation of input functions such as g(x) � ln x
or g(x) � tan�1x generates an independent set containing an infinit number of
functions:

 derivatives of  tan�1x:  1
1 � x2

, 
�2x

(1 � x2)2
, 
�2 � 6x2

(1 � x2)3
, . . . .

 derivatives of  ln x:  1
x

, 
�1
x2

, 
2
x3

, . . . ,

EXERCISES 4.4 Answers to selected odd-numbered problems begin on page ANS-5.

In Problems 1–26 solve the given differential equation by
undetermined coefficients

1. y	 � 3y� � 2y � 6

2. 4y	 � 9y � 15

3. y	 � 10y� � 25y � 30x � 3

4. y	 � y� � 6y � 2x

5. y	 � y� � y � x2 � 2x

6. y	 � 8y� � 20y � 100x2 � 26xex

7. y	 � 3y � �48x2e3x

8. 4y	 � 4y� � 3y � cos 2x

9. y	 � y� � �3

10. y	 � 2y� � 2x � 5 � e�2x

11.

12. y	 � 16y � 2e4x

13. y	 � 4y � 3 sin 2x

14. y	 � 4y � (x2 � 3) sin 2x

15. y	 � y � 2x sin x

y 	 � y� �
1
4
 y � 3 � ex/2

1
4

16. y	 � 5y� � 2x3 � 4x2 � x � 6

17. y	 � 2y� � 5y � ex cos 2x

18. y	 � 2y� � 2y � e2x(cos x � 3 sin x)

19. y	 � 2y� � y � sin x � 3 cos 2x

20. y	 � 2y� � 24y � 16 � (x � 2)e4x

21. y� � 6y	 � 3 � cos x

22. y� � 2y	 � 4y� � 8y � 6xe2x

23. y� � 3y	 � 3y� � y � x � 4ex

24. y� � y	 � 4y� � 4y � 5 � ex � e2x

25. y(4) � 2y	 � y � (x � 1)2

26. y(4) � y	 � 4x � 2xe�x

In Problems 27–36 solve the given initial-value problem.

27. y	 � 4y � �2,
28. 2y	 � 3y� � 2y � 14x2 � 4x � 11, y(0) � 0, y�(0) � 0

29. 5y	 � y� � �6x, y(0) � 0, y�(0) � �10

30. y	 � 4y� � 4y � (3 � x)e�2x, y(0) � 2, y�(0) � 5

31. y	 � 4y� � 5y � 35e�4x, y(0) � �3, y�(0) � 1

y(p>8) � 1
2, y�(p>8) � 2
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148 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

32. y	 � y � cosh x, y(0) � 2, y�(0) � 12

33. , x(0) � 0, x�(0) � 0

34. , x(0) � 0, x�(0) � 0

35. y� � 2y	 � y� � 2 � 24ex � 40e5x,

36. y� � 8y � 2x � 5 � 8e�2x, y(0) � �5, y�(0) � 3,
y	(0) � �4

In Problems 37–40 solve the given boundary-value problem.

37. y	 � y � x2 � 1, y(0) � 5, y(1) � 0

38. y	 � 2y� � 2y � 2x � 2, y(0) � 0, y(p) � p

39. y	 � 3y � 6x, y(0) � 0, y(1) � y�(1) � 0

40. y	 � 3y � 6x, y(0) � y�(0) � 0, y(1) � 0

In Problems 41 and 42 solve the given initial-value problem
in which the input function g(x) is discontinuous. [Hint:
Solve each problem on two intervals, and then find a solu-
tion so that y and y� are continuous at x � p�2 (Problem 41)
and at x � p (Problem 42).]

41. y	 � 4y � g(x), y(0) � 1, y�(0) � 2, where

42. y	 � 2y� � 10y � g(x), y(0) � 0, y�(0) � 0, where

Discussion Problems

43. Consider the differential equation ay	 � by� � cy � ekx,
where a, b, c, and k are constants. The auxiliary
equation of the associated homogeneous equation is
am2 � bm � c � 0.
(a) If k is not a root of the auxiliary equation, show

that we can find a particular solution of the form
yp � Aekx, where A � 1�(ak2 � bk � c).

(b) If k is a root of the auxiliary equation of multiplicity
one, show that we can find a particular solution of
the form yp � Axekx, where A � 1�(2ak � b).
Explain how we know that k � �b�(2a).

(c) If k is a root of the auxiliary equation of multiplicity
two, show that we can find a particular solution of the
form y � Ax2ekx, where A � 1�(2a).

44. Discuss how the method of this section can be used
to find a particular solution of y	 � y � sin x cos 2x.
Carry out your idea.

g(x) � 	20, 0 � x � �

0,   x � �

g(x) � 	sin x, 0 � x � �>2
0,   x � �>2

y 	(0) � �9
2y�(0) � 5

2,
y(0) � 1

2,

d 2x
dt 2 � �2x � F0 cos 
t

d 2x
dt2 � �2x � F0 sin �t

45. Without solving, match a solution curve of y	 � y � f (x)
shown in the figure with one of the following functions:
(i) f (x) � 1, (ii) f (x) � e�x,

(iii) f (x) � ex, (iv) f (x) � sin 2x,
(v) f (x) � ex sin x, (vi) f (x) � sin x.

Briefly discuss your reasoning

x

y

FIGURE 4.4.1 Solution curve

FIGURE 4.4.3 Solution curve

FIGURE 4.4.4 Solution curve

FIGURE 4.4.2 Solution curve

x

y

x

y

x

y

(a)

(b)

(c)

(d)

Computer Lab Assignments

In Problems 46 and 47 find a particular solution of the given
differential equation. Use a CAS as an aid in carrying out
differentiations, simplifications, and algebra

46. y	 � 4y� � 8y � (2x2 � 3x)e2x cos 2x
� (10x2 � x � 1)e2x sin 2x

47. y(4) � 2y	 � y � 2 cos x � 3x sin x
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UNDETERMINED COEFFICIENTS—ANNIHILATOR APPROACH

REVIEW MATERIAL
● Review Theorems 4.1.6 and 4.1.7 (Section 4.1)

INTRODUCTION We saw in Section 4.1 that an nth-order differential equation can be written

(1)

where Dky � dky�dxk, k � 0, 1, . . . , n. When it suits our purpose, (1) is also written as L(y) � g(x),
where L denotes the linear nth-order differential, or polynomial, operator

(2)

Not only is the operator notation a helpful shorthand, but also on a very practical level the
application of differential operators enables us to justify the somewhat mind-numbing rules for
determining the form of particular solution yp that were presented in the preceding section. In this
section there are no special rules; the form of yp follows almost automatically once we have found
an appropriate linear differential operator that annihilates g(x) in (1). Before investigating how this
is done, we need to examine two concepts.

anDn � an�1Dn�1 � � � � � a1D � a0.

anDny � an�1Dn�1y � � � � � a1Dy � a0y � g(x),

4.5

Factoring Operators When the coefficients ai, i � 0, 1, . . . , n are real con-
stants, a linear differential operator (1) can be factored whenever the characteristic
polynomial anmn � an�1mn�1 � � � � � a1m � a0 factors. In other words, if r1 is a
root of the auxiliary equation

then L � (D � r1) P(D), where the polynomial expression P(D) is a linear differential
operator of order n � 1. For example, if we treat D as an algebraic quantity, then the
operator D2 � 5D � 6 can be factored as (D � 2)(D � 3) or as (D � 3)(D � 2). Thus
if a function y � f (x) possesses a second derivative, then

This illustrates a general property:

Factors of a linear differential operator with constant coefficients commute

A differential equation such as y	 � 4y� � 4y � 0 can be written as

(D2 � 4D � 4)y � 0 or (D � 2)(D � 2)y � 0 or (D � 2)2y � 0.

Annihilator Operator If L is a linear differential operator with constant co-
efficients and f is a sufficiently di ferentiable function such that

then L is said to be an annihilator of the function. For example, a constant function
y � k is annihilated by D, since Dk � 0. The function y � x is annihilated by the
differential operator D2 since the first and second derivatives of x are 1 and 0,
respectively. Similarly, D3x2 � 0, and so on.

L( f (x)) � 0,

(D2 � 5D � 6)y � (D � 2)(D � 3)y � (D � 3)(D � 2)y.

anmn � an�1mn�1 � � � � � a1m � a0 � 0,

The differential operator Dn annihilates each of the functions

1, x, x2, . . . , xn�1. (3)
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150 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

As an immediate consequence of (3) and the fact that differentiation can be done
term by term, a polynomial

(4)

can be annihilated by finding an operator that annihilates the highest power of x.
The functions that are annihilated by a linear nth-order differential operator L

are simply those functions that can be obtained from the general solution of the
homogeneous differential equation L(y) � 0.

c0 � c1x � c2x2 � � � � � cn�1xn�1

The differential operator (D � a)n annihilates each of the functions

eax, xeax, x2eax, . . . , xn�1eax. (5)

To see this, note that the auxiliary equation of the homogeneous equation
(D � a)ny � 0 is (m � a)n � 0. Since a is a root of multiplicity n, the general
solution is

(6)y � c1eax � c2xeax � � � � � cnxn�1eax.

EXAMPLE 1 Annihilator Operators

Find a differential operator that annihilates the given function.

(a) 1 � 5x2 � 8x3 (b) e�3x (c) 4e2x � 10xe2x

SOLUTION (a) From (3) we know that D4x3 � 0, so it follows from (4) that

(b) From (5), with a� �3 and n � 1, we see that

(c) From (5) and (6), with a� 2 and n � 2, we have

When a and b, b � 0 are real numbers, the quadratic formula reveals that
[m2 � 2am � (a2 � b2)]n � 0 has complex roots a � ib, a � ib, both of multi-
plicity n. From the discussion at the end of Section 4.3 we have the next result.

(D � 2)2(4e2x � 10xe2x) � 0.

(D � 3)e�3x � 0.

D4(1 � 5x2 � 8x3) � 0.

The differential operator [D2 � 2aD � (a2 � b2)]n annihilates each of the
functions

(7)
e�x cos �x, xe�x cos �x, x2e�x cos �x, . . . , xn�1e�x cos �x,
e�x sin �x, xe�x sin �x,  x2e�x sin �x, . . . , xn�1e�x sin �x.

EXAMPLE 2 Annihilator Operator

Find a differential operator that annihilates 5e�x cos 2x � 9e�x sin 2x.

SOLUTION Inspection of the functions e�x cos 2x and e�x sin 2x shows that
a � �1 and b � 2. Hence from (7) we conclude that D2 � 2D � 5 will annihilate
each function. Since D2 � 2D � 5 is a linear operator, it will annihilate any linear
combination of these functions such as 5e�x cos 2x � 9e�x sin 2x.
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When a � 0 and n � 1, a special case of (7) is

(8)

For example, D2 � 16 will annihilate any linear combination of sin 4x and cos 4x.
We are often interested in annihilating the sum of two or more functions. As we

have just seen in Examples 1 and 2, if L is a linear differential operator such
that L(y1) � 0 and L(y2) � 0, then L will annihilate the linear combination
c1y1(x) � c2y2(x). This is a direct consequence of Theorem 4.1.2. Let us now suppose
that L1 and L2 are linear differential operators with constant coefficients such that L1
annihilates y1(x) and L2 annihilates y2(x), but L1(y2) � 0 and L2(y1) � 0. Then the
product of differential operators L1L2 annihilates the sum c1y1(x) � c2y2(x). We can
easily demonstrate this, using linearity and the fact that L1L2 � L2L1:

For example, we know from (3) that D2 annihilates 7 � x and from (8) that 
D2 � 16 annihilates sin 4x. Therefore the product of operators D2(D2 � 16) will
annihilate the linear combination 7 � x � 6 sin 4x.

Note The differential operator that annihilates a function is not unique.
We saw in part (b) of Example 1 that D � 3 will annihilate e�3x, but so will
differential operators of higher order as long as D � 3 is one of the factors of the op-
erator. For example, (D � 3)(D � 1), (D � 3)2, and D3(D � 3) all annihilate e�3x.
(Verify this.) As a matter of course, when we seek a differential annihilator for a
function y � f (x), we want the operator of lowest possible order that does the job.

Undetermined Coefficients This brings us to the point of the preceding dis-
cussion. Suppose that L(y) � g(x) is a linear differential equation with constant
coefficients and that the input g(x) consists of finite sums and products of the func-
tions listed in (3), (5), and (7)—that is, g(x) is a linear combination of functions of
the form

where m is a nonnegative integer and a and b are real numbers. We now know
that such a function g(x) can be annihilated by a differential operator L1 of
lowest order, consisting of a product of the operators Dn, (D � a)n, and 
(D2 � 2aD � a2 � b2)n. Applying L1 to both sides of the equation L(y) � g(x)
yields L1L(y) � L1(g(x)) � 0. By solving the homogeneous higher-order equation
L1L(y) � 0, we can discover the form of a particular solution yp for the original
nonhomogeneous equation L( y) � g(x). We then substitute this assumed form into
L(y) � g(x) to find an explicit particular solution. This procedure for determining
yp, called the method of undetermined coefficients is illustrated in the next
several examples.

Before proceeding, recall that the general solution of a nonhomogeneous
linear differential equation L(y) � g(x) is y � yc � yp, where yc is the comple-
mentary function —that is, the general solution of the associated homogeneous
equation L(y) � 0. The general solution of each equation L(y) � g(x) is defined
on the interval (�
, 
).

k (constant), xm, xme�x, xme�x cos �x, and xme�x sin �x,

L1L2(y1 � y2) � L1L2(y1) � L1L2(y2)
� L2L1(y1) � L1L2(y2)
� L2[L1(y1)] � L1[L2(y2)] � 0.  

zero zero

(D2 � �2) 	cos �x
sin �x

� 0.
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152 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

EXAMPLE 3 General Solution Using Undetermined Coefficient

Solve (9)

SOLUTION Step 1. First, we solve the homogeneous equation y	 � 3y� � 2y � 0.
Then, from the auxiliary equation m2 � 3m � 2 � (m � 1)(m � 2) � 0 we fin
m1 � �1 and m2 � �2, and so the complementary function is

yc � c1e�x � c2e�2x.

Step 2. Now, since 4x2 is annihilated by the differential operator D3, we see that
D3(D2 � 3D � 2)y � 4D3x2 is the same as

D3(D2 � 3D � 2)y � 0. (10)

The auxiliary equation of the fifth-order equation in (10)

m3(m2 � 3m � 2) � 0 or m3(m � 1)(m � 2) � 0,

has roots m1 � m2 � m3 � 0, m4 � �1, and m5 � �2. Thus its general solution
must be

y � c1 � c2x � c3x2 � . (11)

The terms in the shaded box in (11) constitute the complementary function of the
original equation (9). We can then argue that a particular solution yp of (9) should
also satisfy equation (10). This means that the terms remaining in (11) must be the
basic form of yp:

(12)

where, for convenience, we have replaced c1, c2, and c3 by A, B, and C, respectively.
For (12) to be a particular solution of (9), it is necessary to find specifi coefficient
A, B, and C. Differentiating (12), we have

and substitution into (9) then gives

Because the last equation is supposed to be an identity, the coefficients of like powers
of x must be equal:

That is (13)

Solving the equations in (13) gives A � 7, B � �6, and C � 2. Thus
yp � 7 � 6x � 2x2.

Step 3. The general solution of the equation in (9) is y � yc � yp or

y � c1e�x � c2e�2x � 7 � 6x � 2x2.

2C � 4,    2B � 6C � 0,    2A � 3B � 2C � 0.

equal

2C x2 � 2B � 6C x � 2A � 3B � 2C � 4x2 � 0x � 0.

y 	p � 3y�p � 2yp � 2C � 3B � 6Cx � 2A � 2Bx � 2Cx2 � 4x2.

y�p � B � 2Cx,    y 	p � 2C,

yp � A � Bx � Cx2,

c4e�x � c5e�2x

y 	 � 3y� � 2y � 4x2.
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4.5 UNDETERMINED COEFFICIENTS—ANNIHILATOR APPROACH ● 153

EXAMPLE 4 General Solution Using Undetermined Coefficient

Solve (14)

SOLUTION Step 1. The auxiliary equation for the associated homogeneous equa-
tion y	 � 3y� � 0 is m2 � 3m � m(m � 3) � 0, so yc � c1 � c2e3x.

Step 2. Now, since (D � 3)e3x � 0 and (D2 � 1) sin x � 0, we apply the differen-
tial operator (D � 3)(D2 � 1) to both sides of (14):

(15)

The auxiliary equation of (15) is

Thus y �

After excluding the linear combination of terms in the box that corresponds to yc, we
arrive at the form of yp:

Substituting yp in (14) and simplifying yield

Equating coefficients gives 3A � 8, �B � 3C � 0, and 3B � C � 4. We find ,
, and , and consequently,

Step 3. The general solution of (14) is then

y � c1 � c2e3x �
8
3
 xe3x �

6
5
 cos x �

2
5
 sin x.

yp �
8
3
 xe3x �

6
5
 cos x �

2
5
 sin x.

C � �2
5B � 6

5

A � 8
3

y 	p � 3y�p � 3Ae3x � (�B � 3C ) cos x � (3B � C ) sin x � 8e3x � 4 sin x.

yp � Axe3x � B cos x � C sin x.

� c3xe3x � c4 cos x � c5 sin x.c1 � c2e3x

(m � 3)(m2 � 1)(m2 � 3m) � 0    or    m(m � 3)2(m2 � 1) � 0.

(D � 3)(D2 � 1)(D2 � 3D)y � 0.

y 	 � 3y� � 8e3x � 4 sin x.

EXAMPLE 5 General Solution Using Undetermined Coefficient

Solve (16)

SOLUTION The complementary function is yc � c1 cos x � c2 sin x. Now by com-
paring cos x and x cos x with the functions in the first row of (7), we see that a � 0
and n � 1, and so (D2 � 1)2 is an annihilator for the right-hand member of the equa-
tion in (16). Applying this operator to the differential equation gives

Since i and �i are both complex roots of multiplicity 3 of the auxiliary equation of
the last differential equation, we conclude that

y �

We substitute

into (16) and simplify:

 � x cos x � cos x.
  y 	p � yp � 4 Ex cos x � 4 Cx sin x � (2B � 2C ) cos x � (�2A � 2E ) sin x

yp � Ax cos x � Bx sin x � Cx2 cos x � Ex2 sin x

� c3x cos x � c4x sin x � c5x2 cos x � c6x2 sin x.c1 cos x � c2 sin x

(D2 � 1)2 (D2 � 1)y � 0    or    (D2 � 1)3y � 0.

y 	 � y � x cos x � cos x.
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154 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

y � c1 � c2x � c3x2 � c4x3 � c5e2x � c6xe2x � c7x2e2x � c8x3e2x � c9x4e2x � c10e5x. (20)

Because the linear combination corresponds to the complemen-
tary function of (19), the remaining terms in (20) give the form of a particular solu-
tion of the differential equation:

Summary of the Method For your convenience the method of undeter-
mined coefficients is summarized as follows

yp � Ax � Bx2 � Cx3 � Ex2e2x � Fx3e2x � Gx4e2x � He5x.

c1 � c5e2x � c6xe2x

EXAMPLE 6 Form of a Particular Solution

Determine the form of a particular solution for

(17)

SOLUTION The complementary function for the given equation is
yc � c1ex � c2xex.

Now from (7), with a � �2, b � 1, and n � 1, we know that

Applying the operator D2 � 4D � 5 to (17) gives

(18)

Since the roots of the auxiliary equation of (18) are �2 � i, �2 � i, 1, and 1, we
see from

y �

that a particular solution of (17) can be found with the form

yp � Ae�2x cos x � Be�2x sin x.

� c3e�2x cos x � c4e�2x sin xc1ex � c2xex

(D2 � 4D � 5)(D2 � 2D � 1)y � 0.

(D2 � 4D � 5)e�2x cos x � 0.

y 	 � 2y� � y � 10e�2x cos x.

Equating coefficients gives the equations 4E � 1, �4C � 0, 2B � 2C � �1, and
�2A � 2E � 0, from which we find , C � 0, and . Hence the
general solution of (16) is

.y � c1 cos x � c2 sin x �
1
4
 x cos x �

1
2
 x sin x �

1
4
 x2 sin x

E � 1
4A � 1

4, B � �1
2

EXAMPLE 7 Form of a Particular Solution

Determine the form of a particular solution for

(19)

SOLUTION Observe that

Therefore D3(D � 2)3(D � 5) applied to (19) gives

or

The roots of the auxiliary equation for the last differential equation are easily seen to
be 0, 0, 0, 0, 2, 2, 2, 2, 2, and 5. Hence

 D4(D � 2)5(D � 5)y � 0.

 D3(D � 2)3(D � 5)(D3 � 4D2 � 4D)y � 0

D3(5x2 � 6x) � 0,    (D � 2)3x2e2x � 0,    and    (D � 5)e5x � 0.

y 	� � 4y 	 � 4y� � 5x2 � 6x � 4x2e2x � 3e5x.
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UNDETERMINED COEFFICIENTS—ANNIHILATOR APPROACH

The differential equation L(y) � g(x) has constant coefficients, and the func-
tion g(x) consists of finite sums and products of constants, polynomials, expo-
nential functions eax, sines, and cosines.

(i) Find the complementary solution yc for the homogeneous equation
L(y) � 0.

(ii) Operate on both sides of the nonhomogeneous equation L(y) � g(x)
with a differential operator L1 that annihilates the function g(x).

(iii) Find the general solution of the higher-order homogeneous differential
equation L1L(y) � 0.

(iv) Delete from the solution in step (iii) all those terms that are duplicated
in the complementary solution yc found in step (i). Form a linear
combination yp of the terms that remain. This is the form of a particular
solution of L(y) � g(x).

(v) Substitute yp found in step (iv) into L(y) � g(x). Match coefficient
of the various functions on each side of the equality, and solve the
resulting system of equations for the unknown coefficients in yp.

(vi) With the particular solution found in step (v), form the general solution
y � yc � yp of the given differential equation.

REMARKS

The method of undetermined coefficients is not applicable to linear differential
equations with variable coefficients nor is it applicable to linear equations with
constant coefficients when g(x) is a function such as

and so on. Differential equations in which the input g(x) is a function of this
last kind will be considered in the next section.

g(x) � ln x,    g(x) �
1
x
,    g(x) � tan x,    g(x) � sin�1 x,

EXERCISES 4.5 Answers to selected odd-numbered problems begin on page ANS-5.

In Problems 1–10 write the given differential equation in
the form L(y) � g(x), where L is a linear differential opera-
tor with constant coefficients. If possible, factor L.

1. 9y	 � 4y � sin x 2. y 	 � 5y � x2 � 2x
3. y	 � 4y� � 12y � x � 6 4. 2y	 � 3y� � 2y � 1
5. y� � 10y	 � 25y� � ex 6. y� � 4y� � ex cos 2x
7. y� � 2y	 � 13y� � 10y � xe�x

8. y� � 4y	 � 3y� � x2 cos x � 3x
9. y(4) � 8y� � 4

10. y(4) � 8y	 � 16y � (x3 � 2x)e4x

In Problems 11–14 verify that the given differential operator
annihilates the indicated functions.

11. D4; y � 10x3 � 2x 12. 2D � 1; y � 4ex /2

13. (D � 2)(D � 5); y � e2x � 3e�5x

14. D2 � 64; y � 2 cos 8x � 5 sin 8x

In Problems 15–26 find a linear differential operator that
annihilates the given function.

15. 1 � 6x � 2x3 16. x3(1 � 5x)

17. 1 � 7e2x 18. x � 3xe6x

19. cos 2x 20. 1 � sin x

21. 13x � 9x2 � sin 4x 22. 8x � sin x � 10 cos 5x

23. e�x � 2xex � x2ex 24. (2 � ex)2

25. 3 � ex cos 2x 26. e�x sin x � e2x cos x
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156 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

In Problems 27–34 find linearly independent functions that
are annihilated by the given differential operator.

27. D5 28. D2 � 4D
29. (D � 6)(2D � 3) 30. D2 � 9D � 36

31. D2 � 5 32. D2 � 6D � 10

33. D3 � 10D2 � 25D 34. D2(D � 5)(D � 7)

In Problems 35–64 solve the given differential equation by
undetermined coefficients

35. y	 � 9y � 54 36. 2y	 � 7y� � 5y � �29

37. y	 � y� � 3 38. y� � 2y	 � y� � 10

39. y	 � 4y� � 4y � 2x � 6

40. y	 � 3y� � 4x � 5

41. y� � y	 � 8x2 42. y 	 � 2y� � y � x3 � 4x
43. y	 � y� � 12y � e4x 44. y	 � 2y� � 2y � 5e6x

45. y	 � 2y� � 3y � 4ex � 9

46. y	 � 6y� � 8y � 3e�2x � 2x
47. y	 � 25y � 6 sin x
48. y	 � 4y � 4 cos x � 3 sin x � 8

49. y	 � 6y� � 9y � �xe4x

50. y	 � 3y� � 10y � x(ex � 1)

51. y	 � y � x2ex � 5

52. y	 � 2y� � y � x2e�x

53. y	 � 2y� � 5y � ex sin x

54. y 	 � y� �
1
4
 y � ex(sin 3x � cos 3x)

55. y	 � 25y � 20 sin 5x 56. y	 � y � 4 cos x � sin x

57. y	 � y� � y � x sin x 58. y	 � 4y � cos2x

59. y� � 8y	 � �6x2 � 9x � 2

60. y� � y	 � y� � y � xex � e�x � 7

61. y� � 3y	 � 3y� � y � ex � x � 16

62. 2y� � 3y	 � 3y� � 2y � (ex � e�x)2

63. y(4) � 2y� � y	 � ex � 1

64. y(4) � 4y	 � 5x2 � e2x

In Problems 65–72 solve the given initial-value problem.

65. y	 � 64y � 16, y(0) � 1, y�(0) � 0

66. y	 � y� � x, y(0) � 1, y�(0) � 0

67. y	 � 5y� � x � 2, y(0) � 0, y�(0) � 2

68. y	 � 5y� � 6y � 10e2x, y(0) � 1, y�(0) � 1

69. y	 � y � 8 cos 2x � 4 sin x,

70. y� � 2y	 � y� � xex � 5, y(0) � 2, y�(0) � 2,
y	(0) � �1

71. y	 � 4y� � 8y � x3, y(0) � 2, y�(0) � 4

72. y(4) � y� � x � ex, y(0) � 0, y�(0) � 0, y	(0) � 0,
y�(0) � 0

Discussion Problems

73. Suppose L is a linear differential operator that factors
but has variable coefficients. Do the factors of L com-
mute? Defend your answer.

y(p>2) � �1, y�(p>2) � 0

VARIATION OF PARAMETERS

REVIEW MATERIAL
● Basic integration formulas and techniques from calculus
● Review Section 2.3 

INTRODUCTION We pointed out in the discussions in Sections 4.4 and 4.5 that the method of
undetermined coefficients has two inherent weaknesses that limit its wider application to linear
equations: The DE must have constant coefficients and the input function must be of the type
listed in Table 4.4.1. In this section we examine a method for determining a particular solution of
a nonhomogeneous linear DE that has, in theory, no such restrictions on it. This method, due to the
eminent astronomer and mathematician Joseph Louis Lagrange (1736–1813), is known as varia-
tion of parameters. 

Before examining this powerful method for higher-order equations we revisit the solution of lin-
ear first-order differential equations that have been put into standard form. The discussion under the
first heading in this section is optional and is intended to motivate the main discussion of this section
that starts under the second heading. If pressed for time this motivational material could be assigned
for reading.

yp

g(x)

4.6
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Linear First-Order DEs Revisited In Section 2.3 we saw that the general so-
lution of a linear first-order differential equation can be
found by first rewriting it in the standard form

(1)

and assuming that are continuous on an common interval I. Using the in-
tegrating factor method, the general solution of (1) on the interval I, was found to be

The foregoing solution has the same form as that given in Theorem 4.1.6, namely,
In this case is a solution of the associated homogeneous

equation

(2)

and (3)

is a particular solution of the nonhomogeneous equation (1). As a means of moti-
vating a method for solving nonhomogeneous linear equations of higher-order we
propose to rederive the particular solution (3) by a method known as variation of
parameters. 

Suppose that is a known solution of the homogeneous equation (2), that is, 

(4)

It is easily shown that is a solution of (4) and because the equation is
linear, is its general solution. Variation of parameters consists of finding a par-
ticular solution of (1) of the form In other words, we have replaced
the parameter by a function

Substituting into (1) and using the Product Rule gives

0 because of (4)
4

so

By separating variables and integrating, we find

Hence the sought-after particular solution is

From the fact that we see the last result is identical to (3).y1 � e��P(x)dx

yp � u1y1 � y1� f (x)
y1(x)

dx.

du1 �
f (x)
y1(x)

dx     yields     u1 �� f (x)
y1(x)

dx.

u1:

y1
du1

dx
� f (x).

 u1
dy1

dx
� P(x)y1� � y1

du1

dx
� f (x)

 u1
dy1

dx
� y1

du1

dx
� P(x)u1y1 � f (x) 

 
d
dx

 [u1y1] � P(x)u1y1 � f (x)

yp � u1y1

u1.c1

yp � u1(x)y1(x).
c1y1(x)

y1 � e��P(x)dx

dy1

dx
� P(x)y1 � 0.

y1

yp � e��P(x)dx�e�P(x)dx f (x) dx

dy
dx

� P(x)y � 0

yc � c1e��P(x)dxy � yc � yp.

y � c1e��P(x)dx � e��P(x)dx�e�P(x)dx f(x) dx.

P(x) and f(x)

dy
dx

� P(x)y � f (x)

a1(x)y� � a0(x)y � g(x)

4.6 VARIATION OF PARAMETERS ● 157

The basic procedure is 
that used in Section 4.2. �

See (4) of Section 2.3. �
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158 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Linear Second-Order DEs Next we consider the case of a linear second-
order equation

(5)

although, as we shall see, variation of parameters extends to higher-order equations.
The method again begins by putting (5) into the standard form 

(6)

by dividing by the leading coefficient In (6) we suppose that coefficient func-
tions are continuous on some common interval I. As we have
already seen in Section 4.3, there is no difficulty in obtaining the complementary
solution the general solution of the associated homogeneous
equation of (6), when the coefficients are constants. Analogous to the preceding dis-
cussion, we now ask: Can the parameters and in can be replaced with func-
tions and or “variable parameters,” so that

(7)

is a particular solution of (6)? To answer this question we substitute (7) into (6).
Using the Product Rule to differentiate twice, we get

Substituting (7) and the foregoing derivatives into (6) and grouping terms yields
zero zero

4 4

 y 	p � u1y 	1 � y�1u�1 � y1u 	1 � u�1y�1 � u2y 	2 � y�2u�2 � y2u 	2 � u�2y�2.

 y�p � u1y�1 � y1u�1 � u2y�2 � y2u�2

yp

y � u1(x)y1(x) � u2(x)y2(x)

u2,u1

ycc2c1

yc � c1y1(x) � c2y2(x),

P(x), Q(x), and f(x)
a2(x).

y	 � P(x)y� � Q(x)y � f (x)

a2(x)y	 � a1(x)y� � a0(x)y � g(x),

(8) �
d

dx
 [y1u�1 � y2u�2] � P[y1u�1 � y2u�2] � y�1u�1 � y�2u�2 � f (x).

 �
d

dx
 [y1u�1] �

d
dx

 [y2u�2] � P[y1u�1 � y2u�2] � y�1u�1 � y�2u�2

 � y2u 	2 � u�2y�2 � P[y1u�1 � y2u�2] � y�1u�1 � y�2u�2

 y 	p � P(x)y�p � Q(x)yp � u1[y 	1 � Py�1 � Qy1] � u2[y 	2 � Py�2 � Qy2] � y1u 	1 � u�1y�1

Because we seek to determine two unknown functions u1 and u2, reason dictates that
we need two equations. We can obtain these equations by making the further assump-
tion that the functions u1 and u2 satisfy This assumption does not
come out of the blue but is prompted by the first two terms in (8), since if we demand
that , then (8) reduces to . We now have our
desired two equations, albeit two equations for determining the derivatives and

By Cramer’s Rule, the solution of the system

can be expressed in terms of determinants:

, (9)

where . (10)

The functions u1 and u2 are found by integrating the results in (9). The determinant
W is recognized as the Wronskian of y1 and y2. By linear independence of y1 and y2
on I, we know that W(y1(x), y2(x)) � 0 for every x in the interval.

W � �y1

y�1

y2

y�2�,    W1 � � 0
f (x)

y2

y�2�,    W2 � �y1

y�1

0
f (x)�

u�1 �
W1

W
� �

y2 f (x)
W

    and    u�2 �
W2

W
�

y1 f (x)
W

 y�1u�1 � y�2u�2 � f (x)

 y1u�1 � y2u�2 � 0

u�2.
u�1

y�1u�1 � y�2u�2 � f (x)y1u�1 � y2u�2 � 0

y1u�1 � y2u�2 � 0.
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Summary of the Method Usually, it is not a good idea to memorize for-
mulas in lieu of understanding a procedure. However, the foregoing procedure is
too long and complicated to use each time we wish to solve a differential equation.
In this case it is more efficient to simply use the formulas in (9). Thus to solve
a2y	 � a1y� � a0y � g(x), first find the complementary function yc � c1y1 � c2y2
and then compute the Wronskian W( y1(x), y2(x)). By dividing by a2, we put the
equation into the standard form y	 � Py� � Qy � f (x) to determine f (x). We fin
u1 and u2 by integrating and , where W1 and W2 are define
as in (10). A particular solution is yp � u1y1 � u2y2. The general solution of the
equation is then y � yc � yp.

u�2 � W2>Wu�1 � W1>W

W1 � �         0(x � 1)e2x
  xe2x

2xe2x � e2x � � � (x � 1)xe4x,    W2 � �  e2x

2e2x
  0

(x � 1)e2x � � (x � 1)e4x,

EXAMPLE 1 General Solution Using Variation of Parameters

Solve y	 � 4y� � 4y � (x � 1)e2x.

SOLUTION From the auxiliary equation m2 � 4m � 4 � (m � 2)2 � 0 we have
yc � c1e2x � c2xe2x. With the identifications y1 � e2x and y2 � xe2x, we next com-
pute the Wronskian:

Since the given differential equation is already in form (6) (that is, the coefficient of
y	 is 1), we identify f (x) � (x � 1)e2x. From (10) we obtain

W(e2x, xe2x) � �  e
2x

2e2x
  xe2x

2xe2x � e2x� � e4x.

and so from (9)

It follows that and . Hence

and y � yc � yp � c1e2x � c2xe2x �
1
6

x3e2x �
1
2

x2e2x.

yp � ��
1
3

x3 �
1
2

x2�e2x � �1
2

x2 � x�xe2x �
1
6

x3e2x �
1
2

x2e2x

u2 � 1
2 x2 � xu1 � �1

3 x3 � 1
2 x2

u�1 � �
(x � 1)xe4x

e4x � �x2 � x,    u�2 �
(x � 1)e4x

e4x � x � 1.

EXAMPLE 2 General Solution Using Variation of Parameters

Solve 4y	 � 36y � csc 3x.

SOLUTION We first put the equation in the standard form (6) by dividing by 4

Because the roots of the auxiliary equation m2 � 9 � 0 are m1 � 3i and m2 � �3i, the
complementary function is yc � c1 cos 3x � c2 sin 3x. Using y1 � cos 3x, y2 � sin 3x,
and , we obtain

W1 � � 0
1
4 csc 3x

   sin 3x
3 cos 3x� � �

1
4
,    W2 � �      cos 3x

�3 sin 3x
0

1
4 csc 3x� �

1
4
 
cos 3x
sin 3x

.

W(cos 3x, sin 3x) � � cos 3x
�3 sin 3x

sin 3x
3 cos 3x� � 3,

f (x) � 1
4 csc 3x

y 	 � 9y �
1
4
 csc 3x.
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160 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Integrating

gives ln�sin 3x �. Thus a particular solution is

The general solution of the equation is

yp � �
1

12
 x cos 3x �

1
36

 (sin 3x) ln� sin 3x �.

u1 � � 1
12 x and u2 � 1

36

u�1 �
W1

W
� �

1
12

    and    u�2 �
W2

W
�

1
12

 
cos 3x
sin 3x

EXAMPLE 3 General Solution Using Variation of Parameters

Solve 

SOLUTION The auxiliary equation m2 � 1 � 0 yields m1 � �1 and m2 � 1.
Therefore yc � c1ex � c2e�x. Now W(ex, e�x) � �2, and

Since the foregoing integrals are nonelementary, we are forced to write

and so (12)

In Example 3 we can integrate on any interval [x0, x] that does not contain the origin.
We will solve the equation in Example 3 by an alternative method in Section 4.8.

Higher-Order Equations The method that we have just examined for non
homogeneous second-order differential equations can be generalized to linear nth-order
equations that have been put into the standard form

(13)

If yc � c1y1 � c2y2 � � � � � cnyn is the complementary function for (13), then a
particular solution is

yp � u1(x)y1(x) � u2(x)y2(x) � � � � � un(x)yn(x),

y(n) � Pn�1(x)y(n�1) � � � � � P1(x)y� � P0(x)y � f (x).

y � yc � yp � c1ex � c2e�x �
1
2
 ex �x

x0

 
e�t

t
 dt �

1
2
 e�x �x

x0

 
et

t
 dt.

yp �
1
2
 ex �x

x0

 
e�t

t
 dt �

1
2
 e�x �x

x0

 
et

t
 dt,

 u�2 �
ex(1>x)

�2
,  u2 � �

1
2
 �x

x0

 
et

t
 dt.

 u�1 � �
e�x(1>x)

�2
,     u1 �

1
2
 �x

x0

 
e�t

t
 dt,

y 	 � y �
1
x
.

(11)y � yc�yp � c1 cos 3x � c2 sin 3x �
1

12
 x cos 3x �

1
36

 (sin 3x) ln� sin 3x �.

Equation (11) represents the general solution of the differential equation on, say,
the interval (0, p�6).

Constants of Integration When computing the indefinite integrals of and
, we need not introduce any constants. This is because

 � C1y1 � C2y2 � u1y1 � u2y2.

 � (c1 � a1)y1 � (c2 � b1)y2 � u1y1 � u2y2

 y � yc � yp � c1y1 � c2y2 � (u1 � a1)y1 � (u2 � b1)y2

u�2

u�1
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where the , k � 1, 2, . . . , n are determined by the n equations

(14)

The first n � 1 equations in this system, like in (8), are assumptions
that are made to simplify the resulting equation after yp � u1(x)y1(x) � � � � �
un(x)yn(x) is substituted in (13). In this case Cramer’s Rule gives

where W is the Wronskian of y1, y2, . . . , yn and Wk is the determinant obtained by
replacing the kth column of the Wronskian by the column consisting of the right-
hand side of (14) —that is, the column consisting of (0, 0, . . . , f (x)). When n � 2,
we get (9). When n � 3, the particular solution is yp � u1y1 � u2y2 � u3y3, where
y1, y2, and y3 constitute a linearly independent set of solutions of the associated
homogeneous DE and u1, u2, u3 are determined from

(15)u�1 �
W1

W
,    u�2 �

W2

W
,    u�3 �

W3

W
,

u�k �
Wk

W
, k � 1, 2, . . . , n,

y1u�1 � y2u�2 � 0

 y1
(n�1)u�1 � y2

(n�1)u�2 � � � � � yn
(n�1)u�n � f (x).

�
�

�
�
�

�

 y�1u�1 �  y�2u�2 � � � � �  y�nu�n � 0

 y1u�1 �  y2u�2 � � � � �  ynu�n � 0

u�k

4.6 VARIATION OF PARAMETERS ● 161

W1 � p
0
0

f (x)

y2

y�2
y 	2

y3

y�3
y 	3

p ,  W2 � p
y1

y�1
y 	1

0
0

f (x)

y3

y�3
y 	3

p ,  W3 � p
y1

y�1
y 	1

y2

y�2
y 	2

0
0

f (x)
p ,  and  W � p

y1

y�1
y 	1

y2

y�2
y 	2

y3

y�3
y 	3

p .

See Problems 25–28 in Exercises 4.6.

REMARKS

(i) Variation of parameters has a distinct advantage over the method of
undetermined coefficients in that it will always yield a particular solution yp
provided that the associated homogeneous equation can be solved. The pre-
sent method is not limited to a function f (x) that is a combination of the four
types listed on page 140. As we shall see in the next section, variation of
parameters, unlike undetermined coefficients, is applicable to linear DEs
with variable coefficients
(ii) In the problems that follow, do not hesitate to simplify the form of yp.
Depending on how the antiderivatives of and are found, you might not
obtain the same yp as given in the answer section. For example, in Problem 3
in Exercises 4.6 both yp � sin x � x cos x and yp � sin x � x cos x
are valid answers. In either case the general solution y � yc � yp simplifies to
y � c1 cos x � c2 sin x � x cos x. Why?1

2

1
2

1
4

1
2

1
2

u�2u�1

EXERCISES 4.6 Answers to selected odd-numbered problems begin on page ANS-6.

In Problems 1–18 solve each differential equation by varia-
tion of parameters.

1. y	 � y � sec x 2. y	 � y � tan x

3. y	 � y � sin x 4. y	 � y � sec u tan u

5. y	 � y � cos2x 6. y	 � y � sec2x

7. y	 � y � cosh x 8. y	 � y � sinh 2x

9. 10. y 	 � 9y �
9x
e3xy 	 � 4y �

e2x

x
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162 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

11.

12.

13. y	 � 3y� � 2y � sin ex

14. y	 � 2y� � y � et arctan t

15. y	 � 2y� � y � e�t ln t

16.

17. 3y	 � 6y� � 6y � ex sec x

18.

In Problems 19–22 solve each differential equation by
variation of parameters, subject to the initial conditions
y(0) � 1, y�(0) � 0.

19. 4y	 � y � xex/2

20. 2y	 � y� � y � x � 1

21. y	 � 2y� � 8y � 2e�2x � e�x

22. y	 � 4y� � 4y � (12x2 � 6x)e2x

In Problems 23 and 24 the indicated functions are known lin-
early independent solutions of the associated homogeneous
differential equation on (0, 
). Find the general solution of
the given nonhomogeneous equation.

23. ;

y1 � x�1/2 cos x, y2 � x�1/2 sin x

x2y 	 � xy� � (x2 � 1
4)y � x3/2

4y 	 � 4y� � y � ex/211 � x2

2y 	 � 2y� � y � 41x

y 	 � 2y� � y �
ex

1 � x2

y 	 � 3y� � 2y �
1

1 � ex
24. x2y	 � xy� � y � sec(ln x);

y1 � cos(ln x), y2 � sin(ln x)

In Problems 25–28 solve the given third-order differential
equation by variation of parameters.

25. y� � y� � tan x

26. y� � 4y� � sec 2x

27.

28.

Discussion Problems

In Problems 29 and 30 discuss how the methods of unde-
termined coefficients and variation of parameters can be
combined to solve the given differential equation. Carry out
your ideas.

29. 3y	 � 6y� � 30y � 15 sin x � ex tan 3x

30. y	 � 2y� � y � 4x2 � 3 � x�1ex

31. What are the intervals of definition of the general solu-
tions in Problems 1, 7, 9, and 18? Discuss why the inter-
val of definition of the general solution in Problem 24 is
not (0, 
).

32. Find the general solution of x4y	 � x3y� � 4x2y � 1
given that y1 � x2 is a solution of the associated homo-
geneous equation.

y� � 3y	 � 2y� �
e2x

1 � ex

y� � 2y	 � y� � 2y � e4x

CAUCHY-EULER EQUATION

REVIEW MATERIAL
● Review the concept of the auxiliary equation in Section 4.3.

INTRODUCTION The same relative ease with which we were able to find explicit solutions of
higher-order linear differential equations with constant coefficients in the preceding sections does
not, in general, carry over to linear equations with variable coefficients. We shall see in Chapter 6
that when a linear DE has variable coefficients, the best that we can usually expect is to find a
solution in the form of an infinite series. However, the type of differential equation that we consider
in this section is an exception to this rule; it is a linear equation with variable coefficients whose
general solution can always be expressed in terms of powers of x, sines, cosines, and logarithmic
functions. Moreover, its method of solution is quite similar to that for constant-coefficient equations
in that an auxiliary equation must be solved.

4.7

Cauchy-Euler Equation A linear differential equation of the form

anxn 
dny
dxn � an�1xn�1 d

n�1y
dxn�1 � � � � � a1x 

dy
dx

� a0y � g(x),
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where the coefficients an, an�1, . . . , a0 are constants, is known as a Cauchy-Euler
equation. The differential equation is named in honor of two of the most prolifi
mathematicians of all time. Augustin-Louis Cauchy (French, 1789–1857) and
Leonhard Euler (Swiss, 1707–1783). The observable characteristic of this type of
equation is that the degree k � n, n � 1, . . . , 1, 0 of the monomial coefficients xk

matches the order k of differentiation dky�dxk:

As in Section 4.3, we start the discussion with a detailed examination of the
forms of the general solutions of the homogeneous second-order equation

. (1)

The solution of higher-order equations follows analogously. Also, we can solve the
nonhomogeneous equation ax2y	 � bxy� � cy � g(x) by variation of parameters,
once we have determined the complementary function yc.

Note The coefficient ax2 of y	 is zero at x � 0. Hence to guarantee that the
fundamental results of Theorem 4.1.1 are applicable to the Cauchy-Euler equation, we
focus our attention on finding the general solutions defined on the interval ( 
). 

Method of Solution We try a solution of the form y � xm, where m is to be
determined. Analogous to what happened when we substituted emx into a linear equa-
tion with constant coefficients, when we substitute xm, each term of a Cauchy-Euler
equation becomes a polynomial in m times xm, since

ax2 
d 2y
dx2 � bx 

dy
dx

� cy � 0

anxn � an�1xn�1 � . . . .
dny––––
dxn

dn�1y––––––
dxn�1

same same

4.7 CAUCHY-EULER EQUATION ● 163

akxk 
dky
dxk � akxkm(m � 1)(m � 2) � � � (m � k � 1)xm�k � akm(m � 1)(m � 2) � � � (m � k � 1)xm.

For example, when we substitute y � xm, the second-order equation becomes

ax2 
d 2y
dx2 � bx 

dy
dx

� cy � am(m � 1)xm � bmxm � cxm � (am(m � 1) � bm � c)xm.

Thus y � xm is a solution of the differential equation whenever m is a solution of the
auxiliary equation

(2)

There are three different cases to be considered, depending on whether the roots of
this quadratic equation are real and distinct, real and equal, or complex. In the last
case the roots appear as a conjugate pair.

Case I: Distinct Real Roots Let m1 and m2 denote the real roots of (1) such
that m1 � m2. Then and form a fundamental set of solutions. Hence
the general solution is

(3)y � c1xm1 � c2xm2.

y2 � xm2y1 � xm1

am(m � 1) � bm � c � 0    or    am2 � (b � a)m � c � 0.

EXAMPLE 1 Distinct Roots

Solve x2 
d 2y
dx2 � 2x 

dy
dx

� 4y � 0.
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164 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

SOLUTION Rather than just memorizing equation (2), it is preferable to assume
y � xm as the solution a few times to understand the origin and the difference
between this new form of the auxiliary equation and that obtained in Section 4.3.
Differentiate twice,

and substitute back into the differential equation:

if m2 � 3m � 4 � 0. Now (m � 1)(m � 4) � 0 implies m1 � �1, m2 � 4, so
y � c1x�1 � c2x4.

Case II: Repeated Real Roots If the roots of (2) are repeated (that is,
m1 � m2), then we obtain only one solution—namely, When the roots of the
quadratic equation am2 � (b � a)m � c � 0 are equal, the discriminant of the coef-
ficients is necessarily zero. It follows from the quadratic formula that the root must
be m1 � �(b � a)�2a.

Now we can construct a second solution y2, using (5) of Section 4.2. We firs
write the Cauchy-Euler equation in the standard form

and make the identifications P(x) � b�ax and Thus

The general solution is then

(4)y � c1xm1 � c2xm1 ln x.

 � xm1 � 
dx
x

� xm1 ln x.

; �2m1 � (b � a)/a � xm1 � x�b /a � x(b�a)/adx

; e�(b / a)ln x � eln x�b / a
� x�b / a � xm1 � x�b /a � x�2m1 dx

 y2 � xm1 � 
e�(b /a)ln x

x2m1
 dx

�(b>ax) dx � (b>a) ln x.

d 2y
dx2 �

b
ax

 
dy
dx

�
c

ax2 y � 0

y � xm1.

 � xm(m(m � 1) � 2m � 4) � xm(m2 � 3m � 4) � 0

 x2 
d 2y
dx2 � 2x 

dy
dx

� 4y � x2 � m(m � 1)xm�2 � 2x � mxm�1 � 4xm

dy
dx

� mxm�1,    
d 2y
dx2 � m(m � 1)xm�2,

EXAMPLE 2 Repeated Roots

Solve 

SOLUTION The substitution y � xm yields

when 4m2 � 4m � 1 � 0 or (2m � 1)2 � 0. Since , it follows from (4) that
the general solution is y � c1x�1/2 � c2x�1/2 ln x.

For higher-order equations, if m1 is a root of multiplicity k, then it can be shown that

xm1,  xm1 ln x,  xm1(ln x)2, . . . ,  xm1(ln x)k�1

m1 � �1
2

4x2 
d 2y
dx2 � 8x 

dy
dx

� y � xm(4m(m � 1) � 8m � 1) � xm(4m2 � 4m � 1) � 0

4x2 
d 2y
dx2 � 8x 

dy
dx

� y � 0.

27069_04_ch04_p116-191.qxd  2/2/12  2:35 PM  Page 164

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



are k linearly independent solutions. Correspondingly, the general solution of the dif-
ferential equation must then contain a linear combination of these k solutions.

Case III: Conjugate Complex Roots If the roots of (2) are the conjugate
pair m1 � a � ib, m2 � a � ib, where a and b � 0 are real, then a solution is

But when the roots of the auxiliary equation are complex, as in the case of equations
with constant coefficients, we wish to write the solution in terms of real functions
only. We note the identity

which, by Euler’s formula, is the same as

xib � cos(b ln x) � i sin(b ln x).

Similarly, x�ib � cos(b ln x) � i sin(b ln x).

Adding and subtracting the last two results yields

xib � x�ib � 2 cos(b ln x) and xib � x�ib � 2i sin(b ln x),

respectively. From the fact that y � C1xa�ib � C2xa�ib is a solution for any values
of the constants, we see, in turn, for C1 � C2 � 1 and C1 � 1, C2 � �1 that

or

are also solutions. Since W(xa cos(b ln x), xa sin(b ln x)) � bx2a�1 � 0, b � 0 on
the interval (0, 
), we conclude that

constitute a fundamental set of real solutions of the differential equation. Hence the
general solution is

(5)y � x�[c1 cos(� ln x) � c2 sin(� ln x)].

y1 � x� cos(� ln x)    and    y2 � x� sin(� ln x)

 y1 � 2x� cos(� ln x)    and    y2 � 2ix� sin(� ln x)

 y1 � x�(xi� � x�i�)    and    y2 � x�(xi� � x�i�)

xi� � (eln x)i� � ei� ln x,

y � C1x��i� � C2x��i�.
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(a)  solution for 0 � �x 1 

(b) solution for 0 � �x 100 

FIGURE 4.7.1 Solution curve of IVP
in Example 3

EXAMPLE 3 An Initial-Value Problem

Solve 

SOLUTION The y� term is missing in the given Cauchy-Euler equation; neverthe-
less, the substitution y � xm yields

when 4m2 � 4m � 17 � 0. From the quadratic formula we find that the roots are
and . With the identifications and b � 2 we see from

(5) that the general solution of the differential equation is

By applying the initial conditions to the foregoing solution
and using ln 1 � 0, we then find, in turn, that c1 � �1 and c2 � 0. Hence the solution
of the initial-value problem is y � �x1/2 cos(2 ln x). The graph of this function,
obtained with the aid of computer software, is given in Figure 4.7.1. The particular
solution is seen to be oscillatory and unbounded as .x : 


y(1) � �1, y�(1) � �1
2

y � x1/2[c1 cos(2 ln x) � c2 sin(2 ln x)].

� � 1
2m2 � 1

2 � 2im1 � 1
2 � 2i

4x2y 	 � 17y � xm(4m(m � 1) � 17) � xm(4m2 � 4m � 17) � 0

4x2y 	 � 17y � 0, y(1) � �1, y�(1) � �1
2.
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166 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

The next example illustrates the solution of a third-order Cauchy-Euler 
equation.

EXAMPLE 4 Third-Order Equation

Solve 

SOLUTION The first three derivatives of y � xm are

so the given differential equation becomes

dy
dx

� mxm�1,    
d 2y
dx2 � m(m � 1)xm�2,    

d 3y
dx3 � m(m � 1)(m � 2)xm�3,

x3 
d 3y
dx3 � 5x2 

d 2y
dx2 � 7x 

dy
dx

� 8y � 0.

 � xm(m3 � 2m2 � 4m � 8) � xm(m � 2)(m2 � 4) � 0.

 � xm(m(m � 1)(m � 2) � 5m(m � 1) � 7m � 8)

 x3 
d 3y
dx3 � 5x2 

d 2y
dx2 � 7x 

dy
dx

� 8y � x3m(m � 1)(m � 2)xm�3 � 5x2m(m � 1)xm�2 � 7xmxm�1 � 8xm

In this case we see that y � xm will be a solution of the differential equation
for m1 � �2, m2 � 2i, and m3 � �2i. Hence the general solution is 
y � c1x�2 � c2 cos(2 ln x) � c3 sin(2 ln x).

Nonhomogeneous Equations The method of undetermined coefficient
described in Sections 4.5 and 4.6 does not carry over, in general, to nonhomoge-
neous linear differential equations with variable coefficients. Consequently, in our
next example the method of variation of parameters is employed.

EXAMPLE 5 Variation of Parameters

Solve x2y	 � 3xy� � 3y � 2x4ex.

SOLUTION Since the equation is nonhomogeneous, we first solve the associated
homogeneous equation. From the auxiliary equation (m � 1)(m � 3) � 0 we fin yc
� c1x � c2x3. Now before using variation of parameters to find a particular solution
yp � u1y1 � u2y2, recall that the formulas and , where W1,
W2, and W are the determinants defined on page 158, were derived under the assump-
tion that the differential equation has been put into the standard form y	 � P(x)y� �
Q(x)y � f (x). Therefore we divide the given equation by x2, and from

we make the identification f (x) � 2x2ex. Now with y1 � x, y2 � x3, and

y 	 �
3
x
 y� �

3
x2 y � 2x2ex

u�2 � W2>Wu�1 � W1>W

W � �x1
x3

3x2 � � 2x3,  W1 � � 0
2x2ex

  x3

3x2 � � �2x5ex,  W2 � �x1
0

2x2ex� � 2x3ex,

we fin

The integral of the last function is immediate, but in the case of we integrate
by parts twice. The results are u1 � �x2ex � 2xex � 2ex and u2 � ex. Hence
yp � u1y1 � u2y2 is

Finally, y � yc � yp � c1x � c2x3 � 2x2ex � 2xex.

yp � (�x2ex � 2xex � 2ex)x � exx3 � 2x2ex � 2xex.

u�1

u�1 � �
2x5ex

2x3 � �x2ex    and    u�2 �
2x3ex

2x3 � ex.
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Reduction to Constant Coefficients The similarities between the forms of
solutions of Cauchy-Euler equations and solutions of linear equations with constant
coefficients are not just a coincidence. For example, when the roots of the auxiliary
equations for ay	 � by� � cy � 0 and ax2y	 � bxy� � cy � 0 are distinct and real,
the respective general solutions are

(5)

In view of the identity eln x � x, x � 0, the second solution given in (5) can be
expressed in the same form as the first solution

where t � ln x. This last result illustrates the fact that any Cauchy-Euler equation can
always be rewritten as a linear differential equation with constant coefficients by
means of the substitution x � et. The idea is to solve the new differential equation
in terms of the variable t, using the methods of the previous sections, and, once the
general solution is obtained, resubstitute t � ln x. This method, illustrated in the last
example, requires the use of the Chain Rule of differentiation.

y � c1em1 ln x � c2em2 ln x � c1em1t � c2em2 t,

y � c1em1 x � c2em2 x    and    y � c1xm1 � c2xm2, x � 0.

4.7 CAUCHY-EULER EQUATION ● 167

EXAMPLE 6 Changing to Constant Coefficient

Solve x2y	 � xy� � y � ln x.

SOLUTION With the substitution x � et or t � ln x, it follows that

Substituting in the given differential equation and simplifying yields

Since this last equation has constant coefficients, its auxiliary equation is
m2 � 2m � 1 � 0, or (m � 1)2 � 0. Thus we obtain yc � c1et � c2 tet.

By undetermined coefficients we try a particular solution of the form yp � A � Bt.
This assumption leads to �2B � A � Bt � t, so A � 2 and B � 1. Using y � yc � yp,
we get

By resubstituting et � x and t � ln x we see that the general solution of the original
differential equation on the interval (0, 
) is y � c1x � c2x ln x � 2 � ln x.

Solutions For x < 0 In the preceding discussion we have solved Cauchy-Euler
equations for One way of solving a Cauchy-Euler equation for is to
change the independent variable by means of the substitution (which implies

and using the Chain Rule:

dy
dx

�
dy
dt

 
dt
dx

� �
dy
dt

   and   
d2y
dx2 �

d
dt

 ��dy
dt�

dt
dx

�
d 2y
dt2 .

t � 0)
t � �x

x � 0x � 0.

y � c1et � c2 tet � 2 � t.

d 2y
dt2 � 2 

dy
dt

� y � t.

�
1
x
 �d 2y

dt2  
1
x� �

dy
dt

 ��
1
x2� �

1
x2 �d 2y

dt2 �
dy
dt�.

; Product Rule and Chain Rule
d 2y
dx2 �

1
x
 

d
dx

 �dy
dt� �

dy
dt

 ��
1
x2�

; Chain Rule
dy
dx

�
dy
dt

 
dt
dx

�
1
x
 
dy
dt
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168 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

See Problems 37 and 38 in Exercises 4.7.

A Different Form A second-order equation of the form

(6)

is also a Cauchy-Euler equation. Observe that (6) reduces to (1) when 
We can solve (6) as we did (1), namely, seeking solutions of and

using

Alternatively, we can reduce (6) to the familiar form (1) by means of the change of
independent variable solving the reduced equation, and resubstituting.
See Problems 39–42 in Exercises 4.7.

t � x � x0,

dy
dx

� m(x � x0)m�1   and  
d2y
dx2 � m(m � 1)(x � x0)m�2.

y � (x � x0)m
x0 � 0.

a(x � x0)2 
d2y
dx2 � b(x � x0)

dy
dx

� cy � 0

EXERCISES 4.7 Answers to selected odd-numbered problems begin on page ANS-6.

In Problems 1–18 solve the given differential equation.

1. x2y	 � 2y � 0 2. 4x2y	 � y � 0

3. xy	 � y� � 0 4. xy	 � 3y� � 0

5. x2y	 � xy� � 4y � 0 6. x2y	 � 5xy� � 3y � 0

7. x2y	 � 3xy� � 2y � 0 8. x2y	 � 3xy� � 4y � 0

9. 25x2y	 � 25xy� � y � 0 10. 4x2y	 � 4xy� � y � 0

11. x2y	 � 5xy� � 4y � 0 12. x2y	 � 8xy� � 6y � 0

13. 3x2y	 � 6xy� � y � 0 14. x2y	 � 7xy� � 41y � 0

15. x3y� � 6y � 0 16. x3y� � xy� � y � 0

17. xy(4) � 6y� � 0

18. x4y(4) � 6x3y� � 9x2y	 � 3xy� � y � 0

In Problems 19–24 solve the given differential equation by
variation of parameters.

19. xy	 � 4y� � x4

20. 2x2y	 � 5xy� � y � x2 � x

21. x2y	 � xy� � y � 2x 22. x2y	 � 2xy� � 2y � x4ex

23. x2y	 � xy� � y � ln x 24.

In Problems 25–30 solve the given initial-value problem.
Use a graphing utility to graph the solution curve.

25. x2y	 � 3xy� � 0, y(1) � 0, y�(1) � 4

26. x2y	 � 5xy� � 8y � 0, y(2) � 32, y�(2) � 0

x2y 	 � xy� � y �
1

x � 1

27. x2y	 � xy� � y � 0, y (1) � 1, y�(1) � 2

28. x2y	 � 3xy� � 4y � 0, y(1) � 5, y�(1) � 3

29.

30.

In Problems 31–36 use the substitution x � et to transform
the given Cauchy-Euler equation to a differential equation
with constant coefficients. Solve the original equation 
by solving the new equation using the procedures in
Sections 4.3–4.5.

31. x2y	 � 9xy� � 20y � 0

32. x2y	 � 9xy� � 25y � 0

33. x2y	 � 10xy� � 8y � x2

34. x2y	 � 4xy� � 6y � ln x2

35. x2y	 � 3xy� � 13y � 4 � 3x

36. x3y� � 3x2y	 � 6xy� � 6y � 3 � ln x3

In Problems 37 and 38 use the substitution to solve
the given initial-value problem on the interval 

37. 4x2y	 � y � 0, y(�1) � 2, y�(�1) � 4

38. x2y	 � 4xy� � 6y � 0, y(�2) � 8, y�(�2) � 0

In Problems 39 and 40 use to solve the given
differential equation.

39.

40. (x � 1)2y	 � (x � 1)y� � 5y � 0

(x � 3)2 y	 � 8(x � 1)y� � 14y � 0

y � (x � x0)m

(�
, 0).
t � �x

x2y 	 � 5xy� � 8y � 8x6, y�1
2 � � 0, y��1

2 � � 0

xy 	 � y� � x, y(1) � 1, y�(1) � �1
2
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4.8 GREEN’S FUNCTIONS ● 169

In Problems 41 and 42 use the substitution to
solve the given differential equation.

41.
42.

Discussion Problems

43. Give the largest interval over which the general solution
of Problem 42 is defined

44. Can a Cauchy-Euler differential equation of lowest
order with real coefficients be found if it is known that 
2 and 1 � i are roots of its auxiliary equation? Carry out
your ideas.

45. The initial-conditions y(0) � y0, y�(0) � y1 apply to
each of the following differential equations:

x2y	 � 0,

x2y	 � 2xy� � 2y � 0,

x2y	 � 4xy� � 6y � 0.

(x � 4)2y	 � 5(x � 4)y� � 9y � 0
(x � 2)2y 	 � (x � 2)y� � y � 0

t � x � x0 For what values of y0 and y1 does each initial-value
problem have a solution?

46. What are the x-intercepts of the solution curve shown
in Figure 4.7.1? How many x-intercepts are there for

?

Computer Lab Assignments

In Problems 47–50 solve the given differential equation by
using a CAS to find the (approximate) roots of the auxiliary
equation.

47. 2x3y� � 10.98x2y	 � 8.5xy� � 1.3y � 0

48. x3y� � 4x2y	 � 5xy� � 9y � 0

49. x4y(4) � 6x3y� � 3x2y	 � 3xy� � 4y � 0

50. x4y(4) � 6x3y� � 33x2y	 � 105xy� � 169y � 0

51. Solve x3y� � x2y	 � 2xy� � 6y � x2 by variation of
parameters. Use a CAS as an aid in computing roots of
the auxiliary equation and the determinants given in
(15) of Section 4.6.

0 � x � 1
2

GREEN’S FUNCTIONS

REVIEW MATERIAL
● See the Remarks at the end of Section 4.1 for the definitions of response, input, and output.  
● Differential operators in Section 4.1 and Section 4.5
● The method of variation of parameters in Section 4.6 

INTRODUCTION We will see in Chapter 5 that the linear second-order differential equation

(1)

plays an important role in many applications. In the mathematical analysis of physical systems it is
often desirable to express the response or output of (1) subject to either initial conditions or
boundary conditions directly in terms of the forcing function or input In this manner the 
response of the system can quickly be analyzed for different forcing functions.

To see how this is done, we start by examining solutions of initial-value problems in which the
DE (1) has been put into the standard form

(2) 

by dividing the equation by the lead coefficient We also assume throughout this section that
the coefficient functions and are continuous on some common interval I. f(x)P(x), Q(x),

a2(x).

y	 � P(x)y� � Q(x)y � f (x)

g(x).
y(x)

a2(x)
d2y
dx2 � a1(x) 

dy
dx

� a0(x)y � g(x) 

4.8

4.8.1 INITIAL-VALUE PROBLEMS 

Three Initial-Value Problems We will see as the discussion unfolds that the
solution of the second order initial-value problem

(3)y	 � P(x)y� � Q(x)y � f(x),   y(x0) � y0,  y�(x0) � y1

y(x)
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170 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

can be expressed as the superposition of two solutions: 

(4)

where is the solution of the associated homogeneous DE with nonhomogeneous
initial conditions 

(5)

and is the solution of the nonhomogeneous DE with homogeneous (that is,
zero) initial conditions 

(6)

In the case where the coefficients P and Q are constants the solution of the IVP (5)
presents no difficulties: We use the method of Section 4.3 to find the general solution
of the homogeneous DE and then use the given initial conditions to determine the
two constants in that solution. So we will focus on the solution of the IVP (6).
Because of the zero initial conditions, the solution of (6) could describe a physical
system that is initially at rest and so is sometimes called a rest solution. 

Green’s Function If form a fundamental set of solutions on the
interval I of the associated homogeneous form of (2), then a particular solution of the
nonhomogeneous equation (2) on the interval I can be found by variation of parame-
ters. Recall from (3) of Section 4.6, the form of this solution is

(7)

The variable coefficients in (7) are defined by (9) of Section 4.6

(8)

The linear independence of on the interval I guarantees that the
Wronskian for all x in I. If x and are numbers in I, then
integrating the derivatives and in (8) on the interval and substitut-
ing the results into (7) give 

(9)

where

From the properties of the definite integral, the two integrals in the second line of (9)
can be rewritten as a single integral

(10) 

The function in (10),

(11)

is called the Green’s function for the differential equation (2). 
Observe that a Green’s function (11) depends only on the fundamental solutions

of the associated homogeneous differential equation for (2) and not
on the forcing function Therefore all linear second-order differential equations
(2) with the same left-hand side but with different forcing functions have the same
the Green’s function. So an alternative title for (11) is the Green’s function for the
second-order differential operator L � D2 � P(x)D � Q(x).

f(x).
y1(x) and  y2(x)

G(x, t) �
y1(t)y2(x) � y1(x)y2(t)

W(t)

G(x, t)

yp(x) � �x

x0

G(x, t) f(t) dt.

W(t) � W(y1(t), y2(t)) � �y1(t)
y�1(t)

y2(t)
y�2(t) �

 � �x

x0

 
�y1(x)y2(t)

W(t)
 f(t) dt  �   �x

x0

 
y1(t)y2(x)

W(t)
 f(t) dt,

 yp(x) � y1(x)�x

x0

 
�y2(t)f(t)

W(t)
 dt �  y2(x)�x

x0

 
y1(t)f(t)

W(t)
 dt

[x0, x]u�2(x)u�1(x)
x0W � W(y1(x), y2(x)) � 0

y1(x) and y2(x)

u�1(x) � �
y2(x)f(x)

W
,    u�2(x) �

y1(x)f(x)
W

.

u1(x) and  u2(x)

yp(x) � u1(x)y1(x) � u2(x)y2(x).

y1(x) and y2(x)

y	 � P(x)y� � Q(x)y � f(x),   y(x0) � 0,  y�(x0) � 0.

yp(x)

y	 � P(x)y� � Q(x)y � 0,   y(x0) � y0,  y�(x0) � y1

yh(x)

y(x) � yh(x) � yp(x),

Because y1(x) and y2(x) are constant
with respect to the integration on t,
we can move these functions inside
the definite intergrals.

�

Important. Read this
paragraph a second time. �

Here at least one of the numbers y0 or y1 is
assumed to be nonzero. If both y0 and y1 are
0, then the solution of the IVP is y � 0.

�
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4.8 GREEN’S FUNCTIONS ● 171

EXAMPLE 1 Particular Solution

Use (10) and (11) to find a particular solution of

SOLUTION The solutions of the associated homogeneous equation are
and It follows from (11) that the Green’s

function is

(12)

Thus from (10), a particular solution of the DE is

(13)    yp(x) ��x

x0

sinh(x � t) f(t) dt.

G(x, t) �
ete�x � exe�t

�2
�

ex� t � e�(x� t)

2
� sinh(x � t).

W(y1(t), y2(t)) � �2.y2 � e�x,y1 � ex,
y	 � y � 0

y	 � y � f (x).

EXAMPLE 2 General Solutions

Find the general solution of following nonhomogeneous differential equations.
(a) (b)

SOLUTION From Example 1, both DEs possess the same complementary function
. Moreover, as pointed out in the paragraph preceding Example 1,

the Green’s function for both differential equations is (12).

(a) With the identifications and we see from (13) that a partic-

ular solution of is Thus the general solu-

tion of the given DE on any interval not containing the origin is 

(14)

You should compare this solution with that found in Example 3 of Section 4.6.

(b) With in (13), a particular solution of is 
The general solution is then

(15)

Now consider the special initial-value problem (6) with homogeneous initial
conditions. One way of solving the problem when has already been illus-
trated in Sections 4.4 and 4.6, that is, apply the initial conditions

to the general solution of the nonhomogeneous DE. But
there is no actual need to do this because we already have a solution of the IVP
at hand; it is the function defined in (10).

y(x0) � 0,  y�(x0) � 0

f(x) � 0

y � c1ex � c2e�x � �x

x0

sinh(x � t) e2t dt.

y � yc � yp�x
x0

sinh(x � t) e2t dt.
yp(x) �y	 � y � e2xf (x) � e2x

y � c1ex � c2e�x � �x

x0

 
sinh(x � t)

t
 dt.

[x0, x]y � yc � yp

yp(x) ��x

x0

 
sinh(x � t)

t
 dt.y	 � y � 1>x

f(t) � 1>tf(x) � 1>x

yc � c1e�x �  c2ex

y	 � y � e2xy	 � y � 1>x

THEOREM 4.8.1 Solution of the IVP (6)

The function defined in (10) is the solution of the initial-value problem (6).yp(x)
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172 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

PROOF By construction we know that in (10) satisfies the nonhomogeneous
DE. Next, because a definite integral has the property we have

Finally, to show that we utilize the Leibniz formula* for the derivative 
of an integral:

0 from (11)
2

Hence, y�p(x0) � �x0

x0

y1(t)y�2(x0) � y�1(x0)y2(t)
W(t)

 f(t) dt � 0.

�x

x0

 
y1(t)y�2(x) � y�1(x)y2(t)

W(t)
 f(t) dt.y�p(x) � G(x, x) f (x) �

y�p(x0) � 0

yp(x0) � �x0

x0

G(x0, t) f(t) dt � 0.

�a
a � 0

yp(x)

EXAMPLE 3 Example 2 Revisited

Solve the initial-value problems

(a) (b)

SOLUTION (a) With it follows from (14) of Example 2 and
Theorem 4.8.1 that the solution of the initial-value problem is

where 
(b) Identifying we see from (15) that the solution of the IVP is

(16) 

In part (b) of Example 3, we can carry out the integration in (16), but bear in
mind that x is held constant throughout the integration with respect to t:

 � 1
3 e2x � 1

2 ex � 1
6e�x.

 � 1
2ex�x

0
et dt � 1

2 e�x�x

0
e3t dt

 yp(x) � �x

0
sinh(x � t) e2t dt � �x

0
 
ex� t � e�(x� t)

2
 e2t dt

yp(x) ��x

0
sinh(x � t) e2t dt.

x0 � 0 and f(t) � e2t,
[1, x], x � 0.

yp(x) � �x

1
 
sinh(x � t)

t
 dt,

x0 � 1 and f(t) � 1>t,

y	 � y � e2x,   y(0) � 0, y�(0) � 0y	 � y � 1>x,   y(1) � 0, y�(1) � 0

* This formula, usually discussed in advanced calculus, is given by

d
dx

 �v(x)

u(x)
F(x, t)dt � F(x, v(x))v�(x) � F(x, u(x))u�(x) ��v(x)

u(x)

�

�x
F(x, t)dt.

EXAMPLE 4 Using (10) and (11)

Solve the initial-value problem

SOLUTION We begin by constructing the Green’s function for the given differen-
tial equation.

y	 � 4y � x,   y(0) � 0, y�(0) � 0.
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The two linearly independent solutions of are 
From (11), with we find

With the further identifications and in (10) we see that a solution of
the given initial-value problem is

If we wish to evaluate the integral, we first write

and then use integration by parts:

or

Initial-Value Problems—Continued Finally, we are now in a position to
make use of Theorem 4.8.1 to find the solution of the initial-value problem posed in
(3). It is simply the function already given in (4).

yp(x) � 1
4x � 1

8 sin 2x.

 yp(x) � 1
2 sin2x [1

2 t sin2t � 1
4 cos2t]x

0 � 1
2 cos2x [�1

2t cos2t � 1
4 sin2t]x

0

yp(x) � 1
2 sin2x�x

0
t cos2t dt � 1

2 cos2x�x

0
t sin2t dt

yp(x) � 1
2�x

0
tsin2(x � t)dt.

f(t) � tx0 � 0

G(x, t) �
cos2t sin2x � cos2x sin2t

2
� 1

2 sin2(x � t).

W (cos2t, sin2t) � 2,y2(x) � sin2x.
y1(x) � cos 2x andy	 � 4y � 0

4.8 GREEN’S FUNCTIONS ● 173

Here we have used the trigonometric
identity 

sin(2x � 2t) � sin 2x cos 2t � cos 2x sin 2t
�

THEOREM 4.8.2 Solution of the IVP (3)

If is the solution of the initial-value problem (5) and is the solution (10)
of the initial-value problem (6) on the interval I, then 

(17)

is the solution of the initial-value problem (3).

y(x) � yh(x) � yp(x)

yp(x)yh(x)

PROOF Because is a linear combination of the fundamental solutions, it
follows from (10) of Section 4.1 that is a solution of the nonhomoge-
neous DE. Moreover, since satisfies the initial-conditions in (5) and satisfies the
initial conditions in (6), we have, 

Keeping in mind the absence of a forcing function in (5) and the presence of such
a term in (6), we see from (17) that the response of a physical system described
by the initial-value problem (3) can be separated into two different responses:

(18)
3 3

response of system response of system
due to initial conditions due to the forcing

function f

If you wish to peek ahead, the following initial-value problem represents a pure
resonance situation for a driven spring/mass system. See pages 200–202.

y(x0) � y0, y(x0) � y1

y(x) �   yh(x)  �  yp(x)

y(x)

 y�(x0) � y�h(x0) � y�p(x0) � y1 � 0 � y1.

 y(x0) � yh(x0) � yp(x0) � y0 � 0 � y0

ypyh

y � yh � yp

yh(x)
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174 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

EXAMPLE 5 Using Theorem 4.8.2

Solve the initial-value problem

SOLUTION We solve two initial-value problems. 
First, we solve By applying the initial con-

ditions to the general solution of the homogeneous DE,
we find that and Therefore, 

Next we solve Since the left-hand side
of the differential equation is the same as the DE in Example 4, the Green’s function
is the same, namely, With we see from (10) that
the solution of this second problem is 

Finally, in view of (17) in Theorem 4.8.2, the solution of the original IVP is

(19)

If desired, we can integrate the definite integral in (19) by using the trigonomet-
ric identity

with and 

(20)

Hence, the solution (19) can be rewritten as

or (21)

Note that the physical significance indicated in (18) is lost in (21) after combining
like terms in the two parts of the solution 

The beauty of the solution given in (19) is that we can immediately write down
the response of a system if the initial conditions remain the same, but the forcing
function is changed. For example, if the problem in Example 5 is changed to

we simply replace in the integral in (19) by t and the solution is then 

Because the forcing function f is isolated in the particular solution
the solution in (17) is useful when f is piecewise defined

The next example illustrates this idea.
yp(x) � �x

x0
G(x, t) f(t) dt,

 � 1
4x � cos2x � 9

8 sin2x.

; see Example 4 � cos 2x � sin2x � 1
2�x

0
tsin2(x � t) dt

y(x) � yh(x) � yp(x)

sin2t

y� � 4y � x, y(0) � 1, y�(0) � �2,

y(x) � yh(x) � yp(x).

 y(x) � cos2x � 7
8 sin2x � 1

4 x cos2x.

y(x) � yh(x) � yp(x) � cos2x � sin2x � �1
8 sin2x � 1

4x cos2x�,

 � 1
8sin2x � 1

4xcos2x.

 � 1
4[�1

4sin(2x � 4t) � tcos2x] x
 0

 � 1
4�x

0
[cos(2x � 4t) � cos2x] dt

yp(x) � 1
2�x

0
sin2(x � t)sin2tdt

B � 2t:A � 2(x � t)

sinAsinB � 1
2[cos(A � B) � cos (A � B)]

y(x) � yh(x) � yp(x) � cos2x � sin2x �  12�x

0
sin2(x � t)sin2t dt.

yp(x) � 1
2�

x
0 sin 2(x � t)sin2t dt.

f(t) � sin2tG(x, t) � 1
2 sin2(x � t).

y� � 4y � sin2x, y(0) � 0, y�(0) � 0.
yh(x) � cos2x � sin2x.c2 � �1.c1 � 1

y(x) � c1cos2x � c2 sin2x
y� � 4y � 0, y(0) � 1, y�(0) � �2.

y� � 4y � sin 2x,  y(0) � 1, y�(0) � �2.
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4.8 GREEN’S FUNCTIONS ● 175

EXAMPLE 6 An Initial-Value Problem

Solve the initial-value problem

where the forcing function f is piecewise defined

SOLUTION From (19), with replaced by we can write

Because f is defined in three pieces, we consider three cases in the evaluation of the
definite integral. For

for 

and finally for we can use the integration following Example 5:

Hence is 

and so 

Putting all the pieces together we get

The three parts of  are shown in different colors in Figure 4.8.1.

We next examine how a boundary value problem (BVP) can be solved using a
different kind of Green’s function.

y(x)

y(x) � 	cos 2x � sin 2x,          x � 0
(1 � 1

4 x) cos 2x � 7
8 sin 2x, 0 � x � 2�

(1 � 1
2�)cos2x � sin2x, x � 2�.

y(x) � yh(x) � yp(x) � cos 2x � sin 2x � yp(x).

yp(x) � 	
0,                         x � 0
1
8 sin2x�1

4 x cos 2x,   0 � x � 2�

�1
2� cos2x,             x � 2�.

yp(x)

 � �1
2pcos 2x.

; sin(2x � 8p) � sin 2x  � � 1
16 sin (2x � 8p)�1

2 pcos 2x � 1
16sin 2x

; using the integration in (20) � 1
4[�1

4sin (2x � 4t) � tcos 2x] 2p
 0

 � 1
2p�2p

0
sin 2(x � t) sin 2t dt

yp(x) � 1
2�2p

0
sin 2(x � t) sin 2t dt � 1

2�x

2p
sin 2(x � t) 0 dt

x � 2p,

 � 1
8sin2x � 1

4x cos2x,

; using the integration in (20)yp(x) � 1
2�x

0
sin 2(x � t) sin2t dt

0 � x � 2,

yp(x) � 1
2�x

0
sin2(x � t) 0 dt � 0,

x � 0,

y(x) � cos 2x � sin 2x � 1
2�x

0
sin 2(x � t) f(t) dt.

f(t),sin2t

f(x) � 	0,        x � 0
sin 2x,   0 � x � 2�

0,     x � 2�.

y	 � 4y � f(x), y(0) � 1, y�(0) � �2,

_1

3p2pp_p

1

y

x

FIGURE 4.8.1 Graph of y(x) in
Example 6
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176 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

4.8.2 BOUNDARY-VALUE PROBLEMS

In contrast to a second-order IVP, in which and are specified at the same
point, a BVP for a second-order DE involves conditions on and that are
specified at two di ferent points and Conditions such as

are just special cases of the more general homogeneous boundary conditions:
(22)
(23)

where are constants. Specificall , our goal is to find a integral
solution that is analogous to (10) for nonhomogeneous boundary-value problems
of the form

(24)

In addition to the usual assumptions that and are continuous on 
we assume that the homogeneous problem

possesses only the trivial solution This latter assumption is sufficient to guarantee
that a unique solution of (24) exists and is given by an integral 
where is a Green’s function. 

The starting point in the construction of is again the variation of parame-
ters formulas (7) and (8).

Another Green’s Function Suppose are linearly independent
solutions on of the associated homogeneous form of the DE in (24) and that x
is a number in the interval Unlike the construction of (9) where we started by
integrating the derivatives in (8) over the same interval, we now integrate the firs
equation in (8) on and the second equation in (8) on 

(25)

The reason for integrating over different intervals will become clear
shortly. From (25), a particular solution of the DE is

here we used the minus
sign in (25) to reverse

the limits of integration
$11%11&

or (26)

The right-hand side of (26) can be written compactly as a single integral

(27)

where the function is 

(28)G(x, t) � 	
y1(t)y2(x)

W(t)
, a � t � x

y1(x)y2(t)
W(t)

, x � t � b.

G(x, t)

yp(x) � �b

a
G(x, t) f(t)dt,

 yp(x) � �x

a

y2(x)y1(t)
W(t)

f (t) dt � �b

x

y1(x)y2(t)
W(t)

f (t)dt.

 yp(x) � y1(x) �b

x

y2(t) f(t)
W(t)

dt � y2(x) �x

a

y1(t) f (t)
W(t)

dt

yp(x) � u1(x)y1(x) � u2(x)y2(x)
u�1(x) and u�2(x)

u1(x) � ��x

b

y2(t) f(t)
W(t)

dt and u2(x) � �x

a

y1(t) f(t)
W(t)

dt.

[a,  x]:[b, x]

[a, b].
[a, b]

y1(x) and y2(x)

G(x, t)
G(x, t)

yp(x) � �b
aG(x, t) f(t)dt,

y � 0.

 A2y(b) � B2y�(b) � 0,   
 A1y(a) � B1y�(a) � 0

 y	 � P(x)y� � Q(x)y � 0,

[a, b],f(x)P(x), Q(x),

 A2y(b) � B2y�(b) � 0.   
 A1y(a) � B1y�(a) � 0

 y	 � P(x)y� � Q(x)y � f(x),

yp(x)
A1, A2, B1, and B2

A2y(b) � B2y�(b) � 0,
A1y(a) � B1y�(a) � 0

y(a) � 0,  y(b) � 0;          y(a) � 0,    y�(b) � 0;          y�(a) � 0,  y�(b) � 0.
x � b.x � a

y�(x)y(x)
y�(x)y(x)
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The piecewise-defined function (28) is called a Green’s function for the boundary-
value problem (24). It can be proved that is a continuous function of x on the
interval 

Now if the solutions and used in the construction of in (28) are
chosen in such a manner that at satisfies and at

satisfies then, wondrously, defined in
(27) satisfies both homogeneous boundary conditions in (24)

To see this we will need

(29)

and 

(30)

Before proceeding, observe in (25) that and In view of the
second of these two properties we can show that satisfies (22) whenever 
satisfies the same boundary condition. From (29) and (30) we hav

0 0
2 2

(1111)1111*

0 from (22)
Likewise, implies that whenever satisfies (23) so does yp(x):y2(x)u1(b) � 0

 � u1(a)[A1y1(a) � B1y�1(a)] � 0.

A1yp(a) � B1y�p(a) � A1[u1(a)y1(a) � u2(a)y2(a)] � B1[u1(a)y�1(a) � u2(a)y�2(a)]

y1(x)yp(x)
u2(a) � 0.u1(b) � 0

� u1(x)y�1(x) � u2(x)y�2(x).

y�p(x) � u1(x)y�1(x) � y1(x)u�1(x) � u2(x)y�2(x) � y2(x)u�2(x)

yp(x) � u1(x)y1(x) � u2(x)y2(x)

yp(x)A2y2(b) � B2y�2(b) � 0,y2(x)x � b,
A1y1(a) � B1y�1(a) � 0,y1(x)x � a,

G(x, t)y2(x)y1(x)
[a, b].

G(x, t)

4.8 GREEN’S FUNCTIONS ● 177

The second line in (30) results from 
the fact that

.

See the discussion in Section 4.6 
following (4).

y1(x)u�1(x) � y2(x)u�2(x) � 0 �

0 0
2 2

(1111)1111*

0 from (22)

 � u2(b)[A2y2(b) � B2y�2(b)] � 0.

A2yp(b) � B2y�p(b) � A2[u1(b)y1(b) � u2(b)y2(b)] � B2[u1(b)y�1(b) � u2(b)y�2(b)]

THEOREM 4.8.3 Solution of the BVP (24) 

Let and be linearly independent solutions of

on and suppose and satisfy (22) and (23), respectively. Then the
function defined in (27) is a solution of the boundary-value problem (24)yp(x)

y2(x)y1(x)[a,  b],

y	 � P(x)y� � Q(x)y � 0

y2(x)y1(x)

EXAMPLE 7 Using Theorem 4.8.3

Solve the boundary-value problem

SOLUTION The solutions of the associated homogeneous equation 
are and and satisfies whereas sat-
isfies The Wronskian is and so from (28) we see that the
Green’s function for the boundary-value problem is

G(x, t) � 	
1
2 cos 2t sin 2x, 0 � t � x

1
2 cos 2x sin 2t, x � t � p>2.

W(y1, y2) � 2,y(p>2) � 0.
y2(x)y�(0) � 0y1(x)y2(x) � sin 2xy1(x) � cos 2x

y	 � 4y � 0

y	 � 4y � 3, y�(0) � 0, y(p>2) � 0.

The boundary condition y�(0) � 0 is a
special case of (22) with a � 0, A1 � 0,
and B1 � 1. The boundary condition 
y(p/2) � 0 is a special case of (23) with 
b � p/2, A2 � 1, B2 � 0.

�

The next theorem summarizes these results.

27069_04_ch04_p116-191.qxd  2/2/12  2:35 PM  Page 177

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



178 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

It follows from Theorem 4.8.3 that a solution of the BVP is (27) with the identifica
tions 

or, after evaluating the definite integrals,  

Don’t infer from the preceding example that the demand that satisfy (22)
and satisfy (23) uniquely determines these functions. As we see in the last
example, there is a certain arbitrariness in the selection of these functions. 

y2(x)
y1(x)

yp(x) � 3
4 � 3

4 cos 2x.

 � 3 � 1
2 sin 2x�x

0
cos 2t dt � 3 � 1

2 cos 2x�p>2
x

sin 2t dt,

yp(x) � 3�p>2
0

G(x, t) dt

f(t) � 3:a � 0, b � p>2, and

EXAMPLE 8 A Boundary-Value Problem

Solve the boundary-value problem

SOLUTION The differential equation is recognized as a Cauchy-Euler DE. From
the auxiliary equation the general so-
lution of the associated homogeneous equation is Applying 
to this solution implies By choosing we get

and On the other hand, applied to the general solution
shows or The choice now gives and so

The Wronskian of these two functions is

Hence the Green’s function for the boundary-value problem is

In order to identify the correct forcing function f we must write the DE in standard form:

From this equation we see that and so in (27) becomes

Straightforward definite integration and algebraic simplification yield the solution
yp(x) � 3x5 � 15x3 � 12x.

 � 4(4x � x3)�x

1
(t � t3) dt � 4(x � x3)�2

x
(4t � t3)dt.

yp(x) � 24�2

1
G(x, t) t3dt

yp(x)f(t) � 24t3

y	 �
3
x

y� �
3
x2y � 24x3.

G(x, t) � 	
(t � t3)(4x � x3)

6t3 ,   1 � t � x

(x � x3)(4t � t3)
6t3 ,   x � t � 2.

W(y1(x), y2(x)) � �x � x3 4x � x3

1 � 3x2 4 � 3x2� � 6x3.

y2(x) � 4x � x3.
c1 � 4c2 � �1c1 � �4c2.2c1 � 8c2 � 0

 y(2) � 0y1 � x � x3.c1 � 1
c2 � �1c1 � c2 � 0 or c1 � �c2.

y(1) � 0y � c1x � c2x3.
m(m � 1) � 3m � 3 � (m � 1)(m � 3) � 0

x2y	 � 3xy� � 3y � 24x5, y(1) � 0, y(2) � 0.

Verify yp(x) that satisfies the differential
equation and the two boundary
conditions.

�

REMARKS 

We have barely scratched the surface of the elegant, albeit complicated, theory
of Green’s functions. Green’s functions can also be constructed for linear sec-
ond-order partial differential equations, but we leave coverage of the latter
topic to an advanced course. 
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4.8 GREEN’S FUNCTIONS ● 179

EXERCISES 4.8 Answers to selected odd-numbered problems begin on page ANS-6.

4.8.1 INITIAL-VALUE PROBLEMS

In Problems 1–6 proceed as in Example 1 to find a particular
solution of the given differential equation in the 
integral form (10). 

1. 2.

3. 4.

5. 6.

In Problems 7–12 proceed as in Example 2 to find the
general solution of the given differential equation. Use the
results obtained in Problems 1–6. Do not evaluate the integral
that defines

7. 8.

9. 10.

11. 12.

In Problems 13–18 proceed as in Example 3 to find a solu-
tion of the given initial-value problem. Evaluate the integral
that defines

13.

14.

15.

16.

17.

18.

In Problems 19–30 proceed as in Example 5 to find a solu-
tion of the given initial-value problem.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30. x2y	 � xy� � y � x2, y(1) � 4, y�(1) � 3

x2y	 � 6y � ln x, y(1) � 1, y�(1) � 3

x2y	 � 2xy� � 2y � x ln x, y(1) � 1, y�(1) � 0

x2y	 � 2xy� � 2y � x, y(1) � 2, y�(1) � �1

y	 � 3y� � 2y �
1

1 � ex, y(0) � 0, y�(0) � 1

y	 � 3y� � 2y � sin ex, y(0) � �1, y�(0) � 0

y	 � y � sec2x, y(p) � 1
2, y�(p) � �1

y	 � y � csc x cot x, y(p>2) � �p>2, y�(p>2) � �1

y	 � 6y� � 9y � x, y(0) � 1, y�(0) � �3

y	 � 10y� � 25y � e5x, y(0) � �1, y�(0) � 1

y	 � y� � 1, y(0) � 10, y�(0) � 1

y	 � 4y � e2x, y(0) � 1, y�(0) � �4

y 	 � y � sec2x, y(p) � 0, y�(p) � 0

y 	 � y � csc x cot x, y(p>2) � 0, y�(p>2) � 0

y	 � 6y� � 9y � x, y(0) � 0, y�(0) � 0

y	 � 10y� � 25y � e5x, y(0) � 0, y�(0) � 0

y	 � y� � 1, y(0) � 0, y�(0) � 0

y	 � 4y � e2x, y(0) � 0, y�(0) � 0

yp(x).

y	 � 2y� � 2y � cos2xy	 � 9y � x � sin x

4y	 � 4y� � y � arctan xy	 � 2y� � y � e�x

y	 � 3y� � 10y � x2y	 � 16y � xe�2x

yp(x).

y	 � 2y� � 2y � f(x)y	 � 9y � f(x)

4y	 � 4y� � y � f(x)y	 � 2y� � y � f(x)

y	 � 3y� � 10y � f(x)y	 � 16y � f(x)

yp(x)

In Problems 31–34 proceed as in Example 6 to find a solu-
tion of the initial-value problem with the given piecewise-
defined forcing function

31.

where

32.

where

33.

where

34.

where

4.8.2 BOUNDARY-VALUE PROBLEMS

In Problems 35 and 36, (a) use (27) and (28) to find a solu-
tion of the boundary-value problem. (b) Verify that the
function satisfies the differential equations and both
boundary-conditions.

35.

36.

37. In Problem 35 find a solution of the BVP when 

38. In Problem 36 find a solution of the BVP when 

In Problems 39–44 proceed as in Examples 7 and 8 to find a
solution of the given boundary-value problem.

39.

40.

41.

42.

43.

44.

Discussion Problems

45. Suppose the solution of the boundary-value problem

y 	 � Py� � Qy � f(x),  y(a) � 0, y(b) � 0,

x2y	 � 4xy� � 6y � x4, y(1) � y�(1) � 0, y(3) � 0

x2y	 � xy� � 1, y(e�1) � 0, y(1) � 0

y	 � y� � e2x, y(0) � 0, y(1) � 0

y	 � 2y� � 2y � ex, y(0) � 0, y(p>2) � 0

y	 � 9y � 1, y(0) � 0, y�(p) � 0

y	 � y � 1, y(0) � 0, y(1) � 0

f(x) � x.

f(x) � 1.

y	 � f(x), y(0) � 0, y(1) � y�(1) � 0

y	 � f(x), y(0) � 0, y(1) � 0

yp(x)

f(x) � 	0, x � 0
cos x, 0 � x � 4p
0, x � 4p

y	 � y � f(x), y(0) � 0, y�(0) � 1,

f(x) � 	0, x � 0
10,  0 � x � 3p
0, x � 3p

y	 � y � f(x), y(0) � 1, y�(0) � �1,

f(x) � 	0, x � 0
x, x � 0

y	 � y � f(x), y(0) � 3, y�(0) � 2,

f(x) � 	�1, x � 0
1, x � 0

y	 � y � f(x), y(0) � 8, y�(0) � 2,

27069_04_ch04_p116-191.qxd  2/2/12  2:35 PM  Page 179

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



180 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

is given by where and
are solutions of the associated homogeneous

differential equation chosen in the construction of so
that and Prove that the solution of the
boundary-value problem with nonhomogeneous DE and
boundary conditions,

is given by

y(x) � yp(x) �
B

y1(b)
y1(x) �

A
y2(a)

y2(x).

y 	 � Py� � Qy � f(x),  y(a) � A, y(b) � B

y2(b) � 0.y1(a) � 0
G(x, t)

y2(x)
y1(x)yp(x) � �b

aG (x, t)f (t)dta � b, [Hint: In your proof, you will have to show that
Reread the assumptions fol-

lowing (24).]

46. Use the result in Problem 45 to solve

y 	 � y � 1, y(0) � 5, y(1) � �10.

y1(b) � 0 and y2(a) � 0.

SOLVING SYSTEMS OF LINEAR DEs BY ELIMINATION

REVIEW MATERIAL
● Because the method of systematic elimination uncouples a system into distinct linear ODEs in

each dependent variable, this section gives you an opportunity to practice what you learned in
Sections 4.3, 4.4 (or 4.5), and 4.6.

INTRODUCTION Simultaneous ordinary differential equations involve two or more equations that
contain derivatives of two or more dependent variables—the unknown functions—with respect to a
single independent variable. The method of systematic elimination for solving systems of differential
equations with constant coefficients is based on the algebraic principle of elimination of variables. We
shall see that the analogue of multiplying an algebraic equation by a constant is operating on an ODE
with some combination of derivatives.

4.9

Systematic Elimination The elimination of an unknown in a system of linear
differential equations is expedited by rewriting each equation in the system in differ-
ential operator notation. Recall from Section 4.1 that a single linear equation

where the ai, i � 0, 1, . . . , n are constants, can be written as

If the nth-order differential operator factors
into differential operators of lower order, then the factors commute. Now, for exam-
ple, to rewrite the system

in terms of the operator D, we first bring all terms involving the dependent variables
to one side and group the same variables:

 x� � y� � �4x � 2y � e�t

 x 	 � 2x� � y	 � x � 3y � sin t

anDn � an�1D(n�1) � � � � � a1D � a0

(anDn � an�1D(n�1) � � � � � a1D � a0)y � g(t).

any(n) � an�1y(n�1) � � � � � a1y� � a0y � g(t),

x 	 � 2x� � x � y 	 � 3y � sin t
   x� � 4x � y� � 2y � e�t     is the same as    

(D2 � 2D � 1)x � (D2 � 3)y � sin t
    (D � 4)x � (D � 2)y � e�t.

Solution of a System A solution of a system of differential equations is a set
of sufficiently differentiable functions x � f1(t), y � f2(t), z � f3(t ), and so on that
satisfies each equation in the system on some common interval I.
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Method of Solution Consider the simple system of linear first-orde
equations

(1)

Operating on the first equation in (1) by D while multiplying the second by �3 and
then adding eliminates y from the system and gives D2x � 6x � 0. Since the roots of
the auxiliary equation of the last DE are and , we obtain

(2)

Multiplying the first equation in (1) by 2 while operating on the second by D and
then subtracting gives the differential equation for y, D2y � 6y � 0. It follows
immediately that

(3)

Now (2) and (3) do not satisfy the system (1) for every choice of c1, c2, c3, and
c4 because the system itself puts a constraint on the number of parameters in a solu-
tion that can be chosen arbitrarily. To see this, observe that substituting x (t) and y(t)
into the first equation of the original system (1) gives, after simplificatio

Since the latter expression is to be zero for all values of t, we must have
and These two equations enable us to write c3

as a multiple of c1 and c4 as a multiple of c2 :

. (4)

Hence we conclude that a solution of the system must be

You are urged to substitute (2) and (3) into the second equation of (1) and verify
that the same relationship (4) holds between the constants.

x(t) � c1e�16t � c2e16 t,    y(t) � �
16
3

 c1e�16 t �
16
3

 c2e16 t.

c3 � �
16
3

 c1    and    c4 �
16
3

 c2

16c2 � 3c4 � 0.�16c1 � 3c3 � 0

��16c1 � 3c3�e�16 t � �16c2 � 3c4�e16 t � 0.

y(t) � c3e�16t � c4e16t.

x(t) � c1e�16t � c2e16t.

m2 � �16m1 � 16

dx
dt

� 3y

dy
dt

� 2x
    or, equivalently,    

Dx � 3y � 0
2x � Dy � 0.

4.9 SOLVING SYSTEMS OF LINEAR DES BY ELIMINATION ● 181

EXAMPLE 1 Solution by Elimination

Solve
(5)

SOLUTION Operating on the first equation by D � 3 and on the second by D and
then subtracting eliminates x from the system. It follows that the differential equation
for y is

Since the characteristic equation of this last differential equation is
m2 � m � 6 � (m � 2)(m � 3) � 0, we obtain the solution

(6)

Eliminating y in a similar manner yields (D2 � D � 6)x � 0, from which we fin

(7)x(t) � c3e2t � c4e�3t.

y(t) � c1e2t � c2e�3 t.

[(D � 3)(D � 2) � 2D]y � 0    or    (D2 � D � 6)y � 0.

 (D � 3)x �   2y � 0.
 Dx �  (D � 2 )y � 0
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182 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

As we noted in the foregoing discussion, a solution of (5) does not contain four in-
dependent constants. Substituting (6) and (7) into the first equation of (5) give

From 4c1 � 2c3 � 0 and �c2 � 3c4 � 0 we get c3 � �2c1 and .
Accordingly, a solution of the system is

Because we could just as easily solve for c3 and c4 in terms of c1 and c2, the
solution in Example 1 can be written in the alternative form

It sometimes pays to keep one’s eyes open when solving systems. Had we solved
for x first in Example 1, then y could be found, along with the relationship between the
constants, using the last equation in the system (5). You should verify that substituting
x(t) into yields Also note in the initial dis-
cussion that the relationship given in (4) and the solution y(t) of (1) could also have
been obtained by using x(t) in (2) and the first equation of (1) in the for

y � 1
3 Dx � �1

3 26c1e�16t � 1
3 26c2e16t.

y � �1
2 c3e2t � 3c4e�3t.y � 1

2 (Dx � 3x)

x(t) � c3e2t � c4e�3t,    y(t) � �
1
2
 c3e2t � 3c4e�3t.

x(t) � �2c1e2t �
1
3
 c2e�3t,    y(t) � c1e2t � c2e�3t.

c4 � �1
3 c2

(4c1 � 2c3)e2t � (�c2 � 3c4)e�3t � 0.

This might save
you some time. �

EXAMPLE 2 Solution by Elimination

Solve (8)

SOLUTION First we write the system in differential operator notation:

(9)

Then, by eliminating x, we obtain

or

Since the roots of the auxiliary equation m(m2 � 4) � 0 are m1 � 0, m2 � 2i, and
m3 � �2i, the complementary function is yc � c1 � c2 cos 2t � c3 sin 2t. To deter-
mine the particular solution yp, we use undetermined coefficients by assuming that
yp � At3 � Bt2 � Ct. Therefore 

The last equality implies that 12A � 1, 8B � 2, and 6A � 4C � 0; hence
, and . Thus

(10)

Eliminating y from the system (9) leads to

It should be obvious that xc � c4 cos 2t � c5 sin 2t and that undetermined coeffi
cients can be applied to obtain a particular solution of the form xp � At2 � Bt � C.
In this case the usual differentiations and algebra yield and so

(11)x � xc � xp � c4 cos 2t � c5 sin 2t �
1
4
 t2 �

1
8
.

xp � �1
4 t2 � 1

8,

[(D � 4) � D(D � 1)]x � t2    or    (D2 � 4)x � �t2.

y � yc � yp � c1 � c2 cos 2t � c3 sin 2t �
1

12
 t3 �

1
4
 t2 �

1
8
 t.

C � �1
8A � 1

12, B � 1
4

y�p � 4y�p � 12At2 � 8Bt � 6A � 4C � t2 � 2t.

y�p � 3At2 � 2Bt � C, y 	p � 6At � 2B, y 	�p � 6A,

 (D3 � 4D)y � t2 � 2t.

 [(D � 1)D2 � (D � 4)D]y � (D � 1)t2 � (D � 4)0

  (D � 1)x �   Dy � 0.
 (D � 4)x �  D2y � t2

 x� �  x � y� � 0.
 x� � 4x � y 	 � t2
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Now c4 and c5 can be expressed in terms of c2 and c3 by substituting (10)
and (11) into either equation of (8). By using the second equation, we find, after com-
bining terms,

so c5 � 2c4 � 2c2 � 0 and 2c5 � c4 � 2c3 � 0. Solving for c4 and c5 in terms of c2
and c3 gives c4 � � (4c2 � 2c3) and c5 � (2c2 � 4c3). Finally, a solution of (8)
is found to be

 y(t) � c1 � c2 cos 2t � c3 sin 2t �
1

12
 t3 �

1
4
 t2 �

1
8
 t.

 x(t) � �
1
5
 (4c2 � 2c3) cos 2t �

1
5
 (2c2 � 4c3) sin 2t �

1
4
 t2 �

1
8
,

1
5

1
5

(c5 � 2c4 � 2c2) sin 2t � (2c5 � c4 � 2c3) cos 2t � 0,
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EXAMPLE 3 A Mixture Problem Revisited

In (3) of Section 3.3 we saw that the system of linear first-order differential equations

is a model for the number of pounds of salt x1(t) and x2(t) in brine mixtures in tanks
A and B, respectively, shown in Figure 3.3.1. At that time we were not able to solve
the system. But now, in terms of differential operators, the foregoing system can be
written as

Operating on the first equation by multiplying the second equation by 
adding, and then simplifying gives (625D2 � 100D � 3)x1 � 0. From the auxiliary
equation

we see immediately that x1(t) � c1e�t/ 25 � c2e�3t/ 25. We can now obtain x2(t) by
using the first DE of the system in the form In this manner we
find the solution of the system to b

In the original discussion on page 108 we assumed that the initial conditions were
x1(0) � 25 and x2(0) � 0. Applying these conditions to the solution yields 
c1 � c2 � 25 and 2c1 � 2c2 � 0. Solving these equations simultaneously gives

Finally, a solution of the initial-value problem is

The graphs of both of these equations are given in Figure 4.9.1. Consistent with the
fact that pure water is being pumped into tank A we see in the figure that x1(t) : 0
and x2(t) : 0 as t : 
.

x1(t) �
25
2

 e�t / 25 �
25
2

 e�3t / 25,    x2(t) � 25e�t / 25 � 25e�3t / 25.

c1 � c2 � 25
2 .

x1(t) � c1e�t / 25 � c2e�3t / 25,    x2(t) � 2c1e�t / 25 � 2c2e�3t / 25.

x2 � 50(D � 2
25)x1.

625m2 � 100m � 3 � (25m � 1)(25m � 3) � 0

1
50,D � 2

25,

 � 
2

25
  x1 � �D �  

2
25� x2 � 0.

 �D �
2

25� x1 �    
1
50

  x2 � 0

 
dx2

dt
�  

2
25

 x1 �
2

25
 x2

 
dx1

dt
� �

2
25

 x1 �
1

50
 x2

FIGURE 4.9.1 Pounds of salt in tanks
A and B in Example 3
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184 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

EXERCISES 4.9 Answers to selected odd-numbered problems begin on page ANS-6.

In Problems 1–20 solve the given system of differential
equations by systematic elimination.

1. 2.

3. 4.

5. (D2 � 5)x � 2y � 0
�2x � (D2 � 2)y � 0

6. (D � 1)x � (D � 1)y � 2
3x � (D � 2)y � �1

7. 8.

9. Dx � D2y � e3t

(D � 1)x � (D � 1)y � 4e3t

10. D2x � Dy � t
(D � 3)x � (D � 3)y � 2

11. (D2 � 1)x � y � 0
(D � 1)x � Dy � 0

12. (2D2 � D � 1)x � (2D � 1)y � 1
(D � 1)x � Dy � �1

13.

14.

15. (D � 1)x � (D2 � 1)y � 1
(D2 � 1)x � (D � 1)y � 2

16. D2x � 2(D2 � D)y � sin t
x � Dy � 0

17. Dx � y 18. Dx � z � et

Dy � z (D � 1)x � Dy � Dz � 0
Dz � x x � 2y � Dz � et

19. 20.

dz
dt

� �x � y
dz
dt

� x � y

dy
dt

� �y � z
dy
dt

� x � z

dx
dt

� �x � z
dx
dt

� 6y

�
d2x
dt2 �

dx
dt

� x � y � 0

 
dx
dt

�
dy
dt

 � et

 
dx
dt

�  x �
dy
dt

� 5et

 2 
dx
dt

� 5x �
dy
dt

� et

dx
dt

�
dy
dt

� �x � 4y
d 2y
dt2 � 4x � et

d 2x
dt2 �

dy
dt

� �5x
d 2x
dt2 � 4y � et

dy
dt

� x � 2
dy
dt

� x � t

dx
dt

� 4y � 1
dx
dt

� �y � t

dy
dt

� x � 2y
dy
dt

� x

dx
dt

� 4x � 7y
dx
dt

� 2x � y

In Problems 21 and 22 solve the given initial-value problem.

21. 22.

x(1) � 0, y(1) � 1 x(0) � 0, y(0) � 0

Mathematical Models

23. Projectile Motion A projectile shot from a gun has
weight w � mg and velocity v tangent to its path of
motion. Ignoring air resistance and all other forces acting
on the projectile except its weight, determine a system of
differential equations that describes its path of motion.
See Figure 4.9.2. Solve the system. [Hint: Use Newton’s
second law of motion in the x and y directions.]

dy
dt

� �3x � 2y
dy
dt

� 4x � y

dx
dt

� y � 1
dx
dt

� �5x � y

FIGURE 4.9.2 Path of projectile in Problem 23

y

x

mg

v

24. Projectile Motion with Air Resistance Determine a
system of differential equations that describes the path
of motion in Problem 23 if air resistance is a retarding
force k (of magnitude k) acting tangent to the path of the
projectile but opposite to its motion. See Figure 4.9.3.
Solve the system. [Hint: k is a multiple of velocity,
say, bv.]

FIGURE 4.9.3 Forces in Problem 24

k

v

θ

Discussion Problems

25. Examine and discuss the following system:

Computer Lab Assignments

26. Reexamine Figure 4.9.1 in Example 3. Then use a root-
finding application to determine when tank B contains
more salt than tank A.

 (D � 1)x � 2(D � 1)y � 1.
 Dx  � 2Dy � t2
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4.10 NONLINEAR DIFFERENTIAL EQUATIONS ● 185

27. (a) Reread Problem 8 of Exercises 3.3. In that problem
you were asked to show that the system of differen-
tial equations

is a model for the amounts of salt in the connected
mixing tanks A, B, and C shown in Figure 3.3.7.
Solve the system subject to x1(0) � 15, x2(t) � 10,
x3(t) � 5.

 
dx3

dt
�

2
75

 x2 �
1

25
 x3

 
dx2

dt
�

1
50

 x1 �
2

75
 x2

 
dx1

dt
� � 

1
50

 x1

(b) Use a CAS to graph x1(t), x2(t), and x3(t) in the
same coordinate plane (as in Figure 4.9.1) on the
interval [0, 200].

(c) Because only pure water is pumped into Tank A, it
stands to reason that the salt will eventually be
flushed out of all three tanks. Use a root-findin
application of a CAS to determine the time when
the amount of salt in each tank is less than or equal
to 0.5 pound. When will the amounts of salt x1(t),
x2(t), and x3(t) be simultaneously less than or equal
to 0.5 pound?

NONLINEAR DIFFERENTIAL EQUATIONS

REVIEW MATERIAL
● Sections 2.2 and 2.5
● Section 4.2
● A review of Taylor series from calculus is also recommended.

INTRODUCTION The difficulties that surround higher-order nonlinear differential equations
and the few methods that yield analytic solutions are examined next. Two of the solution methods
considered in this section employ a change of variable to reduce a nonlinear second-order DE to a
first-order DE. In that sense these methods are analogous to the material in Section 4.2

4.10

Some Differences There are several significan differences between linear
and nonlinear differential equations. We saw in Section 4.1 that homogeneous linear
equations of order two or higher have the property that a linear combination of solu-
tions is also a solution (Theorem 4.1.2). Nonlinear equations do not possess this
property of superposability. See Problems 1 and 18 in Exercises 4.10. We can fin
general solutions of linear first-orde DEs and higher-order equations with constant
coefficients Even when we can solve a nonlinear first-orde differential equation in
the form of a one-parameter family, this family does not, as a rule, represent a gen-
eral solution. Stated another way, nonlinear first-orde DEs can possess singular
solutions, whereas linear equations cannot. But the major difference between linear
and nonlinear equations of order two or higher lies in the realm of solvability. Given
a linear equation, there is a chance that we can fin some form of a solution that we
can look at—an explicit solution or perhaps a solution in the form of an infinit
series (see Chapter 6). On the other hand, nonlinear higher-order differential equa-
tions virtually defy solution by analytical methods. Although this might sound dis-
heartening, there are still things that can be done. As was pointed out at the end of
Section 1.3, we can always analyze a nonlinear DE qualitatively and numerically.

Let us make it clear at the outset that nonlinear higher-order differential equations
are important—dare we say even more important than linear equations?—because as
we fine-tune the mathematical model of, say, a physical system, we also increase the
likelihood that this higher-resolution model will be nonlinear.

We begin by illustrating an analytical method that occasionally enables us to
find explicit/implicit solutions of special kinds of nonlinear second-order differential
equations.
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186 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

Reduction of Order  Nonlinear second-order differential equations F(x, y�, y	) � 0,

EXAMPLE 1 Dependent Variable y Is Missing

Solve y	 � 2x(y�)2.

SOLUTION If we let u � y�, then du�dx � y	. After substituting, the second-order
equation reduces to a first-order equation with separable variables; the independent
variable is x and the dependent variable is u:

The constant of integration is written as for convenience. The reason should be
obvious in the next few steps. Because u�1 � 1�y�, it follows that

and so

Independent Variable Missing Next we show how to solve an equation

y � �� 
dx

x2 � c1
2    or    y � �

1
c1

 tan�1 
x
c1

� c2.

dy
dx

� �
1

x2 � c1
2
,

c1
2

 �u�1 � x2 � c1
2.

 � u�2 du � � 2x dx

 
du
dx

� 2xu2    or    
du
u2 � 2x dx

EXAMPLE 2 Independent Variable x Is Missing

Solve yy	 � ( y�)2.

technique for an equation of the form F(x, y�, y	) � 0. If u � y�, then the differential
equation becomes F(x, u, u�) � 0. If we can solve this last equation for u, we can f nd
y by integration. Note that since we are solving a second-order equation, its solution
will contain two arbitrary constants.

that has the form F( y, y�, y	) � 0. Once more we let u � y�, but because the indepen-
dent variable x is missing, we use this substitution to transform the differential equa-
tion into one in which the independent variable is y and the dependent variable is u.
To this end we use the Chain Rule to compute the second derivative of y:

In this case the first-order equation that we must now solve i

F�y, u, u 
du
dy� � 0.

y 	 �
du
dx

�
du
dy

 dy
dx

� u 
du
dy

.

where the dependent variable y is missing, and F(y, y�, y	) � 0, where the indepen-
dent variable x is missing, can sometimes be solved by using first-order methods.
Each equation can be reduced to a first-order equation by means of the substitu-
tion u � y�.

Dependent Variable Missing The next example illustrates the substitution
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SOLUTION With the aid of u � y�, the Chain Rule shown above, and separation of
variables, the given differential equation becomes

Integrating the last equation then yields ln�u � � ln�y � � c1, which, in turn, gives u � c2y,
where the constant has been relabeled as c2. We now resubstitute u � dy�dx, sepa-
rate variables once again, integrate, and relabel constants a second time:

Use of Taylor Series In some instances a solution of a nonlinear initial-value
problem, in which the initial conditions are specified at x0, can be approximated by a
Taylor series centered at x0.

� 
dy
y

� c2 � dx    or    ln� y � � c2x � c3    or    y � c4ec2x.

�ec1

y�u 
du
dy� � u2    or    

du
u

�
dy
y

.

4.10 NONLINEAR DIFFERENTIAL EQUATIONS ● 187

EXAMPLE 3 Taylor Series Solution of an IVP

Let us assume that a solution of the initial-value problem

(1)

exists. If we further assume that the solution y(x) of the problem is analytic at 0, then
y(x) possesses a Taylor series expansion centered at 0:

(2)

Note that the values of the first and second terms in the series (2) are known
since those values are the specified initial conditions y(0) � �1, y�(0) � 1.
Moreover, the differential equation itself defines the value of the second derivative
at 0: y	(0) � 0 � y(0) � y(0)2 � 0 � (�1) � (�1)2 � �2. We can then fin
expressions for the higher derivatives y�, y(4), . . . by calculating the successive
derivatives of the differential equation:

(3)

(4)

(5)

and so on. Now using y(0) � �1 and y�(0) � 1, we find from (3) that y�(0) � 4. From
the values y(0) � �1, y�(0) � 1, and y	(0) � �2 we find y(4)(0) � �8 from (4). With
the additional information that y�(0) � 4, we then see from (5) that y(5)(0) � 24.
Hence from (2) the first six terms of a series solution of the initial-value problem (1) are

Use of a Numerical Solver Numerical methods, such as Euler’s method or the
Runge-Kutta method, are developed solely for first-order differential equations and then
are extended to systems of first-order equations. To analyze an nth-order initial-value
problem numerically, we express the nth-order ODE as a system of n first-order equa-
tions. In brief, here is how it is done for a second-order initial-value problem: First, solve

y(x) � �1 � x � x2 �
2
3
 x3 �

1
3
 x4 �

1
5
 x5 � � � � .

 y(5)(x) �
d

dx
 (y 	 � 2yy	 � 2(y�)2) � y� � 2yy� � 6y�y	

 y(4)(x) �
d

dx
 (1 � y� � 2yy�) � y 	 � 2yy	 � 2(y�)2

 y�(x) �
d

dx
 (x � y � y2) � 1 � y� � 2yy�

y(x) � y(0) �
y�(0)

1!
 x �

y 	(0)
2!

 x2 �
y�(0)

3!
 x3 �

y(4)(0)
4!

 x4 �
y(5)(0)

5!
 x5 � � � � .

y 	 � x � y � y2,  y(0) � �1,  y�(0) � 1
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for y	—that is, put the DE into normal form y	 � f (x, y, y�)—and then let y� � u. For
example, if we substitute y� � u in

(6)

then y	 � u� and y�(x0) � u(x0), so the initial-value problem (6) becomes

However, it should be noted that a commercial numerical solver might not require*

that you supply the system.

Subject to:  y(x0) � y0, u(x0) � u0.

 Solve:    	y� � u
u� � f(x, y, u)

d 2y
dx2 � f (x, y, y�),  y(x0 ) � y0,  y�(x0 ) � u0,

FIGURE 4.10.2 Numerical solution
curve for the IVP in (1)

y

10 20

x

FIGURE 4.10.1 Comparison of two
approximate solutions in Example 1

y

x

Taylor
polynomial 

solution curve 
generated by a 
numerical solver 

EXAMPLE 4 Graphical Analysis of Example 3

Following the foregoing procedure, we find that the second-order initial-value prob-
lem in Example 3 is equivalent to

with initial conditions y(0) � �1, u(0) � 1. With the aid of a numerical solver we get
the solution curve shown in blue in Figure 4.10.1. For comparison the graph of the
fifth-degree Taylor polynomial is shown
in red. Although we do not know the interval of convergence of the Taylor series
obtained in Example 3, the closeness of the two curves in a neighborhood of the ori-
gin suggests that the power series may converge on the interval (�1, 1).

Qualitative Questions The blue numerical solution curve in Figure 4.10.1
raises some questions of a qualitative nature: Is the solution of the original initial-value
problem oscillatory as ? The graph generated by a numerical solver on the larger
interval shown in Figure 4.10.2 would seem to suggest that the answer is yes. But this
single example—or even an assortment of examples—does not answer the basic ques-
tion as to whether all solutions of the differential equation y	 � x � y � y2 are oscilla-
tory in nature. Also, what is happening to the solution curve in Figure 4.10.2 when x is
near �1? What is the behavior of solutions of the differential equation as ?
Are solutions bounded as ? Questions such as these are not easily answered, in
general, for nonlinear second-order differential equations. But certain kinds of second-
order equations lend themselves to a systematic qualitative analysis, and these, like
their first-order relatives encountered in Section 2.1, are the kind that have no explicit
dependence on the independent variable. Second-order ODEs of the form

equations free of the independent variable x, are called autonomous. The differen-
tial equation in Example 2 is autonomous, and because of the presence of the x term
on its right-hand side, the equation in Example 3 is nonautonomous. For an in-depth
treatment of the topic of stability of autonomous second-order differential equations
and autonomous systems of differential equations, refer to Chapter 10 in Differential
Equations with Boundary-Value Problems.

F(y, y�, y	) � 0    or    
d 2y
dx2 � f (y, y�),

x : 

x : �


x : 


T5(x) � �1 � x � x2 � 2
3 x3 � 1

3 x4 � 1
5 x5

 
du
dx

� x � y � y2

 
dy
dx

� u

*Some numerical solvers require only that a second-order differential equation be expressed in normal
form y	 � f (x, y, y�). The translation of the single equation into a system of two equations is then built
into the computer program, since the first equation of the system is always y� � u and the second equation
is u� � f (x, y, u).
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EXERCISES 4.10 Answers to selected odd-numbered problems begin on page ANS-7.

In Problems 1 and 2 verify that y1 and y2 are solutions of the
given differential equation but that y � c1y1 � c2y2 is, in
general, not a solution.

1. (y	)2 � y2; y1 � ex, y2 � cos x

2.

In Problems 3–8 solve the given differential equation by
using the substitution u � y�.

3. y	 � ( y�)2 � 1 � 0 4. y	 � 1 � ( y�)2

5. x2y	 � ( y�)2 � 0 6. (y � 1)y	 � ( y�)2

7. y	 � 2y( y�)3 � 0 8. y2y	 � y�

In Problems 9 and 10 solve the given initial-value problem.

9.

10.

11. Consider the initial-value problem
y	 � yy� � 0, y(0) � 1, y�(0) � �1.

(a) Use the DE and a numerical solver to graph the
solution curve.

(b) Find an explicit solution of the IVP. Use a graphing
utility to graph this solution.

(c) Find an interval of definition for the solution in
part (b).

12. Find two solutions of the initial-value problem

Use a numerical solver to graph the solution curves.

In Problems 13 and 14 show that the substitution u � y� leads
to a Bernoulli equation. Solve this equation (see Section 2.5).

13. xy	 � y� � ( y�)3 14. xy	 � y� � x( y�)2

In Problems 15–18 proceed as in Example 3 and obtain the
first six nonzero terms of a Taylor series solution, centered
at 0, of the given initial-value problem. Use a numerical
solver and a graphing utility to compare the solution curve
with the graph of the Taylor polynomial.

15. y	 � x � y2, y(0) � 1, y�(0) � 1

16. y	 � y2 � 1, y(0) � 2, y�(0) � 3

17. y	 � x2 � y2 � 2y�, y(0) � 1, y�(0) � 1

18. y	 � ey, y(0) � 0, y�(0) � �1

( y 	)2 � ( y�)2 � 1,  y��

2� �
1
2
, y���

2� �
13
2

.

y	 � x(y�)2 � 0, y (1) � 4, y�(1) � 2

2y�y	 � 1, y(0) � 2, y�(0) � 1

yy 	 �
1
2
 ( y�)2; y1 � 1, y2 � x2

19. In calculus the curvature of a curve that is defined by a
function y � f (x) is defined a

Find y � f (x) for which k � 1. [Hint: For simplicity,
ignore constants of integration.]

Discussion Problems

20. In Problem 1 we saw that cos x and ex were solutions of
the nonlinear equation ( y	)2 � y2 � 0. Verify that sin x
and e�x are also solutions. Without attempting to solve the
differential equation, discuss how these explicit solutions
can be found by using knowledge about linear equations.
Without attempting to verify, discuss why the linear
combinations y � c1ex � c2e�x � c3 cos x � c4 sin x and
y � c2e�x � c4 sin x are not, in general, solutions, but
the two special linear combinations y � c1ex � c2e�x

and y � c3 cos x � c4 sin x must satisfy the differential
equation.

21. Discuss how the method of reduction of order con-
sidered in this section can be applied to the third-order
differential equation . Carry out your
ideas and solve the equation.

22. Discuss how to find an alternative two-parameter fam-
ily of solutions for the nonlinear differential equation
y	 � 2x( y�)2 in Example 1. [Hint: Suppose that is
used as the constant of integration instead of .]

Mathematical Models

23. Motion in a Force Field A mathematical model for
the position x(t) of a body moving rectilinearly on the
x-axis in an inverse-square force field is given b

Suppose that at t � 0 the body starts from rest from the
position x � x0, x0 � 0. Show that the velocity of
the body at time t is given by v2 � 2k2(1�x � 1�x0).
Use the last expression and a CAS to carry out the inte-
gration to express time t in terms of x.

24. A mathematical model for the position x(t) of a moving
object is

.

Use a numerical solver to graphically investigate the so-
lutions of the equation subject to x(0) � 0, x�(0) � x1,

d 2x
dt2 � sin x � 0

d 2x
dt2 � �

k2

x2.

�c1
2

�c1
2

y� � 11 � (y	)2

� �
y 	

[1 � ( y�)2]3 /2.
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190 ● CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

x1 � 0. Discuss the motion of the object for t � 0 and
for various choices of x1. Investigate the equation

d 2x
dt2 �

dx
dt

� sin x � 0

in the same manner. Give a possible physical interpreta-
tion of the dx�dt term.

CHAPTER 4 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-7.

Answer Problems 1–10 without referring back to the text.
Fill in the blank or answer true or false.

1. The only solution of the initial-value problem 
y	 � x2y � 0, y(0) � 0, y�(0) � 0 is __________.

2. For the method of undetermined coefficients, the
assumed form of the particular solution yp for
y	 � y � 1 � ex is __________.

3. A constant multiple of a solution of a linear differential
equation is also a solution. __________

4. If the set consisting of two functions f1 and f2 is linearly
independent on an interval I, then the Wronskian 
W( f1, f2) � 0 for all x in I. __________

5. If is a solution of a homogeneous linear 
second-order differential with constant coefficients
then the general solution of the DE is _______.

6. If is a solution of a homoge-
neous fourth-order linear differential equation with con-
stant coefficients, then the roots of the auxiliary equation
are _______.

7. If is the general solution of
a homogeneous second-order Cauchy-Euler equation,
then the DE is _______.

8. is particular solution of for
_______.

9. If is a particular solution of and
is a particular solution of then

a particular solution of is _______.

10. If and are solutions of homogeneous
linear differential equation, then necessarily

is also a solution of the DE. _______ 

11. Give an interval over which the set of two functions
f1(x) � x2 and f2(x) � x �x � is linearly independent.
Then give an interval over which the set consisting of
f1 and f2 is linearly dependent.

12. Without the aid of the Wronskian, determine whether
the given set of functions is linearly independent or
linearly dependent on the indicated interval.
(a) f1(x) � ln x, f2(x) � ln x2, (0, 
)
(b) f1(x) � xn, f2(x) � xn�1, n � 1, 2, . . . , (�
, 
)

y � �5e�x � 10ex

y2 � e�xy1 � ex

y	 � y � x2 � x
y	 � y � x2,yp2

� x2 � 2
y	 � y � xyp1

� x

A �
y� � y	 � 1yp � Ax2

y � c1x2 � c2x2 ln x, x � 0,

y � 1 � x � 6x2 � 3ex

y � sin 5x

(c) f1(x) � x, f2(x) � x � 1, (�
, 
)

(d)

(e) f1(x) � 0, f2(x) � x, (�5, 5)
(f) f1(x) � 2, f2(x) � 2x, (�
, 
)
(g) f1(x) � x2, f2(x) � 1 � x2, f3(x) � 2 � x2, (�
, 
)
(h) f1(x) � xex�1, f2(x) � (4x � 5)ex,

f3(x) � xex, (�
, 
)

13. Suppose m1 � 3, m2 � �5, and m3 � 1 are roots of
multiplicity one, two, and three, respectively, of an aux-
iliary equation. Write down the general solution of the
corresponding homogeneous linear DE if it is
(a) an equation with constant coefficients
(b) a Cauchy-Euler equation.

14. Consider the differential equation ay	 � by� � cy � g(x),
where a, b, and c are constants. Choose the input func-
tions g(x) for which the method of undetermined coeffi
cients is applicable and the input functions for which the
method of variation of parameters is applicable.
(a) g(x) � ex ln x (b) g(x) � x3 cos x

(c) (d) g(x) � 2x�2ex

(e) g(x) � sin2x (f)

In Problems 15–30 use the procedures developed in this
chapter to find the general solution of each differential
equation.

15. y	 � 2y� � 2y � 0

16. 2y	 � 2y� � 3y � 0

17. y� � 10y	 � 25y� � 0

18. 2y� � 9y	 � 12y� � 5y � 0

19. 3y� � 10y	 � 15y� � 4y � 0

20. 2y(4) � 3y� � 2y	 � 6y� � 4y � 0

21. y	 � 3y� � 5y � 4x3 � 2x

22. y	 � 2y� � y � x2ex

g(x) �
ex

sin x

g(x) �
sin x

ex

f1(x) � cos�x �
�

2�, f2(x) � sin x, (�
, 
)
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23. y� � 5y	 � 6y� � 8 � 2 sin x

24. y� � y	 � 6

25. y	 � 2y� � 2y � ex tan x

26.

27. 6x2y	 � 5xy� � y � 0

28. 2x3y� � 19x2y	 � 39xy� � 9y � 0

29. x2y	 � 4xy� � 6y � 2x4 � x2

30. x2y	 � xy� � y � x3

31. Write down the form of the general solution y � yc � yp
of the given differential equation in the two cases v� a
and v� a. Do not determine the coefficients i yp.
(a) y	 � v2y � sin ax (b) y	 � v2y � eax

32. (a) Given that y � sin x is a solution of

y(4) � 2y� � 11y	 � 2y� � 10y � 0,

find the general solution of the DE without the aid
of a calculator or a computer.

(b) Find a linear second-order differential equation
with constant coefficients for which y1 � 1 and
y2 � e�x are solutions of the associated homoge-
neous equation and is a particular
solution of the nonhomogeneous equation.

33. (a) Write the general solution of the fourth-order DE
y(4) � 2y	 � y � 0 entirely in terms of hyperbolic
functions.

(b) Write down the form of a particular solution of
y(4) � 2y	 � y � sinh x.

34. Consider the differential equation 

x2y	 � (x2 � 2x)y� � (x � 2)y � x3.

Verify that y1 � x is one solution of the associated
homogeneous equation. Then show that the method of
reduction of order discussed in Section 4.2 leads to a
second solution y2 of the homogeneous equation as well
as a particular solution yp of the nonhomogeneous equa-
tion. Form the general solution of the DE on the interval
(0, 
).

yp � 1
2 x2 � x

y 	 � y �
2ex

ex � e�x

In Problems 35–40 solve the given differential equation sub-
ject to the indicated conditions.

35.

36. y	 � 2y� � y � 0, y(�1) � 0, y�(0) � 0

37. y	 � y � x � sin x, y(0) � 2, y�(0) � 3

38.

39. y�y	 � 4x, y(1) � 5, y�(1) � 2

40. 2y	 � 3y2, y(0) � 1, y�(0) � 1

41. (a) Use a CAS as an aid in finding the roots of the aux-
iliary equation for

12y(4) � 64y� � 59y	 � 23y� � 12y � 0.

Give the general solution of the equation.
(b) Solve the DE in part (a) subject to the initial condi-

tions y(0) � �1, y�(0) � 2, y	(0) � 5, y�(0) � 0.
Use a CAS as an aid in solving the resulting
systems of four equations in four unknowns.

42. Find a member of the family of solutions of
whose graph is tangent to the

x-axis at x � 1. Use a graphing utility to graph the
solution curve.

In Problems 43–46 use systematic elimination to solve the
given system.

43.

44.

45.

46.
 5x � (D � 3)y � cos 2t

(D � 2 )x � (D � 1)y � sin 2t

 �3 x � (D � 4 )  y � �7et
 (D �  2)x  � y � �et

dy
dt

� 3x � 4y � 4t

dx
dt

� 2x �  y �  t � 2

 
dx
dt

� 2 
dy
dt

�  y � 3

 
dx
dt

�  
dy
dt

� 2x � 2y � 1

xy	 � y� � 1x � 0

y 	 � y � sec3x, y(0) � 1, y�(0) � 1
2

y 	 � 2y� � 2y � 0, y (p>2) � 0, y(�) � �1
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192

Modeling with Higher-Order 
Differential Equations

We have seen that a single differential equation can serve as a mathematical model
for diverse physical systems. For this reason we examine just one application, the
motion of a mass attached to a spring, in great detail in Section 5.1. Except for
terminology and physical interpretations of the four terms in the linear differential
equation

the mathematics of, say, an electrical series circuit is identical to that of a vibrating
spring/mass system. Forms of this linear second-order equation appear in the
analysis of problems in many different areas of science and engineering. In Section 5.1
we deal exclusively with initial-value problems, whereas in Section 5.2 we examine
applications described by boundary-value problems. In Section 5.2 we also see how
some boundary-value problems lead to the important concepts of eigenvalues and
eigenfunctions. Section 5.3 begins with a discussion on the differences between
linear and nonlinear springs; we then show how the simple pendulum and a
suspended wire lead to nonlinear models.

a 
d 2y
dt2 � b 

dy
dt

� cy � g (t),

5.1 Linear Models: Initial-Value Problems
5.1.1 Spring/Mass Systems: Free Undamped Motion
5.1.2 Spring/Mass Systems: Free Damped Motion
5.1.3 Spring/Mass Systems: Driven Motion
5.1.4 Series Circuit Analogue

5.2 Linear Models: Boundary-Value Problems
5.3 Nonlinear Models

Chapter 5 in Review

5
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5.1 LINEAR MODELS: INITIAL-VALUE PROBLEMS ● 193

5.1.1 SPRING/MASS SYSTEMS: 
FREE UNDAMPED MOTION

Hooke’s Law Suppose that a flexible spring is suspended vertically from a rigid
support and then a mass m is attached to its free end. The amount of stretch, or elonga-
tion, of the spring will of course depend on the mass; masses with different weights
stretch the spring by differing amounts. By Hooke’s law the spring itself exerts a restor-
ing force F opposite to the direction of elongation and proportional to the amount of
elongation s. Simply stated, F � ks, where k is a constant of proportionality called the
spring constant. The spring is essentially characterized by the number k. For example,
if a mass weighing 10 pounds stretches a spring foot, then implies
k � 20 lb/ft. Necessarily then, a mass weighing, say, 8 pounds stretches the same
spring only foot.

Newton’s Second Law After a mass m is attached to a spring, it stretches
the spring by an amount s and attains a position of equilibrium at which its
weight W is balanced by the restoring force ks. Recall that weight is defined by
W � mg, where mass is measured in slugs, kilograms, or grams and g � 32 ft /s2,
9.8 m/s2, or 980 cm/s2, respectively. As indicated in Figure 5.1.1(b), the condition
of equilibrium is mg � ks or mg � ks � 0. If the mass is displaced by an amount
x from its equilibrium position, the restoring force of the spring is then k(x � s).
Assuming that there are no retarding forces acting on the system and assuming that
the mass vibrates free of other external forces — free motion — we can equate
Newton’s second law with the net, or resultant, force of the restoring force and the
weight:

(1)

The negative sign in (1) indicates that the restoring force of the spring acts opposite
to the direction of motion. Furthermore, we adopt the convention that displacements
measured below the equilibrium position x � 0 are positive. See Figure 5.1.2.

d 2x–––
dt 2 � �k(s � x) � mg � � kx � mg � ks � �kx.m

zero

2
5

10 � k � 1
2�

1
2

m

(a) (b) (c)

unstretched

motion

l

equilibrium
position

mg − ks = 0

m

l
l + s

s

x

FIGURE 5.1.1 Spring/mass system

m

x = 0

x < 0

x > 0

FIGURE 5.1.2 Direction below the
equilibrium position is positive.

LINEAR MODELS: INITIAL-VALUE PROBLEMS

REVIEW MATERIAL
● Sections 4.1, 4.3, and 4.4
● Problems 29–36 in Exercises 4.3
● Problems 27–36 in Exercises 4.4

INTRODUCTION In this section we are going to consider several linear dynamical systems in
which each mathematical model is a second-order differential equation with constant coefficient
along with initial conditions specified at a time that we shall take to be t � 0:

.

Recall that the function g is the input, driving function, or forcing function of the system. A solution
y(t) of the differential equation on an interval I containing t � 0 that satisfies the initial conditions is
called the output or response of the system.

a d
2y

dt2 � b dy
dt

� cy � g(t), y(0) � y0, y�(0) � y1

5.1

27069_05_ch05_p192-230.qxd  2/2/12  2:38 PM  Page 193

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



194 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

DE of Free Undamped Motion By dividing (1) by the mass m, we obtain
the second-order differential equation d2x�dt2 � (k�m)x � 0, or

, (2)

where v2 � k�m. Equation (2) is said to describe simple harmonic motion or
free undamped motion. Two obvious initial conditions associated with (2) are
x(0) � x0 and x�(0) � x1, the initial displacement and initial velocity of the mass,
respectively. For example, if x0 � 0, x1 � 0, the mass starts from a point below the
equilibrium position with an imparted upward velocity. When x�(0) � 0, the mass is
said to be released from rest. For example, if x0 � 0, x1 � 0, the mass is released
from rest from a point �x0 � units above the equilibrium position.

d 2x
dt2 � �2x � 0

Equation of Motion To solve equation (2), we note that the solutions of its
auxiliary equation m2 � v2 � 0 are the complex numbers m1 � vi, m2 � �vi. Thus
from (8) of Section 4.3 we find the general solution of (2) to b

. (3)

The period of motion described by (3) is T � 2p�v. The number T represents the time
(measured in seconds) it takes the mass to execute one cycle of motion. A cycle is one
complete oscillation of the mass, that is, the mass m moving from, say, the lowest point
below the equilibrium position to the point highest above the equilibrium position and
then back to the lowest point. From a graphical viewpoint T � 2p�v seconds is the
length of the time interval between two successive maxima (or minima) of x(t). Keep
in mind that a maximum of x(t) is a positive displacement corresponding to the mass
attaining its greatest distance below the equilibrium position, whereas a minimum of
x(t) is negative displacement corresponding to the mass attaining its greatest height
above the equilibrium position. We refer to either case as an extreme displacement of
the mass. The frequency of motion is f � 1�T � v�2p and is the number of cycles
completed each second. For example, if x(t) � 2 cos 3p t � 4 sin 3p t, then the period
is T � 2p�3p� 2�3 s, and the frequency is f � 3�2 cycles/s. From a graphical view-
point the graph of x(t) repeats every second, that is, , and cycles of
the graph are completed each second (or, equivalently, three cycles of the graph are
completed every 2 seconds). The number (measured in radians per sec-
ond) is called the circular frequency of the system. Depending on which text you read,
both f � v�2p and v are also referred to as the natural frequency of the system.
Finally, when the initial conditions are used to determine the constants c1 and c2 in (3),
we say that the resulting particular solution or response is the equation of motion.

� � 1k>m

3
2x(t � 2

3) � x(t)2
3

x(t) � c1 cos �t � c2 sin �t

EXAMPLE 1 Free Undamped Motion

A mass weighing 2 pounds stretches a spring 6 inches. At t � 0 the mass is released
from a point 8 inches below the equilibrium position with an upward velocity of .
Determine the equation of motion.

SOLUTION Because we are using the engineering system of units, the measure-
ments given in terms of inches must be converted into feet: ; .
In addition, we must convert the units of weight given in pounds into units of mass.
From m � W�g we have slug. Also, from Hooke’s law, 
implies that the spring constant is k � 4 lb/ft. Hence (1) gives

.

The initial displacement and initial velocity are , , where the neg-
ative sign in the last condition is a consequence of the fact that the mass is given an
initial velocity in the negative, or upward, direction.

x� (0) � �4
3x(0) � 2

3

1
16

 
d 2x
dt2 � �4x  or  d 2x

dt2 � 64x � 0

2 � k � 1
2�m � 2

32 � 1
16

8 in. � 2
3 ft6 in. � 1

2 ft

4
3 ft /s
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5.1 LINEAR MODELS: INITIAL-VALUE PROBLEMS ● 195

Now v2 � 64 or v � 8, so the general solution of the differential equation is

. (4)

Applying the initial conditions to x(t) and x�(t) gives and . Thus the
equation of motion is

. (5)

Alternative Forms of x(t) When c1 	 0 and c2 	 0, the actual amplitude A
of free vibrations is not obvious from inspection of equation (3). For example,
although the mass in Example 1 is initially displaced foot beyond the equilibrium
position, the amplitude of vibrations is a number larger than . Hence it is often con-
venient to convert a solution of form (3) to the simpler form

, (6)

where and f is a phase angle defined b

. (7)

To verify this, we expand (6) by the addition formula for the sine function:

. (8)

It follows from Figure 5.1.3 that if f is defined b

,

then (8) becomes

.A 
c1

A
 cos �t � A c2

A
 sin �t � c1 cos �t � c2 sin �t � x(t)

sin 
 �
c1

1c1 

2 � c2 

2
�

c1

A
,  cos 
 �

c2

1c1 

2 � c2 

2
�

c2

A

A sin �t cos 
 � � cos �t sin 
 � (� sin 
)cos �t � (� cos 
)sin �t

sin 
 �
c1

A

cos 
 �
c2

A
� tan 
 �

c1

c2

A � 2c1
2 � c2

2

x(t) � A sin(�t � 
)

2
3

2
3

x(t) �
2
3
 cos 8t �

1
6
 sin 8t

c2 � �1
6c1 � 2

3

x(t) � c1 cos 8t � c2 sin 8t

c1

c2

φ

c1  + c2
22

FIGURE 5.1.3 A relationship between
c1 � 0, c2 � 0 and phase angle f

EXAMPLE 2 Alternative Form of Solution (5)

In view of the foregoing discussion we can write solution (5) in the alternative
form x(t) � A sin(8t � f). Computation of the amplitude is straightforward,

, but some care should be exercised in
computing the phase angle f defined by (7). With and we find
tan f � �4, and a calculator then gives tan�1(�4) � �1.326 rad. This is not the
phase angle, since tan�1(�4) is located in the fourth quadrant and therefore con-
tradicts the fact that sin f � 0 and cos f � 0 because c1 � 0 and c2 � 0. Hence
we must take f to be the second-quadrant angle f � p � (�1.326) � 1.816 rad.
Thus (5) is the same as

. (9)

The period of this function is T � 2p�8 � p�4 s.

You should be aware that some instructors in science and engineering prefer that
(3) be expressed as a shifted cosine function 

x(t) � A cos(vt � f), (6�)

x(t) �
117

6
 sin(8t � 1.816)

c2 � �1
6c1 � 2

3

A � 2(2
3)2 � (�1

6)2 � 217
36 � 0.69 ft
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196 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

where In this case the radian measured angle is defined in slightly
different manner than in (7):

. (7�)

For example, in Example 2 with and (7�) indicates that tan 
Because sin and cos the angle lies in the fourth quadrant and so
rounded to three decimal places rad. From (6�) we obtain
a second alternative form of solution (5):

.

Graphical Interpretation Figure 5.1.4(a) illustrates the mass in Example 2
going through approximately two complete cycles of motion.  Reading left to right, the
first five positions (marked with black dots) correspond to the initial position of the
mass below the equilibrium position , the mass passing through the equilibrium
position for the first time heading upward (x � 0), the mass at its extreme displacement
above the equilibrium position , the mass at the equilibrium position
for the second time heading downward (x � 0), and the mass at its extreme displace-
ment below the equilibrium position . The black dots on the graph of (9),
given in Figure 5.1.4(b), also agree with the five positions just given. Note, however,
that in Figure 5.1.4(b) the positive direction in the tx-plane is the usual upward

(x � 117�6)

(x � �117�6)

(x � 2
3)

x(t) �
217

6
 cos(8t � (�0.245)) or x(t) �

217
6

 cos(8t � 0.245)

f � tan�1(�1
4) � �0.245
ff � 0f � 0

f � �1
4.c2 � �1

6,c1 � 2
3

sin 
 �
c2

A

cos 
 �
c1

A
� tan 
 �

c2

c1

fA � 2c2
1 � c2

2.

x = − 6
17

x = 6
17

x = 0

2
3x =

x = 0 x = 0

x negative

x positive

(a)

(b)

x

t

(0, )2
3

period
4
π

amplitude

A = 6
17

x = 0

x negative

x positive

FIGURE 5.1.4 Simple harmonic motion
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5.1 LINEAR MODELS: INITIAL-VALUE PROBLEMS ● 197

direction and so is opposite to the positive direction indicated in Figure 5.1.4(a). Hence
the solid blue graph representing the motion of the mass in Figure 5.1.4(b) is the
reflection through the t-axis of the blue dashed curve in Figure 5.1.4(a).

Form (6) is very useful because it is easy to find values of time for which
the graph of x(t) crosses the positive t-axis (the line x � 0). We observe that
sin(vt � f) � 0 when vt � f � np, where n is a nonnegative integer.

Systems with Variable Spring Constants In the model discussed above we
assumed an ideal world—a world in which the physical characteristics of the spring
do not change over time. In the nonideal world, however, it seems reasonable to ex-
pect that when a spring/mass system is in motion for a long period, the spring will
weaken; in other words, the “spring constant” will vary—or, more specificall ,
decay—with time. In one model for the aging spring the spring constant k in (1) is
replaced by the decreasing function K(t) � ke�at, k � 0, a� 0. The linear
differential equation mx� � ke�atx � 0 cannot be solved by the methods that were
considered in Chapter 4. Nevertheless, we can obtain two linearly independent solu-
tions using the methods in Chapter 6. See Problem 15 in Exercises 5.1, Example 4 in
Section 6.4, and Problems 33 and 39 in Exercises 6.4.

When a spring/mass system is subjected to an environment in which the
temperature is rapidly decreasing, it might make sense to replace the constant k
with K(t) � kt, k � 0, a function that increases with time. The resulting model,
mx� � ktx � 0, is a form of Airy’s differential equation. Like the equation for
an aging spring, Airy’s equation can be solved by the methods of Chapter 6. See
Problem 16 in Exercises 5.1, Example 5 in Section 6.2, and Problems 34, 35, and
40 in Exercise 6.4.

5.1.2 SPRING/MASS SYSTEMS: 
FREE DAMPED MOTION

The concept of free harmonic motion is somewhat unrealistic, since the motion
described by equation (1) assumes that there are no retarding forces acting on the mov-
ing mass. Unless the mass is suspended in a perfect vacuum, there will be at least a re-
sisting force due to the surrounding medium. As Figure 5.1.5 shows, the mass could be
suspended in a viscous medium or connected to a dashpot damping device.

DE of Free Damped Motion In the study of mechanics, damping forces
acting on a body are considered to be proportional to a power of the instantaneous
velocity. In particular, we shall assume throughout the subsequent discussion that
this force is given by a constant multiple of dx�dt. When no other external forces are
impressed on the system, it follows from Newton’s second law that

, (10)

where b is a positive damping constant and the negative sign is a consequence of the
fact that the damping force acts in a direction opposite to the motion.

Dividing (10) by the mass m, we find that the differential equation of free
damped motion is 

or , (11)

where . (12)2
 �
�

m
,  �2 �

k
m

d 2x
dt2 � 2
 

dx
dt

� �2x � 0

d 2x
dt 2 �

b

m
 
dx
dt

�
k
m

x � 0

m d
2x

dt2 � �kx � � dx
dt

m

(a)

(b)

m

FIGURE 5.1.5 Damping devices
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198 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

The symbol 2l is used only for algebraic convenience because the auxiliary equation
is m2 � 2lm � v2 � 0, and the corresponding roots are then

.

We can now distinguish three possible cases depending on the algebraic sign of
l2 � v2. Since each solution contains the damping factor e�lt, l � 0, the displace-
ments of the mass become negligible as time t increases.

Case I: L2 � V2 � 0 In this situation the system is said to be overdamped
because the damping coefficient b is large when compared to the spring constant k.
The corresponding solution of (11) is or

. (13)

This equation represents a smooth and nonoscillatory motion. Figure 5.1.6 shows
two possible graphs of x(t).

Case II: L2 � V2 � 0 The system is said to be critically damped because any
slight decrease in the damping force would result in oscillatory motion. The general
solution of (11) is or

. (14)

Some graphs of typical motion are given in Figure 5.1.7. Notice that the motion is
quite similar to that of an overdamped system. It is also apparent from (14) that the
mass can pass through the equilibrium position at most one time.

Case III: L2 � V2 � 0 In this case the system is said to be underdamped,
since the damping coefficient is small in comparison to the spring constant. The roots
m1 and m2 are now complex:

.

Thus the general solution of equation (11) is

. (15)

As indicated in Figure 5.1.8, the motion described by (15) is oscillatory; but because
of the coefficient e�lt, the amplitudes of vibration as .t : �: 0

x(t) � e�
t (c1 cos 1�2 � 
2t � c2 sin 1�2 � 
2t)

m1 � �
 � 1�2 � 
2i,    m2 � �
 � 1�2 � 
2i

x(t) � e�
t(c1 � c2t)

x(t) � c1em1t � c2tem1t

x (t) � e�
t (c1e1
2��2t � c2e�1
2��2t)

x (t) � c1em1t � c2em2t

m1 � �
 � 2
2 � �2,    m2 � �
 � 2
2 � �2

t

x

FIGURE 5.1.6 Motion of an
overdamped system

t

x

underdamped
undamped

t

x

FIGURE 5.1.7 Motion of a critically
damped system

FIGURE 5.1.8 Motion of an
underdamped system

EXAMPLE 3 Overdamped Motion

It is readily verified that the solution of the initial-value proble

is (16)

The problem can be interpreted as representing the overdamped motion of a mass on
a spring. The mass is initially released from a position 1 unit below the equilibrium
position with a downward velocity of 1 ft /s.

To graph x(t), we find the value of t for which the function has an
extremum — that is, the value of time for which the first derivative (velocity) is
zero. Differentiating (16) gives , so x�(t) � 0 implies thatx�(t) � �5

3 e�t � 8
3 e�4t

x(t) �
5
3
 e�t �

2
3
 e�4t.

d 2x
dt2 � 5 dx

dt
� 4x � 0, x(0) � 1, x�(0) � 1
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5.1 LINEAR MODELS: INITIAL-VALUE PROBLEMS ● 199

or . It follows from the first derivative test, as well as our
physical intuition, that x(0.157) � 1.069 ft is actually a maximum. In other
words, the mass attains an extreme displacement of 1.069 feet below the equilib-
rium position.

We should also check to see whether the graph crosses the t-axis—that is,
whether the mass passes through the equilibrium position. This cannot happen in this
instance because the equation x(t) � 0, or , has the physically irrelevant solu-
tion .

The graph of x(t), along with some other pertinent data, is given in
Figure 5.1.9.

t � 1
3 ln 25 � �0.305

e3t � 2
5

t � 1
3 ln 85 � 0.157e3t � 8

5

1 32 t

x
5
3x = −e−t e−4t2

3

t x(t)

1 0.601
1.5 0.370
2 0.225
2.5 0.137
3 0.083

(a)

(b)

FIGURE 5.1.9 Overdamped system in
Example 3

EXAMPLE 4 Critically Damped Motion

A mass weighing 8 pounds stretches a spring 2 feet. Assuming that a damping force
numerically equal to 2 times the instantaneous velocity acts on the system, determine
the equation of motion if the mass is initially released from the equilibrium position
with an upward velocity of 3 ft /s.

SOLUTION From Hooke’s law we see that 8 � k(2) gives k � 4 lb/ft and that
W � mg gives slug. The differential equation of motion is then

. (17)

The auxiliary equation for (17) is m2 � 8m � 16 � (m � 4)2 � 0, so m1 � m2 � � 4.
Hence the system is critically damped, and

. (18)

Applying the initial conditions x(0) � 0 and x�(0) � �3, we find, in turn, that c1 � 0
and c2 � �3. Thus the equation of motion is

. (19)

To graph x(t), we proceed as in Example 3. From x�(t) � �3e�4t(1 � 4t) we
see that x�(t) � 0 when . The corresponding extreme displacement is

. As shown in Figure 5.1.10, we interpret this value
to mean that the mass reaches a maximum height of 0.276 foot above the
equilibrium position.

x(1
4) � �3(1

4)e�1 � �0.276 ft
t � 1

4

x(t) � �3te�4t

x(t) � c1e�4t � c2te�4t

1
4
 
d 2x
dt 2 � �4x � 2 dx

dt
  or  d 2x

dt2 � 8 dx
dt

� 16x � 0

m � 8
32 � 1

4

EXAMPLE 5 Underdamped Motion

A mass weighing 16 pounds is attached to a 5-foot-long spring. At equilibrium the
spring measures 8.2 feet. If the mass is initially released from rest at a point 2 feet above
the equilibrium position, find the displacements x(t) if it is further known that the sur-
rounding medium offers a resistance numerically equal to the instantaneous velocity.

SOLUTION The elongation of the spring after the mass is attached is 8.2 � 5 � 3.2 ft,
so it follows from Hooke’s law that 16 � k(3.2) or k � 5 lb/ft. In addition,

slug, so the differential equation is given by

. (20)

Proceeding, we find that the roots of m2 � 2m � 10 � 0 are m1 � �1 � 3i and
m2 � �1 � 3i, which then implies that the system is underdamped, and

(21)x(t) � e�t(c1 cos 3t � c2 sin 3t).

1
2
 
d 2x
dt2 � �5x �

dx
dt

    or    
d 2x
dt2 � 2 dx

dt
� 10x � 0

m � 16
32 � 1

2

− 0.276
t

x t = 

maximum
height above

equilibrium position

1
4

FIGURE 5.1.10 Critically damped
system in Example 4
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200 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

Finally, the initial conditions x(0) � �2 and x�(0) � 0 yield c1 � �2 and ,
so the equation of motion is

. (22)

Alternative Form of x(t) In a manner identical to the procedure used on
page 195, we can write any solution

in the alternative form

, (23)

where and the phase angle f is determined from the equations

.

The coefficient Ae�lt is sometimes called the damped amplitude of vibrations.
Because (23) is not a periodic function, the number is called the
quasi period and is the quasi frequency. The quasi period is the
time interval between two successive maxima of x(t). You should verify, for the
equation of motion in Example 5, that and f � 4.391. Therefore an
equivalent form of (22) is

.

5.1.3 SPRING/MASS SYSTEMS: DRIVEN MOTION

DE of Driven Motion with Damping Suppose we now take into con-
sideration an external force f (t) acting on a vibrating mass on a spring. For
example, f (t) could represent a driving force causing an oscillatory vertical motion
of the support of the spring. See Figure 5.1.11. The inclusion of f (t) in the formu-
lation of Newton’s second law gives the differential equation of driven or forced
motion:

. (24)

Dividing (24) by m gives

, (25)

where F(t) � f(t)�m and, as in the preceding section, 2l� b�m, v2 � k�m. To solve
the latter nonhomogeneous equation, we can use either the method of undetermined
coefficients or variation of parameters

d 2x
dt2 � 2
 dx

dt
� �2x � F(t)

m d
2x

dt2 � �kx � � 
dx
dt

� f (t)

x (t) �
2110

3
 e�t sin(3t � 4.391)

A � 2110�3

1�2 � 
2 �2�
2� �1�2 � 
2

sin 
 �
c1

A
,  cos 
 �

c2

A
,  tan 
 �

c1

c2

A � 1c1 

2 � c2 

2

x(t) � Ae�
t  sin(1�2 � 
2t � 
)

x(t) � e�
t (c1 cos 1�2 � 
2t � c2 sin 1�2 � 
2t)

x(t) � e�t ��2 cos 3t �
2
3
 sin 3t�

c2 � �2
3

m

FIGURE 5.1.11 Oscillatory vertical
motion of the support

EXAMPLE 6 Interpretation of an Initial-Value Problem

Interpret and solve the initial-value problem

. (26)

SOLUTION We can interpret the problem to represent a vibrational system consist-
ing of a mass ( slug or kilogram) attached to a spring (k � 2 lb/ft or N/m).m � 1

5

1
5
 
d 2x
dt2 � 1.2 dx

dt
� 2x � 5 cos 4t, x(0) �

1
2
, x�(0) � 0
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5.1 LINEAR MODELS: INITIAL-VALUE PROBLEMS ● 201

The mass is initially released from rest unit (foot or meter) below the equilibrium
position. The motion is damped (b � 1.2) and is being driven by an external peri-
odic (T � p�2 s) force beginning at t � 0. Intuitively, we would expect that even
with damping, the system would remain in motion until such time as the forcing
function was “turned off,” in which case the amplitudes would diminish. However,
as the problem is given, f (t) � 5 cos 4t will remain “on” forever.

We first multiply the di ferential equation in (26) by 5 and solve

by the usual methods. Because m1 � �3 � i, m2 � �3 � i, it follows that
xc(t) � e�3t(c1 cos t � c2 sin t). Using the method of undetermined coefficients,
we assume a particular solution of the form xp(t) � A cos 4t � B sin 4t. Differentiating
xp(t) and substituting into the DE gives

.

The resulting system of equations

yields and . It follows that

. (27)

When we set t � 0 in the above equation, we obtain . By differentiating
the expression and then setting t � 0, we also find that . Therefore the
equation of motion is

. (28)x(t) � e�3t �38
51

 cos t �
86
51

 sin t� �
25

102
 cos 4t �

50
51

 sin 4t

c2 � �86
51

c1 � 38
51

x(t) � e�3t(c1 cos t � c2 sin t) �
25
102

 cos 4t �
50
51

 sin 4t

B � 50
51A � � 25

102

�6A � 24B � 25,  �24A � 6B � 0

x�p � 6x�p � 10xp � (�6A � 24B) cos 4t � (�24A � 6B) sin 4t � 25 cos 4t

dx2

dt2 � 6 dx
dt

� 10x � 0

1
2

t

x

steady state
xp(t)

transient
_ 1

1

π /2

(a)

(b)

t

x
x(t)=transient

+ steady state

_ 1

1

π /2

FIGURE 5.1.12 Graph of solution in
(28) of Example 6

x

2ππ

x1=7
x1=3
x1=0

x1=_3
t

FIGURE 5.1.13 Graph of solution in
Example 7 for various initial velocities x1

EXAMPLE 7 Transient/Steady-State Solutions

The solution of the initial-value problem

,

where x1 is constant, is given by

Solution curves for selected values of the initial velocity x1 are shown in Figure 5.1.13.
The graphs show that the influence of the transient term is negligible for about
t � 3p�2.

x(t) � (x1 � 2) e�t sin t � 2 sin t.

transient steady-state

d 2x
dt2 � 2 dx

dt
� 2x � 4 cos t � 2 sin t, x (0) � 0, x�(0) � x1

Transient and Steady-State Terms When F is a periodic function, such as
F(t) � F0 sin gt or F(t) � F0 cos gt, the general solution of (25) for l � 0 is the sum
of a nonperiodic function xc(t) and a periodic function xp(t). Moreover, xc(t) dies off
as time increases—that is, . Thus for large values of time, the dis-
placements of the mass are closely approximated by the particular solution xp(t). The
complementary function xc(t) is said to be a transient term or transient solution,
and the function xp(t), the part of the solution that remains after an interval of time, is
called a steady-state term or steady-state solution. Note therefore that the effect
of the initial conditions on a spring/mass system driven by F is transient. In the
particular solution (28), is a transient term, and 

is a steady-state term. The graphs of these two terms and the
solution (28) are given in Figures 5.1.12(a) and 5.1.12(b), respectively.
� 25

102 cos 4t � 50
51 sin 4t

xp(t) �e�3t (38
51 cos t � 86

51 sin t)

limt:� xc (t) � 0
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202 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

DE of Driven Motion without Damping With a periodic impressed force
and no damping force, there is no transient term in the solution of a problem. Also,
we shall see that a periodic impressed force with a frequency near or the same as the
frequency of free undamped vibrations can cause a severe problem in any oscillatory
mechanical system.

x

t

FIGURE 5.1.14 Pure resonance

EXAMPLE 8 Undamped Forced Motion

Solve the initial-value problem

, (29)

where F0 is a constant and g 	 v.

SOLUTION The complementary function is xc(t) � c1 cos vt � c2 sin vt. To obtain a
particular solution, we assume xp(t) � A cos gt � B sin gt so that

.
Equating coefficients immediately gives A � 0 and B � F0�(v2 � g2). Therefore

.

Applying the given initial conditions to the general solution

yields c1 � 0 and c2 � �gF0�v(v2 � g2). Thus the solution is

. (30)

Pure Resonance Although equation (30) is not defined for g� v, it is interesting
to observe that its limiting value as can be obtained by applying L’Hôpital’s
Rule. This limiting process is analogous to “tuning in” the frequency of the driving
force (g�2p) to the frequency of free vibrations (v�2p). Intuitively, we expect that
over a length of time we should be able to substantially increase the amplitudes of vi-
bration. For g � v we define the solution to b

(31)

As suspected, when , the displacements become large; in fact, 
when tn � np�v, n � 1, 2, . . . . The phenomenon that we have just described is known
as pure resonance. The graph given in Figure 5.1.14 shows typical motion in this case.

In conclusion it should be noted that there is no actual need to use a limiting
process on (30) to obtain the solution for g � v. Alternatively, equation (31) follows
by solving the initial-value problem

directly by conventional methods.

d 2x
dt2 � �2x � F0 sin �t, x(0) � 0, x�(0) � 0

� x(tn) � B �t : �

 �
F0

2�2 sin �t �
F0

2�
 t cos �t.

 � F0
�sin �t � �t cos �t

�2�2

 � F0 lim
� :�

�sin �t � �t cos �t
�2��

 x(t) � lim
� :�

F0
    �� sin �t � � sin �t

�(�2 � �2)
� F0 lim  

� :�

d
d�

 (�� sin �t � � sin �t)

d
d�

 (�3 � ��2)

� : �

x(t) �
F0

�(�2 � �2)
 (�� sin �t � � sin �t),  � 	 �

x(t) � c1 cos �t � c2 sin �t �
F0

�2 � �2 sin �t

xp(t) �
F0

�2 � �2 sin �t

x�p � �2xp � A(�2 � �2) cos �t � B(�2 � �2) sin �t � F0 sin �t

d 2x
dt2 � �2x � F0 sin �t, x(0) � 0, x�(0) � 0
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5.1 LINEAR MODELS: INITIAL-VALUE PROBLEMS ● 203

If the displacements of a spring/mass system were actually described by a func-
tion such as (31), the system would necessarily fail. Large oscillations of the mass
would eventually force the spring beyond its elastic limit. One might argue too that
the resonating model presented in Figure 5.1.14 is completely unrealistic because it
ignores the retarding effects of ever-present damping forces. Although it is true that
pure resonance cannot occur when the smallest amount of damping is taken into con-
sideration, large and equally destructive amplitudes of vibration (although bounded
as ) can occur. See Problem 43 in Exercises 5.1.

5.1.4 SERIES CIRCUIT ANALOGUE

LRC-Series Circuits As was mentioned in the introduction to this chapter,
many different physical systems can be described by a linear second-order differential
equation similar to the differential equation of forced motion with damping:

. (32)

If i(t) denotes current in the LRC-series electrical circuit shown in Figure 5.1.15,
then the voltage drops across the inductor, resistor, and capacitor are as shown in
Figure 1.3.4. By Kirchhoff’s second law the sum of these voltages equals the voltage
E(t) impressed on the circuit; that is,

. (33)

But the charge q(t) on the capacitor is related to the current i(t) by i � dq�dt, so 
(33) becomes the linear second-order differential equation

. (34)

The nomenclature used in the analysis of circuits is similar to that used to
describe spring/mass systems.

If E(t) � 0, the electrical vibrations of the circuit are said to be free. Because
the auxiliary equation for (34) is Lm2 � Rm � 1�C � 0, there will be three forms of
the solution with R 	 0, depending on the value of the discriminant R2 � 4L�C. We
say that the circuit is

,
,

and .

In each of these three cases the general solution of (34) contains the factor e�Rt/2L, so
as . In the underdamped case when q(0) � q0, the charge on the

capacitor oscillates as it decays; in other words, the capacitor is charging and dis-
charging as . When E(t) � 0 and R � 0, the circuit is said to be undamped,
and the electrical vibrations do not approach zero as t increases without bound; the
response of the circuit is simple harmonic.

t : �

t : �q(t) : 0

 underdamped if  R2 � 4L /C � 0

 critically damped if  R2 � 4L /C � 0
 overdamped if  R2 � 4L /C � 0

L 
d 2q
dt2 � R dq

dt
�

1
C

q � E(t)

L 
di
dt

� Ri �
1
C

q � E(t)

m 
d 2x
dt2 � �  

dx
dt

� kx � f(t)

t : �

C

LE R

FIGURE 5.1.15 LRC-series circuit

EXAMPLE 9 Underdamped Series Circuit

Find the charge q(t) on the capacitor in an LRC-series circuit when L � 0.25 henry (h),
R � 10 ohms (�), C � 0.001 farad (f), E(t) � 0, q(0) � q0 coulombs (C), and i(0) � 0.

SOLUTION Since 1�C � 1000, equation (34) becomes

.
1
4
 q� � 10q� � 1000q � 0  or  q� � 40q� � 4000q � 0
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204 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

Solving this homogeneous equation in the usual manner, we find that the circuit is
underdamped and q(t) � e�20t(c1 cos 60t � c2 sin 60t). Applying the initial condi-
tions, we find c1 � q0 and . Thus

.

Using (23), we can write the foregoing solution as

.

When there is an impressed voltage E(t) on the circuit, the electrical vibrations
are said to be forced. In the case when R 	 0, the complementary function qc(t) of
(34) is called a transient solution. If E(t) is periodic or a constant, then the particu-
lar solution qp(t) of (34) is a steady-state solution.

q(t) �
q0110

3
 e�20t sin(60t � 1.249)

q(t) � q0e�20t �cos 60t �
1
3
 sin 60t�

c2 � 1
3 q0

EXAMPLE 10 Steady-State Current

Find the steady-state solution qp(t) and the steady-state current in an LRC-series
circuit when the impressed voltage is E(t) � E0 sin gt.

SOLUTION The steady-state solution qp(t) is a particular solution of the differential
equation

.

Using the method of undetermined coefficients, we assume a particular solution of
the form qp(t) � A sin gt � B cos gt. Substituting this expression into the differen-
tial equation, simplifying, and equating coefficients give

It is convenient to express A and B in terms of some new symbols.

If

If

Therefore A � E0X�(�gZ2) and B � E0R�(�gZ2), so the steady-state charge is

.

Now the steady-state current is given by :

. (35)

The quantities X � Lg � 1�Cg and defined in Example 10 are
called the reactance and impedance, respectively, of the circuit. Both the reactance
and the impedance are measured in ohms.

Z � 1X2 � R2

ip(t) �
E0

Z
 �R

Z
 sin �t �

X
Z

 cos �t�

ip(t) � q�p(t)

qp(t) � �
E0X
�Z2 sin �t �

E0R
�Z2 cos �t

 Z � 1X2 � R2,     then     Z 2 � L2�2 �
2L
C

�
1

C2�2 � R2.

 X � L� �
1

C�
,     then     X2 � L2�2 �

2L
C

�
1

C2�2
.

A �

E0�L� �
1

C��
�� �L2�2 �

2L
C

�
1

C2� 2 � R2�
,    B �

E0R

�� �L2�2 �
2L
C

�
1

C2� 2 � R2�
.

L  
d 2q
dt2 � R  

dq
dt

�
1
C

 q � E0 sin �t
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5.1 LINEAR MODELS: INITIAL-VALUE PROBLEMS ● 205

EXERCISES 5.1 Answers to selected odd-numbered problems begin on page ANS-7.

5.1.1 SPRING/MASS SYSTEMS: 
FREE UNDAMPED MOTION

1. A mass weighing 4 pounds is attached to a spring whose
spring constant is 16 lb/ft. What is the period of simple
harmonic motion?

2. A 20-kilogram mass is attached to a spring. If the fre-
quency of simple harmonic motion is 2�p cycles/s,
what is the spring constant k? What is the frequency
of simple harmonic motion if the original mass is
replaced with an 80-kilogram mass?

3. A mass weighing 24 pounds, attached to the end of
a spring, stretches it 4 inches. Initially, the mass is
released from rest from a point 3 inches above the equi-
librium position. Find the equation of motion.

4. Determine the equation of motion if the mass in
Problem 3 is initially released from the equilibrium
position with a downward velocity of 2 ft /s.

5. A mass weighing 20 pounds stretches a spring 6 inches.
The mass is initially released from rest from a point
6 inches below the equilibrium position.
(a) Find the position of the mass at the times t � p�12,
p�8, p�6, p�4, and 9p�32 s.

(b) What is the velocity of the mass when t � 3p�16 s?
In which direction is the mass heading at this instant?

(c) At what times does the mass pass through the equi-
librium position?

6. A force of 400 newtons stretches a spring 2 meters.
A mass of 50 kilograms is attached to the end of the
spring and is initially released from the equilibrium
position with an upward velocity of 10 m/s. Find the
equation of motion.

7. Another spring whose constant is 20 N/m is suspended
from the same rigid support but parallel to the
spring/mass system in Problem 6. A mass of 20 kilo-
grams is attached to the second spring, and both masses
are initially released from the equilibrium position with
an upward velocity of 10 m/s.
(a) Which mass exhibits the greater amplitude of

motion?
(b) Which mass is moving faster at t � p�4 s? At
p�2 s?

(c) At what times are the two masses in the same
position? Where are the masses at these times? In
which directions are the masses moving?

8. A mass weighing 32 pounds stretches a spring 2 feet.
Determine the amplitude and period of motion if the
mass is initially released from a point 1 foot above the
equilibrium position with an upward velocity of 2 ft/s.

How many complete cycles will the mass have com-
pleted at the end of 4p seconds?

9. A mass weighing 8 pounds is attached to a spring.
When set in motion, the spring/mass system exhibits
simple harmonic motion.
(a) Determine the equation of motion if the spring con-

stant is 1 lb/ft and the mass is initially released from
a point 6 inches below the equilibrium position with
a downward velocity of 

(b) Express the equation of motion in the form given 
in (6).

(c) Express the equation of motion in the form given 
in (6�).

10. A mass weighing 10 pounds stretches a spring foot.
This mass is removed and replaced with a mass of
1.6 slugs, which is initially released from a point foot
above the equilibrium position with a downward veloc-
ity of .
(a) Express the equation of motion in the form given 

in (6).
(b) Express the equation of motion in the form given 

in (6�)
(c) Use one of the solutions obtained in parts (a) and (b)

to determine the times the mass attains a displace-
ment below the equilibrium position numerically
equal to the amplitude of motion.

11. A mass weighing 64 pounds stretches a spring 0.32 foot.
The mass is initially released from a point 8 inches
above the equilibrium position with a downward veloc-
ity of 5 ft /s.
(a) Find the equation of motion.
(b) What are the amplitude and period of motion?
(c) How many complete cycles will the mass have

completed at the end of 3p seconds?
(d) At what time does the mass pass through the equilib-

rium position heading downward for the second time?
(e) At what times does the mass attain its extreme

displacements on either side of the equilibrium
position?

(f) What is the position of the mass at t � 3 s?
(g) What is the instantaneous velocity at t � 3 s?
(h) What is the acceleration at t � 3 s?
(i) What is the instantaneous velocity at the times when

the mass passes through the equilibrium position?
(j) At what times is the mass 5 inches below the equi-

librium position?
(k) At what times is the mass 5 inches below the equi-

librium position heading in the upward direction?

1
2

5
4 ft/s

1
3

1
4

3
2 ft/s.
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206 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

12. A mass of 1 slug is suspended from a spring whose
spring constant is 9 lb/ft. The mass is initially released
from a point 1 foot above the equilibrium position with
an upward velocity of . Find the times at which
the mass is heading downward at a velocity of 3 ft /s.

13. Under some circumstances when two parallel springs,
with constants k1 and k2, support a single mass, the
effective spring constant of the system is given by
k � 4k1k2�(k1 � k2). A mass weighing 20 pounds
stretches one spring 6 inches and another spring
2 inches. The springs are attached to a common rigid
support and then to a metal plate. As shown in
Figure 5.1.16, the mass is attached to the center of the
plate in the double-spring arrangement. Determine the
effective spring constant of this system. Find the equa-
tion of motion if the mass is initially released from the
equilibrium position with a downward velocity of 2 ft /s.

13 ft /s

14. A certain mass stretches one spring foot and another
spring foot. The two springs are attached to a common
rigid support in the manner described in Problem 13 and
Figure 5.1.16. The first mass is set aside, a mass weigh-
ing 8 pounds is attached to the double-spring arrange-
ment, and the system is set in motion. If the period
of motion is p�15 second, determine how much the
firs mass weighs.

15. A model of a spring/mass system is 4x� � e�0.1tx � 0. By
inspection of the differential equation only, discuss the be-
havior of the system over a long period of time.

16. A model of a spring/mass system is 4x� � tx � 0.
By inspection of the differential equation only, discuss
the behavior of the system over a long period of time.

5.1.2 SPRING/MASS SYSTEMS: 
FREE DAMPED MOTION

In Problems 17–20 the given figure represents the graph of
an equation of motion for a damped spring/mass system.
Use the graph to determine
(a) whether the initial displacement is above or below the

equilibrium position and
(b) whether the mass is initially released from rest, heading

downward, or heading upward.

1
2

1
3

20 lb

k1 2k

FIGURE 5.1.16 Double-spring system in 
Problem 13

t

x

t

x

t

x

t

x

FIGURE 5.1.17 Graph for Problem 17

FIGURE 5.1.19 Graph for Problem 19

FIGURE 5.1.18 Graph for Problem 18

FIGURE 5.1.20 Graph for Problem 20

18.

20.

21. A mass weighing 4 pounds is attached to a spring whose
constant is 2 lb/ft. The medium offers a damping force
that is numerically equal to the instantaneous velocity.
The mass is initially released from a point 1 foot above
the equilibrium position with a downward velocity of
8 ft /s. Determine the time at which the mass passes
through the equilibrium position. Find the time at which
the mass attains its extreme displacement from the equi-
librium position. What is the position of the mass at this
instant?

19.

17.
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5.1 LINEAR MODELS: INITIAL-VALUE PROBLEMS ● 207

22. A 4-foot spring measures 8 feet long after a mass weigh-
ing 8 pounds is attached to it. The medium through
which the mass moves offers a damping force numeri-
cally equal to times the instantaneous velocity. Find
the equation of motion if the mass is initially released
from the equilibrium position with a downward velocity
of 5 ft /s. Find the time at which the mass attains its
extreme displacement from the equilibrium position.
What is the position of the mass at this instant?

23. A 1-kilogram mass is attached to a spring whose constant
is 16 N/m, and the entire system is then submerged in a
liquid that imparts a damping force numerically equal to
10 times the instantaneous velocity. Determine the equa-
tions of motion if
(a) the mass is initially released from rest from a point

1 meter below the equilibrium position, and then
(b) the mass is initially released from a point 1 meter

below the equilibrium position with an upward
velocity of 12 m/s.

24. In parts (a) and (b) of Problem 23 determine whether the
mass passes through the equilibrium position. In each
case find the time at which the mass attains its extreme
displacement from the equilibrium position. What is the
position of the mass at this instant?

25. A force of 2 pounds stretches a spring 1 foot. A mass
weighing 3.2 pounds is attached to the spring, and the
system is then immersed in a medium that offers a
damping force that is numerically equal to 0.4 times the
instantaneous velocity.
(a) Find the equation of motion if the mass is initially

released from rest from a point 1 foot above the
equilibrium position.

(b) Express the equation of motion in the form given
in (23).

(c) Find the first time at which the mass passes through
the equilibrium position heading upward.

26. After a mass weighing 10 pounds is attached to a 5-foot
spring, the spring measures 7 feet. This mass is removed
and replaced with another mass that weighs 8 pounds.
The entire system is placed in a medium that offers a
damping force that is numerically equal to the instanta-
neous velocity.
(a) Find the equation of motion if the mass is initially

released from a point foot below the equilibrium
position with a downward velocity of 1 ft /s.

(b) Express the equation of motion in the form given
in (23).

(c) Find the times at which the mass passes through the
equilibrium position heading downward.

(d) Graph the equation of motion.

27. A mass weighing 10 pounds stretches a spring 2 feet. The
mass is attached to a dashpot device that offers a damping

1
2

12

force numerically equal to b (b� 0) times the instanta-
neous velocity. Determine the values of the damping con-
stant b so that the subsequent motion is (a) overdamped,
(b) critically damped, and (c) underdamped.

28. A mass weighing 24 pounds stretches a spring 4 feet.
The subsequent motion takes place in medium that offers
a damping force numerically equal to b (b� 0) times
the instantaneous velocity. If the mass is initially
released from the equilibrium position with an upward
velocity of 2 ft /s, show that when the equa-
tion of motion is

.

5.1.3 SPRING/MASS SYSTEMS: 
DRIVEN MOTION

29. A mass weighing 16 pounds stretches a spring feet. The
mass is initially released from rest from a point 2 feet
below the equilibrium position, and the subsequent
motion takes place in a medium that offers a damping
force that is numerically equal to the instantaneous
velocity. Find the equation of motion if the mass is
driven by an external force equal to f(t) � 10 cos 3t.

30. A mass of 1 slug is attached to a spring whose constant
is 5 lb/ft. Initially, the mass is released 1 foot below
the equilibrium position with a downward velocity of
5 ft /s, and the subsequent motion takes place in a
medium that offers a damping force that is numerically
equal to 2 times the instantaneous velocity.
(a) Find the equation of motion if the mass is driven by an

external force equal to f(t) � 12 cos 2t � 3 sin 2t.
(b) Graph the transient and steady-state solutions on the

same coordinate axes.
(c) Graph the equation of motion.

31. A mass of 1 slug, when attached to a spring, stretches it
2 feet and then comes to rest in the equilibrium position.
Starting at t � 0, an external force equal to f(t) � 8 sin 4t
is applied to the system. Find the equation of motion if
the surrounding medium offers a damping force that is
numerically equal to 8 times the instantaneous velocity.

32. In Problem 31 determine the equation of motion if the
external force is f (t) � e�t sin 4t. Analyze the displace-
ments for .

33. When a mass of 2 kilograms is attached to a spring
whose constant is 32 N/m, it comes to rest in the equi-
librium position. Starting at t � 0, a force equal to
f (t) � 68e�2t cos 4t is applied to the system. Find the
equation of motion in the absence of damping.

34. In Problem 33 write the equation of motion in the form
x(t) � Asin(vt � f) � Be�2tsin(4t � u). What is the
amplitude of vibrations after a very long time?

t : �

1
2

8
3

x(t) �
�3

1� 2 � 18
 e�2�t/3 sinh 

2
3
 1�2 � 18t

� � 312
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208 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

35. A mass m is attached to the end of a spring whose con-
stant is k. After the mass reaches equilibrium, its support
begins to oscillate vertically about a horizontal line L
according to a formula h(t). The value of h represents the
distance in feet measured from L. See Figure 5.1.21.
(a) Determine the differential equation of motion if

the entire system moves through a medium offer-
ing a damping force that is numerically equal to
b(dx�dt).

(b) Solve the differential equation in part (a) if the spring
is stretched 4 feet by a mass weighing 16 pounds and
b� 2, h(t) � 5 cos t, x(0) � x�(0) � 0.

(b) Evaluate .

40. Compare the result obtained in part (b) of Problem 39
with the solution obtained using variation of parameters
when the external force is F0 cos vt.

41. (a) Show that x(t) given in part (a) of Problem 39 can
be written in the form

.

(b) If we define , show that when � is
small an approximate solution is

.

When � is small, the frequency g�2p of the
impressed force is close to the frequency v�2p of
free vibrations. When this occurs, the motion is as
indicated in Figure 5.1.22. Oscillations of this
kind are called beats and are due to the fact that
the frequency of sin �t is quite small in compari-
son to the frequency of sin g t. The dashed curves,
or envelope of the graph of x(t), are obtained from
the graphs of �(F0 �2�g) sin �t. Use a graphing
utility with various values of F0, �, and g to verify
the graph in Figure 5.1.22.

x(t) �
F0

2��
 sin �t sin �t

� � 1
2 (� � �)

x(t) �
�2F0

�2 � �2 sin 
1
2
 (� � �)t sin 

1
2
 (� � �)t

lim
�:�

 F0

�2 � �2
 (cos �t � cos �t)

36. A mass of 100 grams is attached to a spring whose
constant is 1600 dynes/cm. After the mass reaches equi-
librium, its support oscillates according to the formula
h(t) � sin 8t, where h represents displacement from its
original position. See Problem 35 and Figure 5.1.21.
(a) In the absence of damping, determine the equation

of motion if the mass starts from rest from the equi-
librium position.

(b) At what times does the mass pass through the equi-
librium position?

(c) At what times does the mass attain its extreme
displacements?

(d) What are the maximum and minimum displace-
ments?

(e) Graph the equation of motion.

In Problems 37 and 38 solve the given initial-value problem.

37.

38.

39. (a) Show that the solution of the initial-value problem

is .x(t) �
F0

�2 � �2 (cos �t � cos �t)

d 2x
dt2 � �2x � F0 cos �t, x(0) � 0, x�(0) � 0

d 2x
dt2 � 9x � 5 sin 3t,  x(0) � 2, x�(0) � 0

x(0) � �1, x�(0) � 1

d 2x
dt2 � 4x � �5 sin 2t � 3 cos 2t,

L

support

h(t)

FIGURE 5.1.21 Oscillating support in Problem 35

t

x

FIGURE 5.1.22 Beats phenomenon in Problem 41

Computer Lab Assignments

42. Can there be beats when a damping force is added to the
model in part (a) of Problem 39? Defend your position
with graphs obtained either from the explicit solution of
the problem

or from solution curves obtained using a numerical
solver.

43. (a) Show that the general solution of

d 2x
dt2 � 2
 dx

dt
� �2x � F0 sin �t

d2x
dt2 � 2


dx
dt

� �2x � F0cos �t, x(0) � 0, x�(0) � 0
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5.1 LINEAR MODELS: INITIAL-VALUE PROBLEMS ● 209

is

where and the phase angles f
and u are, respectively, defined by sin f � c1 �A,
cos f � c2 �A and

,

.

(b) The solution in part (a) has the form
x(t) � xc(t) � xp(t). Inspection shows that xc(t) is tran-
sient, and hence for large values of time, the solution
is approximated by xp(t) � g(g) sin(gt � u), where

.

Although the amplitude g(g) of xp(t) is bounded as
show that the maximum oscillations will

occur at the value . What is the
maximum value of g? The number 
is said to be the resonance frequency of the system.

(c) When F0 � 2, m � 1, and k � 4, g becomes

.

Construct a table of the values of g1 and g(g1) corre-
sponding to the damping coefficients b� 2, b� 1,

, and . Use a graphing utility to
obtain the graphs of g corresponding to these damp-
ing coefficients. Use the same coordinate axes. This
family of graphs is called the resonance curve or
frequency response curve of the system. What is
g1 approaching as ? What is happening to the
resonance curve as ?

44. Consider a driven undamped spring/mass system
described by the initial-value problem

.

(a) For n � 2, discuss why there is a single frequency
g1�2p at which the system is in pure resonance.

(b) For n � 3, discuss why there are two frequencies
g1�2p and g2�2p at which the system is in pure
resonance.

(c) Suppose v� 1 and F0 � 1. Use a numerical solver
to obtain the graph of the solution of the initial-value
problem for n � 2 and g� g1 in part (a). Obtain the
graph of the solution of the initial-value problem for
n � 3 corresponding, in turn, to g� g1 and g� g2
in part (b).

d 2x
dt2 � �2x � F0 sinn �t, x(0) � 0, x�(0) � 0

� : 0
� : 0

� � 1
4� � 3

4, � � 1
2

g(�) �
2

1(4 � �2 )2 � �2�2

1�2 � 2
2/2�
�1 � 1�2 � 2
2

t : �,

 g(y) �
F0

1(�2 � �2)2 � 4
2� 2

 cos � �
�2 � � 2

1(�2 � �2)2 � 4
2� 2

 sin � �
�2
�

1(�2 � �2)2 � 4
2� 2

A � 1c1 

2 � c2 

2

� 
F0

1(�2 � �2)2 � 4
2�2
 sin(�t � � ),

x(t) � Ae�lt sin�2v2 � l2t � f�

5.1.4 SERIES CIRCUIT ANALOGUE

45. Find the charge on the capacitor in an LRC-series circuit
at t � 0.01 s when L � 0.05 h, R � 2 �, C � 0.01 f,
E(t) � 0 V, q(0) � 5 C, and i(0) � 0 A. Determine the
first time at which the charge on the capacitor is equal to
zero.

46. Find the charge on the capacitor in an LRC-series
circuit when , R � 20 �, , E(t) � 0 V,
q(0) � 4 C, and i(0) � 0 A. Is the charge on the capaci-
tor ever equal to zero?

In Problems 47 and 48 find the charge on the capacitor and
the current in the given LRC-series circuit. Find the maxi-
mum charge on the capacitor.

47. , R � 10 �, , E(t) � 300 V, q(0) � 0 C,
i(0) � 0 A

48. L � 1 h, R � 100 �, C � 0.0004 f, E(t) � 30 V, 
q(0) � 0 C, i(0) � 2 A

49. Find the steady-state charge and the steady-state current
in an LRC-series circuit when L � 1 h, R � 2 �, 
C � 0.25 f, and E(t) � 50 cos t V.

50. Show that the amplitude of the steady-state current in
the LRC-series circuit in Example 10 is given by E0�Z,
where Z is the impedance of the circuit.

51. Use Problem 50 to show that the steady-state current
in an LRC-series circuit when , R � 20 �,
C � 0.001 f, and E(t) � 100 sin 60t V, is given by
ip(t) � 4.160 sin(60t � 0.588).

52. Find the steady-state current in an LRC-series
circuit when , R � 20 �, C � 0.001 f, and 
E(t) � 100 sin 60t � 200 cos 40t V.

53. Find the charge on the capacitor in an LRC-series circuit
when , R � 10 �, C � 0.01 f, E(t) � 150 V,
q(0) � 1 C, and i(0) � 0 A. What is the charge on the
capacitor after a long time?

54. Show that if L, R, C, and E0 are constant, then the
amplitude of the steady-state current in Example 10 is a
maximum when . What is the maximum
amplitude?

55. Show that if L, R, E0, and g are constant, then the
amplitude of the steady-state current in Example 10 is a
maximum when the capacitance is C � 1�Lg2.

56. Find the charge on the capacitor and the current in 
an LC-series circuit when L � 0.1 h, C � 0.1 f, E(t) �
100 sin gt V, q(0) � 0 C, and i(0) � 0 A.

57. Find the charge on the capacitor and the current in an
LC-series circuit when E(t) � E0 cos gt V, q(0) � q0 C,
and i(0) � i0 A.

58. In Problem 57 find the current when the circuit is in
resonance.

� � 1>1LC

L � 1
2 h

L � 1
2 h

L � 1
2 h

C � 1
30 fL � 5

3 h

C � 1
300 fL � 1

4 h
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210 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

Deflection of a Beam Many structures are constructed by using girders or
beams, and these beams deflect or distort under their own weight or under the influenc
of some external force. As we shall now see, this deflection y(x) is governed by a rela-
tively simple linear fourth-order differential equation.

To begin, let us assume that a beam of length L is homogeneous and has uniform
cross sections along its length. In the absence of any load on the beam (including its
weight), a curve joining the centroids of all its cross sections is a straight line called
the axis of symmetry. See Figure 5.2.1(a). If a load is applied to the beam in a verti-
cal plane containing the axis of symmetry, the beam, as shown in Figure 5.2.1(b),
undergoes a distortion, and the curve connecting the centroids of all cross sections is
called the deflection curve or elastic curve. The deflection curve approximates the
shape of the beam. Now suppose that the x-axis coincides with the axis of symmetry
and that the deflection y(x), measured from this axis, is positive if downward. In the
theory of elasticity it is shown that the bending moment M(x) at a point x along the
beam is related to the load per unit length w(x) by the equation

. (1)

In addition, the bending moment M(x) is proportional to the curvature k of the elas-
tic curve

, (2)

where E and I are constants; E is Young’s modulus of elasticity of the material of the
beam, and I is the moment of inertia of a cross section of the beam (about an axis
known as the neutral axis). The product EI is called the flexural rigidity of the beam.

Now, from calculus, curvature is given by k � y��[1 � (y�)2]3/2. When the
deflection y(x) is small, the slope y� � 0, and so [1 � (y�)2]3/2 � 1. If we let k � y�,
equation (2) becomes M � EI y�. The second derivative of this last expression is

. (3)

Using the given result in (1) to replace d2M�dx2 in (3), we see that the deflection y(x)
satisfies the fourth-order di ferential equation

. (4)EI   
d 4y
dx4 � w(x)

d 2M
dx2 � EI 

d 2

dx2 y� � EI 
d 4y
dx4

M(x) � EI�

d2M
dx2 � w(x)

axis of symmetry

deflection curve

(a)

(b)

FIGURE 5.2.1 Deflection of 
homogeneous beam

LINEAR MODELS: BOUNDARY-VALUE PROBLEMS

REVIEW MATERIAL
● Section 4.1 (page 117)
● Problems 37–40 in Exercises 4.3
● Problems 37–40 in Exercises 4.4

INTRODUCTION The preceding section was devoted to systems in which a second-order math-
ematical model was accompanied by initial conditions—that is, side conditions that are specified on
the unknown function and its first derivative at a single point. But often the mathematical descrip-
tion of a physical system demands that we solve a linear differential equation subject to boundary
conditions—that is, conditions specified on the unknown function, or on one of its derivatives, or
even on a linear combination of the unknown function and one of its derivatives at two (or more)
different points.

5.2
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5.2 LINEAR MODELS: BOUNDARY-VALUE PROBLEMS ● 211

Boundary conditions associated with equation (4) depend on how the ends of the
beam are supported. A cantilever beam is embedded or clamped at one end and
free at the other. A diving board, an outstretched arm, an airplane wing, and a bal-
cony are common examples of such beams, but even trees, flagpoles, skyscrapers,
and the George Washington Monument can act as cantilever beams because they
are embedded at one end and are subject to the bending force of the wind. For
a cantilever beam the deflection y(x) must satisfy the following two conditions at
the embedded end x � 0:

• y(0) � 0 because there is no deflection, an
• y�(0) � 0 because the deflection curve is tangent to the x-axis (in other

words, the slope of the deflection curve is zero at this point)

At x � L the free-end conditions are

• y�(L) � 0 because the bending moment is zero, and
• y�(L) � 0 because the shear force is zero.

The function F(x) � dM�dx � EI d3y�dx3 is called the shear force. If an end of
a beam is simply supported or hinged (also called pin supported and fulcrum
supported) then we must have y � 0 and y� � 0 at that end. Table 5.2.1 summarizes
the boundary conditions that are associated with (4). See Figure 5.2.2.

x = 0 x = L

(a) embedded at both ends

(b) cantilever beam: embedded at
the left end, free at the right
end

(c) simply supported at both ends

x = 0 x = L

x = 0 x = L

FIGURE 5.2.2 Beams with various
end conditions

TABLE 5.2.1

Ends of the Beam Boundary Conditions

embedded y � 0, y� � 0
free y� � 0, y� � 0
simply supported
or hinged y � 0, y� � 0

EXAMPLE 1 An Embedded Beam

A beam of length L is embedded at both ends. Find the deflection of the beam if a con-
stant load w0 is uniformly distributed along its length—that is, w(x) � w0, 0 � x � L.

SOLUTION From (4) we see that the deflection y(x) satisfie

.

Because the beam is embedded at both its left end (x � 0) and its right end (x � L),
there is no vertical deflection and the line of deflection is horizontal at these points.
Thus the boundary conditions are

.

We can solve the nonhomogeneous differential equation in the usual manner (find yc
by observing that m � 0 is root of multiplicity four of the auxiliary equation m4 � 0
and then find a particular solution yp by undetermined coefficients), or we can simply
integrate the equation d4y�dx4 � w0�EI four times in succession. Either way, we
find the general solution of the equation y � yc � yp to be

.

Now the conditions y(0) � 0 and y�(0) � 0 give, in turn, c1 � 0 and c2 � 0, whereas the

remaining conditions y(L) � 0 and y�(L) � 0 applied to 
yield the simultaneous equations 

 2c3 L � 3c4 L2 �
w0

6EI
  L3 � 0.

 c3 L2 � c4 L3 �
w0

24EI
  L4 � 0

y(x) � c3x2 � c4x3 �
w0

24EI
 x4

y(x) � c1 � c2x � c3x2 � c4x3 �
w0

24EI
x4

y(0) � 0,    y�(0) � 0,  y(L) � 0,    y�(L) � 0

EI d
4y

dx4 � w0
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212 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

Solving this system gives c3 � w0L2�24EI and c4 � �w0L�12EI. Thus the deflection is

or . By choosing w0 � 24EI, and L � 1, we obtain the 

deflection curve in Figure 5.2.3

Eigenvalues and Eigenfunctions Many applied problems demand that we
solve a two-point boundary-value problem (BVP) involving a linear differential
equation that contains a parameter l. We seek the values of l for which the
boundary-value problem has nontrivial, that is, nonzero, solutions.

y(x) �
w0

24EI
 x2 (x � L)2

y(x) �
w0L2

24EI
x2 �

w0L
12EI

x3 �
w0

24EI
x4

x

y

1

0.5

FIGURE 5.2.3 Deflection curve fo
BVP in Example 1

EXAMPLE 2 Nontrivial Solutions of a BVP

Solve the boundary-value problem

.

SOLUTION We shall consider three cases: l � 0, l � 0, and l � 0.

Case I: For l� 0 the solution of y� � 0 is y � c1x � c2. The conditions y(0) � 0
and y(L) � 0 applied to this solution imply, in turn, c2 � 0 and c1 � 0. Hence for l� 0
the only solution of the boundary-value problem is the trivial solution y � 0.

Case II: For l� 0 it is convenient to write l� �a2, where a denotes a positive
number. With this notation the roots of the auxiliary equation m2 � a2 � 0 are m1 � a
and m2 � �a. Since the interval on which we are working is finite, we choose to write
the general solution of y� � a2y � 0 as y � c1 cosh ax � c2 sinh ax. Now y(0) is

,

and so y(0) � 0 implies that c1 � 0. Thus y � c2 sinh ax. The second condition,
y(L) � 0, demands that c2 sinh aL � 0. For a 	 0, sinh aL 	 0; consequently, we
are forced to choose c2 � 0. Again the only solution of the BVP is the trivial solu-
tion y � 0.

Case III: For l � 0 we write l � a2, where a is a positive number. Because the
auxiliary equation m2 � a2 � 0 has complex roots m1 � ia and m2 � �ia, the
general solution of y� � a2y � 0 is y � c1 cos ax � c2 sin ax. As before, y(0) � 0
yields c1 � 0, and so y � c2 sin ax. Now the last condition y(L) � 0, or

,

is satisfied by choosing c2 � 0. But this means that y � 0. If we require c2 	 0, then
sin aL � 0 is satisfied whenever aL is an integer multiple of p.

.

Therefore for any real nonzero c2, y � c2 sin(npx�L) is a solution of the problem for
each n. Because the differential equation is homogeneous, any constant multiple of a
solution is also a solution, so we may, if desired, simply take c2 � 1. In other words,
for each number in the sequence

. . . ,
1 �
�2

L2, 
2 �
4�2

L2 , 
3 �
9�2

L2 ,

�L � n� or  � �
n�

L
 or  
n � �n

2 � �n�

L �
2
,  n � 1, 2, 3, . . . 

c2 sin �L � 0

y(0) � c1 cosh 0 � c2 sinh 0 � c1 � 1 � c2 � 0 � c1

y� � 
y � 0, y(0) � 0,  y(L) � 0

Note that we use hyperbolic functions
here. Reread “Two Equations Worth
Knowing” on pages 134–135.

�
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5.2 LINEAR MODELS: BOUNDARY-VALUE PROBLEMS ● 213

the corresponding function in the sequence

. . .

is a nontrivial solution of the problem  for 
n � 1, 2, 3, . . . , respectively.

The numbers ln � n2p2�L2, n � 1, 2, 3, . . . for which the boundary-value
problem in Example 2 possesses nontrivial solutions are known as eigenvalues. The
nontrivial solutions that depend on these values of ln, yn � c2 sin(npx�L) or simply
yn � sin(npx�L), are called eigenfunctions. The graphs of the eigenfunctions for
n � 1, 2, 3, 4, 5 are shown in Figure 5.2.4. Note that each graph passes through the
two points (0, 0) and (0, L).

y � � 
ny � 0, y(0) � 0, y(L) � 0

y1 � sin
�

L
 x, y2 � sin

2�

L
 x, y3 � sin

3�

L
 x,

L

(a) (b)

P

x = 0

x

y

x = L

FIGURE 5.2.5 Elastic column
buckling under a compressive force

EXAMPLE 3 Example 2 Revisited

It follows from Example 2 and the preceding disucussion that the boundary-value
problem

possesses only the trivial solution y � 0 because 5 is not an eigenvalue.

Buckling of a Thin Vertical Column In the eighteenth century Leonhard
Euler was one of the first mathematicians to study an eigenvalue problem in analyz-
ing how a thin elastic column buckles under a compressive axial force.

Consider a long, slender vertical column of uniform cross section and length L.
Let y(x) denote the deflection of the column when a constant vertical compressive
force, or load, P is applied to its top, as shown in Figure 5.2.5. By comparing bend-
ing moments at any point along the column, we obtain

, (5)

where E is Young’s modulus of elasticity and I is the moment of inertia of a cross
section about a vertical line through its centroid.

EI  
d 2y
dx2 � �Py   or   EI  

d 2y
dx2 � Py � 0

y� � 5y � 0, y(0) � 0, y(L) � 0

–1

1 n = 2 n = 1

n = 4n = 4 n = 5

n = 3

y

x
L

FIGURE 5.2.4 Graphs of
eigenfunctions 
for n � 1, 2, 3, 4, 5

yn � sin(npx>L),

EXAMPLE 4 The Euler Load

Find the deflection of a thin vertical homogeneous column of length L subjected to a
constant axial load P if the column is hinged at both ends.

SOLUTION The boundary-value problem to be solved is

.

First note that y � 0 is a perfectly good solution of this problem. This solution has
a simple intuitive interpretation: If the load P is not great enough, there is no
deflection. The question then is this: For what values of P will the column bend? In
mathematical terms: For what values of P does the given boundary-value problem
possess nontrivial solutions?

By writing l � P�EI, we see that

is identical to the problem in Example 2. From Case III of that discussion we see
that the deflections are yn(x) � c2 sin(npx�L) corresponding to the eigenvalues
ln � Pn �EI � n2p 2 �L2, n � 1, 2, 3, . . . . Physically, this means that the column
will buckle or deflect only when the compressive force is one of the values
Pn � n2p 2EI�L2, n � 1, 2, 3, . . . . These different forces are called critical

y � � 
y � 0,  y(0) � 0, y(L) �  0

EI  
d 2y
dx2 � Py � 0, y(0) � 0, y(L) � 0
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214 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

loads. The deflection corresponding to the smallest critical load P1 � p 2EI�L2,
called the Euler load, is y1(x) � c2 sin(px�L) and is known as the first buckling
mode.

The deflection curves in Example 4 corresponding to n � 1, n � 2, and n � 3
are shown in Figure 5.2.6. Note that if the original column has some sort of physical
restraint put on it at x � L �2, then the smallest critical load will be P2 � 4p2EI�L2,
and the deflection curve will be as shown in Figure 5.2.6(b). If restraints are put on
the column at x � L �3 and at x � 2L �3, then the column will not buckle until the
critical load P3 � 9p2EI�L2 is applied, and the deflection curve will be as shown in
Figure 5.2.6(c). See Problem 23 in Exercises 5.2.

Rotating String The simple linear second-order differential equation
(6)

occurs again and again as a mathematical model. In Section 5.1 we saw (6) in the
forms d2x�dt2 � (k�m)x � 0 and d2q�dt2 � (1�LC)q � 0 as models for, respec-
tively, the simple harmonic motion of a spring/mass system and the simple harmonic
response of a series circuit. It is apparent when the model for the deflection of a thin
column in (5) is written as d2y�dx2 � (P�EI)y � 0 that it is the same as (6). We
encounter the basic equation (6) one more time in this section: as a model that define
the deflection curve or the shape y(x) assumed by a rotating string. The physical situ-
ation is analogous to when two people hold a jump rope and twirl it in a synchronous
manner. See Figures 5.2.7(a) and 5.2.7(b).

Suppose a string of length L with constant linear density r (mass per unit length)
is stretched along the x-axis and fixed at x � 0 and x � L. Suppose the string is then
rotated about that axis at a constant angular speed v. Consider a portion of the string
on the interval [x, x � �x], where �x is small. If the magnitude T of the tension T,
acting tangential to the string, is constant along the string, then the desired differen-
tial equation can be obtained by equating two different formulations of the net force
acting on the string on the interval [x, x � �x]. First, we see from Figure 5.2.7(c) that
the net vertical force is

. (7)
When angles u1 and u2 (measured in radians) are small, we have sin u2 � tan u2 and
sin u1 � tan u1. Moreover, since tan u2 and tan u1 are, in turn, slopes of the lines con-
taining the vectors T2 and T1, we can also write

.
Thus (7) becomes

. (8)
Second, we can obtain a different form of this same net force using Newton’s second
law, F � ma. Here the mass of the string on the interval is m � r �x; the centripetal
acceleration of a body rotating with angular speed v in a circle of radius r is a � rv2.
With �x small we take r � y. Thus the net vertical force is also approximated by

, (9)
where the minus sign comes from the fact that the acceleration points in the direction
opposite to the positive y-direction. Now by equating (8) and (9), we have

F � �(� �x)y�2

F � T [ y�(x � �x) � y�(x)]

tan �2 � y�(x � �x)   and   tan �1 � y�(x)

F � T sin �2 � T sin �1

y � � 
y � 0

L L
x

(b)

y

x

(c)

y

x
L

(a)

y

FIGURE 5.2.6 Deflection curve
corresponding to compressive forces 
P1, P2, P3

(a)

(b)

(c)

ω

x = 0 x = L

y(x)

xx x + ∆x

1θ 2θ

T2

T1

FIGURE 5.2.7 Rotating string and
forces acting on it

(10)
y�(x � �x) � y�(x)–––––––––––––––––

�xT [y�(x � �x) � y�(x)] � �(r�x)yv2 T � rv2y � 0.or

difference quotient

For �x close to zero the difference quotient in (10) is approximately the second
derivative d2y�dx2. Finally, we arrive at the model

. (11)T d
2y

dx2 � ��2y � 0
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EXERCISES 5.2 Answers to selected odd-numbered problems begin on page ANS-8.

Deflection of a Beam

In Problems 1–5 solve equation (4) subject to the appropriate
boundary conditions. The beam is of length L, and w0 is a
constant.

1. (a) The beam is embedded at its left end and free at its
right end, and w(x) � w0, 0 � x � L.

(b) Use a graphing utility to graph the deflection curve
when w0 � 24EI and L � 1.

2. (a) The beam is simply supported at both ends, and
w(x) � w0, 0 � x � L.

(b) Use a graphing utility to graph the deflection curve
when w0 � 24EI and L � 1.

3. (a) The beam is embedded at its left end and simply sup-
ported at its right end, and w(x) � w0, 0 � x � L.

(b) Use a graphing utility to graph the deflection curve
when w0 � 48EI and L � 1.

4. (a) The beam is embedded at its left end and simply sup-
ported at its right end, and w(x) � w0 sin(px�L),
0 � x � L.

(b) Use a graphing utility to graph the deflection curve
when w0 � 2p3EI and L � 1.

(c) Use a root-finding application of a CAS (or a
graphic calculator) to approximate the point in the
graph in part (b) at which the maximum deflectio
occurs. What is the maximum deflection

5. (a) The beam is simply supported at both ends, and
w(x) � w0x, 0 � x � L.

(b) Use a graphing utility to graph the deflection curve
when w0 � 36EI and L � 1.

(c) Use a root-finding application of a CAS (or a
graphic calculator) to approximate the point in the

graph in part (b) at which the maximum deflectio
occurs. What is the maximum deflection

6. (a) Find the maximum deflection of the cantilever beam
in Problem 1.

(b) How does the maximum deflection of a beam that is
half as long compare with the value in part (a)?

(c) Find the maximum deflection of the simply sup-
ported beam in Problem 2.

(d) How does the maximum deflection of the simply
supported beam in part (c) compare with the value
of maximum deflection of the embedded beam in
Example 1?

7. A cantilever beam of length L is embedded at its right
end, and a horizontal tensile force of P pounds is applied
to its free left end. When the origin is taken at its free end,
as shown in Figure 5.2.8, the deflection y(x) of the beam
can be shown to satisfy the differential equation

.

Find the deflection of the cantilever beam if 
w(x) � w0x, 0 � x � L, and y(0) � 0, y�(L) � 0.

EIy� � Py � w(x)
x
2

xO
P

y
L

x

w0x

FIGURE 5.2.8 Deflection of cantilever beam in Problem 7

Since the string is anchored at its ends x � 0 and x � L, we expect that the solution y(x)
of equation (11) should also satisfy the boundary conditions y(0) � 0 and y(L) � 0.

REMARKS

(i) Eigenvalues are not always easily found, as they were in Example 2;
you might have to approximate roots of equations such as tan x � �x or
cos x cosh x � 1. See Problems 34–38 in Exercises 5.2.
(ii) Boundary conditions applied to a general solution of a linear differential
equation can lead to a homogeneous algebraic system of linear equations in
which the unknowns are the coefficients ci in the general solution. A homoge-
neous algebraic system of linear equations is always consistent because it
possesses at least a trivial solution. But a homogeneous system of n linear
equations in n unknowns has a nontrivial solution if and only if the determi-
nant of the coefficients equals zero. You might need to use this last fact in
Problems 19 and 20 in Exercises 5.2.
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216 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

8. When a compressive instead of a tensile force is applied
at the free end of the beam in Problem 7, the differential
equation of the deflection i

.

Solve this equation if w(x) � w0x, 0 � x � L, and
y(0) � 0, y�(L) � 0.

Eigenvalues and Eigenfunctions

In Problems 9–18 find the eigenvalues and eigenfunctions
for the given boundary-value problem.

9. y� � ly � 0, y(0) � 0, y(p) � 0

10. y� � ly � 0, y(0) � 0, y(p�4) � 0

11. y� � ly � 0, y�(0) � 0, y(L) � 0

12. y� � ly � 0, y(0) � 0, y�(p�2) � 0

13. y� � ly � 0, y�(0) � 0, y�(p) � 0

14. y� � ly � 0, y(�p) � 0, y(p) � 0

15. y� � 2y� � (l� 1)y � 0, y(0) � 0, y(5) � 0

16. y� � (l� 1)y � 0, y�(0) � 0, y�(1) � 0

17. x2y� � xy� � ly � 0, y(1) � 0, y(ep) � 0

18. x2y� � xy� � ly � 0, y�(e�1) � 0, y(1) � 0

In Problems 19 and 20 find the eigenvalues and eigenfunc-
tions for the given boundary-value problem. Consider only
the case l� a4, a � 0.

19. y (4) � ly � 0, y(0) � 0, y�(0) � 0, y(1) � 0,
y�(1) � 0

20. y (4) � ly � 0, y�(0) � 0, y�(0) � 0, y(p) � 0,
y�(p) � 0

Buckling of a Thin Column

21. Consider Figure 5.2.6. Where should physical restraints
be placed on the column if we want the critical load to be
P4? Sketch the deflection curve corresponding to this load.

22. The critical loads of thin columns depend on the end
conditions of the column. The value of the Euler load P1
in Example 4 was derived under the assumption that the
column was hinged at both ends. Suppose that a thin
vertical homogeneous column is embedded at its base
(x � 0) and free at its top (x � L) and that a constant
axial load P is applied to its free end. This load either
causes a small deflection d as shown in Figure 5.2.9 or
does not cause such a deflection. In either case the dif-
ferential equation for the deflection y(x) is

.EI d
2y

dx2 � Py � P�

EIy� � �Py � w(x)
x
2

(a) What is the predicted deflection when d � 0?
(b) When d 	 0, show that the Euler load for this col-

umn is one-fourth of the Euler load for the hinged
column in Example 4.

23. As was mentioned in Problem 22, the differential equa-
tion (5) that governs the deflection y(x) of a thin elastic
column subject to a constant compressive axial force P
is valid only when the ends of the column are hinged. In
general, the differential equation governing the deflectio
of the column is given by

.

Assume that the column is uniform (EI is a constant)
and that the ends of the column are hinged. Show that
the solution of this fourth-order differential equation
subject to the boundary conditions y(0) � 0, y�(0) � 0,
y(L) � 0, y�(L) � 0 is equivalent to the analysis in
Example 4.

24. Suppose that a uniform thin elastic column is hinged at
the end x � 0 and embedded at the end x � L.
(a) Use the fourth-order differential equation given in

Problem 23 to find the eigenvalues ln, the critical
loads Pn, the Euler load P1, and the deflections yn(x).

(b) Use a graphing utility to graph the first buckling
mode.

Rotating String

25. Consider the boundary-value problem introduced in the
construction of the mathematical model for the shape of
a rotating string:

.

For constant T and r, define the critical speeds of angu-
lar rotation vn as the values of v for which the boundary-
value problem has nontrivial solutions. Find the critical
speeds vn and the corresponding deflections yn(x).

T d
2y

dx2 � ��2y � 0,  y(0) � 0, y(L) � 0

d2

dx2
 �EI d

2y
dx2� � P  d

2y
dx2 � 0

y
x =  0

x =  L
P

δ

x

FIGURE 5.2.9 Deflection of vertical column in
Problem 22
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26. When the magnitude of tension T is not constant, then a
model for the deflection curve or shape y(x) assumed by
a rotating string is given by

.

Suppose that 1 � x � e and that T (x) � x2.
(a) If y(1) � 0, y(e) � 0, and rv2 � 0.25, show that

the critical speeds of angular rotation are
and the corresponding

deflections ar

yn(x) � c2x�1/2 sin(np ln x), n � 1, 2, 3, . . . .

(b) Use a graphing utility to graph the deflection curves
on the interval [1, e] for n � 1, 2, 3. Choose c2 � 1.

Miscellaneous Boundary-Value Problems

27. Temperature in a Sphere Consider two concentric
spheres of radius r � a and r � b, a � b. See
Figure 5.2.10. The temperature u(r) in the region
between the spheres is determined from the boundary-
value problem

,

where u0 and u1 are constants. Solve for u(r).

r  
d2u
dr2 � 2  

du
dr

� 0,  u(a) � u0, u(b) � u1

�n � 1
2

 
2(4n2�2 � 1)>�

d
dx

 	T (x) dy
dx
 � ��2y � 0

where u0 and u1 are constants. Show that

.

Discussion Problems

29. Simple Harmonic Motion The model mx� � kx � 0
for simple harmonic motion, discussed in Section 5.1,
can be related to Example 2 of this section.

Consider a free undamped spring/mass system for
which the spring constant is, say, k � 10 lb/ft. Deter-
mine those masses mn that can be attached to the spring
so that when each mass is released at the equilibrium
position at t � 0 with a nonzero velocity v0, it will then
pass through the equilibrium position at t � 1 second.
How many times will each mass mn pass through the
equilibrium position in the time interval 0 � t � 1?

30. Damped Motion Assume that the model for the
spring/mass system in Problem 29 is replaced by 

mx� � 2x� � kx � 0.
In other words, the system is free but is subjected to
damping numerically equal to 2 times the instantaneous
velocity. With the same initial conditions and spring
constant as in Problem 29, investigate whether a mass m
can be found that will pass through the equilibrium
position at t � 1 second.

In Problems 31 and 32 determine whether it is possible to
find values y0 and y1 (Problem 31) and values of L � 0
(Problem 32) so that the given boundary-value problem has
(a) precisely one nontrivial solution, (b) more than one
solution, (c) no solution, (d) the trivial solution.

31. y� � 16y � 0, y(0) � y0, y(p�2) � y1

32. y� � 16y � 0, y(0) � 1, y(L) � 1

33. Consider the boundary-value problem

(a) The type of boundary conditions specified are called
periodic boundary conditions. Give a geometric
interpretation of these conditions.

(b) Find the eigenvalues and eigenfunctions of the
problem.

(c) Use a graphing utility to graph some of the eigen-
functions. Verify your geometric interpretation of
the boundary conditions given in part (a).

34. Show that the eigenvalues and eigenfunctions of the
boundary-value problem

are and yn � sin an x, respectively, where an,
n � 1, 2, 3, . . . are the consecutive positive roots of
the equation tan a � �a.


n � � 2
n

y� � 
y � 0,  y(0) � 0,  y(1) � y�(1) � 0

y� � 
y � 0,  y(��) � y(�),  y�(��) � y�(�).

u(r) �
u0 ln(r>b) � u1 ln(r>a)

ln(a>b)

u = u1

u = u0

FIGURE 5.2.10 Concentric spheres in Problem 27

28. Temperature in a Ring The temperature u(r) in the
circular ring shown in Figure 5.2.11 is determined from
the boundary-value problem

,r d
2u

dr2 �
du
dr

� 0,  u(a) � u0, u(b) � u1

FIGURE 5.2.11 Circular ring in Problem 28

a

u = u1

u = u0

b
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Computer Lab Assignments

35. Use a CAS to plot graphs to convince yourself that the
equation tan a � �a in Problem 34 has an infinit
number of roots. Explain why the negative roots of the
equation can be ignored. Explain why l � 0 is not an
eigenvalue even though a � 0 is an obvious solution of
the equation tan a � �a.

36. Use a root-finding application of a CAS to approximate
the first four eigenvalues l1, l2, l3, and l4 for the BVP
in Problem 34.

In Problems 37 and 38 find the eigenvalues and eigenfunc-
tions of the given boundary-value problem. Use a CAS to
approximate the first four eigenvalues l1, l2, l3, and l4.

37.

38. y(4) � ly � 0, y(0) � 0, y�(0) � 0, y(1) � 0, y�(1) � 0
[Hint: Consider only l � a4, a � 0.]

y� � 
y � 0, y(0) � 0, y(1) � 1
2

 y�(1) � 0

Nonlinear Springs The mathematical model in (1) of Section 5.1 has the form

, (1)

where F(x) � kx. Because x denotes the displacement of the mass from its equilibrium
position, F(x) � kx is Hooke’s law—that is, the force exerted by the spring that tends
to restore the mass to the equilibrium position. A spring acting under a linear restoring
force F(x) � kx is naturally referred to as a linear spring. But springs are seldom per-
fectly linear. Depending on how it is constructed and the material that is used, a spring
can range from “mushy,” or soft, to “stiff,” or hard, so its restorative force may vary
from something below to something above that given by the linear law. In the case of
free motion, if we assume that a nonaging spring has some nonlinear characteristics,
then it might be reasonable to assume that the restorative force of a spring—that is,
F(x) in (1)—is proportional to, say, the cube of the displacement x of the mass beyond
its equilibrium position or that F(x) is a linear combination of powers of the displace-
ment such as that given by the nonlinear function F(x) � kx � k1x3. A spring whose
mathematical model incorporates a nonlinear restorative force, such as

, (2)

is called a nonlinear spring. In addition, we examined mathematical models in which
damping imparted to the motion was proportional to the instantaneous velocity dx�dt
and the restoring force of a spring was given by the linear function F(x) � kx. But these
were simply assumptions; in more realistic situations damping could be proportional to
some power of the instantaneous velocity dx�dt. The nonlinear differential equation

(3)m 
d 2x
dt2 � �dx

dt � 
dx
dt

� kx � 0

m 
d 2x
dt2 � kx3 � 0    or    m 

d 2x
dt2 � kx � k1x3 � 0

m 
d 2x
dt2 � F(x) � 0

NONLINEAR MODELS

REVIEW MATERIAL
● Section 4.10

INTRODUCTION In this section we examine some nonlinear higher-order mathematical
models. We are able to solve some of these models using the substitution method (leading to
reduction of the order of the DE) introduced on page 186. In some cases in which the model
cannot be solved, we show how a nonlinear DE can be replaced by a linear DE through a process
called linearization.

5.3
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5.3 NONLINEAR MODELS ● 219

is one model of a free spring/mass system in which the damping force is proportional
to the square of the velocity. One can then envision other kinds of models: linear
damping and nonlinear restoring force, nonlinear damping and nonlinear restoring
force, and so on. The point is that nonlinear characteristics of a physical system lead
to a mathematical model that is nonlinear.

Notice in (2) that both F(x) � kx3 and F(x) � kx � k1x3 are odd functions of x.
To see why a polynomial function containing only odd powers of x provides a
reasonable model for the restoring force, let us express F as a power series centered
at the equilibrium position x � 0:

When the displacements x are small, the values of xn are negligible for n suffi-
ciently large. If we truncate the power series with, say, the fourth term, then
F(x) � c0 � c1x � c2x2 � c3x3. For the force at x � 0,

,

and for the force at �x � 0,

to have the same magnitude but act in the opposite direction, we must have
F(�x) � �F(x). Because this means that F is an odd function, we must have c0 � 0
and c2 � 0, and so F(x) � c1x � c3x3. Had we used only the first two terms in the
series, the same argument yields the linear function F(x) � c1x. A restoring force with
mixed powers, such as F(x) � c1x � c2x2, and the corresponding vibrations are said
to be unsymmetrical. In the next discussion we shall write c1 � k and c3 � k1.

Hard and Soft Springs Let us take a closer look at the equation in (1) in

F(�x) � c0 � c1x � c2x2 � c3x3

F (x) � c0 � c1x � c2x2 � c3x3

F (x) � c0 � c1x � c2x2 � c3x3 � � � �.

F
linear springhard 

spring 

soft spring 

x

FIGURE 5.3.1 Hard and soft springs

(a) hard spring

(b) soft spring

x

  

  x(0)= 2,
x'(0)= _3

t

  x(0)= 2,
x'(0)= _3

t

x

  x(0)= 2,
x'(0)= 0

  x(0)= 2,
x'(0)= 0

FIGURE 5.3.2 Numerical solution
curves

EXAMPLE 1 Comparison of Hard and Soft Springs

The differential equations

(4)

and (5)

are special cases of the second equation in (2) and are models of a hard spring and
a soft spring, respectively. Figure 5.3.2(a) shows two solutions of (4) and
Figure 5.3.2(b) shows two solutions of (5) obtained from a numerical solver. The
curves shown in red are solutions that satisfy the initial conditions x(0) � 2,
x�(0) � �3; the two curves in blue are solutions that satisfy x(0) � 2, x�(0) � 0.
These solution curves certainly suggest that the motion of a mass on the hard
spring is oscillatory, whereas motion of a mass on the soft spring appears to be
nonoscillatory. But we must be careful about drawing conclusions based on a
couple of numerical solution curves. A more complete picture of the nature of the
solutions of both of these equations can be obtained from the qualitative analysis
discussed in Chapter 10.

d 2x
dt2 � x � x3 � 0

d 2x
dt2 � x � x3 � 0

the case in which the restoring force is given by F(x) � kx � k1x3, k � 0. The
spring is said to be hard if k1 � 0 and soft if k1 � 0. Graphs of three types of
restoring forces are illustrated in Figure 5.3.1. The next example illustrates
these two special cases of the differential equation md2x�dt2 � kx � k1x3 � 0, 
m � 0, k � 0.
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220 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

Nonlinear Pendulum Any object that swings back and forth is called a
physical pendulum. The simple pendulum is a special case of the physical pendu-
lum and consists of a rod of length l to which a mass m is attached at one end. In
describing the motion of a simple pendulum in a vertical plane, we make the simpli-
fying assumptions that the mass of the rod is negligible and that no external damping
or driving forces act on the system. The displacement angle u of the pendulum,
measured from the vertical as shown in Figure 5.3.3, is considered positive when
measured to the right of OP and negative to the left of OP. Now recall the arc s of a
circle of radius l is related to the central angle u by the formula s � lu. Hence angu-
lar acceleration is

.

From Newton’s second law we then have

.

From Figure 5.3.3 we see that the magnitude of the tangential component of the force
due to the weight W is mg sin u. In direction this force is �mg sin u because it points
to the left for u � 0 and to the right for u � 0. We equate the two different versions
of the tangential force to obtain ml d2u�dt2 � �mg sin u, or

. (6)

Linearization Because of the presence of sin u, the model in (6) is non-
linear. In an attempt to understand the behavior of the solutions of nonlinear
higher-order differential equations, one sometimes tries to simplify the problem
by replacing nonlinear terms by certain approximations. For example, the
Maclaurin series for sin u is given by

so if we use the approximation sin u � u � u3�6, equation (6) becomes

.

Observe that this last equation is the same as the second nonlinear equation in (2) with
m � 1, k � g�l, and k1 � �g�6l. However, if we assume that the displacements u are
small enough to justify using the replacement sin u� u, then (6) becomes

. (7)

See Problem 25 in Exercises 5.3. If we set v2 � g�l, we recognize (7) as the differen-
tial equation (2) of Section 5.1 that is a model for the free undamped vibrations of a lin-
ear spring/mass system. In other words, (7) is again the basic linear equation 
y� � ly � 0 discussed on page 212 of Section 5.2. As a consequence we say that equa-
tion (7) is a linearization of equation (6). Because the general solution of (7) is u(t) �
c1 cos vt � c2 sin vt, this linearization suggests that for initial conditions amenable
to small oscillations the motion of the pendulum described by (6) will be periodic.

d 2�

dt2 �
g
l
 � � 0

d 2u

dt 2 �
g
l
 u �

g
6l

 u3 � 0

sin � � � �
� 3

3!
�

� 5

5!
� . . .

d 2�

dt2 �
g
l
 sin � � 0

F � ma � ml  
d 2�

dt2

a �
d 2s
dt2 � l  

d 2�

dt2

O

θ

θ
P

W = mg
mg cos

θmg sin 

θ

l

FIGURE 5.3.3 Simple pendulum
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�

�

�

�

�

��
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�� (0) � 2

1
2

1
2

1
2

1
2

1
2

1
2

FIGURE 5.3.4 In Example 2,
oscillating pendulum in (b); whirling
pendulum in (c)

EXAMPLE 2 Two Initial-Value Problems

The graphs in Figure 5.3.4(a) were obtained with the aid of a numerical solver and
represent approximate or numerical solution curves of (6) when v2 � 1. The blue
curve depicts the solution of (6) that satisfies the initial conditions

whereas the red curve is the solution of (6) that satisfie�(0) � 1
2, ��(0) � 1

2,
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5.3 NONLINEAR MODELS ● 221

u�(0) � 2. The blue curve represents a periodic solution—the pendulum
oscillating back and forth as shown in Figure 5.3.4(b) with an apparent amplitude 
A � 1. The red curve shows that u increases without bound as time increases—the
pendulum, starting from the same initial displacement, is given an initial velocity of
magnitude great enough to send it over the top; in other words, the pendulum is
whirling about its pivot as shown in Figure 5.3.4(c). In the absence of damping, the
motion in each case is continued indefinitel .

Telephone Wires The first-order differential equation dy�dx � W�T1 is
equation (16) of Section 1.3. This differential equation, established with the aid
of Figure 1.3.8 on page 26, serves as a mathematical model for the shape of a flex
ible cable suspended between two vertical supports when the cable is carrying a
vertical load. In Section 2.2 we solved this simple DE under the assumption that
the vertical load carried by the cables of a suspension bridge was the weight of a
horizontal roadbed distributed evenly along the x-axis. With W � rx, r the weight
per unit length of the roadbed, the shape of each cable between the vertical supports
turned out to be parabolic. We are now in a position to determine the shape of a uni-
form flexible cable hanging only under its own weight, such as a wire strung between
two telephone posts. The vertical load is now the wire itself, and so if r is the linear
density of the wire (measured, say, in pounds per feet) and s is the length of the
segment P1P2 in Figure 1.3.8 then W � rs. Hence

. (8)

Since the arc length between points P1 and P2 is given by

, (9)

it follows from the fundamental theorem of calculus that the derivative of (9) is

. (10)

Differentiating (8) with respect to x and using (10) lead to the second-order equation

. (11)

In the example that follows we solve (11) and show that the curve assumed by
the suspended cable is a catenary. Before proceeding, observe that the nonlinear
second-order differential equation (11) is one of those equations having the form
F(x, y�, y�) � 0 discussed in Section 4.10. Recall that we have a chance of solving an
equation of this type by reducing the order of the equation by means of the substitu-
tion u � y�.

d 2y
dx2 �

�

T1
 
ds
dx

    or    
d 2y
dx2 �

�

T1
 
B

1 � �dy
dx�

2

ds
dx

�
B

1 � �dy
dx�

2

s � �x

0
 
B

1 � �dy
dx�

2
dx

dy
dx

�
�s
�1

�(0) � 1
2,

EXAMPLE 3 A Solution of (11)

From the position of the y-axis in Figure 1.3.8 it is apparent that initial conditions
associated with the second differential equation in (11) are y(0) � a and y�(0) � 0.

If we substitute u � y�, then the equation in (11) becomes . Sepa-

rating variables, we find tha

.� 
du

11 � u2
�

�

T1
 � dx    gives    sinh�1u �

�

T1
 x � c1

du
dx

�
�

�1

 11 � u2
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222 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

Now, y�(0) � 0 is equivalent to u(0) � 0. Since sinh�1 0 � 0, c1 � 0, so 
u � sinh (rx�T1). Finally, by integrating both sides of

.

Using y(0) � a, cosh 0 � 1, the last equation implies that c2 � a � T1�r. 
Thus we see that the shape of the hanging wire is given by

.

In Example 3, had we been clever enough at the start to choose a � T1�r,
then the solution of the problem would have been simply the hyperbolic cosine
y � (T1�r) cosh (rx�T1).

Rocket Motion In (12) of Section 1.3 we saw that the differential equation of
a free-falling body of mass m near the surface of the Earth is given by

,

where s represents the distance from the surface of the Earth to the object and the
positive direction is considered to be upward. In other words, the underlying
assumption here is that the distance s to the object is small when compared with the
radius R of the Earth; put yet another way, the distance y from the center of the Earth
to the object is approximately the same as R. If, on the other hand, the distance y to
the object, such as a rocket or a space probe, is large when compared to R, then we
combine Newton’s second law of motion and his universal law of gravitation to
derive a differential equation in the variable y.

Suppose a rocket is launched vertically upward from the ground as shown in
Figure 5.3.5. If the positive direction is upward and air resistance is ignored, then the
differential equation of motion after fuel burnout is

, (12)

where k is a constant of proportionality, y is the distance from the center of the
Earth to the rocket, M is the mass of the Earth, and m is the mass of the rocket. To
determine the constant k, we use the fact that when y � R, kMm�R2 � mg or 
k � gR2�M. Thus the last equation in (12) becomes

. (13)

See Problem 14 in Exercises 5.3.

Variable Mass Notice in the preceding discussion that we described the motion
of the rocket after it has burned all its fuel, when presumably its mass m is constant.
Of course, during its powered ascent the total mass of the rocket varies as its fuel is
being expended. We saw in (17) of Exercises 1.3 that the second law of motion, as
originally advanced by Newton, states that when a body of mass m moves through a
force field with velocity v, the time rate of change of the momentum mv of the body
is equal to applied or net force F acting on the body:

. (14)

If m is constant, then (14) yields the more familiar form F � m dv�dt � ma, where
a is acceleration. We use the form of Newton’s second law given in (14) in the next
example, in which the mass m of the body is variable.

F �
d
dt

(mv)

d 2y
dt2 � �g R

2

y2

m d
2y

dt2 � �k Mm
y2     or    

d 2y
dt2 � �k M

y2

m d
2s

dt2 � �mg    or simply    
d 2s
dt2 � �g

y � (T1>�) cosh(�x> T1) � a � T1>�

dy
dx

� sinh
�

T1
x,    we get    y �

T1

�
cosh 

�

T1
 x � c2

v0

y

center of
Earth

R

FIGURE 5.3.5 Distance to rocket is
large compared to R.
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x(t)

5 lb
upward
force

FIGURE 5.3.6 Chain pulled upward
by a constant force in Example 4

EXAMPLE 4 Chain Pulled Upward by a Constant Force

A uniform 10-foot-long chain is coiled loosely on the ground. One end of the chain
is pulled vertically upward by means of constant force of 5 pounds. The chain weighs
1 pound per foot. Determine the height of the end above ground level at time t. See
Figure 5.3.6.

SOLUTION Let us suppose that x � x(t) denotes the height of the end of the chain in
the air at time t, v � dx�dt, and the positive direction is upward. For the portion of the
chain that is in the air at time t we have the following variable quantities:

Thus from (14) we have

(15)

Because v � dx�dt, the last equation becomes

. (16)

The nonlinear second-order differential equation (16) has the form F(x, x�, x �) � 0,
which is the second of the two forms considered in Section 4.10 that can possibly
be solved by reduction of order. To solve (16), we revert back to (15) and use v � x�

along with the Chain Rule. From the second equation in (15)

can be rewritten as

. (17)

On inspection (17) might appear intractable, since it cannot be characterized as any
of the first-order equations that were solved in Chapter 2. However, by rewriting
(17) in differential form M(x, v)dx � N(x, v)dv � 0, we observe that although the
equation

(18)

is not exact, it can be transformed into an exact equation by multiplying it by an
integrating factor. From (Mv � Nx)�N � 1�x we see from (13) of Section 2.4 that
an integrating factor is When (18) is multiplied by m(x) � x, the
resulting equation is exact (verify). By identifying �f ��x � xv2 � 32x2 � 160x,
�f ��v � x2v and then proceeding as in Section 2.4, we obtain

. (19)

Since we have assumed that all of the chain is on the floor initially, we have
x(0) � 0. This last condition applied to (19) yields c1 � 0. By solving the algebraic
equation for v � dx�dt � 0, we get another first-orde
differential equation,

.
dx
dt

�
B

160 �
64
3

 x

1
2 x2v2 � 32

3  x3 � 80x2 � 0

1
2

 x2v2 �
32
3

x3 � 80x2 � c1

e�dx/x � eln x � x.

(v2 � 32x � 160)dx � xv dv � 0

xv 
dv
dx

� v2 � 160 � 32x

dv
dt

�
dv
dx

dx
dt

� v 
dv
dx

x  
d 2x
dt2 � �dx

dt�
2

� 32x � 160

Product Rule

� v �  160 � 32x.x(     v) � 5 � x or
x–––

32
d–––
dt

dv–––
dt

dx–––
dt

 net force:  F � 5 � W � 5 � x.

 mass:   m � W>g � x>32,

 weight:   W � (x ft) � (1 lb/ft) � x,

27069_05_ch05_p192-230.qxd  2/2/12  2:38 PM  Page 223

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



224 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

The last equation can be solved by separation of variables. You should verify that

. (20)

This time the initial condition x(0) � 0 implies that . Finally, by
squaring both sides of (20) and solving for x, we arrive at the desired result,

(21)

The graph of (21) given in Figure 5.3.7 should not, on physical grounds, be taken at
face value. See Problem 15 in Exercises 5.3.

x(t) �
15
2

�
15
2 �1 �

4110
15

t�
2
.

c2 � �3110�8

�
3

32
 �160 �

64
3

 x�
1/2

� t � c2

0.5

1

8
7
6
5
4
3
2

1
t

x

1.5 2 2.50

FIGURE 5.3.7 Graph of (21) in
Example 4

EXERCISES 5.3 Answers to selected odd-numbered problems begin on page ANS-9.

To the Instructor In addition to Problems 24 and 25, all
or portions of Problems 1–6, 8–13, 15, 20, and 21 could
serve as Computer Lab Assignments.

Nonlinear Springs

In Problems 1–4 the given differential equation is model of an
undamped spring/mass system in which the restoring force
F(x) in (1) is nonlinear. For each equation use a numerical
solver to plot the solution curves that satisfy the given initial
conditions. If the solutions appear to be periodic use the solu-
tion curve to estimate the period T of oscillations.

1.

2.

3.

4.

5. In Problem 3, suppose the mass is released from
the initial position x(0) � 1 with an initial velocity
x�(0) � x1. Use a numerical solver to estimate the
smallest value of �x1� at which the motion of the mass
is nonperiodic.

6. In Problem 3, suppose the mass is released from an initial
position x(0) � x0 with the initial velocity x�(0) � 1. Use
a numerical solver to estimate an interval a � x0 � b for
which the motion is oscillatory.

7. Find a linearization of the differential equation in
Problem 4.

x(0) � 1, x�(0) � 1; x(0) � 3, x�(0) � �1

d 2x
dt2 � xe0.01x � 0,

x(0) � 1, x�(0) � 1; x(0) � 3
2, x�(0) � �1

d 2x
dt2 � 2x � x2 � 0,

x(0) � 1, x�(0) � 1; x(0) � �2, x�(0) � 2

d 2x
dt2 � 4x � 16x3 � 0,

x(0) � 1, x�(0) � 1; x(0) � 1
2, x�(0) � �1

d 2x
dt2 � x3 � 0,

8. Consider the model of an undamped nonlinear
spring/mass system given by x� � 8x � 6x3 � x5 � 0.
Use a numerical solver to discuss the nature of the
oscillations of the system corresponding to the initial
conditions:

In Problems 9 and 10 the given differential equation is a
model of a damped nonlinear spring/mass system. Predict
the behavior of each system as . For each equation use
a numerical solver to obtain the solution curves satisfying
the given initial conditions.

9.

10.

11. The model mx� � kx � k1x3 � F0cos vt of an undamped
periodically driven spring/mass system is called Duffing s
differential equation. Consider the initial-value problem
x� � x � k1x3 � 5 cos t, x(0) � 1, x�(0) � 0. Use a nu-
merical solver to investigate the behavior of the system for
values of k1 � 0 ranging from k1 � 0.01 to k1 � 100.
State your conclusions.

12. (a) Find values of k1 � 0 for which the system in
Problem 11 is oscillatory.

(b) Consider the initial-value problem

x� � x � k1x3 � , x(0) � 0, x�(0) � 0.

Find values for k1 � 0 for which the system is 
oscillatory.

cos 32 t

 x(0) � 0, x�(0) � 3
2; x(0) � �1, x�(0) � 1

d 2x
dt2 �

dx
dt

� x � x3 � 0,

x(0) � �3, x�(0) � 4; x(0) � 0, x�(0) � �8

d 2x
dt2 �

dx
dt

� x � x3 � 0, 

t : �

 x(0) � 2, x�(0) � 0;   x(0) � �12, x�(0) � �1.

 x(0) � 12, x�(0) � 1;   x(0) � 2, x�(0) � 1
2;

 x(0) � 1, x�(0) � 1;  x(0) � �2, x�(0) � 1
2;
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5.3 NONLINEAR MODELS ● 225

Nonlinear Pendulum

13. Consider the model of the free damped nonlinear
pendulum given by

.

Use a numerical solver to investigate whether the motion
in the two cases l2 � v2 � 0 and l2 � v2 � 0 corre-
sponds, respectively, to the overdamped and underdamped
cases discussed in Section 5.1 for spring/mass systems. For

For
and 

Rocket Motion

14. (a) Use the substitution v � dy�dt to solve (13) for v in
terms of y. Assuming that the velocity of the rocket
at burnout is v � v0 and y � R at that instant, show
that the approximate value of the constant c of
integration is .

(b) Use the solution for v in part (a) to show that the
escape velocity of the rocket is given by .
[Hint: Take and assume v � 0 for all time t.]

(c) The result in part (b) holds for any body in the Solar
System. Use the values g � 32 ft/s2 and R � 4000 mi
to show that the escape velocity from the Earth is
(approximately) v0 � 25,000 mi/h.

(d) Find the escape velocity from the Moon if the
acceleration of gravity is 0.165g and R � 1080 mi.

Variable Mass

15. (a) In Example 4, how much of the chain would you
intuitively expect the constant 5-pound force to be
able to lift?

(b) What is the initial velocity of the chain?
(c) Why is the time interval corresponding to x(t) ! 0

given in Figure 5.3.7 not the interval I of definition of
the solution (21)? Determine the interval I. How
much chain is actually lifted? Explain any difference
between this answer and your prediction in part (a).

(d) Why would you expect x(t) to be a periodic solution?

16. A uniform chain of length L, measured in feet, is held
vertically so that the lower end just touches the floo .
The chain weighs 2 lb/ft. The upper end that is held is
released from rest at t � 0 and the chain falls straight
down. If x(t) denotes the length of the chain on the floo
at time t, air resistance is ignored, and the positive direc-
tion is taken to be downward, then

.

(a) Solve for v in terms of x. Solve for x in terms of t.
Express v in terms of t.

(L � x)
d2x
dt2 � �dx

dt�
2

� Lg

y : �
v0 � 12gR

c � �gR � 1
2

 v0 

2

u�(0) � 4.l2 � v2 � 0, use l� 1
3, v�1, u(0) � �2,

and u�(0) � 2.l2 �v2 � 0, use l�2, v�1, u(0)�1,

d 2�

dt2 � 2
 
d�

dt
� �2 sin � � 0

(b) Determine how long it takes for the chain to fall
completely to the ground.

(c) What velocity does the model in part (a) predict for
the upper end of the chain as it hits the ground?

Miscellaneous Mathematical Models

17. Pursuit Curve In a naval exercise a ship S1 is pursued
by a submarine S2 as shown in Figure 5.3.8. Ship S1
departs point (0, 0) at t � 0 and proceeds along a straight-
line course (the y-axis) at a constant speed v1. The subma-
rine S2 keeps ship S1 in visual contact, indicated by the
straight dashed line L in the figure while traveling at a con-
stant speed v2 along a curve C. Assume that ship S2 starts
at the point (a, 0), a � 0, at t � 0 and that L is tangent to C.
(a) Determine a mathematical model that describes the

curve C.
(b) Find an explicit solution of the differential equation.

For convenience define r � v1�v2. 
(c) Determine whether the paths of S1 and S2 will ever

intersect by considering the cases r � 1, r � 1, and r � 1.

[Hint: , where s is arc length measured

along C.]

dt
dx

�
dt
ds

 
ds
dx

S2

x

y

S1

L

C

FIGURE 5.3.8 Pursuit curve in Problem 17

18. Pursuit Curve In another naval exercise a destroyer
S1 pursues a submerged submarine S2. Suppose that S1
at (9, 0) on the x-axis detects S2 at (0, 0) and that S2
simultaneously detects S1. The captain of the destroyer
S1 assumes that the submarine will take immediate eva-
sive action and conjectures that its likely new course is
the straight line indicated in Figure 5.3.9. When S1 is at
(3, 0), it changes from its straight-line course toward the
origin to a pursuit curve C. Assume that the speed of
the destroyer is, at all times, a constant 30 mi/h and
that the submarine’s speed is a constant 15 mi/h.
(a) Explain why the captain waits until S1 reaches (3, 0)

before ordering a course change to C.
(b) Using polar coordinates, find an equation r � f (u)

for the curve C.
(c) Let T denote the time, measured from the initial

detection, at which the destroyer intercepts the sub-
marine. Find an upper bound for T.
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226 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

19. The Ballistic Pendulum Historically, in order to main-
tain quality control over munitions (bullets) produced
by an assembly line, the manufacturer would use a bal-
listic pendulum to determine the muzzle velocity of a
gun, that is, the speed of a bullet as it leaves the barrel.
Invented in 1742 by the English engineer Benjamin
Robins, the ballistic pendulum is simply a plane pendu-
lum consisting of a rod of negligible mass to which a
block of wood of mass mw is attached. The system is set
in motion by the impact of a bullet which is moving
horizontally at the unknown velocity vb; at the time of
the impact, which we take as t � 0, the combined mass
is mw � mb, where mb is the mass of the bullet imbedded
in the wood. In (7) of this section, we saw that in the
case of small oscillations, the angular displacement 
of a plane pendulum shown in Figure 5.3.3 is given by
the linear DE  where corre-
sponds to motion to the right of vertical. The velocity vb
can be found by measuring the height h of the mass
mw � mb at the maximum displacement angle 
shown in Figure 5.3.10.

Intuitively, the horizontal velocity V of the com-
bined mass (wood plus bullet) after impact is only a
fraction of the velocity vb of the bullet,  that is,

Now recall, a distance s traveled by a particle moving
along a circular path is related to the radius l and central
angle by the formula By differentiating the last
formula with respect to time t, it follows  that the
angular velocity of the mass and its linear velocity v
are related by . Thus the initial angular velocity

at the time t at which the bullet impacts the wood
block is related to V by or  

(a) Solve the initial-value problem

d2u

dt2 �
g
l
 u � 0, u(0) � 0, u�(0) � v0.

v0 � � mb

mw � mb
� 

vb

l
.

V � lv0

v0

v � lv
v

s � lu.u

V � � mb

mw � mb
�vb.

umax

u � 0u� � (g>l )u � 0,

u(t)

(b) Use the result from part (a) to show that

(c) Use Figure 5.3.10 to express cos in terms of l
and h. Then use the first two terms of the Maclaurin
series for cos to express in terms of l and h.
Finally, show that vb is given (approximately) by

(d) Use the result in part (c) to find vb and
and h � 6 cm.mb � 5 g, mw � 1 kg,

vb � �mw � mb

mb
� 22gh.

umaxu

umax

vb � �mw � mb

mb
� 2lg umax.

S2

L

x

y

S1

C

θ
(3, 0) (9, 0)

FIGURE 5.3.9 Pursuit curve in Problem 18

V
h

l

mb vb

h

max

mw

m b�
m w

�

FIGURE 5.3.10 Ballistic pendulum in Problem 19

20. Relief Supplies As shown in Figure 5.3.11, a plane
flying horizontally at a constant speed v0 drops a relief
supply pack to a person on the ground. Assume the ori-
gin is the point where the supply pack is released and
that the positive x-axis points forward and that posi-
tive y-axis points downward. Under the assumption
that the horizontal and vertical components of the air
resistance are proportional to and , re-
spectively, and if the position of the supply pack is
given by then its velocity is

. Equating components in the
vector form of Newton’s second law of motion,

gives

(a) Solve both of the foregoing initial-value problems
by means of the substitutions 
and separation of variables. [Hint: See the Remarks
at the end of Section 3.2.]

(b) Suppose the plane files at an altitude of 1000 ft and
that its constant speed is 300 mi/h. Assume that the
constant of proportionality for air resistance is

and that the supply pack weighs 256 lb.
Use a root-finding application of a CAS or a graphic
k � 0.0053

w � dy>dt,u � dx>dt,

m 
d 2y
dt 2 � mg � k�dy

dt�
2
,  y(0) � 0, y�(0) � 0.

m 
d 2x
dt 2 � mg � k�dx

dt�
2
,  x(0) � 0, x�(0) � v0

m 
dv
dt

� mg � k	�dx
dt�

2
 i � �dy

dt�
2
j


v(t) � (dx>dt)i � (dy>dt)j
r(t) � x(t)i � y(t)j,

(dy>dt)2(dx>dt)2
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5.3 NONLINEAR MODELS ● 227

calculator to determine the horizontal distance the
pack travels, measured from its point of release to
the point where it hits the ground.

24. Pendulum Motion on the Moon-Continued Repeat
the two parts of Problem 23 this time using the linear
model (7).

Computer Lab Assignments

25. Consider the initial-value problem

for a nonlinear pendulum. Since we cannot solve the
differential equation, we can find no explicit solution of
this problem. But suppose we wish to determine the firs
time t1 � 0 for which the pendulum in Figure 5.3.3,
starting from its initial position to the right, reaches the
position OP —that is, the first positive root of u(t) � 0.
In this problem and the next we examine several ways
to proceed.
(a) Approximate t1 by solving the linear problem 

(b) Use the method illustrated in Example 3 of Sec-
tion 4.10 to find the first four nonzero terms of a
Taylor series solution u(t) centered at 0 for the non-
linear initial-value problem. Give the exact values
of all coefficients

(c) Use the first two terms of the Taylor series in
part (b) to approximate t1.

(d) Use the first three terms of the Taylor series in
part (b) to approximate t1.

(e) Use a root-finding application of a CAS or a graphic
calculator and the first four terms of the Taylor series
in part (b) to approximate t1.

(f) In this part of the problem you are led through
the commands in Mathematica that enable you to
approximate the root t1. The procedure is easily
modified so that any root of u(t) � 0 can be
approximated. (If you do not have Mathematica,
adapt the given procedure by finding the corre-
sponding syntax for the CAS you have on hand.)
Precisely reproduce and then, in turn, execute each
line in the given sequence of commands.

sol � NDSolve[{y�[t] � Sin[y[t]] �� 0, 
y[0] �� Pi/12, y�[0] �� �1/3}, 
y, {t, 0, 5}] //Flatten

solution � y[t] /.sol
Clear[y]
y[t_]: � Evaluate[solution]
y[t]
gr1 � Plot[y[t], {t, 0, 5}]
root � FindRoot[y[t] �� 0, {t, 1}]

(g) Appropriately modify the syntax in part (f ) and fin
the next two positive roots of u(t) � 0.

d 2�

dt2 � � � 0,  � (0) �
�

12
, ��(0) � �

1
3
.

d 2�

dt2 � sin� � 0,  � (0) �
�

12
, ��(0) � �

1
3

supply
pack

target

FIGURE 5.3.11 Airplane drop in Problem 20

Discussion Problems

21. Discuss why the damping term in equation (3) is
written as

22. (a) Experiment with a calculator to find an interval
0 � u � u1, where u is measured in radians, for
which you think sin u � u is a fairly good estimate.
Then use a graphing utility to plot the graphs of
y � x and y � sin x on the same coordinate axes
for 0 � x � p�2. Do the graphs confirm your
observations with the calculator?

(b) Use a numerical solver to plot the solution curves of
the initial-value problems

and

for several values of u0 in the interval 0 � u � u1
found in part (a). Then plot solution curves of the
initial-value problems for several values of u0 for
which u0 � u1.

23. Pendulum Motion on the Moon Does a pendulum of
length l oscillate faster on the Earth or on the Moon?
(a) Take l � 3 and g � 32 for the acceleration of grav-

ity on Earth. Use a numerical solver to generate a
numerical solution curve for the nonlinear model
(6) subject to the initial conditions 

Repeat using the same values but use
0.165g for the acceleration of gravity on the Moon.

(b) From the graphs in part (a), determine which pendu-
lum oscillates faster. Which pendulum has the
greater amplitude of motion?

u�(0) � 2.
u(0) � 1,

d 2�

dt2 � � � 0,     � (0) � �0,  ��(0) � 0

d 2�

dt2 � sin� � 0,  � (0) � �0,  ��(0) � 0

� �dx
dt �  

dx
dt

 instead of  � �dx
dt�

2
.
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228 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

26. Consider a pendulum that is released from rest from an
initial displacement of u0 radians. Solving the linear
model (7) subject to the initial conditions u(0) � u0,
u�(0) � 0 gives . The period of
oscillations predicted by this model is given by the
familiar formula . The inter-
esting thing about this formula for T is that it does not
depend on the magnitude of the initial displacement
u0. In other words, the linear model predicts that the
time it would take the pendulum to swing from an ini-
tial displacement of, say, u0 � p�2 (� 90°) to �p�2
and back again would be exactly the same as the time
it would take to cycle from, say, u0 � p�360 (� 0.5°)
to �p�360. This is intuitively unreasonable; the actual
period must depend on u0.

If we assume that g � 32 ft/s2 and l � 32 ft, then
the period of oscillation of the linear model is T � 2p s.
Let us compare this last number with the period

T � 2� �1g/l � 2� 1l/g

�(t) � �0 cos 1g/l t

predicted by the nonlinear model when u0 � p�4. Using
a numerical solver that is capable of generating hard
data, approximate the solution of

on the interval 0 � t � 2. As in Problem 25, if t1 denotes
the first time the pendulum reaches the position OP in
Figure 5.3.3, then the period of the nonlinear pendulum is
4t1. Here is another way of solving the equation u(t) � 0.
Experiment with small step sizes and advance the time,
starting at t � 0 and ending at t � 2. From your hard data
observe the time t1 when u(t) changes, for the first time,
from positive to negative. Use the value t1 to determine
the true value of the period of the nonlinear pendulum.
Compute the percentage relative error in the period esti-
mated by T � 2p.

d 2�

dt2 � sin � � 0,  �(0) �
�

4
, ��(0) � 0

CHAPTER 5 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-9.

Answer Problems 1–8 without referring back to the text. Fill
in the blank or answer true/false.

1. If a mass weighing 10 pounds stretches a spring 
2.5 feet, a mass weighing 32 pounds will stretch it

feet.
2. The period of simple harmonic motion of mass weigh-

ing 8 pounds attached to a spring whose constant is
6.25 lb/ft is seconds.

3. The differential equation of a spring/mass system is
x� � 16x � 0. If the mass is initially released from a
point 1 meter above the equilibrium position with a
downward velocity of 3 m/s, the amplitude of vibra-
tions is meters.

4. Pure resonance cannot take place in the presence of a
damping force. 

5. In the presence of a damping force, the displacements
of a mass on a spring will always approach zero as

. 
6. A mass on a spring whose motion is critically damped

can possibly pass through the equilibrium position
twice. 

7. At critical damping any increase in damping will result
in an system.

8. If simple harmonic motion is described by
, the phase angle f is 

when the initial conditions are and x�(0) � 1. 
In Problems 9 and 10 the eigenvalues and eigenfunc-
tions of the boundary-value problem y� � ly � 0, y�(0) � 0,
y�(p) � 0 are ln � n2, n � 0, 1, 2, . . . , and y � cos nx,
respectively. Fill in the blanks.

x(0) � �1
2

x � (12>2)sin(2t � f)

t : �

9. A solution of the BVP when l� 8 is y �
because .

10. A solution of the BVP when l � 36 is y �
because .

11. A free undamped spring/mass system oscillates with a
period of 3 seconds. When 8 pounds are removed from
the spring, the system has a period of 2 seconds. What
was the weight of the original mass on the spring?

12. A mass weighing 12 pounds stretches a spring 2 feet. The
mass is initially released from a point 1 foot below the
equilibrium position with an upward velocity of 4 ft/s.
(a) Find the equation of motion.
(b) What are the amplitude, period, and frequency of

the simple harmonic motion?
(c) At what times does the mass return to the point

1 foot below the equilibrium position?
(d) At what times does the mass pass through the

equilibrium position moving upward? Moving
downward?

(e) What is the velocity of the mass at ?
(f) At what times is the velocity zero?

13. A force of 2 pounds stretches a spring 1 foot. With one
end held fixed, a mass weighing 8 pounds is attached
to the other end. The system lies on a table that imparts
a frictional force numerically equal to times the
instantaneous velocity. Initially, the mass is displaced
4 inches above the equilibrium position and released
from rest. Find the equation of motion if the motion
takes place along a horizontal straight line that is taken
as the x-axis.

3
2

t � 3p>16 s
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CHAPTER 5 IN REVIEW ● 229

14. A mass weighing 32 pounds stretches a spring 6 inches.
The mass moves through a medium offering a damping
force that is numerically equal to b times the instanta-
neous velocity. Determine the values of b� 0 for which
the spring/mass system will exhibit oscillatory motion.

15. A spring with constant k � 2 is suspended in a liquid that
offers a damping force numerically equal to 4 times the
instantaneous velocity. If a mass m is suspended from the
spring, determine the values of m for which the subse-
quent free motion is nonoscillatory.

16. The vertical motion of a mass attached to a spring 
is described by the IVP

. Determine the maximum vertical
displacement of the mass.

17. A mass weighing 4 pounds stretches a spring 18 inches.
A periodic force equal to f(t) � cos gt � sin gt is
impressed on the system starting at t � 0. In the absence
of a damping force, for what value of g will the system
be in a state of pure resonance?

18. Find a particular solution for x� � 2lx� � v2x � A,
where A is a constant force.

19. A mass weighing 4 pounds is suspended from a spring
whose constant is 3 lb/ft. The entire system is immersed
in a fluid offering a damping force numerically equal
to the instantaneous velocity. Beginning at t � 0, an
external force equal to f(t) � e�t is impressed on the
system. Determine the equation of motion if the mass is
initially released from rest at a point 2 feet below the
equilibrium position.

20. (a) Two springs are attached in series as shown in
Figure 5.R.1. If the mass of each spring is ignored,
show that the effective spring constant k of the
system is defined by 1�k � 1�k1 � 1�k2.

(b) A mass weighing W pounds stretches a spring
foot and stretches a different spring foot. The two

springs are attached, and the mass is then attached to
the double spring as shown in Figure 5.R.1. Assume
that the motion is free and that there is no damping
force present. Determine the equation of motion if
the mass is initially released at a point 1 foot below
the equilibrium position with a downward velocity of

.
(c) Show that the maximum speed of the mass is

2
3

 23g � 1.

2
3 ft /s

1
4

1
2

x(0) � 4, x�(0) � 2

1
4

 x� � x� � x � 0,

21. A series circuit contains an inductance of L � 1 h, a
capacitance of C � 10�4 f, and an electromotive force
of E(t) � 100 sin 50t V. Initially, the charge q and
current i are zero.
(a) Determine the charge q(t).
(b) Determine the current i(t).
(c) Find the times for which the charge on the capacitor

is zero.

22. (a) Show that the current i(t) in an LRC-series circuit

satisfies , where E�(t) 

denotes the derivative of E(t).
(b) Two initial conditions i(0) and i�(0) can be specifie

for the DE in part (a). If i(0) � i0 and q(0) � q0,
what is i�(0)?

23. Consider the boundary-value problem

.

Show that except for the case l � 0, there are two
independent eigenfunctions corresponding to each
eigenvalue.

24. A bead is constrained to slide along a frictionless rod of
length L. The rod is rotating in a vertical plane with a
constant angular velocity v about a pivot P fixed at the
midpoint of the rod, but the design of the pivot allows
the bead to move along the entire length of the rod. Let
r(t) denote the position of the bead relative to this rotat-
ing coordinate system as shown in Figure 5.R.2. To
apply Newton’s second law of motion to this rotating
frame of reference, it is necessary to use the fact that the
net force acting on the bead is the sum of the real forces
(in this case, the force due to gravity) and the inertial
forces (coriolis, transverse, and centrifugal). The math-
ematics is a little complicated, so we just give the result-
ing differential equation for r:

.

(a) Solve the foregoing DE subject to the initial
conditions r(0) � r0, r�(0) � v0.

(b) Determine the initial conditions for which the bead
exhibits simple harmonic motion. What is the min-
imum length L of the rod for which it can accom-
modate simple harmonic motion of the bead?

(c) For initial conditions other than those obtained in
part (b), the bead must eventually fly off the rod.
Explain using the solution r(t) in part (a).

(d) Suppose v � 1 rad/s. Use a graphing utility to
graph the solution r(t) for the initial conditions
r(0) � 0, r�(0) � v0, where v0 is 0, 10, 15, 16, 16.1,
and 17.

m d
2r

dt2 � m�2r � mg sin �t

y� � 
y � 0,  y(0) � y(2�),  y�(0) � y�(2�)

L  
d 2i
dt2 � R  

di
dt

�
1
C

 i � E�(t)

k2

k1

FIGURE 5.R.1 Attached springs in Problem 20
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230 ● CHAPTER 5 MODELING WITH HIGHER-ORDER DIFFERENTIAL EQUATIONS

(e) Suppose the length of the rod is L � 40 ft. For each
pair of initial conditions in part (d), use a root-
finding application to find the total time that the
bead stays on the rod.

bead 

P

r (t
)

tω

FIGURE 5.R.2 Rotating rod in Problem 24

rigid
support

frictionless surface
x = 0

x(t) < 0 x(t) > 0

m

m

(a) equilibrium

(b) motion

FIGURE 5.R.3 Sliding spring/mass system in Problem 25

Figure 5.R.4. If the spring constants are and deter-
mine a differential equation for the displacement of
the freely sliding mass.

x(t)
k2,k1

25. Suppose a mass m lying on a flat dry frictionless surface
is attached to the free end of a spring whose constant is
k. In Figure 5.R.3(a) the mass is shown at the equilib-
rium position x � 0, that is, the spring is neither
stretched nor compressed. As shown in Figure 5.R.3(b),
the displacement of the mass to the right of the equi-
librium position is positive and negative to the left.
Determine a differential equation for the displacement

of the freely sliding mass. Discuss the difference be-
tween the derivation of this DE and the analysis leading
to (1) of Section 5.1.

x(t)

x(t)

rigid
support

rigid
support

k1 k2
m

FIGURE 5.R.4 Double spring system in Problem 26

27. Suppose the mass m in the spring/mass system in
Problem 25 slides over a dry surface whose coefficien
of sliding friction is . If the retarding force of
kinetic friction has the constant magnitude 
where mg is the weight of the mass, and acts opposite
to the direction of motion, then it is known as coulomb
friction. By using the signum function

determine a piecewise-defined differential equation for
the displacement of the damped sliding mass.

28. For simplicity, let us assume in Problem 27 that 
and 

(a) Find the displacement of the mass if it is re-
leased from rest from a point units to the right of
the equilibrium position, that is, the initial condi-
tions are When released,
intuitively the motion of the mass will be to the left.
Give a time interval over which this solution
is defined. Where is the mass at time t1?

(b) For assume that the motion is now to the
right. Using initial conditions at find and give
a time interval [t1, t2] over which this solution is
defined. Where is the mass at time t2? 

(c) For assume that the motion is now to the left.
Using initial conditions at find and give a
time interval [t2, t3] over which this solution is
defined. Where is the mass at time t3?

(d) Using initial conditions at t3, show that the model
predicts that there is no furthere motion for 

(e) Graph the displacement on the interval [0, t3].x(t)
t � t3.

x(t)t2,
t � t2

x(t)t1,
t � t1

[0, t1]

x(0) � 5.5, x�(0) � 0.

5.5
x(t)

fk � 1.k � 1,
m � 1,

x(t)

sgn(x�) � ��1,   x� � 0 (motion to left)
1,   x� � 0 (motion to right)

fk � "mg,
" � 0

26. Suppose the mass m on the flat, dry, frictionless surface
in Problem 25 is attached to two springs as shown
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6 Series Solutions of Linear Equations

6.1 Review of Power Series
6.2 Solutions About Ordinary Points
6.3 Solutions About Singular Points
6.4 Special Functions

Chapter 6 in Review

Up to this point in our study of differential equations we have primarily solved
linear equations of order two (or higher) that have constant coefficients. The only
exception was the Cauchy-Euler equation in Section 4.7.  In applications, higher-
order linear equations with variable coefficients are just as important as, if not mor
than, differential equations with constant coefficients. As pointed out in Section 4.7,
even a simple linear second-order equation with variable coefficients such a

does not possess solutions that are elementary functions.  But this is
not to say that we can’t find two linearly independent solutions of we
can.  In Sections 6.2 and 6.4 we shall see that the functions that are solutions of this
equation are defined by infinite series.

In this chapter we shall study two infinite-series methods for finding solutio
of homogeneous linear second-order DEs where
the variable coefficients are, for the most part, simple
polynomial functions.

a2(x), a1(x), and  a0(x)
a2(x)y� � a1(x)y� � a0(x)y � 0,

y� � xy � 0;
y� � xy � 0
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232 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

x
a a + Ra − R

divergence divergence 
absolute 

convergence 

series may
converge or diverge

at endpoints

FIGURE 6.1.1 Absolute convergence
within the interval of convergence and
divergence outside of this interval

REVIEW OF POWER SERIES

REVIEW MATERIAL
● Infinite series of constants, p-series, harmonic series, alternating harmonic series, geometric

series, tests for convergence especially the ratio test
● Power series, Taylor series, Maclaurin series (See any calculus text)

INTRODUCTION In Section 4.3 we saw that solving a homogeneous linear DE with constant
coefficients was essentially a problem in algebra. By finding the roots of the auxiliary equation, we
could write a general solution of the DE as a linear combination of the elementary functions

But as was pointed out in the introduction to Section 4.7,
most linear higher-order DEs with variable coefficients cannot be solved in terms of elementary
functions.  A usual course of action for equations of this sort is to assume a solution in the form of
an infinite series and proceed in a manner similar to the method of undetermined coefficient
(Section 4.4). In Section 6.2 we consider linear second-order DEs with variable coefficients that
possess solutions in the form of a power series, and so it is appropriate that we begin this chapter
with a review of that topic.

eax, xkeax, xkeaxcosbx, and xkeaxsinbx.

6.1

Power Series Recall from calculus that power series in is an infinit
series of the form

Such a series also said to be a power series centered at a. For example, the power
series is centered at a � �1. In the next section we will be concerned
principally with power series in x, in other words, power series that are centered at

. For example, 

is a power series in x.

Important Facts The following bulleted list summarizes some important
facts about power series 

• Convergence A power series is convergent at a specified value of x if 
its sequence of partial sums converges, that is, 

exists. If the limit does not exist at x, then the series
is said to be divergent.

• Interval of Convergence Every power series has an interval of convergence.
The interval of convergence is the set of all real numbers x for which the series
converges. The center of the interval of convergence is the center a of the series.

• Radius of Convergence The radius R of the interval of convergence of a
power series is called its radius of convergence. If then a power series
converges for and diverges for If the series
converges only at its center a, then If the series converges for all x, then
we write Recall, the absolute-value inequality is
equivalent to the simultaneous inequality A power series
may or may not converge at the endpoints of this interval.

• Absolute Convergence Within its interval of convergence a power series
converges absolutely. In other words, if x is in the interval of convergence
and is not an endpoint of the interval, then the series of absolute values

converges. See Figure 6.1.1.��
n�0� cn(x � a)n �

a � R and a � R
a � R � x � a � R.

� x � a � � RR � �.
R � 0.

� x � a � 	 R.� x � a � � R
R 	 0,

cn (x � a)nlim
N : �

 �N
n�0

lim
N : �

 SN (x) �{SN(x)}

��
n�0cn(x � a)n.

�
�

n�0
2nxn � 1 � 2x � 4x2 � . . .

a � 0

��
n�0 (x � 1)n

�
�

n�0
cn(x � a)n � c0 � c1(x � a) � c2(x � a)2 � . . ..

x � a

The index of summation need not 
start at n � 0. �
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• Ratio Test Convergence of power series can often be determined by the
ratio test. Suppose for all n in and that

If the series converges absolutely; if the series diverges; and
if the test is inconclusive. The ratio test is always inconclusive at an
endpoint a 
 R.

L � 1
L 	 1L � 1,

lim
n:� �  cn�1(x � a)n�1 

cn(x � a)n �� � x � a � lim
n:� � cn�1

 

cn
� � L.

��
n�0 cn(x � a)n,cn � 0

6.1 REVIEW OF POWER SERIES ● 233

EXAMPLE 1 Interval of Convergence

Find the interval and radius of convergence for 

SOLUTION The ratio test gives

The series converges absolutely for or or 1 � x � 5.
This last inequality defines the open interval of convergence. The series diverges for

, that is, for x 	 5 or x � 1. At the left endpoint x � 1 of the open
interval of convergence, the series of constants is convergent by
the alternating series test. At the right endpoint x � 5, the series is the
divergent harmonic series. The interval of convergence of the series is [1, 5), and the
radius of convergence is R � 2.

• A Power Series Defines a Functio A power series defines a function
that is, whose domain is the interval of
convergence of the series. If the radius of convergence is R 	 0 or 
then f is continuous, differentiable, and integrable on the intervals 
(a � R, a � R) or , respectively. Moreover, f�(x) and �f (x) dx can be
found by term-by-term differentiation and integration. Convergence at an
endpoint may be either lost by differentiation or gained through integration. If

is a power series in x, then the first two derivatives are and
Notice that the first term in the first derivative and

the first two terms in the second derivative are zero. We omit these zero
terms and write

.

(1)

Be sure you understand the two results given in (1); especially note where
the index of summation starts in each series. These results are important and
will be used in all examples in the next section.

• Identity Property If � 0, R 	 0, for all numbers x in
some open interval, then for all n.

• Analytic at a Point A function f is said to be analytic at a point a if it
can be represented by a power series in x � a with either a positive or an
infinite radius of conve gence. In calculus it is seen that infinitel

cn � 0
��

n�0 cn(x � a)n

y� � �
�

n�2
cnn(n � 1)xn�2 � 2c2 � 6c3x � 12c4x2 � . . .

y� � �
�

n�1
cnnxn�1 � c1 � 2c2x � 3c3x2 � 4c4x3 � . . .

y � � ��
n�0 n(n � 1)xn�2.

y� � ��
n�0 nxn�1

y � �
�

n�1
cnxn � c0 � c1x � c2x2 � c3x3 � . . .

(��, �)

R � �,
f (x) � ��

n�0 cn(x � a)n

� �
n�1 (1>n)

��
n�1 ((�1)n>n)

� x � 3 � 	 2

� x � 3 � � 21
2 � x � 3 � � 1

lim
n:� � (x � 3)n�1

2n�1(n � 1)
(x � 3)n

2nn
� � � x � 3 �  lim

n:�   

n � 1
2n

�
1
2

 � x � 3 �.

�
�

n�1

(x � 3)n

2nn
.
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234 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

differentiable functions such as ex and so on, can
be represented by Taylor series

or by a Maclaurin series

.

You might remember some of the following Maclaurin series representations.

Interval
Maclaurin Series of Convergence

(2)

These results can be used to obtain power series representations of other
functions. For example, if we wish to find the Maclaurin series representatio
of, say, we need only replace x in the Maclaurin series for 

Similarly, to obtain a Taylor series representation of centered at 
we replace x by in the Maclaurin series for ln(1 � x):x � 1

a � 1ln x

ex2
� 1 �

x2

1!
�

x4

2!
�

x6

3!
� . . . � �

�

n�0

1
n!

 x2n.

ex:ex2

(�1, 1) 
1

1 � x
� 1 � x � x2 � x3 � . . . � �

�

n�0
xn

(�1, 1] ln(1 � x) � x �
x2

2
�

x3

3
�

x4

4
� . . . � �

�

n�1

(�1)n�1

n
xn

(��, �) sinh x � x �
x3

3!
�

x5

5!
�

x7

7!
� . . . � �

�

n�0

1
(2n � 1)!

x2n�1

(��, �) cosh x � 1 �
x2

2!
�

x4

4!
�

x6

6!
� . . . � �

�

n�0

1
(2n)!

x2n

[�1, 1] tan�1 x � x �
x3

3
�

x5

5
�

x7

7
� . . . � �

�

n�0

(�1)n

2n � 1
x2n�1

(��, �) sin x � x �
x3

3!
�

x5

5!
�

x7

7!
� . . . � �

�

n�0

(�1)n

(2n � 1)!
x2n�1

(��, �) cos x � 1 �
x2

2!
�

x4

4!
�

x6

6!
� . . . � �

�

n�0

(�1)n

(2n)!
x2n

(��, �) ex � 1 �
x
1!

�
x2

2!
�

x3

3!
� . . . � �

�

n�0

1
n!

xn

�
�

n�0

f (n)(0)
n!

xn � f(0) �
f �(0)
1!

x �
f �(0)

1!
x2 � . . .

�
�

n�0

f (n)(a)
n!

(x � a)n � f (a) �
f �(a)

1!
(x � a) �

f �(a)
1!

(x � a)2 � . . .

ln(1 � x),cos x,ex, sinx,

ln x � ln(1 � (x � 1)) � (x � 1) �
(x � 1)2

2
�

(x � 1)3

3
�

(x � 1)4

4
� . . . � �

�

n�1

(�1)n�1

n
 (x � 1)n.

The interval of convergence for the power series representation of is the
same as that of that is, But the interval of convergence of the
Taylor series of is now this interval is shifted 1 unit to
the right.

• Arithmetic of Power Series Power series can be combined through the
operations of addition, multiplication, and division. The procedures for
powers series are similar to the way in which two polynomials are added,
multiplied, and divided —that is, we add coefficients of like powers of x,
use the distributive law and collect like terms, and perform long division. 

(�1, 1](0, 2];ln x
(��, �).ex,

ex2

You can also verify that the interval of
convergence is (0, 2] by using the ratio
test.

�
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6.1 REVIEW OF POWER SERIES ● 235

EXAMPLE 2 Multiplication of Power Series

Find a power series representation of 

SOLUTION We use the power series for and 

Since the power series of and both converge on the product series
converges on the same interval. Problems involving multiplication or division of
power series can be done with minimal fuss using a computer algebra system.

Shifting the Summation Index For the three remaining sections of this chap-
ter, it is crucial that you become adept at simplifying the sum of two or more power
series, each series expressed in summation notation, to an expression with a single 
As the next example illustrates, combining two or more summations as a single summa-
tion often requires a reindexing, that is, a shift in the index of summation.

�.

(��, �),sin xex

 � x � x2 �
x3

3
�

x5

30
� . . .  .

 � (1)x � (1)x2 � ��1
6

�
1
2
 �x3 � ��1

6
�

1
6�x4 � � 1

120
�

1
12

�
1

24�x5 � . . .

 exsinx � �1 � x �
x2

2
�

x3

6
�

x4

24
� . . .��x �

x3

6
�

x5

120
�

x7

5040
� . . .�

sinx:ex

ex sin x.

EXAMPLE 3 Addition of Power Series

Write

as one power series.

SOLUTION In order to add the two series given in summation notation, it is neces-
sary that both indices of summation start with the same number and that the powers
of x in each series be “in phase,” in other words, if one series starts with a multiple
of, say, x to the first power, then we want the other series to start with the same power.
Note that in the given problem, the first series starts with x0 whereas the second
series starts with x1. By writing the first term of the first series outside of the summa-
tion notation,

(3)

we see that both series on the right side start with the same power of x, namely, x1.
Now to get the same summation index we are inspired by the exponents of x; we let

in the first series and at the same time let in the second series.
For in we get and for in we get and
so the right-hand side of (3) becomes

(4)

same

same

2c2 � � (k � 2)(k � 1)ck�2xk � � ck�1xk.
k�1

�

k�1

�

k � 1,k � n � 1n � 0k � 1,k � n � 2n � 3
k � n � 1k � n � 2

series starts
with x
for n � 3

series starts
with x
for n � 0

� n(n � 1)cnxn�2 � � cnxn�1 � 2 � 1c2x 0 � � n(n � 1)cnxn�2 � � cnxn�1

n�2

�

n�0

�

n�3

�

n�0

�

�
�

n�2
n(n � 1)cnxn�2 � �

�

n�0
cnxn�1
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Remember the summation index is a “dummy” variable; the fact that in
one case and in the other should cause no confusion if you keep in mind
that it is the value of the summation index that is important. In both cases k takes 
on the same successive values when n takes on the values

for and for We are now in a
position to add the series in (4) term-by-term:

(5)

If you are not totally convinced of the result in (5), then write out a few terms on
both sides of the equality. 

A Preview The point of this section is to remind you of the salient facts about
power series so that you are comfortable using power series in the next section to fin
solutions of linear second-order DEs. In the last example in this section we tie up
many of the concepts just discussed; it also gives a preview of the method that will
used in Section 6.2. We purposely keep the example simple by solving a linear first
order equation. Also suspend, for the sake of illustration, the fact that you already
know how to solve the given equation by the integrating-factor method in Section 2.3.

�
�

n�2
n(n � 1)cnxn�2 � �

�

n�0
cnxn�1 � 2c2 � �

�

k�1
[(k � 2)(k � 1)ck�2 � ck�1]xk.

k � n � 1.n � 0, 1, 2, . . .k � n � 1n � 2, 3, 4, . . .
k � 1, 2, 3, . . . 

k � n � 1
k � n � 2

236 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

EXAMPLE 4 A Power Series Solution

Find a power series solution of the differential equation 

SOLUTION We break down the solution into a sequence of steps.

(i) First calculate the derivative of the assumed solution:

(ii) Then substitute into the given DE: 

(iii) Now shift the indices of summation. When the indices of summation have the
same starting point and the powers of x agree, combine the summations:

 y� � y � �
�

n�1
cnnxn�1 � �

�

n�0
cnxn

y� � y � �
�

n�1
cnnxn�1 � �

�

n�0
cnxn.

y and y�

; see the first line in (1)y� � �
�

n�1
cnnxn�1

y� � y � 0.y � �
�

n�0
cnxn

 
k � n�1  k � n

(iv) Because we want for all x in some interval, 

is an identity and so we must have 

 ck�1 � �
1

k � 1
 ck,  k � 0, 1, 2, . . . .

ck�1(k � 1) � ck � 0, or

�
�

k�0
[ck�1(k � 1) � ck]xk � 0

y� � y � 0

 � �
�

k�0
[ck�1(k � 1) � ck]xk.

 � �
�

k�0
ck�1(k � 1)xk � �

�

k�0
ckxk
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(v) By letting k take on successive integer values starting with we fin

and so on, where is arbitrary.
(vi) Using the original assumed solution and the results in part (v) we obtain a formal
power series solution 

It should be fairly obvious that the pattern of the coefficients in part (v) is
so that in summation notation we can write

(8)

From the first power series representation in (2) the solution in (8) is recognized
as Had you used the method of Section 2.3, you would have found that

is a solution of on the interval This interval is also the
interval of convergence of the power series in (8).

(��, �).y� � y � 0y � ce�x
y � c0e�x.

y � c0 �
�

k�0

(�1)k

k!
xk.

ck � c0(�1)k>k!, k � 0, 1, 2, . . . .

 � c0�1 � x �
1
2

x2 �
1

3 � 2
x3 �

1
4 � 3 � 2

x4 � . . .�.

 � c0 � c0x �
1
2
c0x2 � c0

1
3 � 2

x3 � c0
1

4 � 3 � 2
x4 � . . .

y � c0 � c1x � c2x2 � c3x3 � c4x4 � . . .

c0

 c4 � �
1
4
c2 � �

1
4��

1
3 � 2

c0� �
1

4 � 3 � 2
c0

 c3 � �
1
3
c2 � �

1
3�

1
2
c0� � �

1
3 � 2

c0

 c2 � �
1
2

c1 � �
1
2

(�c0) �
1
2

c0

  c1 � �
1
1

c0 � �c0

k � 0,
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If desired we could switch back to n as 
the index of summation. �

EXERCISES 6.1 Answers to selected odd-numbered problems begin on page ANS-9.

In Problems 1–10 find the interval and radius of convergence
for the given power series.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

In Problems 11–16 use an appropriate series in (2) to find the
Maclaurin series of the given function. Write your answer in
summation notation.

11. 12.

13. 14.
x

1 � x2
1

2 � x

xe3xe�x>2

�
�

n�0

(�1)n

9n x2n�1�
�

k�1

25k

52k�x
3�

k

�
�

k�0
3�k(4x � 5)k�

�

k�1

1
k2 � k

(3x � 1)k

�
�

k�0
k!(x � 1)k�

�

k�1

(�1)k

10k  (x � 5)k

�
�

n�0

5n

n!
xn�

�

n�1

2n

n
xn

�
�

n�1

1
n2 xn�

�

n�1

(�1)n

n
xn

15. 16.

In Problems 17 and 18 use an appropriate series in (2) to fin
the Taylor series of the given function centered at the indi-
cated value of a. Write your answer in summation notation.

17. [Hint: Use periodicity.]

18. [Hint: ]

In Problems 19 and 20 the given function is analytic at
Use appropriate series in (2) and multiplication to

find the first four nonzero terms of the Maclaurin series of
the given function.

19. 20.

In Problems 21 and 22 the given function is analytic at
Use appropriate series in (2) and long division to fin

the first four nonzero terms of the Maclaurin series of the
given function.

21. 22. tan xsec x

a � 0.

e�xcos xsin x cos x

a � 0.

x � 2[1 � (x � 2)>2]ln x; a � 2

sinx, a � 2p

sin x2ln(1 � x)
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238 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

In Problems 23 and 24 use a substitution to shift the summa-
tion index so that the general term of given power series
involves 

23.

24.

In Problems 25–30 proceed as in Example 3 to rewrite the
given expression using a single power series whose general
term involves 

25.

26.

27.

28.

29.

30. �
�

n�2
n(n � 1)cnxn � 2 �

�

n�2
n(n � 1)cnxn�2 � 3 �

�

n�1
ncnxn

�
�

n�2
n(n � 1)cnxn�2 � 2 �

�

n�1
ncnxn � �

�

n�0
cnxn

�
�

n�2
n(n � 1)cnxn�2 � �

�

n�0
cnxn�2

�
�

n�1
2ncnxn�1 � �

�

n�0
6cnxn�1

�
�

n�1
ncnxn�1 � 3 �

�

n�0
cnxn�2

�
�

n�1
ncnxn�1 � �

�

n�0
cnxn

xk.

�
�

n�3
(2n � 1)cnxn�3

�
�

n�1
ncnxn�2

xk.

In Problems 31–34 verify by direct substitution that the
given power series is a solution of the indicated differential
equation.  [Hint: For a power let 

31.

32.

33.

34.

In Problems 35–38 proceed as in Example 4 and find a
power series solution of the given linear first
order differential equation.

35. 36.
37. 38.

Discussion Problems

39. In Problem 19, find an easier way than multiplying two
power series to obtain the Maclaurin series representa-
tion of 

40. In Problem 21, what do you think is the interval of con-
vergence for the Maclaurin series of sec x?

sin x cos x.

(1 � x)y� � y � 0y� � xy
4y� � y � 0y� � 5y � 0

y � �
�

n�0
cnxn

y � �
�

n�0

(�1)n

22n(n!)2x2n, xy� � y� � xy � 0

y � �
�

n�1

(�1)n�1

n
xn, (x � 1)y� � y� � 0

y � �
�

n�0
(�1)nx2n, (1 � x2)y� � 2xy � 0

y � �
�

n�0

(�1)n

n!
x2n, y� � 2xy � 0

k � n � 1.]x2n�1

SOLUTIONS ABOUT ORDINARY POINTS

REVIEW MATERIAL
● Power series, analytic at a point, shifting the index of summation in Section 6.1

INTRODUCTION At the end of the last section we illustrated how to obtain a power series
solution of a linear first-order differential equation. In this section we turn to the more important
problem of finding power series solutions of linear second-order equations. More to the point, we
are going to find solutions of linear second-order equations in the form of power series whose
center is a number that is an ordinary point of the DE. We begin with the definition of an
ordinary point.

x0

6.2

A Definition If we divide the homogeneous linear second-order differential
equation 

(1)

by the lead coefficient we obtain the standard form

(2)

We have the following definition

y� � P(x)y� � Q(x)y � 0.

a2(x)

a2(x)y� � a1(x)y� � a0(x)y � 0
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DEFINITION 6.2.1 Ordinary and Singular Points

A point is said to be an ordinary point of the differential of the
differential equation (1) if both coefficients and in the standard
form (2) are analytic at A point that is not an ordinary point of (1) is said
to be a singular point of the DE.

x0.
Q(x)P(x)

x � x0

EXAMPLE 1 Ordinary Points

(a) A homogeneous linear second-order differential equation with constant coefficients
such as

can have no singular points. In other words, every finite value* of x is an ordinary
point of such equations.
(b) Every finite value of x is an ordinary point of the differential equation

Specifically is an ordinary point of the DE, because we have already seen in
(2) of Section 6.1 that both  and   are analytic at this point.

The negation of the second sentence in Definition 6.2.1 stipulates that if at least
one of the coefficient functions in (2) fails to be analytic at then 
is a singular point.

x0x0,P(x) and Q(x)

sin xex
x � 0

y� � exy� � (sin x)y � 0.

y� � y � 0 and y� � 3y� � 2y � 0,

EXAMPLE 2 Singular Points

(a) The differential equation

is already in standard form. The coefficient functions ar

Now is analytic at every real number, and is analytic at every
positive real number. However, since is discontinuous at it cannot
be represented by a power series in x, that is, a power series centered at 0. We
conclude  that is a singular point of the DE. 

(b) By putting in the standard form

,

we see that fails to be analytic at . Hence is a singular point
of the equation.

Polynomial Coefficients We will primarily be interested in the case when the
coefficients in (1) are polynomial functions with no common
factors. A polynomial function is analytic at any value of x, and a rational function is
analytic except at points where its denominator is zero. Thus, in (2) both coefficients

P(x) �
a1(x)
a2(x)

 and Q(x) �
a0(x)
a2(x)

a2(x), a1(x), and a0(x)

x � 0 x � 0P(x) � 1/x

y� �
1
x
 y� � y � 0

xy� � y� � xy � 0

x � 0

x � 0Q(x) � ln x
Q(x) � ln xP(x) � x

P(x) � x and Q(x) � ln x.

y� � xy� � (lnx)y � 0

*For our purposes, ordinary points and singular points will always be finite points. It is possible for a
ODE to have, say, a singular point at infinit .
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240 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

are analytic except at those numbers for which It follows, then, that

A number is an ordinary point of (1) if whereas is a
singular point of (1) if a2(x0) � 0.

x � x0a2(x0) � 0,x � x0

a2(x) � 0.

EXAMPLE 3 Ordinary and Singular Points

(a) The only singular points of the differential equation

are the solutions of All other values of x are ordinary points.

(b) Inspection of the Cauchy-Euler

shows that it has a singular point at All other values of x are ordinary
points.

(c) Singular points need not be real numbers. The equation

has singular points at the solutions of —namely, All other values
of x, real or complex, are ordinary points.

We state the following theorem about the existence of power series solutions
without proof.

x � 
i.x2 � 1 � 0

(x2 � 1)y� � xy� � y � 0

x � 0.

x2y� � y � 0

a2(x) � x2 � 0 at x � 0b

x2 � 1 � 0 or x � 
 1.

(x2 � 1)y� � 2xy� � 6y � 0

THEOREM 6.2.1 Existence of Power Series Solutions

If is an ordinary point of the differential equation (1), we can always find two
linearly independent solutions in the form of a power series centered at that is,

A power series solution converges at least on some interval defined by
, where R is the distance from to the closest singular point.x0�x � x0&� R

y � �
�

n�0
cn(x � x0)n.

x0,
x � x0

A solution of the form is said to be a solution about the
ordinary point x0. The distance R in Theorem 6.2.1 is the minimum value or lower
bound for the radius of convergence.

y � ��
n�0 cn(x � x0)n

EXAMPLE 4 Minimum Radius of Convergence

Find the minimum radius of convergence of a power series solution of the second-
order differential equation

(a) about the ordinary point (b) about the ordinary point 

SOLUTION By the quadratic formula we see from that the singular
points of the given differential equation are the complex numbers 1 
 2i.

x2 � 2x � 5 � 0

x � �1.x � 0,

(x2 � 2x � 5)y� � xy� � y � 0
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(a) Because is an ordinary point of the DE, Theorem 6.2.1 guarantees that we
can find two power series solutions centered at 0. That is, solutions that look like

and, moreover, we know without actually finding these solutions that
each series must converge at least for , where is the distance in the
complex plane from either of the numbers (the point or (the
point to the ordinary point 0 (the point See Figure 6.2.1. 

(b) Because is an ordinary point of the DE, Theorem 6.2.1 guarantees that
we can find two power series solutions that look like Each of
power series converges at least for since the distance from each of
the singular points to  (the point is

In part (a) of Example 4, one of the two power series solutions centered at 0 of
the differential equation is valid on an interval much larger than in
actual fact this solution is valid on the interval because it can be shown that
one of the two solutions about 0 reduces to a polynomial.

Note In the examples that follow as well as in the problems of Exercises 6.2
we will, for the sake of simplicity, find only power series solutions about the ordinary
point If it is necessary to find a power series solutions of an ODE about an
ordinary point we can simply make the change of variable in the
equation (this translates to find solutions of the new equation of the
form , and then resubstitute

Finding a Power Series Solution Finding a power series solution of a homo-
geneous linear second-order ODE has been accurately described as “the method of
undetermined series coefficients” since the procedure is quite analogous to what we
did in Section 4.4. In case you did not work through Example 4 of Section 6.1 here,
in brief, is the idea. Substitute into the differential equation, combine
series as we did in Example 3 of Section 6.1, and then equate the all coefficients to
the right-hand side of the equation to determine the coefficients But because the
right-hand side is zero, the last step requires, by the identity property in the bulleted
list in Section 6.1, that all coefficients of x must be equated to zero. No, this does not
mean that all coefficients are zero; this would not make sense, after all Theorem 6.2.1
guarantees that we can find two solutions. We will see in Example 5 how the single
assumption that leads to two sets of coeffi
cients so that we have two distinct power series and both expanded about
the ordinary point The general solution of the differential equation is

; indeed, it can be shown that and .C2 � c1C1 � c0y � C1y1(x) � C2y2(x)
x � 0.

y2 (x),y1(x)
y � ��

n�0cnxn � c0 � c1x � c2x2 � . . .

cn.

y � ��
n�0cnxn

t � x � x0.y � ��
n�0cntn

t � 0),x � x0

t � x � x0x0 � 0,
x � 0.

(��, �)
(�15, 15);

R � 18 � 212.(�1, 0))�1
� x � 1 � � 212

y � ��
n�0cn(x � 1)n.

x � �1

(0, 0)).(1, � 2))
1 � 2i(1, 2))1 � 2i

 R � 25� x � � 25
y � ��

n�0 cnxn

x � 0
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FIGURE 6.2.1 Distance from singular
points to the ordinary point 0 in Example 4

y

x1

1 + 2i

1 − 2i

i 	5

	5

EXAMPLE 5 Power Series Solutions

Solve 

SOLUTION Since there are no singular points, Theorem 6.2.1 guarantees two
power series solutions centered at 0 that converge for Substituting

and the second derivative (see (1) in
Section 6.1) into the differential equation give

(3)

We have already added the last two series on the right-hand side of the equality in (3)
by shifting the summation index. From the result given in (5) of Section 6.1

(4)y� � xy � 2c2 � �
�

k�1
[(k � 1)(k � 2)ck�2 � ck�1]xk � 0.

y � � xy � �
�

n�2
cnn(n � 1)xn�2 � x �

�

n�0
cnxn � �

�

n�2
cnn(n � 1)xn�2 � �

�

n�0
cnxn�1.

y� � ��
n�2 n(n � 1)cnxn�2 y � ��

n�0 cnxn
� x � � �.

y� � xy � 0.
Before working through this example, we
recommend that you reread Example 4 of
Section 6.1.

�

27069_06_ch06_p231-272.qxd  2/2/12  2:40 PM  Page 241

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



At this point we invoke the identity property. Since (4) is identically zero, it is neces-
sary that the coefficient of each power of x be set equal to zero—that is, 2c2 � 0
(it is the coefficient of x0), and

(5)

Now 2c2 � 0 obviously dictates that c2 � 0. But the expression in (5), called a
recurrence relation, determines the ck in such a manner that we can choose a certain
subset of the set of coefficients to be nonzero. Since (k � 1)(k � 2) � 0 for all val-
ues of k, we can solve (5) for ck�2 in terms of ck�1:

(6)

This relation generates consecutive coefficients of the assumed solution one at a time
as we let k take on the successive integers indicated in (6):

and so on. Now substituting the coefficients just obtained into the original
assumption

; c8 is zero k � 9,     c11 � � c8

10 � 11
� 0

 k � 8,     c10 � � c7

9 � 10
� �

1
3 � 4 � 6 � 7 � 9 � 10

 c1

 k � 7,     c9 � � c6

8 � 9
� �

1
2 � 3 � 5 � 6 � 8 � 9

 c0

; c5 is zero k � 6,     c8 � � c5

7 � 8
� 0

 k � 5,     c7 � � c4

6 � 7
�

1
3 � 4 � 6 � 7

 c1

 k � 4,     c6 � � c3

5 � 6
�

1
2 � 3 � 5 � 6

 c0

; c2 is zero k � 3,     c5 � � c2

4 � 5
� 0

 k � 2,     c4 � � c1

3 � 4

 k � 1,     c3 � � c0

2 � 3

ck�2 � �
ck�1

(k � 1)(k � 2)
 ,    k � 1, 2, 3, . . . .

(k � 1)(k � 2)ck�2 � ck�1 � 0,    k � 1, 2, 3, . . . .
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y � c0 � c1x � c2x2 � c3x3 � c4x4 � c5x5 � c6x6 � c7x7 � c8x8 � c9x9 � c10x10 � c11x11 � � � �,

we get

 � 
c1

3 � 4 � 6 � 7
 x7 � 0 �

c0

2 � 3 � 5 � 6 � 8 � 9
 x9 �

c1

3 � 4 � 6 � 7 � 9 � 10
 x10 � 0 � � � �.

 y � c0 � c1x � 0 �
c0

2 � 3
 x3 �

c1

3 � 4
 x4 � 0 �

c0

2 � 3 � 5 � 6
 x6

After grouping the terms containing c0 and the terms containing c1, we obtain
y � c0y1(x) � c1y2(x), where

y2(x) � x �
1

3 � 4
 x4 �

1
3 � 4 � 6 � 7

 x7 �
1

3 � 4 � 6 � 7 � 9 � 10
    

x10 � � � � � x � �
�

k�1
 

(�1)k

3 � 4 � � � (3k)(3k � 1)
 x3k�1.

 y1(x) � 1 �
1

2 � 3
 x3 �

1
2 � 3 � 5 � 6

 x6 �
1

2 � 3 � 5 � 6 � 8 � 9
 x9 � � � � � 1 � �

�

k�1
 

(�1)k

2 � 3 � � � (3k � 1)(3k)
 x3k
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Because the recursive use of (6) leaves c0 and c1 completely undetermined, they
can be chosen arbitrarily. As was mentioned prior to this example, the linear
combination y � c0y1(x) � c1y2(x) actually represents the general solution of the
differential equation. Although we know from Theorem 6.2.1 that each series solu-
tion converges for that is, on the interval . This fact can also be ver-
ified by the ratio test

The differential equation in Example 5 is called Airy’s equation and is named
after the English mathematician and astronomer George Biddel Airy (1801–1892).
Airy’s differential equation is encountered in the study of diffraction of light, diffrac-
tion of radio waves around the surface of the Earth, aerodynamics, and the deflectio
of a uniform thin vertical column that bends under its own weight. Other common
forms of Airy’s equation are y� � xy � 0 and y� � �2xy � 0. See Problem 41 in
Exercises 6.4 for an application of the last equation.

(��, �)� x � � �,
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EXAMPLE 6 Power Series Solution

Solve (x2 � 1)y� � xy� � y � 0.

SOLUTION As we have already seen on page 240, the given differential equation has
singular points at x � 
i, and so a power series solution centered at 0 will converge at
least for � 1, where 1 is the distance in the complex plane from 0 to either i or �i.
The assumption and its first two derivatives lead ty � ��

n�0 cnxn
� x �

(x 2 � 1) � n(n � 1)cnxn�2 � x � ncnxn�1 � � cnxn

n�2

�

n�1

�

n�0

�

� � n(n � 1)cnxn � � n(n � 1)cnxn�2 � � ncnxn � � cnxn

n�2

�

n�2

�

n�1

�

n�0

�

� 2c2 � c0 � 6c3x � � [k(k � 1)ck � (k � 2)(k � 1)ck�2 � kck � ck]xk 
k�2

�

� 2c2 � c0 � 6c3x � � [(k � 1)(k � 1)ck � (k � 2)(k � 1)ck�2]xk � 0.
k�2

�

� � n(n � 1)cnxn�2 � � ncnxn � � cnxn

n�4

�

n�2

�

n�2

�

� 2c2x 0 � c0x 0 � 6c3x � c1x � c1x � � n(n� 1)cnxn

n�2

�

k�n

k�n�2 k�n k�n

From this identity we conclude that 2c2 � c0 � 0, 6c3 � 0, and

Thus

Substituting k � 2, 3, 4, . . . into the last formula gives

c4 � � 1
4
 c2 � � 1

2 � 4
 c0 � � 1

222!
 c0

 ck�2 �
1 � k
k � 2

 ck ,    k � 2, 3, 4, . . . .

 c3 � 0

 c2 �
1
2
 c0

(k � 1)(k � 1)ck � (k � 2)(k � 1)ck�2 � 0.
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and so on. Therefore

c10 � � 7
10

 c8 �
3 � 5 � 7

2 � 4 � 6 � 8 � 10
 c0 �

1 � 3 � 5 � 7
255!

 c0,

; c7 is zeroc9 � � 6
9
 c7 � 0,

c8 � � 5
8
 c6 � � 3 � 5

2 � 4 � 6 � 8
 c0 � � 1 � 3 � 5

244!
 c0

; c5 is zeroc7 � � 4
7
 c5 � 0

c6 � � 3
6
 c4 �

3
2 � 4 � 6

 c0 �
1 � 3
233!

 c0

; c3 is zeroc5 � � 2
5
 c3 � 0

244 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

c5 �
c3 � c2

4 � 5
�

c0

4 � 5
 �1

6
�

1
2� �

c0

30

 c4 �
c2 � c1

3 � 4
�

c0

2 � 3 � 4
�

c0

24

 c3 �
c1 � c0

2 � 3
�

c0

2 � 3
�

c0

6

 c2 �
1
2
 c0

 c0 � 0, c1 � 0

c5 �
c3 � c2

4 � 5
�

c1

4 � 5 � 6
�

c1

120

 c4 �
c2 � c1

3 � 4
�

c1

3 � 4
�

c1

12

 c3 �
c1 � c0

2 � 3
�

c1

2 � 3
�

c1

6

 c2 �
1
2
 c0 � 0

 c0 �  0, c1 � 0

 � c0y1(x) � c1y2(x).

 � c0�1 �
1
2
 x2 �

1
222!

 x4 �
1 � 3
233!

 x6 �
1 � 3 � 5

244!
 x8 �

1 � 3 � 5 � 7
255!

 x10 � � � �� � c1x

y � c0 � c1x � c2x2 � c3x3 � c4x4 � c5x5 � c6x6 � c7x7 � c8x8 � c9x9 � c10 x10 � � � �

The solutions are the polynomial y2(x) � x and the power series

y1(x) � 1 �
1
2
 x2 � �

�

n�2
(�1)n�11 � 3 � 5 � � � �2n � 3�

2nn!
 x2n ,    � x � � 1.

EXAMPLE 7 Three-Term Recurrence Relation

If we seek a power series solution for the differential equation

we obtain and the three-term recurrence relation

It follows from these two results that all coefficients cn, for n 
 3, are expressed in
terms of both c0 and c1. To simplify life, we can first choose c0 � 0, c1 � 0; this
yields coefficients for one solution expressed entirely in terms of c0. Next, if
we choose c0 � 0, c1 � 0, then coefficients for the other solution are expressed
in terms of c1. Using in both cases, the recurrence relation for
k � 1, 2, 3, . . . gives

c2 � 1
2 c0

ck�2 �
ck � ck�1

(k � 1)(k � 2)
,    k � 1, 2, 3, . . . .

c2 � 1
2 c0

y� � (1 � x)y � 0,

y � ��
n�0 cnxn
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and so on. Finally, we see that the general solution of the equation is
y � c0y1(x) � c1y2(x), where

and

Each series converges for all finite values of x.

Nonpolynomial Coefficients The next example illustrates how to find a
power series solution about the ordinary point x0 � 0 of a differential equation when
its coefficients are not polynomials. In this example we see an application of the
multiplication of two power series.

 y2(x) � x �
1
6
 x3 �

1
12

 x4 �
1

120
 x5 � � � �.

 y1(x) � 1 �
1
2
 x2 �

1
6
 x3 �

1
24

 x4 �
1

30
 x5 � � � �
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EXAMPLE 8 DE with Nonpolynomial Coefficient

Solve y� � (cos x)y � 0.

SOLUTION We see that x � 0 is an ordinary point of the equation because, as we
have already seen, cos x is analytic at that point. Using the Maclaurin series for cos x
given in (2) of Section 6.1, along with the usual assumption and the
results in (1) of Section 6.1 we fin

y � ��
n�0 cnxn

 � 2c2 � c0 � (6c3 � c1)x � �12c4 � c2 �
1
2
 c0�x2 � �20c5 � c3 �

1
2
 c1�x3 � � � � � 0.

 � 2c2 � 6c3x � 12c4x2 � 20c5x3 � � � � � �1 �
x2

2!
�

x4

4!
� � � ��(c0 � c1x � c2x2 � c3x3 � � � �)

 y� � (cos x)y � �
�

n�2
 n(n � 1)cnxn�2 � �1 �

x2

2!
�

x4

4!
�

x6

6!
� � � ���

�

n�0
 cnxn

It follows that

2c2 � c0 � 0,    6c3 � c1 � 0,    12c4 � c2 �
1
2
 c0 � 0,    20c5 � c3 �

1
2
 c1 � 0,

and so on. This gives By group-
ing terms, we arrive at the general solution y � c0y1(x) � c1y 2(x), where

Because the differential equation has no finite singular points, both power series con-
verge for

Solution Curves The approximate graph of a power series solution 
can be obtained in several ways. We can always resort to graphing the

terms in the sequence of partial sums of the series—in other words, the graphs of the
polynomials For large values of N, SN (x) should give us an indi-
cation of the behavior of y(x) near the ordinary point x � 0. We can also obtain an ap-
proximate or numerical solution curve by using a solver as we did in Section 4.10.
For example, if you carefully scrutinize the series solutions of Airy’s equation in

SN (x) � �N
n�0 cnxn.

��
n�0 cnxn

y(x) �

� x � � �.

y1(x) � 1 �
1
2
 x2 �

1
12

 x4 � � � �    and    y2(x) � x �
1
6
 x3 �

1
30

 x5 � � � �.

c5 � 1
30 c1, . . . .c4 � 1

12 c0,c3 � �1
6 c1,c2 � �1

2 c0,
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Example 5, you should see that y1(x) and y2(x) are, in turn, the solutions of the initial-
value problems

(11)

The specified initial conditions “pick out” the solutions y1(x) and y2(x) from
y � c0y1(x) � c1y2(x), since it should be apparent from our basic series assumption

that y(0) � c0 and y�(0) � c1. Now if your numerical solver requires
a system of equations, the substitution y� � u in y� � xy � 0 gives y� � u� � �xy,
and so a system of two first-order equations equivalent to Airy’s equation is

(12)

Initial conditions for the system in (12) are the two sets of initial conditions in (11)
rewritten as y(0) � 1, u(0) � 0, and y(0) � 0, u(0) � 1. The graphs of y1(x)
and y2(x) shown in Figure 6.2.2 were obtained with the aid of a numerical solver.
The fact that the numerical solution curves appear to be oscillatory is consistent
with the fact that Airy’s equation appeared in Section 5.1 (page 197) in the form
mx� � ktx � 0 as a model of a spring whose “spring constant” K(t) � kt increases
with time.

 u� � �xy.

 y� � u

y � ��
n�0 cnxn

 y � � xy � 0,  y(0) � 0, y�(0) � 1.

 y � � xy � 0,  y(0) � 1, y�(0) � 0,
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(a)  plot of y1(x)  

(b)  plot of y2(x)   

FIGURE 6.2.2 Numerical solution
curves for Airy’s DE REMARKS

(i) In the problems that follow, do not expect to be able to write a solution in
terms of summation notation in each case. Even though we can generate as
many terms as desired in a series solution either through the use
of a recurrence relation or, as in Example 8, by multiplication, it might not be
possible to deduce any general term for the coefficients cn. We might have to
settle, as we did in Examples 7 and 8, for just writing out the first few terms of
the series.
(ii) A point x0 is an ordinary point of a nonhomogeneous linear second-order
DE y� � P(x)y� � Q(x)y � f (x) if P(x), Q(x), and f (x) are analytic at x0.
Moreover, Theorem 6.2.1 extends to such DEs; in other words, we can
fin power series solutions of nonhomogeneous
linear DEs in the same manner as in Examples 5–8. See Problem 26 in
Exercises 6.2.

y � ��
n�0 cn (x � x0)n

y � ��
n�0 cnxn

EXERCISES 6.2 Answers to selected odd-numbered problems begin on page ANS-9.

In Problems 1 and 2 without actually solving the given
differential equation, find the minimum radius of convergence
of power series solutions about the ordinary point 
About the ordinary point 

1.

2.

In Problems 3–6 find two power series solutions of the given
differential equation about the ordinary point Compare
the series solutions with the solutions of the differential equa-
tions obtained using the method of Section 4.3.  Try to explain
any differences between the two forms of the solutions.
3. 4.

5. 6. y� � 2y� � 0y� � y� � 0

y� � y � 0y� � y � 0

x � 0.

(x2 � 2x � 10)y� � xy� � 4y � 0

(x2 � 25)y� � 2xy� � y � 0

x � 1.
x � 0.

In Problems 7–18 find two power series solutions of the
given differential equation about the ordinary point x � 0.

7. 8.

9. 10.

11. 12.

13. 14.

15.

16.

17.

18. (x2 � 1)y� � xy� � y � 0

(x2 � 2)y� � 3xy� � y � 0

(x2 � 1)y� � 6y � 0

y� � (x � 1)y� � y � 0

(x � 2)y� � xy� � y � 0(x � 1)y� � y� � 0

y� � 2xy� � 2y � 0y� � x2y� � xy � 0

y� � xy� � 2y � 0y� � 2xy� � y � 0

y� � x2y � 0y� � xy � 0
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6.3 SOLUTIONS ABOUT SINGULAR POINTS ● 247

In Problems 19–22 use the power series method to solve the
given initial-value problem. 

19.

20.

21.

22.

In Problems 23 and 24 use the procedure in Example 8 to
find two power series solutions of the given differential
equation about the ordinary point x � 0.

23.
24.

Discussion Problems

25. Without actually solving the differential equation
find the minimum radius of

convergence of power series solutions about the ordi-
nary point About the ordinary point 

26. How can the power series method be used to solve the
nonhomogeneous equation  about the ordi-
nary point Of ? Carry out
your ideas by solving both DEs.

27. Is x � 0 an ordinary or a singular point of the differen-
tial equation ? Defend your answer
with sound mathematics.  [Hint: Use the Maclaurin
series of and then examine (sin x)>x.sin x

xy� � (sin x)y � 0

y � � 4xy� � 4y � exx � 0?
y� � xy � 1

x � 1.x � 0.

(cos x)y� � y� � 5y � 0,

y� � exy� � y � 0
y� � (sin x)y � 0

(x2 � 1)y� � 2xy� � 0, y(0) � 0, y�(0) � 1

y� � 2xy� � 8y � 0, y(0) � 3, y�(0) � 0

(x � 1)y� � (2 � x)y� � y � 0, y(0) � 2, y�(0) � �1

(x � 1)y� � xy� � y � 0, y(0) � �2,y�(0) � 6

28. Is an ordinary point of the differential equation

Computer Lab Assignments

29. (a) Find two power series solutions for y� � xy� � y � 0
and express the solutions y1(x) and y2(x) in terms of
summation notation.

(b) Use a CAS to graph the partial sums SN (x) for
y1(x). Use N � 2, 3, 5, 6, 8, 10. Repeat using the
partial sums SN (x) for y2(x).

(c) Compare the graphs obtained in part (b) with
the curve obtained by using a numerical solver. Use
the initial-conditions y1(0) � 1, y�1(0) � 0, and
y2(0) � 0, y�2(0) � 1.

(d) Reexamine the solution y1(x) in part (a). Express
this series as an elementary function. Then use (5)
of Section 4.2 to find a second solution of the equa-
tion. Verify that this second solution is the same as
the power series solution y2(x).

30. (a) Find one more nonzero term for each of the solu-
tions y1(x) and y2(x) in Example 8.

(b) Find a series solution y(x) of the initial-value
problem y� � (cos x)y � 0, y(0) � 1, y�(0) � 1.

(c) Use a CAS to graph the partial sums SN (x) for the
solution y(x) in part (b). Use N � 2, 3, 4, 5, 6, 7.

(d) Compare the graphs obtained in part (c) with the
curve obtained using a numerical solver for the
initial-value problem in part (b).

y� � 5xy� � 1xy � 0?
x � 0

SOLUTIONS ABOUT SINGULAR POINTS

REVIEW MATERIAL
● Section 4.2 (especially (5) of that section)
● The definition of a singular point in Definition 6.2.1

INTRODUCTION The two differential equations

y� � xy � 0 and xy� � y � 0 

are similar only in that they are both examples of simple linear second-order DEs with variable
coefficients. That is all they have in common. Since x � 0 is an ordinary point of y� � xy � 0, we
saw in Section 6.2 that there was no problem in finding two distinct power series solutions centered
at that point. In contrast, because x � 0 is a singular point of xy� � y � 0, finding two infinit
series—notice that we did not say power series—solutions of the equation about that point becomes
a more difficult task

The solution method that is discussed in this section does not always yield two infinite series
solutions. When only one solution is found, we can use the formula given in (5) of Section 4.2 to
find a second solution

6.3
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A Definition A singular point x0 of a linear differential equation

(1)

is further classified as either regular or irregular. The classification again depends on
the functions P and Q in the standard form

(2) y � � P(x)y� � Q(x)y � 0.

a2(x)y � � a1(x)y� � a0(x)y � 0 

248 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

DEFINITION 6.3.1 Regular and Irregular Singular Points

A singular point x � x0 is said to be a regular singular point of the differential
equation (1) if the functions p(x) � (x � x0) P(x) and q(x) � (x � x0)2Q(x) are
both analytic at x0. A singular point that is not regular is said to be an irregular
singular point of the equation.

The second sentence in Definition 6.3.1 indicates that if one or both of the func-
tions p (x) � (x � x0) P(x) and q(x) � (x � x0)2Q(x) fail to be analytic at x0, then
x0 is an irregular singular point.

Polynomial Coefficients As in Section 6.2, we are mainly interested in
linear equations (1) where the coefficients a2(x), a1(x), and a0(x) are polynomials
with no common factors. We have already seen that if a2(x0) � 0, then x � x0 is a
singular point of (1), since at least one of the rational functions P(x) � a1(x)
a2(x)
and Q(x) � a0(x) 
a2(x) in the standard form (2) fails to be analytic at that point.
But since a2(x) is a polynomial and x0 is one of its zeros, it follows from the Factor
Theorem of algebra that x � x0 is a factor of a2(x). This means that after a1(x)
a2(x)
and a0(x)
a2(x) are reduced to lowest terms, the factor x � x0 must remain, to some
positive integer power, in one or both denominators. Now suppose that x � x0 is
a singular point of (1) but both the functions defined by the products p(x) �
(x � x0) P(x) and q(x) � (x � x0)2Q(x) are analytic at x0. We are led to the conclu-
sion that multiplying P(x) by x � x0 and Q(x) by (x � x0)2 has the effect (through
cancellation) that x � x0 no longer appears in either denominator. We can now
determine whether x0 is regular by a quick visual check of denominators:

If x � x0 appears at most to the first power in the denominator of P(x) and at
most to the second power in the denominator of Q(x), then x � x0 is a regular
singular point.

Moreover, observe that if x � x0 is a regular singular point and we multiply (2) by
(x � x0)2, then the original DE can be put into the form

(3)

where p and q are analytic at x � x0.

 (x � x0)2y � � (x � x0)p(x)y� � q(x)y � 0,

EXAMPLE 1 Classification of Singula Points

It should be clear that x � 2 and x � �2 are singular points of

After dividing the equation by (x2 � 4)2 � (x � 2)2(x � 2)2 and reducing the
coefficients to lowest terms, we find th

We now test P(x) and Q(x) at each singular point.

P(x) �
3

(x � 2)(x � 2)2    and    Q(x) �
5

(x � 2)2(x � 2)2.

(x2 � 4)2y � � 3(x � 2)y� � 5y � 0.
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For x � 2 to be a regular singular point, the factor x � 2 can appear at most to the
first power in the denominator of P(x) and at most to the second power in the denom-
inator of Q(x). A check of the denominators of P(x) and Q(x) shows that both these
conditions are satisfied, so x � 2 is a regular singular point. Alternatively, we are led
to the same conclusion by noting that both rational functions

are analytic at x � 2.
Now since the factor x � (�2) � x � 2 appears to the second power in the

denominator of P(x), we can conclude immediately that x � �2 is an irregular
singular point of the equation. This also follows from the fact that

is not analytic at x � �2.

In Example 1, notice that since x � 2 is a regular singular point, the original
equation can be written as

As another example, we can see that x � 0 is an irregular singular point
of x3y� � 2xy� � 8y � 0 by inspection of the denominators of P(x) � �2
x2

and Q(x) � 8
x3. On the other hand, x � 0 is a regular singular point of
xy� � 2xy� � 8y � 0, since x � 0 and (x � 0)2 do not even appear in the respective
denominators of P(x) � �2 and Q(x) � 8
x. For a singular point x � x0 any
nonnegative power of x � x0 less than one (namely, zero) and any nonnegative
power less than two (namely, zero and one) in the denominators of P(x) and Q(x), re-
spectively, imply that x0 is a regular singular point. A singular point can be a complex
number. You should verify that x � 3i and x � �3i are two regular singular points
of (x2 � 9)y� � 3xy� � (1 � x)y � 0.

Note Any second-order Cauchy-Euler equation ax2y� � bxy� � cy � 0, where
a, b, and c are real constants, has a regular singular point at x � 0. You should verify that
two solutions of the Cauchy-Euler equation x2y� � 3xy� � 4y � 0 on the interval (0, �)
are y1 � x2 and y2 � x2 ln x. If we attempted to find a power series solution about the
regular singular point x � 0 (namely, ), we would succeed in obtaining
only the polynomial solution y1 � x2. The fact that we would not obtain the second so-
lution is not surprising because ln x (and consequently y2 � x2 ln x) is not analytic
at x � 0—that is, y2 does not possess a Taylor series expansion centered at x � 0.

Method of Frobenius To solve a differential equation (1) about a regular sin-
gular point, we employ the following theorem due to the eminent German mathe-
matician Ferdinand Georg Frobenius (1849–1917).

 y � ��
n�0 cnxn

(x � 2)2y � � (x � 2) y � � y � 0.

p(x) analytic
at x � 2

q(x) analytic
at x � 2

3––––––––
(x � 2)2

5––––––––
(x � 2)2

 p(x) � (x � 2)P(x) �
3

(x � 2)(x � 2)

p(x) � (x � 2)P(x) �
3

(x � 2)2    and    q(x) � (x � 2)2Q(x) �
5

(x � 2)2
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THEOREM 6.3.1 Frobenius’ Theorem

If x � x0 is a regular singular point of the differential equation (1), then there
exists at least one solution of the form

(4)

where the number r is a constant to be determined. The series will converge at
least on some interval 0 � x � x0 � R.

 y � (x � x0) r �
�

n�0
cn(x � x0)n � �

�

n�0
cn(x � x0)n�r,
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Notice the words at least in the first sentence of Theorem 6.3.1. This means
that in contrast to Theorem 6.2.1, Theorem 6.3.1 gives us no assurance that two series
solutions of the type indicated in (4) can be found. The method of Frobenius, findin
series solutions about a regular singular point x0, is similar to the power-series method
in the preceding section in that we substitute into the given
differential equation and determine the unknown coefficients cn by a recurrence rela-
tion. However, we have an additional task in this procedure: Before determining the co-
efficients, we must find the unknown exponent r. If r is found to be a number that is not
a nonnegative integer, then the corresponding solution is not
a power series.

As we did in the discussion of solutions about ordinary points, we shall always
assume, for the sake of simplicity in solving differential equations, that the regular
singular point is x � 0.

y ���
n�0 cn(x � x0)n�r

 y ���
n�0 cn(x � x0)n�r

250 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

EXAMPLE 2 Two Series Solutions

Because x � 0 is a regular singular point of the differential equation

(5)

we try to find a solution of the form Now

so

y� ��
�

n�0
 (n � r)cnxn�r�1    and    y � ��

�

n�0
 (n � r)(n � r � 1)cnxn�r�2,     

 y � ��
n�0 cnxn�r.

 3xy � � y� � y � 0,

   � xr�r (3r � 2)c0x�1 ��
�

k�0
 [(k � r � 1)(3k � 3r � 1)ck�1 � ck]xk� � 0,

 
k � n�1 k � n

 � xr�r (3r � 2)c0x�1 � �
�

n�1
    

    (n � r)(3n � 3r � 2)cnxn�1 ��
�

n�0
 cnxn�

  � �
�

n�0
 (n � r)(3n � 3r � 2)cnxn�r�1 � �

�

n�0
 cnxn�r

  3xy � � y� � y � 3�
�

n�0
 (n � r)(n � r � 1)cn xn�r�1 ��

�

n�0
 (n � r)cnxn�r�1 ��

�

n�0
 cnxn�r

which implies that r (3r � 2)c0 � 0

and

Because nothing is gained by taking c0 � 0, we must then have

(6)

and (7)

When substituted in (7), the two values of r that satisfy the quadratic equation 
(6), and r2 � 0, give two different recurrence relations:

(8)

(9)  r2 � 0,    ck�1 �
ck

(k � 1)(3k � 1)
,    k � 0, 1, 2, . . . .

  r1 � 2
3,    ck�1 �

ck

(3k � 5)(k � 1)
,    k � 0, 1, 2, . . .

r1 � 2
3

 ck�1 �
ck

(k � r � 1)(3k � 3r � 1)
,    k � 0, 1, 2, . . . .

 r (3r � 2) � 0

 (k � r � 1)(3k � 3r � 1)ck�1 � ck � 0,    k � 0, 1, 2, . . . .
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From (8) we fin From (9) we fin

6.3 SOLUTIONS ABOUT SINGULAR POINTS ● 251

 cn �
c0

n!5 � 8 � 11� � � (3n � 2)
.

�
�

�

  c4 �
c3

14 � 4
�

c0

4!5 � 8 � 11 � 14

  c3 �
c2

11 � 3
�

c0

3!5 � 8 � 11

  c2 �
c1

8 � 2
�

c0

2!5 � 8

  c1 �
c0

5 � 1

  cn �
c0

n!1 � 4 � 7 � � � (3n � 2)
.

�
�

�

  c4 �
c3

4 � 10
�

c0

4!1 � 4 � 7 � 10

  c3 �
c2

3 � 7
�

c0

3!1 � 4 � 7

  c2 �
c1

2 � 4
�

c0

2!1 � 4

  c1 �
c0

1 � 1

Here we encounter something that did not happen when we obtained solutions
about an ordinary point; we have what looks to be two different sets of coeffi
cients, but each set contains the same multiple c0. If we omit this term, the series
solutions are

(10)

(11)

By the ratio test it can be demonstrated that both (10) and (11) converge for all val-
ues of x—that is, Also, it should be apparent from the form of these
solutions that neither series is a constant multiple of the other, and therefore y1(x) and
y2(x) are linearly independent on the entire x-axis. Hence by the superposition prin-
ciple, y � C1y1(x) � C2y2(x) is another solution of (5). On any interval that does not
contain the origin, such as (0, �), this linear combination represents the general solu-
tion of the differential equation.

Indicial Equation Equation (6) is called the indicial equation of the problem, 
and the values and r2 � 0 are called the indicial roots, or exponents, of
the singularity x � 0. In general, after substituting into the given dif-
ferential equation and simplifying, the indicial equation is a quadratic equation in r
that results from equating the total coefficient of the lowest power of x to zero. We
solve for the two values of r and substitute these values into a recurrence relation
such as (7). Theorem 6.3.1 guarantees that at least one solution of the assumed series
form can be found.

It is possible to obtain the indicial equation in advance of substituting
into the differential equation. If x � 0 is a regular singular point of

(1), then by Definition 6.3.1 both functions p(x) � xP(x) and q(x) � x2Q(x), where 
P and Q are defined by the standard form (2), are analytic at x � 0; that is, the power
series expansions

y � ��
n�0 cnxn�r

y � ��
n�0 cnxn�r

r1 � 2
3

� x � � �.

 y2(x) � x0�1 ��
�

n�1
 

1
n!1 � 4 � 7 � � � (3n � 2)

 xn�.

 y1(x) � x2/3�1 ��
�

n�1
 

1
n!5 � 8 � 11� � � (3n � 2)

 xn� 

(12) p(x) � xP(x) � a0 � a1x � a2x2 � � � �    and    q(x) � x2Q(x) � b0 � b1x � b2x2 � � � �

are valid on intervals that have a positive radius of convergence. By multiplying 
(2) by x2, we get the form given in (3):

(13) x2y � � x[xP(x)]y� � [x2Q(x)]y � 0.
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After substituting and the two series in (12) into (13) and carrying
out the multiplication of series, we find the general indicial equation to b

(14)

where a0 and b0 are as defined in (12). See Problems 13 and 14 in Exercises 6.3

 r (r � 1) � a0r � b0 � 0,

y � ��
n�0 cnxn�r

252 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

EXAMPLE 3 Two Series Solutions

Solve 2xy� � (1 � x)y� � y � 0.

SOLUTION Substituting givesy � ��
n�0 cnxn�r

2xy � � (1 � x)y� � y � 2 � (n � r)(n � r � 1)cnxn�r�1 � � (n � r )cnxn�r�1

n�0

�

n�0

�

� � (n � r)(2n � 2r � 1)cnxn�r�1 � � (n � r � 1)cnxn�r

n�0

�

n�0

�

� xr [r(2r � 1)c0x�1 �  � [(k � r � 1)(2k � 2r � 1)ck�1 � (k � r � 1)ck]xk],
k�0

�

� � (n � r)cnxn�r � � cnxn�r

n�0

�

n�0

�

� xr [r(2r � 1)c0x�1 � � (n � r)(2n � 2r � 1)cnxn�1 � � (n � r � 1)cnxn]
n�1

�

n�0

�

k�n�1 k�n

which implies that (15)

and (16)

k � 0, 1, 2, . . . . From (15) we see that the indicial roots are and r2 � 0.
For we can divide by in (16) to obtain

(17)

whereas for r2 � 0, (16) becomes

(18)

From (17) we fin From (18) we fin

 ck�1 �
�ck

2k � 1
,    k � 0, 1, 2, . . . .

  ck�1 �
�ck

2(k � 1)
,    k � 0, 1, 2, . . . ,

k � 3
2r1 � 1

2

r1 � 1
2

 (k � r � 1)(2k � 2r � 1)ck�1 � (k � r � 1)ck � 0,

 r (2r � 1) � 0

 cn �
(�1)nc0

2nn!
 .

�
�

�

 c4 �
�c3

2 � 4
�

c0

24 � 4!

 c3 �
�c2

2 � 3
�

�c0

23 � 3!

 c2 �
�c1

2 �  2
�

c0

22 � 2!

   c1 �
�c0

2 � 1
 

 cn �
(�1)nc0

1 � 3 � 5 � 7 � � � (2n � 1)
 .

�
�

�

 c4 �
�c3

7
�

c0

1 � 3 � 5 � 7

 c3 �
�c2

5
�

�c0

1 � 3 � 5

  c2 �
�c1

3
�

c0

1 � 3

  c1 �
�c0

1
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Thus for the indicial root we obtain the solution

where we have again omitted c0. The series converges for x 
 0; as given, the series
is not defined for negative values of x because of the presence of x1/2. For r2 � 0 a
second solution is

On the interval (0, �) the general solution is y � C1y1(x) � C2y2(x).

   y2(x) � 1 ��
�

n�1
 

(�1)n

1 � 3 � 5 � 7 � � � (2n � 1)
xn ,    � x � � �.

  y1(x) � x1/2�1 ��
�

n�1

 (�1)n

2nn!
xn� ��

�

n�0

 (�1)n

2nn!
xn�1/2 ,

 r1 � 1
2
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EXAMPLE 4 Only One Series Solution

Solve xy� � y � 0.

SOLUTION From xP(x) � 0, x2Q(x) � x and the fact that 0 and x are their own
power series centered at 0 we conclude that a0 � 0 and b0 � 0, so from (14) the
indicial equation is r (r � 1) � 0. You should verify that the two recurrence relations
corresponding to the indicial roots r1 � 1 and r2 � 0 yield exactly the same set of
coefficients. In other words, in this case the method of Frobenius produces only a
single series solution

Three Cases For the sake of discussion let us again suppose that x � 0 is a
regular singular point of equation (1) and that the indicial roots r1 and r2 of the
singularity are real. When using the method of Frobenius, we distinguish three cases
corresponding to the nature of the indicial roots r1 and r2. In the first two cases the
symbol r1 denotes the largest of two distinct roots, that is, r1 	 r2. In the last case
r1 � r2.

Case I: If r1 and r2 are distinct and the difference r1 � r2 is not a positive inte-
ger, then there exist two linearly independent solutions of equation (1) of the form

This is the case illustrated in Examples 2 and 3.

Next we assume that the difference of the roots is N, where N is a positive
integer. In this case the second solution may contain a logarithm.

Case II: If r1 and r2 are distinct and the difference r1 � r2 is a positive integer,
then there exist two linearly independent solutions of equation (1) of the form

(19)

(20)

where C is a constant that could be zero.

Finally, in the last case, the case when r1 � r2, a second solution will always
contain a logarithm. The situation is analogous to the solution of a Cauchy-Euler
equation when the roots of the auxiliary equation are equal.

 y2(x) � Cy1(x) ln x ��
�

n�0
 bnxn�r2,    b0 � 0,

 y1(x) ��
�

n�0
 cnxn�r1,    c0 � 0,

y1(x) � �
�

n�0
cn xn�r1,  c0 � 0,    y2(x) � �

�

n�0
bn xn�r2,  b0 � 0.

y1(x) ��
�

n�0
  

(�1)n

n!(n � 1)!
 xn�1 � x �

1
2
 x2 �

1
12

 x3 �
1

144
 x4 � � � �. 
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Case III: If r1 and r2 are equal, then there always exist two linearly indepen-
dent solutions of equation (1) of the form

(21)

(22)

Finding a Second Solution When the difference r1 � r2 is a positive integer
(Case II), we may or may not be able to find two solutions having the
form This is something that we do not know in advance but is
determined after we have found the indicial roots and have carefully examined the
recurrence relation that defines the coefficients cn. We just may be lucky enough
to find two solutions that involve only powers of x, that is, 
(equation (19)) and (equation (20) with C � 0). See Problem 31
in Exercises 6.3. On the other hand, in Example 4 we see that the difference of the in-
dicial roots is a positive integer (r1 � r2 � 1) and the method of Frobenius failed to
give a second series solution. In this situation equation (20), with C � 0, indicates what
the second solution looks like. Finally, when the difference r1 � r2 is a zero (Case III),
the method of Frobenius fails to give a second series solution; the second solution (22)
always contains a logarithm and can be shown to be equivalent to (20) with C � 1. One
way to obtain the second solution with the logarithmic term is to use the fact that

(23)

is also a solution of y� � P(x)y� � Q(x)y � 0 whenever y1(x) is a known solution.
We illustrate how to use (23) in the next example.

 y2(x) � y1(x) �  e�� P(x)dx

y2
1(x)

  dx

 y2(x) � ��
n�0 bnxn�r2

 y1(x) � ��
n�0 cnxn�r1

y � ��
n�0 cnxn�r.

  y2(x) � y1(x) ln x ��
�

n�1
 bnxn�r1.

 y1(x) ��
�

n�0
cnxn�r1,    c0 � 0,
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EXAMPLE 5 Example 4 Revisited Using a CAS

Find the general solution of xy� � y � 0.

SOLUTION From the known solution given in Example 4,

we can construct a second solution y2(x) using formula (23). Those with the time,
energy, and patience can carry out the drudgery of squaring a series, long division,
and integration of the quotient by hand. But all these operations can be done with
relative ease with the help of a CAS. We give the results:

  � y1(x) ln x � y1(x) �� 1
x

�
7

12
x �

19
144

x2 � � � ��,

  � y1(x) �� 1
x

� ln x �
7

12
x �

19
144

x2 � � � ��

  � y1(x) � 
 � 1

x2 �
1
x

�
7

12
�

19
72

x � � � ��dx

  � y1(x) � dx

  � x2 � x3 �
5

12
x4 �

7
72

x5 � � � �� 

  y2(x) � y1(x) � e�∫0dx

[y1(x)]2
 dx � y1(x) � dx

  � x �
1
2

x2 �
1

12
x3 �

1
144

x4 � � � ��
2

 y1(x) � x �
1
2

x2 �
1

12
x3 �

1
144

 x4 � � � � ,

; after long division

; after integrating

; after squaring
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or

On the interval (0, �) the general solution is y � C1y1(x) � C2y2(x).

Note that the final form of y2 in Example 5 matches (20) with C � 1; the series
in the brackets corresponds to the summation in (20) with r2 � 0.

  y2(x) � y1(x) ln x � ��1 �
1
2

x �
1
2

x2 � � � ��.
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REMARKS 

(i) The three different forms of a linear second-order differential equation in (1),
(2), and (3) were used to discuss various theoretical concepts. But on a practical
level, when it comes to actually solving a differential equation using the method
of Frobenius, it is advisable to work with the form of the DE given in (1).
(ii) When the difference of indicial roots r1 � r2 is a positive integer
(r1 	 r2), it sometimes pays to iterate the recurrence relation using the
smaller root r2 first. See Problems 31 and 32 in Exercises 6.3
(iii) Because an indicial root r is a solution of a quadratic equation, it could
be complex. We shall not, however, investigate this case.
(iv) If x � 0 is an irregular singular point, then we might not be able to fin
any solution of the DE of form  y ���

n�0 cnxn�r.

EXERCISES 6.3 Answers to selected odd-numbered problems begin on page ANS-10.

In Problems 1–10 determine the singular points of the given
differential equation. Classify each singular point as regular
or irregular.

1. x3y� � 4x2y� � 3y � 0

2. x(x � 3)2y� � y � 0

3. (x2 � 9)2y� � (x � 3)y� � 2y � 0

4.

5. (x3 � 4x)y� � 2xy� � 6y � 0

6. x2(x � 5)2y� � 4xy� � (x2 � 25)y � 0

7. (x2 � x � 6)y� � (x � 3)y� � (x � 2)y � 0

8. x(x2 � 1)2y� � y � 0

9. x3(x2 � 25)(x � 2)2y� � 3x(x � 2)y� � 7(x � 5)y � 0

10. (x3 � 2x2 � 3x)2y� � x(x � 3)2y� � (x � 1)y � 0

In Problems 11 and 12 put the given differential equation
into form (3) for each regular singular point of the equation.
Identify the functions p(x) and q(x).

11. (x2 � 1)y� � 5(x � 1)y� � (x2 � x)y � 0

12. xy� � (x � 3)y� � 7x2y � 0

y � �
1
x

y� �
1

(x � 1)3 y � 0

In Problems 13 and 14, x � 0 is a regular singular point of the
given differential equation. Use the general form of the indi-
cial equation in (14) to find the indicial roots of the singu-
larity. Without solving, discuss the number of series solutions
you would expect to find using the method of Frobenius

13.

14. xy� � y� � 10y � 0

In Problems 15–24, x � 0 is a regular singular point of
the given differential equation. Show that the indicial roots
of the singularity do not differ by an integer. Use the method
of Frobenius to obtain two linearly independent series
solutions about x � 0. Form the general solution on (0, �).

15. 2xy� � y� � 2y � 0

16. 2xy� � 5y� � xy � 0

17.

18. 2x2y� � xy� � (x2 � 1)y � 0

19. 3xy� � (2 � x)y� � y � 0

20.

21. 2xy� � (3 � 2x)y� � y � 0

x2y � � (x � 2
9)y � 0

4xy� � 1
2 y� � y � 0

x2y � � (5
3 x � x2)y� � 1

3 y � 0

; after multiplying out
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22.

23. 9x2y� � 9x2y� � 2y � 0

24. 2x2y� � 3xy� � (2x � 1)y � 0

In Problems 25–30, x � 0 is a regular singular point of
the given differential equation. Show that the indicial
roots of the singularity differ by an integer. Use the method
of Frobenius to obtain at least one series solution about
x � 0. Use (23) where necessary and a CAS, if instructed, to
fin a second solution. Form the general solution on (0, �).

25. xy� � 2y� � xy � 0

26.

27. xy� � xy� � y � 0 28.

29. xy� � (1 � x)y� � y � 0 30. xy� � y� � y � 0

In Problems 31 and 32, x � 0 is a regular singular point of
the given differential equation. Show that the indicial
roots of the singularity differ by an integer. Use the recur-
rence relation found by the method of Frobenius first with
the larger root r1. How many solutions did you find? Next
use the recurrence relation with the smaller root r2. How
many solutions did you find

31. xy� � (x � 6)y� � 3y � 0

32. x(x � 1)y� � 3y� � 2y � 0

33. (a) The differential equation x4y� � �y � 0 has an
irregular singular point at x � 0. Show that the sub-
stitution t � 1
x yields the DE

which now has a regular singular point at t � 0.
(b) Use the method of this section to find two series

solutions of the second equation in part (a) about the
regular singular point t � 0.

(c) Express each series solution of the original equation
in terms of elementary functions.

Mathematical Model

34. Buckling of a Tapered Column In Example 4 of
Section 5.2 we saw that when a constant vertical
compressive force or load P was applied to a thin
column of uniform cross section, the deflection y(x) was
a solution of the boundary-value problem

(24)

The assumption here is that the column is hinged at both
ends. The column will buckle or deflect only when the
compressive force is a critical load Pn.

EI 
d 2y
dx2 � Py � 0,  y(0) � 0,  y(L) � 0.

d 2y
dt2 �

2
t
 
dy
dt

� �y � 0,

y � �
3
x

y� � 2y � 0

x2y � � xy� � (x2 � 1
4)y � 0

x2y � � xy� � (x2 � 4
9)y � 0 (a) In this problem let us assume that the column is of

length L, is hinged at both ends, has circular cross
sections, and is tapered as shown in Figure 6.3.1(a).
If the column, a truncated cone, has a linear taper
y � cx as shown in cross section in Figure 6.3.1(b),
the moment of inertia of a cross section with respect
to an axis perpendicular to the xy-plane is 
where r � y and y � cx. Hence we can write
I(x) � I0(x
b)4, where Sub-
stituting I(x) into the differential equation in (24),
we see that the deflection in this case is determined
from the BVP

where � � Pb4
EI0. Use the results of Problem 33
to find the critical loads Pn for the tapered column.
Use an appropriate identity to express the buckling
modes yn(x) as a single function.

(b) Use a CAS to plot the graph of the first buckling
mode y1(x) corresponding to the Euler load P1
when b � 11 and a � 1.

x4 
d 2y
dx2 � �y � 0,  y(a) � 0,  y(b) � 0,

I0 � I(b) � 1
4 �(cb)4.

I � 1
4 �r4,

x = a

y

P

x = b

y = cx
b − a = L

L

(a) (b)

x

FIGURE 6.3.1 Tapered column in Problem 34

Discussion Problems

35. Discuss how you would define a regular singular point
for the linear third-order differential equation

36. Each of the differential equations

has an irregular singular point at x � 0. Determine
whether the method of Frobenius yields a series solu-
tion of each differential equation about x � 0. Discuss
and explain your findings

37. We have seen that x � 0 is a regular singular point of
any Cauchy-Euler equation ax2y� � bxy� � cy � 0.
Are the indicial equation (14) for a Cauchy-Euler equa-
tion and its auxiliary equation related? Discuss.

 x3y � � y � 0    and    x2y � � (3x � 1)y� � y � 0

 a3(x)y� � a2(x)y � � a1(x)y� � a0(x)y � 0.
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SPECIAL FUNCTIONS

REVIEW MATERIAL
● Sections 6.2 and 6.3 

INTRODUCTION In the Remarks at the end of Section 2.3 we mentioned the branch of mathemat-
ics called special functions. Perhaps a better title for this field of applied mathematics might be
named functions because many of the functions studied bear proper names: Bessel functions,
Legendre functions, Airy functions,  Chebyshev polynomials, Hermite polynomials, Jacobi polyno-
mials, Laguerre polynomials, Gauss’ hypergeometric function, Mathieu functions, and so on.
Historically, special functions were often the by-product of necessity: Someone needed a solution of
a very specialized differential equation that arose from an attempt to solve a physical problem. In
effect, a special function was determined or defined by the differential equation and many properties
of the function could be discerned from the series form of the solution.

In this section we use the methods of Sections 6.2 and 6.3 to find solutions of two differential
equations

(1)

(2)

that arise in advanced studies of applied mathematics, physics, and engineering. They are called,
respectively, Bessel’s equation of order , named after the German mathematician and astronomer
Friedrich Wilhelm Bessel (1784–1846), and Legendre’s equation of order n, named after the
French mathematician Adrien-Marie Legendre (1752–1833). When we solve (1) we shall assume
that whereas in (2) we shall consider only the case when n in a nonnegative integer.� 
 0,

�

(1 � x2)y� � 2xy� � n(n � 1)y � 0

x 2y� � xy� � (x2 � �2)y � 0

6.4

Solution of Bessel’s Equation Because is a regular singular point of
Bessel’s equation, we know that there exists at least one solution of the form

Substituting the last expression into (1) givesy � ��
n�0 cnxn�r.

x � 0

(3)   � c0(r2 � � 2)xr � xr �
�

n�1
  cn[(n � r)2 � � 2]xn � xr �

�

n�0
  cnxn�2.

   � c0(r2 � r � r � � 2)xr � xr �
�

n�1
   cn[(n � r)(n � r � 1) � (n � r) � �2]xn � xr �

�

n�0
 cnxn�2

  x2y � � xy� � (x2 � � 2)y � �
�

n�0
 cn(n � r)(n � r � 1)xn�r � �

�

n�0
 cn(n � r)xn�r � �

�

n�0
 cnxn�r�2 � � 2 �

�

n�0
 cnxn�r

From (3) we see that the indicial equation is r2 � �2 � 0, so the indicial roots are
r1 � � and r2 � ��. When r1 � �, (3) becomes

xn  � cnn(n � 2n)xn � xn � cnxn�2

n�1

�

n�0

�

� xn [(1 � 2n)c1x �  � [(k � 2)(k � 2 � 2n)ck�2 � ck]xk�2] � 0.
k�0

�

� xn [(1 � 2n)c1x � � cnn(n � 2n)xn � � cnxn�2]
n�2

�

n�0

�

k � n � 2 k � n
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Therefore by the usual argument we can write (1 � 2�)c1 � 0 and

or (4)

The choice c1 � 0 in (4) implies that so for k � 0, 2, 4, . . .
we find, after letting k � 2 � 2n, n � 1, 2, 3, . . . , that

(5)

Thus

(6)

It is standard practice to choose c0 to be a specific value, namel ,

where �(1 � �) is the gamma function. See Appendix I. Since this latter function
possesses the convenient property �(1 � �) � ��(�), we can reduce the indicated
product in the denominator of (6) to one term. For example,

Hence we can write (6) as

for n � 0, 1, 2, . . . .

Bessel Functions of the First Kind Using the coefficients c2n just obtained

c2n �
(�1)n

22n�� n!(1 � �)(2 � �) � � � (n � �)�(1 � �)
�

(�1)n

22n�� n!�(1 � � � n)

 �(1 � � � 2) � (2 � �)�(2 � �) � (2 � �)(1 � �)�(1 � �).

 �(1 � � � 1) � (1 � �)�(1 � �)

 c0 �
1

2��(1 � �)
,

 c2n �
(�1)nc0

22nn!(1 � �)(2 � �) � � � (n � �)
,    n � 1, 2, 3, . . . .

�
�

�

c6  � � c4

22 � 3(3 � �)
� � c0

26 � 1 �  2 � 3(1 � �)(2 � �)(3 � �)

c4  � � c2

22 � 2(2 � �)
�

c0

24 � 1 � 2(1 � �)(2 � �)
  

c2  � � c0

22 � 1 � (1 � �)
 

c2n � � c2n�2

22n(n � �)
.

 c3 � c5 � c7 � � � � � 0,

 ck�2 �
�ck

(k � 2)(k � 2 � 2�)
,    k � 0, 1, 2, . . . .

 (k � 2)(k � 2 � 2�)ck�2 � ck � 0
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*When we replace x by |x |, the series given in (7) and (8) converge for 0 � |x | � �. 

and r � �, a series solution of (1) is This solution is usually
denoted by J�(x):

(7)

If � 
 0, the series converges at least on the interval [0, �). Also, for the second
exponent r2 � �� we obtain, in exactly the same manner,

(8)

The functions J�(x) and J��(x) are called Bessel functions of the first kind of order �
and ��, respectively. Depending on the value of �, (8) may contain negative powers
of x and hence converges on (0, �).*

J��(x) � �
�

n�0

  
(�1)n

n!�(1 � � � n)
 �x

2�
2n��

.  

 J�(x) � �
�

n�0

  
(�1)n

n!�(1 � � � n)
 �x

2�
2n��

.

y � ��
n�0 c2n x2n��.
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Now some care must be taken in writing the general solution of (1). When � � 0,
it is apparent that (7) and (8) are the same. If � 	 0 and r1 � r2 � � � (��) � 2�
is not a positive integer, it follows from Case I of Section 6.3 that J�(x) and J��(x) are
linearly independent solutions of (1) on (0, �), and so the general solution on the
interval is y � c1J�(x) � c2J��(x). But we also know from Case II of Section 6.3 that
when r1 � r2 � 2� is a positive integer, a second series solution of (1) may exist. In this
second case we distinguish two possibilities. When � � m � positive integer, J�m(x)
defined by (8) and Jm(x) are not linearly independent solutions. It can be shown that J�m
is a constant multiple of Jm (see Property (i) on page 262). In addition, r1 � r2 � 2�
can be a positive integer when � is half an odd positive integer. It can be shown in this
latter event that J�(x) and J��(x) are linearly independent. In other words, the general
solution of (1) on (0, �) is

(9)

The graphs of y � J0(x) and y � J1(x) are given in Figure 6.4.1.

y � c1J�(x) � c2J��(x),    � � integer.
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EXAMPLE 1 Bessel’s Equation of Order

By identifying we can see from (9) that the general solution of the
equation on (0, �) is  

Bessel Functions of the Second Kind If � � integer, the function define
by the linear combination

(10)

and the function J�(x) are linearly independent solutions of (1). Thus another form of
the general solution of (1) is y � c1J� (x) � c2Y�(x), provided that � � integer. As

m an integer, (10) has the indeterminate form 0
0. However, it can be shown
by L’Hôpital’s Rule that exists. Moreover, the function

and Jm(x) are linearly independent solutions of x2y� � xy� � (x2 � m2)y � 0. Hence
for any value of � the general solution of (1) on (0, �) can be written as

(11)

Y� (x) is called the Bessel function of the second kind of order �. Figure 6.4.2 shows
the graphs of Y0(x) and Y1(x).

 y � c1J�(x) � c2Y�(x).

 Ym(x) � lim
� :m

 Y�(x)

 lim� :m Y�(x)
� : m,

Y� (x) �
cos ��J�(x) � J��(x)

 sin ��

y � c1J1/2(x) � c2J�1/2(x). x2y � � xy� � (x2 � 1
4)y � 0

� 2 � 1
4 and � � 1

2,

1
2

2 4 6 8
_ 0.4

0.2
0.4
0.6
0.8

1

_ 0.2
x

y

J1

J0

FIGURE 6.4.1 Bessel functions of
the first kind for n � 0, 1, 2, 3, 4

2 4 6 8

1

_3
_2.5

_2
_ 1.5

_ 1
_ 0.5

0.5
x

y

Y0 Y1

FIGURE 6.4.2 Bessel functions of
the second kind for n � 0, 1, 2, 3, 4

EXAMPLE 2 Bessel’s Equation of Order 3

By identifying �2 � 9 and � � 3, we see from (11) that the general solution of the
equation x2y� � xy� � (x2 � 9)y � 0 on (0, �) is y � c1J3(x) � c2Y3(x).

DES Solvable in Terms of Bessel Functions Sometimes it is possible to
transform a differential equation into equation (1) by means of a change of variable.
We can then express the solution of the original equation in terms of Bessel func-
tions. For example, if we let t � �x, � 	 0, in

(12)

then by the Chain Rule,

dy
dx

�
dy
dt

 
dt
dx

� �  dy
dt

    and     
d 2y
dx2 �

d
dt

 �dy
dx�

 dt
dx

� �2 
d 2y
dt2 .

x2y � � xy� � (a2x2 � � 2)y � 0,
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Accordingly, (12) becomes

260 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

� t
��

2
�2  d

2y
dt 2 � � t

���  dy
dt

� (t2 � � 2)y � 0    or    t2  d
2y

dt2 � t 
dy
dt

� (t2 � � 2)y � 0.

The last equation is Bessel’s equation of order � with solution y � c1J�(t) � c2Y�(t). By
resubstituting t � �x in the last expression, we find that the general solution of (12) is

(13)

Equation (12), called the parametric Bessel equation of order �, and its general
solution (13) are very important in the study of certain boundary-value problems
involving partial differential equations that are expressed in cylindrical coordinates.

Modified Bessel Functions Another equation that bears a resemblance to (1)
is the modified Bessel equation of orde �,

(14)

This DE can be solved in the manner just illustrated for (12). This time if we let
where then (14) becomes

Because solutions of the last DE are J�(t) and Y�(t), complex-valued solutions of
(14) are J�(ix) and Y�(ix). A real-valued solution, called the modified Bessel func-
tion of the first kin of order �, is defined in terms of J�(ix):

(15)

See Problem 21 in Exercises 6.4.
Analogous to (10), the modified Bessel function of the second kind of order

� � integer is defined to b

(16)

and for integer � � n,

Because I� and K� are linearly independent on the interval (0, �) for any value of
v, the general solution of (14) on that interval is

(17)

The graphs of and are given in Figure 6.4.3 and
the graphs of and are given in Figure 6.4.4.  Unlike
the Bessel functions of the first and second kinds, the modified Bessel functions 
of the first and second kind are not oscillatory. Figures 6.4.3 and 6.4.4 also illustrate
the fact that the modified Bessel functions and have no
real zeros in the interval Also notice that the modified Bessel functions of
the second kind like the Bessel functions of the second kind become
unbounded as 

A change of variable in (14) gives us the parametric form of the modifie
Bessel equation of order 

The general solution of the last equation on the interval is

y � c1I�(ax) � c2K�(ax).

(0, �)

x2y� � xy� � (a2x2 � n2)y � 0.

�:

x : 0�.
Yn(x)Kn(x)

(0, �).
Kn(x), n � 0, 1, 2, . . .In(x)

y � K2(x)y � K0(x), y � K1(x),
y � I2(x)y � I0(x), y � I1(x),

y � c1I�(x) � c2K� (x).

 Kn(x) � lim
� :n

 K�(x).

 K�(x) �
�

2
 
I�� (x) � I� (x)

sin ��
,

 I�(x) � i�� J� (ix).

 t2 
d 2y
dt2 � t  

dy
dt

� (t2 � � 2)y � 0.

i2 � �1,t � ix,

 x2y � � xy� � (x2 � � 2)y � 0.

y � c1J�(�x) � c2Y�(�x). 

1 2 3

1
1.5

2
2.5

3

0.5
x

y

I0
I 1 I2

FIGURE 6.4.3 Modified Besse
functions of the first kind for n � 0, 1, 2
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FIGURE 6.4.4 Modified Besse
functions of the second kind for n � 0, 1, 2

27069_06_ch06_p231-272.qxd  2/2/12  2:40 PM  Page 260

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Yet another equation, important because many DEs fit into its form by appro-
priate choices of the parameters, is

(18)

Although we shall not supply the details, the general solution of (18),

(19)

can be found by means of a change in both the independent and the dependent

variables: If p is not an integer, then Yp in (19) can be

replaced by J�p.

z � bxc, y(x) � �z
b�

a/c
w(z).

y � xa�c1Jp(bxc) � c2Yp(bxc)�,

y � �
1 � 2a

x
 y� � �b2c2x2c�2 �

a2 � p2c2

x2 �y � 0,     p 
 0.
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EXAMPLE 3 Using (18)

Find the general solution of xy� � 3y� � 9y � 0 on (0, �).

SOLUTION By writing the given DE as

we can make the following identifications with (18)

The first and third equations imply that a � �1 and With these values the
second and fourth equations are satisfied by taking b � 6 and p � 2. From (19)
we find that the general solution of the given DE on the interval (0, �) is
y � x�1[c1J2(6x1/2) � c2Y2(6x1/2)].

c � 1
2.

1 � 2a � 3,     b2c2 � 9,    2c � 2 � �1,    and     a2 � p2c2 � 0.

 y � �
3
x

 y� �
9
x

 y � 0,

EXAMPLE 4 The Aging Spring Revisited

Recall that in Section 5.1 we saw that one mathematical model for the free undamped
motion of a mass on an aging spring is given by mx� � ke�� tx � 0, � 	 0. We are
now in a position to find the general solution of the equation. It is left as a problem  

to show that the change of variables transforms the differential 
equation of the aging spring into

The last equation is recognized as (1) with � � 0 and where the symbols x
and s play the roles of y and x, respectively. The general solution of the new
equation is x � c1J0(s) � c2Y0(s). If we resubstitute s, then the general solution of
mx� � ke��tx � 0 is seen to be

See Problems 33 and 39 in Exercises 6.4.

The other model that was discussed in Section 5.1 of a spring whose character-
istics change with time was mx� � ktx � 0. By dividing through by m, we see that 

the equation is Airy’s equation y� � �2xy � 0. See Example 5 in

Section 6.2. The general solution of Airy’s differential equation can also be written
in terms of Bessel functions. See Problems 34, 35, and 40 in Exercises 6.4.

 x � �
k
m

tx � 0

 x(t) � c1J0�2
�

 
B

k
m

 e��t / 2� � c2Y0�2
�

 
B

k
m

 e��t / 2�.

 s2  d
2x

ds2 � s  dx
ds

� s2x � 0.

 s �
2
�

 
B

k
m

 e��t / 2
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Properties We list below a few of the more useful properties of Bessel
functions of order m, m � 0, 1, 2, . . .:

(i) (ii)

(iii) (iv)

Note that Property (ii) indicates that Jm(x) is an even function if m is an even
integer and an odd function if m is an odd integer. The graphs of Y0(x) and Y1(x) in
Figure 6.4.2 illustrate Property (iv), namely, Ym(x) is unbounded at the origin. This
last fact is not obvious from (10). The solutions of the Bessel equation of order 0
can be obtained by using the solutions y1(x) in (21) and y2(x) in (22) of Section 6.3.
It can be shown that (21) of Section 6.3 is y1(x) � J0(x), whereas (22) of that
section is

The Bessel function of the second kind of order 0, Y0(x), is then defined to be the

linear combination for x 	 0. That is,

where � � 0.57721566 . . . is Euler’s constant. Because of the presence of the
logarithmic term, it is apparent that Y0(x) is discontinuous at x � 0.

Numerical Values The first five nonnegative zeros of J0(x), J1(x), Y0(x), and
Y1(x) are given in Table 6.4.1. Some additional function values of these four functions
are given in Table 6.4.2.

Y0(x) �
2
�

J0(x)�� �  ln 
x
2� �

2
�

 �
�

k�1
 
(�1)k

(k!)2 �1 �
1
2

� � � � �
1
k��

x
2�

2k
,

 Y0(x) �
2
�

 (� � ln 2)y1(x) �
2
�

 y2(x)

y2(x) � J0(x)ln x � �
�

k�1
 
(�1)k

(k!)2
 �1 �

1
2

� � � � �
1
k��

x
2�

2k
. 

 lim
 x:0�

  Ym (x) � ��. Jm(0) � �0,
1,

m 	 0
m � 0,

Jm(�x) � (�1)mJm(x),J�m(x) � (�1)mJm(x), 
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TABLE 6.4.2 Numerical Values of J0, J1, Y0, and Y1

x J0(x) J1(x) Y0(x) Y1(x)

0 1.0000 0.0000 — —
1 0.7652 0.4401 0.0883 �0.7812
2 0.2239 0.5767 0.5104 �0.1070
3 �0.2601 0.3391 0.3769 0.3247
4 �0.3971 �0.0660 �0.0169 0.3979
5 �0.1776 �0.3276 �0.3085 0.1479
6 0.1506 �0.2767 �0.2882 �0.1750
7 0.3001 �0.0047 �0.0259 �0.3027
8 0.1717 0.2346 0.2235 �0.1581
9 �0.0903 0.2453 0.2499 0.1043

10 �0.2459 0.0435 0.0557 0.2490
11 �0.1712 �0.1768 �0.1688 0.1637
12 0.0477 �0.2234 �0.2252 �0.0571
13 0.2069 �0.0703 �0.0782 �0.2101
14 0.1711 0.1334 0.1272 �0.1666
15 �0.0142 0.2051 0.2055 0.0211

TABLE 6.4.1 Zeros of J0, J1, Y0, and Y1

J0(x) J1(x) Y0(x) Y1(x)

2.4048 0.0000 0.8936 2.1971
5.5201 3.8317 3.9577 5.4297
8.6537 7.0156 7.0861 8.5960

11.7915 10.1735 10.2223 11.7492
14.9309 13.3237 13.3611 14.8974

Differential Recurrence Relation Recurrence formulas that relate Bessel
functions of different orders are important in theory and in applications. In the next
example we derive a differential recurrence relation.
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EXAMPLE 5 Derivation Using the Series Definitio

Derive the formula 

SOLUTION It follows from (7) that

The result in Example 5 can be written in an alternative form. Dividing
by x gives

This last expression is recognized as a linear first-order differential equation in J�(x).
Multiplying both sides of the equality by the integrating factor x�� then yields

(20)

It can be shown in a similar manner that

(21)

See Problem 27 in Exercises 6.4. The differential recurrence relations (20) and
(21) are also valid for the Bessel function of the second kind Y� (x). Observe that
when � � 0, it follows from (20) that

(22)

An application of these results is given in Problem 39 of Exercises 6.4.

Bessel Functions of Half-Integral Order When the order is half an odd in-
teger, that is, Bessel functions of the first and second kinds can be
expressed in terms of the elementary functions and powers of x. Let’s
consider the case when From (7)

J1/2(x) � �
�

n�0
  

(�1)n

n!�(1 � 1
2 � n) �

x
2�

2n�1/2
. 

 � � 1
2.

cosx,sinx,
 
1

2, 

3
2, 


5
2, . . . ,

J�0(x) � �J1(x)    and     Y �0(x) � �Y1(x).

 
d

dx
 [x�J�(x)] � x�J� �1(x).

 
d

dx
 [x��J�(x)] � �x��J��1(x).

  J�n(x) �
�

x
 Jn(x) � �Jn�1(x).

xJ�� (x) � �J� (x) � �xJ��1(x)

xJv(x) � �  (  )2n��
�

n�0

�

k � n � 1

(�1)n(2n � �)–––––––––––––––
n! (1 � � � n)

x–
2

L

� �J�(x) � x �  (  )2n���1

n�1

� (�1)n
–––––––––––––––––––––
(n � 1)! (1 � � � n)

x–
2

L

� � �  (  )2n��

n�0

� (�1)n
–––––––––––––––
n! (1 � � � n)

x–
2

L � 2 �  (  )2n��

n�0

� (�1)nn–––––––––––––––
n! (1 � � � n)

x–
2

L

� �J�(x) � x  � � �J�(x) � xJ��1(x).  (  )2k���1

k�0

� (�1)k
–––––––––––––––
k! (2 � � � k)

x–
2

L

xJ�� (x) � �J�(x) � xJ��1(x).
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In view of the property �(1 � �) � ��(�) and the fact that the values
of for n � 0, n � 1, n � 2, and n � 3 are, respectively,

In general,

Hence

From (2) of Section 6.1 you should recognize that the infinite series in the last line is
the Maclaurin series for and so we have shown that

(23)

We leave it as an exercise to show that

(24)

See Figure 6.4.5 and Problems 31, 32, and 38 in Exercises 6.4.
If n is an integer, then is half an odd integer. Because 

and we see from (10) that 
For we have, in turn, 

and In view of (23) and (24) these  results are the same as

(25)

and (26)

Spherical Bessel Functions Bessel functions of half-integral order are used
to define two more important functions:

and (27)

The function is called the spherical Bessel function of the first kind and 
is the spherical Bessel function of the second kind. For example, for the
expressions in (27) become 

and . y0(x) �
B

p

2x
Y1>2(x) � �

B

p

2x
 
B

2
px

 cosx � �
cosx

x

 j0(x) �
B

p

2x
J1>2(x) �

B

p

2x
 
B

2
px

 sinx �
sinx

x

n � 0
yn(x)jn(x)

yn(x) �
B

p

2x
Yn�1>2(x).jn(x) �

B

p

2xJn�1>2(x)

Y�1>2(x) �
B

2
px

 sin x.

Y1>2(x) � �
B

2
px

 cosx

Y�1>2(x) � J1>2(x).
Y1>2(x) � �J�1>2(x)n � 0 and  n � �1J�(n�1>2)(x).(�1)n�1

Yn�1>2(x) �sin(n � 1
2)p� cosnp� (�1)n,

cos(n � 1
2) p � 0n � n � 1

2

J�1/2(x) �
B

2
�x cos x.

J1/2(x) �
B

2
�x sin x.

sin x,

J1/2(x) ��
�

n�0
  

(�1)n

n!
(2n � 1)!

22n�1n!
 1�

�x
2�

2n�1/2
�

B

2
�x   �

�

n�0
  

(�1)n

(2n � 1)!
x2n�1.

�(1 � 1
2 � n) �

(2n � 1)!
22n�1n!

 1� .

�( 9
2) � �(1 � 7

2) � 7
2 �( 7

2) �
7 � 5

26 � 2!
 1� �

7 � 6 � 5!
26 � 6 � 2!

 1� �
7!

273!
 1�.

�( 7
2) � �(1 � 5

2) � 5
2 �( 5

2) �
5 � 3

23  1� �
5 � 4 � 3 � 2 � 1

234 � 2
 1� �

5!
252!

 1�

�( 5
2) � �(1 � 3

2) � 3
2 �( 3

2) �
3
22 1�

�(3
2) � �(1 � 1

2) � 1
2 �( 1

2) � 1
2 1�

�(1 � 1
2 � n)

�(1
2) � 1�
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It is apparent from (27) and Figure 6.4.2 for the spherical Bessel of the second
kind becomes unbounded as .

Spherical Bessel functions arise in the solution of a special partial differential
equation expressed in spherical coordinates. See Problem 54 in Exercises 6.4 and
Problem 13 in Exercises 13.3.

x : 0�yn(x)
n 
 0
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Solution of Legendre’s Equation Since x � 0 is an ordinary point of
Legendre’s equation (2), we substitute the series shift summation in-
dices, and combine series to get

y � ��
k�0 ckxk ,

 � �
�

j�2
 [( j � 2)( j � 1)cj�2 � (n � j)(n � j � 1)cj]x j � 0

 (1 � x2)y � � 2xy� � n(n � 1)y � [n(n � 1)c0 � 2c2] � [(n � 1)(n � 2)c1 � 6c3]x

which implies that

or

(28)

If we let j take on the values 2, 3, 4, . . . , the recurrence relation (28) yields

and so on. Thus for at least we obtain two linearly independent power series
solutions:

(29)

Notice that if n is an even integer, the first series terminates, whereas y2(x) is an
infinite series. For example, if n � 4, then

Similarly, when n is an odd integer, the series for y2(x) terminates with xn; that is,
when n is a nonnegative integer, we obtain an nth-degree polynomial solution of
Legendre’s equation.

y1(x) � c0�1 �
4 � 5

2!
 x2 �

2 � 4 � 5 � 7
4!

 x4� � c0�1 � 10x2 �
35
3

 x4�.

�
(n � 5)(n � 3)(n � 1)(n � 2)(n � 4)(n � 6)

7!
 x7 � � � ��.

y2(x) � c1�x �
(n � 1)(n � 2)

3!
 x3 �

(n � 3)(n � 1)(n � 2)(n � 4)
5!

 x5

�
(n � 4)(n � 2)n(n � 1)(n � 3)(n � 5)

6!
 x6 � � � ��

y1(x) � c0�1 �
n(n � 1)

2!
 x2 �

(n � 2)n(n � 1)(n � 3)
4!

 x4

� x � � 1

c7 � � (n � 5)(n � 6)
7 � 6

 c5 � � (n � 5)(n � 3)(n � 1)(n � 2)(n � 4)(n � 6)
7!

 c1

c6 � � (n � 4)(n � 5)
6 � 5

 c4 � � (n � 4)(n � 2)n(n � 1)(n � 3)(n � 5)
6!

 c0 

c5 � � (n � 3)(n � 4)
5 � 4

 c3 �
(n � 3)(n � 1)(n � 2)(n � 4)

5!
 c1

c4 � � (n � 2)(n � 3)
4 � 3

 c2 �
(n � 2)n(n � 1)(n � 3)

4!
 c0 

cj�2 � � (n � j )(n � j � 1)
( j � 2)( j � 1)

 cj ,    j � 2, 3, 4, . . . .

c3 � � (n � 1)(n � 2)
3!

 c1

c2 � � n(n � 1)
2!

 c0

 ( j � 2)( j � 1)cj�2 � (n � j)(n � j � 1)cj � 0
 (n � 1)(n � 2)c1 � 6c3 � 0

 n(n � 1)c0 � 2c2 � 0
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266 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

Because we know that a constant multiple of a solution of Legendre’s equation
is also a solution, it is traditional to choose specific values for c0 or c1, depending on
whether n is an even or odd positive integer, respectively. For n � 0 we choose
c0 � 1, and for n � 2, 4, 6, . . .

whereas for n � 1 we choose c1 � 1, and for n � 3, 5, 7, . . .

For example, when n � 4, we have

Legendre Polynomials These specific nth-degree polynomial solutions are
called Legendre polynomials and are denoted by Pn(x). From the series for y1(x)
and y2(x) and from the above choices of c0 and c1 we find that the first several
Legendre polynomials are

(30)

Remember, P0(x), P1(x), P2(x), P3(x), . . . are, in turn, particular solutions of the
differential equations

(31)

The graphs, on the interval [�1, 1], of the six Legendre polynomials in (30) are
given in Figure 6.4.6.

Properties You are encouraged to verify the following properties using the
Legendre polynomials in (30).

(i)
(ii) (iii)

(iv) (v)

Property (i) indicates, as is apparent in Figure 6.4.6, that Pn(x) is an even or odd
function according to whether n is even or odd.

Recurrence Relation Recurrence relations that relate Legendre polynomials
of different degrees are also important in some aspects of their applications. We state,
without proof, the three-term recurrence relation

(32)

which is valid for k � 1, 2, 3, . . . . In (30) we listed the first six Legendre polynomials.
If, say, we wish to find P6(x), we can use (32) with k � 5. This relation expresses P6(x)
in terms of the known P4(x) and P5(x). See Problem 45 in Exercises 6.4.

(k � 1)Pk�1(x) � (2k � 1)xPk(x) � kPk�1(x) � 0,

P�n(0) � 0,  n even Pn(0) � 0,  n odd

Pn(�1) � (�1)n Pn(1) � 1

Pn(�x) � (�1)nPn(x)

�
�

�
�
�

�

n � 0:
n � 1:
n � 2:
n � 3:

  (1 � x2)y � � 2xy� � 0,
 (1 � x2)y � � 2xy� � 2y � 0,
 (1 � x2)y � � 2xy� � 6y � 0,
 (1 � x2)y � � 2xy� � 12y � 0,

P0(x) � 1,           P1(x) � x,

P2(x) �
1
2
 (3x2 � 1),         P3(x) �

1
2
 (5x3 � 3x),

P4(x) �
1
8
 (35x4 � 30x2 � 3),    P5(x) �

1
8
 (63x5 � 70x3 � 15x).

y1(x) � (�1)4/2 1 � 3
2 � 4

 �1 � 10x2 �
35
3

 x4� �
1
8
 (35x4 � 30x2 � 3).

c1 � (�1)(n�1) /2 1 � 3 � � � n
2 � 4 � � � (n � 1)

.

c0 � (�1)n /2 1 � 3 � � � (n � 1)
2 � 4 � � � n

,

x

y

1-1
-1

-0.5

0.5

1

-0.5 0.5

P 1 

P 0 

P 2 

FIGURE 6.4.6 Legendre polynomials
for n � 0, 1, 2, 3, 4, 5
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Another formula, although not a recurrence relation, can generate the Legendre
polynomials by differentiation. Rodrigues’ formula for these polynomials is

(33)

See Problem 48 in Exercises 6.4.

Pn(x) �
1

2nn!
  

dn

dxn  (x2 � 1)n,    n � 0, 1, 2, . . . .
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REMARKS

Although we have assumed that the parameter n in Legendre’s differential equa-
tion (1 � x2)y� � 2xy� � n(n � 1)y � 0, represented a nonnegative integer, in
a more general setting n can represent any real number. Any solution of
Legendre’s equation is called a Legendre function. If n is not a nonnegative
integer, then both Legendre functions y1(x) and y2(x) given in (29) are infinit
series convergent on the open interval (�1, 1) and divergent (unbounded) at
x � 
1. If n is a nonnegative integer, then as we have just seen one of the
Legendre functions in (29) is a polynomial and the other is an infinite series
convergent for �1 � x � 1. You should be aware of the fact that Legendre’s
equation possesses solutions that are bounded on the closed interval [�1, 1]
only in the case when n � 0, 1, 2, . . . . More to the point, the only Legendre
functions that are bounded on the closed interval [�1, 1] are the Legendre poly-
nomials Pn(x) or constant multiples of these polynomials. See Problem 47 in
Exercises 6.4 and Problem 24 in Chapter 6 in Review.

EXERCISES 6.4 Answers to selected odd-numbered problems begin on page ANS-11.

Bessel’s Equation

In Problems 1–6 use (1) to find the general solution of the
given differential equation on (0, �).

1.

2. x2y� � xy� � (x2 � 1)y � 0

3. 4x2y� � 4xy� � (4x2 � 25)y � 0

4. 16x2y� � 16xy� � (16x2 � 1)y � 0

5. xy� � y� � xy � 0

6.

In Problems 7–10 use (12) to find the general solution of the
given differential equation on (0, �).

7. x2y� � xy� � (9x2 � 4)y � 0

8. x2y � � xy� � �36x2 � 1
4�y � 0

d
dx

 [xy�] � �x �
4
x�y � 0

x2y � � xy� � �x2 � 1
9�y � 0

9.

10. x2y� � xy� � (2x2 � 64)y � 0

In Problems 11 and 12 use the indicated change of variable
to find the general solution of the given differential equation
on (0, �).

11. x2y� � 2xy� � �2x2y � 0; y � x�1/2v(x)

12.

In Problems 13–20 use (18) to find the general solution of
the given differential equation on (0, �).

13. xy� � 2y� � 4y � 0

14. xy� � 3y� � xy � 0

15. xy� � y� � xy � 0

16. xy� � 5y� � xy � 0

17. x2y� � (x2 � 2)y � 0

18. 4x2y� � (16x2 � 1)y � 0

x2y � � (�2x2 � � 2 � 1
4)y � 0;  y � 1x v(x)

x2y � � xy� � �25x2 � 4
9�y � 0
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268 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

19. xy� � 3y� � x3y � 0

20. 9x2y� � 9xy� � (x6 � 36)y � 0

21. Use the series in (7) to verify that I� (x) � i�� J� (ix) is a
real function.

22. Assume that b in equation (18) can be pure imaginary,
that is, b � �i, � 	 0, i2 � �1. Use this assumption to
express the general solution of the given differential
equation in terms the modified Bessel functions In
and Kn.

(a) y� � x2y � 0
(b) xy� � y� � 7x3y � 0

In Problems 23–26 first use (18) to express the general solu-
tion of the given differential equation in terms of Bessel func-
tions. Then use (23) and (24) to express the general solution in
terms of elementary functions.

23. y� � y � 0

24. x2y� � 4xy� � (x2 � 2)y � 0

25. 16x2y� � 32xy� � (x4 � 12)y � 0

26. 4x2y� � 4xy� � (16x2 � 3)y � 0

27. (a) Proceed as in Example 5 to show that

xJ��(x) � ��J�(x) � xJ��1(x).

[Hint: Write 2n � � � 2(n � �) � �.]

(b) Use the result in part (a) to derive (21).

28. Use the formula obtained in Example 5 along with
part (a) of Problem 27 to derive the recurrence relation

2�J� (x) � xJ��1(x) � xJ��1(x).

In Problems 29 and 30 use (20) or (21) to obtain the given
result.

29. 30. J�0 (x) � J�1(x) � �J1(x)

31. Proceed as on page 264 to derive the elementary form of
J�1/2(x) given in (24).

32. Use the recurrence relation in Problem 28 along with
(23) and (24) to express J3/2(x), J�3/2(x), J5/2(x) and
J�5/2(x) in terms of sin x, cos x, and powers of x.

33. Use the change of variables to show

that the differential equation of the aging spring 
mx� � ke��tx � 0, � 	 0, becomes

s2  d
2x

ds2 � s 
dx
ds

� s2x � 0.

s �
2
�

 
B

k
m

 e�� t / 2

�x

0
 rJ0(r)  dr � xJ1(x)

34. Show that is a solution of Airy’s
differential equation y� � �2xy � 0, x 	 0, whenever
w is a solution of Bessel’s equation of order that
is, t 	 0. [Hint: After
differentiating, substituting, and simplifying, then let

]
35. (a) Use the result of Problem 34 to express the general

solution of Airy’s differential equation for x 	 0 in
terms of Bessel functions.

(b) Verify the results in part (a) using (18).

36. Use the Table 6.4.1 to find the first three positive eigen-
values and corresponding eigenfunctions of the 
boundary-value problem

[Hint: By identifying � � �2, the DE is the parametric
Bessel equation of order zero.]

37. (a) Use (18) to show that the general solution of the
differential equation xy� � �y � 0 on the interval
(0, �) is

(b) Verify by direct substitution that 
is a particular solution of the DE in the case � � 1.

Computer Lab Assignments

38. Use a CAS to graph J3/2(x), J�3/2(x), J5/2(x), and
J�5/2(x).

39. (a) Use the general solution given in Example 4 to
solve the IVP

Also use and along
with Table 6.4.1 or a CAS to evaluate coefficients

(b) Use a CAS to graph the solution obtained in part (a)
for 0 � t � �.

40. (a) Use the general solution obtained in Problem 35 to
solve the IVP

Use a CAS to evaluate coefficients
(b) Use a CAS to graph the solution obtained in part (a)

for 0 � t � 200.

41. Column Bending Under Its Own Weight A uniform
thin column of length L, positioned vertically with one

4x � � tx � 0,  x(0.1) � 1,  x�(0.1) � �1
2.

Y�0(x) � �Y1(x)J�0(x) � �J1(x)

4x � � e�0.1tx � 0,  x(0) � 1,  x�(0) � �1
2.

y � 1xJ1(21x)

y � c11xJ1(21�x) � c21xY1(21�x).

y(x), y�(x) bounded as x : 0�, y(2) � 0.

xy � � y� � �xy � 0,

t � 2
3 �x3 /2.

t2w � � tw� � (t2 � 1
9)w � 0,

1
3,

y � x1 /2w(2
3 �x3 /2)
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6.4 SPECIAL FUNCTIONS ● 269

end embedded in the ground, will deflect, or bend away,
from the vertical under the influence of its own weight
when its length or height exceeds a certain critical value.
It can be shown that the angular deflection �(x) of the
column from the vertical at a point P(x) is a solution of
the boundary-value problem:

where E is Young’s modulus, I is the cross-sectional
moment of inertia, � is the constant linear density, and x
is the distance along the column measured from its base.
See Figure 6.4.7. The column will bend only for those
values of L for which the boundary-value problem has a
nontrivial solution.
(a) Restate the boundary-value problem by making the

change of variables t � L � x. Then use the results
of a problem earlier in this exercise set to express
the general solution of the differential equation in
terms of Bessel functions.

(b) Use the general solution found in part (a) to find a
solution of the BVP and an equation which define
the critical length L, that is, the smallest value of
L for which the column will start to bend.

(c) With the aid of a CAS, find the critical length L
of a solid steel rod of radius r � 0.05 in., 
�g � 0.28 A lb/in., E � 2.6 � 107 lb/in.2, A � 	r2,
and I � 1

4 �r4.

EI  d
2�

dx2 � �g(L � x)� � 0,  �(0) � 0, ��(L) � 0,

Use the information in Problem 37 to find a solu-
tion of

if it is known that is not zero at x � 0.
(b) Use Table 6.4.1 to find the Euler load P1 for the

column.
(c) Use a CAS to graph the first buckling mode y1(x)

corresponding to the Euler load P1. For simplicity
assume that c1 � 1 and L � 1.

43. Pendulum of Varying Length For the simple pendu-
lum described on page 220 of Section 5.3, suppose that
the rod holding the mass m at one end is replaced by a
flexible wire or string and that the wire is strung over a
pulley at the point of support O in Figure 5.3.3. In this
manner, while it is in motion in a vertical plane, the
mass m can be raised or lowered. In other words, the
length l(t) of the pendulum varies with time. Under
the same assumptions leading to equation (6) in Sec-
tion 5.3, it can be shown* that the differential equation
for the displacement angle � is now

(a) If l increases at constant rate v and if l (0) � l0,
show that a linearization of the foregoing DE is

(34)

(b) Make the change of variables x � (l0 � vt)
v and
show that (34) becomes

(c) Use part (b) and (18) to express the general solution
of equation (34) in terms of Bessel functions.

(d) Use the general solution obtained in part (c) to solve
the initial-value problem consisting of equation (34)
and the initial conditions �(0) � �0, ��(0) � 0.
[Hints: To simplify calculations, use a further

change of variable 

Also, recall that (20) holds for both J1(u) and Y1(u).
Finally, the identity

will be helpful.]

� 2
�u

J1(u)Y2(u) � J2(u)Y1(u) �

u �
2
v
 1g(l0 � vt) � 2

B

g
v
 x1/ 2.

d 2�

dx 2 �
2
x
 
d�

dx
�

g
vx

� � 0.

(l0 � vt)�� � 2v�� � g� � 0.

l�� � 2l��� � g sin � � 0.

1xY1(21�x)

M x
L

 
d 2y
dx2 � Py � 0,  y(0) � 0,  y(L) � 0

x = 0

x

θ

P(x)

ground

FIGURE 6.4.7 Beam in Problem 41

42. Buckling of a Thin Vertical Column In Example 4
of Section 5.2 we saw that when a constant vertical
compressive force, or load, P was applied to a thin
column of uniform cross section and hinged at both
ends, the deflection y(x) is a solution of the BVP:

(a) If the bending stiffness factor EI is proportional
to x, then EI(x) � kx, where k is a constant of
proportionality. If EI(L) � kL � M is the maximum
stiffness factor, then k � M
L and so EI(x) � Mx
L.

EI  d
2y

dx2 � Py � 0,  y(0) � 0,  y(L) � 0.

*See Mathematical Methods in Physical Sciences, Mary Boas, John Wiley
& Sons, Inc., 1966. Also see the article by Borelli, Coleman, and Hobson
in Mathematics Magazine, vol. 58, no. 2, March 1985.

(problem continues on page 270)
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270 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

(e) Use a CAS to graph the solution �(t) of the
IVP in part (d) when l0 � 1 ft, �0 � radian,
and Experiment with the graph using dif-
ferent time intervals such as [0, 10], [0, 30],
and so on.

(f) What do the graphs indicate about the displacement
angle �(t) as the length l of the wire increases with
time?

Legendre’s Equation

44. (a) Use the explicit solutions y1(x) and y2(x) of
Legendre’s equation given in (29) and the appropri-
ate choice of c0 and c1 to find the Legendre polyno-
mials P6(x) and P7(x).

(b) Write the differential equations for which P6(x) and
P7(x) are particular solutions.

45. Use the recurrence relation (32) and P0(x) � 1, P1(x) � x,
to generate the next six Legendre polynomials.

46. Show that the differential equation

can be transformed into Legendre’s equation by means
of the substitution x � cos �.

47. Find the first three positive values of � for which the
problem

has nontrivial solutions.

Computer Lab Assignments

48. For purposes of this problem ignore the list of Legendre
polynomials given on page 266 and the graphs given
in Figure 6.4.3. Use Rodrigues’ formula (33) to generate
the Legendre polynomials P1(x), P2(x), . . . , P7(x). Use a
CAS to carry out the differentiations and simplifications

49. Use a CAS to graph P1(x), P2(x), . . . , P7(x) on the
interval [�1, 1].

50. Use a root-findin application to fin the zeros of
P1(x), P2(x), . . . , P7 (x). If the Legendre polynomials
are built-in functions of your CAS, fin zeros of
Legendre polynomials of higher degree. Form a con-
jecture about the location of the zeros of any Legendre
polynomial Pn(x), and then investigate to see whether
it is true.

Miscellaneous Differential Equations

51. The differential equation

y� � 2xy� � 2ay � 0

y(0) � 0,  y(x), y�(x) bounded on [�1,1]
(1 � x2)y � � 2xy� � �y � 0,

sin �  
d 2y
d� 2 � cos �  

dy
d�

� n(n � 1)(sin �)y � 0

v � 1
60 ft/s.

1
10

is known as Hermite’s equation of order � after the
French mathematician Charles Hermite (1822–1901).
Show that the general solution of the equation is

where  

are power series solutions centered at the ordinary 
point 0.

52. (a) When is a nonnegative integer, Hermite’s
differential equation always possesses a polynomial
solution of degree n. Use given in Problem 51,
to find polynomial solutions for and

Then use to find polynomial solutions
for and 

(b) A Hermite polynomial is defined to be the
nth degree polynomial solution of Hermite’s equa-
tion multiplied by an appropriate constant so that
the coefficient of in is Use the polyno-
mial solutions in part (a) to show that the first six
Hermite polynomials are

53. The differential equation

,

where is a parameter, is known as Chebyshev’s
equation after the Russian mathematician Pafnuty
Chebyshev (1821–1894). When is a nonnega-
tive integer, Chebyshev’s differential equation always
possesses a polynomial solution of degree n. Find a
fifth degree polynomial solution of this differential
equation.

54. If n is an integer, use the substitution 
to show that the general solution of the differential
equation

on the interval is 
where are the spherical Bessel func-
tions of the first and second kind defined in (27

jn(ax) and  yn(ax)
R(x) � c1 jn(ax) � c2 yn(ax),(0, �)

x2R� � 2xR� � [a2x2 � n(n � 1)]R � 0

R(x) � (ax)�1>2Z(x)

a � n

a

(1 � x2)y� � xy� � a2y � 0

H5(x) � 32x5 � 160x3 � 120x.

H4(x) � 16x4 � 48x2 � 12

H3(x) � 8x3 � 12x

H2(x) � 4x2 � 2

H1(x) � 2x

H0(x) � 1

2n.Hn(x)xn

Hn(x)
n � 5.n � 1, n � 3,

y2(x)n � 4.
n � 0, n � 2,

y1(x),

a � n

 y2(x) � x � �
�

k�1
(�1)k 

2k(a�1)(a�3) . . . (a� 2k�1)
(2k � 1)!

x2k�1

 y1(x) � 1 � �
�

k�1
(�1)k 

2ka(a � 2) . . . (a� 2k � 2)
(2k)!

x 2k

y(x) � c0y1(x) � c1y2(x),
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CHAPTER 6 IN REVIEW ● 271

CHAPTER 6 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-11.

In Problems 1 and 2 answer true or false without referring
back to the text.

1. The general solution of x2y� � xy� � (x2 � 1)y � 0 is
y � c1J1(x) � c2J�1(x). 

2. Because x � 0 is an irregular singular point of
x3y� � xy� � y � 0, the DE possesses no solution that
is analytic at x � 0. 

3. Both power series solutions of y� � ln(x � 1)y� � y � 0
centered at the ordinary point x � 0 are guaranteed
to converge for all x in which one of the following
intervals?

(a) (��, �) (b) (�1, �)
(c) (d) [�1, 1]

4. x � 0 is an ordinary point of a certain linear differential
equation. After the assumed solution is
substituted into the DE, the following algebraic system
is obtained by equating the coefficients of x0, x1, x2,
and x3 to zero:

Bearing in mind that c0 and c1 are arbitrary, write down
the first five terms of two power series solutions of the
differential equation.

5. Suppose the power series is known
to converge at �2 and diverge at 13. Discuss whether
the series converges at �7, 0, 7, 10, and 11. Possible
answers are does, does not, might.

6. Use the Maclaurin series for sin x and cos x along with
long division to find the first three nonzero terms of a

power series in x for the function

In Problems 7 and 8 construct a linear second-order differen-
tial equation that has the given properties.

7. A regular singular point at x � 1 and an irregular
singular point at x � 0

8. Regular singular points at x � 1 and at x � �3

In Problems 9–14 use an appropriate infinite series method
about x � 0 to find two solutions of the given differential
equation.

f (x) �
sin x
cos x

.

��
k�0 ck(x � 4)k

 20c5 � 8c4 � c3 � 2
3 c2 � 0.

 12c4 � 6c3 � c2 � 1
3 c1 � 0

 6c3 � 4c2 � c1 � 0

 2c2 � 2c1 � c0 � 0

y � ��
n�0 cnxn

[�1
2, 

1
2]

9. 2xy� � y� � y � 0 10. y� � xy� � y � 0

11. (x � 1)y� � 3y � 0 12. y � � x2y� � x y � 0

13. xy� � (x � 2)y� � 2y � 0 14. (cos x)y� � y � 0

In Problems 15 and 16 solve the given initial-value problem.

15. y� � xy� � 2y � 0, y(0) � 3, y�(0) � �2

16. (x � 2)y� � 3y � 0, y(0) � 0, y�(0) � 1

17. Without actually solving the differential equation
(1 � 2 sin x)y� � xy � 0, find a lower bound for the
radius of convergence of power series solutions about
the ordinary point x � 0.

18. Even though x � 0 is an ordinary point of the differen-
tial equation, explain why it is not a good idea to try to
find a solution of the IV

of the form Using power series, find a
better way to solve the problem.

In Problems 19 and 20 investigate whether x � 0 is an ordi-
nary point, singular point, or irregular singular point of
the given differential equation. [Hint: Recall the Maclaurin
series for cos x and ex.]

19. xy� � (1 � cos x)y� � x2y � 0

20. (ex � 1 � x)y� � xy � 0

21. Note that x � 0 is an ordinary point of the differential
equation y� � x2y� � 2xy � 5 � 2x � 10x3. Use the
assumption to find the general solution
y � yc � yp that consists of three power series centered
at x � 0.

22. The first-order differential equation dy
dx � x2 � y2

cannot be solved in terms of elementary functions.
However, a solution can be expressed in terms of Bessel
functions.

(a) Show that the substitution leads to the
equation u� � x2u � 0.

(b) Use (18) in Section 6.4 to find the general solution
of u� � x2u � 0.

(c) Use (20) and (21) in Section 6.4 in the forms

and
J�� (x) � � 

�

x
J� (x) � J��1(x)

J�� (x) �
�

x
J� (x) � J��1(x)

y � � 1
u
 
du
dx

y � ��
n�0 cnxn

y � ��
n�0 cnxn.

y � � xy� � y � 0,  y(1) � �6,  y�(1) � 3
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272 ● CHAPTER 6 SERIES SOLUTIONS OF LINEAR EQUATIONS

as an aid to show that a one-parameter family of
solutions of dy
dx � x2 � y2 is given by

23. (a) Use (10) of Section 6.4 and Problem 32 of Exer-
cises 6.4 to show that

(b) Use (15) of Section 6.4 to show that

(c) Use (16) of Section 6.4 and part (b) to show that

24. (a) From (30) and (31) of Section 6.4 we know
that when n � 0, Legendre’s differential equation
(1 � x2)y� � 2xy� � 0 has the polynomial solu-
tion y � P0(x) � 1. Use (5) of Section 4.2 to show

K1/2(x) �
B

�

2x
 e�x.

I1/2(x) �
B

2
�x sinh x    and    I�1/2(x) �

B

2
�x

 cosh x.

Y3/2(x) � �
B

2
�x

 �cos x
x

� sin x�

y � x 
J3 /4( 1

2 x2) � cJ�3 /4( 1
2 x2)

cJ1/4( 1
2 x2) � J�1/4( 1

2 x2).

that a second Legendre function satisfying the DE
for �1 � x � 1 is

(b) We also know from (30) and (31) of Section 6.4
that when n � 1, Legendre’s differential equation
(1 � x2)y� � 2xy� � 2y � 0 possesses the polyno-
mial solution y � P1(x) � x. Use (5) of Section 4.2
to show that a second Legendre function satisfying
the DE for �1 � x � 1 is

(c) Use a graphing utility to graph the logarithmic
Legendre functions given in parts (a) and (b).

25. (a) Use binomial series to formally show that

(b) Use the result obtained in part (a) to show that
Pn(1) � 1 and Pn(�1) � (�1)n. See Properties (ii)
and (iii) on page 266.

(1 � 2xt � t2)�1/2 � �
�

n�0
Pn(x)tn.

y �
x
2
 ln�1 � x

1 � x� � 1.

y �
1
2
 ln�1 � x

1 � x�.
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7.1 Definition of the Laplace Transform
7.2 Inverse Transforms and Transforms of Derivatives

7.2.1 Inverse Transforms
7.2.2 Transforms of Derivatives

7.3 Operational Properties I
7.3.1 Translation on the s-Axis
7.3.2 Translation on the t-Axis

7.4 Operational Properties II
7.4.1 Derivatives of a Transform
7.4.2 Transforms of Integrals
7.4.3 Transform of a Periodic Function

7.5 The Dirac Delta Function
7.6 Systems of Linear Differential Equations

Chapter 7 in Review

In the linear mathematical models for a physical system such as a spring/mass
system or a series electrical circuit, the right-hand member, or input, of the
differential equations

is a driving function and represents either an external force f (t) or an impressed
voltage E(t). In Section 5.1 we considered problems in which the functions f and E
were continuous. However, discontinuous driving functions are not uncommon.
For example, the impressed voltage on a circuit could be piecewise continuous and
periodic, such as the “sawtooth” function shown on the left. Solving the differential
equation of the circuit in this case is difficult using the techniques of Chapter 4
The Laplace transform studied in this chapter is an invaluable tool that simplifie
the solution of problems such as these.

m 
d 2x
dt2 � b

dx
dt

� kx � f (t)    or    L
d 2q
dt2 � R

dq
dt

�
1
C

 q � E(t)

The Laplace Transform7
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274 ● CHAPTER 7 THE LAPLACE TRANSFORM

Integral Transform If f (x, y) is a function of two variables, then a definite in-
tegral of f with respect to one of the variables leads to a function of the other variable.
For example, by holding y constant, we see that . Similarly, a defi
nite integral such as transforms a function f of the variable t into a
function F of the variable s. We are particularly interested in an integral transform,
where the interval of integration is the unbounded interval [0, �). If f (t) is defined for
t � 0, then the improper integral is defined as a limit

. (1)

If the limit in (1) exists, then we say that the integral exists or is convergent; if the
limit does not exist, the integral does not exist and is divergent. The limit in (1) will,
in general, exist for only certain values of the variable s.

A Definition The function K(s, t) in (1) is called the kernel of the transform.

��

0
K(s, t) f (t) dt � lim

b : �
 �b

0
 K(s, t) f (t) dt

��
0  K(s, t) f (t) dt

�b
a K(s, t) f (t) dt

�2
1 2xy2 dx � 3y2

DEFINITION OF THE LAPLACE TRANSFORM

REVIEW MATERIAL
● Improper integrals with infinite limits of integratio
● Integration by parts and partial fraction decomposition

INTRODUCTION In elementary calculus you learned that differentiation and integration are
transforms; this means, roughly speaking, that these operations transform a function into another
function. For example, the function f (x) � x2 is transformed, in turn, into a linear function and
a family of cubic polynomial functions by the operations of differentiation and integration:

and

Moreover, these two transforms possess the linearity property that the transform of a linear
combination of functions is a linear combination of the transforms. For a and b constants

and

provided that each derivative and integral exists. In this section we will examine a special type of
integral transform called the Laplace transform. In addition to possessing the linearity property the
Laplace transform has many other interesting properties that make it very useful in solving linear
initial-value problems.

�[� f (x) � � g(x)] dx � ��f (x) dx � ��g(x) dx

 
d

dx
 [� f (x) � � g(x)] � � f �(x) � � g�(x)

�x2 dx �
1
3
 x3 � c.

d
dx

 x2 � 2x

7.1

We will assume throughout
that s is a real variable. �

The choice K(s, t) � e	st as the kernel gives us an especially important integral
transform.

DEFINITION 7.1.1 Laplace Transform

Let f be a function defined for t � 0. Then the integral

(2)

is said to be the Laplace transform of f, provided that the integral converges.

The Laplace transform is named in honor of the French mathematician and
astronomer Pierre-Simon Marquis de Laplace (1749–1827).

�{ f (t)} � ��

0
e	st f (t) dt
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7.1 DEFINITION OF THE LAPLACE TRANSFORM ● 275

When the defining integral (2) converges, the result is a function of s. In general
discussion we shall use a lowercase letter to denote the function being transformed
and the corresponding capital letter to denote its Laplace transform—for example,

.

As the next four examples show, the domain of the function F(s) depends on the
function f(t).

�{ f (t)} � F(s),    �{g(t)} � G(s),    �{y(t)} � Y(s)

EXAMPLE 1 Applying Definition 7.1.

Evaluate .

SOLUTION From (2),

provided that s 
 0. In other words, when s 
 0, the exponent 	sb is negative, and
as . The integral diverges for s � 0.

The use of the limit sign becomes somewhat tedious, so we shall adopt the
notation ��0 as a shorthand for writing limb:� ( ) �b0. For example,

.

At the upper limit, it is understood that we mean as for s 
 0.t : �e	st : 0

�{1} � ��

0
 e	st (1) dt �

	e	st

s ��

0
�

1
s
,    s 
 0

b : �e	sb : 0

 � lim
b : �

	e	st

s �0

b
  � lim

b : �

	e	sb � 1
s

 �
1
s

 �{1} � ��

0
 e	st(1) dt � lim

b : �
 �b

0
 e	st dt

�{1}

EXAMPLE 2 Applying Definition 7.1.

Evaluate .

SOLUTION From Definition 7.1.1 we have . Integrating by parts
and using s 
 0, along with the result from Example 1, we obtain

.�{t} �
	te	st

s ��

0
�

1
s
 ��

0
  e	st  dt �

1
s

 �{1} �
1
s

 �1
s� �

1
s2

lim
t : � 

te	st � 0,
�{t} � ��

0  e	st t dt

�{t}

EXAMPLE 3 Applying Definition 7.1.

Evaluate (a) (b)

SOLUTION In each case we use Definition 7.1.1.

(a)

The last result is valid for s 
 	3 because in order to have limt : � e	(s�3)t � 0 we
must require that s � 3 
 0 or s 
 	3.

 �
1

s � 3
.

 �
	e	(s�3)t

s � 3 �0

�

 �{e	3t} � ��

0
 e	3t e	st dt � ��

0
 e	(s�3)t dt

�{e5t}�{e	3t}
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276 ● CHAPTER 7 THE LAPLACE TRANSFORM

(b)

In contrast to part (a), this result is valid for s 
 5 because lim t : � e	(s	5) t � 0 
demands s 	 5 
 0 or s 
 5.

 �
1

s 	 5
.

 �
	e	(s	5)t

s 	 5 �0

�

 �{e5t} � ��

0
 e5t e	st dt � ��

0
 e	(s	5)t dt

EXAMPLE 4 Applying Definition 7.1.

Evaluate .

SOLUTION From Definition 7.1.1 and two applications of integration by parts we
obtain

At this point we have an equation with on both sides of the equality.
Solving for that quantity yields the result

.

��� Is a Linear Transform For a linear combination of functions we can write

whenever both integrals converge for s 
 c. Hence it follows that

. (3)

Because of the property given in (3), � is said to be a linear transform.

�{� f (t) � �g(t)} � ��{ f (t)} � ��{g(t)} � �F(s) � �G(s)

��

0
 e	st [� f (t) � �g(t)] dt � � ��

0
 e	st f (t) dt � � ��

0
 e	st g(t) dt

�{sin 2t} �
2

s2 � 4
,    s 
 0

�{sin 2t}

lim e	st cos 2t � 0, s 
 0
t:�

Laplace transform of sin 2t 

	e	st sin 2t––––––––––––
s

2–s

2–s

�{sin 2t} � �   e	st sin 2t dt �

�{sin 2t}.

�   � �   e	st cos 2t dt
�

0

�

0

�

0

	e	st cos 2t––––––––––––
s

2–s�   	2–s�

2––
s2�

4––
s2	

[ �   e	st sin 2t dt]�

0

�

0

� �   e	st cos 2t dt,        s 
 0
�

0

�{sin 2t}

EXAMPLE 5 Linearity of the Laplace Transform

In this example we use the results of the preceding examples to illustrate the linear-
ity of the Laplace transform.

(a) From Examples 1 and 2 we have for s 
 0,

.

(b) From Examples 3 and 4 we have for s 
 5,

 � {4e5t 	 10 sin 2t} � 4� {e5t} 	 10� {sin2t} �
4

s 	 5
	

20
s2 � 4

.

 � {1 � 5t} � � {1} � 5� {t} �
1
s

�
5
s2
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7.1 DEFINITION OF THE LAPLACE TRANSFORM ● 277

t

f(t)

bt1 t3t2a

FIGURE 7.1.1 Piecewise continuous
function

(c) From Examples 1, 2, and 3 we have for s 
 0,

We state the generalization of some of the preceding examples by means of the
next theorem. From this point on we shall also refrain from stating any restrictions on
s; it is understood that s is sufficiently restricted to guarantee the convergence of the
appropriate Laplace transform.

�
20

s � 3
�

7
s2 	

9
s
.

 � {20e	3t � 7t 	 9} � 20� {e	3t} � 7� {t} 	 9� {1}

THEOREM 7.1.1 Transforms of Some Basic Functions

(a)

(b) (c)

(d) (e)

(f) (g) �{cosh kt} �
s

s2 	 k2�{sinh kt} �
k

s2 	 k2

�{cos kt} �
s

s2 � k2�{sin kt} �
k

s2 � k2

�{eat} �
1

s 	 a
�{tn} �

n!
sn�1,  n � 1, 2, 3, . . .

�{1} �
1
s

This result in (b) of Theorem 7.1.1 can be formally justified for n a positive
integer using intergration by parts to first show tha

.

Then for n � 1, 2, and 3, we have, respectively,

If we carry on in this manner, you should be convinced that

Sufficient Conditions for Existence of ��� {f(t)} The integral that define
the Laplace transform does not have to converge. For example, neither nor

exists. Sufficient conditions guaranteeing the existence of are that f
be piecewise continuous on [0, �) and that f be of exponential order for t 
 T. Recall
that a function f is piecewise continuous on [0, �) if, in any interval 0 � a � t � b,
there are at most a finite number of points tk, k � 1, 2, . . . , n (tk	1 � tk) at which f
has finite discontinuities and is continuous on each open interval (tk	1, tk). See
Figure 7.1.1. The concept of exponential order is defined in the following manne .

DEFINITION 7.1.2 Exponential Order

A function f is said to be of exponential order if there exist constants 
c, M 
 0, and T 
 0 such that � f (t) � � Mect for all t 
 T.

�{ f (t)}�{et2}
�{1> t}

� {t n} �
n . . . 3 � 2 � 1

sn�1 �
n!

sn�1.

 �{t3} �
3
s

� � {t2} �
3
s

�
2 � 1

s3 �
3 � 2 � 1

s4

 �{t2} �
2
s

� � {t} �
2
s

�
1
s2 �

2 � 1
s3

 �{t} �
1
s

� � {1} �
1
s

�
1
s

�
1
s2

� {t n} �
n
s
 � {t n	1}
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FIGURE 7.1.2 f is of exponential 
order

f ( t ) 

tT

Me ct  ( c  > 0)f(t)

e t 2 

t

f(t)

c

e ct 

FIGURE 7.1.4 is not of exponential
order

et2

t 

e −t 

2 cos  t 
e t 

(a) (b) (c)

t

e t 

t

2 e t 
f (t) f (t)

f (t)

t

FIGURE 7.1.3 Three functions of exponential order

A positive integral power of t is always of exponential order, since, for c 
 0,

is equivalent to showing that is finite for n � 1, 2, 3, . . . . The result
follows from n applications of L’Hôpital’s rule. A function such as is not of
exponential order since, as shown in Figure 7.1.4, grows faster than any positive
linear power of e for . This can also be seen from

as .t : �

�et2

ect � � et2	ct � et(t	c) : �

t > c > 0
et2

f(t) � et2
limt : � tn>ect

� tn � � Mect  or  � tn

ect� � M for t 
 T

If f is an increasing function, then the condition � f (t) � � Mect, t 
 T, simply
states that the graph of f on the interval (T, �) does not grow faster than the graph
of the exponential function Mect, where c is a positive constant. See Figure 7.1.2.
The functions f (t) � t, f (t) � e	t, and f (t) � 2 cos t are all of exponential order
because for c � 1, M � 1, T � 0 we have, respectively, for t 
 0

.

A comparison of the graphs on the interval [0, �) is given in Figure 7.1.3.

� t � � et,    � e	t � � et,    and    � 2 cos t � � 2et

THEOREM 7.1.2 Sufficient Conditions fo Existence

If f is piecewise continuous on [0, �) and of exponential order, then 
exists for s 
 c.

�{ f (t)}

PROOF By the additive interval property of definite integrals we can writ

.

The integral I1 exists because it can be written as a sum of integrals over intervals
on which e	st f (t) is continuous. Now since f is of exponential order, there exist
constants c, M 
 0, T 
 0 so that � f (t) � � Mect for t 
 T. We can then write

for s 
 c. Since converges, the integral converges 
by the comparison test for improper integrals. This, in turn, implies that I2 exists

��
T  � e	st f (t) � dt��

T Me	(s	c)t dt

� I2 � � ��

T
 �e	st 

f (t) � dt � M ��

T
e	stect dt � M ��

T
e	(s	c)t dt � M e

	(s	c)T

s 	 c

�{ f (t)} � �T

0
 e	st  f (t) dt � ��

T
 e	st f (t) dt � I1 � I2
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for s c. The existence of I1 and I2 implies that exists 
for s c.


�{ f (t)} � ��
0  e	st f (t) dt


t

y

3

2

FIGURE 7.1.5 Piecewise continuous
function in Example 6

EXAMPLE 6 Transform of a Piecewise Continuous Function

Evaluate �{ f (t)} where 

SOLUTION The function f, shown in Figure 7.1.5, is piecewise continuous and of
exponential order for t 
 0. Since f is defined in two pieces, �{ f (t)} is expressed as
the sum of two integrals:

We conclude this section with an additional bit of theory related to the types of
functions of s that we will, generally, be working with. The next theorem indicates that
not every arbitrary function of s is a Laplace transform of a piecewise continuous func-
tion of exponential order.

 �
2e	3s

s
,    s 
 0.

 � 0 �
2e	st

	s ��

3

 �{ f (t)} � ��

0
 e	st f (t) dt � �3

0
 e	st (0) dt � ��

3
 e	st (2) dt

f (t) � �0,  0 � t � 3
2,    t � 3.

THEOREM 7.1.3 Behavior of F(s) as 

If f is piecewise continuous on [0, �) and of exponential order and
F(s) � �{ f (t)}, then lim

s:�
F(s) � 0.

s : �

PROOF Since f is of exponential order, there exist constants g, M1 
 0, and T 
 0
so that � f (t) � � M1egt for t 
 T. Also, since f is piecewise continuous for 0 � t � T, it
is necessarily bounded on the interval; that is, � f (t) � � M2 � M2e0t. If M denotes the
maximum of the set {M1, M2} and c denotes the maximum of {0, g}, then

for s 
 c. As , we have , and so F(s) � �{ f (t)} : 0.� F(s) � : 0s : �

� F(s) � � ��

0
 e	st� f (t) � dt � M ��

0
 e	stect dt � M ��

0
 e	(s	c)t dt �

M
s 	 c

REMARKS

(i) Throughout this chapter we shall be concerned primarily with functions
that are both piecewise continuous and of exponential order. We note, however,
that these two conditions are sufficient but not necessary for the existence of a
Laplace transform. The function f (t) � t	1/2 is not piecewise continuous on
the interval [0, �), but its Laplace transform exists. The function 
is not of exponential order, but it can be shown that its Laplace transform 
exists. See Problems 43 and 54 in Exercises 7.1.
(ii) As a consequence of Theorem 7.1.3 we can say that functions of s such as
F1(s) � 1 and F2(s) � s�(s � 1) are not the Laplace transforms of piecewise 
continuous functions of exponential order, since F1(s) 0 and F2(s) 0 as

. But you should not conclude from this that F1(s) and F2(s) are not Laplace
transforms. There are other kinds of functions.
s : �

:/:/

f(t) � 2tet2 cos et2
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280 ● CHAPTER 7 THE LAPLACE TRANSFORM

EXERCISES 7.1 Answers to selected odd-numbered problems begin on page ANS-11.

In Problems 1–18 use Definition 7.1.1 to find �{ f (t)}.

1.

2.

3.

4.

5.

6.

7.

f (t) � �0,
cos t,

0 � t � 
>2
        t � 
>2

f (t) � �sin t,
0,     

0 � t � 


t � 


f (t) � �2t � 1,
0,         

0 � t � 1
t � 1

f (t) � � t,
1,

0 � t � 1
t � 1

f (t) � �4,
0,

0 � t � 2
t � 2

f (t) � �	1,
1,

0 � t � 1
t � 1

9.
FIGURE 7.1.7 Graph for Problem 8

FIGURE 7.1.8 Graph for Problem 9

FIGURE 7.1.9 Graph for Problem 10

t

f (t)
(2, 2)

1

1

FIGURE 7.1.6 Graph for Problem 7

t

f(t)
(2, 2)

1

1

t

f (t)

1

1

f (t)

a

c

b t

8.

10.

23. f (t) � t2 � 6t 	 3 24. f (t) � 	4t2 � 16t � 9

25. f (t) � (t � 1)3 26. f (t) � (2t 	 1)3

27. f (t) � 1 � e4t 28. f (t) � t2 	 e	9t � 5

29. f (t) � (1 � e2t)2 30. f (t) � (et 	 e	t)2

31. f (t) � 4t2 	 5 sin 3t 32. f (t) � cos 5t � sin 2t

33. f (t) � sinh kt 34. f (t) � cosh kt

35. f (t) � et sinh t 36. f (t) � e	t cosh t

In Problems 37–40 find �{ f (t)} by first using a trigono-
metric identity.

37. f (t) � sin 2t cos 2t 38. f (t) � cos2t

39. f (t) � sin(4t � 5) 40.

41. We have encountered the gamma function in our
study of Bessel functions in Section 6.4 (page 258).
One definition of this function is given by the improper
integral

Use this definition to show that

42. Use Problem 41 and a change of variables to obtain the
generalization

of the result in Theorem 7.1.1(b).

In Problems 43–46 use Problems 41 and 42 and the fact
that to find the Laplace transform of the given
function.

43. f (t) � t	1/2 44. f (t) � t1/2

45. f (t) � t3/2 46. f (t) � 2t1/2 � 8t5/2

Discussion Problems

47. Make up a function F(t) that is of exponential order but
where f (t) � F�(t) is not of exponential order. Make up
a function f that is not of exponential order but whose
Laplace transform exists.

48. Suppose that for s c1 and that
for s c2. When does 

49. Figure 7.1.4 suggests, but does not prove, that the func-
tion is not of exponential order. How does
the observation that for and t
sufficiently la ge, show that for any c?

50. Use part (c) of Theorem 7.1.1 to show that

�{e(a�ib)t} � , where a and b are real
s 	 a � ib

(s 	 a)2 � b2

et 2

 Mect

M 
 0t2 
 ln M � ct,
f (t) �  et 2

�{f1(t) � f2(t)} � F1(s) � F2(s)?


�{ f2(t)} � F2(s)

�{ f1(t)} �  F1(s)

�(1
2) � 1p

� {t�} �
�(� � 1)

s��1 , � 
 	1,

�(a � 1) � a�(a).

�(�) � ��

0
ta	1e	 t dt,  a 
 0.

�(a)

f (t) � 10 cos�t 	



6�

11. f (t) � et�7 12. f (t) � e	2t	5

13. f (t) � te4t 14. f (t) � t2e	2t

15. f (t) � e	t sin t 16. f (t) � et cos t

17. f (t) � t cos t 18. f (t) � t sin t

In Problems 19–36 use Theorem 7.1.1 to find �{ f (t)}.

19. f (t) � 2t4 20. f (t) � t5

21. f (t) � 4t 	 10 22. f (t) � 7t � 3
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7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES ● 281

and i2 � 	1. Show how Euler’s formula (page 133) can
then be used to deduce the results

.

51. Under what conditions is a linear function
f (x) � mx � b, m � 0, a linear transform?

52. Explain why the function

is not piecewise continuous on [0, ).

53. Show that the function does not possess a
Laplace transform. [Hint: Write as two im-
proper integrals:

Show that I1 diverges.]

 � {1>t 2} � �1

0

e	st

t 2  dt � ��

1

e	st

t 2  dt � I1 � I2.

 � {1>t2}
f(t) � 1>t2

�

f(t) � �t,        0 � t � 2
4,       2 � t � 5
1>(t 	 5),  t 
 5

 � {eat sin bt} �
b

(s 	 a)2 � b2

 � {eat cos bt} �
s 	 a

(s 	 a)2 � b2

54. Show that the Laplace transform exists.
[Hint: Start with integration by parts.]

55. If and is a constant, show that

. 

This result is known as the change of scale theorem.

56. Use the given Laplace transform and the result in
Problem 55 to find the indicated Laplace transform.
Assume that a and k are positive constants.

(a)

(b)

(c)

(d)  � {sin t sinh t} �
2s

s4 � 4
;  � {sin kt sinh kt}

 � {1 	 cos t} �
1

s(s2 � 1)
;  � {1 	 cos kt}

 � {sin t} �
1

s2 � 1
;  � {sin kt}

 � {et} �
1

s 	 1
;  � {eat}

 � {f(at)} �
1
a
 F �s

a�
a 
 0 � {f(t)} � F(s)

 � {2tet2 coset2}

Transform Inverse Transform

e	3t � � 	1� 1
s � 3��{e	3t} �

1
s � 3

t � � 	1�1
s2��{t} �

1
s2

1 � � 	1�1
s��{1} �

1
s

7.2.1 INVERSE TRANSFORMS

The Inverse Problem If F(s) represents the Laplace transform of a function
f (t), that is, , we then say f (t) is the inverse Laplace transform of
F(s) and write . For example, from Examples 1, 2, and 3 of
Section 7.1 we have, respectively,

f (t) � � 	1{F(s)}
� { f (t)} � F(s)

INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES

REVIEW MATERIAL
● Partial fraction decomposition
● See the Student Resource Manual

INTRODUCTION In this section we take a few small steps into an investigation of how
the Laplace transform can be used to solve certain types of equations for an unknown function. We
begin the discussion with the concept of the inverse Laplace transform or, more precisely, the inverse
of a Laplace transform F(s). After some important preliminary background material on the Laplace
transform of derivatives f�(t), f��(t), . . . , we then illustrate how both the Laplace transform and the in-
verse Laplace transform come into play in solving some simple ordinary differential equations.

7.2
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282 ● CHAPTER 7 THE LAPLACE TRANSFORM

We shall see shortly that in the application of the Laplace transform to equa-
tions we are not able to determine an unknown function f (t) directly; rather, we are
able to solve for the Laplace transform F(s) of f (t); but from that knowledge
we ascertain f by computing . The idea is simply this: Suppose

is a Laplace transform; find a function f (t) such that 

We shall show how to solve this problem in Example 2.
For future reference the analogue of Theorem 7.1.1 for the inverse transform is

presented as our next theorem.

�{f(t)} � F(s).F(s) �
	2s � 6

s2 � 4

f (t) � � 	1{F(s)}

In evaluating inverse transforms, it often happens that a function of s under con-
sideration does not match exactly the form of a Laplace transform F(s) given in a
table. It may be necessary to “fix up” the function of s by multiplying and dividing
by an appropriate constant.

EXAMPLE 1 Applying Theorem 7.2.1

Evaluate (a) (b) .

SOLUTION (a) To match the form given in part (b) of Theorem 7.2.1, we identify
n � 1 � 5 or n � 4 and then multiply and divide by 4!:

.

(b) To match the form given in part (d) of Theorem 7.2.1, we identify k2 � 7, so
. We fix up the expression by multiplying and dividing b :

.

��1 is a Linear Transform The inverse Laplace transform is also a linear
transform; that is, for constants a and b

, (1)

where F and G are the transforms of some functions f and g. Like (3) of Section 7.1,
(1) extends to any finite linear combination of Laplace transforms

� 	1{�F(s) � �G(s)} � �� 	1{F(s)} � �� 	1{G(s)}

� 	1� 1
s2 � 7� �

1
17

 � 	1� 17
s2 � 7� �

1
17

 sin17t

17k � 17

� 	1�1
s5� �

1
4!

 � 	1�4!
s5� �

1
24

 t4

� 	1� 1
s2 � 7�� 	1�1

s5�

THEOREM 7.2.1 Some Inverse Transforms

(a)

(b) (c)

(d) (e)

(f) (g) cosh kt � � 	1� s
s2 	 k2�sinh kt � � 	1� k

s2 	 k2�

cos kt � � 	1� s
s2 � k2�sin kt � � 	1� k

s2 � k2�

eat � � 	1� 1
s 	 a�tn � � 	1� n!

sn�1�,  n � 1, 2, 3, . . .

1 � � 	1�1
s�
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7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES ● 283

(2)

termwise
division

parts (e) and (d)
of Theorem 7.2.1 with k � 2

linearity and fixing
up constants

	2s � 6–––––––––
s2 � 4

6–
2�	1{ } � �	1{

� 	2 cos 2t � 3 sin 2t.

} � 	2 �	1{ �	1{} �	2s–––––––
s2 � 4

6–––––––
s2 � 4 }2–––––––

s2 � 4
s–––––––

s2 � 4�

Partial Fractions Partial fractions play an important role in finding inverse
Laplace transforms. The decomposition of a rational expression into component frac-
tions can be done quickly by means of a single command on most computer algebra
systems. Indeed, some CASs have packages that implement Laplace transform and
inverse Laplace transform commands. But for those of you without access to such
software, we will review in this and subsequent sections some of the basic algebra in
the important cases in which the denominator of a Laplace transform F(s) contains
distinct linear factors, repeated linear factors, and quadratic polynomials with no real
factors. Although we shall examine each of these cases as this chapter develops, it
still might be a good idea for you to consult either a calculus text or a current precal-
culus text for a more comprehensive review of this theory.

The following example illustrates partial fraction decomposition in the case
when the denominator of F(s) is factorable into distinct linear factors.

EXAMPLE 2 Termwise Division and Linearity

Evaluate .

SOLUTION We first rewrite the given function of s as two expressions by means of
termwise division and then use (1):

� 	1�	2s � 6
s2 � 4 �

EXAMPLE 3 Partial Fractions: Distinct Linear Factors

Evaluate .

SOLUTION There exist unique real constants A, B, and C so that

Since the denominators are identical, the numerators are identical:

. (3)

By comparing coefficients of powers of s on both sides of the equality, we know that
(3) is equivalent to a system of three equations in the three unknowns A, B, and C.
However, there is a shortcut for determining these unknowns. If we set s � 1, s � 2,
and s � 	4 in (3), we obtain, respectively,

,

and so , , and . Hence the partial fraction decomposition is

, (4)
s2 � 6s � 9

(s 	 1)(s 	 2)(s � 4)
� 	 16>5

s 	 1
�

25>6
s 	 2

�
1>30
s � 4

C � 1
30B � 25

6A � 	16
5

16 � A(	1)(5),  25 � B(1)(6),  and  1 � C(	5)(	6)

s2 � 6s � 9 � A(s 	 2)(s � 4) � B(s 	 1)(s � 4) � C(s 	 1)(s 	 2)

 �
A(s 	 2)(s � 4) � B(s 	 1)(s � 4) � C(s 	 1)(s 	 2)

(s 	 1)(s 	 2)(s � 4)
.

 
s2 � 6s � 9

(s 	 1)(s 	 2)(s � 4)
�

A
s 	 1

�
B

s 	 2
�

C
s � 4

� 	1� s2 � 6s � 9
(s 	 1)(s 	 2)(s � 4)�
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284 ● CHAPTER 7 THE LAPLACE TRANSFORM

and thus, from the linearity of �	1 and part (c) of Theorem 7.2.1,

 � 	1� s2 � 6s � 9
(s 	 1)(s 	 2)(s � 4)� � 	 16

5
 � 	1� 1

s 	 1� �
25
6

 � 	1� 1
s 	 2� �

1
30

 � 	1� 1
s � 4�

. (5)

7.2.2 TRANSFORMS OF DERIVATIVES

Transform a Derivative As was pointed out in the introduction to this chap-
ter, our immediate goal is to use the Laplace transform to solve differential equations.
To that end we need to evaluate quantities such as and . For
example, if f � is continuous for t � 0, then integration by parts gives

or (6)

Here we have assumed that as . Similarly, with the aid of (6),

or (7)

In like manner it can be shown that

(8)

The recursive nature of the Laplace transform of the derivatives of a function f
should be apparent from the results in (6), (7), and (8). The next theorem gives the
Laplace transform of the nth derivative of f. The proof is omitted.

�{ f �(t)} � s3F(s) 	 s2f (0) 	 sf �(0) 	 f �(0).

 �{ f �(t)} � s2F(s) 	 sf (0) 	 f �(0).

; from (6) �  s[sF(s) 	 f (0)] 	 f �(0)

 � 	f �(0) � s�{ f �(t)}

 �{ f �(t)} � ��

0
 e	st  f �(t) dt � e	st f �(t) ��

0
� s ��

0
 e	st f �(t) dt

t : �e	st f (t) : 0

 �{ f �(t)} � sF(s) 	 f (0).

 � 	f (0) � s�{ f (t)}

 �{ f �(t)} � ��

0
 e	st f �(t) dt � e	st  f (t) �0

�

� s ��

0
 e	st f (t) dt

�{d2y>dt2}�{dy>dt}

 � 	 16
5

 et �
25
6

 e2t �
1

30
 e	4t

Solving Linear ODEs It is apparent from the general result given in

THEOREM 7.2.2 Transform of a Derivative

If f, f �, . . . , f (n	1) are continuous on [0, �) and are of exponential order and if
f (n)(t) is piecewise continuous on [0, �), then

where .F(s) � �{ f (t)}

�{ f (n)(t)} � snF(s) 	 sn	1f (0) 	 sn	2f �(0) 	 � � � 	 f (n	1)(0),

Theorem 7.2.2 that depends on and the n 	 1 derivatives
of y(t) evaluated at This property makes the Laplace transform ideally suited
for solving linear initial-value problems in which the differential equation has con-
stant coefficients Such a differential equation is simply a linear combination of terms
y, y�, y�, . . . , y(n):

y(0) � y0, y�(0) � y1, . . . , y(n	1)(0) � yn	1,

an 
 dny
dtn � an	1

  
dn	1y
dtn	1 � � � � � a0y � g(t),

t � 0.
Y(s) � � {y(t)}� {dny>dtn}
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7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES ● 285

where the ai, i � 0, 1, . . . , n and y0, y1, . . . , yn	1 are constants. By the linearity prop-
erty the Laplace transform of this linear combination is a linear combination of
Laplace transforms:

(9)

From Theorem 7.2.2, (9) becomes

,
(10)

where � G(s). In other words, 
The Laplace transform of a linear differential equation with constant coefficient
becomes an algebraic equation in Y(s). 

If we solve the general transformed equation (10) for the symbol Y(s), we first obtain
P(s)Y(s) � Q(s) � G(s) and then write

, (11)

where is a polynomial in s of degree
less than or equal to consisting of the various products of the coefficient
ai, . . . , n and the prescribed initial conditions y0, y1, . . . , yn	1, and G(s) is
the Laplace transform of g(t).* Typically, we put the two terms in (11) over the least
common denominator and then decompose the expression into two or more
partial fractions. Finally, the solution y(t) of the original initial-value problem is

, where the inverse transform is done term by term.
The procedure is summarized in the diagram in Figure 7.2.1.

y(t) � � 	1{Y(s)}

i � 1,
n 	 1

P(s) � ansn � an	1sn	1 � � � � � a0, Q(s)

Y(s) �
Q(s)
P(s)

�
G(s)
P(s)

�{y(t)} � Y(s) and �{g(t)}

 � an	1[sn	1Y(s) 	 sn	2y(0) 	 � � � 	 y(n	2)(0)] � � � � � a0Y(s) � G(s)
an [snY(s) 	 sn	1y(0) 	 � � � 	 y(n	1)(0)]

an��dny
dtn� � an	1��d n	1y

dtn	1� � � � � � a0 �{y} � �{g(t)}.

*The polynomial P(s) is the same as the nth-degree auxiliary polynomial in (12) in Section 4.3 with the
usual symbol m replaced by s.

The next example illustrates the foregoing method of solving DEs, as well as
partial fraction decomposition in the case when the denominator of Y(s) contains a
quadratic polynomial with no real factors.

Apply Laplace
transform  

Apply inverse Laplace
transform      

Find unknown y(t)
that satisfies DE

and initial conditions

Transformed DE
becomes an algebraic

equation in Y(s)

Solve transformed
equation for Y(s) 

Solution y(t)
of original IVP −1

FIGURE 7.2.1 Steps in solving an IVP by the Laplace transform

EXAMPLE 4 Solving a First-Order IVP

Use the Laplace transform to solve the initial-value problem

.

SOLUTION We first take the transform of each member of the differential 
equation:

. (12)��dy
dt� � 3�{y} � 13�{sin 2t}

dy
dt

� 3y � 13 sin 2t,  y (0) � 6

27069_07_ch07_p273-324.qxd  2/2/12  2:43 PM  Page 285

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



286 ● CHAPTER 7 THE LAPLACE TRANSFORM

From (6), , and from part (d) of Theorem 7.1.1,
, so (12) is the same as

.

Solving the last equation for Y(s), we get

. (13)

Since the quadratic polynomial s2 � 4 does not factor using real numbers, its
assumed numerator in the partial fraction decomposition is a linear polynomial in s:

.

Putting the right-hand side of the equality over a common denominator and equating
numerators gives 6s2 � 50 � A(s2 � 4) � (Bs � C)(s � 3). Setting s � 	3 then
immediately yields A � 8. Since the denominator has no more real zeros, we equate
the coefficients of s2 and s: 6 � A � B and 0 � 3B � C. Using the value of A in the
first equation gives B � 	2, and then using this last value in the second equation
gives C � 6. Thus

.

We are not quite finished because the last rational expression still has to be written as
two fractions. This was done by termwise division in Example 2. From (2) of that
example,

.

It follows from parts (c), (d), and (e) of Theorem 7.2.1 that the solution of the initial-
value problem is y(t) � 8e	3t 	 2 cos 2t � 3 sin 2t.

y(t) � 8� 	1� 1
s � 3� 	 2� 	1� s

s2 � 4� � 3� 	1� 2
s2 � 4�

Y(s) �
6s2 � 50

(s � 3)(s2 � 4)
�

8
s � 3

�
	2s � 6

s2 � 4

6s2 � 50
(s � 3)(s2 � 4)

�
A

s � 3
�

Bs � C
s2 � 4

Y(s) �
6

s � 3
�

26
(s � 3)(s2 � 4)

�
6s2 � 50

(s � 3)(s2 � 4)

sY(s) 	 6 � 3Y(s) �
26

s2 � 4
  or  (s � 3)Y(s) � 6 �

26
s2 � 4

�{sin 2t} � 2>(s2 � 4)
�{dy>dt} � sY(s) 	 y (0) � sY(s) 	 6

EXAMPLE 5 Solving a Second-Order IVP

Solve y� 	 3y� � 2y � e	4t, y(0) � 1, y�(0) � 5.

SOLUTION Proceeding as in Example 4, we transform the DE. We take the sum
of the transforms of each term, use (6) and (7), use the given initial conditions, use (c) of
Theorem 7.1.1, and then solve for Y(s):

. (14)

The details of the partial fraction decomposition of Y(s) have already been carried
out in Example 3. In view of the results in (4) and (5) we have the solution of the
initial-value problem

.y (t) � � 	1{Y(s)} � 	
16
5

 et �
25
6

 e2t �
1

30
 e	4t

 Y(s) �
s � 2

s2 	 3s � 2
�

1
(s2 	 3s � 2)(s � 4)

�
s2 � 6s � 9

(s 	 1)(s 	 2)(s � 4)

 (s2 	 3s � 2)Y(s) � s � 2 �
1

s � 4

 s2Y(s) 	 sy (0) 	 y�(0) 	 3[sY(s) 	 y (0)] � 2Y(s) �
1

s � 4

 ��d2y
dt2� 	 3��dy

dt� � 2�{y} � �{e	4t}
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REMARKS

(i) The inverse Laplace transform of a function F(s) may not be unique; in other
words, it is possible that and yet f1 � f2. For our purposes
this is not anything to be concerned about. If f1 and f2 are piecewise continuous
on [0, �) and of exponential order, then f1 and f2 are essentially the same. See
Problem 44 in Exercises 7.2. However, if f1 and f2 are continuous on [0, �) and

, then f1 � f2 on the interval.
(ii) This remark is for those of you who will be required to do partial fraction
decompositions by hand. There is another way of determining the coefficient
in a partial fraction decomposition in the special case when is
a rational function of s and the denominator of F is a product of distinct linear
factors. Let us illustrate by reexamining Example 3. Suppose we multiply both
sides of the assumed decomposition

(15)

by, say, s 	 1, simplify, and then set s � 1. Since the coefficients of B and C on
the right-hand side of the equality are zero, we get

.

Written another way,

,

where we have shaded, or covered up, the factor that canceled when the left-
hand side was multiplied by s 	 1. Now to obtain B and C, we simply evaluate
the left-hand side of (15) while covering up, in turn, s 	 2 and s � 4:

s2 � 6s � 9––––––––––––––––––––––
(s 	 1)(s 	 2)(s � 4)

1–––
30�

s�	4
 � � C.and

s2 � 6s � 9––––––––––––––––––––––
(s 	 1)(s 	 2)(s � 4)

25–––
6�

s�2
 � � B

s2 � 6s � 9
(s 	 1) (s 	 2)(s � 4)

 �s�1
� 	

16
5

� A

s2 � 6s � 9
(s 	 2)(s � 4)

 �s�1
� A    or    A � 	

16
5

s2 � 6s � 9
(s 	 1)(s 	 2)(s � 4)

�
A

s 	 1
�

B
s 	 2

�
C

s � 4

�{ f (t)} � F(s)

�{ f1(t)} � �{ f2(t)}

�{ f1(t)} � �{ f2(t)}

7.2 INVERSE TRANSFORMS AND TRANSFORMS OF DERIVATIVES ● 287

Examples 4 and 5 illustrate the basic procedure for using the Laplace transform
to solve a linear initial-value problem, but these examples may appear to demonstrate
a method that is not much better than the approach to such problems outlined in
Sections 2.3 and 4.3–4.6. Don’t draw any negative conclusions from only two
examples. Yes, there is a lot of algebra inherent in the use of the Laplace transform,
but observe that we do not have to use variation of parameters or worry about the
cases and algebra in the method of undetermined coefficients. Moreover, since
the method incorporates the prescribed initial conditions directly into the solution,
there is no need for the separate operation of applying the initial conditions to the
general solution of the DE to find specifi
constants in a particular solution of the IVP.

The Laplace transform has many operational properties. In the sections that fol-
low we will examine some of these properties and see how they enable us to solve
problems of greater complexity.

y � c1y1 � c2y2 � � � � � cn yn � yp
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The desired decomposition (15) is given in (4). This special technique for
determining coefficients is naturally known as the cover-up method.
(iii) In this remark we continue our introduction to the terminology of
dynamical systems. Because of (9) and (10) the Laplace trans-
form is well adapted to linear dynamical systems. The polynomial

in (11) is the total coefficient of Y(s) in
(10) and is simply the left-hand side of the DE with the derivatives dky�dtk

replaced by powers sk, k � 0, 1, . . . , n. It is usual practice to call the recipro-
cal of P(s)—namely, W(s) � 1�P(s)—the transfer function of the system
and write (11) as

. (16)

In this manner we have separated, in an additive sense, the effects on the
response that are due to the initial conditions (that is, W(s)Q(s)) from those
due to the input function g (that is, W(s)G(s)). See (13) and (14). Hence the
response y(t) of the system is a superposition of two responses:

.

If the input is g(t) � 0, then the solution of the problem is .
This solution is called the zero-input response of the system. On the other hand, the
function is the output due to the input g(t). Now if the
initial state of the system is the zero state (all the initial conditions are zero), then
Q(s) � 0, and so the only solution of the initial-value problem is y1(t). The latter
solution is called the zero-state response of the system. Both y0(t) and y1(t) are
particular solutions: y0(t) is a solution of the IVP consisting of the associated ho-
mogeneous equation with the given initial conditions, and y1(t) is a solution of the
IVP consisting of the nonhomogeneous equation with zero initial conditions. In
Example 5 we see from (14) that the transfer function is W(s) � 1�(s2 	 3s � 2),
the zero-input response is

,

and the zero-state response is

.

Verify that the sum of y0(t) and y1(t) is the solution y(t) in Example 5 and that
y0(0) � 1, , whereas y1(0) � 0, .y�1(0) � 0y�0(0) � 5

y1(t) � � 	1� 1
(s 	 1)(s 	 2)(s � 4)� � 	

1
5

 et �
1
6

 e2t �
1

30
 e	4t

y0(t) � � 	1� s � 2
(s 	 1)(s 	 2)� � 	3et � 4e2t

y1(t) � � 	1{W(s)G(s)}

y0(t) � � 	1{W(s)Q(s)}

y (t) � � 	1{W(s)Q(s)} � � 	1{W(s)G(s)} � y0(t) � y1(t)

Y(s) � W(s)Q(s) � W(s)G(s)

P(s) � ansn � an	1sn	1 � � � � � a0

EXERCISES 7.2 Answers to selected odd-numbered problems begin on page ANS-11.

7.2.1 INVERSE TRANSFORMS

In Problems 1–30 use appropriate algebra and Theorem 7.2.1
to find the given inverse Laplace transform

1. 2.

3. 4.

5. 6. � 	1�(s � 2)2

s3 �� 	1�(s � 1)3

s4 �

� 	1��2
s

	
1
s3�

2

�� 	1�1
s2 	

48
s5�

� 	1�1
s4�� 	1�1

s3�

7. 8.

9. 10.

11. 12.

13. 14.

15. 16. � 	1� s � 1
s2 � 2�� 	1�2s 	 6

s2 � 9�

� 	1� 1
4s2 � 1�� 	1� 4s

4s2 � 1�

� 	1� 10s
s2 � 16�� 	1� 5

s2 � 49�

� 	1� 1
5s 	 2�� 	1� 1

4s � 1�

� 	1�4
s

�
6
s5 	

1
s � 8�� 	1�1

s2 	
1
s

�
1

s 	 2�
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7.3 OPERATIONAL PROPERTIES I ● 289

17. 18.

19. 20.

21.

22.

23.

24.

25. 26.

27. 28.

29. 30.

7.2.2 TRANSFORMS OF DERIVATIVES

In Problems 31–40 use the Laplace transform to solve the
given initial-value problem.

31.

32.

33. y� � 6y � e4t, y(0) � 2
34. y� 	 y � 2 cos 5t, y(0) � 0
35. y� � 5y� � 4y � 0, y(0) � 1, y�(0) � 0
36. y� 	 4y� � 6e3t 	 3e	t, y(0) � 1, y�(0) � 	1
37.
38. y� � 9y � et, y(0) � 0, y�(0) � 0

y� � y � 22 sin 22t,  y(0) � 10,  y�(0) � 0

2 
dy
dt

� y � 0,  y (0) � 	3

dy
dt

	 y � 1,  y (0) � 0

� 	1� 6s � 3
s4 � 5s2 � 4�� 	1� 1

(s2 � 1)(s2 � 4)�

� 	1� 1
s4 	 9�� 	1� 2s 	 4

(s2 � s)(s2 � 1)�

� 	1� s
(s � 2)(s2 � 4)�� 	1� 1

s3 � 5s�

� 	1� s2 � 1
s(s 	 1)(s � 1)(s 	 2)�

� 	1� s
(s 	 2)(s 	 3)(s 	 6)�

� 	1� s 	 3
�s 	 13��s � 13��

� 	1� 0.9s
(s 	 0.1)(s � 0.2)�

� 	1� 1
s2 � s 	 20�� 	1� s

s2 � 2s 	 3�

� 	1� s � 1
s2 	 4s�� 	1� 1

s2 � 3s� 39. 2y� � 3y� 	 3y� 	 2y � e	t, y(0) � 0, y�(0) � 0,
y�(0) � 1

40. y� � 2y� 	 y� 	 2y � sin 3t, y(0) � 0, y�(0) � 0,
y�(0) � 1

The inverse forms of the results in Problem 50 in
Exercises 7.1 are

In Problems 41 and 42 use the Laplace transform and these
inverses to solve the given initial-value problem.

41. y� � y � e	3t cos 2t, y(0) � 0
42. y� 	 2y� � 5y � 0, y(0) � 1, y�(0) � 3

Discussion Problems

43. (a) With a slight change in notation the transform in (6)
is the same as

With f (t) � teat, discuss how this result in conjunc-
tion with (c) of Theorem 7.1.1 can be used to evalu-
ate .

(b) Proceed as in part (a), but this time discuss how to
use (7) with f (t) � t sin kt in conjunction with (d)
and (e) of Theorem 7.1.1 to evaluate .

44. Make up two functions f1 and f2 that have the same
Laplace transform. Do not think profound thoughts.

45. Reread (iii) in the Remarks on page 288. Find the
zero-input and the zero-state response for the IVP in
Problem 36.

46. Suppose f (t) is a function for which f �(t) is piecewise
continuous and of exponential order c. Use results in
this section and Section 7.1 to justify

,

where F(s) � �{ f (t)}. Verify this result with f (t) �
cos kt.

f (0) � lim
s: �

 sF(s)

�{t sin kt}

�{teat}

�{ f �(t)} � s�{ f (t)} 	 f (0).

� 	1� b
(s 	 a)2 � b2� � eat   sin bt.

� 	1� s 	 a
(s 	 a)2 � b2� � eat cos bt

OPERATIONAL PROPERTIES I

REVIEW MATERIAL
● Keep practicing partial fraction decomposition
● Completion of the square

INTRODUCTION It is not convenient to use Definition 7.1.1 each time we wish to find the Laplace
transform of a function f (t). For example, the integration by parts involved in evaluating, say,

is formidable, to say the least. In this section and the next we present several labor-
saving operational properties of the Laplace transform that enable us to build up a more extensive list of
transforms (see the table in Appendix III) without having to resort to the basic definition and integration.

�{et t2 sin 3t}

7.3
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290 ● CHAPTER 7 THE LAPLACE TRANSFORM

7.3.1 TRANSLATION ON THE s -AXIS

A Translation Evaluating transforms such as and is
straightforward provided that we know (and we do) and . In
general, if we know the Laplace transform of a function f, , it is pos-
sible to compute the Laplace transform of an exponential multiple of f , that is,

with no additional effort other than translating, or shifting, the transform
F(s) to This result is known as the first translation theorem or firs
shifting theorem.

F(s 	 a).
�{eat f (t)},

�{ f (t)} � F(s)
�{cos 4t}�{t3}

�{e	2t cos 4t}�{e5tt3}

PROOF The proof is immediate, since by Definition 7.1.1

.

If we consider s a real variable, then the graph of F(s 	 a) is the graph of F(s)
shifted on the s-axis by the amount �a �. If a 
 0, the graph of F(s) is shifted a units to
the right, whereas if a � 0, the graph is shifted �a � units to the left. See Figure 7.3.1.

For emphasis it is sometimes useful to use the symbolism

,

where means that in the Laplace transform F(s) of f (t) we replace the
symbol s wherever it appears by s 	 a.

s : s 	 a

�{eat f (t)} � �{ f (t)}� s:s	a 

�{eat f (t)} � ��

0
e	steat  f (t) dt � ��

0
e	(s	a)t f (t) dt � F(s 	 a)

s

F ( s ) 

s = a , a > 0

F

F( s − a)

FIGURE 7.3.1 Shift on s-axis

THEOREM 7.3.1 First Translation Theorem

If and a is any real number, then

.�{eat f (t)} � F(s 	 a)

�{ f (t)} � F(s)

EXAMPLE 1 Using the First Translation Theorem

Evaluate (a) (b) .

SOLUTION The results follow from Theorems 7.1.1 and 7.3.1.

(a)

(b)

Inverse Form of Theorem 7.3.1 To compute the inverse of F(s 	 a), we
must recognize F(s), find f (t) by taking the inverse Laplace transform of F(s), and
then multiply f (t) by the exponential function eat. This procedure can be summarized
symbolically in the following manner:

, (1)

where .
The first part of the next example illustrates partial fraction decomposition in the

case when the denominator of Y(s) contains repeated linear factors.

f (t) � � 	1{F(s)}

� 	1{F(s 	 a)} � � 	1{F(s) �s:s	a} � eat f (t)

�{e	2t cos 4t} � �{cos 4t}� s:s	(	2) �
s

s2 � 16
 �s:s�2

�
s � 2

(s � 2)2 � 16

�{e5tt3} � �{t3}� s: s	5 �
3!
s4 �s:s	5

�
6

(s 	 5)4

�{e	2t cos 4t}�{e5tt3}
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7.3 OPERATIONAL PROPERTIES I ● 291

EXAMPLE 2 Partial Fractions: Repeated Linear Factors

Evaluate (a) (b) .

SOLUTION (a) A repeated linear factor is a term (s 	 a)n, where a is a real number
and n is a positive integer � 2. Recall that if (s 	 a)n appears in the denominator of a
rational expression, then the assumed decomposition contains n partial fractions
with constant numerators and denominators s 	 a, (s 	 a)2, . . . , (s 	 a)n. Hence with
a � 3 and n � 2 we write

.

By putting the two terms on the right-hand side over a common denominator, we
obtain the numerator 2s � 5 � A(s 	 3) � B, and this identity yields A � 2 and
B � 11. Therefore

(2)

and (3)

Now 1�(s 	 3)2 is F(s) � 1�s2 shifted three units to the right. Since ,
it follows from (1) that

.

Finally, (3) is . (4)

(b) To start, observe that the quadratic polynomial s2 � 4s � 6 has no real zeros and
so has no real linear factors. In this situation we complete the square:

. (5)

Our goal here is to recognize the expression on the right-hand side as some Laplace
transform F(s) in which s has been replaced throughout by s � 2. What we are 
trying to do is analogous to working part (b) of Example 1 backwards. The denom-
inator in (5) is already in the correct form—that is, s2 � 2 with s replaced by s � 2.
However, we must fix up the numerator by manipulating the constants:

.
Now by termwise division, the linearity of �	1, parts (e) and (d) of Theorem 7.2.1,

and finally (1),

(6)

(7)  �
1
2
 e	2t cos 12 t �

12
3

 e	2t sin 12t.

 �
1
2
 � 	1� s

s2 � 2 �s:s�2� �
2

312
 � 	1� 12

s2 � 2 �s:s�2�

 � 	1� s>2 � 5> 3
s2 � 4s � 6� �

1
2
 � 	1� s � 2

(s � 2)2 � 2� �
2
3
 � 	1� 1

(s � 2)2 � 2�

 
s>2 � 5> 3

(s � 2)2 � 2
�

1
2 (s � 2) � 2

3

(s � 2)2 � 2
�

1
2
 

s � 2
(s � 2)2 � 2

�
2
3
 

1
(s � 2)2 � 2

1
2s � 5

3 � 1
2

 (s � 2) � 5
3 	 2

2 � 1
2

 (s � 2) � 2
3

s>2 � 5>3
s2 � 4s � 6

�
s>2 � 5>3

(s � 2)2 � 2

� 	1� 2s � 5
(s 	 3)2� � 2e3t � 11e3tt

� 	1� 1
(s 	 3)2� � � 	1�1

s2 �s:s	3� � e3tt

� 	1{1>s2} � t

 � 	1� 2s � 5
(s 	 3)2� � 2� 	1� 1

s 	 3� � 11� 	1� 1
(s 	 3)2�.

 
2s � 5
(s 	 3)2 �

2
s 	 3

�
11

(s 	 3)2

2s � 5
(s 	 3)2 �

A
s 	 3

�
B

(s 	 3)2

� 	1� s>2 � 5>3
s2 � 4s � 6�� 	1� 2s � 5

(s 	 3)2�
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EXAMPLE 3 An Initial-Value Problem

Solve y� 	 6y� � 9y � t2e3t, y(0) � 2, y�(0) � 17.

SOLUTION Before transforming the DE, note that its right-hand side is similar to
the function in part (a) of Example 1. After using linearity, Theorem 7.3.1, and the
initial conditions, we simplify and then solve for :

.

The first term on the right-hand side was already decomposed into individual partia
fractions in (2) in part (a) of Example 2:

.

Thus . (8)

From the inverse form (1) of Theorem 7.3.1, the last two terms in (8) are

.

Thus (8) is y(t) � 2e3t � 11te3t � 1
12t4e3t.

� 	1�1
s2 �

s:s	3� � te3t    and    � 	1�4!
s5 �

s:s	3� � t 4e3t

y(t) � 2� 	1� 1
s 	 3� � 11� 	1� 1

(s 	 3)2� �
2
4!

 � 	1� 4!
(s 	 3)5�

Y(s) �
2

s 	 3
�

11
(s 	 3)2 �

2
(s 	 3)5

 Y(s) �
2s � 5
(s 	 3)2 �

2
(s 	 3)5

 (s 	 3)2Y(s) � 2s � 5 �
2

(s 	 3)3

 (s2 	 6s � 9)Y(s) � 2s � 5 �
2

(s 	 3)3

 s2Y(s) 	 sy(0) 	 y�(0) 	 6[sY(s) 	 y (0)] � 9Y(s) �
2

(s 	 3)3

 �{y �} 	 6�{y�} � 9�{y} � �{t2e3t}

Y(s) � �{ f (t)}

EXAMPLE 4 An Initial-Value Problem

Solve y� � 4y� � 6y � 1 � e	t, y(0) � 0, y�(0) � 0.

SOLUTION

Since the quadratic term in the denominator does not factor into real linear factors, the
partial fraction decomposition for Y(s) is found to be

.

Moreover, in preparation for taking the inverse transform we already manipulated
the last term into the necessary form in part (b) of Example 2. So in view of the
results in (6) and (7) we have the solution

Y(s) �
1>6

s
�

1>3
s � 1

	
s> 2 � 5> 3

s2 � 4s � 6

 Y(s) �
2s � 1

s(s � 1)(s2 � 4s � 6)

 (s2 � 4s � 6)Y(s) �
2s � 1

s(s � 1)

 s2Y(s) 	 sy(0) 	 y�(0) � 4[sY(s) 	 y (0)] � 6Y(s) �
1
s

�
1

s � 1

 �{y�} � 4�{y�} � 6�{y} � �{1} � �{e	t}
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. �
1
6

�
1
3

 e	t 	
1
2

 e	2t cos 12t 	
12
3

 e	2t sin 12t

 y(t) �
1
6

 � 	1�1
s� �

1
3

 � 	1� 1
s � 1� 	

1
2
 � 	1� s � 2

(s � 2)2 � 2� 	
2

312
 � 	1� 12

(s � 2)2 � 2�

7.3.2 TRANSLATION ON THE t-AXIS

Unit Step Function In engineering, one frequently encounters functions 
that are either “off ” or “on.” For example, an external force acting on a mechanical
system or a voltage impressed on a circuit can be turned off after a period of time.
It is convenient, then, to define a special function that is the number 0 (off ) up to a
certain time t � a and then the number 1 (on) after that time. This function is called
the unit step function or the Heaviside function, named after the English polymath
Oliver Heaviside (1850–1925).

Notice that we define only on the nonnegative t-axis, since this is all
that we are concerned with in the study of the Laplace transform. In a broader sense

for t � a. The graph of is given in Figure 7.3.2. In the case
when a � 0, we take 

When a function f defined for t � 0 is multiplied by , the unit step
function “turns off ” a portion of the graph of that function. For example, consider
the function f (t) � 2t 	 3. To “turn off ” the portion of the graph of f for 0 � t � 1,
we simply form the product (2t 	 3) . See Figure 7.3.3. In general, the
graph of f (t) is 0 (off ) for 0 � t � a and is the portion of the graph of f (on)
for t � a.

The unit step function can also be used to write piecewise-defined functions in
a compact form. For example, if we consider 0 � t � 2, 2 � t � 3, and t � 3
and the corresponding values of and , it should be apparent
that the piecewise-defined function shown in Figure 7.3.4 is the same as

. Also, a general piecewise-defined function of
the type

(9)

is the same as

. (10)

Similarly, a function of the type

(11)

can be written

(12)f (t) � g(t)[�(t 	 a) 	 �(t 	 b)].

f (t) � �0,
g(t),
0,

 0 � t � a
 a � t � b
    t � b

f (t) � g(t) 	 g(t) �(t 	 a) � h(t) �(t 	 a)

f (t) � �g(t),
h(t),

 0 � t � a
    t � a

f (t) � 2 	 3�(t 	 2) � �(t 	 3)

�(t 	 3)�(t 	 2)

�(t 	 a)
�(t 	 1)

�(t 	 a)
�(t) � 1 for t � 0.

�(t 	 a)�(t 	 a) � 0

�(t 	 a)

FIGURE 7.3.2 Graph of unit step
function

t

1

a

FIGURE 7.3.3 Function is
f (t) � (2t 	 3) � (t 	 1)

1

y

t

FIGURE 7.3.4 Function is
f (t) � 2 	 3�(t 	 2) � �(t 	 3)

−1

2

t

f(t)

DEFINITION 7.3.1 Unit Step Function

The unit step function is defined to b

�(t 	 a) � �0,
1,
 0 � t � a
   t � a.

�(t 	 a)
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FIGURE 7.3.5 Function f in Example 5

100

5

f (t)

t

FIGURE 7.3.6 Shift on t-axis

(a) f(t), t � 0

(b) f(t � a) (t � a)

t

f(t)

t

f(t)

a

zero for
0 � t � a

one for
t � a

�{ f (t � a) (t � a)} � �   e�stf (t � a) (t � a) dt � �   e�stf (t � a) (t � a) dt � �   e�stf (t � a) dt.� � �
a

0

�

a

�

a

Now if we let v � t 	 a, dv � dt in the last integral, then

PROOF By the additive interval property of integrals,

can be written as two integrals:

�(t 	 a) dt��

0
 e	st f (t 	 a)

.�{ f (t 	 a) �(t 	 a)} � ��

0
e	s(v�a) f (v) dv � e	as��

0
e	sv f (v) dv � e	as�{ f (t)}

We often wish to find the Laplace transform of just a unit step function. This can be
from either Definition 7.1.1 or Theorem 7.3.2. If we identify f (t) � 1 in Theorem 7.3.2,
then f (t 	 a) � 1, , and so

. (14)�{�(t 	 a)} �
e	as

s

F(s) � �{1} � 1>s

EXAMPLE 5 A Piecewise-Defined Functio

Express in terms of unit step functions. Graph.

SOLUTION The graph of f is given in Figure 7.3.5. Now from (9) and (10) with 
a � 5, g(t) � 20t, and h(t) � 0 we get .

Consider a general function y � f (t) defined for t � 0. The piecewise-define
function

(13)

plays a significant role in the discussion that follows. As shown in Figure 7.3.6, for
a 
 0 the graph of the function coincides with the graph of
y for (which is the entire graph of shifted a units to
the right on the t-axis), but is identically zero for 

We saw in Theorem 7.3.1 that an exponential multiple of f (t) results in a transla-
tion of the transform F(s) on the s-axis. As a consequence of the next theorem we see
that whenever F(s) is multiplied by an exponential function e	as, a 
 0, the inverse
transform of the product e	as F(s) is the function f shifted along the t-axis in the man-
ner illustrated in Figure 7.3.6(b). This result, presented next in its direct transform
version, is called the second translation theorem or second shifting theorem.

0 � t � a.
y � f(t), t � 0t � a� f (t 	 a)

y �  f (t 	 a) �(t 	 a)

f (t 	 a) �(t 	 a) � �0,
f (t 	 a),

 0 � t � a
   t � a

f (t) � 20t 	 20t �(t 	 5)

f (t) � �20t,
0,

 0 � t � 5
   t � 5

THEOREM 7.3.2 Second Translation Theorem

If and a 
 0, then

.�{ f (t 	 a) �(t 	 a)} � e	asF(s)

F(s) � �{ f (t)}

EXAMPLE 6 Figure 7.3.4 Revisited

Find the Laplace transform the function f in Figure 7.3.4.

SOLUTION We use f expressed in terms of the unit step function

f(t) � 2 	 3� (t 	 2) � � (t 	 3)
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and the result given in (14):

Inverse Form of Theorem 7.3.2 If , the inverse form off (t) � � 	1{F(s)}

 �
2
s

	 3
e	2s

s
�

e	3s

s
.

 �{ f (t)} � 2�{1} 	 3�{�(t 	 2)} � �{�(t 	 3)}

EXAMPLE 7 Using Formula (15)

Evaluate .

SOLUTION (a) With the three identifications a � 2, F(s) � 1�(s 	 4), and
�	1{F(s)} � e4t, we have from (15)

.

(b) With a � p�2, F(s) � s�(s2 � 9), and , (15) yields

.

The last expression can be simplified somewhat by using the addition formula for the 

cosine. Verify that the result is the same as 

Alternative Form of Theorem 7.3.2 We are frequently confronted with
the problem of finding the Laplace transform of a product of a function g and a unit
step function where the function g lacks the precise shifted form 
in Theorem 7.3.2. To find the Laplace transform of , it is possible to fi
up g(t) into the required form by algebraic manipulations. For example, if
we wanted to use Theorem 7.3.2 to find the Laplace transform of , we
would have to force into the form You should work through the
details and verify that is an identity. Therefore

where each term on the right-hand side can now be evaluated by Theorem 7.3.2. But
since these manipulations are time consuming and often not obvious, it is simpler to
devise an alternative version of Theorem 7.3.2. Using Definition 7.1.1, the definitio
of , and the substitution u � t 	 a, we obtain

.

That is, . (16)�{g(t)�(t 	 a)} �  e	as �{g(t � a)}

�{g(t) �(t 	 a)} � ��

a
e	st g(t) dt � ��

0
e	s(u�a)  g(u � a) du

�(t 	 a)

�{t2�(t 	 2)} � �{(t 	 2)2 � (t 	 2) � 4(t 	 2) � (t 	 2) � 4�(t 	 2)},

t2 � (t 	 2)2 � 4(t 	 2) � 4
f (t 	 2).g(t) � t2

t2�(t 	 2)
f (t 	 a)

g(t)�(t 	 a)
f (t 	 a)�(t 	 a)

	sin 3t ��t 	



2�.

� 	1� s
s2 � 9

 e	
s/2� � cos 3�t 	



2� ��t 	



2�
� 	1{F(s)} � cos 3t

� 	1� 1
s 	 4

 e	2s� � e4(t	2) �(t 	 2)

(b) � 	1� s
s2 � 9

 e	
s/2�(a) � 	1� 1
s 	 4

 e	2s�

EXAMPLE 8 Second Translation Theorem—Alternative Form

Evaluate .

SOLUTION With g(t) � cos t and a � p, then g(t � p) � cos(t � p) � 	cos t
by the addition formula for the cosine function. Hence by (16),

�{cos t �(t 	 
)} � 	e	
s  
�{cos t} � 	

s
s2 � 1

 e	
s.

�{cos t �(t 	 
)}

Theorem 7.3.2, a 
 0, is

. (15)� 	1{e	asF(s)} � f (t 	 a) �(t 	 a)

27069_07_ch07_p273-324.qxd  2/2/12  2:43 PM  Page 295

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



296 ● CHAPTER 7 THE LAPLACE TRANSFORM

FIGURE 7.3.7 Graph of function (18)
in Example 9

_2

1
2
3
4
5

_ 1
t

y

2π π 3π
(18) 

� �5e	t,

5e	t �
3
2

  e	(t	
) �
3
2

  sin t �
3
2

  cos t,

 0 � t � 


        t � 
.

; trigonometric identities � 5e	t �
3
2

 [e	(t	
) � sin t � cos t] �(t 	 
)

 y(t) � 5e	t �
3
2

 e	(t 	
) �(t 	 
) 	
3
2

 sin(t 	 
) �(t 	 
) 	
3
2

  cos(t 	 
) �(t 	 
)

We obtained the graph of (18) shown in Figure 7.3.7 by using a graphing utility.

Beams In Section 5.2 we saw that the static deflection y(x) of a uniform beam
of length L carrying load w(x) per unit length is found from the linear fourth-order
differential equation

(19)

where E is Young’s modulus of elasticity and I is a moment of inertia of a cross section
of the beam. The Laplace transform is particularly useful in solving (19) when w(x)
is piecewise-defined. However, to use the Laplace transform, we must tacitly assume
that y(x) and w(x) are defined on (0, �) rather than on (0, L). Note, too, that the next
example is a boundary-value problem rather than an initial-value problem.

EI  d
4y

dx4 � w(x),

FIGURE 7.3.8 Embedded beam with
variable load in Example 10

wall

x

y
L

w(x)

�	1� 1
s � 1

 e	
s� � e	(t	
) 
�(t 	 
),    �	1� 1

s2 � 1
 e	
s� � sin(t 	 
) �(t 	 
),

and .

Thus the inverse of (17) is

� 	1� s
s2 � 1

 e	
s� � cos(t 	 
) �(t 	 
)

EXAMPLE 9 An Initial-Value Problem

Solve 

SOLUTION The function f can be written as , so by linear-
ity, the results of Example 7, and the usual partial fractions, we have

. (17)

Now proceeding as we did in Example 7, it follows from (15) with a � p that the
inverses of the terms inside the brackets are

Y(s) �
5

s � 1
	

3
2
 		

1
s � 1

 e	
s �
1

s2 � 1
 e	
s �

s
s2 � 1

 e	
s


 (s � 1)Y(s) � 5 	
3s

s2 � 1
 e	
s

 sY(s) 	 y(0) � Y(s) � 	3 s
s2 � 1

 e	
s

 �{y�} � �{y} � 3�{cos t �(t 	 
)}

f (t) � 3 cos t �(t 	 
)

y� � y � f (t),  y(0) � 5, where f (t) � �0,
3 cos t,

 0 � t � 


   t � 
.

EXAMPLE 10 A Boundary-Value Problem

A beam of length L is embedded at both ends, as shown in Figure 7.3.8. Find the
deflection of the beam when the load is given b

w(x) � �w0�1 	
2
L

 x�,

0,

     0 � x � L>2

 L>2 � x � L.
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SOLUTION Recall that because the beam is embedded at both ends, the boundary
conditions are y(0) � 0, y�(0) � 0, y(L) � 0, y�(L) � 0. Now by (10) we can express
w(x) in terms of the unit step function:

Transforming (19) with respect to the variable x gives

or

If we let c1 � y�(0) and c2 � y�(0), then

,

and consequently

Y(s) �
c1

s3 �
c2

s4 �
2w0

EIL
 	L>2

s5 	
1
s6 �

1
s6

 e	Ls/2


 s4Y(s) 	 sy �(0) 	 y�(0) �
2w0

EIL
 	L>2

s
	

1
s2 �

1
s2

 e	Ls/2
.

 EI�s4Y(s) 	 s3y(0) 	 s2y�(0) 	 sy �(0) 	 y� (0)� �
2w0

L
 	L>2

s
	

1
s2 �

1
s2

 e	Ls/2


 �
2w0

L
 	L

2
	 x � �x 	

L
2� ��x 	

L
2�
.

 w(x) � w0�1 	
2
L

 x� 	 w0�1 	
2
L

 x� ��x 	
L
2�

 �
c1

2
 x2 �

c2

6
 x3 �

w0

60 EIL
 	5L

2
 x4 	 x5 � �x 	

L
2�

5
��x 	

L
2�
.

 y(x) �
c1

2!
 � 	1�2!

s3� �
c2

3!
 � 	1�3!

s4� �
2w0

EIL
 	L>2

4!
 � 	1�4!

s5� 	
1
5!

 � 	1�5!
s6� �

1
5!

 � 	1�5!
s6

 e	Ls/ 2�


Applying the conditions y(L) � 0 and y�(L) � 0 to the last result yields a system of
equations for c1 and c2:

Solving, we find c1 � 23w0L2�(960EI) and c2 � 	9w0L�(40EI). Thus the deflec
tion is given by

y(x) �
23w0L2

1920EI
  x2 	

3w0L
80EI

  x3 �
w0

60EIL
 	5L

2
 x4 	 x5 � �x 	

L
2�

5
��x 	

L
2�
.

 c1 L � c2 
L2

2
�

85w0L3

960EI
� 0.

 c1 
L2

2
� c2 

L3

6
�

49w0L4

1920EI
� 0

EXERCISES 7.3 Answers to selected odd-numbered problems begin on page ANS-12.

7.3.1 TRANSLATION ON THE s -AXIS

In Problems 1–20 find either F(s) or f (t), as indicated.

1. 2.

3. 4.

5. 6.

7. 8.

9.

10. ��e3t �9 	 4t � 10 sin 
t
2��

�{(1 	 et � 3e	4t) cos 5t}

�{e	2t cos 4t}�{et sin 3t}

�{e2t(t 	 1)2}�{t(et � e2t)2}

�{t10e	7t}�{t3e	2t}

�{te	6t}�{te10t}

11. 12.

13. 14.

15. 16.

17. 18.

19. 20. � 	1�(s � 1)2

(s � 2)4�� 	1� 2s 	 1
s2(s � 1)3�

� 	1� 5s
(s 	 2)2�� 	1� s

(s � 1)2�

� 	1� 2s � 5
s2 � 6s � 34�� 	1� s

s2 � 4s � 5�

� 	1� 1
s2 � 2s � 5�� 	1� 1

s2 	 6s � 10�

� 	1� 1
(s 	 1)4�� 	1� 1

(s � 2)3�
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In Problems 21–30 use the Laplace transform to solve the
given initial-value problem.

21. y� � 4y � e	4t, y(0) � 2
22. y� 	 y � 1 � tet, y(0) � 0
23. y� � 2y� � y � 0, y(0) � 1, y�(0) � 1
24. y� 	 4y� � 4y � t3e2t, y(0) � 0, y�(0) � 0
25. y� 	 6y� � 9y � t, y(0) � 0, y�(0) � 1
26. y� 	 4y� � 4y � t3, y(0) � 1, y�(0) � 0
27. y� 	 6y� � 13y � 0, y(0) � 0, y�(0) � 	3
28. 2y� � 20y� � 51y � 0, y(0) � 2, y�(0) � 0
29. y� 	 y� � et cos t, y(0) � 0, y�(0) � 0
30. y� 	 2y� � 5y � 1 � t, y(0) � 0, y�(0) � 4

In Problems 31 and 32 use the Laplace transform and
the procedure outlined in Example 10 to solve the given
boundary-value problem.

31. y� � 2y� � y � 0, y�(0) � 2, y(1) � 2

32. y� � 8y� � 20y � 0, y(0) � 0, y�(p) � 0

33. A 4-pound weight stretches a spring 2 feet. The weight
is released from rest 18 inches above the equilibrium
position, and the resulting motion takes place in a
medium offering a damping force numerically equal to

times the instantaneous velocity. Use the Laplace
transform to find the equation of motion x(t).

34. Recall that the differential equation for the instanta-
neous charge q(t) on the capacitor in an LRC-series
circuit is given by

. (20)

See Section 5.1. Use the Laplace transform to find q(t)
when L � 1 h, R � 20 �, C � 0.005 f, E(t) � 150 V,
t 
 0, q(0) � 0, and i(0) � 0. What is the current i(t)?

35. Consider a battery of constant voltage E0 that charges
the capacitor shown in Figure 7.3.9. Divide equa-
tion (20) by L and define 2l � R�L and v2 � 1�LC.
Use the Laplace transform to show that the solution
q(t) of q� � 2lq� � v2q � E0 �L subject to q(0) � 0,
i(0) � 0 is

q(t) � �
E0C	1 	 e	�t (cosh 1�2 	 �2t

  �
�

1�2 	 �2
 sinh 1�2 	 �2t)
, � 
 �,

E0C[1 	 e	�t (1 � �t)],        � � �,

E0C	1 	 e	�t (cos 1�2 	 �2t

  
�

�

1�2 	 �2

 sin 1�2 	 �2t) 
,   � � �.

L 
d 2q
dt2 � R  

dq
dt

�
1
C

 q � E(t)

7
8

36. Use the Laplace transform to find the charge q(t)
in an RC series circuit when q(0) � 0 and
E(t) � E0e	kt, k 
 0. Consider two cases: k � 1�RC
and k � 1�RC.

7.3.2 TRANSLATION ON THE t-AXIS

In Problems 37–48 find either F(s) or f (t), as indicated.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

In Problems 49 – 54 match the given graph with one of 
the functions in (a)–(f ). The graph of f (t) is given in
Figure 7.3.10.

(a)
(b)
(c)
(d)
(e)
(f) f (t 	 a) �(t 	 a) 	 f (t 	 a) �(t 	 b)

f (t) �(t 	 a) 	 f (t) �(t 	 b)
f (t) 	 f (t) �(t 	 b)
f (t) �(t 	 a)
f (t 	 b) �(t 	 b)
f (t) 	 f (t) �(t 	 a)

� 	1� e	2s

s2(s 	 1)�� 	1� e	s

s(s � 1)�

�	1�se	
s/2

s2 � 4�� 	1� e	
s

s2 � 1�

� 	1�(1 � e	2s)2

s � 2 �� 	1�e	2s

s3 �

��sin t ��t 	



2���{cos 2t �(t 	 
)}

�{(3t � 1)�(t 	 1)}�{t �(t 	 2)}

�{e2	t 
�(t 	 2)}�{(t 	 1)�(t 	 1)}

FIGURE 7.3.9 Series circuit in Problem 35

E0 R

C

L

FIGURE 7.3.10 Graph for Problems 49–54

t

f (t)

a b

49.

FIGURE 7.3.11 Graph for Problem 49

t

f (t)

a b
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FIGURE 7.3.12 Graph for Problem 50

t

f (t)

a b

FIGURE 7.3.13 Graph for Problem 51

t

f (t)

a b

FIGURE 7.3.14 Graph for Problem 52

t

f (t)

a b

FIGURE 7.3.15 Graph for Problem 53

t

f (t)

a b

FIGURE 7.3.16 Graph for Problem 54

t

f (t)

a b

50.

51.

52.

53.

54.

In Problems 55–62 write each function in terms of unit step
functions. Find the Laplace transform of the given function.

55.

56.

57. f (t) � �0,
t2,
 0 � t � 1
         t � 1

f (t) � �1,
0,
1,

 0 � t � 4
 4 � t � 5
         t � 5

f (t) � �2,
	2,

 0 � t � 3
         t � 3

58.

59.

60. f (t) � �sin t,
0,     

0 � t � 2


        t � 2


f (t) � � t,
0,

0 � t � 2
        t � 2

f (t) � �0,
sin t,

 0 � t � 3
>2
         t � 3
>2

61.

62.

FIGURE 7.3.18 Graph for Problem 62

3

2

1

staircase function

t

f(t)

1 2 3 4

FIGURE 7.3.17 Graph for Problem 61

1

rectangular pulse

tba

f(t)

In Problems 63–70 use the Laplace transform to solve the
given initial-value problem.

63. y� � y � f (t), y(0) � 0, where f (t) �

64. y� � y � f (t), y(0) � 0, where

65. y� � 2y � f (t), y(0) � 0, where

66. where

67. , y(0) � 1, y�(0) � 0

68. , y(0) � 0, y�(0) � 1

69. where

70. y� � 4y� � 3y � 1 	 �(t 	 2) 	 �(t 	 4) � �(t 	 6),
y(0) � 0, y�(0) � 0

 f (t) � �
0,
1,
0,

0 � t � 



 � t � 2


       t � 2


y� � y � f (t), y(0) � 0, y�(0) � 1,

y� 	 5y� � 6y � �(t 	 1)

y � � 4y � sin t �(t 	 2
)

 f (t) � �1,
0,

0 � t � 1
        t � 1

y � � 4y � f (t), y(0) � 0, y�(0) � 	1,

 f (t) � � t,
0,

0 � t � 1
        t � 1

f (t) � � 1,
	1,

0 � t � 1
        t � 1

�0,
5,

0 � t � 1
        t � 1
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300 ● CHAPTER 7 THE LAPLACE TRANSFORM

71. Suppose a 32-pound weight stretches a spring 2 feet. If the
weight is released from rest at the equilibrium position,
find the equation of motion x(t) if an impressed force
f (t) � 20t acts on the system for 0 � t � 5 and is then
removed (see Example 5). Ignore any damping forces.
Use a graphing utility to graph x(t) on the interval [0, 10].

72. Solve Problem 71 if the impressed force f (t) � sin t acts
on the system for 0 � t � 2p and is then removed.

In Problems 73 and 74 use the Laplace transform to find the
charge q(t) on the capacitor in an RC-series circuit subject to
the given conditions.

73. q(0) � 0, R � 2.5 �, C � 0.08 f, E(t) given in
Figure 7.3.19

t

E(t)

3

5

FIGURE 7.3.19 E(t) in Problem 73

t

E(t)

1.5

30

30et

FIGURE 7.3.20 E(t) in Problem 74

74. q(0) � q0, R � 10 �, C � 0.1 f, E(t) given in
Figure 7.3.20

75. (a) Use the Laplace transform to find the current
i(t) in a single-loop LR-series circuit when
i(0) � 0, L � 1 h, R � 10 �, and E(t) is as given
in Figure 7.3.21.

(b) Use a computer graphing program to graph i(t) for
0 � t � 6. Use the graph to estimate imax and
imin, the maximum and minimum values of the
current.

FIGURE 7.3.21 E(t) in Problem 75

FIGURE 7.3.22 E(t) in Problem 76

/2

1

−1
t

E(t)

3 /2π

sin t, 0 ≤ t < 3 /2

π π

π

t31

E(t)

E0

76. (a) Use the Laplace transform to find the charge q(t) 
on the capacitor in an RC-series circuit when 
q(0) � 0, R � 50 �, C � 0.01 f, and E(t) is as
given in Figure 7.3.22.

(b) Assume that E0 � 100 V. Use a computer graphing
program to graph q(t) for 0 � t � 6. Use the
graph to estimate qmax, the maximum value of
the charge.

77. A cantilever beam is embedded at its left end and free
at its right end. Use the Laplace transform to find the
deflection y(x) when the load is given by

78. Solve Problem 77 when the load is given by

79. Find the deflection y(x) of a cantilever beam embedded
at its left end and free at its right end when the load is as
given in Example 10.

80. A beam is embedded at its left end and simply supported
at its right end. Find the deflection y(x) when the load is
as given in Problem 77.

Mathematical Model

81. Cake Inside an Oven Reread Example 4 in Sec-
tion 3.1 on the cooling of a cake that is taken out of an
oven.
(a) Devise a mathematical model for the temperature of

a cake while it is inside the oven based on the fol-
lowing assumptions: At t � 0 the cake mixture is at
the room temperature of 70°; the oven is not pre-
heated, so at t � 0, when the cake mixture is placed
into the oven, the temperature inside the oven is also
70°; the temperature of the oven increases linearly
until t � 4 minutes, when the desired temperature
of 300° is attained; the oven temperature is a con-
stant 300° for t � 4.

(b) Use the Laplace transform to solve the initial-value
problem in part (a).

 w(x) � �
0,  
w0,
0,  

   0 � x � L>3
 L>3 � x � 2L>3
  2L>3 � x � L.

 w(x) � �w0,
0,  

0 � x � L> 2
 L>2 � x � L.
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Discussion Problems

82. Discuss how you would fix up each of the following
functions so that Theorem 7.3.2 could be used directly
to find the given Laplace transform. Check your
answers using (16) of this section.

(a) (b)

(c) (d)

83. (a) Assume that Theorem 7.3.1 holds when the sym-
bol a is replaced by ki, where k is a real number

�{(t2 	 3t)�(t 	 2)}�{cos t �(t 	 
)}

�{et �(t 	 5)}�{(2t � 1)�(t 	 1)}

and i2 � 	1. Show that can be used to
deduce

(b) Now use the Laplace transform to solve the initial-
value problem x� � v2x � cos vt, x(0) � 0,
x�(0) � 0.

�{t sin kt} �
2ks

(s2 � k2)2.

�{t cos kt} �
s2 	 k2

(s2 � k2)2

�{tekti}

7.4.1 DERIVATIVES OF A TRANSFORM

Multiplying a Function by tn The Laplace transform of the product of a
function f (t) with t can be found by differentiating the Laplace transform of f (t). To
motivate this result, let us assume that exists and that it is possible
to interchange the order of differentiation and integration. Then

;

that is, .

We can use the last result to find the Laplace transform of t2 f (t):

�{t f (t)} � 	
d
ds

 �{ f (t)}

d
ds

 F(s) �
d
ds

 ��

0
 e	st  f (t) dt � ��

0
 
�

�s
 [e	st f (t)] dt � 	��

0
 e	st t f (t) dt � 	�{t f (t)}

F(s) � �{ f (t)}

.�{t2 f (t)} � �{t � t f (t)} � 	
d
ds

 �{t f (t)} � 	 
d
ds

 �	
d
ds

  �{ f (t)}� �
d 2

ds2
  �{ f (t)}

The preceding two cases suggest the general result for .�{tn f (t)}

OPERATIONAL PROPERTIES II

REVIEW MATERIAL
● Definition 7.1.
● Theorems 7.3.1 and 7.3.2

INTRODUCTION In this section we develop several more operational properties of the
Laplace transform. Specificall , we shall see how to find the transform of a function f (t) that is
multiplied by a monomial t n, the transform of a special type of integral, and the transform of a pe-
riodic function. The last two transform properties allow us to solve some equations that we have
not encountered up to this point: Volterra integral equations, integrodifferential equations, and or-
dinary differential equations in which the input function is a periodic piecewise-defined function.

7.4

THEOREM 7.4.1 Derivatives of Transforms

If and n � 1, 2, 3, . . . , then

.�{tn f (t)} � (	1)n   dn

dsn
  F(s)

F(s) � �{ f (t)}
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302 ● CHAPTER 7 THE LAPLACE TRANSFORM

EXAMPLE 1 Using Theorem 7.4.1

Evaluate .

SOLUTION With f (t) � sin kt, F(s) � k�(s2 � k2), and n � 1, Theorem 7.4.1 gives

.

If we want to evaluate and , all we need do, in turn, is
take the negative of the derivative with respect to s of the result in Example 1 and
then take the negative of the derivative with respect to s of .

Note To find transforms of functions tneat we can use either Theorem 7.3.1
or Theorem 7.4.1. For example,

Theorem 7.3.1: .

Theorem 7.4.1: . �{te3t} � 	
d
ds

 �{e3t} � 	
d
ds

 
1

s 	 3
� (s 	 3)	2 �

1
(s 	 3)2

�{te3t} � �{t}s :s	3 �
1
s2 �s:s	3

�
1

(s 	 3)2

�{t2 sin kt}

�{t3 sin kt}�{t2 sin kt}

�{t sin kt} � 	
d
ds

 �{sin kt} � 	
d
ds

 � k
s2 � k2� �

2ks
(s2 � k2)2

�{t sin kt}

EXAMPLE 2 An Initial-Value Problem

Solve x� � 16x � cos 4t, x(0) � 0, x�(0) � 1.

SOLUTION The initial-value problem could describe the forced, undamped, and
resonant motion of a mass on a spring. The mass starts with an initial velocity of
1 ft /s in the downward direction from the equilibrium position.

Transforming the differential equation gives

.

Now we just saw in Example 1 that

, (1)

and so with the identification k � 4 in (1) and in part (d) of Theorem 7.2.1, we obtain

7.4.2 TRANSFORMS OF INTEGRALS

Convolution If functions f and g are piecewise continuous on the interval

 �
1
4
 sin 4t �

1
8
 t sin 4t.

 x(t) �
1
4
 � 	1� 4

s2 � 16� �
1
8
 � 	1� 8s

(s2 � 16)2�

� 	1� 2ks
(s2 � k2)2� � t sin kt

(s2 � 16) X(s) � 1 �
s

s2 � 16
    or    X(s) �

1
s2 � 16

�
s

(s2 � 16)2

[0, �), then a special product, denoted by f � g, is defined by the integra

(2)

and is called the convolution of f and g. The convolution f � g is a function of t.
For example,

. (3)et � sin t � �t

0
 e� sin(t 	 �) d� �

1
2

 (	sin t 	 cos t � et)

f � g � �t

0
 f (�) g(t 	 �) d�
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7.4 OPERATIONAL PROPERTIES II ● 303

It is left as an exercise to show that

that is, f � g � g � f. This means that the convolution of two functions is commutative.
It is not true that the integral of a product of functions is the product of the

integrals. However, it is true that the Laplace transform of the special product (2) is
the product of the Laplace transform of f and g. This means that it is possible to fin
the Laplace transform of the convolution of two functions without actually evaluat-
ing the integral as we did in (3). The result that follows is known as the convolution
theorem.

�t

0
 f (�) g(t 	 �) d� � �t

0
 f (t 	 �) g(�) d� ;

PROOF Let

and .

Proceeding formally, we have

Holding t fixed, we let t � t � b, dt � db, so that

In the tt-plane we are integrating over the shaded region in Figure 7.4.1. Since f and
g are piecewise continuous on [0, �) and of exponential order, it is possible to inter-
change the order of integration:

F(s)G(s) � ��

0
f (�) d���

�

e	stg(t 	 �) dt.

 � ��

0
f (�) d���

0
 e	s(���)g(�) d�.

 � ��

0
��

0
 e	s(���) f (�)g(�) d� d�

 F(s)G(s) � ���

0
 e	s� f (�) d��

 

���

0
 e	s� g(�) d��

 G(s) � �{g(t)} � ��

0
e	s�g(�) d�

 F(s) � �{ f (t)} � ��

0
e	s� f (�) d�

F(s) G(s) � ��

0
 e	st dt �t

0
 f (�)g(t 	 �) d� � ��

0
 e	st ��t

0
 f (�) g(t 	 �) d��dt � �{ f � g}.

.���t

0
 e� sin(t 	 �) d�� � �{et} � �{sin t} �

1
s 	 1

�
1

s2 � 1
�

1
(s 	 1)(s2 � 1)

FIGURE 7.4.1 Changing order of
integration from t first to t firs

t

τ

τ

τ = t

: 0 to t

t:  to ∞

τ

THEOREM 7.4.2 Convolution Theorem

If f (t) and g(t) are piecewise continuous on [0, �) and of exponential 
order, then

.�{ f � g} � �{ f (t)} �{g(t)} � F(s)G(s)

EXAMPLE 3 Transform of a Convolution

Evaluate

SOLUTION With f (t) � et and g(t) � sin t, the convolution theorem states that
the Laplace transform of the convolution of f and g is the product of their Laplace
transforms:

� ��t

0
 e� sin(t 	 �) d��.
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304 ● CHAPTER 7 THE LAPLACE TRANSFORM

Inverse Form of Theorem 7.4.2 The convolution theorem is sometimes
useful in finding the inverse Laplace transform of the product of two Laplace
transforms. From Theorem 7.4.2 we have

(4)

Many of the results in the table of Laplace transforms in Appendix III can be derived
using (4). For example, in the next example we obtain entry 25 of the table:

. (5)�{sin kt 	 kt cos kt} �
2k3

(s2 � k2 )2

� 	1{F(s)G(s)} � f � g.

EXAMPLE 4 Inverse Transform as a Convolution

Evaluate .

SOLUTION Let so that

.

In this case (4) gives

. (6)

With the aid of the product-to-sum trigonometric identity

and the substitutions A � kt and B � k(t 	 t) we can carry out the integration in (6):

Multiplying both sides by 2k3 gives the inverse form of (5).

Transform of an Integral When g(t) � 1 and , the
convolution theorem implies that the Laplace transform of the integral of f is

. (7)

The inverse form of (7),

, (8)

can be used in lieu of partial fractions when sn is a factor of the denominator and
is easy to integrate. For example, we know for f (t) � sin t that
and so by (8)

and so on.

 � 	1� 1
s3(s2 � 1)� � � 	1�1>s2(s2 � 1)

s � � �t

0
 (� 	 sin �) d� � 1

2 t2 	 1 � cos t

 � 	1� 1
s2(s2 � 1)� � � 	1�1>s(s2 � 1)

s � � �t

0
 (1 	 cos �) d� � t 	 sin t

 � 	1� 1
s(s2 � 1)� � � 	1�1>(s2 � 1)

s � � �t

0
 sin � d� � 1 	 cos t

F(s) � 1>(s2 � 1),
f (t) � � 	1{F(s)}

�t

0
  f (�) d� � � 	1�F(s)

s �

���t

0
  f (�) d�� �

F(s)
s

�{g(t)} � G(s) � 1>s

 �
sin kt 	 kt cos kt

2k3 .

 �
1

2k2
 	 1

2k
 sin k(2� 	 t) 	 � cos kt


t

0

 � 	1� 1
(s2 � k2)2� �

1
2k2 �t

0
 [cos k(2� 	 t) 	 cos kt] d�

sin A sin B �
1
2

 [cos(A 	 B) 	 cos(A � B)]

� 	1� 1
(s2 � k2)2� �

1
k2 �t

0
 sin k� sin k(t 	 �) d�

f (t) � g(t) �
1
k

 � 	1� k
s2 � k2� �

1
k
 sin kt

F(s) � G(s) �
1

s2 � k2

� 	1� 1
(s2 � k2)2�
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7.4 OPERATIONAL PROPERTIES II ● 305

Volterra Integral Equation The convolution theorem and the result in (7)
are useful in solving other types of equations in which an unknown function appears
under an integral sign. In the next example we solve a Volterra integral equation
for f (t),

. (9)

The functions g(t) and h(t) are known. Notice that the integral in (9) has the convo-
lution form (2) with the symbol h playing the part of g.

f (t) � g(t) � �t

0
 f (�) h(t 	 �) d�

FIGURE 7.4.2 LRC-series circuit

C

LE R

EXAMPLE 5 An Integral Equation

Solve .

SOLUTION In the integral we identify h(t 	 t) � et	t so that h(t) � et. We take
the Laplace transform of each term; in particular, by Theorem 7.4.2 the transform of
the integral is the product of and :

.

After solving the last equation for F(s) and carrying out the partial fraction
decomposition, we find

.

The inverse transform then gives

Series Circuits In a single-loop or series circuit, Kirchhoff’s second law states
that the sum of the voltage drops across an inductor, resistor, and capacitor is equal
to the impressed voltage E(t). Now it is known that the voltage drops across an in-
ductor, resistor, and capacitor are, respectively,

,

where i(t) is the current and L, R, and C are constants. It follows that the current in a
circuit, such as that shown in Figure 7.4.2, is governed by the integrodifferential
equation

. (10)L  
di
dt

� Ri(t) �
1
C

 �t

0
 i(�) d� � E(t)

L  
di
dt

,  Ri(t),  and  
1
C

 �t

0
 i(�) d�

 � 3t2 	 t3 � 1 	 2e	t.

 f (t) � 3� 	1�2!
s3� 	 � 	1�3!

s4� � � 	1�1
s� 	 2� 	1� 1

s � 1�

F(s) �
6
s3 	

6
s4 �

1
s

	
2

s � 1

F(s) � 3 �
2
s3 	

1
s � 1

	 F(s) �
1

s 	 1

�{et} � 1> (s 	 1)�{ f (t)} � F(s)

f (t) � 3t2 	 e	t 	 �t

0
 f (�) et	� d�  for f(t)

EXAMPLE 6 An Integrodifferential Equation

Determine the current i(t) in a single-loop LRC-series circuit when L � 0.1 h, 
R � 2 �, C � 0.1 f, i(0) � 0, and the impressed voltage is

.E(t) � 120t 	 120t �(t 	 1)
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306 ● CHAPTER 7 THE LAPLACE TRANSFORM

FIGURE 7.4.3 Graph of current i(t)
in Example 6
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_30

_20
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i 

SOLUTION With the given data equation (10) becomes

Now by (7), � I(s)�s, where . Thus the Laplace
transform of the integrodifferential equation is

. ; by (16) of Section 7.3

Multiplying this equation by 10s, using s2 � 20s � 100 � (s � 10)2, and then solving
for I(s) gives

.

By partial fractions,

From the inverse form of the second translation theorem, (15) of Section 7.3, we
finally obtai

Written as a piecewise-defined function, the current i

Using this last expression and a CAS, we graph i(t) on each of the two intervals and
then combine the graphs. Note in Figure 7.4.3 that even though the input E(t) is
discontinuous, the output or response i(t) is a continuous function.

Post Script—Green’s Functions Redux By applying the Laplace transform
to the initial-value problem

where a and b are constants, we find that the transform of y(t) is

where . By rewriting the foregoing transform as the product

we can use the inverse form of the convolution theorem (4) to write the solution of
the IVP as

(11)y(t) � �t

0
g(t 	 �) f (�)d�,

Y(s) �
1

s2 � as � b
F(s)

F(s) � �{f(t)}

Y(s) �
F(s)

s2 � as � b
,

y� � ay� � by � f (t), y(0) � 0, y�(0) � 0,

i(t) � �12 	 12e	10t 	 120te	10t,
	12e	10t � 12e	10(t	1) 	 120te	10t 	 1080(t 	 1)e	10(t	1),

 0 � t � 1
         t � 1.

	 120te	10t 	 1080(t 	 1)e	10(t	1) 
�(t 	 1).

 i(t) � 12[1 	 �(t 	 1)] 	 12[e	10t 	 e	10(t	1)�(t 	 1)]

�
1>100
s � 10

 e	s �
1>10

(s � 10)2
 e	s 	

1
(s � 10)2

 e	s
.

I(s) � 1200 	1>100
s

	
1>100
s � 10

	
1>10

(s � 10)2 	
1>100

s
 e	s

I(s) � 1200 	 1
s(s � 10)2 	

1
s(s � 10)2

 e	s 	
1

(s � 10)2
 e	s


0.1sI(s) � 2I(s) � 10 I(s)
s

� 120 	1
s2 	

1
s2

 e	s 	
1
s

 e	s


I(s) � �{i(t)}�{�t
0 i(�) d�}

0.1 di
dt

� 2i � 10�t

0
i(�) d� � 120t 	 120t �(t 	 1).

Optional material if
Section 4.8 was covered. �
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7.4 OPERATIONAL PROPERTIES II ● 307

where and On the other hand, we

know from (10) of Section 4.8 that the solution of the IVP is also given by

(12)

where is the Green’s function for the differential equation.
By comparing (11) and (12) we see that the Green’s function for the differential

equation is related to by

(13)
For example, for the initial-value problem we fin

Thus from (13) we see that the Green’s function for the DE is
See Example 4 in Section 4.8.

7.4.3 TRANSFORM OF A PERIODIC FUNCTION

Periodic Function If a periodic function has period T, T 
 0, then

G(t, �) � g(t 	 �) � 1
2 sin 2(t 	 �).

y� � 4y � f (t)

�	1� 1
s2 � 4� � 1

2 sin 2t � g(t).

y� � 4y � f(t), y(0) � 0, y�(0) � 0
G(t, �) � g(t 	 �).

�	1� 1
s2 � as � b� � g(t)

G(t, t)

y(t) � �t

0
G(t, �) f (�) d�,

�	1{F(s)} � f (t).�	1� 1
s2 � as � b� � g(t)

In Example 4 of Section 4.8, the roles of the
symbols x and t are played by t and � in this
discussion. �

THEOREM 7.4.3 Transform of a Periodic Function

If f (t) is piecewise continuous on [0, �), of exponential order, and periodic with
period T, then

�{ f (t)} �
1

1 	 e	sT �T

0
e	st f (t) dt.

PROOF Write the Laplace transform of f as two integrals:

.

When we let t � u � T, the last integral becomes

.

Therefore .

Solving the equation in the last line for proves the theorem.�{ f (t)}

�{ f (t)} � �T

0
 e	st f (t) dt � e	sT 

�{ f (t)}

��

T
 e	st  f (t) dt � ��

0
 e	s(u�T )  f (u � T ) du � e	sT ��

0
 e	su  f (u) du � e	sT 

�{ f (t)}

�{ f (t)} � �T

0
 e	st f (t) dt � ��

T
 e	st f (t) dt

EXAMPLE 7 Transform of a Periodic Function

Find the Laplace transform of the periodic function shown in Figure 7.4.4.

SOLUTION The function E(t) is called a square wave and has period T � 2. For 
0 � t � 2, E(t) can be defined by

E(t) � �1,
0,
 0 � t � 1
 1 � t � 2

t

E(t)

1

4321

FIGURE 7.4.4 Square wave in
Example 7

f (t � T ) � f (t). The next theorem shows that the Laplace transform of a periodic
function can be obtained by integration over one period.
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From

we can then rewrite (16) as

1
s(s � R>L)

�
L>R

s
	

L>R
s � R>L

. �
1
R

 �1
s

	
e	s

s
�

e	2s

s
	

e	3s

s
� � � �� 	

1
R

 � 1
s � R>L

	
1

s � R>L
  e	s �

e	2s

s � R>L
	

e	3s

s � R>L
� � � ��

 I(s) �
1
R

 �1
s

	
1

s � R>L�(1 	 e	s � e	2s 	 e	3s � � � �)

By applying the form of the second translation theorem to each term of both series,
we obtain

	
1
R

 (e	Rt/L 	 e	R(t	1)/L  �(t 	 1) � e	R(t	2)/L  �(t 	 2) 	 e	R(t	3)/L  �(t 	 3) � � � �) 

i(t) �
1
R

 (1 	 �(t 	 1) � �(t 	 2) 	 �(t 	 3) � � � �)

or, equivalently,

To interpret the solution, let us assume for the sake of illustration that R � 1, L � 1,
and 0 � t � 4. In this case

i(t) �
1
R

 (1 	 e	Rt/L) �
1
R

 �
�

n�1
(	1)n  (1	e	R(t	n)/L) �(t 	 n).

;i(t) � 1 	 e	t 	 (1 	 et	1) �(t 	 1) � (1 	 e	(t	2)) �(t 	 2) 	 (1 	 e	(t	3)) �(t 	 3)

and outside the interval by E(t � 2) � E(t). Now from Theorem 7.4.3

. (14)�
1

s (1 � e	s)

; 1 	 e	2s � (1 � e	s)(1 	 e	s)�
1

1 	 e	2s 
1 	 e	s

s

 �{E(t)} �
1

1 	 e	2s
  �2

0
 e	st E(t) dt �

1
1 	 e	2s

 	�1

0
 e	st � 1dt � �2

1
 e	st � 0 dt


1
1 � x

� 1 	 x � x2 	 x3 � � � �  becomes  1
1 � e	s � 1 	 e	s � e	2s 	 e	3s � � � � .

EXAMPLE 8 A Periodic Impressed Voltage

The differential equation for the current i(t) in a single-loop LR-series circuit is

. (15)

Determine the current i(t) when i(0) � 0 and E(t) is the square wave function shown
in Figure 7.4.4.

SOLUTION If we use the result in (14) of the preceding example, the Laplace trans-
form of the DE is

. (16)

To find the inverse Laplace transform of the last function, we first make use of geo-
metric series. With the identification x � e	s, s 
 0, the geometric series

LsI(s) � RI(s) �
1

s(1 � e	s)
    or    I(s) �

1>L
s(s � R>L)

�
1

1 � e	s

L  
di
dt

� Ri � E(t)
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7.4 OPERATIONAL PROPERTIES II ● 309

in other words,

The graph of i(t) for 0 � t � 4, given in Figure 7.4.5, was obtained with the help
of a CAS.

i(t) � �
1 	 e	t,
	e	t � e	(t	1),
1 	 e	t � e	(t	1) 	 e	(t	2),
	e	t � e	(t	1) 	 e	(t	2) � e	(t	3),

 0 � t � 1
 1 � t � 2
 2 � t � 3
 3 � t � 4.

21 3 4

2
1.5

1
0.5

t

i

FIGURE 7.4.5 Graph of current i(t) in
Example 8

EXERCISES 7.4 Answers to selected odd-numbered problems begin on page ANS-12.

7.4.1 DERIVATIVES OF A TRANSFORM

In Problems 1–8 use Theorem 7.4.1 to evaluate the given
Laplace transform.

1. 2.
3. 4.
5. 6.
7. 8.

In Problems 9–14 use the Laplace transform to solve
the given initial-value problem. Use the table of Laplace
transforms in Appendix III as needed.

9. y� � y � t sin t, y(0) � 0

10. y� 	 y � tet sin t, y(0) � 0
11. y� � 9y � cos 3t, y(0) � 2, y�(0) � 5
12. y� � y � sin t, y(0) � 1, y�(0) � 	1
13. y� � 16y � f (t), y(0) � 0, y�(0) � 1, where

14. y� � y � f (t), y(0) � 1, y�(0) � 0, where

In Problems 15 and 16 use a graphing utility to graph the
indicated solution.

15. y(t) of Problem 13 for 0 � t � 2p
16. y(t) of Problem 14 for 0 � t � 3p

In some instances the Laplace transform can be used to solve
linear differential equations with variable monomial coeffi
cients. In Problems 17 and 18 use Theorem 7.4.1 to reduce
the given differential equation to a linear first-order DE
in the transformed function . Solve the first
order DE for Y(s) and then find .

17. ty� 	 y� � 2t2, y(0) � 0

18. 2y� � ty� 	 2y � 10, y(0) � y�(0) � 0

y(t) � � 	1{Y(s)}
Y(s) � �{y(t)}

 f (t) � �1,
sin t,

 0 � t � 
>2
 t � 
>2

 f (t) � �cos 4t,
0,

  0 � t � 


 t � 


�{te	3t cos 3t}�{te2t sin 6t}
�{t2 cos t}�{t2 sinh t}
�{t sinh 3t}�{t cos 2t}
�{t3et}�{te	10t}

7.4.2 TRANSFORMS OF INTEGRALS

In Problems 19–30 use Theorem 7.4.2 to evaluate the given
Laplace transform. Do not evaluate the integral before
transforming.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

In Problems 31–34 use (8) to evaluate the given inverse
transform.

31. 32.

33. 34.

35. The table in Appendix III does not contain an entry for

.

(a) Use (4) along with the results in (5) to evaluate this
inverse transform. Use a CAS as an aid in evaluating
the convolution integral.

(b) Reexamine your answer to part (a). Could you have
obtained the result in a different manner?

36. Use the Laplace transform and the results of Problem 35
to solve the initial-value problem

.
Use a graphing utility to graph the solution.

y� � y � sin t � t sin t,  y(0) � 0, y�(0) � 0

� 	1� 8k3s
(s2 � k2)3�

� 	1� 1
s(s 	 a)2�� 	1� 1

s3(s 	 1)�

� 	1� 1
s2(s 	 1)�� 	1� 1

s(s 	 1)�

��t �t

0
 � e	� d����t �t

0
 sin� d��

���t

0
 sin � cos (t 	 �) d�����t

0
 � et	� d��

���t

0
 � sin � d�����t

0
 e	� cos � d��

���t

0
 cos � d�����t

0
 e� d��

�{e2t � sin t}�{e	t � et cos t}

�{t2 � tet}�{1 � t3}
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FIGURE 7.4.7 Graph for Problem 50

FIGURE 7.4.8 Graph for Problem 51

FIGURE 7.4.9 Graph for Problem 52

FIGURE 7.4.10 Graph for Problem 53

1

square wave

t2aa

f(t)

3a 4a

sawtooth function

t2bb

a

f (t)

3b 4b

1

triangular wave

t2

f(t)

3 41

1

full-wave rectification of sin t

t

f(t)

432π π π π

50.

51.

52.

53.

FIGURE 7.4.11 Graph for Problem 54

432π π π π

1

half-wave rectification of sin t

t

f(t)54.

In Problems 55 and 56 solve equation (15) subject to
i(0) � 0 with E(t) as given. Use a graphing utility to graph
the solution for 0 � t � 4 in the case when L � 1 and R � 1.

55. E(t) is the meander function in Problem 49 with
amplitude 1 and a � 1.

56. E(t) is the sawtooth function in Problem 51 with
amplitude 1 and b � 1.

In Problems 37–46 use the Laplace transform to solve the
given integral equation or integrodifferential equation.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

In Problems 47 and 48 solve equation (10) subject to i(0) � 0
with L, R, C, and E(t) as given. Use a graphing utility to graph
the solution for 0 � t � 3.

47. L � 0.1 h, R � 3 �, C � 0.05 f,

48. L � 0.005 h, R � 1 �, C � 0.02 f,

7.4.3 TRANSFORM OF A PERIODIC
FUNCTION

In Problems 49–54 use Theorem 7.4.3 to find the Laplace
transform of the given periodic function.

E(t) � 100[t 	 (t 	 1)�(t 	 1)]

E(t) � 100[�(t 	 1) 	 �(t 	 2)]

dy
dt

� 6y(t) � 9 �t

0
 y(�) d� � 1, y(0) � 0

y�(t) � 1 	 sin t 	 �t

0
 y(�) d�, y(0) � 0

t 	 2 f (t) � �t

0
 (e� 	 e	� ) f (t 	 �) d�

f (t) � 1 � t 	
8
3

 �t

0
 (� 	 t)3 f (�) d�

f (t) � cos t � �t

0
 e	�  f (t 	 �) d�

f (t) � �t

0
 f (�) d� � 1

f (t) � 2 �t

0
 f (�) cos (t 	 �) d� � 4e	t � sin t

f (t) � tet � �t

0
 � f (t 	 �) d�

f (t) � 2t 	 4 �t

0
 sin � f (t 	 �) d�

f (t) � �t

0
 (t 	 �) f (�) d� � t

49.

FIGURE 7.4.6 Graph for Problem 49

1

meander function

t2aa

f (t)

3a 4a
1
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In Problems 57 and 58 solve the model for a driven spring/
mass system with damping

where the driving function f is as specified. Use a graphing
utility to graph x(t) for the indicated values of t.

57. , b � 1, k � 5, f is the meander function in
Problem 49 with amplitude 10, and a � p, 0 � t � 2p.

58. m � 1, b� 2, k � 1, f is the square wave in Problem 50
with amplitude 5, and a � p, 0 � t � 4p.

Discussion Problems

59. Discuss how Theorem 7.4.1 can be used to fin

.

60. In Section 6.4 we saw that ty� � y� � ty � 0 is Bessel’s
equation of order n� 0. In view of (22) of that section
and Table 6.4.1 a solution of the initial-value problem
ty� � y� � ty � 0, y(0) � 1, y�(0) � 0, is y � J0(t). Use
this result and the procedure outlined in the instructions
to Problems 17 and 18 to show that

.

[Hint: You might need to use Problem 46 in
Exercises 7.2.]

61. (a) Laguerre’s differential equation
ty� � (1 	 t)y� � ny � 0 

is known to possess polynomial solutions when n is
a nonnegative integer. These solutions are naturally
called Laguerre polynomials and are denoted by
Ln(t). Find y � Ln(t), for n � 0, 1, 2, 3, 4 if it is
known that Ln(0) � 1.

(b) Show that

,

where and y � Ln(t) is a polynomial
solution of the DE in part (a). Conclude that

.

This last relation for generating the Laguerre poly-
nomials is the analogue of Rodrigues’ formula for
the Legendre polynomials. See (33) in Section 6.4.

62. The Laplace transform exists, but without find
ing it solve the initial-value problem 

63. Solve the integral equation

f (t) � et � et�t

0
 e	t f (�) d�.

y(0) � 0, y�(0) � 0.
y� � y � e	t2,

�{e	t2}

Ln(t) �
et

n!
 
dn

dtn
 tne	t,    n � 0, 1, 2, . . .

Y(s) � �{y}

��et

n!
 
dn

dtn
 tne	t� � Y(s)

�{J0(t)} �
1

1s2 � 1

� 	1�ln 
s 	 3
s � 1�

m � 1
2

m d
2x

dt2 � � dx
dt

� kx � f (t),  x(0) � 0, x�(0) � 0,

64. (a) Show that the square wave function E(t) given in
Figure 7.4.4 can be written

(b) Obtain (14) of this section by taking the Laplace
transform of each term in the series in part (a).

65. Use the Laplace transform as an aide in evaluating the
improper integral 

66. If we assume that exists and ,
then

Use this result to find the Laplace transform of the given
function. The symbols a and k are positive constants.

(a)

(b)

67. Transform of the Logarithm Because has
an infinite discontinuity at it might be assumed
that does not exist; however, this is incorrect.
The point of this problem to guide you through the
formal steps leading to the Laplace transform of

(a) Use integration by parts to show that

(b) If , use Theorem 7.4.1 with to
show that part (a) becomes 

Find an explicit solution of the foregoing dif-
ferential equation.

(c) Finally, the integral definition of Euler’s constant
(sometimes called the Euler-Mascheroni constant)
is , where . . . . 
Use in the solution in part (b) to show that

Computer Lab Assignments

68. In this problem you are led through the commands in
Mathematica that enable you to obtain the symbolic
Laplace transform of a differential equation and the so-
lution of the initial-value problem by finding the inverse
transform. In Mathematica the Laplace transform of
a function y(t) is obtained using LaplaceTransform
[y[t], t, s]. In line two of the syntax we replace
LaplaceTransform [y[t], t, s] by the symbol Y. (If you

� {ln t} � 	
�

s
	

ln s
s

,  s 
 0.

Y(1) � 	�

� � 0.5772156649� � 	��

0 e	 t ln t dt

Y(s)

s
dY
ds

� Y � 	
1
s
.

n � 1�{ln t} � Y(s)

� {ln t} � s � {t ln t} 	
1
s
.

f (t) � ln t, t 
 0.

�{ln t}
t � 0

f (t) � ln t

f (t) �
2(1 	 cos kt)

t

f (t) �
sin at

t

� � f (t)
t � �  ��

s
F(u)du.

�{ f (t)} � F(s)�{ f(t)>t}

��

0 te	2t sin 4t dt.

E(t) � �
�

k�0
 (	1)k �(t 	 k).
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312 ● CHAPTER 7 THE LAPLACE TRANSFORM

do not have Mathematica, then adapt the given proce-
dure by finding the corresponding syntax for the CAS
you have on hand.)

Consider the initial-value problem
.

Load the Laplace transform package. Precisely reproduce
and then, in turn, execute each line in the following
sequence of commands. Either copy the output by hand
or print out the results.

diffequat � y � [t] � 6y�[t] � 9y[t] �� t Sin[t]
transformdeq � LaplaceTransform [diffequat, t, s] /.

{y[0] � � 2, y�[0] � � �1,
LaplaceTransform [y[t], t, s] � � Y}

soln � Solve[transformdeq, Y]//Flatten
Y � Y/.soln
InverseLaplaceTransform[Y, s, t]

y � � 6y� � 9y � t sin t,  y(0) � 2, y�(0) � 	1

69. Appropriately modify the procedure of Problem 68 to
find a solution o

.

70. The charge q(t) on a capacitor in an LC-series circuit is
given by

.

Appropriately modify the procedure of Problem 68 to
find q(t). Graph your solution.

q(0) � 0, q�(0) � 0

d 2q
dt2 � q � 1 	 4�(t 	 
) � 6�(t 	 3
),

y(0) � 0, y�(0) � 0, y�(0) � 1
y� � 3y� 	 4y � 0,

Unit Impulse Mechanical systems are often acted on by an external force (or
electromotive force in an electrical circuit) of large magnitude that acts only for a
very short period of time. For example, a vibrating airplane wing could be struck by
lightning, a mass on a spring could be given a sharp blow by a ball peen hammer, and
a ball (baseball, golf ball, tennis ball) could be sent soaring when struck violently by
some kind of club (baseball bat, golf club, tennis racket). See Figure 7.5.1. The graph
of the piecewise-defined functio

(1)

a 
 0, t0 
 0, shown in Figure 7.5.2(a), could serve as a model for such a force. For a
small value of a, da (t 	 t0) is essentially a constant function of large magnitude that is
“on” for just a very short period of time, around t0. The behavior of da(t 	 t0) as 
is illustrated in Figure 7.5.2(b). The function da(t 	 t0) is called a unit impulse,
because it possesses the integration property .

Dirac Delta Function In practice it is convenient to work with another

��
0 �a(t 	 t0 ) dt � 1

a : 0

�a(t 	 t0) � �
0, 
1
2a

,

0,

0 � t � t0 	 a

  t0 	 a � t � t0 � a

t � t0 � a,FIGURE 7.5.1 A golf club applies a
force of large magnitude on the ball for a
very short period of time

THE DIRAC DELTA FUNCTION

INTRODUCTION In the last paragraph on page 279, we indicated that as an immediate conse-
quence of Theorem 7.1.3, F(s) � 1 cannot be the Laplace transform of a function f that is piecewise
continuous on [0, �) and of exponential order. In the discussion that follows we are going to intro-
duce a function that is very different from the kinds that you have studied in previous courses. We
shall see that there does indeed exist a function—or, more precisely, a generalized function—whose
Laplace transform is F(s) � 1.

7.5

type of unit impulse, a “function” that approximates da(t 	 t0 ) and is defined by
the limit

(2)�(t 	 t0) � lim
a : 0

�a(t 	 t0 ).
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7.5 THE DIRAC DELTA FUNCTION ● 313

The latter expression, which is not a function at all, can be characterized by the two
properties

.

The unit impulse d(t 	 t0) is called the Dirac delta function.
It is possible to obtain the Laplace transform of the Dirac delta function by the for-

mal assumption that .�{�(t 	 t0)} � lima : 0 �{�a(t 	 t0)}

(i ) �(t 	 t0) � ��,
0,

t � t0 t � t0
    and    (ii)��

0
�(t 	 t0) dt � 1

FIGURE 7.5.2 Unit impulse

(b) behavior of �a as a � 0

tt0

y

tt0 − a

2a1/2a

t0

y

t0 + a

(a) graph of �a(t � t0)

EXAMPLE 1 Two Initial-Value Problems

Solve y� � y � 4 d(t 	 2p) subject to

(a) y(0) � 1, y�(0) � 0 (b) y(0) � 0, y�(0) � 0.

The two initial-value problems could serve as models for describing the motion of a
mass on a spring moving in a medium in which damping is negligible. At t � 2p the
mass is given a sharp blow. In (a) the mass is released from rest 1 unit below the
equilibrium position. In (b) the mass is at rest in the equilibrium position.

SOLUTION (a) From (3) the Laplace transform of the differential equation is

.

Using the inverse form of the second translation theorem, we fin

.

Since sin(t 	 2p) � sin t, the foregoing solution can be written as

(5)y(t) � �cos t,      0 � t � 2


cos t � 4 sin t,   t � 2
.

y(t) � cos t � 4 sin (t 	 2
) �(t 	 2
)

s2Y(s) 	 s � Y(s) � 4e	2
s    or    Y(s) �
s

s2 � 1
�

4e	2
s

s2 � 1

THEOREM 7.5.1 Transform of the Dirac Delta Function

For t0 
 0, (3)�{�(t 	 t0)} � e	st0.

PROOF To begin, we can write da(t 	 t0 ) in terms of the unit step function by
virtue of (11) and (12) of Section 7.3:

By linearity and (14) of Section 7.3 the Laplace transform of this last expression is

(4)

Since (4) has the indeterminate form 0�0 as , we apply L’Hôpital’s Rule:

. 

Now when t0 � 0, it seems plausible to conclude from (3) that

The last result emphasizes the fact that d(t) is not the usual type of function that we have
been considering, since we expect from Theorem 7.1.3 that �{ f (t)} : 0 as s : �.

� {�(t)} � 1.

�{�(t 	 t0)} � lim
a : 0

 �{�a(t 	 t0)} � e	st0 lim
a : 0

 �esa 	 e	sa

2sa � � e	st0

a : 0

�{�a(t 	 t0)} �
1

2a
 	e	s(t0	a)

s
	

e	s(t0�a)

s 
 � e	st0 �esa 	 e	sa

2sa �.

�a(t 	 t0) �
1

2a
 [�(t 	 (t0 	 a)) 	 �(t 	 (t0 � a))].
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314 ● CHAPTER 7 THE LAPLACE TRANSFORM

In Figure 7.5.3 we see from the graph of (5) that the mass is exhibiting simple
harmonic motion until it is struck at t � 2p. The influence of the unit impulse is to
increase the amplitude of vibration to for t 
 2p.

(b) In this case the transform of the equation is simply

and so

(6)

The graph of (6) in Figure 7.5.4 shows, as we would expect from the initial conditions
that the mass exhibits no motion until it is struck at t � 2p.

REMARKS

(i) If d(t 	 t0) were a function in the usual sense, then property (i) on page 313
would imply rather than . Because the
Dirac delta function did not “behave” like an ordinary function, even though its
users produced correct results, it was met initially with great scorn by mathe-
maticians. However, in the 1940s Dirac’s controversial function was put on a
rigorous footing by the French mathematician Laurent Schwartz in his book
La Théorie de distribution, and this, in turn, led to an entirely new branch of
mathematics known as the theory of distributions or generalized functions.
In this theory (2) is not an accepted definition of d(t 	 t0), nor does one speak
of a function whose values are either � or 0. Although we shall not pursue this
topic any further, suffice it to say that the Dirac delta function is best character-
ized by its effect on other functions. If f is a continuous function, then

(7)

can be taken as the definitio of d(t 	 t0). This result is known as the sifting
property, since d(t 	 t0) has the effect of sifting the value f (t0) out of the
set of values of f on [0, �). Note that property (ii) (with f (t) � 1) and (3) (with
f (t) � e	st) are consistent with (7).
(ii) In (iii) in the Remarks at the end of Section 7.2 we indicated that the trans-
fer function of a general linear nth-order differential equation with constant
coefficients is W(s) � 1�P(s), where .
The transfer function is the Laplace transform of function w(t), called the
weight function of a linear system. But w(t) can also be characterized in
terms of the discussion at hand. For simplicity let us consider a second-order
linear system in which the input is a unit impulse at t � 0:

.

Applying the Laplace transform and using shows that the trans-
form of the response y in this case is the transfer function

�{�(t)} � 1

a2y� � a1y� � a0y � �(t), y(0) � 0, y�(0) � 0

P(s) � ansn � an	1sn	1 � � � � � a0

��

0
 f (t) �(t 	 t0) dt �  f (t0)

��
0  �(t 	 t0) dt � 1��

0  �(t 	 t0) dt � 0

 � �0,   0 � t � 2


4 sin t,  t � 2
.

y(t) � 4 sin (t 	 2
) �(t 	 2
)

Y(s) �
4e	2
s

s2 � 1
,

117

FIGURE 7.5.4 No motion until mass
is struck at t � 2p in part (b) of Example 1

FIGURE 7.5.3 Mass is struck at t � 2p
in part (a) of Example 1

t

y

1

−1 2 4π π

t

y

1

−1 2 4π π

.Y(s) �
1

a2s2 � a1s � a0
�

1
P(s)

� W(s)  and  so y � � 	1 � 1
P(s)� � w(t)

From this we can see, in general, that the weight function y � w(t) of an nth-order
linear system is the zero-state response of the system to a unit impulse. For this
reason w(t) is also called the impulse response of the system.
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7.6 SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS ● 315

Coupled Springs Two masses m1 and m2 are connected to two springs A and
B of negligible mass having spring constants k1 and k2, respectively. In turn the two
springs are attached as shown in Figure 7.6.1 on page 316. Let x1(t) and x2(t) denote
the vertical displacements of the masses from their equilibrium positions. When
the system is in motion, spring B is subject to both an elongation and a compression;
hence its net elongation is x2 	 x1. Therefore it follows from Hooke’s law that
springs A and B exert forces 	k1x1 and k2(x2 	 x1), respectively, on m1. If no exter-
nal force is impressed on the system and if no damping force is present, then the net
force on m1 is 	k1x1 � k2(x2 	 x1). By Newton’s second law we can write

.m1
 d

2x1

dt2 � 	k1x1 � k2(x2 	 x1)

EXERCISES 7.5 Answers to selected odd-numbered problems begin on page ANS-13.

In Problems 1–12 use the Laplace transform to solve the
given initial-value problem.

1. y� 	 3y � d(t 	 2), y(0) � 0

2. y� � y � d(t 	 1), y(0) � 2

3. y� � y � d(t 	 2p), y(0) � 0, y�(0) � 1

4. y� � 16y � d(t 	 2p), y(0) � 0, y�(0) � 0

5.

6. y� � y � d(t 	 2p) � d(t 	 4p), y(0) � 1, y�(0) � 0

7. y� � 2y� � d(t 	 1), y(0) � 0, y�(0) � 1

8. y� 	 2y� � 1 � d(t 	 2), y(0) � 0, y�(0) � 1

9. y� � 4y� � 5y � d(t 	 2p), y(0) � 0, y�(0) � 0

10. y� � 2y� � y � d(t 	 1), y(0) � 0, y�(0) � 0

11. y� � 4y� � 13y � d(t 	 p) � d(t 	 3p),
y(0) � 1, y�(0) � 0

12. y� 	 7y� � 6y � et � d(t 	 2) � d(t 	 4),
y(0) � 0, y�(0) � 0

13. A uniform beam of length L carries a concentrated load
w0 at . The beam is embedded at its left end andx � 1

2L

y(0) � 0, y�(0) � 0
y� � y � � (t 	 1

2
) � � (t 	 3
2
),

is free at its right end. Use the Laplace transform to
determine the deflection y(x) from

where y(0) � 0, y�(0) � 0, y�(L) � 0, and y�(L) � 0.

14. Solve the differential equation in Problem 13 subject to
y(0) � 0, y�(0) � 0, y(L) � 0, y�(L) � 0. In this case
the beam is embedded at both ends. See Figure 7.5.5.

EI d
4y

dx4 � w0 � �x 	 1
2 L�,

FIGURE 7.5.5 Beam in Problem 14

x

y
L

w0

Discussion Problems

15. Someone tells you that the solutions of the two IVPs

are exactly the same. Do you agree or disagree? Defend
your answer.

y � � 2y� � 10y � 0,
y � � 2y� � 10y � �(t),

   y(0) � 0,  y�(0) � 1
   y(0) � 0,  y�(0) � 0

SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS

REVIEW MATERIAL
● Solving systems of two equations in two unknowns

INTRODUCTION When initial conditions are specified, the Laplace transform of each equation
in a system of linear differential equations with constant coefficients reduces the system of DEs to a
set of simultaneous algebraic equations in the transformed functions. We solve the system of
algebraic equations for each of the transformed functions and then find the inverse Laplace trans-
forms in the usual manner.

7.6
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316 ● CHAPTER 7 THE LAPLACE TRANSFORM

52.5 107.5 1512.5

_ 0.4

0.2

0.4

_ 0.2

t

x1

(a) plot of x1(t)

(b) plot of x2(t)

52.5 107.5 1512.5

_ 0.4

0.2

0.4

_ 0.2

t

x2

FIGURE 7.6.2 Displacements of the
two masses in Example 1

Similarly, the net force exerted on mass m2 is due solely to the net elongation of
B; that is, 	k2(x2 	 x1). Hence we have

.

In other words, the motion of the coupled system is represented by the system of
simultaneous second-order differential equations

(1)

In the next example we solve (1) under the assumptions that k1 � 6, k2 � 4,
m1 � 1, m2 � 1, and that the masses start from their equilibrium positions with
opposite unit velocities.

 m2x�2 � 	k2(x2 	 x1).

 m1x�1 � 	k1x1 � k2(x2 	 x1)

m2
 d

2x2

dt2 � 	k2(x2 	 x1)

m2

k1

k2

k1

k (x2 − x1)2

k (x2 − x1)2

x2

x1 = 0

x2 = 0

x1

x1

A

m1

B m1

m2m2

(a) equilibrium (b) motion (c) forces

m1

FIGURE 7.6.1 Coupled spring/mass
system

EXAMPLE 1 Coupled Springs

Solve
(2)

subject to 

SOLUTION The Laplace transform of each equation is

where . The preceding system is the
same as

(3)

Solving (3) for X1(s) and using partial fractions on the result yields

and therefore

Substituting the expression for X1(s) into the first equation of (3) give

and

 � 	
12
5

 sin 12t 	
13
10

 sin 213t.

 x2(t) � 	
2

512
 � 	1� 12

s2 � 2� 	
3

5112
 � 	1� 112

s2 � 12�

 X2(s) � 	
s2 � 6

(s2 � 2)(s2 � 12)
� 	

2>5
s2 � 2

	
3>5

s2 � 12

 � 	
12
10

 sin 12t �
13
5

 sin 213t.

 x1(t) � 	
1

512
 � 	1� 12

s2 � 2� �
6

5112
 � 	1� 112

s2 � 12�

X1(s) �
s2

(s2 � 2)(s2 � 12)
� 	

1>5
s2 � 2

�
6>5

s2 � 12
,

 	4 X1(s) � (s2 � 4) X2(s) � 	1.

 (s2 � 10) X1(s) 	  4X2(s) � 1

X1(s) � �{x1(t)} and X2(s) � �{x2(t)}

 	4X1(s) � s2X2(s) 	 sx2(0) 	 x2� (0) � 4X2(s) � 0,

 s2X1(s) 	 sx1(0) 	 x1�(0) � 10X1(s) 	 4X2(s) � 0

x1(0) � 0, x�1(0) � 1, x2(0) � 0, x�2(0) � 	1.

  	4x1 � x �2 � 4x2 � 0

x�1 � 10x1  	 4x2 � 0
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7.6 SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS ● 317

Finally, the solution to the given system (2) is

(4)

The graphs of x1 and x2 in Figure 7.6.2 reveal the complicated oscillatory motion of
each mass.

Networks In (18) of Section 3.3 we saw the currents i1(t) and i2(t) in the
network shown in Figure 7.6.3, containing an inductor, a resistor, and a capacitor,
were governed by the system of first-order di ferential equations

(5)

We solve this system by the Laplace transform in the next example.

 RC 
di2

dt
� i2 	 i1 � 0.

 L 
di1

dt
� Ri2 � E(t)

x2(t) � 	
12
5

 sin 12t 	
13
10

 sin 2 13t.

x1(t) � 	
12
10

 sin 12t �
13
5

 sin 2 13t

FIGURE 7.6.3 Electrical network

R

i1 L i2
i3

CE

EXAMPLE 2 An Electrical Network

Solve the system in (5) under the conditions E(t) � 60 V, L � 1 h, R � 50 �,
C � 10	4 f, and the currents i1 and i2 are initially zero.

SOLUTION We must solve

subject to i1(0) � 0, i2(0) � 0.
Applying the Laplace transform to each equation of the system and simplifying

gives

where and . Solving the system for I1 and I2 and
decomposing the results into partial fractions gives

Taking the inverse Laplace transform, we find the currents to b

i2(t) �
6
5

	
6
5
 e	100t 	 120te	100t.

 i1(t) �
6
5

	
6
5
 e	100t 	 60te	100t

 I2(s) �
12,000

s(s � 100)2  �
6>5

s
	

6>5
s � 100

	
120

(s � 100)2.

 I1(s) �
60s � 12,000
s(s � 100)2 �

6>5
s

	
6>5

s � 100
	

60
(s � 100)2

I2(s) � �{i2(t)}I1(s) � �{i1(t)}

 	200I1(s) � (s � 200)I2(s) � 0,

 sI1(s) �  50I2(s) �
60
s

 50(10	4) 
di2

dt
� i2 	 i1 � 0

 
di1

dt
� 50i2 � 60
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318 ● CHAPTER 7 THE LAPLACE TRANSFORM

Note that both i1(t) and i2(t) in Example 2 tend toward the value
as t : �. Furthermore, since the current through the capacitor is

i3(t) � i1(t) 	 i2(t) � 60te	100t, we observe that as .

Double Pendulum Consider the double-pendulum system consisting of a
pendulum attached to a pendulum shown in Figure 7.6.4. We assume that the system
oscillates in a vertical plane under the influence of gravity, that the mass of each rod
is negligible, and that no damping forces act on the system. Figure 7.6.4 also shows
that the displacement angle u1 is measured (in radians) from a vertical line extending
downward from the pivot of the system and that u2 is measured from a vertical line
extending downward from the center of mass m1. The positive direction is to the
right; the negative direction is to the left. As we might expect from the analysis lead-
ing to equation (6) of Section 5.3, the system of differential equations describing the
motion is nonlinear:

t : �i3(t) : 0
E>R � 6

5

FIGURE 7.6.4 Double pendulum

1θ

2θ

l1

m1

m2

l2

(6)
 m2l2

2�2� � m2l1l2�1� cos (�1 	 �2) 	 m2l1l2(�1�)2 sin (�1 	 �2) � m2l2g sin �2 � 0.

 (m1 � m2)l1
2�1� � m2l1l2�2� cos (�1 	 �2) � m2l1l2(�2�)2 sin (�1 	 �2) � (m1 � m2)l1g sin �1 � 0

But if the displacements u1(t) and u2(t) are assumed to be small, then the approximations
cos(u1 	 u2) � 1, sin(u1 	 u2) � 0, sin u1 � u1, sin u2 � u2 enable us to replace system
(6) by the linearization

(7)
 m2l2

2�2� � m2l1l2�1� � m2l2g�2 � 0.

 (m1 � m2)l1
2�1� � m2l1l2�2� � (m1 � m2)l1g�1 � 0

(a) t � 0 (b) t � 1.4 (c) t � 2.5 (d) t � 8.5

FIGURE 7.6.5 Positions of masses on double pendulum at various times in 
Example 3

EXAMPLE 3 Double Pendulum

It is left as an exercise to fill in the details of using the Laplace transform to solve
system (7) when m1 � 3, m2 � 1, l1 � l2 � 16, u1(0) � 1, u2(0) � 	1, ,
and . You should find tha

(8)

With the aid of a CAS the positions of the two masses at t � 0 and at subsequent
times are shown in Figure 7.6.5. See Problem 21 in Exercises 7.6.

�2(t) �
1
2
 cos 

2
13

 t 	
3
2
 cos 2t.

�1(t) �
1
4
 cos 

2
13

 t �
3
4
 cos 2t

��2(0) � 0
��1(0) � 0
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7.6 SYSTEMS OF LINEAR DIFFERENTIAL EQUATIONS ● 319

EXERCISES 7.6 Answers to selected odd-numbered problems begin on page ANS-13.

In Problems 1–12 use the Laplace transform to solve the
given system of differential equations.

1. 2.

x(0) � 0, y(0) � 1 x(0) � 1, y(0) � 1

3. 4.

x(0) � 	1, y(0) � 2 x(0) � 0, y(0) � 0

5.

x(0) � 0, y(0) � 0

6.

x(0) � 0, y(0) � 1

7. 8.

x(0) � 0, x�(0) � 	2, x(0) � 1, x�(0) � 0,
y(0) � 0, y�(0) � 1 y(0) � 	1, y�(0) � 5

9. 10.

x(0) � 8, x�(0) � 0, x(0) � 0, y(0) � 0,
y(0) � 0, y�(0) � 0 y�(0) � 0, y�(0) � 0

11.

x(0) � 0, x�(0) � 2, y(0) � 0

12.

x(0) � 0,  y(0) � 1
2

dy
dt

� 3x 	  y �   �(t 	 1)

dx
dt

� 4x 	 2y � 2�(t 	 1)

d 2x
dt2  � 3y � te	t

 
d 2x
dt2 � 3 

dy
dt

� 3y � 0

dx
dt

� 2x 	 2 
d 3y
dt3 � 0 

d 2x
dt2 	

d 2y
dt2 � 4t

dx
dt

	 4x �    
d 3y
dt3 � 6 sin t 

d 2x
dt2 �

d 2y
dt2 � t2

d 2y
dt2 �

dy
dt

	 4 
dx
dt

� 0
d 2y
dt2 � y 	 x � 0

d 2x
dt2 �

dx
dt

�    
dy
dt

� 0
d 2x
dt2 � x 	 y � 0

dx
dt

�     
dy
dt

� 2y � 0

dx
dt

� x 	
dy
dt

�   y � 0

    
dx
dt

�
dy
dt

	 3x 	 3y � 2

2 
dx
dt

�
dy
dt

	 2x         � 1

dx
dt

	   x �
dy
dt

	 y  �  etdy
dt

� 5x 	 y

dx
dt

� 3x �
dy
dt

        � 1dx
dt

� x 	 2y

dy
dt

 � 8x 	 t 
dy
dt

 � 2x

dx
dt

 � 2y � etdx
dt

 � 	x � y

13. Solve system (1) when k1 � 3, k2 � 2, m1 � 1, m2 � 1
and x1(0) � 0, , x2(0) � 1, .

14. Derive the system of differential equations describing the
straight-line vertical motion of the coupled springs shown
in Figure 7.6.6. Use the Laplace transform to solve the
system when k1 � 1, k2 � 1, k3 � 1, m1 � 1, m2 � 1 and
x1(0) � 0, , x2(0) � 0, .x�2(0) � 1x�1(0) � 	1

x�2(0) � 0x�1(0) � 1

k

m2

k2

3

x2 = 0

m1

k1

x1 = 0

FIGURE 7.6.6 Coupled springs in Problem 14

15. (a) Show that the system of differential equations for
the currents i2(t) and i3(t) in the electrical network
shown in Figure 7.6.7 is

(b) Solve the system in part (a) if R � 5 �, L1 � 0.01 h,
L2 � 0.0125 h, E � 100 V, i2(0) � 0, and i3(0) � 0.

(c) Determine the current i1(t).

 L2 
di3

dt
� Ri2 � Ri3 � E(t).

 L1 
di2

dt
� Ri2 � Ri3 � E(t)

FIGURE 7.6.7 Network in Problem 15

L1

R

E

i1 i2
i3

L2

16. (a) In Problem 12 in Exercises 3.3 you were asked to
show that the currents i2(t) and i3(t) in the electrical
network shown in Figure 7.6.8 satisfy

 	R1 
di2

dt
� R2 

di3

dt
�

1
C

 i3 � 0.

 L 
di2

dt
� L 

di3

dt
� R1i2 � E(t)
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320 ● CHAPTER 7 THE LAPLACE TRANSFORM

Solve the system if R1 � 10 �, R2 � 5 �, L � 1 h,
C � 0.2 f,

i2(0) � 0, and i3(0) � 0.
(b) Determine the current i1(t).

E(t) � �120,
0,

0 � t � 2
t � 2,

Computer Lab Assignments

21. (a) Use the Laplace transform and the information
given in Example 3 to obtain the solution (8) of the
system given in (7).

(b) Use a graphing utility to graph u1(t) and u2(t) in the
tu-plane. Which mass has extreme displacements of
greater magnitude? Use the graphs to estimate the
first time that each mass passes through its equilib-
rium position. Discuss whether the motion of the
pendulums is periodic.

(c) Graph u1(t) and u2(t) in the u1u2-plane as parametric
equations. The curve defined by these parametric
equations is called a Lissajous curve.

(d) The positions of the masses at t � 0 are given
in Figure 7.6.5(a). Note that we have used 
1 radian � 57.3°. Use a calculator or a table
application in a CAS to construct a table of values
of the angles u1 and u2 for t � 1, 2, . . . , 10 s. Then
plot the positions of the two masses at these times.

(e) Use a CAS to find the first time that u1(t) � u2(t)
and compute the corresponding angular value. Plot
the positions of the two masses at these times.

(f) Utilize the CAS to draw appropriate lines to sim-
ulate the pendulum rods, as in Figure 7.6.5. Use
the animation capability of your CAS to make a
“movie” of the motion of the double pendulum
from t � 0 to t � 10 using a time increment of
0.1. [Hint: Express the coordinates (x1(t), y1(t))
and (x2(t), y2(t)) of the masses m1 and m2, respec-
tively, in terms of u1(t) and u2(t).]

FIGURE 7.6.8 Network in Problem 16

R1E

i1 L i2
i3

C

R2

17. Solve the system given in (17) of Section 3.3 when
R1 � 6 �, R2 � 5 �, L1 � 1 h, L2 � 1 h, E(t) � 50 sin t V,
i2(0) � 0, and i3(0) � 0.

18. Solve (5) when E � 60 V, , R � 50 �,
C � 10	4 f, i1(0) � 0, and i2(0) � 0.

19. Solve (5) when E � 60 V, L � 2 h, R � 50 �,
C � 10	4 f, i1(0) � 0, and i2(0) � 0.

20. (a) Show that the system of differential equations for
the charge on the capacitor q(t) and the current i3(t)
in the electrical network shown in Figure 7.6.9 is

(b) Find the charge on the capacitor when L � 1 h,
R1 � 1 �, R2 � 1 �, C � 1 f,

i3(0) � 0, and q(0) � 0.

E(t) � �0,
50e	t,

0 � t � 1
t � 1,

 L 
di3

dt
� R2i3 	

1
C

 q � 0.

 R1 
dq
dt

�
1
C

 q � R1i3 � E(t)

L � 1
2 h

FIGURE 7.6.9 Network in Problem 20

R1

E

i1 i2
i3

LC

R2

CHAPTER 7 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-13.

In Problems 1 and 2 use the definition of the Laplace
transform to find .

1.

2. f (t) � �
0,
1,
0,

 0 � t � 2
 2 � t � 4
 t � 4

f (t) � �t,
2 	 t,

 0 � t � 1
 t � 1

�{ f (t)}
In Problems 3–24 fill in the blanks or answer true or false.

3. If f is not piecewise continuous on [0, �), then 
will not exist. _______

4. The function f (t) � (et)10 is not of exponential order.
_______

5. F(s) � s2�(s2 � 4) is not the Laplace transform of a
function that is piecewise continuous and of exponential
order. _______

�{ f (t)}

27069_07_ch07_p273-324.qxd  2/2/12  2:43 PM  Page 320

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



CHAPTER 7 IN REVIEW ● 321

6. If and , then 
. _______

7. _______ 8. _______

9. _______ 10. _______

11. _______

12. _______

13. _______

14. _______

15. _______

16. _______

17. _______

18. _______

19. _______

20. _______

21. exists for s 
 _______.

22. If , then _______.

23. If and k 
 0, then 
_______.

24. _______ whereas 

_______.

In Problems 25–28 use the unit step function to find an
equation for each graph in terms of the function y � f (t),
whose graph is given in Figure 7.R.1.

�{eat�t
0
  f (�) d�} �

�{�t
0
 ea� f (�) d�} �

�{eat f (t 	 k)�(t 	 k)} �

�{ f (t)} �  F(s)

�{te8t f (t)} ��{ f (t)} �  F(s)

�{e	5t}

� 	1� 1
L2s2 � n2
 2� �

� 	1� s � 


s2 � 
2 e
	s� �

� 	1�e	5s

s2 � �

� 	1� s
s2 	 10s � 29� �

� 	1� 1
s2 	 5� �

� 	1� 1
(s 	 5)3� �

� 	1� 1
3s 	 1� �

� 	1�20
s6� �

�{sin 2t �(t 	 
)} �

�{t sin 2t} �

�{e	3t sin 2t} ��{sin 2t} �

�{te	7t} ��{e	7t} �

� 	1{F(s)G(s)} �  f (t)g(t)
�{g(t)} � G(s)�{ f (t)} � F(s)

In Problems 29–32 express f in terms of unit step functions.
Find and .�{et f (t)}�{ f (t)}

FIGURE 7.R.2 Graph for Problem 25

t0 t

y

t0 t

y
y = f(t)

FIGURE 7.R.1 Graph for Problems 25–28

25.

FIGURE 7.R.3 Graph for Problem 26

FIGURE 7.R.4 Graph for Problem 27

FIGURE 7.R.5 Graph for Problem 28

t0 t

y

t0 t

y

t0 t

y

t1

26.

27.

28.

29.

30.

31.

32.

FIGURE 7.R.6 Graph for Problem 29

FIGURE 7.R.7 Graph for Problem 30

FIGURE 7.R.8 Graph for Problem 31

FIGURE 7.R.9 Graph for Problem 32

1

1

2 3 4 t

f (t)

2

1

−1
t

f (t)

π π π3

π πy = sin 3 t,  ≤ t ≤

1 2 3

2
1

t

f (t)
(3, 3)

1 2

1

t

f (t)
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In Problems 33–40 use the Laplace transform to solve the
given equation.

33. y� 	 2y� � y � et, y(0) � 0, y�(0) � 5

34. y� 	 8y� � 20y � tet, y(0) � 0, y�(0) � 0

35. y� � 6y� � 5y � t 	 t �(t 	 2), y(0) � 1, y�(0) � 0

36. y� 	 5y � f (t), where 

37. , where is given in 
Figure 7.R.10.

f (t)y� � 2y � f (t), y(0) � 1

f (t) � �t2,
0,

0 � t � 1
t � 1

, y(0) � 1

45. A uniform cantilever beam of length L is embedded at
its left end (x � 0) and free at its right end. Find the
deflection y(x) if the load per unit length is given by

.

46. When a uniform beam is supported by an elastic
foundation, the differential equation for its deflectio
y(x) is

,

where k is the modulus of the foundation and 	ky is the
restoring force of the foundation that acts in the direction
opposite to that of the load w(x). See Figure 7.R.11. For
algebraic convenience suppose that the differential equa-
tion is written as

,

where a � (k�4EI )1/4. Assume L � p and a � 1. Find
the deflection y(x) of a beam that is supported on an
elastic foundation when
(a) the beam is simply supported at both ends and a con-

stant load w0 is uniformly distributed along its length,
(b) the beam is embedded at both ends and w(x) is a

concentrated load w0 applied at x � p�2.
[Hint: In both parts of this problem use entries 35 and
36 in the table of Laplace transforms in Appendix III.]

d 4y
dx4 � 4a4y �

w(x)
EI

EI 
d 4y
dx4 � ky � w(x)

w(x) �
2w0

L
 	L

2
	 x � �x 	

L
2� ��x 	

L
2�


FIGURE 7.R.11 Beam on elastic foundation in Problem 46

0 x

y

L

w(x)

elastic foundation

47. (a) Suppose two identical pendulums are coupled by
means of a spring with constant k. See Figure 7.R.12.
Under the same assumptions made in the discussion
preceding Example 3 in Section 7.6, it can be shown
that when the displacement angles u1(t) and u2(t)
are small, the system of linear differential equations
describing the motion is

Use the Laplace transform to solve the system when
u1(0) � u0, u1�(0) � 0, u2(0) � c0, u2�(0) � 0, where
u0 and c0 constants. For convenience let v2 � g�l,
K � k�m.

(b) Use the solution in part (a) to discuss the motion
of the coupled pendulums in the special case when

 �2� �
g
l
�2 �

k
m

 (�1 	 �2).

 �1� �
g
l
�1 � 	

k
m

 (�1 	 �2)
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FIGURE 7.R.10 Graph for Problem 37

1 2 3

1

t

f (t)

38. , where

39.

40.

In Problems 41 and 42 use the Laplace transform to solve
each system.

41. x� � y � t 42. x� � y� � e2t

4x � y� � 0 2x� � y� � 	e2t

x(0) � 1, y(0) � 2 x(0) � 0, y(0) � 0,
x�(0) � 0, y�(0) � 0

43. The current i(t) in an RC-series circuit can be deter-
mined from the integral equation

,

where E(t) is the impressed voltage. Determine i(t)
when R � 10 �, C � 0.5 f, and E(t) � 2(t2 � t).

44. A series circuit contains an inductor, a resistor, and a
capacitor for which , R � 10 �, and C � 0.01 f,
respectively. The voltage

is applied to the circuit. Determine the instantaneous
charge q(t) on the capacitor for t 
 0 if q(0) � 0 and
q�(0) � 0.

E(t) � �10,
0,

0 � t � 5
  t � 5

L � 1
2 h

Ri �
1
C

 �t

0
 i(�) d� � E(t)

�t

0
 f (�) f (t 	 �) d� � 6t3

y�(t) � cos t � �t

0
 y(�) cos(t 	 �) d�, y(0) � 1

f (t) � 12 �
�

k�0
(	1)k � (t 	 k).

y� � 5y� � 4y � f (t), y(0) � 0, y�(0) � 3
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the initial conditions are u1(0) � u0, u1�(0) � 0,
u2(0) � u0, u2�(0) � 0. When the initial conditions
are u1(0) � u0, u1�(0) � 0, u2(0) � 	u0, u2�(0) � 0.
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FIGURE 7.R.12 Coupled pendulums in Problem 47

1θ
θ2

m

ll

m

(f) Show that each successive oscillation is 
shorter than the preceding one.

(g) Predict the long-term behavior of the system.

49. Range of a Projectile—No Air Resistance (a) A pro-
jectile, such as the canon ball shown in Fig-
ure 7.R.13, has weight and initial velocity
v0 that is tangent to its path of motion.  If air resis-
tance and all other forces except its weight are ig-
nored, we saw in Problem 23 of Exercises 4.9 that
motion of the projectile is describe by the system of
linear differential equations

Use the Laplace transform to solve this system sub-
ject to the initial conditions ,

where is con-
stant and is the constant angle of elevation shown
in Figure 7.R.13.  The solutions and are para-
metric equations of the trajectory of the projectile.

(b) Use in part (a) to eliminate the parameter t in
. Use the resulting equation for y to show that the

horizontal range R of the projectile is given by

(c) From the formula in part (b), we see that R is a max-
imum when sin or when Show
that the same range—less than the maximum—can
be attained by firing the gun at either of two comple-
mentary angles and The only difference
is that the smaller angle results in a low trajectory
whereas the larger angle gives a high trajectory.

(d) Suppose and 
Use part (b) to find the horizontal range of the pro-
jectile. Find the time when the projectile hits the
ground.

(e) Use the parametric equations and in part (a)
along with the numerical data in part (d) to plot the
ballistic curve of the projectile. Repeat with 
and Superimpose both curves on the
same coordinate system.

v0 � 300 ft/s.
u � 52�

y(t)x(t)

v0 � 300 ft/s.g � 32 ft /s2, u � 38�,

p>2 	 u.u

u � p>4.2u � 1

R �
v2

0

g
 sin 2u.

y(t)
x(t)

y(t)x(t)
u

v0 � �v0 �y(0) � 0, y�(0) � v0 sin u,
x(0) � 0, x�(0) � v0 cos u

m
d 2y
dt 2 � 	mg.

m
d 2x
dt 2 � 0

w � mg

2F>v2

48. Coulomb Friction Revisited In Problem 27 in Chap-
ter 5 in Review we examined a spring/mass system in
which a mass m slides over a dry horizontal surface
whose coefficient of kinetic friction is a constant .
The constant retarding force of the dry sur-
face that acts opposite to the direction of motion is
called Coulomb friction after the French physicist
Charles-Augustin de Coulomb (1736–1806). You
were asked to show that the piecewise-defined differen-
tial equation for the displacement of the mass is
given by 

(a) Suppose that the mass is released from rest from a
point and that there are no other
external forces. Then the differential equations
describing the motion of the mass m are 

,

and so on, where 
, and . Show that the times 

correspond to . 
(b) Explain why, in general, the initial displacement

must satisfy 
(c) Explain why the interval is ap-

propriately called the “dead zone” of the system.
(d) Use the Laplace transform and the concept of the

meander function to solve for the displacement

(e) Show that in the case and
that on the interval your solution

agrees with parts (a) and (b) of Problem 28 in
Chapter 5 in Review.

[0, 2p)x0 � 5.5
m � 1, k � 1, fk � 1,

x(t) for t � 0.

	F>v2 � x � F>v2

v2&x0&
 F.

x�(t) � 0T, 3T>2, . . .
0, T>2,T � 2p>vg � 32

v2 � k>m, F � fk>m � �g,

 x� � v2x � F, T � t � 3T>2

 x� � v2x � 	F, T>2 � t � T

 x� � v2x � F, 0 � t � T>2

x(0) � x0 
 0

m
d2x
dt2 � kx � �fk,        x� � 0 (motion to left)

	fk, x� 
 0 (motion to right).

x(t)

fk � �mg
�

FIGURE 7.R.13 Projectile in Problem 49

x

y

R
Horizontal Range

v0

θ
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50. Range of a Projectile—With Air Resistance (a) Now
suppose that air resistance is a retarding force tan-
gent to the path but acts opposite to the motion. If
we take air resistance to be proportional to the ve-
locity of the projectile, then we saw in Problem 24 of
Exercises 4.9 that motion of the projectile is de-
scribe by the system of linear differential equations

where Use the Laplace transform to solve
this system subject to the initial conditions 

sin , where
and are constant.uv0 � �v0 �

ucos u, y(0) � 0, y�(0) � v0x�(0) � v0

x(0) � 0,
b 
 0.

m
d 2y
dt 2 � 	mg 	 b

dy
dt

,

m
d 2x
dt 2 � 	b

dx
dt

324 ● CHAPTER 7 THE LAPLACE TRANSFORM

(b) Suppose slug, 
and Use a CAS to find the time when
the projectile hits the ground and then compute its
corresponding horizontal range.

(c) Repeat part (c) using the complementary angle
and compare the range with that found in

part (b). Does the property in part (c) of Problem 49
hold?

(d) Use the parametric equations and in part (a)
along with the numerical data in part (b) to plot the
ballistic curve of the projectile. Repeat with the
same numerical data in part (b) but take 
Superimpose both curves on the same coordinate
system. Compare these curves with those obtained
in part (e) of Problem 49.

u � 52�.

y(t)x(t)

u � 52�

v0 � 300 ft/s.
u � 38�,g � 32 ft /s2, b� 0.02,m � 1

4
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8.1 Preliminary Theory—Linear Systems
8.2 Homogeneous Linear Systems

8.2.1 Distinct Real Eigenvalues
8.2.2 Repeated Eigenvalues
8.2.3 Complex Eigenvalues

8.3 Nonhomogeneous Linear Systems
8.3.1 Undetermined Coefficient
8.3.2 Variation of Parameters

8.4 Matrix Exponential

Chapter 8 in Review

We encountered systems of ordinary differential equations in Sections 3.3, 4.9, and
7.6 and were able to solve some of these systems by means of either systematic
elimination or by the Laplace transform. In this chapter we are going to concentrate
only on systems of linear first-o der differential equations. Although most of the
systems that are considered could be solved using elimination or the Laplace
transform, we are going to develop a general theory for these kinds of systems and
in the case of systems with constant coefficients, a method of solution that utilize
some basic concepts from the algebra of matrices. We will see that this general
theory and solution procedure is similar to that of linear higher-order differential
equations considered in Chapter 4. This material is fundamental to the analysis of
systems of nonlinear first-order equations in Chapter 10

Systems of Linear First-Order 
Differential Equations8
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326 ● CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS

Linear Systems When each of the functions g1, g2, . . . , gn in (2) is linear
in the dependent variables x1, x2, . . . , xn, we get the normal form of a first-orde
system of linear equations:

We refer to a system of the form given in (3) simply as a linear system. We
assume that the coefficients aij as well as the functions fi are continuous on a
common interval I. When fi(t) � 0, i � 1, 2, . . . , n, the linear system (3) is said to
be homogeneous; otherwise, it is nonhomogeneous.

Matrix Form of a Linear System If X, A(t), and F(t) denote the respective
matrices

x1(t)
x2(t)

xn(t)

 X �
 (  

 
 ) ,

a11(t)
a21(t)

an1(t)

a1n(t)
a2n(t)

ann(t)

a12(t)
a22(t)

an2(t)

. . .

. . .

. . .

 A(t) �
 (   ) ,

f1(t)
f2(t)

fn(t)

 F(t) �
 (  ) ,...

...
...

...

� a11(t)x1 � a12(t)x2 � . . . � a1n(t)xn � f1(t)

� a21(t)x1 � a22(t)x2 � . . . � a2n(t)xn � f2(t)

� an1(t)x1 � an2(t)x2 � . . . � ann(t)xn � fn(t).

dx1–––
dt

dx2–––
dt

dxn–––
dt

...
...

(3)

PRELIMINARY THEORY—LINEAR SYSTEMS

REVIEW MATERIAL
● Matrix notation and properties are used extensively throughout this chapter. It is imperative that

you review either Appendix II or a linear algebra text if you unfamiliar with these concepts.

INTRODUCTION Recall that in Section 4.9 we illustrated how to solve systems of n linear
differential equations in n unknowns of the form

(1)

where the Pij were polynomials of various degrees in the differential operator D. In this chapter
we confine our study to systems of first-order DEs that are special cases of systems that have the
normal form

A system such as (2) of n first-order equations is called a first-orde system.

� g1(t,  x1,  x2, . . . ,  xn)

� g2(t,  x1,  x2, . . . ,  xn)

� gn(t,  x1,  x2, . . . ,  xn).

dx1–––
dt

dx2–––
dt

dxn–––
dt

...
...

P11(D)x1 � P12(D)x2 � . . . � P1n(D)xn � b1(t)

P21(D)x1 � P22(D)x2 � . . . � P2n(D)xn � b2(t)
                                                               

Pn1(D)x1 � Pn2(D)x2 � . . . � Pnn(D)xn � bn(t),

...
...

8.1

(2) 
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then the system of linear first-order di ferential equations (3) can be written as

or simply (4)

If the system is homogeneous, its matrix form is then

(5)X� � AX.

X� � AX � F.

  (d––
dt

x1

x2

xn

 ) a11(t)
a21(t)

an1(t)

a1n(t)
a2n(t)

ann(t)

a12(t)
a22(t)

an2(t)

. . .

. . .

. . .

� (   (x1

x2

xn

 ) � ( ) f1(t)
f2(t)

fn(t)

 )...
...

...
...

...

8.1 PRELIMINARY THEORY—LINEAR SYSTEMS ● 327

EXAMPLE 1 Systems Written in Matrix Notation

(a) If , then the matrix form of the homogeneous system

(b) If , then the matrix form of the nonhomogeneous system

      
dx
dt

� 6x �   y � z �     t

  
dy
dt

� 8x � 7y � z � 10t

   
dz
dt

� 2x � 9y � z �  6t

is X� � �6
8
2

1
7
9

1
�1
�1

�X � � t
10t

6t
�.

X � � 
x
y
z
�

dx
dt

� 3x � 4y

dy
dt

� 5x � 7y
is  X� � �3

5
4

�7�X.

X � �x
y�

DEFINITION 8.1.1 Solution Vector

A solution vector on an interval I is any column matrix

whose entries are differentiable functions satisfying the system (4) on the
interval.

x1(t)
x2(t)

xn(t)

 X �
 (  

 )...

A solution vector of (4) is, of course, equivalent to n scalar equations 
x1 � f1(t), x2 � f2(t), . . . , xn � fn(t) and can be interpreted geometrically as a set
of parametric equations of a space curve. In the important case n � 2 the equations
x1 � f1(t), x2 � f2(t) represent a curve in the x1x2-plane. It is common practice to
call a curve in the plane a trajectory and to call the x1x2-plane the phase plane. We
will come back to these concepts and illustrate them in the next section.
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328 ● CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS

EXAMPLE 2 Verification of Solution

Verify that on the interval (��, �)

are solutions of . (6)

SOLUTION From and we see that

and

Much of the theory of systems of n linear first-order differential equations is
similar to that of linear nth-order differential equations.

Initial-Value Problem Let t0 denote a point on an interval I and

where the gi, i � 1, 2, . . . , n are given constants. Then the problem

(7)

is an initial-value problem on the interval.

 Subject to:     X(t0) � X0

 Solve:  X� � A(t)X � F(t)

x1(t0)
x2(t0)

xn(t0)

 X(t0) � ( and ) �1

�2

�n

 X0 � (  ) ,...
...

AX2 � �1
5

3
3��

3e6t

5e6t� � � 3e6t � 15e6t

15e6t � 15e6t� � �18e6t

30e6t� � X�2 .

AX1 � �1
5

3
3��

e�2t

�e�2t� � � e�2t � 3e�2t

5e�2t � 3e�2t� � ��2e�2t

2e�2t� � X�1,

X�2 � �18e6t

30e6t�X�1 � ��2e�2t

2e�2t�

X� � �1
5

3
3�X

X1 � � 1
�1�e�2t � � e�2t

�e�2t �    and    X2 � �3
5�e6t � �3e6t

5e6t�

THEOREM 8.1.1 Existence of a Unique Solution

Let the entries of the matrices A(t) and F(t) be functions continuous on a common
interval I that contains the point t0. Then there exists a unique solution of the initial-
value problem (7) on the interval.

Homogeneous Systems In the next several definitions and theorems we are
concerned only with homogeneous systems. Without stating it, we shall always assume
that the aij and the fi are continuous functions of t on some common interval I.

Superposition Principle The following result is a superposition principle for
solutions of linear systems.

THEOREM 8.1.2 Superposition Principle

Let X1, X2, . . . , Xk be a set of solution vectors of the homogeneous system (5)
on an interval I. Then the linear combination

where the ci, i � 1, 2, . . . , k are arbitrary constants, is also a solution on the
interval.

X � c1X1 � c2X2 � � � � � ckXk,
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It follows from Theorem 8.1.2 that a constant multiple of any solution vector of a
homogeneous system of linear first-order di ferential equations is also a solution.

8.1 PRELIMINARY THEORY—LINEAR SYSTEMS ● 329

EXAMPLE 3 Using the Superposition Principle

You should practice by verifying that the two vectors

are solutions of the system

(8)

By the superposition principle the linear combination

is yet another solution of the system.

Linear Dependence and Linear Independence We are primarily inter-
ested in linearly independent solutions of the homogeneous system (5).

X � c1X1 � c2X2 � c1�
cos t

�1
2 cos t � 1

2 sin t
�cos t � sin t � � c2�

0
et

0�

X� � �
1
1

�2

0
1
0

1
0

�1�X.

X1 � �
cos t

�1
2  cos t � 1

2 sin t
�cos t � sin t � and X2 � �

0
et

0�

DEFINITION 8.1.2 Linear Dependence/Independence

Let X1, X2, . . . , Xk be a set of solution vectors of the homogeneous system (5)
on an interval I. We say that the set is linearly dependent on the interval if
there exist constants c1, c2, . . . , ck, not all zero, such that

for every t in the interval. If the set of vectors is not linearly dependent on the
interval, it is said to be linearly independent.

c1X1 � c2X2 � � � � � ckXk � 0

The case when k � 2 should be clear; two solution vectors X1 and X2 are linearly
dependent if one is a constant multiple of the other, and conversely. For k � 2 a set of
solution vectors is linearly dependent if we can express at least one solution vector as
a linear combination of the remaining vectors.

Wronskian As in our earlier consideration of the theory of a single ordi-
nary differential equation, we can introduce the concept of the Wronskian
determinant as a test for linear independence. We state the following theorem
without proof.

THEOREM 8.1.3 Criterion for Linearly Independent Solutions

Let  X1 � 
 ( x11

x21

xn1

x12

x22

xn2

 ) , X2�
 ( . . . , ) , x1n

x2n

xnn

Xn�
 (  )...

...
...

(continues on page 330)
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330 ● CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS

be n solution vectors of the homogeneous system (5) on an interval I. Then the set
of solution vectors is linearly independent on I if and only if the Wronskian

(9)

for every t in the interval.

W(X1, X2, . . . , Xn) �
 � � �x11

x21

xn1

x1n

x2n

xnn

x12

x22

xn2

. . .

. . .

. . .

...
...

0

It can be shown that if X1, X2, . . . , Xn are solution vectors of (5), then for every
t in I either or Thus if we can
show that W 	 0 for some t0 in I, then W 	 0 for every t, and hence the solutions are
linearly independent on the interval.

Notice that, unlike our definition of the Wronskian in Section 4.1, here the
definition of the determinant (9) does not involve di ferentiation.

W(X1, X2, . . . , Xn) � 0.W(X1, X2, . . . , Xn) 	 0

EXAMPLE 4 Linearly Independent Solutions

In Example 2 we saw that and are solutions of 

system (6). Clearly, X1 and X2 are linearly independent on the interval (��, �), since
neither vector is a constant multiple of the other. In addition, we have

for all real values of t.

W(X1, X2) � � e�2t

�e�2t
3e6t

5e6t� � 8e4t 	 0

X2 � �3
5�e6tX1 � � 1

�1�e�2t

DEFINITION 8.1.3 Fundamental Set of Solutions

Any set of n linearly independent solution vectors of the
homogeneous system (5) on an interval I is said to be a fundamental set of
solutions on the interval.

X1, X2, . . . , Xn

THEOREM 8.1.4 Existence of a Fundamental Set

There exists a fundamental set of solutions for the homogeneous system (5) on an
interval I.

The next two theorems are the linear system equivalents of Theorems 4.1.5
and 4.1.6.

THEOREM 8.1.5 General Solution—Homogeneous Systems

Let be a fundamental set of solutions of the homogeneous
system (5) on an interval I. Then the general solution of the system on the
interval is

where the ci, i � 1, 2, . . . , n are arbitrary constants.

X � c1X1 � c2X2 � � � � � cnXn ,

X1, X2, . . . , Xn
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8.1 PRELIMINARY THEORY—LINEAR SYSTEMS ● 331

EXAMPLE 5 General Solution of System (6)

From Example 2 we know that and are linearly 

independent solutions of (6) on (��, �). Hence X1 and X2 form a fundamental set
of solutions on the interval. The general solution of the system on the interval
is then

(10)X � c1X1 � c2X2 � c1� 1
�1�e�2t � c2�3

5�e6t.

X2 � �3
5�e6tX1 � � 1

�1�e�2t

EXAMPLE 6 General Solution of System (8)

The vectors

are solutions of the system (8) in Example 3 (see Problem 16 in Exercises 8.1). Now

for all real values of t. We conclude that X1, X2, and X3 form a fundamental set of
solutions on (��, �). Thus the general solution of the system on the interval is the
linear combination X � c1X1 � c2X2 � c3X3; that is,

Nonhomogeneous Systems For nonhomogeneous systems a particular
solution Xp on an interval I is any vector, free of arbitrary parameters, whose entries
are functions that satisfy the system (4).

X � c1�
cos t

�1
2 cos t � 1

2 sin t
�cos t � sin t � � c2�

0
1
0�et � c3�

sin t
�1

2 sin t � 1
2 cos t

�sin t � cos t �.

W(X1, X2, X3) � p
cos t

�1
2 cos t � 1

2 sin t
�cos t � sin t

0
et

0

sin t
�1

2 sin t � 1
2 cos t

�sin t � cos t
p � et 	 0

X1 � �
cos t

�1
2 cos t � 1

2 sin t
�cos t � sin t �,  X2 � �

0
1
0�et,  X3 � �

sin t
�1

2 sin t � 1
2 cos t

�sin t � cos t �

THEOREM 8.1.6 General Solution—Nonhomogeneous Systems

Let Xp be a given solution of the nonhomogeneous system (4) on an interval I
and let

denote the general solution on the same interval of the associated homo-
geneous system (5). Then the general solution of the nonhomogeneous system
on the interval is

The general solution Xc of the associated homogeneous system (5) is
called the complementary function of the nonhomogeneous system (4).

X � Xc � Xp.

Xc � c1X1 � c2X2 � � � � � cnXn
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332 ● CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS

EXAMPLE 7 General Solution—Nonhomogeneous System

The vector is a particular solution of the nonhomogeneous system

(11)

on the interval (��, �). (Verify this.) The complementary function of (11) on 

the same interval, or the general solution of , was seen in (10) of

Example 5 to be . Hence by Theorem 8.1.6

is the general solution of (11) on (��, �).

X � Xc � Xp � c1 � 1
�1�e�2t � c2�3

5�e6t � � 3t � 4
�5t � 6�

Xc � c1� 1
�1�e�2t � c2�3

5�e6t

X� � �1
5

3
3�X

X� � �1
5

3
3�X � �12t � 11

�3 �

Xp � � 3t � 4
�5t � 6�

EXERCISES 8.1 Answers to selected odd-numbered problems begin on page ANS-14.

In Problems 1–6 write the linear system in matrix form.

1. 2.

3. 4.

5.

6.

In Problems 7–10 write the given system without the use of
matrices.

7. X� � � 4
�1

2
3�X � � 1

�1�et

dz
dt

 � y � 6z � e�t

dy
dt

 � 5x � 9z � 4e�tcos 2t

dx
dt

 � �3x � 4y � e�tsin 2t

 
dz
dt

� x � y � z � t2 � t � 2

 
dy
dt

� 2x � y � z � 3t2

 
dx
dt

� x � y � z � t � 1

 
dz
dt

� �x � z
dz
dt

 � 10x � 4y � 3z

 
dy
dt

� x � 2z
dy
dt

 � 6x � y

 
dx
dt

� x � y 
dx
dt

� �3x � 4y � 9z

 
dy
dt

� 5x 
dy
dt

� 4x � 8y

 
dx
dt

� 4x � 7y 
dx
dt

� 3x � 5y
8.

9.

10.

In Problems 11–16 verify that the vector X is a solution of
the given system.

11.

12.

13.

14. X� � � 2
�1

1
0�X; X � �1

3�et � � 4
�4� tet

X� � ��1
1

1
4

�1�X; X � ��1
2�e�3t/2

 
dy
dt

� �2x � 4y; X � � 5 cos t
3 cos t � sin t�et

 
dx
dt

� �2x � 5y

dy
dt

 � 4x � 7y; X � �1
2�e�5t

dx
dt

 � 3x � 4y

d
dt

 �x
y� � �3

1
�7

1��
x
y� � �4

8�sin t � �  t � 4
2t � 1�e4t

d
dt

 �
x
y
z� � �

1
3

�2

�1
�4

5

2
1
6��

x
y
z� � �

1
2
2�e�t � �

3
�1

1�t

X� � �
7
4
0

5
1

�2

�9
1
3�X � �

0
2
1�e5t � �

8
0
3�e�2t
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15.

16.

In Problems 17–20 the given vectors are solutions of a
system X� � AX. Determine whether the vectors form a
fundamental set on the interval (��, �).

17.

18.

19.

20.

In Problems 21–24 verify that the vector Xp is a particular
solution of the given system.

21.

dy
dt

 � 3x � 2y � 4t � 18; Xp � � 2
�1�t � �5

1�

dx
dt

 � x � 4y � 2t � 7

X1 � �
1
6

�13�, X2 � �
1

�2
�1�e�4t, X3 � �

2
3

�2�e3t

X3 � �
3

�6
12� � t�

2
4
4�

 X1 � �
1

�2
4� � t�

1
2
2�, X2 � �

1
�2

4�,

X1 � � 1
�1�et, X2 � �2

6�et � � 8
�8� tet

X1 � �1
1�e�2t, X2 � � 1

�1�e�6t

X� � �
1
1

�2

0
1
0

1
0

�1�X; X � �
sin t

�1
2 sin t � 1

2 cos t 
�sin t � cos t �

X� � �
1
6

�1

2
�1
�2

1
0

�1�X; X � �
1
6

�13�

8.2 HOMOGENEOUS LINEAR SYSTEMS ● 333

22.

23.

24.

25. Prove that the general solution of

on the interval (��, �) is

26. Prove that the general solution of

on the interval (��, �) is

�  �1
0� t2 � ��2

4� t � �1
0�.

 X � c1� 1
�1 � 12�e12t � c2� 1

�1 � 12�e�12t

X� � ��1
�1

�1
1�X � �1

1� t2 � � 4
�6� t � ��1

5�

X � c1�
6

�1
�5�e�t � c2�

�3
1
1�e�2t � c3�

2
1
1�e3t.

X� � �
0
1
1

6
0
1

0
1
0�X

X� � �
1

�4
�6

2
2
1

3
0
0�X � �

�1
4
3�sin 3t; Xp � �

sin 3t
0

cos 3t�

X� � �2
3

1
4�X � �1

7�et; Xp � �1
1�et � � 1

�1� tet

X� � �2
1

1
�1�X � ��5

2�; Xp � �1
3�

HOMOGENEOUS LINEAR SYSTEMS

REVIEW MATERIAL
● Section II.3 of Appendix II
● Also the Student Resource Manual

INTRODUCTION We saw in Example 5 of Section 8.1 that the general solution of the homogeneous

system is

. 

Because the solution vectors X1 and X2 have the form 

, i � 1, 2, Xi � �k1

k2
�e
i t

X � c1X1 � c2X2 � c1� 1
�1�e�2t � c2�3

5�e6t

X� � �1
5

3
3�X 

8.2

(continues on page 334)
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334 ● CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS

where k1, k2, l1, and l2 are constants, we are prompted to ask whether we can always find a solution
of the form

(1)

for the general homogeneous linear first-order syste
(2)

where A is an n � n matrix of constants.
X� � AX,

X �
 ( k1

k2

kn

)elt � Kelt...

THEOREM 8.2.1 General Solution—Homogeneous Systems

Let l1, l2, . . . , ln be n distinct real eigenvalues of the coefficient matrix A of the
homogeneous system (2) and let K1, K2, . . . , Kn be the corresponding eigenvec-
tors. Then the general solution of (2) on the interval (��, �) is given by

X � c1K1e
1t � c2K2e
2t � � � � � cnKne
nt.

Eigenvalues and Eigenvectors If (1) is to be a solution vector of the homoge-
neous linear system (2), then X� � Klelt, so the system becomes Klelt � AKelt.
After dividing out elt and rearranging, we obtain AK � lK or AK � lK � 0. Since
K � IK, the last equation is the same as

(3)
The matrix equation (3) is equivalent to the simultaneous algebraic equations

Thus to find a nontrivial solution X of (2), we must first find a nontrivial solution
of the foregoing system; in other words, we must find a nontrivial vector K that
satisfies (3). But for (3) to have solutions other than the obvious solution

, we must have

This polynomial equation in l is called the characteristic equation of the matrix A;
its solutions are the eigenvalues of A. A solution K 	 0 of (3) corresponding to
an eigenvalue l is called an eigenvector of A. A solution of the homogeneous system
(2) is then X � Kelt.

In the discussion that follows we examine three cases: real and distinct eigen-
values (that is, no eigenvalues are equal), repeated eigenvalues, and, finall , complex
eigenvalues.

8.2.1 DISTINCT REAL EIGENVALUES

When the n � n matrix A possesses n distinct real eigenvalues l1, l2, . . . , ln, then a
set of n linearly independent eigenvectors K1, K2, . . . , Kn can always be found, and

is a fundamental set of solutions of (2) on the interval (��, �).

X1 � K1e
1t,    X2 � K2e
2t,    . . . ,    Xn � Kne
nt

det(A � 
I) � 0.

k1 � k2 � � � � � kn � 0

(a11 � l)k1 � a12k2 � . . . � a1nkn � 0

a2nkn � 0a21k1 � (a22 � l)k2 � . . . �

                      

an1k1 �            an2k2 � . . . � (ann � l)kn � 0.

...
...

(A � 
I)K � 0.
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(a) graph of x � e�t � 3e4t

(b) graph of y � �e�t � 2e4t

(c) trajectory defined by
x � e�t � 3e4t, y � �e�t � 2e4t

in the phase plane
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FIGURE 8.2.1 A solution from (5)
yields three different curves in three
different planes

EXAMPLE 1 Distinct Eigenvalues

Solve
(4)

SOLUTION We first find the eigenvalues and eigenvectors of the matrix of
coefficients

From the characteristic equation

we see that the eigenvalues are l1 � �1 and l2 � 4.
Now for l1 � �1, (3) is equivalent to

Thus k1 � �k2. When k2 � �1, the related eigenvector is

For 
2 � 4 we have

so therefore with k2 � 2 the corresponding eigenvector is

Since the matrix of coefficients A is a 2 � 2 matrix and since we have found two lin-
early independent solutions of (4),

we conclude that the general solution of the system is

(5)

Phase Portrait You should keep firmly in mind that writing a solution of a sys-
tem of linear first-order differential equations in terms of matrices is simply an
alternative to the method that we employed in Section 4.9, that is, listing the individ-
ual functions and the relationship between the constants. If we add the vectors on the
right-hand side of (5) and then equate the entries with the corresponding entries in
the vector on the left-hand side, we obtain the more familiar statement

As was pointed out in Section 8.1, we can interpret these equations as parametric
equations of curves in the xy-plane or phase plane. Each curve, corresponding to
specific choices for c1 and c2, is called a trajectory. For the choice of constants
c1 � c2 � 1 in the solution (5) we see in Figure 8.2.1 the graph of x(t) in the
tx-plane, the graph of y(t) in the ty-plane, and the trajectory consisting of the points

x � c1e�t � 3c2e4t,    y � �c1e�t � 2c2e4t.

X � c1X1 � c2X2 � c1� 1
�1�e�t � c2�3

2�e4t.

X1 � � 1
�1�e�t    and    X2 � �3

2�e4 t,

K2 � �3
2�.

k1 � 3
2 k2;

 2k1 � 3k2 � 0

 �2k1 � 3k2 � 0

K1 � � 1
�1�.

 2k1 � 2k2 � 0.

 3k1 � 3k2 � 0

det(A � 
I) � �2 � 


2
3

1 � 
 � � 
2 � 3
 � 4 � (
 � 1)(
 � 4) � 0

 
dy
dt

� 2x �  y.

 
dx
dt

� 2x � 3y
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(x(t), y(t)) in the phase plane. A collection of representative trajectories in the phase
plane, as shown in Figure 8.2.2, is said to be a phase portrait of the given linear
system. What appears to be two red lines in Figure 8.2.2 are actually four red
half-lines defined parametrically in the first, second, third, and fourth quadrants
by the solutions X2, �X1, �X2, and X1, respectively. For example, the Cartesian
equations , and y � �x, x � 0, of the half-lines in the first and fourth
quadrants were obtained by eliminating the parameter t in the solutions x � 3e4t,
y � 2e4t, and x � e�t, y � �e�t, respectively. Moreover, each eigenvector can be
visualized as a two-dimensional vector lying along one of these half-lines. The

eigenvector lies along in the first quadrant, and lies

along y � �x in the fourth quadrant. Each vector starts at the origin; K2 terminates
at the point (2, 3), and K1 terminates at (1, �1).

The origin is not only a constant solution x � 0, y � 0 of every 2 � 2 homoge-
neous linear system X� � AX, but also an important point in the qualitative study of
such systems. If we think in physical terms, the arrowheads on each trajectory
in Figure 8.2.2 indicate the direction that a particle with coordinates (x(t), y(t)) on
that trajectory at time t moves as time increases. Observe that the arrowheads, with
the exception of only those on the half-lines in the second and fourth quadrants,
indicate that a particle moves away from the origin as time t increases. If we imagine
time ranging from �� to �, then inspection of the solution x � c1e�t � 3c2e4t,
y � �c1e�t � 2c2e4t, c1 	 0, c2 	 0 shows that a trajectory, or moving particle,
“starts” asymptotic to one of the half-lines defined by X1 or �X1 (since e4t is negli-
gible for ) and “finishes” asymptotic to one of the half-lines defined by X2
and �X2 (since e�t is negligible for ).

We note in passing that Figure 8.2.2 represents a phase portrait that is typical of
all 2 � 2 homogeneous linear systems X� � AX with real eigenvalues of opposite
signs. See Problem 17 in Exercises 8.2. Moreover, phase portraits in the two cases
when distinct real eigenvalues have the same algebraic sign are typical of all such
2 � 2 linear systems; the only difference is that the arrowheads indicate that a parti-
cle moves away from the origin on any trajectory as when both l1 and l2 are
positive and moves toward the origin on any trajectory when both l1 and l2 are neg-
ative. Consequently, we call the origin a repeller in the case l1 � 0, l2 � 0 and an
attractor in the case l1 � 0, l2 � 0. See Problem 18 in Exercises 8.2. The origin in
Figure 8.2.2 is neither a repeller nor an attractor. Investigation of the remaining case
when l � 0 is an eigenvalue of a 2 � 2 homogeneous linear system is left as an
exercise. See Problem 49 in Exercises 8.2.

t : �

t : �
t : ��

K1 � � 1
�1�y � 2

3
 xK2 � �3

2�

y � 2
3

 x, x � 0
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x

y

X1
X2

FIGURE 8.2.2 A phase portrait of
system (4)

EXAMPLE 2 Distinct Eigenvalues

Solve

(6)

SOLUTION Using the cofactors of the third row, we fin

and so the eigenvalues are l1 � �3, l2 � �4, and l3 � 5.

det(A � 
I) � p
�4 � 


1
0

1
5 � 


1

   1
�1

�3 � 

p � �(
 � 3)(
 � 4)(
 � 5) � 0,

 
dz
dt

�  y � 3 z.

 
dy
dt

�   x � 5 y �  z

 
dx
dt

� �4x �  y �  z
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For l1 � �3 Gauss-Jordan elimination gives

Therefore k1 � k3 and k2 � 0. The choice k3 � 1 gives an eigenvector and corre-
sponding solution vector

(7)

Similarly, for l2 � �4

implies that k1 � 10k3 and k2 � �k3. Choosing k3 � 1, we get a second eigenvector
and solution vector

(8)

Finally, when l3 � 5, the augmented matrices

yield (9)

The general solution of (6) is a linear combination of the solution vectors in (7),
(8), and (9):

Use of Computers Software packages such as MATLAB, Mathematica,
Maple, and DERIVE can be real time savers in finding eigenvalues and eigenvectors
of a matrix A.

8.2.2 REPEATED EIGENVALUES

Of course, not all of the n eigenvalues l1, l2, . . . , ln of an n � n matrix A need be
distinct; that is, some of the eigenvalues may be repeated. For example, the charac-
teristic equation of the coefficient matrix in the syste

(10)X� � �3
2

�18
�9�X

X � c1�1
0
1
�e�3t � c2� 10

�1
1
�e�4t � c3�1

8
1
�e5t.

K3 � �
1
8
1�,    X3 � �

1
8
1�e5t.

(A � 5I �0) � ( ��9
1
0

1
�1
�8

0
0
0

1
0
1

 ) ( �1
0
0

�1
�8

0

0
0
0

0
1
0

 )row
operations

K2 � �
10

�1
1�,    X2 � �

10
�1

1�e�4t.

(A � 4I �0) � ( �0
1
0

1
�1

1

0
0
0

1
9
1

 )  ( �1
0
0

�10
1
0

0
0
0

0
1
0

 )row
operations

K1 � �
1
0
1�,    X1 � �

1
0
1�e�3t.

(A � 3I �0) � ( ��1
1
0

1
�1

0

0
0
0

1
8
1

 ) ( �1
0
0

�1
0
0

0
0
0

0
1
0

 ).row
operations
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is readily shown to be (l � 3)2 � 0, and therefore l1 � l2 � �3 is a root of multi-
plicity two. For this value we find the single eigenvecto

(11)

is one solution of (10). But since we are obviously interested in forming the general
solution of the system, we need to pursue the question of finding a second solution.

In general, if m is a positive integer and (l� l1)m is a factor of the characteristic
equation while (l� l1)m�1 is not a factor, then l1 is said to be an eigenvalue of
multiplicity m. The next three examples illustrate the following cases:

(i) For some n � n matrices A it may be possible to find m linearly inde-
pendent eigenvectors K1, K2, . . . , Km corresponding to an eigenvalue

1 of multiplicity m 
 n. In this case the general solution of the system
contains the linear combination

(ii) If there is only one eigenvector corresponding to the eigenvalue l1 of
multiplicity m, then m linearly independent solutions of the form

where Kij are column vectors, can always be found.

Eigenvalue of Multiplicity Two We begin by considering eigenvalues of
multiplicity two. In the first example we illustrate a matrix for which we can find two
distinct eigenvectors corresponding to a double eigenvalue.

X1 � K11el1t

X2 � K21tel1t � K22el1t

               
Xm � Km1                       el1t � Km2                        el1t � . . . � Kmmel1t, 

tm�1
––––––––
(m � 1)!

tm�2
––––––––
(m � 2)!

...

c1K1e
1t � c2K2e
1t � � � � � cmKme
1t.

K1 � �3
1�,    so    X1 � �3

1�e�3t
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EXAMPLE 3 Repeated Eigenvalues

Solve 

SOLUTION Expanding the determinant in the characteristic equation

yields �(l� 1)2(l � 5) � 0. We see that l1 � l2 � �1 and l3 � 5.
For l1 � �1 Gauss-Jordan elimination immediately gives

(A � I �0) � ( �2
�2

2

2
�2

2

0
0
0

�2
2

�2
 ) ( �1

0
0

�1
0
0

0
0
0

1
0
0

 ).row
operations

det(A � 
I) � p
1 � 


�2
   2

�2
1 � 


�2

   2
�2

1 � 

p � 0

X� � �
1

�2
2

�2
1

�2

2
�2

1�X.
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The first row of the last matrix means k1 � k2 � k3 � 0 or k1 � k2 � k3. The choices
k2 � 1, k3 � 0 and k2 � 1, k3 � 1 yield, in turn, k1 � 1 and k1 � 0. Thus two
eigenvectors corresponding to l1 � �1 are

Since neither eigenvector is a constant multiple of the other, we have found two
linearly independent solutions,

corresponding to the same eigenvalue. Lastly, for l3 � 5 the reduction

implies that k1 � k3 and k2 � �k3. Picking k3 � 1 gives k1 � 1, k2 � �1; thus a
third eigenvector is

We conclude that the general solution of the system is

The matrix of coefficients A in Example 3 is a special kind of matrix known
as a symmetric matrix. An n � n matrix A is said to be symmetric if its transpose
AT (where the rows and columns are interchanged) is the same as A—that is, if
AT � A. It can be proved that if the matrix A in the system X� � AX is symmetric
and has real entries, then we can always find n linearly independent eigen-
vectors K1, K2, . . . , Kn, and the general solution of such a system is as given in
Theorem 8.2.1. As illustrated in Example 3, this result holds even when some of the
eigenvalues are repeated.

Second Solution Now suppose that l1 is an eigenvalue of multiplicity two
and that there is only one eigenvector associated with this value. A second solution
can be found of the form

, (12)

where and )K �
 ( k1

k2

kn

 ) .P �
 ( p1

p2

pn

...
...

X2 � Kte
1t � Pe
1t

X � c1�
1
1
0�e�t � c2�

0
1
1�e�t � c3�

1
�1

1�e5t.

K3 � �
1

�1
1�.

(A � 5I �0) � ( ��4
�2

2

2
�2
�4

0
0
0

�2
�4
�2

 ) ( �1
0
0

�1
1
0

0
0
0

0
1
0

 )row
operations

 X1 � �
1
1
0�e�t     and    X2 � �

0
1
1�e�t,

 K1 � �
1
1
0�    and     K2 � �

0
1
1�.
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To see this, we substitute (12) into the system X� � AX and simplify:

Since this last equation is to hold for all values of t, we must have

(13)

and (14)

Equation (13) simply states that K must be an eigenvector of A associated with l1.
By solving (13), we find one solution . To find the second solution X2, we
need only solve the additional system (14) for the vector P.

X1 � Ke
1t

(A � 
1I)P � K.

(A � 
1I)K � 0

(AK � 
1K)te
1t � (AP � 
1P � K)e
1t � 0.
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x

y

X1

FIGURE 8.2.3 A phase portrait of
system (10)

EXAMPLE 4 Repeated Eigenvalues

Find the general solution of the system given in (10).

SOLUTION From (11) we know that l1 � �3 and that one solution is

. Identifying , we find from (14) that we must

now solve

.

Since this system is obviously equivalent to one equation, we have an infinit
number of choices for p1 and p2. For example, by choosing p1 � 1, we find .

However, for simplicity we shall choose so that p2 � 0. Hence .

Thus from (12) we find . The general solution of (10) is  

then X � c1X1 � c2X2 or

By assigning various values to c1 and c2 in the solution in Example 4, we
can plot trajectories of the system in (10). A phase portrait of (10) is given in
Figure 8.2.3. The solutions X1 and �X1 determine two half-lines 
and , respectively, shown in red in the figure. Because the single
eigenvalue is negative and as on every trajectory, we have

as . This is why the arrowheads in Figure 8.2.3 indicate
that a particle on any trajectory moves toward the origin as time increases and why
the origin is an attractor in this case. Moreover, a moving particle or trajectory

, approaches (0, 0)
tangentially to one of the half-lines as . In contrast, when the repeated eigen-
value is positive, the situation is reversed and the origin is a repeller. See Problem 21
in Exercises 8.2. Analogous to Figure 8.2.2, Figure 8.2.3 is typical of all 2 � 2
homogeneous linear systems X� � AX that have two repeated negative eigenvalues.
See Problem 32 in Exercises 8.2.

Eigenvalue of Multiplicity Three When the coefficient matrix A has only
one eigenvector associated with an eigenvalue l1 of multiplicity three, we can find a

t : �
y � c1e�3t � c2te�3t, c2 	 0x � 3c1e�3t � c2(3te�3t � 1

2e�3t),

t : �(x(t), y(t)) : (0, 0)
t : �e�3t : 0

y � 1
3 x, x � 0

y � 1
3 x, x � 0

X � c1�3
1�e�3t � c2��3

1� te�3t � �
1
2

0�e�3t�.

X2 � �3
1� te�3t � �

1
2

0�e�3t

P � �
1
2

0�p1 � 1
2

p2 � 1
6

(A � 3I)P � K    or    
6p1 � 18p2 � 3
2p1 �    6p2 � 1

K � �3
1� and P � �p1

p2
�X1 � �3

1�e�3t
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second solution of the form (12) and a third solution of the form

, (15)

where

By substituting (15) into the system X� � AX, we find that the column vectors K, P,
and Q must satisfy

(16)

(17)

and (18)

Of course, the solutions of (16) and (17) can be used in forming the solutions X1
and X2.

 (A � 
1I)Q � P.

 (A � 
1I)P � K

 (A � 
1I)K � 0

and ),K �
 ( k1

k2

kn

...
 ),P �

 ( p1

p2

pn

...
 ).Q �

 ( q1

q2

qn

...

X3 � K 
t2

2
e
1t � Pte
1t � Qe
1t
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EXAMPLE 5 Repeated Eigenvalues

Solve .

SOLUTION The characteristic equation (l� 2)3 � 0 shows that l1 � 2 is an
eigenvalue of multiplicity three. By solving (A � 2I)K � 0, we find the single
eigenvector

We next solve the systems (A � 2I)P � K and (A � 2I)Q � P in succession and
find tha

Using (12) and (15), we see that the general solution of the system is

.X � c1�
1
0
0�e2t � c2��

1
0
0�te2t � �

0
1
0�e2t�� c3��

1
0
0� t2

2
 e2t � �

0
1
0� te2t � �

0
�6

5
1
5
�e2t�

P � �
0
1
0�    and    Q � �

0
�6

5
1
5
�.

K � �
1
0
0�.

X� � �
2
0
0

1
2
0

6
5
2�X

REMARKS

When an eigenvalue l1 has multiplicity m, either we can find m linearly
independent eigenvectors or the number of corresponding eigenvectors is less
than m. Hence the two cases listed on page 338 are not all the possibilities under
which a repeated eigenvalue can occur. It can happen, say, that a 5 � 5 matrix
has an eigenvalue of multiplicity five and there exist three corresponding lin-
early independent eigenvectors. See Problems 31 and 50 in Exercises 8.2.
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8.2.3 COMPLEX EIGENVALUES

If l1 � a � bi and l2 � a � bi, b � 0, i2 � �1 are complex eigenvalues of the
coefficient matrix A, we can then certainly expect their corresponding eigenvectors
to also have complex entries.*

For example, the characteristic equation of the system

(19)

is

From the quadratic formula we find l1 � 5 � 2i, l2 � 5 � 2i.
Now for l1 � 5 � 2i we must solve

Since k2 � (1 � 2i)k1,† the choice k1 � 1 gives the following eigenvector and
corresponding solution vector:

In like manner, for l2 � 5 � 2i we fin

We can verify by means of the Wronskian that these solution vectors are linearly
independent, and so the general solution of (19) is

(20)

Note that the entries in K2 corresponding to l2 are the conjugates of the
entries in K1 corresponding to l1. The conjugate of l1 is, of course, l2. We
write this as and . We have illustrated the following general
result.

K2 � K1
2 � 
1

X � c1� 1
1 � 2i�e(5�2i )t � c2� 1

1 � 2i�e(5�2i )t.

K2 � � 1
1 � 2i�,    X2 � � 1

1 � 2i�e(5�2i)t.

K1 � � 1
1 � 2i�,    X1 � � 1

1 � 2i�e(5�2i)t.

 5k1 � (1 � 2i) k2 � 0.

 (1 � 2i)k1 �   k2 � 0

det(A � 
I) � �6 � 


5
�1

4 � 
� � 
2 � 10
 � 29 � 0.

dx
dt

� 6x � y

  
dy
dt

� 5x � 4y

342 ● CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS

*When the characteristic equation has real coefficients, complex eigenvalues always appear in conjugat
pairs.
†Note that the second equation is simply (1 � 2i) times the first

THEOREM 8.2.2 Solutions Corresponding to a Complex Eigenvalue

Let A be the coefficient matrix having real entries of the homogeneous system (2),
and let K1 be an eigenvector corresponding to the complex eigenvalue l1 �
a� ib, a and b real. Then

are solutions of (2).

K1e
1t    and    K1e
1t

27069_08_ch08_p325-361.qxd  2/2/12  2:47 PM  Page 342

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



It is desirable and relatively easy to rewrite a solution such as (20) in terms of
real functions. To this end we first use Eule ’s formula to write

Then, after we multiply complex numbers, collect terms, and replace c1 � c2 by C1
and (c1 � c2)i by C2, (20) becomes

(21)

where

and

It is now important to realize that the vectors X1 and X2 in (21) constitute a linearly
independent set of real solutions of the original system. Consequently, we are justi-
fied in ignoring the relationship between C1, C2 and c1, c2, and we can regard C1 and
C2 as completely arbitrary and real. In other words, the linear combination (21) is
an alternative general solution of (19). Moreover, with the real form given in (21) we
are able to obtain a phase portrait of the system in (19). From (21) we find x(t) and
y(t) to be

By plotting the trajectories (x(t), y(t)) for various values of C1 and C2, we obtain the
phase portrait of (19) shown in Figure 8.2.4. Because the real part of l1 is 5 � 0,

as . This is why the arrowheads in Figure 8.2.4 point away from the
origin; a particle on any trajectory spirals away from the origin as . The origin
is a repeller.

The process by which we obtained the real solutions in (21) can be generalized.
Let K1 be an eigenvector of the coefficient matrix A (with real entries)
corresponding to the complex eigenvalue l1 � a � ib. Then the solution vectors in
Theorem 8.2.2 can be written as

By the superposition principle, Theorem 8.1.2, the following vectors are also
solutions:

Both and are real numbers for any complex
number z � a � ib. Therefore, the entries in the column vectors and

are real numbers. By definin

(22)

we are led to the following theorem.

B1 �
1
2
 (K1 � K1)    and    B2 �

i
2
 (�K1 � K1),

1
2 i(�K1 � K1)

1
2(K1 � K1)

1
2 i (�z � z) � b1

2 (z � z) � a

 X2 �
i
2

(�K1e
1t � K1e
1t ) �
i
2

(�K1 � K1)e�t cos �t �
1
2

(K1 � K1)e�t sin �t.

 X1 �
1
2

(K1e
1t � K1e
1t ) �
1
2

(K1 � K1)e�t cos �t �
i
2

(�K1 � K1)e�t sin �t

 K1e
1t � K1e�te�i�t � K1e�t(cos �t � i sin �t).

 K1e
1t � K1e�tei�t � K1e�t(cos �t � i sin �t)

t : �
t : �e5t : �

 y � (C1 � 2C2)e5t cos 2t � (2C1 � C2)e5t sin 2t.

 x � C1e5t cos 2t � C2e5t sin 2t

 X2 � �� 0
�2�cos 2t � �1

1�sin 2t�e5t.

 X1 � ��1
1�cos 2t � � 0

�2�sin 2t�e5t

X � C1X1 � C2X2 ,

 e(5�2i )t � e5te�2ti � e5t(cos 2t � i sin 2t).

 e(5�2i )t � e5te2ti � e5t(cos 2t � i sin 2t)

8.2 HOMOGENEOUS LINEAR SYSTEMS ● 343

FIGURE 8.2.4 A phase portrait of
system (19)

x

y
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The matrices B1 and B2 in (22) are often denoted by
(24)

since these vectors are, respectively, the real and imaginary parts of the eigenvector
K1. For example, (21) follows from (23) with

 B1 � Re(K1) � �1
1�   and   B2 � Im(K1) � � 0

�2�.

 K1 � � 1
1 � 2i� � �1

1� � i� 0
�2�,

B1 � Re(K1)    and    B2 � Im(K1)

344 ● CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS

THEOREM 8.2.3 Real Solutions Corresponding to a Complex Eigenvalue

Let l1 � a� ib be a complex eigenvalue of the coefficient matrix A in the
homogeneous system (2) and let B1 and B2 denote the column vectors define
in (22). Then

(23)

are linearly independent solutions of (2) on (��, �).

 X2 � [B2 cos �t � B1 sin �t]e�t

 X1 � [B1 cos �t � B2 sin �t]e�t

EXAMPLE 6 Complex Eigenvalues

Solve the initial-value problem

(25)

SOLUTION First we obtain the eigenvalues from

The eigenvalues are l1 � 2i and . For l1 the system

gives k1 � �(2 � 2i)k2. By choosing k2 � �1, we get

Now from (24) we form

Since a� 0, it follows from (23) that the general solution of the system is

(26) � c1�2 cos 2t � 2 sin 2t
�cos 2t � � c2�2 cos 2t � 2 sin 2t

�sin 2t �.

X � c1�� 2
�1�cos 2t � �2

0�sin 2t� � c2��2
0�cos 2t � � 2

�1�sin 2t�

B1 � Re(K1) � � 2
�1�    and    B2 � Im(K1) � �2

0�.

K1 � �2 � 2i
�1 � � � 2

�1� � i�2
0�.

   �k1 � (�2 � 2i ) k2 � 0

(2 � 2i ) k1 �   8k2 � 0


2 � 
1 � �2i

det(A � 
I ) � �2 � 


�1
8

�2 � 
 � � 
2 � 4 � 0.

X� � � 2
�1

8
�2�X,  X(0) � � 2

�1�.
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X� � X. (29)�
   0
   0

�
k1

m1
�

k2

m1

   
k2

m2

 0
 0

   
k2

m1

�
k2

m2

1
0

0

0

0
1

0

0
�

8.2 HOMOGENEOUS LINEAR SYSTEMS ● 345

Some graphs of the curves or trajectories defined by solution (26) of the system
are illustrated in the phase portrait in Figure 8.2.5. Now the initial condition

or, equivalently, x(0) � 2 and y(0) � �1 yields the algebraic system

2c1 � 2c2 � 2, �c1 � �1, whose solution is c1 � 1, c2 � 0. Thus the solution 

to the problem is . The specific trajectory defined

parametrically by the particular solution x � 2 cos 2t � 2 sin 2t, y � �cos 2t is the
red curve in Figure 8.2.5. Note that this curve passes through (2, �1).

X � �2 cos 2t � 2 sin 2t
�cos 2t �

X(0) � � 2
�1�

FIGURE 8.2.5 A phase portrait of (25)
in Example 6

x

y

(2, _1)

REMARKS

In this section we have examined exclusively homogeneous first-order systems
of linear equations in normal form X� � AX. But often the mathematical
model of a dynamical physical system is a homogeneous second-order system
whose normal form is X� � AX. For example, the model for the coupled
springs in (1) of Section 7.6,

(27)

can be written as
where

Since M is nonsingular, we can solve for X� as X� � AX, where A � M�1K.
Thus (27) is equivalent to

(28)

The methods of this section can be used to solve such a system in two ways:

• First, the original system (27) can be transformed into a first-order system
by means of substitutions. If we let and , then and

and so (27) is equivalent to a system of four linear first-order DEs:

or

By finding the eigenvalues and eigenvectors of the coefficient matrix A in
(29), we see that the solution of this first-order system gives the complete
state of the physical system—the positions of the masses relative to the
equilibrium positions (x1 and x2) as well as the velocities of the masses
(x3 and x4) at time t. See Problem 48(a) in Exercises 8.2.

x�4 �
k2

m2
 x1 �

k2

m2
 x2

x�3 � �� k1

m1
�

k2

m1
�x1 �

k2

m1
 x2

x�2 � x4

x�1 � x3

x�4 � x �2

x�3 � x �1x�2 � x4x�1 � x3

X � � ��
k1

m1
�

k2

m1

     
k2

m2

   
k2

m1

�
k2

m2

�X.

M � �m1

0
0

m2
�,    K � ��k1 � k2

k2

   k2

�k2
�,    and    X � �x1(t)

x2(t)�.

MX � � KX,

 m2x �2 � �k2(x2 � x1),

 m1x �1 � �k1x1 � k2(x2 � x1)
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• Second, because (27) describes free undamped motion, it can be argued
that real-valued solutions of the second-order system (28) will have
the form

, (30)

where V is a column matrix of constants. Substituting either of the
functions in (30) into X� � AX yields (A � v2I)V � 0. (Verify.)
By identification with (3) of this section we conclude that l � �v2

represents an eigenvalue and V a corresponding eigenvector of A. It can
be shown that the eigenvalues , i � 1, 2 of A are negative, and
so is a real number and represents a (circular) frequency
of vibration (see (4) of Section 7.6). By superposition of solutions the
general solution of (28) is then

(31)

where V1 and V2 are, in turn, real eigenvectors of A corresponding to l1
and l2.

The result given in (31) generalizes. If are
distinct negative eigenvalues and V1, V2, . . . , Vn are corresponding real
eigenvectors of the n � n coefficient matrix A, then the homogeneous
second-order system X� � AX has the general solution

(32)

where ai and bi represent arbitrary constants. See Problem 48(b) in
Exercises 8.2.

X � �
n

i�1
 (ai cos �i t � bi sin �i t)Vi ,

��1
2, ��2

2, . . . , ��n
2

 � (c1 cos �1t � c2 sin �1t)V1 � (c3 cos �2t � c4 sin �2t)V2,

 X � c1V1 cos �1t � c2V1 sin �1t � c3V2 cos �2t � c4V2 sin �2t

�i � 1�
i


i � ��i
2

X � V cos �t    and    X � V sin �t

EXERCISES 8.2 Answers to selected odd-numbered problems begin on page ANS-14.

8.2.1 DISTINCT REAL EIGENVALUES

In Problems 1–12 find the general solution of the given
system.

1. 2.

3. 4.

5. 6.

7. 8.

dz
dt

 � 5y � 2z
dz
dt

 � y � z

dy
dt

 � 5x � 10y � 4z
dy
dt

 � 2y

dx
dt

 � 2x � 7y
dx
dt

 � x � y � z

X� � ��6
�3

2
1�XX� � �10

8
�5

�12�X

dy
dt

�
3
4

x � 2y
dy
dt

� � 5
2

x � 2y

dx
dt

� � 5
2

x � 2y
dx
dt

� �4x � 2y

dy
dt

� x � 3y
dy
dt

� 4x � 3y

dx
dt

� 2x � 2y
dx
dt

� x � 2y

9.

10.

11.

12.

In Problems 13 and 14 solve the given initial-value problem.

13.

14. X� � �
1
0
1

1
2
1

4
0
1�X, X(0) � �

1
3
0�

X� � �
1
2

1
0

�1
2
�X, X(0) � �3

5�

X� � �
�1

4
0

4
�1

0

2
�2

6�X

X� � �
�1

3
4
1
8

�1
�3

2
1
4

0
3

�1
2
�X

X� � �
1
0
1

0
1
0

1
0
1�X

X� � �
�1

1
0

1
2
3

0
1

�1�X
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Computer Lab Assignments

In Problems 15 and 16 use a CAS or linear algebra software
as an aid in finding the general solution of the given system.

15.

16.

17. (a) Use computer software to obtain the phase portrait
of the system in Problem 5. If possible, include
arrowheads as in Figure 8.2.2. Also include four
half-lines in your phase portrait.

(b) Obtain the Cartesian equations of each of the four
half-lines in part (a).

(c) Draw the eigenvectors on your phase portrait of the
system.

18. Find phase portraits for the systems in Problems 2 and 4.
For each system find any half-line trajectories and
include these lines in your phase portrait.

8.2.2 REPEATED EIGENVALUES

In Problems 19–28 find the general solution of the given
system.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28. X� � �
4
0
0

1
4
0

0
1
4�XX� � �

1
2
0

0
2
1

0
�1

0�X

X� � �
1
0
0

0
3

�1

0
1
1�XX� � �

5
1
0

�4
0
2

0
2
5�X

dz
dt

 � 4x � 2y � 3z
dz
dt

� x � y � z

dy
dt

 � 2x � 2z
dy
dt

� x � y � z

dx
dt

 � 3x � 2y � 4z
dx
dt

� 3x � y � z

X� � �12
4

�9
0�XX� � ��1

�3
3
5�X

dy
dt

 � �5x � 4y
dy
dt

 � 9x � 3y

dx
dt

 � �6x � 5y
dx
dt

 � 3x � y

X� � �
 1
 0
 1
 0
 �2.8

0
5.1
2
1
0

  2
  0
�3
�3.1
  0

�1.8
�1
 0
 4
 1.5

0
3
0
0
1
�X

X� � �
0.9
0.7
1.1

2.1
6.5
1.7

3.2
4.2
3.4�X
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In Problems 29 and 30 solve the given initial-value problem.

29.

30.

31. Show that the 5 � 5 matrix

has an eigenvalue l1 of multiplicity 5. Show that three
linearly independent eigenvectors corresponding to l1
can be found.

Computer Lab Assignments

32. Find phase portraits for the systems in Problems 20
and 21. For each system find any half-line trajectories
and include these lines in your phase portrait.

8.2.3 COMPLEX EIGENVALUES

In Problems 33–44 find the general solution of the given
system.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42. X� � �
4
0

�4

0
6
0

1
0
4�XX� � �

1
�1
�1

�1
1
0

2
0
1�X

dz
dt

 � �4x � 3z
dz
dt

 � y

dy
dt

 � 3x � 6z
dy
dt

 � �z

dx
dt

 � 2x � y � 2z
dx
dt

 � z

X� � �1
1

�8
�3�XX� � �4

5
�5
�4�X

dy
dt

 � �2x � 6y
dy
dt

 � �2x � 3y

dx
dt

 � 4x � 5y
dx
dt

 � 5x � y

dy
dt

 � �2x � y
dy
dt

� 5x � 2y

dx
dt

 � x � y
dx
dt

� 6x � y

A � �
2
0
0
0
0

1
2
0
0
0

0
0
2
0
0

0
0
0
2
0

0
0
0
1
2
�

X� � �
0
0
1

0
1
0

1
0
0�X, X(0) � �

1
2
5�

X� � � 2
�1

4
6�X, X(0) � ��1

6�
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43. 44.

In Problems 45 and 46 solve the given initial-value problem.

45.

46.

Computer Lab Assignments

47. Find phase portraits for the systems in Problems 36, 37,
and 38.

48. (a) Solve (2) of Section 7.6 using the first method
outlined in the Remarks (page 345)—that is, express
(2) of Section 7.6 as a first-order system of four lin-
ear equations. Use a CAS or linear algebra software
as an aid in finding eigenvalues and eigenvectors of
a 4 � 4 matrix. Then apply the initial conditions to
your general solution to obtain (4) of Section 7.6.

(b) Solve (2) of Section 7.6 using the second method out-
lined in the Remarks—that is, express (2) of Sec-
tion 7.6 as a second-order system of two linear equa-
tions. Assume solutions of the form X � V sin vt

X� � �6
5

�1
4�X, X(0) � ��2

8�

X� � �
1
1
1

�12
2
1

�14
�3
�2�X,  X(0) � �

4
6

�7�

X� � �
2

�1
�1

4
�2

0

4
0

�2�XX� � �
2

�5
0

5
�6

0

1
4
2�X
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and X � V cos vt. Find the eigenvalues and eigen-
vectors of a 2 � 2 matrix. As in part (a), obtain (4)
of Section 7.6.

Discussion Problems

49. Solve each of the following linear systems.

(a) (b)

Find a phase portrait of each system. What is the geo-
metric significance of the line y � �x in each portrait?

50. Consider the 5 � 5 matrix given in Problem 31. Solve
the system X� � AX without the aid of matrix methods,
but write the general solution using matrix notation. Use
the general solution as a basis for a discussion of how the
system can be solved using the matrix methods of this
section. Carry out your ideas.

51. Obtain a Cartesian equation of the curve define
parametrically by the solution of the linear system in
Example 6. Identify the curve passing through (2, �1)
in Figure 8.2.5. [Hint: Compute x2, y2, and xy.]

52. Examine your phase portraits in Problem 47. Under
what conditions will the phase portrait of a 2 � 2
homogeneous linear system with complex eigenvalues
consist of a family of closed curves? consist of a family
of spirals? Under what conditions is the origin (0, 0) a
repeller? An attractor?

X� � � 1
�1

1
�1�XX� � �1

1
1
1�X

8.3.1 UNDETERMINED COEFFICIENTS

The Assumptions As in Section 4.4, the method of undetermined coefficient
consists of making an educated guess about the form of a particular solution vector
Xp; the guess is motivated by the types of functions that make up the entries of the

NONHOMOGENEOUS LINEAR SYSTEMS

REVIEW MATERIAL
● Section 4.4 (Undetermined Coefficients
● Section 4.6 (Variation of Parameters)

INTRODUCTION In Section 8.1 we saw that the general solution of a nonhomogeneous linear
system X� � AX � F(t) on an interval I is X � Xc � Xp, where 
is the complementary function or general solution of the associated homogeneous linear system
X� � AX and Xp is any particular solution of the nonhomogeneous system. In Section 8.2 we saw
how to obtain Xc when the coefficient matrix A was an n � n matrix of constants. In the present
section we consider two methods for obtaining Xp.

The methods of undetermined coefficient and variation of parameters used in Chapter 4 to
find particular solutions of nonhomogeneous linear ODEs can both be adapted to the solution of
nonhomogeneous linear systems X� � AX � F(t). Of the two methods, variation of parameters
is the more powerful technique. However, there are instances when the method of undetermined
coefficients provides a quick means of finding a particular solutio

Xc � c1X1 � c2X2 � � � � � cnXn

8.3
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column matrix F(t). Not surprisingly, the matrix version of undetermined coefficient
is applicable to X� � AX � F(t) only when the entries of A are constants and the
entries of F(t) are constants, polynomials, exponential functions, sines and cosines,
or finite sums and products of these functions

8.3 NONHOMOGENEOUS LINEAR SYSTEMS ● 349

EXAMPLE 1 Undetermined Coefficient

Solve the system on (��, �).

SOLUTION We first solve the associated homogeneous syste

The characteristic equation of the coefficient matrix A,

yields the complex eigenvalues l1 � i and . By the procedures of
Section 8.2 we fin

Now since F(t) is a constant vector, we assume a constant particular solution vector

. Substituting this latter assumption into the original system and equat-

ing entries leads to

Solving this algebraic system gives a1 � 14 and b1 � 11, and so a particular solution

is . The general solution of the original system of DEs on the interval

(��, �) is then X � Xc � Xp or

X � c1�cos t � sin t
cos t � � c2�cos t � sin t

�sin t � � �14
11�.

Xp � �14
11�

 0 � �a1 �  b1 � 3.

 0 � �a1 � 2b1 � 8

Xp � �a1

b1
�

Xc � c1�cos t � sin t
cos t � � c2�cos t � sin t

�sin t �.


2 � 
1 � �i

det(A � 
I ) � ��1 � 


�1
2

1 � 
� � 
2 � 1 � 0,

X� � ��1
�1

2
1�X.

X� � ��1
�1

2
1�X � ��8

3�

EXAMPLE 2 Undetermined Coefficient

Solve the system on (��, �).

SOLUTION The eigenvalues and corresponding eigenvectors of the associated

homogeneous system are found to be l1 � 2, l2 � 7, ,

and . Hence the complementary function is

Xc � c1� 1
�4�e2t � c2�1

1�e7t.

K2 � �1
1�

K1 � � 1
�4�X� � �6

4
1
3�X

X� � �6
4

1
3�X � � 6t

�10t � 4�
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Now because F(t) can be written , we shall try to find a

particular solution of the system that possesses the same form:

Substituting this last assumption into the given system yields

or

From the last identity we obtain four algebraic equations in four unknowns

Solving the first two equations simultaneously yields a2 � �2 and b2 � 6. We then
substitute these values into the last two equations and solve for a1 and b1. The results
are . It follows, therefore, that a particular solution vector is

.

The general solution of the system on (��, �) is X � Xc � Xp or

.X � c1�   1
�4�e2t � c2�1

1�e7t � ��2
6� t � ��

4
7

10
7
�

Xp � ��2
6� t � ��4

7

10
7
�

a1 � �4
7, b1 � 10

7

6a2 �   b2 �   6 � 0
4a2 � 3b2 � 10 � 0

    and    
6a1 �  b1 � a2    � 0 
4a1 � 3b1 � b2 � 4 � 0.

 �0
0� � � (6a2 � b2 � 6)t � 6a1 � b1 � a2

(4a2 � 3b2 � 10)t � 4a1 � 3b1 � b2 � 4�.

 �a2

b2
� � �6

4
1
3���

a2

b2
� t � �a1

b1
�� � � 6

�10� t � �0
4�

Xp � �a2

b2
� t � �a1

b1
�.

F(t) � � 6
�10� t � �0

4�
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EXAMPLE 3 Form of Xp

Determine the form of a particular solution vector Xp for the system

SOLUTION Because F(t) can be written in matrix terms as

a natural assumption for a particular solution would be

Xp � �a3

b3
�e�t � �a2

b2
�t � �a1

b1
�.

F(t) � ��2
1�e�t � � 0

�5� t � �1
7�

dy
dt

 � �x � y � e�t � 5t � 7.

dx
dt

 � 5x � 3y � 2e�t � 1
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8.3 NONHOMOGENEOUS LINEAR SYSTEMS ● 351

REMARKS

The method of undetermined coefficients for linear systems is not as straightfor-
ward as the last three examples would seem to indicate. In Section 4.4 the form
of a particular solution yp was predicated on prior knowledge of the comple-
mentary function yc. The same is true for the formation of Xp. But there are fur-
ther difficulties: The special rules governing the form of yp in Section 4.4 do not
quite carry to the formation of Xp. For example, if F(t) is a constant vector, as
in Example 1, and l� 0 is an eigenvalue of multiplicity one, then Xc contains
a constant vector. Under the Multiplication Rule on page 145 we would 

ordinarily try a particular solution of the form . This is not the

proper assumption for linear systems; it should be . 

Similarly, in Example 3, if we replace e�t in F(t) by e2t (l� 2 is an eigenvalue),
then the correct form of the particular solution vector is

Rather than delving into these difficulties, we turn instead to the method of
variation of parameters.

Xp � �a4

b4
� te2t � �a3

b3
�e2t � �a2

b2
� t � �a1

b1
�.

Xp � �a2

b2
� t � �a1

b1
�

Xp � �a1

b1
� t

8.3.2 VARIATION OF PARAMETERS

A Fundamental Matrix If X1, X2, . . . , Xn is a fundamental set of solutions of
the homogeneous system X� � AX on an interval I, then its general solution on the in-
terval is the linear combination 

(1)

The last matrix in (1) is recognized as the product of an n � n matrix with an
n � 1 matrix. In other words, the general solution (1) can be written as the product

, (2)

where C is an n � 1 column vector of arbitrary constants c1, c2, . . . , cn and the n � n
matrix, whose columns consist of the entries of the solution vectors of the system
X� � AX,

is called a fundamental matrix of the system on the interval.

x11

x21

xn1

�(t) � (  ),x1n

x2n

xnn

x12

x22

xn2

. . .

. . .

. . .

...
...

X � �(t)C

x11

x21

xn1

x12

x22

xn2

X � c1( ) � c2( ) � . . . � cn(...
...

x1n

x2n

xnn

c1x11 � c2x12 � . . . � cnx1n

c1x21 � c2x22 � . . . � cnx2n

c1xn1 � c2xn2 � . . . � cnxnn

) � ( ) ....
...

 X � c1X1 � c2X2 � � � � � cnXn or
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In the discussion that follows we need to use two properties of a fundamental
matrix:

• A fundamental matrix is nonsingular.
• If is a fundamental matrix of the system X� � AX, then

. (3)

A reexamination of (9) of Theorem 8.1.3 shows that det is the same as the
Wronskian W(X1, X2, . . . , Xn). Hence the linear independence of the columns
of on the interval I guarantees that det for every t in the interval. Since

is nonsingular, the multiplicative inverse exists for every t in the inter-
val. The result given in (3) follows immediately from the fact that every column of

is a solution vector of X� � AX.

Variation of Parameters Analogous to the procedure in Section 4.6 we ask
whether it is possible to replace the matrix of constants C in (2) by a column matrix
of functions

(4)

is a particular solution of the nonhomogeneous system

. (5)

By the Product Rule the derivative of the last expression in (4) is

. (6)

Note that the order of the products in (6) is very important. Since U(t) is a column
matrix, the products and are not defined. Substituting (4) and (6)
into (5) gives

(7)

Now if we use (3) to replace , (7) becomes

or (8)

Multiplying both sides of equation (8) by gives

.

Since , we conclude that a particular solution of (5) is

. (9)

To calculate the indefinite integral of the column matrix in (9), we inte-
grate each entry. Thus the general solution of the system (5) is X � Xc � Xp or

. (10)

Note that it is not necessary to use a constant of integration in the evaluation of
for the same reasons stated in the discussion of variation of parame-

ters in Section 4.6.
���1(t)F(t) dt

X � �(t)C � �(t)���1(t)F(t) dt

��1(t)F(t)

Xp � �(t)���1(t)F(t) dt

Xp � �(t)U(t)

U�(t) � ��1(t)F(t)    and so    U(t) � ���1(t)F(t) dt

��1(t)

�(t)U�(t) � F(t).

�(t)U�(t) � A�(t)U(t) � A�(t)U(t) � F(t)

��(t)

�(t)U�(t) � ��(t)U(t) � A�(t)U(t) � F(t).

U(t)��(t)U�(t)�(t)

X�p � �(t)U�(t) � ��(t)U(t)

X� � AX � F(t)

u1(t)
u2(t)

un(t)

U(t) � ( Xp � �(t)U(t)so)...

�(t)

��1(t)�(t)
�(t) 	 0�(t)

�(t)

��(t) � A�(t)

�(t)
�(t)
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8.3 NONHOMOGENEOUS LINEAR SYSTEMS ● 353

EXAMPLE 4 Variation of Parameters

Solve the system

(11)

on (��, �).

SOLUTION We first solve the associated homogeneous syste

. (12)

The characteristic equation of the coefficient matrix i

,

so the eigenvalues are l1 � �2 and l2 � �5. By the usual method we find that the

eigenvectors corresponding to l1 and l2 are, respectively, and

. The solution vectors of the homogeneous system (12) are then

.

The entries in X1 form the first column of , and the entries in X2 form the second
column of . Hence

.

From (9) we obtain the particular solution

Hence from (10) the general solution of (11) on the interval is

. � c1�1
1�e�2t � c2� 1

�2�e�5t � �
6
5
3
5
� t � �

27
50
21
50
� � �

1
4
1
2
� e�t

X � �e�2t

e�2t
e�5t

�2e�5t��c1

c2
� � �

6
5 t � 27

50 � 1
4 e�t

3
5 t � 21

50 � 1
2 e�t �

 � �
6
5 t � 27

50 � 1
4 e�t

3
5 t � 21

50 � 1
2 e�t �.

 � �e�2t

e�2t
e�5t

�2e�5t��  te2t � 1
2 e2t � 1

3et

1
5 te5t � 1

25 e5t � 1
12 e4t�

 � �e�2t

e�2t
e�5t

�2e�5t� � �2te2t � 1
3 et

  te5t � 1
3 e4t� dt

Xp � �(t)���1(t)F(t) dt � �e�2t

e�2t
e�5t

�2e�5t� � �
2
3 e2t

1
3 e5t

1
3 e2t

�1
3 e5t�� 3t

e�t� dt

�(t) � �e�2t

e�2t
e�5t

�2e�5t�    and    ��1(t) � �
2
3e2t

1
3 e5t

1
3 e2t

�1
3 e5t�

�(t)
�(t)

X1 � �1
1�e�2t � �e�2t

e�2t�    and    X2 � � 1
�2�e�5t � � e�5t

�2e�5t�

K2 � � 1
�2�

K1 � �1
1�

det(A � 
I) � ��3 � 


2
1

�4 � 
� � (
 � 2)(
 � 5) � 0

X� � ��3
2

1
�4�X

X� � ��3
2

1
�4�X � � 3t

e�t�
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Initial-Value Problem The general solution of (5) on an interval can be writ-
ten in the alternative manner

, (13)

where t and t0 are points in the interval. This last form is useful in solving (5) subject
to an initial condition X(t0) � X0, because the limits of integration are chosen so that
the particular solution vanishes at t � t0. Substituting t � t0 into (13) yields

from which we get . Substituting this last result into
(13) gives the following solution of the initial-value problem:

. (14)X � �(t)��1(t0)X0 � �(t) �t

t0

 ��1(s)F(s) ds

C � ��1(t0)X0X0 � �(t0)C

X � �(t)C � �(t) �t

t0

 ��1(s)F(s) ds
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FIGURE 8.3.1 Network in Problem 10

R1 R2

L1 L2

i1
i2

i3

E

8.3.2 VARIATION OF PARAMETERS

In Problems 11–30 use variation of parameters to solve the
given system.

11.

12.

13. X� � �3
3
4

�5
�1�X � �   1

�1�et/2

dy
dt

 � 3x � 2y � 4t

dx
dt

 � 2x � y

dy
dt

� 2x � 2y � 1

dx
dt

� 3x � 3y � 4

EXERCISES 8.3 Answers to selected odd-numbered problems begin on page ANS-15.

8.3.1 UNDETERMINED COEFFICIENTS

In Problems 1–8 use the method of undetermined coeffi
cients to solve the given system.

1.

2.

3.

4.

5.

6.

7.

8.

9. Solve subject to

.X(0) � ��4
5�

X� � ��1
3

�2
4�X � �3

3�

X� � �0
0
5

0
5
0

5
0
0
�X � � 5

�10
40
�

X� � �1
0
0

1
2
0

1
3
5
�X � � 1

�1
2
�e4t

X� � ��1
�1

5
1�X � � sin t

�2 cos t�

X� � �4
9

1
3

6�X � ��3
10�et

X� � �1
4

�4
1�X � �4t � 9e6t

�t � e6t�

X� � �1
3

3
1�X � ��2t2

t � 5�

dy
dt

� �x � 11y � 6

dx
dt

� 5x � 9y � 2

dy
dt

� �x � 2y � 5

dx
dt

� 2x � 3y � 7

10. (a) The system of differential equations for the currents
i2(t) and i3(t) in the electrical network shown in
Figure 8.3.1 is

.

Use the method of undetermined coefficients to
solve the system if R1 � 2 �, R2 � 3 �, L1 � 1 h,
L2 � 1 h, E � 60 V, i2(0) � 0, and i3(0) � 0.

(b) Determine the current i1(t).

d
dt

 �i2

i3
� � ��R1>L1

�R1>L2

�R1>L1

�(R1 � R2)>L2
��i2

i3
� � �E>L1

E>L2
�
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14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

In Problems 31 and 32 use (14) to solve the given initial-
value problem.

31.

32. X� � �1
1

�1
�1�X � �1>t

1>t�, X(1) � � 2
�1�

X� � � 3
�1

�1
3�X � �4e2t

4e4t�, X(0) � �1
1�

X� � �3
1
1

�1
1

�1

�1
�1

1
�X � � 0

t
2et�

X� � �1
1
0

1
1
0

0
0
3
�X � � et

e2t

te3t�
X� � �1

1
�2
�1�X � �tan t

1 �

X� � � 1
�1

2

2
1�X � �csc t

sec t�et

X� � � 0
�1

1
0�X � � 1

cot t�

X� � � 0
�1

1
0�X � � 0

sec t tan t�

X� � �2
8

�2
�6�X � �1

3� 
e�2t

t

X� � �1
1

�1
1�X � �cos t

sin t�et

X� � �1
1

�1
1�X � �3

3�et

X� � �0
1

�1
0�X � �sec t

0 �

X� � � 3
�2

2
�1�X � �1

1�

X� � � 3
�2

2
�1�X � �2e�t

e�t �

X� � �1
1

8
�1�X � �e�t

tet �

X� � �1
1

8
�1�X � �12

12� t

X� � � 0
�1

2
3�X � � 2

e�3t�

X� � � 0
�1

2
3�X � � 1

�1�et

X� � �2
4

�1
2�X � � sin 2t

2 cos 2t�e2t
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33. The system of differential equations for the currents i1(t)
and i2(t) in the electrical network shown in Figure 8.3.2 is

.

Use variation of parameters to solve the system
if R1 � 8 �, R2 � 3 �, L1 � 1 h, L2 � 1 h,
E(t) � 100 sin t V, i1(0) � 0, and i2(0) � 0.

d
dt

 �i1

i2
� � ��(R1 � R2)>L2

R2>L1

    R2>L2

�R2>L1
��i1

i2
� � �E>L2

0 �

FIGURE 8.3.2 Network in Problem 33

i1
i2 i3R1

R2E L1

L2

Discussion Problems

34. If y1 and y2 are linearly independent solutions of the
associated homogeneous DE for y� � P(x)y� �
Q(x)y � f (x), show in the case of a nonhomogeneous
linear second-order DE that (9) reduces to the form of
variation of parameters discussed in Section 4.6.

Computer Lab Assignments

35. Solving a nonhomogeneous linear system X� � AX � F(t)
by variation of parameters when A is a 3 � 3 (or larger)
matrix is almost an impossible task to do by hand.
Consider the system

(a) Use a CAS or linear algebra software to find the
eigenvalues and eigenvectors of the coefficien
matrix.

(b) Form a fundamental matrix and use the com-
puter to find .

(c) Use the computer to carry out the computations of:

where C is a
column matrix of constants c1, c2, c3, and c4.

(d) Rewrite the computer output for the general solu-
tion of the system in the form X � Xc � Xp, where
Xc � c1X1 � c2X2 � c3X3 � c4X4.

�(t)C, and �(t)C � ���1(t)F(t) dt,
��1(t)F(t), ���1(t)F(t) dt, �(t)���1(t)F(t) dt,

��1(t)
�(t)

X� � �
2

�1
0
0

�2
3
0
0

2
0
4
2

1
3

�2
�1

�X � �
tet

e�t

e2t

1
�.
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Homogeneous Systems We shall now see that it is possible to define a ma-
trix exponential eAt so that

(1)

is a solution of the homogeneous system X� � AX. Here A is an n � n matrix of
constants, and C is an n � 1 column matrix of arbitrary constants. Note in (1) that the
matrix C post multiplies eAt because we want eAt to be an n � n matrix. While the
complete development of the meaning and theory of the matrix exponential would
require a thorough knowledge of matrix algebra, one way of defining eAt is inspired
by the power series representation of the scalar exponential function eat:

(2)

The series in (2) converges for all t. Using this series, with 1 replaced by the identity
matrix I and the constant a replaced by an n � n matrix A of constants, we arrive at
a definition for the n � n matrix eAt.

 � 1 � at � a2 t
2

2!
� � � � � �k t

k

k!
� � � � � �

�

k�0
�k 

tk

k!
.

 eat � 1 � at �
(at)2

2!
� � � � �

(at)k

k!
� � � �

X � eAtC
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MATRIX EXPONENTIAL

REVIEW MATERIAL
● Appendix II.1 (Definitions II.10 and II. 1)

INTRODUCTION Matrices can be used in an entirely different manner to solve a system of
linear first-order differential equations. Recall that the simple linear first-order differential equation
x� � ax, where a is constant, has the general solution x � ceat, where c is a constant. It seems
natural then to ask whether we can define a matrix exponential function eAt, where A is a matrix of
constants, so that a solution of the linear system X� � AX is eAt.

8.4

DEFINITION 8.4.1 Matrix Exponential

For any n � n matrix A,

. (3)eAt � I � At � A2 
t2

2!
� � � � � Ak 

tk

k!
� � � � � �

�

k�0
Ak 

tk

k!

It can be shown that the series given in (3) converges to an n � n matrix for
every value of t. Also, A2 � AA, A3 � A(A2), and so on.

EXAMPLE 1 Matrix Exponential Using (3)

Compute for the matrix

SOLUTION From the various powers

A2 � �22

0
0
32�, A3 � �23

0
0
33�, A4 � �24

0
0
34�, . . . , An � �2n

0
0
3n�, . . . ,

A � �2
0

0
3�.

eAt
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8.4 MATRIX EXPONENTIAL ● 357

we see from (3) that

In view of (2) and the identifications and the power series in the firs
and second rows of the last matrix represent, respectively, and so we have

.

The matrix in Example 1 is an example of a diagonal matrix. In general,
an matrix A is a diagonal matrix if all its entries off the main diagonal are
zero, that is,

.

Hence if A is any diagonal matrix it follows from Example 1 that

.eAt � �
ea11t

0
o

0

0
ea22t

o

0

. . .

. . .

. . .

0
0
o

eannt
�

n � n

A � �
a11

0
o

0

0
a22

o

0

. . .

. . .

. . .

0
0
o

ann

�
n � n

2 � 2

eAt � �e2t

0
0
e3t�

e2t and  e3t
a � 3,a � 2

 � �1 � 2t � 22 
t2

2!
 � . . .

0

0

1 � 3t � 32 t
2

2!
 � . . .�.

 � �1
0

0
1� � �2

0
0
3�t � �22

0
0
32� 

t2

2!
 � . . . � �2n

0
0
3n�

 t n

n!
 � . . .

 eAt � I � At �
A2

2!
 t2 � . . .

 � A�I � At � A2 
t2

2!
� � � �� � AeAt.

d
dt

eAt �
d
dt

 �I � At � A2 
t2

2!
� � � � � Ak 

tk

k!
� � � �� � A � A2t �

1
2!

 A3t2 � � � �

Because of (4), we can now prove that (1) is a solution of X� � AX for every n � 1
vector C of constants:

eAt is a Fundamental Matrix If we denote the matrix exponential eAt by

X� �
d
dt

 eAtC � AeAtC � A(eAtC) � AX.

the symbol �(t), then (4) is equivalent to the matrix differential equation
��(t) � A�(t) (see (3) of Section 8.3). In addition, it follows immediately from

Derivative of eAt The derivative of the matrix exponential is analogous to the

differentiation property of the scalar exponential . To justify

, (4)

we differentiate (3) term by term: 

d
dt

 eAt � AeAt

d
dt

 eat � aeat
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Definition 8.4.1 that �(0) � eA0 � I, and so det �(0) 	 0. It turns out that these
two properties are sufficient for us to conclude that �(t) is a fundamental matrix of the
system X� � AX.

Nonhomogeneous Systems We saw in (4) of Section 2.3 that the general

358 ● CHAPTER 8 SYSTEMS OF LINEAR FIRST-ORDER DIFFERENTIAL EQUATIONS

solution of the single linear first-order differential equation x� � ax � f (t), where a
is a constant, can be expressed as

.

For a nonhomogeneous system of linear first-order differential equations it can be
shown that the general solution of X� � AX � F(t), where A is an n � n matrix of
constants, is

. (5)

Since the matrix exponential eAt is a fundamental matrix, it is always nonsingular and
e�As � (eAs)�1. In practice, e�As can be obtained from eAt by simply replacing t by �s.

Computation of eAt The definition of eAt given in (3) can, of course, always
be used to compute eAt. However, the practical utility of (3) is limited by the fact that
the entries in eAt are power series in t. With a natural desire to work with simple and
familiar things, we then try to recognize whether these series define a closed-form
function. Fortunately, there are many alternative ways of computing eAt; the follow-
ing discussion shows how the Laplace transform can be used.

Use of the Laplace Transform We saw in (5) that X � eAt is a solution of 

X � Xc � Xp � eAtC � eAt�t

t0

e�AsF(s) ds

x � xc � xp � ceat � eat�t

t0

e�asf (s) ds

EXAMPLE 2 Matrix Exponential Using (7)

Use the Laplace transform to compute eAt for .

SOLUTION First we compute the matrix sI � A and find its inverse

 (sI � A)�1 � �s � 1
 �2

1
s � 2�

�1
� �

s � 2
s(s � 1)

2
s(s � 1)

�1
s(s � 1)

s � 1
s(s � 1)

�.

 sI � A � �s � 1
�2

1
s � 2�,

A � �1
2

�1
�2�

X� � AX. Indeed, since eA0 � I, X � eAt is a solution of the initial-value problem

. (6)

If , then the Laplace transform of (6) is

.

Multiplying the last equation by (sI � A)�1 implies that x(s) � (sI � A)�1

I � (sI � A)�1. In other words, 

(7)eAt � ��1{(sI � A)�1}.

�{eAt} � (sI � A)�1 or

sx(s) � X(0) � Ax(s)    or    (sI � A)x(s) � I

x(s) � �{X(t)} � �{eAt}

X� � AX,  X(0) � I
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Then we decompose the entries of the last matrix into partial fractions:

. (8)

It follows from (7) that the inverse Laplace transform of (8) gives the desired result,

.

Use of Computers For those who are willing to momentarily trade under-
standing for speed of solution, eAt can be computed with the aid of computer software.
See Problems 27 and 28 in Exercises 8.4.

eAt � �2 � e�t

2 � 2e�t
�1 � e�t

�1 � 2e�t�

(sI � A)�1 � �
2
s

�
1

s � 1
2
s

�
2

s � 1

�
1
s

�
1

s � 1

�
1
s

�
2

s � 1
�
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EXERCISES 8.4 Answers to selected odd-numbered problems begin on page ANS-16.

In Problems 1 and 2 use (3) to compute eAt and e�At.

1. 2.

In Problems 3 and 4 use (3) to compute eAt.

3.

4.

In Problems 5–8 use (1) to find the general solution of the
given system.

5. 6.

7. 8.

In Problems 9–12 use (5) to find the general solution of the
given system.

9.

10.

11.

12. X� � �0
1

1
0�X � �cosh t

sinh t�

X� � �0
1

1
0�X � �1

1�

X� � �1
0

0
2�X � � t

e4t�

X� � �1
0

0
2�X � � 3

�1�

X� � �0
3
5

0
0
1

0
0
0
�XX� � � 1

1
�2

1
1

�2

1
1

�2
�X

X� � �0
1

1
0�XX� � �1

0
0
2�X

A � �0
3
5

0
0
1

0
0
0
�

A � � 1
1

�2

1
1

�2

1
1

�2
�

A � �0
1

1
0�A � �1

0
0
2�

13. Solve the system in Problem 7 subject to the initial
condition

.

14. Solve the system in Problem 9 subject to the initial
condition

.

In Problems 15–18 use the method of Example 2 to com-
pute eAt for the coefficient matrix. Use (1) to find the general
solution of the given system.

15. 16.

17. 18.

Let P denote a matrix whose columns are eigenvectors
K1, K2, . . . , Kn corresponding to distinct eigenvalues
l1, l2, . . . , ln of an n � n matrix A. Then it can be shown
that A � PDP�1, where D is a diagonal matrix defined by

(9)

In Problems 19 and 20 verify the foregoing result for the
given matrix.

19. 20. A � �2
1

1
2�A � � 2

�3
1
6�

l1

0

0

D � ( ).0
0

ln

0
l2

0

. . .

. . .

. . .

...
...

...

X� � � 0
�2

1
�2�XX� � �5

1
�9
�1�X

X� � �4
1

�2
1�XX� � � 4

�4
3

�4�X

X(0) � �4
3�

X(0) � � 1
�4

6
�
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21. Suppose A � PDP�1, where D is defined as in (9). Use
(3) to show that eAt � PeDtP�1.

22. If D is defined as in (9), then fin eDt .

In Problems 23 and 24 use the results of Problems 19–22 to
solve the given system.

23.

24.

Discussion Problems

25. Reread the discussion leading to the result given in (7).
Does the matrix sI � A always have an inverse? Discuss.

26. A matrix A is said to be nilpotent if there exists
some positive integer m such that Am � 0. Verify that

is nilpotent. Discuss why it is relatively easy to compute
eAt when A is nilpotent. Compute eAt and then use (1) to
solve the system X� � AX.

A � ��1
�1
�1

1
0
1

1
1
1
�

X� � �2
1

1
2�X

X� � � 2
�3

1
6�X
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Computer Lab Assignments

27. (a) Use (1) to find the general solution of

. Use a CAS to find eAt. Then use 

the computer to find eigenvalues and eigenvectors 

of the coefficient matrix and form the 

general solution in the manner of Section 8.2.
Finally, reconcile the two forms of the general solu-
tion of the system.

(b) Use (1) to find the general solution of

. Use a CAS to find eAt. In the

case of complex output, utilize the software to do
the simplification; for example, in Mathematica, if
m � MatrixExp[A t] has complex entries, then
try the command Simplify[ComplexExpand[m]].

28. Use (1) to find the general solution o

.

Use MATLAB or a CAS to find eAt.

X� � �
�4

0
�1

0

0
�5

0
3

6
0
1
0

0
�4

0
2
�X

X� � ��3
2

�1
�1�X

A � �4
3

2
3�

X� � �4
3

2
3�X

CHAPTER 8 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-16.

In Problems 1 and 2 fill in the blanks

1. The vector is a solution of

for k � __________.

2. The vector is solution of 

the initial-value problem 

for c1 � __________ and c2 � __________.

3. Consider the linear system .

Without attempting to solve the system, determine
which one of the vectors

K1 � �0
1
1
�, K2 � � 1

1
�1

�, K3 � � 3
1

�1
�, K4 � � 6

2
�5

�

X� � � 4
1

�1

6
3

�4

6
2

�3
�X

X� � �1
6

10
�3�X, X(0) � �2

0�
X � c1��1

1�e�9t � c2�5
3�e7t

X� � �1
2

4
�1�X � �8

1�

X � k�4
5�

is an eigenvector of the coefficient matrix. What is
the solution of the system corresponding to this
eigenvector?

4. Consider the linear system X� � AX of two differential
equations, where A is a real coefficient matrix. What is
the general solution of the system if it is known that

l1 � 1 � 2i is an eigenvalue and is a corre-

sponding eigenvector?

In Problems 5–14 solve the given linear system.

5. 6.

7. 8.

9. 10. X� � �0
1
2

2
1
2

1
�2
�1

�XX� � �1
0
4

�1
1
3

1
3
1
�X

X� � ��2
�2

5
4�XX� � � 1

�2
2
1�X

dy
dt

� 2x � 4y
dy
dt

 � �x

dx
dt

� �4x � 2y
dx
dt

 � 2x � y

K1 � �1
i�
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11.

12.

13.

14.

15. (a) Consider the linear system X� � AX of three first
order differential equations, where the coefficien
matrix is

A � � 5
3

�5

3
5

�5

3
3

�3
�

X� � � 3
�1

1
1�X � ��2

1�e2t

X� � ��1
�2

1
1�X � � 1

cot t�

X� � � 1
�1

2

2
1�X � � 0

et tan t�

X� � �2
0

8
4�X � � 2

16t�

CHAPTER 8 IN REVIEW ● 361

and l � 2 is known to be an eigenvalue of multi-
plicity two. Find two different solutions of the sys-
tem corresponding to this eigenvalue without using
a special formula (such as (12) of Section 8.2).

(b) Use the procedure of part (a) to solve

.

16. Verify that is a solution of the linear system

for arbitrary constants c1 and c2. By hand, draw a phase
portrait of the system.

X� � � 1
0

0
1�X

X � �c1

c2
�et

X� � �1
1
1

1
1
1

1
1
1
�X
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362

Numerical Solutions of
Ordinary Differential Equations

9.1 Euler Methods and Error Analysis
9.2 Runge-Kutta Methods
9.3 Multistep Methods
9.4 Higher-Order Equations and Systems
9.5 Second-Order Boundary-Value Problems

Chapter 9 in Review

Even if it can be shown that a solution of a differential equation exists, we might
not be able to exhibit it in explicit or implicit form. In many instances we have to
be content with an approximation of the solution. If a solution exists, it represents a
set of points in the Cartesian plane. In this chapter we continue to explore the basic
idea introduced in Section 2.6, that is, using the differential equation to construct an
algorithm to approximate the y-coordinates of points on the actual solution curve.
Our concentration in this chapter is primarily on first-order initial-value problem

We saw in Section 4.10 that numerical procedures
developed for first-order DEs extend in a natural way to systems of first-ord
equations. Because of this extension, we are able to approximate solutions of a
higher-order equation by rewriting it as a system of first-order DEs. Chapter 
concludes with a method for approximating solutions of linear second-order
boundary-value problems.

dy>dx � f (x, y), y(x0) � y0.

9
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A Comparison In Problem 4 in Exercises 2.6 you were asked to use Euler’s
method to obtain the approximate value of y(1.5) for the solution of the initial-value
problem y� � 2xy, y(1) � 1. You should have obtained the analytic solution 
and results similar to those given in Tables 9.1.1 and 9.1.2.

y � ex2�1

9.1 EULER METHODS AND ERROR ANALYSIS ● 363

TABLE 9.1.1 Euler’s Method with h � 0.1

Actual Abs. % Rel.
xn yn value error error

1.00 1.0000 1.0000 0.0000 0.00
1.10 1.2000 1.2337 0.0337 2.73
1.20 1.4640 1.5527 0.0887 5.71
1.30 1.8154 1.9937 0.1784 8.95
1.40 2.2874 2.6117 0.3244 12.42
1.50 2.9278 3.4903 0.5625 16.12

TABLE 9.1.2 Euler’s Method with h � 0.05

Actual Abs. % Rel.
xn yn value error error

1.00 1.0000 1.0000 0.0000 0.00
1.05 1.1000 1.1079 0.0079 0.72
1.10 1.2155 1.2337 0.0182 1.47
1.15 1.3492 1.3806 0.0314 2.27
1.20 1.5044 1.5527 0.0483 3.11
1.25 1.6849 1.7551 0.0702 4.00
1.30 1.8955 1.9937 0.0982 4.93
1.35 2.1419 2.2762 0.1343 5.90
1.40 2.4311 2.6117 0.1806 6.92
1.45 2.7714 3.0117 0.2403 7.98
1.50 3.1733 3.4903 0.3171 9.08

EULER METHODS AND ERROR ANALYSIS

REVIEW MATERIAL
● Section 2.6

INTRODUCTION In Chapter 2 we examined one of the simplest numerical methods for
approximating solutions of first-order initial-value problems y� � f (x, y), y(x0) � y0. Recall that the
backbone of Euler’s method is the formula

(1)

where f is the function obtained from the differential equation y� � f(x, y). The recursive use of (1)
for n � 0, 1, 2, . . . yields the y-coordinates y1, y2, y3, . . . of points on successive “tangent lines” to
the solution curve at x1, x2, x3, . . . or xn � x0 � nh, where h is a constant and is the size of the step
between xn and xn�1. The values y1, y2, y3, . . . approximate the values of a solution y(x) of the IVP
at x1, x2, x3, . . . . But whatever advantage (1) has in its simplicity is lost in the crudeness of its
approximations.

yn�1 � yn � hf (xn, yn),

9.1

In this case, with a step size h � 0.1 a 16% relative error in the calculation of
the approximation to y(1.5) is totally unacceptable. At the expense of doubling the
number of calculations, some improvement in accuracy is obtained by halving the
step size to h � 0.05.

Errors in Numerical Methods In choosing and using a numerical method
for the solution of an initial-value problem, we must be aware of the various sources
of errors. For some kinds of computation the accumulation of errors might reduce the
accuracy of an approximation to the point of making the computation useless. On the
other hand, depending on the use to which a numerical solution may be put, extreme
accuracy might not be worth the added expense and complication.

One source of error that is always present in calculations is round-off error.
This error results from the fact that any calculator or computer can represent numbers
using only a finite number of digits. Suppose, for the sake of illustration, that we have
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364 ● CHAPTER 9 NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

a calculator that uses base 10 arithmetic and carries four digits, so that is repre-
sented in the calculator as 0.3333 and is represented as 0.1111. If we use this 
calculator to compute for x � 0.3334, we obtain

With the help of a little algebra, however, we see that

so when . This exam-
ple shows that the effects of round-off error can be quite serious unless some care is
taken. One way to reduce the effect of round-off error is to minimize the number of
calculations. Another technique on a computer is to use double-precision arithmetic
to check the results. In general, round-off error is unpredictable and difficult to ana-
lyze, and we will neglect it in the error analysis that follows. We will concentrate on
investigating the error introduced by using a formula or algorithm to approximate the
values of the solution.

Truncation Errors for Euler’s Method In the sequence of values y1, y2,
y3, . . . generated from (1), usually the value of y1 will not agree with the actual solu-
tion at x1 —namely, y(x1)—because the algorithm gives only a straight-line
approximation to the solution. See Figure 2.6.2. The error is called the local truncation
error, formula error, or discretization error. It occurs at each step; that is, if we
assume that yn is accurate, then yn�1 will contain local truncation error.

To derive a formula for the local truncation error for Euler’s method, we use
Taylor’s formula with remainder. If a function y(x) possesses k � 1 derivatives that
are continuous on an open interval containing a and x, then

where c is some point between a and x. Setting k � 1, a � xn, and x � xn�1 � xn � h,
we get

or

Euler’s method (1) is the last formula without the last term; hence the local
truncation error in yn�1 is

The value of c is usually unknown (it exists theoretically), so the exact error cannot
be calculated, but an upper bound on the absolute value of the error is 

In discussing errors that arise from the use of numerical methods, it is helpful to use
the notation O(hn). To define this concept, we let e(h) denote the error in a numerical
calculation depending on h. Then e(h) is said to be of order hn, denoted by O(hn), if there
exist a constant C and a positive integer n such that e(h) � Chn for h sufficiently small.
Thus the local truncation error for Euler’s method is O(h2). We note that, in general, if
e(h) in a numerical method is of order hn and h is halved, the new error is approximately
C(h�2)n � Chn�2n; that is, the error is reduced by a factor of 1�2n.

��

where M � max
xn� x� xn�1 

� y �(x) �.
Mh2>2!,

y �(c) 
h2

2!
,    where  xn � c � xn�1.

yn�1

y(xn�1) � yn � hf (xn, yn) � y �(c) .
h2
––
2!

y(xn�1) � y(xn) � y�(xn) 
h
1!

� y �(c) 
h2

2!

y(x) � y(a) � y�(a) 
x � a

1!
� 	 	 	 � y(k)(a) 

(x � a)k

k!
� y(k�1)(c) 

(x � a)k�1

(k � 1)!
,

x � 0.3334, (x2 � 1
9) � (x � 1

3) � 0.3334 � 0.3333 � 0.6667

x2 �
1
9

x � 1
3

�
(x � 1

3)(x � 1
3)

x � 1
3

� x �
1
3
,

(0.3334)2 � 0.1111
0.3334 � 0.3333

�
0.1112 � 0.1111
0.3334 � 0.3333

� 1.

(x2 � 1
9) � (x � 1

3)
1
9

1
3
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9.1 EULER METHODS AND ERROR ANALYSIS ● 365

EXAMPLE 1 Bound for Local Truncation Errors

Find a bound for the local truncation errors for Euler’s method applied to
y� � 2xy, y(1) � 1.

SOLUTION From the solution we get , so the local
truncation error is

where c is between xn and xn � h. In particular, for h � 0.1 we can get an upper
bound on the local truncation error for y1 by replacing c by 1.1:

From Table 9.1.1 we see that the error after the first step is 0.0337, less than the value
given by the bound.

Similarly, we can get a bound for the local truncation error for any of the fiv
steps given in Table 9.1.1 by replacing c by 1.5 (this value of c gives the largest value
of y�(c) for any of the steps and may be too generous for the first few steps). Doing
this gives

(2)

as an upper bound for the local truncation error in each step.

Note that if h is halved to 0.05 in Example 1, then the error bound is 0.0480,
about one-fourth as much as shown in (2). This is expected because the local trunca-
tion error for Euler’s method is O(h2).

In the above analysis we assumed that the value of yn was exact in the calcula-
tion of yn�1, but it is not because it contains local truncation errors from previous
steps. The total error in yn�1 is an accumulation of the errors in each of the previous
steps. This total error is called the global truncation error. A complete analysis of
the global truncation error is beyond the scope of this text, but it can be shown that
the global truncation error for Euler’s method is O(h).

We expect that, for Euler’s method, if the step size is halved the error will
be approximately halved as well. This is borne out in Tables 9.1.1 and 9.1.2 where
the absolute error at x � 1.50 with h � 0.1 is 0.5625 and with h � 0.05 is 0.3171,
approximately half as large.

In general it can be shown that if a method for the numerical solution of a
differential equation has local truncation error O(ha�1), then the global truncation
error is O(ha).

For the remainder of this section and in the subsequent sections we study meth-
ods that give significantly greater accuracy than does Eule ’s method.

Improved Euler’s Method The numerical method defined by the formula

(3)

where (4)

is commonly known as the improved Euler’s method. To compute yn�1 for
n � 0, 1, 2, . . . from (3), we must, at each step, first use Euler’s method (4) to obtain
an initial estimate . For example, with n � 0, (4) gives , and

then, knowing this value, we use (3) to get , where y1 � y0 � h 
f (x0, y0) � f (x1, y*1 )

2

y*1 � y0 � hf (x0, y0)y*n�1

 y*n�1 � yn � h f (xn, yn),

 yn�1 � yn � h 
f (xn, yn) � f (xn�1, y*n�1)

2
,

[2 � (4)(1.5)2]e((1.5)2�1) (0.1)2

2
� 0.1920

[2 � (4)(1.1)2]e((1.1)2�1) (0.1)2

2
� 0.0422.

y �(c) 
h2

2
� (2 � 4c2)e(c2�1) 

h2

2
,

y � � (2 � 4x2)ex2�1y � ex2�1
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366 ● CHAPTER 9 NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

x1 � x0 � h. These equations can be readily visualized. In Figure 9.1.1, observe that
m0 � f (x0, y0) and are slopes of the solid straight lines shown passing
through the points (x0, y0) and , respectively. By taking an average of these

slopes, that is, , we obtain the slope of the parallel 

dashed skew lines. With the first step, rather than advancing along the line through
(x0, y0) with slope f (x0, y0) to the point with y-coordinate obtained by Euler’s
method, we advance instead along the red dashed line through (x0, y0) with slope mave
until we reach x1. It seems plausible from inspection of the figure that y1 is an
improvement over .

In general, the improved Euler’s method is an example of a predictor-corrector
method. The value of given by (4) predicts a value of y(xn), whereas the value of
yn�1 defined by formula (3) corrects this estimate

y*n�1

y*1

y*1

mave �
f (x0, y0) � f (x1, y1*)

2

(x1, y*1 )
m1 � f (x1, y*1 )

( x 1 ,  y 1 ) 

( x 1 ,  y * 1 ) 
0 

1 

m ave 

x

y

x0 x1

h

(x0, y0)

(x1, )

(x1, )
m0 = f(x0, y0)
m1 = f(x1, y*1)(x1, y(x1))

solution
curve

f (x0, y0) + f(x1, y*1)
2mave =

FIGURE 9.1.1 Slope of red dashed
line is the average of m0 and m1

TABLE 9.1.4 Improved Euler’s Method with h � 0.05

Actual Abs. % Rel.
xn yn value error error

1.00 1.0000 1.0000 0.0000 0.00
1.05 1.1077 1.1079 0.0002 0.02
1.10 1.2332 1.2337 0.0004 0.04
1.15 1.3798 1.3806 0.0008 0.06
1.20 1.5514 1.5527 0.0013 0.08
1.25 1.7531 1.7551 0.0020 0.11
1.30 1.9909 1.9937 0.0029 0.14
1.35 2.2721 2.2762 0.0041 0.18
1.40 2.6060 2.6117 0.0057 0.22
1.45 3.0038 3.0117 0.0079 0.26
1.50 3.4795 3.4904 0.0108 0.31

TABLE 9.1.3 Improved Euler’s Method with h � 0.1

Actual Abs. % Rel.
xn yn value error error

1.00 1.0000 1.0000 0.0000 0.00
1.10 1.2320 1.2337 0.0017 0.14
1.20 1.5479 1.5527 0.0048 0.31
1.30 1.9832 1.9937 0.0106 0.53
1.40 2.5908 2.6117 0.0209 0.80
1.50 3.4509 3.4904 0.0394 1.13

A brief word of caution is in order here. We cannot compute all the values of 
first and then substitute these values into formula (3). In other words, we cannot use
the data in Table 9.1.1 to help construct the values in Table 9.1.3. Why not?

Truncation Errors for the Improved Euler’s Method The local trunca-
tion error for the improved Euler’s method is O(h3). The derivation of this result is
similar to the derivation of the local truncation error for Euler’s method. Since the

y*n

EXAMPLE 2 Improved Euler’s Method

Use the improved Euler’s method to obtain the approximate value of y(1.5) for the
solution of the initial-value problem y� � 2xy, y(1) � 1. Compare the results for
h � 0.1 and h � 0.05.

SOLUTION With x0 � 1, y0 � 1, f (xn, yn) � 2xnyn, n � 0, and h � 0.1, we firs
compute (4):

We use this last value in (3) along with x1 � 1 � h � 1 � 0.1 � 1.1:

The comparative values of the calculations for h � 0.1 and h � 0.05 are given in
Tables 9.1.3 and 9.1.4, respectively.

y1 � y0 � (0.1) 
2x0y0 � 2x1y*1

2
� 1 � (0.1) 

2(1)(1) � 2(1.1)(1.2)
2

� 1.232.

y*1 � y0 � (0.1)(2x0y0) � 1 � (0.1)2(1)(1) � 1.2.
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local truncation error for the improved Euler’s method is O(h3), the global truncation
error is O(h2). This can be seen in Example 2; when the step size is halved from
h � 0.1 to h � 0.05, the absolute error at x � 1.50 is reduced from 0.0394 to 0.0108,
a reduction of approximately (1

2)2
� 1

4.

9.1 EULER METHODS AND ERROR ANALYSIS ● 367

EXERCISES 9.1 Answers to selected odd-numbered problems begin on page ANS-16.

In Problems 1–10 use the improved Euler’s method to obtain
a four-decimal approximation of the indicated value. First
use h � 0.1 and then use h � 0.05.

1. y� � 2x � 3y � 1, y(1) � 5; y(1.5)

2. y� � 4x � 2y, y(0) � 2; y(0.5)

3. y� � 1 � y2, y(0) � 0; y(0.5)

4. y� � x2 � y2, y(0) � 1; y(0.5)

5. y� � e�y, y(0) � 0; y(0.5)

6. y� � x � y2, y(0) � 0; y(0.5)

7. y� � (x � y)2, y(0) � 0.5; y(0.5)

8.

9.

10. y� � y � y2, y(0) � 0.5; y(0.5)

11. Consider the initial-value problem y� � (x � y � 1)2,
y(0) � 2. Use the improved Euler’s method with
h � 0.1 and h � 0.05 to obtain approximate values
of the solution at x � 0.5. At each step compare the
approximate value with the actual value of the analytic
solution.

12. Although it might not be obvious from the differential
equation, its solution could “behave badly” near a point
x at which we wish to approximate y(x). Numerical pro-
cedures may give widely differing results near this
point. Let y(x) be the solution of the initial-value prob-
lem y� � x2 � y3, y(1) � 1.
(a) Use a numerical solver to graph the solution on the

interval [1, 1.4].
(b) Using the step size h � 0.1, compare the results

obtained from Euler’s method with the results from
the improved Euler’s method in the approximation
of y(1.4).

13. Consider the initial-value problem y� � 2y, y(0) � 1.
The analytic solution is y � e2x.
(a) Approximate y(0.1) using one step and Euler’s

method.
(b) Find a bound for the local truncation error in y1.
(c) Compare the error in y1 with your error bound.
(d) Approximate y(0.1) using two steps and Euler’s

method.

y� � xy2 �
y
x, y(1) � 1; y(1.5)

y� � xy � 1y, y(0) � 1; y(0.5)

(e) Verify that the global truncation error for Euler’s
method is O(h) by comparing the errors in parts
(a) and (d).

14. Repeat Problem 13 using the improved Euler’s method.
Its global truncation error is O(h2).

15. Repeat Problem 13 using the initial-value problem
y� � x � 2y, y(0) � 1. The analytic solution is

16. Repeat Problem 15 using the improved Euler’s method.
Its global truncation error is O(h2).

17. Consider the initial-value problem y� � 2x � 3y � 1,
y(1) � 5. The analytic solution is

(a) Find a formula involving c and h for the local trunca-
tion error in the nth step if Euler’s method is used.

(b) Find a bound for the local truncation error in each
step if h � 0.1 is used to approximate y(1.5).

(c) Approximate y(1.5) using h � 0.1 and h � 0.05 with
Euler’s method. See Problem 1 in Exercises 2.6.

(d) Calculate the errors in part (c) and verify that the
global truncation error of Euler’s method is O(h).

18. Repeat Problem 17 using the improved Euler’s
method, which has a global truncation error O(h2). See
Problem 1. You might need to keep more than four
decimal places to see the effect of reducing the order
of the error.

19. Repeat Problem 17 for the initial-value problem y� � e�y,
y(0) � 0. The analytic solution is y(x) � ln(x � 1).
Approximate y(0.5). See Problem 5 in Exercises 2.6.

20. Repeat Problem 19 using the improved Euler’s
method, which has global truncation error O(h2). See
Problem 5. You might need to keep more than four
decimal places to see the effect of reducing the order
of error.

Discussion Problems

21. Answer the question “Why not?” that follows the three
sentences after Example 2 on page 366.

y(x) � 1
9 � 2

3 x � 38
9  e�3(x�1).

y � 1
2 x � 1

4 � 5
4 e�2x.
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368 ● CHAPTER 9 NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

Runge-Kutta Methods Fundamentally, all Runge-Kutta methods are gener-
alizations of the basic Euler formula (1) of Section 9.1 in that the slope function f is
replaced by a weighted average of slopes over the interval xn � x � xn�1. That is,

(1)

Here the weights wi, i � 1, 2, . . . , m, are constants that generally satisfy 
w1 � w2 � 	 	 	 � wm � 1, and each ki, i � 1, 2, . . . , m, is the function f evalu-
ated at a selected point (x, y) for which xn � x � xn�1. We shall see that the ki are
defined recursively. The number m is called the order of the method. Observe that
by taking m � 1, w1 � 1, and k1 � f (xn, yn), we get the familiar Euler formula
yn�1 � yn � h f (xn, yn). Hence Euler’s method is said to be a first-order Runge-
Kutta method.

The average in (1) is not formed willy-nilly, but parameters are chosen so that
(1) agrees with a Taylor polynomial of degree m. As we saw in the preceding section,
if a function y(x) possesses k � 1 derivatives that are continuous on an open interval
containing a and x, then we can write

where c is some number between a and x. If we replace a by xn and x by
xn�1 � xn � h, then the foregoing formula becomes

where c is now some number between xn and xn�1. When y(x) is a solution of
y� � f (x, y) in the case k � 1 and the remainder is small, we see that 
a Taylor polynomial y(xn�1) � y(xn) � hy�(xn) of degree one agrees with the
approximation formula of Euler’s method

yn�1 � yn � hy�n � yn � h f (xn, yn).

1
2 h2y �(c)

y(xn�1) � y(xn � h) � y(xn) � hy�(xn) �
h2

2!
 y �(xn) � 	 	 	 �

hk�1

(k � 1)!
 y(k�1)(c),

y(x) � y(a) � y�(a) 
x � a

1!
� y �(a) 

(x � a)2

2!
� 	 	 	 � y(k�1)(c) 

(x � a)k�1

(k � 1)!
,

weighted average

yn�1 � yn � h (w1k1 � w2k2 � … � wmkm).

RUNGE-KUTTA METHODS

REVIEW MATERIAL
● Section 2.6 (see page 78)

INTRODUCTION Probably one of the more popular as well as most accurate numerical proce-
dures used in obtaining approximate solutions to a first-order initial-value problem y� � f(x, y),
y(x0) � y0 is the fourth-order Runge-Kutta method. As the name suggests, there are Runge-Kutta
methods of different orders.

9.2

A Second-Order Runge-Kutta Method To further illustrate (1), we con-
sider now a second-order Runge-Kutta procedure. This consists of finding con-
stants or parameters w1, w2, a, and b so that the formula

(2)

where

 k2 � f (xn � 
h, yn � �hk1),

 k1 � f (xn, yn)

 yn�1 � yn � h(w1k1 � w2k2),
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agrees with a Taylor polynomial of degree two. For our purposes it suffices to say
that this can be done whenever the constants satisfy

(3)

This is an algebraic system of three equations in four unknowns and has infinitel
many solutions:

(4)

where w2 � 0. For example, the choice yields ,
and so (2) becomes

where

Since xn � h � xn�1 and yn � hk1 � yn � hf (xn, yn), the foregoing result is rec-
ognized to be the improved Euler’s method that is summarized in (3) and (4) of
Section 9.1.

In view of the fact that w2 � 0 can be chosen arbitrarily in (4), there are many
possible second-order Runge-Kutta methods. See Problem 2 in Exercises 9.2.

We shall skip any discussion of third-order methods in order to come to the prin-
cipal point of discussion in this section.

k1 � f (xn, yn)    and    k2 � f (xn � h, yn � hk1).

yn�1 � yn �
h
2
 (k1 � k2),

w1 � 1
2, 
 � 1, and � � 1w2 � 1

2

w1 � 1 � w2,    
 �
1

2w2
,    and    � �

1
2w2

,

w1 � w2 � 1,    w2
 �
1
2
,     and    w2� �

1
2
.

9.2 RUNGE-KUTTA METHODS ● 369

A Fourth-Order Runge-Kutta Method A fourth-order Runge-Kutta
procedure consists of finding parameters so that the formul

(5)

where

agrees with a Taylor polynomial of degree four. This results in a system of 11 equa-
tions in 13 unknowns. The most commonly used set of values for the parameters
yields the following result:

(6)

While other fourth-order formulas are easily derived, the algorithm summarized in (6)
is so widely used and recognized as a valuable computational tool it is often referred to
as the fourth-order Runge-Kutta method or the classical Runge-Kutta method. It is (6)
that we have in mind, hereafter, when we use the abbreviation the RK4 method.

You are advised to look carefully at the formulas in (6); note that k2 depends on
k1, k3 depends on k2, and k4 depends on k3. Also, k2 and k3 involve approximations
to the slope at the midpoint of the interval defined by xn � x � xn�1.xn � 1

2 h

 k4 � f (xn � h, yn � hk3).

 k3 � f (xn � 1
2h, yn � 1

2hk2)
 k2 � f (xn � 1

2h, yn � 1
2hk1)

 k1 � f (xn, yn)

 yn�1 � yn �
h
6
 (k1 � 2k2 � 2k3 � k4),

 k4 � f (xn � 
3h, yn � �4hk1 � �5hk2 � �6hk3),

 k3 � f (xn � 
2h, yn � �2hk1 � �3hk2)

 k2 � f (xn � 
1h, yn � �1hk1)

 k1 � f (xn, yn)

 yn�1 � yn � h(w1k1 � w2k2 � w3k3 � w4k4),
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370 ● CHAPTER 9 NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

TABLE 9.2.1 RK4 Method with h � 0.1

Actual Abs. % Rel.
xn yn value error error

1.00 1.0000 1.0000 0.0000 0.00
1.10 1.2337 1.2337 0.0000 0.00
1.20 1.5527 1.5527 0.0000 0.00
1.30 1.9937 1.9937 0.0000 0.00
1.40 2.6116 2.6117 0.0001 0.00
1.50 3.4902 3.4904 0.0001 0.00

Truncation Errors for the RK4 Method In Section 9.1 we saw that global
truncation errors for Euler’s method and for the improved Euler’s method are, re-
spectively, O(h) and O(h2). Because the first equation in (6) agrees with a Taylor
polynomial of degree four, the local truncation error for this method is y(5)(c) h5�5!
or O(h5), and the global truncation error is thus O(h4). It is now obvious why Euler’s
method, the improved Euler’s method, and (6) are first-, second-, and fourth-order
Runge-Kutta methods, respectively.

EXAMPLE 1 RK4 Method

Use the RK4 method with h � 0.1 to obtain an approximation to y(1.5) for the solu-
tion of y� � 2xy, y(1) � 1.

SOLUTION For the sake of illustration let us compute the case when n � 0. From
(6) we fin

and therefore

The remaining calculations are summarized in Table 9.2.1, whose entries are
rounded to four decimal places.

Inspection of Table 9.2.1 shows why the fourth-order Runge-Kutta method is
so popular. If four-decimal-place accuracy is all that we desire, there is no need to
use a smaller step size. Table 9.2.2 compares the results of applying Euler’s, the
improved Euler’s, and the fourth-order Runge-Kutta methods to the initial-value
problem y� � 2xy, y(1) � 1. (See Tables 9.1.1–9.1.4.)

 �1 �
0.1
6

 (2 � 2(2.31) � 2(2.34255) � 2.715361) � 1.23367435.

 y1 � y0 �
0.1
6

 (k1 � 2k2 � 2k3 � k4)

 �2(x0 � 0.1)(y0 � 0.234255) � 2.715361

 k4 � f (x0 � (0.1), y0 � (0.1)2.34255)

 �2(x0 � 1
2 (0.1))(y0 � 1

2 (0.231)) � 2.34255

 k3 � f (x0 � 1
2 (0.1), y0 � 1

2 (0.1)2.31)
 �2(x0 � 1

2 (0.1))(y0 � 1
2 (0.2)) � 2.31

 k2 � f (x0 � 1
2 (0.1), y0 � 1

2 (0.1)2)
 k1 � f (x0, y0) � 2x0y0 � 2

TABLE 9.2.2 y� � 2xy, y(1) � 1

Comparison of numerical methods with h � 0.1 Comparison of numerical methods with h � 0.05

Improved Actual Improved Actual
xn Euler Euler RK4 value xn Euler Euler RK4 value

1.00 1.0000 1.0000 1.0000 1.0000 1.00 1.0000 1.0000 1.0000 1.0000
1.10 1.2000 1.2320 1.2337 1.2337 1.05 1.1000 1.1077 1.1079 1.1079
1.20 1.4640 1.5479 1.5527 1.5527 1.10 1.2155 1.2332 1.2337 1.2337
1.30 1.8154 1.9832 1.9937 1.9937 1.15 1.3492 1.3798 1.3806 1.3806
1.40 2.2874 2.5908 2.6116 2.6117 1.20 1.5044 1.5514 1.5527 1.5527
1.50 2.9278 3.4509 3.4902 3.4904 1.25 1.6849 1.7531 1.7551 1.7551

1.30 1.8955 1.9909 1.9937 1.9937
1.35 2.1419 2.2721 2.2762 2.2762
1.40 2.4311 2.6060 2.6117 2.6117
1.45 2.7714 3.0038 3.0117 3.0117
1.50 3.1733 3.4795 3.4903 3.4904
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9.2 RUNGE-KUTTA METHODS ● 371

TABLE 9.2.3 RK4 Method

h Approx. Error

0.1 3.49021064 1.32321089 
 10�4

0.05 3.49033382 9.13776090 
 10�6

*The Runge-Kutta method of order four used in RKF45 is not the same as that given in (6).

EXAMPLE 2 Bound for Local Truncation Errors

Find a bound for the local truncation errors for the RK4 method applied to 
y� � 2xy, y(1) � 1.

SOLUTION By computing the fifth derivative of the known solution 
we get

(7)

Thus with c � 1.5, (7) yields a bound of 0.00028 on the local truncation error for
each of the five steps when h � 0.1. Note that in Table 9.2.1 the error in y1 is much
less than this bound.

Table 9.2.3 gives the approximations to the solution of the initial-value problem
at x � 1.5 that are obtained from the RK4 method. By computing the value of the an-
alytic solution at x � 1.5, we can find the error in these approximations. Because the
method is so accurate, many decimal places must be used in the numerical solution
to see the effect of halving the step size. Note that when h is halved, from h � 0.1 to
h � 0.05, the error is divided by a factor of about 24 � 16, as expected.

y(5)(c) 
h5

5!
� (120c � 160c3 � 32c5)ec2�1 

h5

5!
.

y(x) � ex2�1,

EXERCISES 9.2 Answers to selected odd-numbered problems begin on page ANS-17.

1. Use the RK4 method with h � 0.1 to approximate
y(0.5), where y(x) is the solution of the initial-value
problem y� � (x � y � 1)2, y(0) � 2. Compare this
approximate value with the actual value obtained in
Problem 11 in Exercises 9.1.

2. Assume that in (4). Use the resulting second-
order Runge-Kutta method to approximate y(0.5), where
y(x) is the solution of the initial-value problem in
Problem 1. Compare this approximate value with the ap-
proximate value obtained in Problem 11 in Exercises 9.1.

In Problems 3–12 use the RK4 method with h � 0.1 to
obtain a four-decimal approximation of the indicated value.

3. y� � 2x � 3y � 1, y(1) � 5; y(1.5)

4. y� � 4x � 2y, y(0) � 2; y(0.5)

5. y� � 1 � y2, y(0) � 0; y(0.5)

w2 � 3
4

6. y� � x2 � y2, y(0) � 1; y(0.5)

7. y� � e�y, y(0) � 0; y(0.5)

8. y� � x � y2, y(0) � 0; y(0.5)

9. y� � (x � y)2, y(0) � 0.5; y(0.5)

10.

11.

12. y� � y � y2, y(0) � 0.5; y(0.5)

13. If air resistance is proportional to the square of the instan-
taneous velocity, then the velocity v of a mass m dropped
from a given height is determined from

Let v(0) � 0, k � 0.125, m � 5 slugs, and g � 32 ft/s2.

m 
dv
dt

� mg � kv2,    k � 0.

y� � xy2 �
y
x
, y(1) � 1; y(1.5)

y� � xy � 1y, y(0) � 1; y(0.5)

Adaptive Methods We have seen that the accuracy of a numerical method
for approximating solutions of differential equations can be improved by decreasing
the step size h. Of course, this enhanced accuracy is usually obtained at a cost—
namely, increased computation time and greater possibility of round-off error. In
general, over the interval of approximation there may be subintervals where a rela-
tively large step size suffices and other subintervals where a smaller step is necessary
to keep the truncation error within a desired limit. Numerical methods that use a vari-
able step size are called adaptive methods. One of the more popular of the adaptive
routines is the Runge-Kutta-Fehlberg method. Because Fehlberg employed two
Runge-Kutta methods of differing orders, a fourth- and a fifth-order method, this al-
gorithm is frequently denoted as the RKF45 method.*
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372 ● CHAPTER 9 NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

(a) Use the RK4 method with h � 1 to approximate the
velocity v(5).

(b) Use a numerical solver to graph the solution of the
IVP on the interval [0, 6].

(c) Use separation of variables to solve the IVP and
then find the actual value v(5).

14. A mathematical model for the area A (in cm2) that a
colony of bacteria (B. dendroides) occupies is given by

Suppose that the initial area is 0.24 cm2.
(a) Use the RK4 method with h � 0.5 to complete the

following table:

dA
dt

� A(2.128 � 0.0432A).*

18. Consider the initial-value problem y� � 2x � 3y � 1,
y(1) � 5. The analytic solution is 

(a) Find a formula involving c and h for the local trunca-
tion error in the nth step if the RK4 method is used.

(b) Find a bound for the local truncation error in each
step if h � 0.1 is used to approximate y(1.5).

(c) Approximate y(1.5) using the RK4 method with
h � 0.1 and h � 0.05. See Problem 3. You will need
to carry more than six decimal places to see the effect
of reducing the step size.

19. Repeat Problem 18 for the initial-value problem y� � e�y,
y(0) � 0. The analytic solution is y(x) � ln(x � 1).
Approximate y(0.5). See Problem 7.

Discussion Problems

20. A count of the number of evaluations of the function f
used in solving the initial-value problem y� � f (x, y),
y(x0) � y0 is used as a measure of the computational
complexity of a numerical method. Determine the num-
ber of evaluations of f required for each step of Euler’s,
the improved Euler’s, and the RK4 methods. By consid-
ering some specific examples, compare the accuracy of
these methods when used with comparable computa-
tional complexities.

Computer Lab Assignments

21. The RK4 method for solving an initial-value problem
over an interval [a, b] results in a finite set of points
that are supposed to approximate points on the graph of
the exact solution. To expand this set of discrete points
to an approximate solution defined at all points on the
interval [a, b], we can use an interpolating function.
This is a function, supported by most computer algebra
systems, that agrees with the given data exactly and as-
sumes a smooth transition between data points. These
interpolating functions may be polynomials or sets of
polynomials joined together smoothly. In Mathematica
the command y�Interpolation[data] can be used to
obtain an interpolating function through the points
data � {{x0, y0}, {x1, y1}, . . . , {xn, yn}}. The inter-
polating function y[x] can now be treated like any other
function built into the computer algebra system.

(a) Find the analytic solution of the initial-value prob-
lem y� � �y � 10 sin 3x; y(0) � 0 on the interval
[0, 2]. Graph this solution and find its positive roots.

(b) Use the RK4 method with h � 0.1 to approximate a
solution of the initial-value problem in part (a).
Obtain an interpolating function and graph it. Find
the positive roots of the interpolating function of the
interval [0, 2].

y(x) � 1
9 � 2

3 x � 38
9  e�3(x�1).

t (days) 1 2 3 4 5

A (observed) 2.78 13.53 36.30 47.50 49.40

A (approximated)

(b) Use a numerical solver to graph the solution of the
initial-value problem. Estimate the values A(1),
A(2), A(3), A(4), and A(5) from the graph.

(c) Use separation of variables to solve the initial-value
problem and compute the actual values A(1), A(2),
A(3), A(4), and A(5).

15. Consider the initial-value problem y� � x2 � y3, y(1) � 1.
See Problem 12 in Exercises 9.1.
(a) Compare the results obtained from using the RK4

method over the interval [1, 1.4] with step sizes
h � 0.1 and h � 0.05.

(b) Use a numerical solver to graph the solution of the
initial-value problem on the interval [1, 1.4].

16. Consider the initial-value problem y� � 2y, y(0) � 1.
The analytic solution is y(x) � e2x.
(a) Approximate y(0.1) using one step and the RK4

method.
(b) Find a bound for the local truncation error in y1.
(c) Compare the error in y1 with your error bound.
(d) Approximate y(0.1) using two steps and the RK4

method.
(e) Verify that the global truncation error for the RK4

method is O(h4) by comparing the errors in parts (a)
and (d).

17. Repeat Problem 16 using the initial-value problem
y� � �2y � x, y(0) � 1. The analytic solution is

y(x) � 1
2 x � 1

4 � 5
4 e�2x.

*See V. A. Kostitzin, Mathematical Biology (London: Harrap, 1939).
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9.3 MULTISTEP METHODS ● 373

MULTISTEP METHODS

REVIEW MATERIAL
● Sections 9.1 and 9.2

INTRODUCTION Euler’s method, the improved Euler’s method, and the Runge-Kutta methods
are examples of single-step or starting methods. In these methods each successive value yn�1 is
computed based only on information about the immediately preceding value yn. On the other hand,
multistep or continuing methods use the values from several computed steps to obtain the value of
yn�1. There are a large number of multistep method formulas for approximating solutions of DEs,
but since it is not our intention to survey the vast field of numerical procedures, we will consider
only one such method here.

9.3

Adams-Bashforth-Moulton Method The multistep method that is dis-
cussed in this section is called the fourth-order Adams-Bashforth-Moulton
method. Like the improved Euler’s method it is a predictor-corrector method—that
is, one formula is used to predict a value , which in turn is used to obtain a cor-
rected value yn�1. The predictor in this method is the Adams-Bashforth formula

(1)

for n � 3. The value of is then substituted into the Adams-Moulton corrector

(2)

Notice that formula (1) requires that we know the values of y0, y1, y2, and y3 to
obtain y4. The value of y0 is, of course, the given initial condition. The local trunca-
tion error of the Adams-Bashforth-Moulton method is O(h5), the values of y1, y2, and
y3 are generally computed by a method with the same error property, such as the
fourth-order Runge-Kutta method.

 y�n�1 � f (xn�1, y*n�1).

 yn�1 � yn �
h

24
(9y�n�1 � 19y�n � 5y�n�1 � y�n�2)

y*n�1

 y�n�3 � f (xn�3, yn�3)

 y�n�2 � f (xn�2, yn�2)

 y�n�1 � f (xn�1, yn�1)

 y�n � f (xn, yn)

y*n�1 � yn �
h

24
 (55y�n � 59y�n�1 � 37y�n�2 � 9y�n�3),

y*n�1

EXAMPLE 1 Adams-Bashforth-Moulton Method

Use the Adams-Bashforth-Moulton method with h � 0.2 to obtain an approximation
to y(0.8) for the solution of

SOLUTION With a step size of h � 0.2, y(0.8) will be approximated by y4. To get
started, we use the RK4 method with x0 � 0, y0 � 1, and h � 0.2 to obtain

y1 � 1.02140000,    y2 � 1.09181796,    y3 � 1.22210646.

y� � x � y � 1,  y(0) � 1.
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374 ● CHAPTER 9 NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

Now with the identifications x0 � 0, x1 � 0.2, x2 � 0.4, x3 � 0.6, and
f (x, y) � x � y � 1, we fin

With the foregoing values the predictor (1) then gives

To use the corrector (2), we first nee

Finally, (2) yields 

You should verify that the actual value of y(0.8) in Example 1 is 
y(0.8) � 1.42554093. See Problem 1 in Exercises 9.3.

y4 � y3 �
0.2
24

 (9y�4 � 19y�3 � 5y�2 � y�1) � 1.42552788.

y�4 � f (x4, y*4) � 0.8 � 1.42535975 � 1 � 1.22535975.

y*4 � y3 �
0.2
24

 (55y�3 � 59y�2 � 37y�1 � 9y�0 ) �1.42535975.

 y�3 � f (x3, y3) � (0.6) � (1.22210646) � 1 � 0.82210646.

 y�2 � f (x2, y2) � (0.4) � (1.09181796) � 1 � 0.49181796

 y�1 � f (x1, y1) � (0.2) � (1.02140000) � 1 � 0.22140000

 y�0 � f (x0, y0) � (0) � (1) � 1 � 0

Stability of Numerical Methods An important consideration in using nu-
merical methods to approximate the solution of an initial-value problem is the stabil-
ity of the method. Simply stated, a numerical method is stable if small changes in the
initial condition result in only small changes in the computed solution. A numerical
method is said to be unstable if it is not stable. The reason that stability considera-
tions are important is that in each step after the first step of a numerical technique we
are essentially starting over again with a new initial-value problem, where the initial
condition is the approximate solution value computed in the preceding step. Because
of the presence of round-off error, this value will almost certainly vary at least
slightly from the true value of the solution. Besides round-off error, another common
source of error occurs in the initial condition itself; in physical applications the data
are often obtained by imprecise measurements.

One possible method for detecting instability in the numerical solution of a spe-
cific initial-value problem is to compare the approximate solutions obtained when
decreasing step sizes are used. If the numerical method is unstable, the error may
actually increase with smaller step sizes. Another way of checking stability is to
observe what happens to solutions when the initial condition is slightly perturbed
(for example, change y(0) � 1 to y(0) � 0.999).

For a more detailed and precise discussion of stability, consult a numerical
analysis text. In general, all of the methods that we have discussed in this chapter
have good stability characteristics.

Advantages and Disadvantages of Multistep Methods Many consid-
erations enter into the choice of a method to solve a differential equation
numerically. Single-step methods, particularly the RK4 method, are often chosen
because of their accuracy and the fact that they are easy to program. However, a
major drawback is that the right-hand side of the differential equation must be eval-
uated many times at each step. For instance, the RK4 method requires four function
evaluations for each step. On the other hand, if the function evaluations in the
previous step have been calculated and stored, a multistep method requires only
one new function evaluation for each step. This can lead to great savings in time and
expense.
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As an example, solving y� � f(x, y), y(x0) � y0 numerically using n steps by the
fourth-order Runge-Kutta method requires 4n function evaluations. The Adams-
Bashforth multistep method requires 16 function evaluations for the Runge-Kutta
fourth-order starter and n � 4 for the n Adams-Bashforth steps, giving a total of
n � 12 function evaluations for this method. In general the Adams-Bashforth multi-
step method requires slightly more than a quarter of the number of function evalua-
tions required for the RK4 method. If the evaluation of f (x, y) is complicated, the
multistep method will be more efficient

Another issue that is involved with multistep methods is how many times the
Adams-Moulton corrector formula should be repeated in each step. Each time
the corrector is used, another function evaluation is done, and so the accuracy is
increased at the expense of losing an advantage of the multistep method. In prac-
tice, the corrector is calculated once, and if the value of yn�1 is changed by a large
amount, the entire problem is restarted using a smaller step size. This is often
the basis of the variable step size methods, whose discussion is beyond the scope
of this text.

9.4 HIGHER-ORDER EQUATIONS AND SYSTEMS ● 375

EXERCISES 9.3 Answers to selected odd-numbered problems begin on page ANS-17.

1. Find the analytic solution of the initial-value problem in
Example 1. Compare the actual values of y(0.2), y(0.4),
y(0.6), and y(0.8) with the approximations y1, y2, y3, and y4.

2. Write a computer program to implement the Adams-
Bashforth-Moulton method.

In Problems 3 and 4 use the Adams-Bashforth-Moulton
method to approximate y(0.8), where y(x) is the solution of
the given initial-value problem. Use h � 0.2 and the RK4
method to compute y1, y2, and y3.

3. y� � 2x � 3y � 1, y(0) � 1

4. y� � 4x � 2y, y(0) � 2

In Problems 5–8 use the Adams-Bashforth-Moulton method
to approximate y(1.0), where y(x) is the solution of the given
initial-value problem. First use h � 0.2 and then use h � 0.1.
Use the RK4 method to compute y1, y2, and y3.

5. y� � 1 � y2, y(0) � 0

6. y� � y � cos x, y(0) � 1

7. y� � (x � y)2, y(0) � 0

8. y� � xy � 1y,  y(0) � 1

HIGHER-ORDER EQUATIONS AND SYSTEMS

REVIEW MATERIAL
● Section 1.1 (normal form of a second-order DE)
● Section 4.10 (second-order DE written as a system of first-order DEs

INTRODUCTION So far, we have focused on numerical techniques that can be used to approx-
imate the solution of a first-order initial-value problem y� � f(x, y), y(x0) � y0. In order to approxi-
mate the solution of a second-order initial-value problem, we must express a second-order DE as a
system of two first-order DEs. To do this, we begin by writing the second-order DE in normal form
by solving for y� in terms of x, y, and y�.

9.4

Second-Order IVPs A second-order initial-value problem

(1)y � � f (x, y, y�),  y(x0) � y0,  y�(x0) � u0
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FIGURE 9.4.1 Numerical solution
curves generated by different methods

can be expressed as an initial-value problem for a system of first-order differen-
tial equations. If we let y� � u, the differential equation in (1) becomes the system

(2)

Since y�(x0) � u(x0), the corresponding initial conditions for (2) are then y(x0) � y0,
u(x0) � u0. The system (2) can now be solved numerically by simply applying a par-
ticular numerical method to each first-order differential equation in the system. For
example, Euler’s method applied to the system (2) would be

(3)

whereas the fourth-order Runge-Kutta method, or RK4 method, would be

(4)

where

In general, we can express every nth-order differential equation
y(n) � f(x, y, y�, . . . , y(n�1)) as a system of n first-order equations using the
substitutions y � u1, y� � u2, y� � u3, . . . , y (n�1) � un.

k4 � f (xn � h, yn � hm3, un � hk3).m4 � un � hk3

k3 � f (xn � 1
2 h, yn � 1

2 hm2, un � 1
2 hk2)m3 � un � 1

2hk2

k2 � f (xn � 1
2 h, yn � 1

2 hm1, un � 1
2 hk1)m2 � un � 1

2hk1

k1 � f (xn, yn, un)m1 � un

un�1 � un �
h
6

(k1 � 2k2 � 2k3 � k4)

yn�1 � yn �
h
6

(m1 � 2m2 � 2m3 � m4)

un�1 � un � h f (xn, yn, un),
 yn�1 � yn � hun

 u� � f (x, y, u).
 y� � u

EXAMPLE 1 Euler’s Method

Use Euler’s method to obtain the approximate value of y(0.2), where y(x) is the
solution of the initial-value problem

(5)

SOLUTION In terms of the substitution y� � u, the equation is equivalent to the
system

.

Thus from (3) we obtain

Using the step size h � 0.1 and y0 � 1, u0 � 2, we fin

In other words, y(0.2) � 1.39 and y�(0.2) � 1.761.

With the aid of the graphing feature of a numerical solver, in Figure 9.4.1(a) we
compare the solution curve of (5) generated by Euler’s method (h � 0.1) on the

  u2 � u1 � (0.1)[�x1u1 � y1] � 1.9 � (0.1)[�(0.1)(1.9) � 1.2] � 1.761.

  y2 � y1 � (0.1)u1 � 1.2 � (0.1)(1.9) � 1.39

  u1 � u0 � (0.1) [�x0u0 � y0] � 2 � (0.1)[�(0)(2) � 1] � 1.9

  y1 � y0 � (0.1)u0 � 1 � (0.1)2 � 1.2

  un�1 � un � h[�xnun � yn].

  yn�1 � yn � hun

 u� � �xu � y

 y� � u

y � � xy� � y � 0,  y(0) � 1,  y�(0) � 2.
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9.4 HIGHER-ORDER EQUATIONS AND SYSTEMS ● 377

interval [0, 3] with the solution curve generated by the RK4 method (h � 0.1). From
Figure 9.4.1(b) it appears that the solution y(x) of (4) has the property that 
and .

If desired, we can use the method of Section 6.2 to obtain two power series
solutions of the differential equation in (5). But unless this method reveals that the DE
possesses an elementary solution, we will still only be able to approximate y(0.2) using
a partial sum. Reinspection of the infinite series solutions of Airy’s differential equation
y� � xy � 0, given on page 242, does not reveal the oscillatory behavior of the
solutions y1(x) and y2(x) exhibited in the graphs in Figure 6.2.2. Those graphs were
obtained from a numerical solver using the RK4 method with a step size of h � 0.1.

Systems Reduced to First-Order Systems Using a procedure similar to
that just discussed for second-order equations, we can often reduce a system of
higher-order differential equations to a system of first-order equations by first solv-
ing for the highest-order derivative of each dependent variable and then making
appropriate substitutions for the lower-order derivatives.

x : �
y(x) : 0

EXAMPLE 2 A System Rewritten as a First-Order System

Write

as a system of first-order di ferential equations.

SOLUTION Write the system as

and then eliminate y� by multiplying the second equation by 2 and subtracting. This
gives

.
Since the second equation of the system already expresses the highest-order derivative of
y in terms of the remaining functions, we are now in a position to introduce new vari-
ables. If we let x� � u and y� � v, the expressions for x� and y� become, respectively,

The original system can then be written in the form

It might not always be possible to carry out the reductions illustrated in Example 2.

Numerical Solution of a System The solution of a system of the form

� g1(t,  x1,  x2, . . . ,  xn)

� g2(t,  x1,  x2, . . . ,  xn)

� gn(t, x1,  x2, . . . ,  xn)

...
...

dx1–––
dt

dx2–––
dt

dxn–––
dt

  v� � 2x � 2y � 3t2.
  u� � �9x � 4y � u � et � 6t2

  y� � v
  x� � u

  v� � y� � 2x � 2y � 3t2.
  u� � x� � �9x � 4y � u � et � 6t2

x � � �9x � 4y � x� � et � 6t2

  y � � 3t2 � 2x � 2y

  x � � 2y � � et � 5x � x�

 �2x � y � � 2y � 3t2

  x � � x� � 5x � 2y � � et
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378 ● CHAPTER 9 NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

can be approximated by a version of Euler’s, the Runge-Kutta, or the
Adams-Bashforth-Moulton method adapted to the system. For instance, the
RK4 method applied to the system

(6)

looks like this:

(7)
yn�1 � yn �

h
6

(k1 � 2k2 � 2k3 � k4),

xn�1 � xn �
h
6

(m1 � 2m2 � 2m3 � m4)

x(t0) � x0,  y(t0) � y0,

  y� � g(t, x, y)

  x� � f (t, x, y)

where

(8)

k4 � g(tn � h, xn � hm3, yn � hk3).m4 � f (tn � h, xn � hm3, yn �  hk3)

k3 � g(tn � 1
2 h, xn � 1

2 h m2, yn � 1
2 h k2)m3 � f (tn � 1

2 h, xn � 1
2 hm2, yn � 1

2 hk2)
k2 � g(tn � 1

2 h, xn � 1
2 h m1, yn � 1

2 h k1)m2 � f (tn � 1
2 h, xn � 1

2 hm1, yn � 1
2 hk1)

k1 � g(tn, xn, yn)m1 � f (tn, xn, yn)

EXAMPLE 3 RK4 Method

Consider the initial-value problem

Use the RK4 method to approximate x(0.6) and y(0.6). Compare the results for
h � 0.2 and h � 0.1.

SOLUTION We illustrate the computations of x1 and y1 with step size h � 0.2. With
the identifications f (t, x, y) � 2x � 4y, g(t, x, y) � �x � 6y, t0 � 0, x0 � �1, and
y0 � 6 we see from (8) that

  k4 � g(t0 � h, x0 � hm3, y0 � hk3) � g(0.2, 9.608, 19.416) � 106.888.

  m4 � f (t0 � h, x0 � hm3, y0 � hk3) � f (0.2, 9.608, 19.416) � 96.88

 k3 � g(t0 � 1
2 h, x0 � 1

2 hm2, y0 � 1
2 hk2) � g(0.1, 3.12, 11.7) � 67.08

 m3 � f (t0 � 1
2 h, x0 � 1

2 hm2, y0 � 1
2 hk2) � f (0.1, 3.12, 11.7) � 53.04

 k2 � g(t0 � 1
2 h, x0 � 1

2 hm1, y0 � 1
2 hk1) � g(0.1, 1.2, 9.7) � 57

 m2 � f (t0 � 1
2 h, x0 � 1

2 hm1, y0 � 1
2 hk1) � f (0.1, 1.2, 9.7) � 41.2

  k1 � g(t0, x0, y0) � g(0, �1, 6) � �1(�1) � 6(6) � 37

  m1 � f (t0, x0, y0) � f (0, �1, 6) � 2(�1) � 4(6) � 22

  x(0) � �1,   y(0) � 6.

  y� � �x � 6y

  x� � 2x � 4y
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9.4 HIGHER-ORDER EQUATIONS AND SYSTEMS ● 379

Therefore from (7) we get

where, as usual, the computed values of x1 and y1 are rounded to four decimal
places. These numbers give us the approximation x1 � x(0.2) and y1 � y(0.2). The
subsequent values, obtained with the aid of a computer, are summarized in
Tables 9.4.1 and 9.4.2.

You should verify that the solution of the initial-value problem in Example 3 is
given by x(t) � (26t � 1)e4t, y(t) � (13t � 6)e4t. From these equations we see that
the actual values x(0.6) � 160.9384 and y(0.6) � 152.1198 compare favorably with
the entries in the last line of Table 9.4.2. The graph of the solution in a neighborhood
of t � 0 is shown in Figure 9.4.2; the graph was obtained from a numerical solver
using the RK4 method with h � 0.1.

In conclusion, we state Euler’s method for the general system (6):

 yn�1 � yn � hg(tn, xn, yn).

  xn�1 � xn � h f (tn, xn, yn)

 � 6 �
0.2
6

 (37 � 2(57) � 2(67.08) � 106.888) � 19.0683,

 y1 � y0 �
0.2
6

 (k1 � 2k2 � 2k3 � k4)

 ��1 �
0.2
6

 (22 � 2(41.2) � 2(53.04) � 96.88) � 9.2453

 x1 � x0 �
0.2
6

 (m1 � 2m2 � 2m3 � m4)

FIGURE 9.4.3 Network in Problem 6

i1 i2

i3R

R

L L

RE

t

x, y

_ 1

1 y(t)

x(t)

FIGURE 9.4.2 Numerical solution
curves for IVP in Example 3

TABLE 9.4.1 h � 0.2

tn xn yn

0.00 �1.0000 6.0000
0.20 9.2453 19.0683
0.40 46.0327 55.1203
0.60 158.9430 150.8192

TABLE 9.4.2 h � 0.1

tn xn yn

0.00 �1.0000 6.0000
0.10 2.3840 10.8883
0.20 9.3379 19.1332
0.30 22.5541 32.8539
0.40 46.5103 55.4420
0.50 88.5729 93.3006
0.60 160.7563 152.0025

EXERCISES 9.4 Answers to selected odd-numbered problems begin on page ANS-17.

1. Use Euler’s method to approximate y(0.2), where y(x) is
the solution of the initial-value problem

Use h � 0.1. Find the analytic solution of the problem,
and compare the actual value of y(0.2) with y2.

2. Use Euler’s method to approximate y(1.2), where y(x) is
the solution of the initial-value problem

where x � 0. Use h � 0.1. Find the analytic solution of the
problem, and compare the actual value of y(1.2) with y2.

In Problems 3 and 4 repeat the indicated problem using the
RK4 method. First use h � 0.2 and then use h � 0.1.

3. Problem 1 4. Problem 2

5. Use the RK4 method to approximate y(0.2), where y(x)
is the solution of the initial-value problem

First use h � 0.2 and then use h � 0.1.
y � � 2y� � 2y � et cos t,  y(0) � 1,  y�(0) � 2.

x2y� � 2xy� � 2y � 0,  y(1) � 4,  y�(1) � 9,

y � � 4y� � 4y � 0,  y (0) � �2,  y�(0) � 1.

6. When E � 100 V, R � 10 �, and L � 1 h, the sys-
tem of differential equations for the currents i1(t) and
i3(t) in the electrical network given in Figure 9.4.3 is

where i1(0) � 0 and i3(0) � 0. Use the RK4 method to
approximate i1(t) and i3(t) at t � 0.1, 0.2, 0.3, 0.4, and
0.5. Use h � 0.1. Use a numerical solver to graph the
solution for 0 � t � 5. Use the graphs to predict the
behavior of i1(t) and i3(t) as .t : �

 
di3

dt
� 10i1 � 20i3,

 
di1

dt
� �20i1 � 10i3 � 100
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380 ● CHAPTER 9 NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

In Problems 7–12 use the Runge-Kutta method to approxi-
mate x(0.2) and y(0.2). First use h � 0.2 and then use
h � 0.1. Use a numerical solver and h � 0.1 to graph the so-
lution in a neighborhood of t � 0.

7. x� � 2x � y 8. x� � x � 2y
y� � x y� � 4x � 3y
x(0) � 6, y(0) � 2 x(0) � 1, y(0) � 1

9. x� � �y � t 10. x� � 6x � y � 6t
y� � x � t y� � 4x � 3y � 10t � 4
x(0) � �3, y(0) � 5 x(0) � 0.5, y(0) � 0.2

11. x� � 4x � y� � 7t 12. x�� y�� 4t
x� � y� � 2y � 3t �x� � y� � y � 6t2 � 10
x(0) � 1, y(0) � �2 x(0) � 3, y(0) � �1

SECOND-ORDER BOUNDARY-VALUE PROBLEMS

REVIEW MATERIAL
● Section 4.1 (page 118)
● Exercises 4.3 (Problems 37–40)
● Exercises 4.4 (Problems 37–40)
● Section 5.2

INTRODUCTION We just saw in Section 9.4 how to approximate the solution of a second-
order initial-value problem 

y� � f (x, y, y�), y(x0) � y0, y�(x0) � u0.

In this section we are going to examine two methods for approximating a solution of a second-
order boundary-value problem

y� � f (x, y, y�), y(a) � a, y(b) � b.

Unlike the procedures that are used with second-order initial-value problems, the methods of
second-order boundary-value problems do not require writing the second-order DE as a system
of first-order DEs.

9.5

Finite Difference Approximations The Taylor series expansion, centered
at a point a, of a function y(x) is

If we set h � x � a, then the preceding line is the same as

For the subsequent discussion it is convenient then to rewrite this last expression in
two alternative forms:

(1)

and (2)

If h is small, we can ignore terms involving h4, h5, . . . since these values are neg-
ligible. Indeed, if we ignore all terms involving h2 and higher, then solving (1) and
(2), in turn, for y�(x) yields the following approximations for the first derivative:

(3)

(4) y�(x) �
1
h
 [y(x) � y(x � h)].

 y�(x) �
1
h
 [y(x � h) � y(x)]

 y(x � h) � y(x) � y�(x)h � y �(x) 
h2

2
� y� (x) 

h3

6
� 	 	 	 .

 y(x � h) � y(x) � y�(x)h � y �(x) 
h2

2
� y� (x) 

h3

6
� 	 	 	

y(x) � y(a) � y�(a) 
h
1!

� y �(a) 
h2

2!
� y� (a) 

h3

3!
� 	 	 	 .

y(x) � y(a) � y�(a) 
x � a

1!
� y �(a) 

(x � a)2

2!
� y� (a) 

(x � a)3

3!
� 	 	 	 .
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9.5 SECOND-ORDER BOUNDARY-VALUE PROBLEMS ● 381

Subtracting (1) and (2) also gives

(5)

On the other hand, if we ignore terms involving h3 and higher, then by adding (1) and
(2), we obtain an approximation for the second derivative y�(x):

(6)

The right-hand sides of (3), (4), (5), and (6) are called difference quotients. The
expressions

and

are called finite differences. Specificall , y(x � h) � y(x) is called a forward
difference, y(x) � y(x � h) is a backward difference, and both y(x � h) � y(x � h)
and y(x � h) � 2y(x) � y(x � h) are called central differences. The results given in
(5) and (6) are referred to as central difference approximations for the derivatives
y� and y�.

Finite Difference Method Consider now a linear second-order boundary-
value problem

(7)

Suppose represents a regular partition of
the interval [a, b], that is, xi � a � ih, where i � 0, 1, 2, . . . , n and h � (b � a)�n.
The points

are called interior mesh points of the interval [a, b]. If we let

and if y� and y� in (7) are replaced by the central difference approximations (5) and (6),
we get

or, after simplifying,

(8)

The last equation, known as a finite difference equation, is an approximation
to the differential equation. It enables us to approximate the solution y(x) of (7)
at the interior mesh points x1, x2, . . . , xn�1 of the interval [a, b]. By letting i
take on the values 1, 2, . . . , n � 1 in (8), we obtain n � 1 equations in the n � 1
unknowns y1, y2, . . . , yn�1. Bear in mind that we know y0 and yn, since
these are the prescribed boundary conditions y0 � y(x0) � y(a) � a and
yn � y(xn) � y(b) � b.

In Example 1 we consider a boundary-value problem for which we can compare
the approximate values that we find with the actual values of an explicit solution

�1 �
h
2

Pi�yi�1 � (�2 � h2Qi ) yi � �1 �
h
2

Pi�yi�1 � h2 fi.

yi�1 � 2 yi � yi�1

h2 � Pi 
yi�1 � yi�1

2 h
� Qi yi � fi

yi � y (xi ),    Pi � P(xi ),    Qi � Q (xi ),    and    fi � f (xi )

x1 � a � h,    x2 � a � 2h, . . . ,    xn�1 � a � (n � 1)h

a � x0 � x1 � x2 � 	 	 	 � xn�1 � xn � b

y � � P(x)y� � Q(x)y � f (x),    y(a) � 
,  y(b) � �.

y(x � h) � 2y(x) � y(x � h)

y(x � h) � y(x), y(x) � y(x � h), y(x � h) � y(x � h),

 y �(x) �
1
h2 [y(x � h) � 2y(x) � y(x � h)].

 y�(x) �
1

2h
 [ y(x � h) � y(x � h)].
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382 ● CHAPTER 9 NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

EXAMPLE 1 Using the Finite Difference Method

Use the difference equation (8) with n � 4 to approximate the solution of the
boundary-value problem y� � 4y � 0, y(0) � 0, y(1) � 5.

SOLUTION To use (8), we identify P(x) � 0, Q(x) � �4, f (x) � 0, and
. Hence the difference equation is

(9)

Now the interior points are , so for
i � 1, 2, and 3, (9) yields the following system for the corresponding y1, y2,
and y3:

With the boundary conditions y0 � 0 and y4 � 5 the foregoing system becomes

�2.25y1 � y2 � 0

y1 � 2.25y2 � y3 � 0

y2 � 2.25y3 � �5.

Solving the system gives y1 � 0.7256, y2 � 1.6327, and y3 � 2.9479.
Now the general solution of the given differential equation is y � c1 cosh 2x �

c2 sinh 2x. The condition y(0) � 0 implies that c1 � 0. The other boundary condition
gives c2. In this way we see that a solution of the boundary-value problem is 
y(x) � (5 sinh 2x)�sinh 2. Thus the actual values (rounded to four decimal places) of
this solution at the interior points are as follows: y(0.25) � 0.7184, y(0.5) � 1.6201,
and y(0.75) � 2.9354.

The accuracy of the approximations in Example 1 can be improved by using a
smaller value of h. Of course, the trade-off here is that a smaller value of h necessitates
solving a larger system of equations. It is left as an exercise to show that with ,
approximations to y(0.25), y(0.5), and y(0.75) are 0.7202, 1.6233, and 2.9386, respec-
tively. See Problem 11 in Exercises 9.5.

h � 1
8

 y4 � 2.25y3 � y2 � 0.

 y3 � 2.25y2 � y1 � 0

 y2 � 2.25y1 � y0 � 0

x1 � 0 � 1
4, x2 � 0 � 2

4, x3 � 0 � 3
4

yi�1 � 2.25yi � yi�1 � 0.

h � (1 � 0)>4 � 1
4

EXAMPLE 2 Using the Finite Difference Method

Use the difference equation (8) with n � 10 to approximate the solution of

SOLUTION In this case we identify P(x) � 3, Q(x) � 2, f (x) � 4x2, and 
h � (2 � 1)�10 � 0.1, and so (8) becomes

(10)

Now the interior points are x1 � 1.1, x2 � 1.2, x3 � 1.3, x4 � 1.4, x5 � 1.5, x6 � 1.6,
x7 � 1.7, x8 � 1.8, and x9 � 1.9. For i � 1, 2, . . . , 9 and y0 � 1, y10 � 6, (10) gives a
system of nine equations and nine unknowns:

1.15y5 � 1.98y4 � 0.85y3 � 0.0784

1.15y4 � 1.98y3 � 0.85y2 � 0.0676

1.15y3 � 1.98y2 � 0.85y1 � 0.0576

1.15y2 � 1.98y1  ��0.8016

1.15yi�1 � 1.98yi � 0.85yi�1 � 0.04xi
2.

y � � 3y�� 2y � 4x2,    y(1) � 1,  y(2) � 6.
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We can solve this large system using Gaussian elimination or, with relative ease,
by means of a computer algebra system. The result is found to be y1 � 2.4047,
y2 � 3.4432, y3 � 4.2010, y4 � 4.7469, y5 � 5.1359, y6 � 5.4124, y7 � 5.6117,
y8 � 5.7620, and y9 � 5.8855.

Shooting Method Another way of approximating a solution of a boundary-

 � 1.98y9 � 0.85y8 � �6.7556.

1.15y9 � 1.98y8 � 0.85y7 � 0.1296

1.15y8 � 1.98y7 � 0.85y6 � 0.1156

1.15y7 � 1.98y6 � 0.85y5 � 0.1024

1.15y6 � 1.98y5 � 0.85y4 � 0.0900

9.5 SECOND-ORDER BOUNDARY-VALUE PROBLEMS ● 383

REMARKS

The approximation method using finite differences can be extended to boundary-
value problems in which the first derivative is specified at a boundary—for
example, a problem such as y� � f(x, y, y�), y�(a) � a, y(b) � b. See Problem 13
in Exercises 9.5.

EXERCISES 9.5 Answers to selected odd-numbered problems begin on page ANS-17.

In Problems 1–10 use the finite difference method and the
indicated value of n to approximate the solution of the given
boundary-value problem.

1. y� � 9y � 0, y(0) � 4, y(2) � 1; n � 4

2. y� � y � x2, y(0) � 0, y(1) � 0; n � 4

3. y� � 2y� � y � 5x, y(0) � 0, y(1) � 0; n � 5

4. y� � 10y� � 25y � 1, y(0) � 1, y(1) � 0; n � 5

5. y� � 4y� � 4y � (x � 1)e2x,
y(0) � 3, y(1) � 0; n � 6

6. y � � 5y� � 41x, y(1) � 1, y(2) � �1; n � 6

7. x2y� � 3xy� � 3y � 0, y(1) � 5, y(2) � 0; n � 8

8. x2y� � xy� � y � ln x, y(1) � 0, y(2) � �2; n � 8

9. y� � (1 � x)y� � xy � x, y(0) � 0, y(1) � 2; n � 10

10. y� � xy� � y � x, y(0) � 1, y(1) � 0; n � 10

11. Rework Example 1 using n � 8.

12. The electrostatic potential u between two concentric
spheres of radius r � 1 and r � 4 is determined from

d2u
dr2 �

2
r
 
du
dr

� 0,  u(1) � 50,  u(4) � 100.

value problem y� � f (x, y, y�), y(a) � a, y(b) � b is called the shooting method.
The starting point in this method is the replacement of the second-order boundary-
value problem by a second-order initial-value problem

(11)

The number m1 in (11) is simply a guess for the unknown slope of the solution curve at
the known point (a, y(a)). We then apply one of the step-by-step numerical techniques
to the second-order equation in (11) to find an approximation b1 for the value of y(b). If
b1 agrees with the given value y(b) � b to some preassigned tolerance, we stop; other-
wise, the calculations are repeated, starting with a different guess y�(a) � m2 to obtain
a second approximation b2 for y(b). This method can be continued in a trial-and-error
manner, or the subsequent slopes m3, m4, . . . can be adjusted in some systematic way;
linear interpolation is particularly successful when the differential equation in (11) is
linear. The procedure is analogous to shooting (the “aim” is the choice of the initial
slope) at a target until the bull’s-eye y(b) is hit. See Problem 14 in Exercises 9.5.

Of course, underlying the use of these numerical methods is the assumption,
which we know is not always warranted, that a solution of the boundary-value prob-
lem exists.

y � � f (x, y, y�),  y(a) � a, y�(a) � m1.
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384 ● CHAPTER 9 NUMERICAL SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

Use the method of this section with n � 6 to approxi-
mate the solution of this boundary-value problem.

13. Consider the boundary-value problem y� � xy � 0,
y�(0) � 1, y(1) � �1.
(a) Find the difference equation corresponding to the

differential equation. Show that for i � 0, 1, 2, . . . ,
n � 1 the difference equation yields n equations in
n � 1 unknows y�1, y0, y1, y2, . . . , yn�1. Here y�1
and y0 are unknowns, since y�1 represents an
approximation to y at the exterior point x � �h and
y0 is not specified at x � 0.

(b) Use the central difference approximation (5) to
show that y1 � y�1 � 2h. Use this equation to elim-
inate y�1 from the system in part (a).

(c) Use n � 5 and the system of equations found in
parts (a) and (b) to approximate the solution of the
original boundary-value problem.

Computer Lab Assignments

14. Consider the boundary-value problem y� � y� � sin (xy),
y(0) � 1, y(1) � 1.5. Use the shooting method to approx-
imate the solution of this problem. (The approximation
can be obtained using a numerical technique—say, the
RK4 method with h � 0.1; or, even better, if you have
access to a CAS such as Mathematica or Maple, the
NDSolve function can be used.)

CHAPTER 9 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-17.

In Problems 1–4 construct a table comparing the indicated
values of y(x) using Euler’s method, the improved Euler’s
method, and the RK4 method. Compute to four rounded dec-
imal places. First use h � 0.1 and then use h � 0.05.

1. y� � 2 ln xy, y(1) � 2;
y(1.1), y(1.2), y(1.3), y(1.4), y(1.5)

2. y� � sin x2 � cos y2, y(0) � 0;
y(0.1), y(0.2), y(0.3), y(0.4), y(0.5)

3.
y(0.6), y(0.7), y(0.8), y(0.9), y(1.0)

4. y� � xy � y2, y(1) � 1;
y(1.1), y(1.2), y(1.3), y(1.4), y(1.5)

5. Use Euler’s method to approximate y(0.2), where 
y(x) is the solution of the initial-value problem
y� � (2x � 1)y � 1, y(0) � 3, y�(0) � 1. First use
one step with h � 0.2 and then repeat the calculations
using two steps with h � 0.1.

y� � 1x � y, y(0.5) � 0.5;

6. Use the Adams-Bashforth-Moulton method to approxi-
mate y(0.4), where y(x) is the solution of the initial-
value problem y� � 4x � 2y, y(0) � 2. Use h � 0.1
and the RK4 method to compute y1, y2, and y3.

7. Use Euler’s method with h � 0.1 to approximate x(0.2)
and y(0.2), where x(t), y(t) is the solution of the initial-
value problem

8. Use the finite difference method with n � 10 to
approximate the solution of the boundary-value problem
y� � 6.55(1 � x)y � 1, y(0) � 0, y(1) � 0.

x(0) � 1,    y(0) � 2.
y� � x � y
x� � x � y
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10.1 Autonomous Systems
10.2 Stability of Linear Systems
10.3 Linearization and Local Stability
10.4 Autonomous Systems as Mathematical Models

Chapter 10 in Review

In Chapter 8 we used matrix techniques to solve systems of linear first-orde
differential equations of the form When a system of differential
equations is not linear, it is usually not possible to find solutions that can b
expressed  in terms of elementary functions. In this chapter we will demonstrate
that valuable information on the geometric nature of the solutions can be acquired
by first analyzing special constant solutions obtained from the critical points of the
system and by searching for periodic solutions. The important concept of stability
will be introduced and illustrated with mathematical models from physics and
ecology.

X� � AX � F(t).

Plane Autonomous Systems10

385

27069_10_ch10_p385-418.qxd  2/2/12  2:50 PM  Page 385

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



386 ● CHAPTER 10 PLANE AUTONOMOUS SYSTEMS

Autonomous Systems A system of first-order differential equations is said
to be autonomous when the system can be written in the form

(1)

Observe that the independent variable t does not appear explicitly on the right-hand
side of each differential equation. Compare (1) with the general system given in (2)
of Section 8.1.

dxn

dt
� gn(x1, x2, . . . , xn).

�
�

�
�
�

�

dx2

dt
� g2(x1, x2, . . . , xn)

dx1

dt
� g1(x1, x2, . . . , xn)

AUTONOMOUS SYSTEMS

REVIEW MATERIAL
● A rereading of pages 38–42 in Section 2.1 is highly recommended.

INTRODUCTION We introduced the notions of autonomous first-order DEs, critical points of
an autonomous DE, and the stability of a critical point in Section 2.1. This earlier consideration
of stability was purposely kept at a fairly intuitive level; it is now time to give the precise definitio
of this concept. To do this, we need to examine autonomous systems of first-order DEs. In this
section we define critical points of autonomous systems of two first-order DEs; the autonomous
systems can be linear or nonlinear.

10.1

EXAMPLE 1 A Nonautonomous System

The system of nonlinear first-order di ferential equations

is not autonomous because of the presence of t on the right-hand sides of
both DEs.

Note When n � 1 in (1), a single first-order differential equation takes on the
form dx�dt � g(x). This last equation is equivalent to (1) of Section 2.1 with the
symbols x and t playing the parts of y and x, respectively. Explicit solutions can be
constructed, since the differential equation dx�dt � g(x) is separable, and we will
make use of this fact to give illustrations of the concepts in this chapter.

Second-Order DE as a System Any second-order differential equation x� �
g(x, x�) can be written as an autonomous system. As we did in Section 4.10, if we let
y � x�, then x� � g(x, x�) becomes y� � g(x, y). Thus the second-order differential
equation becomes the system of two first-order equation

x� � y
y� � g(x, y).

� x1 � 3x2 � t 2

� tx1 sin x2

dx1–––
dt

dx2–––
dt

t dependence

t dependence
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10.1 AUTONOMOUS SYSTEMS ● 387

EXAMPLE 2 The Pendulum DE as an Autonomous System

In (6) of Section 5.3 we showed that the displacement angle u for a pendulum
satisfies the nonlinear second-order di ferential equation

If we let x � u and y � u�, this second-order differential equation can be rewritten as
the autonomous system

Notation If X(t) and g(X) denote the respective column vectors

then the autonomous system (1) may be written in the compact column vector form
X� � g(X). The homogeneous linear system X� � AX studied in Section 8.2 is an
important special case.

In this chapter it is also convenient to write (1) using row vectors. If we let
X(t) � (x1(t), x2(t), . . . , xn(t)) and

g(X) � (g1(x1, x2, . . . , xn), g2(x1, x2, . . . , xn), . . . , gn(x1, x2, . . . , xn)),

then the autonomous system (1) may also be written in the compact row vector form
X� � g(X). It should be clear from the context whether we are using column or row
vector form; therefore we will not distinguish between X and XT, the transpose of
X. In particular, when n � 2, it is convenient to use row vector form and write an
initial condition as X(0) � (x0, y0).

When the variable t is interpreted as time, we can refer to the system of differen-
tial equations in (1) as a dynamical system and a solution X(t) as the state of the
system or the response of the system at time t. With this terminology a dynamical
system is autonomous when the rate X�(t) at which the system changes depends
only on the system’s present state X(t). The linear system X� � AX � F(t) studied
in Chapter 8 is then autonomous when F(t) is constant. In the case n � 2 or 3 we can
call a solution a path or trajectory, since we may think of x � x1(t), y � x2(t), and
z � x3(t) as the parametric equations of a curve.

Vector Field Interpretation When n � 2, the system in (1) is called a plane
autonomous system, and we write the system as

(2)

The vector V(x, y) � (P(x, y), Q(x, y)) defines a vector fiel in a region of
the plane, and a solution to the system may be interpreted as the resulting path of a
particle as it moves through the region. To be more specific, let V(x, y) � (P(x, y),
Q(x, y)) denote the velocity of a stream at position (x, y), and suppose that a
small particle (such as a cork) is released at a position (x0, y0) in the stream. If
X(t) � (x(t), y(t)) denotes the position of the particle at time t, then X�(t) � (x�(t), y�(t))

 
dy
dt

� Q(x, y).

 
dx
dt

� P(x, y)

x1(t)
x2(t)

xn(t)

 X(t ) �
 (  

 ) ,  
 ) ,

g1(x1,x2, . . . ,xn)
g2(x1,x2, . . . ,xn)

gn(x1,x2, . . . ,xn)

 g(X) �
 (...

...

 y� � � g
l
 sin x.

 x� � y

d 2�

dt2 �
g
l
 sin � � 0.
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is the velocity vector V. When external forces are not present and frictional forces
are neglected, the velocity of the particle at time t is the velocity of the stream at
position X(t):

Thus the path of the particle is a solution to the system that satisfies the initial
condition X(0) � (x0, y0). We will frequently call on this simple interpretation of
a plane autonomous system to illustrate new concepts.

X�(t) � V(x(t), y(t))    or    

dx
dt

� P(x(t), y(t))

dy
dt

� Q(x(t), y(t)).
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x

y

(−3, 1)

FIGURE 10.1.1 Vector field of a flu
flow in Example 

FIGURE 10.1.2 Curve in (a) is called
an arc.

(b)(a)

X(0)

X(0)

P
1

2

X(0)

FIGURE 10.1.3 Periodic solution or
cycle

EXAMPLE 3 Plane Autonomous System of a Vector Field

A vector field for the steady-state flow of a fluid around a cylinder of radius 1 is
given by

where V0 is the speed of the fluid far from the cylinder. If a small cork is released
at (�3, 1), the path X(t) � (x(t), y(t)) of the cork satisfies the plane autonomous
system

subject to the initial condition X(0) � (�3, 1). See Figure 10.1.1 and Problem 46 in
Exercises 2.4.

Types of Solutions If P(x, y), Q(x, y), and the first-order partial derivatives
	P�	x, 	P�	y, 	Q�	x, and 	Q�	y are continuous in a region R of the plane, then a
solution of the plane autonomous system (2) that satisfies X(0) � X0 is unique and
of one of three basic types:

(i) A constant solution x(t) � x0, y(t) � y0 (or X(t) � X0 for all t). A
constant solution is called a critical or stationary point. When the
particle is placed at a critical point X0 (that is, X(0) � X0), it remains
there indefinitel . For this reason a constant solution is also called an
equilibrium solution. Note that because X�(t) � 0, a critical point is a
solution of the system of algebraic equations

(ii) A solution x � x(t), y � y(t) that defines an arc—a plane curve that does
not cross itself. Thus the curve in Figure 10.1.2(a) can be a solution to
a plane autonomous system, whereas the curve in Figure 10.1.2(b)
cannot be a solution. There would be two solutions that start from the
point P of intersection.

(iii) A periodic solution x � x(t), y � y(t). A periodic solution is called a
cycle. If p is the period of the solution, then X(t � p) � X(t) and a particle
placed on the curve at X0 will cycle around the curve and return to X0 in
p units of time. See Figure 10.1.3.

 Q(x, y) � 0.

 P(x, y) � 0

 
dy
dt

� V0 
�2xy

(x2 � y2)2

 
dx
dt

� V0�1 �
x2 � y2

(x2 � y2)2�

V(x, y) � V0�1 �
x2 � y2

(x2 � y2)2, 
�2xy

(x2 � y2)2�,
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10.1 AUTONOMOUS SYSTEMS ● 389

(b) Nonperiodic solution

(a) Periodic solution

x

y

3

3

−3

−3

−5

−5

x

y

5

5

(2, 0)

FIGURE 10.1.4 Solution curves in
Example 5

EXAMPLE 4 Finding Critical Points

Find all critical points of each of the following plane autonomous systems:

(a) x� � �x � y (b) x� � x2 � y2 � 6 (c) x� � 0.01x(100 � x � y)
y� � x � y y� � x2 � y y� � 0.05y(60 � y � 0.2x)

SOLUTION We find the critical points by setting the right-hand sides of the
differential equations equal to zero.

(a) The solution to the system

consists of all points on the line y � x. Thus there are infinitel many critical points.
(b) To solve the system

we substitute the second equation, x2 � y, into the first equation to obtain
y2 � y � 6 � (y � 3)(y � 2) � 0. If y � �3, then x2 � �3, so there are no real
solutions. If y � 2, then , so the critical points are and .
(c) Finding the critical points in part (c) requires a careful consideration of cases. The
equation 0.01x(100 � x � y) � 0 implies that x � 0 or x � y � 100.

If x � 0, then by substituting in 0.05y(60 � y � 0.2x) � 0, we have 
y(60 � y) � 0. Thus y � 0 or 60, so (0, 0) and (0, 60) are critical points.

If x � y � 100, then 0 � y(60 � y � 0.2(100 � y)) � y(40 � 0.8y). It follows
that y � 0 or 50, so (100, 0) and (50, 50) are critical points.

When a plane autonomous system is linear, we can use the methods in Chapter 8
to investigate solutions.

(�12, 2)(12, 2)x �
12

  x2 � y � 0

  x2 � y2 � 6 � 0

 x � y � 0

 �x � y � 0

EXAMPLE 5 Discovering Periodic Solutions

Determine whether the given linear system possesses a periodic solution:

(a) x� � 2x � 8y (b) x� � x � 2y
y� � �x � 2y

In each case sketch the graph of the solution that satisfies X(0) � (2, 0).

SOLUTION (a) In Example 6 of Section 8.2 we used the eigenvalue-eigenvector
method to show that

Thus every solution is periodic with period p � p. The solution satisfying
X(0) � (2, 0) is x � 2 cos 2t � 2 sin 2t, y � �sin 2t. This solution generates the
ellipse shown in Figure 10.1.4(a).

  y � �c1 cos 2t � c2 sin 2t.

  x � c1 (2 cos 2t � 2 sin 2t) � c2 (2 cos 2t � 2 sin 2t)

y� � �1
2 x � y
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(b) Using the eigenvalue-eigenvector method, we can show that

Because of the presence of et in the general solution, there are no periodic solutions (that
is, cycles). The solution satisfying X(0) � (2, 0) is x � 2et cos t, y � �et sin t, and the
resulting curve is shown in Figure 10.1.4(b).

Changing to Polar Coordinates Except for the case of constant solutions, it is
usually not possible to find explicit expressions for the solutions of a nonlinear auto-
nomous system. We can solve some nonlinear systems, however, by changing to polar
coordinates. From the formulas r2 � x2 � y2 and u� tan�1(y�x) we obtain

(3)

We can sometimes use (3) to convert a plane autonomous system in rectangular
coordinates to a simpler system in polar coordinates.

dr
dt

�
1
r
 �x 

dx
dt

� y 
dy
dt�,  d�

dt
�

1
r2 ��y 

dx
dt

� x 
dy
dt�.

x � 2c1et cos t � 2c2et sin t, y � �c1et sin t � c2et cos t.
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x

y

3

3

−3
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FIGURE 10.1.5 Solution curve in
Example 6

EXAMPLE 6 Changing to Polar Coordinates

Find the solution of the nonlinear plane autonomous system

satisfying the initial condition X(0) � (3, 3).

SOLUTION Substituting for dx�dt and dy�dt in the expressions for dr�dt and
du�dt in (3), we obtain

Since (3, 3) is in polar coordinates, the initial condition X(0) � (3, 3) 
becomes and u(0) � p�4. Using separation of variables, we see that the
solution of the system is

for r � 0. (Check this!) Applying the initial condition then gives

The spiral is sketched in Figure 10.1.5.r �
1

� � 12 �6 � �>4

r �
1

t � 12 �6
, � � t �

�

4
.

r �
1

t � c1
, � � t � c2

r(0) � 312
(312, �>4)

 
d�

dt
�

1
r2 [�y(�y � xr) � x(x � yr)] � 1.

 
dr
dt

�
1
r
 [x(�y � xr) � y(x � yr)] � �r2

 y� � x � y1x2 � y2

 x� � �y � x1x2 � y2

EXAMPLE 7 Solutions in Polar Coordinates

When expressed in polar coordinates, a plane autonomous system takes the form

 
d�

dt
� 1.

 
dr
dt

� 0.5(3 � r)
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Find and sketch the solutions satisfying the initial conditions X(0) � (0, 1) and 
X(0) � (3, 0).

SOLUTION Applying separation of variables to dr�dt � 0.5(3 � r) and integrating
du�dt leads to the solution r � 3 � c1e�0.5t, u � t � c2.

If X(0) � (0, 1), then r(0) � 1 and u (0) � p�2, and so c1 � �2 and c2 � p�2.
The solution curve is the spiral r � 3 � 2e�0.5(u�p/2). Note that as , u increases
without bound and r approaches 3.

If X(0) � (3, 0), then r(0) � 3 and u(0) � 0. It follows that c1 � c2 � 0, so r � 3
and u� t. Hence x � r cos u� 3 cos t and y � r sin u� 3 sin t, so the solution is
periodic. The solution generates a circle of radius 3 about (0, 0). Both solutions are
shown in Figure 10.1.6.

t : 
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x

y
4

−4

−4 4

FIGURE 10.1.6 Solution curves in
Example 7

EXERCISES 10.1 Answers to selected odd-numbered problems begin on page ANS-18.

In Problems 1–6 write the given nonlinear second-order
differential equation as a plane autonomous system. Find all
critical points of the resulting system.

1. x� � 9 sin x � 0

2. x� � (x�)2 � 2x � 0

3. x� � x�(1 � x3) � x2 � 0

4.

5. x� � x � �x3 for � � 0

6.

In Problems 7–16 find all critical points of the given plane
autonomous system.

7. x� � x � xy 8. x� � y2 � x
y� � �y � xy y� � x2 � y

9. x� � 3x2 � 4y 10. x� � x3 � y
y� � x � y y� � x � y3

11. 12. x� � �2x � y � 10

13. x� � x2ey 14. x� � sin y
y� � y(ex � 1) y� � ex�y � 1

15. x� � x(1 � x2 � 3y2) 16. x� � �x(4 � y2)
y� � y(3 � x2 � 3y2) y� � 4y(1 � x2)

In Problems 17–22 the given linear system is taken from
Exercises 8.2.

(a) Find the general solution and determine whether there
are periodic solutions.

 y� � 2x � y � 15 
y

y � 5
 y� � y(16 � y � x)
 x� � x(10 � x � 1

2 y)

x � � x � �x� x � � 0 for � � 0

x � � 4 
x

1 � x2 � 2x� � 0

(b) Find the solution satisfying the given initial condition.
(c) With the aid of a calculator or a CAS graph the solution

in part (b) and indicate the direction in which the curve
is traversed.

17. x� � x � 2y
y� � 4x � 3y, X(0) � (�2, 2)
(Problem 1, Exercises 8.2)

18. x� � �6x � 2y
y� � �3x � y, X(0) � (3, 4)
(Problem 6, Exercises 8.2)

19. x� � 4x � 5y
y� � 5x � 4y, X(0) � (4, 5)
(Problem 37, Exercises 8.2)

20. x� � x � y
y� � �2x � y, X(0) � (�2, 2)
(Problem 34, Exercises 8.2)

21. x� � 5x � y
y� � �2x � 3y, X(0) � (�1, 2)
(Problem 35, Exercises 8.2)

22. x� � x � 8y
y� � x � 3y, X(0) � (2, 1)
(Problem 38, Exercises 8.2)

In Problems 23–26 solve the given nonlinear plane auto-
nomous system by changing to polar coordinates. Describe
the geometric behavior of the solution that satisfies the given
initial condition(s).

23. x� � �y � x(x2 � y2)2

y� � x � y(x2 � y2)2, X(0) � (4, 0)

24. x� � y � x(x2 � y2)
y� � �x � y(x2 � y2), X(0) � (4, 0)
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25. x� � �y � x(1 � x2 � y2)
y� � x � y(1 � x2 � y2), X(0) � (1, 0), X(0) � (2, 0)
[Hint: The resulting differential equation for r is a
Bernoulli differential equation. See Section 2.5.]

26.

X(0) � (1, 0), X(0) � (2, 0)

 y� � �x �
y

1x2 � y2
 (4 � x2 � y2),

 x� � y �
x

1x2 � y2
 (4 � x2 � y2)
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If a plane autonomous system has a periodic solution, then
there must be at least one critical point inside the curve gen-
erated by the solution. In Problems 27–30 use this fact to-
gether with a numerical solver to investigate the possibility
of periodic solutions.

27. x� � �x � 6y 28. x� � �x � 6xy
y� � xy � 12 y� � �8xy � 2y

29. x� � y 30. x� � xy
y� � y(1 � 3x2 � 2y2) � x y� � �1 � x2 � y2

Some Fundamental Questions Suppose that X1 is a critical point of a plane
autonomous system and X � X(t) is a solution of the system that satisfies X(0) � X0.
If the solution is interpreted as a path of a moving particle, we are interested in the
answers to the following questions when X0 is placed near X1:

(i) Will the particle return to the critical point? More precisely, does

(ii) If the particle does not return to the critical point, does it remain close to
the critical point or move away from the critical point? It is conceivable,
for example, that the particle may simply circle the critical point, or it
may even return to a different critical point or to no critical point at all.
See Figure 10.2.1.

If in some neighborhood of the critical point case (a) or (b) in Figure 10.2.1 always
occurs, we call the critical point locally stable. If, however, an initial value X0 that
results in behavior similar to (c) can be found in any given neighborhood, we call the
critical point unstable. These concepts will be made more precise in Section 10.3,
where questions (i) and (ii) will be investigated for nonlinear systems.

Stability Analysis We will first investigate these two stability questions
for linear plane autonomous systems and lay the foundation for Section 10.3. The
solution methods of Chapter 8 enable us to give a careful geometric analysis of the
solutions to

x� � ax � by
y� � cx � dy

(1)

limt : 
 X(t) � X1?

X0

Critical point

(a) Locally stable

X0

Critical point

(b) Locally stable

X0

Critical point

Critical point

(c) Unstable

FIGURE 10.2.1 Critical points

STABILITY OF LINEAR SYSTEMS

REVIEW MATERIAL
● Section 10.1, especially Examples 3 and 4

INTRODUCTION We have seen that a plane autonomous system

gives rise to a vector field V(x, y) � (P(x, y), Q(x, y)), and a solution X � X(t) of the system may be
interpreted as the resulting path of a particle that is initially placed at position X(0) � X0. If X0 is a
critical point of the system, then the particle remains stationary. In this section we examine the
behavior of solutions when X0 is chosen close to a critical point of the system.

 
dy
dt

� Q(x, y)

 
dx
dt

� P(x, y)

10.2
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in terms of the eigenvalues and eigenvectors of the coefficient matri

.

To ensure that X0 � (0, 0) is the only critical point, we will assume that the
determinant � � ad � bc � 0. If t� a � d is the trace* of matrix A, then the char-
acteristic equation det(A � lI) � 0 may be rewritten as

.

Therefore the eigenvalues of A are , and the usual three
cases for these roots occur according to whether t2 � 4� is positive, negative, or
zero. In the next example we use a numerical solver to discover the nature of the
solutions corresponding to these cases.

� � (� 
 1� 2 � 4�)�2

�2 � �� � � � 0

A � �a
c

b
d�
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*In general, if A is an n � n matrix, the trace of A is the sum of the main diagonal entries.

EXAMPLE 1 Eigenvalues and the Shape of Solutions

Find the eigenvalues of the linear system

in terms of c, and use a numerical solver to discover the shapes of solutions
corresponding to the cases .

SOLUTION The coefficient matrix has trace t� �2 and determinant

� � 1 � c, and so the eigenvalues are

.

The nature of the eigenvalues is therefore determined by the sign of c.
If , then the eigenvalues are negative and distinct, . In

Figure 10.2.2(a) we have used a numerical solver to generate solution curves, or
trajectories, that correspond to various initial conditions. Note that except for the tra-
jectories drawn in red in the figure, the trajectories all appear to approach 0 from a
fixed direction. Recall from Chapter 8 that a collection of trajectories in the xy-plane,
or phase plane, is called a phase portrait of the system.

When c � 4, the eigenvalues have opposite signs, l � 1 and �3, and an
interesting phenomenon occurs. All trajectories move away from the origin in a
fixed direction except for solutions that start along the single line drawn in red
in Figure 10.2.2(b). We have already seen behavior like this in the phase portrait
given in Figure 8.2.2. Experiment with your numerical solver and verify these
observations.

The selection c � 0 leads to a single real eigenvalue l � �1. This case is very
similar to the case with one notable exception. All solution curves in
Figure 10.2.2(c) appear to approach 0 from a fixed direction as t increases.

Finally, when . Thus the eigenvalues are
conjugate complex numbers with negative real part �1. Figure 10.2.2(d) shows that
solution curves spiral in toward the origin 0 as t increases.

The behaviors of the trajectories that are observed in the four phase portraits
in Figure 10.2.2 in Example 1 can be explained by using the eigenvalue-eigenvec-
tor solution results from Chapter 8.

c � �9, � � �1 
 1�9 � �1 
 3i

c � 1
4

� � �1
2 and �3

2c � 1
4

� �
� 
 1� 2 � 4�

2
�

�2 
 14 � 4(1 � c)
2

� �1 
 1c

��1
c

1
�1�

c � 1
4, 4, 0, and �9

  y� � cx � y

 x� � �x � y
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Case I: Real Distinct Eigenvalues According to Theorem 8.2.1
in Section 8.2, the general solution of (1) is given by

, (2)

where l1 and l2 are the eigenvalues and K1 and K2 are the corresponding eigenvec-
tors. Note that X(t) can also be written as

(3)

(a) Both eigenvalues negative (t2 � 4� � 0, t � 0, and � � 0)
Stable node (l2 � l1 � 0): Since both eigenvalues are negative, it
follows from (2) that . If we assume that l2 � l1, then
l2 � l1 � 0, and so is an exponential decay function. We may
therefore conclude from (3) that for large values of t.
When c1 � 0, X(t) will approach 0 from one of the two directions
determined by the eigenvector K1 corresponding to l1. If c1 � 0,

and X(t) approaches 0 along the line determined by
the eigenvector K2. Figure 10.2.3 shows a collection of solution curves
around the origin. A critical point is called a stable node when both
eigenvalues are negative.

(b) Both eigenvalues positive (t2 � 4� � 0, t � 0, and � � 0)
Unstable node (0 � l2 � l1): The analysis for this case is similar to
(a). Again from (2), X(t) becomes unbounded as t increases. Moreover,
again assuming that l2 � l1 and using (3), we see that X(t) becomes
unbounded in one of the directions determined by the eigenvector K1
(when c1 � 0) or along the line determined by the eigenvector K2
(when c1 � 0). Figure 10.2.4 shows a typical collection of solution

X(t) � c2K2e�2t

X(t) � c1K1e�1t
e(�2��1)t
limt : 
 X(t) � 0

X(t) � e�1t[c1K1 � c2K2e(�2��1)t].

X(t) � c1K1e�1t � c2K2e�2t

(t2 � 4� Q 0)
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x

y

_0.5 0.5

0.5

_0.5

(a) c � (b) c � 4

(c) c � 0

1
4

(d) c � �9

_0.5 0.5

0.5

_0.5

x

y

0.5

_0.5

x

y

0.5_0.5

x

y

_0.5 0.5

0.5

_0.5

FIGURE 10.2.2 Phase portraits of linear system in Example 1 for various values of cy

K2
K1

x

FIGURE 10.2.3 Stable node

FIGURE 10.2.4 Unstable node

y

K2
K1

x
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curves. This type of critical point, corresponding to the case when both
eigenvalues are positive, is called an unstable node.

(c) Eigenvalues have opposite signs (t2 � 4� � 0 and � � 0)
Saddle point (l2 � 0 � l1): The analysis of the solutions is identical to
(b) with one exception. When c1 � 0, , and since l2 � 0,
X(t) will approach 0 along the line determined by the eigenvector K2. If
X(0) does not lie on the line determined by K2, the line determined by
K1 serves as an asymptote for X(t). Thus the critical point is unstable
even though some solutions approach 0 as t increases. This unstable
critical point is called a saddle point. See Figure 10.2.5.

 X(t) � c2K2e�2t

10.2 STABILITY OF LINEAR SYSTEMS ● 395

FIGURE 10.2.6 Saddle point

2

−2

2

−2
y = 2x/3

y

x

FIGURE 10.2.5 Saddle point

K1

K2

x

y

FIGURE 10.2.7 Stable node

x

y
y = x

EXAMPLE 2 Real Distinct Eigenvalues

Classify the critical point (0, 0) of each of the following linear systems X� � AX as
either a stable node, an unstable node, or a saddle point.

(a) (b)

In each case discuss the nature of the solutions in a neighborhood of (0, 0).

SOLUTION (a) Since the trace t � 3 and the determinant � � �4, the eigen-
values are

.

The eigenvalues have opposite signs, so (0, 0) is a saddle point. It is not hard to show
(see Example 1, Section 8.2) that eigenvectors corresponding to l1 � 4 and l2 � �1
are

,

respectively. If X(0) � X0 lies on the line y � �x, then X(t) approaches 0. For any
other initial condition, X(t) will become unbounded in the directions determined by K1.
In other words, the line serves as an asymptote for all these solution curves. See
Figure 10.2.6.
(b) From t � �29 and � � 100 it follows that the eigenvalues of A are l1 � �4
and l2 � �25. Both eigenvalues are negative, so (0, 0) is in this case a stable node.
Since eigenvectors corresponding to l1 � �4 and l2 � �25 are

,

respectively, it follows that all solutions approach 0 from the direction define by
K1 except those solutions for which X(0) � X0 lies on the line deter-
mined by K2. These solutions approach 0 along See Figure 10.2.7.        

Case II: A Repeated Real Eigenvalue (t2 � 4� � 0) Recall from Sec-
tion 8.2 that the general solution takes on one of two different forms depending on
whether one or two linearly independent eigenvectors can be found for the repeated
eigenvalue l1.

(a) Two linearly independent eigenvectors
If K1 and K2 are two linearly independent eigenvectors corresponding to
l1, then the general solution is given by

X(t) � c1K1e�1t � c2K2e�1t � (c1K1 � c2K2)e�1t.

y � �5
2x.

y � �5
2 x

K1 � �1
1�    and    K2 � � 2

�5�

y � 2
3 x

K1 � �3
2�    and    K2 � � 1

�1�

� �
� 
 1� 2 � 4�

2
�

3 
 132 � 4(�4)
2

�
3 
 5

2
� 4, �1

A � ��10
15

6
�19�A � �2

2
3
1�
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If l1 � 0, then X(t) approaches 0 along the line determined by the vector
c1K1 � c2K2 and the critical point is called a degenerate stable node
(see Figure 10.2.8(a)). The arrows in Figure 10.2.8(a) are reversed when
l1 � 0, and we have a degenerate unstable node.
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x 

y 

c 1 K 1 + c 2 K 2 

K 1 

K 2 

x

y

K1

(a) (b)

FIGURE 10.2.8 Degenerate stable nodes

(b) A single linearly independent eigenvector
When only a single linearly independent eigenvector K1 exists, the
general solution is given by

,

where (A � l1I)P � K1 (see Section 8.2, (12)– (14)), and the solution
may be rewritten as

.

If l1 � 0, then , and it follows that X(t) approaches 0 in
one of the directions determined by the vector K1 (see Figure 10.2.8(b)).
The critical point is again called a degenerate stable node. When
l1 � 0, the solutions look like those in Figure 10.2.8(b) with the arrows
reversed. The line determined by K1 is an asymptote for all solutions.
The critical point is again called a degenerate unstable node.

Case III: Complex Eigenvalues (t2 � 4� P 0) If l1 � a� ib and
l1 � a� ib are the complex eigenvalues and K1 � B1 � iB2 is a complex eigenvector
corresponding to l1, the general solution can be written as X(t) � c1X1(t) � c2X2(t),
where

X1(t) � (B1 cos bt � B2 sin bt)eat, X2(t) � (B2 cos bt � B1 sin bt)eat.

See (23) and (24) in Section 8.2. A solution can therefore be written in the form

x(t) � eat (c11 cos bt � c12 sin bt), y(t) � eat (c21 cos bt � c22 sin bt), (4)

limt : 
 te�1t � 0

X(t) � te�1t�c2K1 �
c1

t
 K1 �

c2

t
 P�

X(t) � c1K1e�1t � c2(K1te�1t � Pe�1t)
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and when a � 0, we have

x(t) � c11 cos bt � c12 sin bt, y(t) � c21 cos bt � c22 sin bt. (5)

(a) Pure imaginary roots (t2 � 4� � 0, t � 0)
Center: When a � 0, the eigenvalues are pure imaginary, and from (5)
all solutions are periodic with period p � 2p�b. Notice that if both c12
and c21 happened to be 0, then (5) would reduce to

x(t) � c11 cos bt, y(t) � c22 sin bt,

which is a standard parametric representation for the ellipse
By solving the system of equations in (4) for cos bt

and sin bt and using the identity sin2bt � cos2bt � 1, it is possible to
show that all solutions are ellipses with center at the origin. The critical
point (0, 0) is called a center, and Figure 10.2.9 shows a typical
collection of solution curves. The ellipses are either all traversed in the
clockwise direction or all traversed in the counterclockwise direction.

(b) Nonzero real part (t2 � 4� � 0, t � 0)
Spiral points: When a � 0, the effect of the term eat in (4) is similar to
the effect of the exponential term in the analysis of damped motion given
in Section 5.1. When a � 0, , and the elliptical-like solution
spirals closer and closer to the origin. The critical point is called a stable
spiral point. When a � 0, the effect is the opposite. An elliptical-like
solution is driven farther and farther from the origin, and the critical
point is now called an unstable spiral point. See Figure 10.2.10.

e�t : 0

x2>c2
11 � y2>c2

22 � 1.
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y

x

FIGURE 10.2.9 Center

FIGURE 10.2.10 Spiral points

(a) Stable spiral point

(b) Unstable spiral point

y

x

y

x

EXAMPLE 3 Repeated and Complex Eigenvalues

Classify the critical point (0, 0) of each of the following linear systems X� � AX:

(a) (b)

In each case discuss the nature of the solution that satisfies X(0) � (1, 0). Determine
parametric equations for each solution.

SOLUTION (a) Since t� �6 and � � 9, the characteristic polynomial is
l2 � 6l � 9 � (l� 3)2, so (0, 0) is a degenerate stable node. For the repeated

eigenvalue l� �3 we find a single eigenvector , so the solution 

X(t) that satisfies X(0) � (1, 0) approaches (0, 0) from the direction specified by the
line y � x�3.
(b) Since t � 0 and � � 1, the eigenvalues are l � 
i, so (0, 0) is a center. The
solution X(t) that satisfies X(0) � (1, 0) is an ellipse that circles the origin every 2p
units of time.

From Example 4 of Section 8.2 the general solution of the system in (a) is

The initial condition gives c1 � 0 and c2 � 2, and so x � (6t � 1)e�3t, y � 2te�3t are
parametric equations for the solution.

The general solution of the system in (b) is

X(t) � c1�cos t � sin t
cos t � � c2�cos t � sin t

�sin t �.

X(t) � c1�3
1�e�3t � c2��3

1� te�3t � �
1
2

0�e�3t�.

K1 � �3
1�

A � ��1
�1

2
1�A � �3

2
�18
�9�
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The initial condition gives c1 � 0 and c2 � 1, so x � cos t � sin t, y � �sin t are
parametric equations for the ellipse. Note that y � 0 for small positive values of t, and
therefore the ellipse is traversed in the clockwise direction.

The solutions of (a) and (b) are shown in Figures 10.2.11(a) and 10.2.11(b), 
respectively.

Classifying Critical Points Figure 10.2.12 conveniently summarizes the re-
sults of this section. The general geometric nature of the solutions can be determined
by computing the trace and determinant of A. In practice, graphs of the solutions are
most easily obtained not by constructing explicit eigenvalue-eigenvector solutions
but rather by generating the solutions using a numerical solver and the Runge-Kutta
method for first-order systems

398 ● CHAPTER 10 PLANE AUTONOMOUS SYSTEMS

y

x1−1

1

−1

(a) Degenerate stable node

(b) Center

y

x1−1
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−1

FIGURE 10.2.11 Critical points in
Example 3

FIGURE 10.2.12 Geometric summary of Cases I, II, and III
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EXAMPLE 4 Classifying Critical Points

Classify the critical point (0, 0) of each of the following linear systems X� � AX:

(a) (b)

for positive constants a, b, c, d, x̂, and ŷ.

SOLUTION (a) For this matrix t� �0.01, � � 2.3798, so t2 � 4� � 0. Using
Figure 10.2.12, we see that (0, 0) is a stable spiral point.
(b) This matrix arises from the Lotka-Volterra competition model, which we will study
in Section 10.4. Since t� �(ax̂ � dŷ) and all constants in the matrix are positive, t� 0.
The determinant may be written as . If bc � 1, then � � 0 and the
critical point is a saddle point. If bc � 1, � � 0 and the critical point is either a stable
node, a degenerate stable node, or a stable spiral point. In all three cases

.

The answers to the questions posed at the beginning of this section for the 
linear plane autonomous system (1) with ad � bc � 0 are summarized in the next
theorem.

limt : 
 X(t) � 0

� �  adx̂ ŷ(1 � bc)

A � � �ax̂
�cdŷ

�abx̂
�dŷ�A � � 1.01

�1.10
3.10

�1.02�
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10.2 STABILITY OF LINEAR SYSTEMS ● 399

THEOREM 10.2.1 Stability Criteria for Linear Systems

For a linear plane autonomous system X� � AX with det A � 0, let X � X(t)
denote the solution that satisfies the initial condition X(0) � X0, where X0 � 0.

(a) if and only if the eigenvalues of A have negative real
parts. This will occur when � � 0 and t� 0.

(b) X(t) is periodic if and only if the eigenvalues of A are pure imaginary.
This will occur when � � 0 and t � 0.

(c) In all other cases, given any neighborhood of the origin, there is at least one
X0 in the neighborhood for which X(t) becomes unbounded as t increases.

limt:
 X(t) � 0

REMARKS

The terminology that is used to describe the types of critical points varies from
text to text. The following table lists many of the alternative terms that you
may encounter in your reading.

Term Alternative Terms
critical point equilibrium point, singular point,

stationary point, rest point
spiral point focus, focal point, vortex point
stable node or spiral point attractor, sink
unstable node or spiral point repeller, source

EXERCISES 10.2 Answers to selected odd-numbered problems begin on page ANS-18.

In Problems 1–8 the general solution of the linear system
X� � AX is given.
(a) In each case discuss the nature of the solutions in a

neighborhood of (0, 0).
(b) With the aid of a calculator or a CAS graph the

solution that satisfies X(0) � (1, 1).

1.

2.

3.

4.

5.

X(t) � c1�1
1�e�t � c2��1

1� te�t � �0
1
5
�e�t�

A � ��6
�5

5
4�,

X(t) � e�t�c1�2 cos 2t
sin 2t  � � c2��2 sin 2t

cos 2t  ��

A � ��1
1

�4
�1�,

A � �1
1

�1
1�, X(t) � et�c1��sin t

cos t � � c2�cos t
sin t��

A � ��1
3

�2
4�, X(t) � c1� 1

�1�et � c2��4
6�e2t

A � ��2
�2

�2
�5�,  X(t) � c1� 2

�1�e�t � c2�1
2�e�6t

6.

7.

8.

In Problems 9–16 classify the critical point (0, 0) of the
given linear system by computing the trace t and determi-
nant � and using Figure 10.2.12.

9. x� � �5x � 3y 10. x� � �5x � 3y
y� � 2x � 7y y� � 2x � 7y

11. x� � �5x � 3y 12. x� � �5x � 3y
y� � �2x � 5y y� � �7x � 4y

13. 14.

y� � �x � 1
2yy� � �x � 1

2y

x� � 3
2x � 1

4yx� � �3
2x � 1

4y

X(t) � c1� 5 cos 2t
cos 2t � 2 sin 2t� � c2� 5 sin 2t

2 cos 2t � sin 2t�

A � ��1
�1

5
1�,

A � �2
3

�1
�2�, X(t) � c1�1

1�et � c2�1
3�e�t

X(t) � c1�2
1�e4t � c2��2

1� te4t � �1
1�e4t�

A � � 2
�1

4
6�,

27069_10_ch10_p385-418.qxd  2/2/12  2:50 PM  Page 399

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



15. x� � 0.02x � 0.11y 16. x� � 0.03x � 0.01y

y� � 0.10x � 0.05y y� � �0.01x � 0.05y

17. Determine conditions on the real constant m so that
(0, 0) is a center for the linear system

18. Determine a condition on the real constant m so that
(0, 0) is a stable spiral point of the linear system

19. Show that (0, 0) is always an unstable critical point of
the linear system

where m is a real constant and m � �1. When is (0, 0)
an unstable saddle point? When is (0, 0) an unstable
spiral point?

20. Let X � X(t) be the response of the linear dynamical
system

  y� � �x � �y
  x� � �x � �y

  y� � �x � y,
  x� � �x � y

  y� � �x � �y.
  x� � y

  y� � �x � �y.
 x� � ��x � y

that satisfies the initial condition X(0) � X0. Determine
conditions on the real constants a and b that will ensure

Can (0, 0) be a node or saddle
point?

21. Show that the nonhomogeneous linear system
X� � AX � F has a unique critical point X1 when
� � det A � 0. Conclude that if X � X(t) is a solution
to the nonhomogeneous system, t� 0 and � � 0, then

. [Hint: X(t) � Xc(t) � X1.]

22. In Example 4(b) show that (0, 0) is a stable node when
bc � 1.

In Problems 23–26 a nonhomogeneous linear system
X� � AX � F is given.

(a) In each case determine the unique critical point X1.
(b) Use a numerical solver to determine the nature of the

critical point in (a).
(c) Investigate the relationship between X1 and the critical

point (0, 0) of the homogeneous linear system X� � AX.

23. x� � 2x � 3y � 6 24. x� � �5x � 9y � 13
y� � �x � 2y � 5 y� � �x � 11y � 23

25. x� � 0.1x � 0.2y � 0.35 26. x� � 3x � 2y � 1
y� � 0.1x � 0.1y � 0.25 y� � 5x � 3y � 2

limt :
 X(t) � X1

limt :
 X(t) � (0, 0).
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LINEARIZATION AND LOCAL STABILITY

REVIEW MATERIAL
● The concept of linearization was first introduced in Section 2.6

INTRODUCTION The key idea in this section is that of linearization. Recall from calculus and
Section 2.6 that a linearization of a differentiable function f (x) at a number x1 is the equation of the
tangent line to the graph of f at the point: 

For x close to x1 the points on the graph of f are close to the points on the tangent line so the values y(x)
obtained from the equation of the tangent line are said to be local linear approximations to the corre-
sponding function values f(x). Similarly, a linearization of a function of two variables f(x, y) that is
differentiable at a point (x1, y1) is the equation of the tangent plane to the graph of f at the point: 

where fx and fy are partial derivatives. In this section we will use linearization as a means of analyzing
nonlinear DEs and nonlinear systems; the idea is to replace them by linear DEs and linear systems. 

z � f (x1, y1) � fx(x1, y1)(x � x1) � fy(x1, y1)(y � y1),

y � f (x1) � f �(x1)(x � x1).

10.3

Sliding Bead We start this section by refining the stability concepts introduced
in Section 10.2 in such a way that they will apply to nonlinear autonomous systems as
well. Although the linear system X� � AX had only one critical point when
det A � 0, we saw in Section 10.1 that a nonlinear system may have many critical
points. We therefore cannot expect that a particle placed initially at a point X0 will
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remain near a given critical point X1 unless X0 has been placed sufficiently close to X1
to begin with. The particle might well be driven to a second critical point. To empha-
size this idea, consider the physical system shown in Figure 10.3.1, in which a bead
slides along the curve z � f (x) under the influence of gravity alone. We will show in
Section 10.4 that the x-coordinate of the bead satisfies a nonlinear second-order
differential equation x� � g(x, x�); therefore letting y � x� satisfies the nonlinear
autonomous system

.

If the bead is positioned at P � (x, f (x)) and given zero initial velocity, the bead
will remain at P provided that f �(x) � 0. If the bead is placed near the critical point
located at x � x1, it will remain near x � x1 only if its initial velocity does not drive
it over the “hump” at x � x2 toward the critical point located at x � x3. Therefore
X(0) � (x(0), x�(0)) must be near (x1, 0).

In the next definition we will denote the distance between two points X and Y by
. Recall that if X � (x1, x2, . . . , xn) and Y � (y1, y2, . . . , yn), then

.� X � Y � � 2(x1 � y1)2 � (x2 � y2)2 � � � � � (xn � yn)2

� X � Y �

 y� � g(x, y)
 x� � y
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z   = f ( 
 
x ) 

 z

x1 x2 x3 x

FIGURE 10.3.1 Bead sliding on graph
of z � f (x)

r
X0

ρ

ρ
X0

(a) Stable

(b) Unstable

FIGURE 10.3.2 Critical points

DEFINITION 10.3.1 Stable Critical Points

Let X1 be a critical point of an autonomous system and let X � X(t) denote the
solution that satisfies the initial condition X(0) � X0, where X0 � X1. We say
that X1 is a stable critical point when, given any radius r� 0, there is a cor-
responding radius r � 0 such that if the initial position X0 satisfies � r,
then the corresponding solution X(t) satisfies � r for all t � 0.
If, in addition, whenever � r, we call X1 an
asymptotically stable critical point.

� X0 � X1 �limt : 
 X(t) � X1

� X(t) � X1 �
�X0 � X1�

This definition is illustrated in Figure 10.3.2(a). Given any disk of radius r about
the critical point X1, a solution will remain inside this disk provided that X(0) � X0 is
selected sufficiently close to X1. It is not necessary that a solution approach the criti-
cal point in order for X1 to be stable. Stable nodes, stable spiral points, and centers are
all examples of stable critical points for linear systems. To emphasize that X0 must be
selected close to X1, the terminology locally stable critical point is also used.

By negating Definition 10.3.1, we obtain the definition of an unstable critical
point.

DEFINITION 10.3.2 Unstable Critical Point

Let X1 be a critical point of an autonomous system and let X � X(t) denote the
solution that satisfies the initial condition X(0) � X0, where X0 � X1. We say
that X1 is an unstable critical point if there is a disk of radius r � 0 with the
property that for any r � 0 there is at least one initial position X0 that satisfie

� r, yet the corresponding solution X(t) satisfies � r
for at least one t � 0.

� X(t) � X1 �� X0 � X1 �

If a critical point X1 is unstable, no matter how small the neighborhood about
X1, an initial position X0 can always be found that results in the solution leaving
some disk of radius r at some future time t. See Figure 10.3.2(b). Therefore unstable
nodes, unstable spiral points, and saddle points are all examples of unstable critical
points for linear systems. In Figure 10.3.1 the critical point (x2, 0) is unstable. The
slightest displacement or initial velocity results in the bead sliding away from the
point (x2, f (x2)).
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x

y

FIGURE 10.3.3 Asymptotically stable
critical point in Example 1

x

y

3

−3

3

−3

FIGURE 10.3.4 Unstable critical
point in Example 2

EXAMPLE 1 A Stable Critical Point

Show that (0, 0) is a stable critical point of the nonlinear plane autonomous system

considered in Example 6 of Section 10.1.

SOLUTION In Example 6 of Section 10.1 we showed that in polar coordinates
r � 1�(t � c1), u � t � c2 is the solution of the system. If X(0) � (r0, u0) is the
initial condition in polar coordinates, then

.

Note that r � r0 for t � 0, and r approaches (0, 0) as t increases. Therefore, given
r� 0, a solution that starts less than r units from (0, 0) remains within r units of the
origin for all t � 0. Hence the critical point (0, 0) is stable and is in fact asymptoti-
cally stable. A typical solution is shown in Figure 10.3.3.

r �
r0

r0t � 1
,    � � t � �0

 y� � x � y1x2 � y2

 x� � �y � x1x2 � y2

EXAMPLE 2 An Unstable Critical Point

When expressed in polar coordinates, a plane autonomous system takes the form

Show that (x, y) � (0, 0) is an unstable critical point.

SOLUTION Since x � r cos u and y � r sin u, we have

From dr�dt � 0.05r (3 � r) we see that dr�dt � 0 when r � 0 and can conclude that
(x, y) � (0, 0) is a critical point by substituting r � 0 into the new system.

The differential equation dr�dt � 0.05r(3 � r) is a logistic equation that can
be solved by using either separation of variables or equation (5) in Section 3.2. If
r(0) � r0 and r0 � 0, then

,

where c0 � (3 � r0)�r0. Since , it follows that no matter how

close to (0, 0) a solution starts, the solution will leave a disk of radius 1 about the
origin. Therefore (0, 0) is an unstable critical point. A typical solution that starts near
(0, 0) is shown in Figure 10.3.4.

Linearization It is rarely possible to determine the stability of a critical point
of a nonlinear system by finding explicit solutions, as in Examples 1 and 2. Instead,
we replace the term g(X) in the original autonomous system X� � g(X) by a linear

lim
t : 


 
3

1 � c0e�0.15t � 3

r �
3

1 � c0e�0.15t

 
dy
dt

� r cos � 
d�

dt
�

dr
dt

 sin �.

 
dx
dt

� �r sin � 
d�

dt
�

dr
dt

 cos �

 
d�

dt
� �1.

 
dr
dt

� 0.05r (3 � r)
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term A(X � X1) that most closely approximates g(X) in a neighborhood of X1. This
replacement process, called linearization, will be illustrated first for the first-orde
differential equation x� � g(x).

An equation of the tangent line to the curve y � g(x) at x � x1 is
y � g(x1) � g�(x1)(x � x1), and if x1 is a critical point of x� � g(x), we have
x� � g(x) � g�(x1)(x � x1) since g(x1) � 0. The general solution to the linear differential
equation x� � g�(x1)(x � x1) is , where l1 � g�(x1). Thus if g�(x1) � 0,
then x(t) approaches x1. Theorem 10.3.1 asserts that the same behavior occurs in the
original differential equation, provided that x(0) � x0 is selected close enough to x1.

x � x1 � ce�1t

10.3 LINEARIZATION AND LOCAL STABILITY ● 403

5 4

t

x

/π

4/π

FIGURE 10.3.5 In Example 3, p�4 is
asymptotically stable and 5p�4 is unstable

THEOREM 10.3.1 Stability Criteria for x� � g(x)

Let x1 be a critical point of the autonomous differential equation x� � g(x), where
g is differentiable at x1.

(a) If g�(x1) � 0, then x1 is an asymptotically stable critical point.
(b) If g�(x1) � 0, then x1 is an unstable critical point.

EXAMPLE 3 Stability in a Nonlinear First-Order DE

Both x � p�4 and x � 5p�4 are critical points of the autonomous differential equation
x� � cos x � sin x. This differential equation is difficult to solve explicitly, but we can
use Theorem 10.3.1 to predict the behavior of solutions near these two critical points.

Since 
Therefore x � p�4 is an asymptotically stable critical point, but x � 5p�4 is unsta-
ble. In Figure 10.3.5 we used a numerical solver to investigate solutions that start
near (0, p�4) and (0, 5p�4). Observe that solution curves that start close to
(0, 5p�4) quickly move away from the line x � 5p�4, as predicted.

g�(x) � �sin x � cos x, g�(�>4) � �12 � 0 and g�(5�>4) � 12 � 0.

EXAMPLE 4 Stability Analysis of the Logistic DE

Without solving explicitly, analyze the critical points of the logistic differential
equation (see Section 3.2) , where r and K are positive constants.

SOLUTION The two critical points are x � 0 and x � K, so from
g�(x) � r(K � 2x)�K we get g�(0) � r and g�(K) � �r. By Theorem 10.3.1 we
conclude that x � 0 is an unstable critical point and x � K is an asymptotically
stable critical point.

Jacobian Matrix A similar analysis may be carried out for a plane auto-
nomous system. An equation of the tangent plane to the surface z � g(x, y) at 
X1 � (x1, y1) is

,

and g(x, y) can be approximated by its tangent plane in a neighborhood of X1.
When X1 is a critical point of a plane autonomous system, P(x1, y1) � Q(x1, y1) � 0,

and we have

. y� � Q(x, y) �
	Q
	x �(x1, y1)

(x � x1) �
	Q
	y �(x1, y1)

(y � y1)

 x� � P(x, y) �
	P
	x �(x1, y1)

(x � x1) �
	P
	y �(x1, y1)

(y � y1)

z � g(x1, y1) �
	g
	x �(x1, y1)

(x � x1) �
	g
	y �(x1, y1)

(y � y1)

x� �
r
K

 x(K � x)
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The original system X� � g(X) may be approximated in a neighborhood of the crit-
ical point X1 by the linear system X� � A(X � X1), where

.

This matrix is called the Jacobian matrix at X1 and is denoted by g�(X1). If we
let H � X � X1, then the linear system X� � A(X � X1) becomes H� � AH, which
is the form of the linear system that we analyzed in Section 10.2. The critical point
X � X1 for X� � A(X � X1) now corresponds to the critical point H � 0 for
H� � AH. If the eigenvalues of A have negative real parts, then by Theorem 10.2.1,
0 is an asymptotically stable critical point for H� � AH. If there is an eigenvalue
with positive real part, H � 0 is an unstable critical point. Theorem 10.3.2 asserts
that the same conclusions can be made for the critical point X1 of the original system.

 A � �
	P
	x �(x1, y1)

 	P
	y �(x1, y1)

	Q
	x �(x1, y1)

 	Q
	y �(x1, y1)

�
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EXAMPLE 5 Stability Analysis of Nonlinear Systems

Classify (if possible) the critical points of each of the following plane autonomous
systems as stable or unstable:

(a) x� � x2 � y2 � 6 (b) x� � 0.01x(100 � x � y)
y� � x2 � y y� � 0.05y(60 � y � 0.2x)

SOLUTION The critical points of each system were determined in Example 4 of
Section 10.1.

(a) The critical points are and , the Jacobian matrix is

,

and so

.

Since the determinant of A1 is negative, A1 has a positive real eigenvalue. Therefore
is an unstable critical point. Matrix A2 has a positive determinant and a

negative trace, so both eigenvalues have negative real parts. It follows that 
is a stable critical point.
(b) The critical points are (0, 0), (0, 60), (100, 0), and (50, 50), the Jacobian matrix is

, g�(X) � �0.01(100 � 2x � y)
�0.01y

�0.01x
0.05(60 � 2y � 0.2y)�

(�12, 2)
(12, 2)

A1 � g�((12, 2)) � �212
212

4
�1�  and  A2 � g�((�12, 2)) � ��212

�212
4

�1�

g�(X) � �2x
2x

2y
�1�

(�12, 2)(12, 2)

THEOREM 10.3.2 Stability Criteria for Plane Autonomous Systems

Let X1 be a critical point of the plane autonomous system X� � g(X), where
P(x, y) and Q(x, y) have continuous first partials in a neighborhood of X1.

(a) If the eigenvalues of A � g�(X1) have negative real part, then X1 is an
asymptotically stable critical point.

(b) If A � g�(X1) has an eigenvalue with positive real part, then X1 is an unstable
critical point.
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and so

.

Since the matrix A1 has a positive determinant and a positive trace, both eigenvalues
have positive real parts. Therefore (0, 0) is an unstable critical point. The determinants
of matrices A2 and A3 are negative, so in each case, one of the eigenvalues is positive.
Therefore both (0, 60) and (100, 0) are unstable critical points. Since the matrix A4 has
a positive determinant and a negative trace, (50, 50) is a stable critical point.

In Example 5 we did not compute t 2 � 4� (as in Section 10.2) and attempt to
further classify the critical points as stable nodes, stable spiral points, saddle
points, and so on. For example, for in Example 5(a), t 2 � 4� � 0,
and if the system were linear, we would be able to conclude that X1 was a stable
spiral point. Figure 10.3.6 shows several solution curves near X1 that were obtained
with a numerical solver, and each solution does appear to spiral in toward the criti-
cal point.

Classifying Critical Points It is natural to ask whether we can infer more
geometric information about the solutions near a critical point X1 of a nonlinear
autonomous system from an analysis of the critical point of the corresponding linear
system. The answer is summarized in Figure 10.3.7, but you should note the follow-
ing comments.

(i) In five separate cases (stable node, stable spiral point, unstable spira
point, unstable node, and saddle) the critical point may be categorized
like the critical point in the corresponding linear system. The solutions
have the same general geometric features as the solutions to the linear
system, and the smaller the neighborhood about X1, the closer the
resemblance.

(ii) If t2 � 4� and t � 0, the critical point X1 is unstable, but in this
borderline case we are not yet able to decide whether X1 is an unstable
spiral, unstable node, or degenerate unstable node. Likewise, if t2 � 4�

X1 � (�12, 2)

 A3 � g�((100, 0)) � ��1
0

�1
2�     A4 � g�((50, 50)) � ��0.5

�0.5
�0.5
�2.5�

 A1 � g�((0, 0)) � �1
0

0
3�  A2 � g�((0, 60)) � � 0.4

�0.6
0

�3�
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FIGURE 10.3.6 appears to
be a stable spiral point
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FIGURE 10.3.7 Geometric summary of some conclusions (see (i)) and some
unanswered questions (see (ii) and (iii)) about nonlinear autonomous systems
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and t � 0, the critical point X1 is stable but may be either a stable spiral,
a stable node, or a degenerate stable node.

(iii) If t� 0 and � � 0, the eigenvalues of A � g�(X) are pure imaginary
and in this borderline case X1 may be either a stable spiral, an unstable
spiral, or a center. It is therefore not yet possible to determine whether X1
is stable or unstable.

406 ● CHAPTER 10 PLANE AUTONOMOUS SYSTEMS

EXAMPLE 6 Classifying Critical Points of a Nonlinear System

Classify each critical point of the plane autonomous system in Example 5(b) as a sta-
ble node, a stable spiral point, an unstable spiral point, an unstable node, or a saddle
point.

SOLUTION For the matrix A1 corresponding to (0, 0), � � 3, t� 4, so t2 � 4� � 4.
Therefore (0, 0) is an unstable node. The critical points (0, 60) and (100, 0) are sad-
dles, since � � 0 in both cases. For matrix A4, � � 0, t � 0, and t2 � 4� � 0. It
follows that (50, 50) is a stable node. Experiment with a numerical solver to verify
these conclusions.

EXAMPLE 7 Stability Analysis for a Soft Spring

Recall from Section 5.3 that the second-order differential equation
mx� � kx � k1x3 � 0, for k � 0, represents a general model for the free,
undamped oscillations of a mass m attached to a nonlinear spring. If k � 1 and
k1 � �1, the spring is called soft, and the plane autonomous system corresponding
to the nonlinear second-order differential equation x� � x � x3 � 0 is

.

Find and classify (if possible) the critical points.

SOLUTION Since x3 � x � x (x2 � 1), the critical points are (0, 0), (1, 0), and
(�1, 0). The corresponding Jacobian matrices are

.

Since det A2 � 0, critical points (1, 0) and (�1, 0) are both saddle points. The eigen-
values of matrix A1 are 
i, and according to comment (iii), the status of the critical
point at (0, 0) remains in doubt. It may be either a stable spiral, an unstable spiral, or
a center.

The Phase-Plane Method The linearization method, when successful, can
provide useful information on the local behavior of solutions near critical points. It
is of little help if we are interested in solutions whose initial position X(0) � X0
is not close to a critical point or if we wish to obtain a global view of the family of
solution curves. The phase-plane method is based on the fact that

and attempts to find y as a function of x using one of the methods available for solv-
ing first-order differential equations (Chapter 2). As we show in Examples 8 and 9,
the method can sometimes be used to decide whether a critical point such as (0, 0) in
Example 7 is a stable spiral, an unstable spiral, or a center.

dy
dx

 �
dy>dt
dx>dt

 �
Q(x, y)
P(x, y)

A1 � g�((0, 0)) � � 0
�1

1
0�,    A2 � g�((1, 0)) � g�((�1, 0)) � �0

2
1
0�

  y� �  x3 � x

 x� �  y
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FIGURE 10.3.8 Phase portrait of
nonlinear system in Example 8

FIGURE 10.3.9 Phase portrait of
nonlinear system in Example 9

y

x

2

−

−2

EXAMPLE 8 Phase-Plane Method

Use the phase-plane method to classify the sole critical point (0, 0) of the plane
autonomous system

.

SOLUTION The determinant of the Jacobian matrix

is 0 at (0, 0), so the nature of the critical point (0, 0) remains in doubt. Using the
phase-plane method, we obtain the first-order di ferential equation

,

which can be easily solved by separation of variables:

If X(0) � (0, y0), it follows that or . Figure 10.3.8 shows
a collection of solution curves corresponding to various choices for y0. The nature of
the critical point is clear from this phase portrait: No matter how close to (0, 0) the
solution starts, X(t) moves away from the origin as t increases. The critical point at
(0, 0) is therefore unstable.

y � 3
1x3 � y3

0y3 � x3 � y0
3

	 y2 dy � 	 x2 dx    or    y3 � x3 � c.

dy
dx

�
dy>dt
dx>dt

�
x2

y2

g�(X) � � 0
2x

2y
0�

 y� � x2

 x� � y2

EXAMPLE 9 Phase-Plane Analysis of a Soft Spring

Use the phase-plane method to determine the nature of the solutions to x� � x � x3 � 0
in a neighborhood of (0, 0).

SOLUTION If we let dx�dt � y, then dy�dt � x3 � x. From this we obtain the first
order differential equation

,

which can be solved by separation of variables. Integrating

After completing the square, we can write the solution as y2 � (x2 � 1)2 � c0. If
X(0) � (x0, 0), where 0 � x0 � 1, then and so

.

Note that y � 0 when x � �x0. In addition, the right-hand side is positive when
�x0 � x � x0, so each x has two corresponding values of y. The solution X � X(t)
that satisfies X(0) � (x0, 0) is therefore periodic, so (0, 0) is a center.

Figure 10.3.9 shows a family of solution curves, or phase portrait, of the origi-
nal system. We used the original plane autonomous system to determine the direc-
tions indicated on each trajectory.

y2 �
(x2 � 1)2

2
�

(x0
2 � 1)2

2
�

(2 � x2 � x0
2)(x0

2 � x2)
2

c0 � �1
2(x0

2 � 1)2,

1
2

	 y dy � 	 (x3 � x) dx    gives    
y2

2
�

x4

4
�

x2

2
� c.

dy
dx

�
dy>dt
dx>dt

�
x3 � x

y
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EXERCISES 10.3 Answers to selected odd-numbered problems begin on page ANS-18.

1. Show that (0, 0) is an asymptotically stable critical point
of the nonlinear autonomous system

when a � 0 and an unstable critical point when a � 0.
[Hint: Switch to polar coordinates.]

2. When expressed in polar coordinates, a plane autonomous
system takes the form

Show that (0, 0) is an asymptotically stable critical point
if and only if a � 0.

In Problems 3–10, without solving explicitly, classify the
critical points of the given first-order autonomous differen-
tial equation as either asymptotically stable or unstable. All
constants are assumed to be positive.

3. 4 .

5. 6.

7.

8.

9.

10.

In Problems 11–20 classify (if possible) each critical point
of the given plane autonomous system as a stable node, a sta-
ble spiral point, an unstable spiral point, an unstable node, or
a saddle point.

11. x� � 1 � 2xy 12. x� � x2 � y2 � 1
y� � 2xy � y y� � 2y

13. x� � y � x2 � 2 14. x� � 2x � y2

y� � x2 � xy y� � �y � xy

15. x� � �3x � y2 � 2 16. x� � xy � 3y � 4
y� � x2 � y2 y� � y2 � x2

dA
dt

� k 1A (K � 1A), A � 0

dP
dt

� P(a � bP)(1 � cP�1), P � 0, a � bc

dx
dt

� k(� � x)(� � x)(� � x), � � � � �

dx
dt

� k(� � x)(� � x),  � � �

m 
dv
dt

� mg � kv
dT
dt

� k(T � T0)

dx
dt

� �kx ln 
x
K

, x � 0
dx
dt

� kx (n � 1 � x)

 
d�

dt
� �1.

 
dr
dt

� �r(5 � r)

y� � �x � �y � xy

x� � �x � �y � y2

17. x� � �2xy 18. x� � x(1 � x2 � 3y2)
y� � y � x � xy � y3 y� � y(3 � x2 � 3y2)

19. 20. x� � �2x � y � 10

y� � y(16 � y � x) y� � 2x � y � 15 

In Problems 21–26 classify (if possible) each critical point
of the given second-order differential equation as a stable
node, a stable spiral point, an unstable spiral point, an unsta-
ble node, or a saddle point.

21. u� � (cos u� 0.5) sin u, �u� � p

22.

23. x� � x�(1 � x3) � x2 � 0

24.

25. x� � x � �x3 for � � 0

26. x� � x � �x�x � � 0 for � � 0

27. Show that the nonlinear second-order differential
equation

(1 � a2x2)x� � (b � a2(x�)2)x � 0

has a saddle point at (0, 0) when b � 0.

28. Show that the dynamical system

x� � �ax � xy

y� � 1 � by � x2

has a unique critical point when ab � 1 and that this
critical point is stable when b � 0.

29. (a) Show that the plane autonomous system

x� � �x � y � x3

y� � �x � y � y2

has two critical points by sketching the graphs of
�x � y � x3 � 0 and �x � y � y2 � 0. Classify
the critical point at (0, 0).

(b) Show that the second critical point
X1 � (0.88054, 1.56327) is a saddle point.

30. (a) Show that (0, 0) is the only critical point of Raleigh’s
differential equation

.x � � � (1
3(x�)3 � x�) � x � 0

�Hint: 
d
dx

 x � x � � 2� x �.�

x � � 4 
x

1 � x2 � 2x� � 0

x � � x � (1
2 � 3(x�)2)x� � x2

y
y � 5

x� � x(10 � x � 1
2 y)
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(b) Show that (0, 0) is unstable when � � 0. When is
(0, 0) an unstable spiral point?

(c) Show that (0, 0) is stable when � � 0. When is (0, 0)
a stable spiral point?

(d) Show that (0, 0) is a center when � � 0.

31. Use the phase-plane method to show that (0, 0) is a cen-
ter of the nonlinear second-order differential equation
x� � 2x3 � 0.

32. Use the phase-plane method to show that the solution
to the nonlinear second-order differential equation
x� � 2x � x2 � 0 that satisfies x(0) � 1 and x�(0) � 0
is periodic.

33. (a) Find the critical points of the plane autonomous
system

x� � 2xy

y� � 1 � x2 � y2,

and show that linearization gives no information
about the nature of these critical points.

(b) Use the phase-plane method to show that the criti-
cal points in (a) are both centers.
[Hint: Let u � y2�x and show that 
(x � c)2 � y2 � c2 � 1.]

34. The origin is the only critical point of the nonlinear
second-order differential equation x� � (x�)2 � x � 0.
(a) Show that the phase-plane method leads to the

Bernoulli differential equation dy�dx � �y � xy�1.
(b) Show that the solution satisfying and

x�(0) � 0 is not periodic.

35. A solution of the nonlinear second-order differential
equation x� � x � x3 � 0 satisfies x(0) � 0 and
x�(0) � v0. Use the phase-plane method to determine
when the resulting solution is periodic. [Hint: See
Example 9.]

36. The nonlinear differential equation x� � x � 1 � �x2

arises in the analysis of planetary motion using relativ-
ity theory. Classify (if possible) all critical points of the
corresponding plane autonomous system.

37. When a nonlinear capacitor is present in an LRC-circuit,
the voltage drop is no longer given by q�C but is more
accurately described by aq � bq3, where a and b are
constants and a � 0. Differential equation (34) of
Section 5.1 for the free circuit is then replaced by

.L 
d 2q
dt2 � R 

dq
dt

� �q � �q3 � 0

x(0) � 1
2
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Find and classify all critical points of this nonlinear
differential equation. [Hint: Divide into the two cases
b � 0 and b � 0.]

38. The nonlinear equation mx� � kx � k1x3 � 0, for k � 0,
represents a general model for the free, undamped oscil-
lations of a mass m attached to a spring. If k1 � 0, the
spring is called hard (see Example 1 in Section 5.3).
Determine the nature of the solutions to x� � x � x3 � 0
in a neighborhood of (0, 0).

39. The nonlinear equation can be inter-
preted as a model for a certain pendulum with a constant
driving function.
(a) Show that (p�6, 0) and (5p�6, 0) are critical

points of the corresponding plane autonomous
system.

(b) Classify the critical point (5p�6, 0) using lin-
earization.

(c) Use the phase-plane method to classify the critical
point (p�6, 0).

Discussion Problems

40. (a) Show that (0, 0) is an isolated critical point of the
plane autonomous system

x� � x4 � 2xy3

y� � 2x3y � y4

but that linearization gives no useful information
about the nature of this critical point.

(b) Use the phase-plane method to show that
x3 � y3 � 3cxy. This classic curve is called a
folium of Descartes. Parametric equations for a
folium are

[Hint: The differential equation in x and y is
homogeneous.]

(c) Use graphing software or a numerical solver to
graph solution curves. Based on your graphs,
would you classify the critical point as stable or
unstable? Would you classify the critical point as
a node, saddle point, center, or spiral point?
Explain.

x �
3ct

1 � t3,    y �
3ct2

1 � t3.

�� � sin � � 1
2
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Nonlinear Pendulum In (6) of Section 5.3 we showed that the displacement
angle u for a simple pendulum satisfies the nonlinear second-order differential
equation

.

When we let x � u and y � u�, this second-order differential equation may be rewrit-
ten as the dynamical system

.

The critical points are (
kp, 0), and the Jacobian matrix is easily shown to be

.

If k � 2n � 1, then � � 0, and so all critical points (
(2n � 1)p, 0) are saddle
points. In particular, the critical point at (p, 0) is unstable as expected. See
Figure 10.4.1. When k � 2n, the eigenvalues are pure imaginary, and so the na-
ture of these critical points remains in doubt. Since we have assumed that there are
no damping forces acting on the pendulum, we expect that all of the critical points
(
2np, 0) are centers. This can be verified by using the phase-plane method. From

it follows that y2 � (2g�l)cos x � c. IfX(0) � (x0,0), theny2 � (2g�l)(cos x � cos x0).
Note that y � 0 when x � �x0 and that (2g�l)(cos x � cos x0) � 0 for �x � � �x0 � � p.
Thus each such x has two corresponding values of y, so the solution X � X(t) that
satisfies X(0) � (x0, 0) is periodic. We may conclude that (0, 0) is a center. Observe
that x � u increases for solutions that correspond to large initial velocities, such as
the one drawn in red in Figure 10.4.2. In this case the pendulum spins or whirls in
complete circles about its pivot.

dy
dx

�
dy>dt
dx>dt

� � g
l
 
sin x

y

g�((
k�, 0)) � � 0

(�1)k�1 g
l

1

0�

 y� � �
g
l
 sin x

x� � y

d 2�

dt2 �
g
l
 sin � � 0
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(b) � � �,(a) � � 0, � �� 0 � �� 0

π−3 π3π− π

y

x

FIGURE 10.4.1 (0, 0) is stable and
(p, 0) is unstable

FIGURE 10.4.2 Phase portrait of
pendulum; wavy curves indicate that the
pendulum is whirling about its pivot

AUTONOMOUS SYSTEMS AS MATHEMATICAL MODELS

REVIEW MATERIAL
● Sections 1.3, 3.3, and 10.3

INTRODUCTION Many applications from physics give rise to nonlinear autonomous second-
order differential equations—that is, DEs of the form x� � g(x, x�). For example, in the analysis of
free, damped motion of Section 5.1 we assumed that the damping force was proportional to the
velocity x�, and the resulting model mx� � �bx� � kx is a linear differential equation. But if the mag-
nitude of the damping force is proportional to the square of the velocity, the new differential equation
mx� � �bx�� x�� � kx is nonlinear. The corresponding plane autonomous system is nonlinear:

.

In this section we will also analyze the nonlinear pendulum, motion of a bead on a curve, the Lotka-
Voterra predator-prey models, and the Lotka-Volterra competition model. Additional models are
presented in this exercises.

 y� � � 
�

m
 y�y� �

k
m

 x

 x� � y

10.4
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FIGURE 10.4.3 Some forces acting
on sliding bead

z =   f ( x ) 

x

z

θ

θ

θ W = mg

mg sin

EXAMPLE 1 Periodic Solutions of the Pendulum DE

A pendulum in an equilibrium position with u � 0 is given an initial angular veloc-
ity of v0 rad/s. Determine the conditions under which the resulting motion is
periodic.

SOLUTION We are asked to examine the solution of the plane autonomous system
that satisfies X(0) � (0, v0). From y2 � (2g�l) cos x � c it follows that

.

To establish that the solution X(t) is periodic, it is sufficient to show that there are two
x-intercepts x � 
x0 between �p and p and that the right-hand side is positive for
�x � � �x0�. Each such x then has two corresponding values of y.

If and this equation has two solutions
x � 
x0 between �p and p, provided that Note that
(2g�l )(cos x � cos x0) is then positive for �x � � �x0�. This restriction on the initial
angular velocity may be written as 

Nonlinear Oscillations: The Sliding Bead Suppose, as shown in Fig-
ure 10.4.3, that a bead with mass m slides along a thin wire whose shape is described
by the function z � f (x). A wide variety of nonlinear oscillations can be obtained by
changing the shape of the wire and by making different assumptions about the forces
acting on the bead.

The tangential force F due to the weight W � mg has magnitude mg sin u, and
therefore the x-component of F is Fx � �mg sin u cos u. Since tan u � f �(x), we
may use the identities 1 � tan2u � sec2u and sin2u � 1 � cos2u to conclude that

.

We assume (as in Section 5.1) that a damping force D, acting in the direction opposite
to the motion, is a constant multiple of the velocity of the bead. The x-component of D
is therefore Dx � �bx�. If we ignore the frictional force between the wire and the bead
and assume that no other external forces are impressed on the system, it follows from
Newton’s second law that

,

and the corresponding plane autonomous system is

.

If X1 � (x1, y1) is a critical point of the system, y1 � 0, and therefore f �(x1) � 0. The
bead must therefore be at rest at a point on the wire where the tangent line is horizon-
tal. When f is twice differentiable, the Jacobian matrix at X1 is

,

so t � �b�m, � � gf �(x1), and t2 � 4� � b2�m2 � 4gf �(x1). Using the results of
Section 10.3, we can make the following conclusions:

(i) f �(x1) � 0:
A relative maximum therefore occurs at x � x1, and since � � 0, an
unstable saddle point occurs at X1 � (x1, 0).

g�(X1) � � 0
�gf �(x1)

1
��>m�

 y� � �g 
f �(x)

1 � [ f �(x)]2 �
�

m
 y

 x� � y

mx � � �mg 
f �(x)

1 � [ f �(x)]2 � �x�

Fx � �mg sin � cos � � �mg 
f �(x)

1 � [ f �(x)]2

� �0 �� 22g>l.

1 � (l>2g)�0
2 � �1.

y � 0, cos x � 1 � (l>2g)�0
2,

y2 �
2g
l

 �cos x � 1 �
l

2g
 �0

2�
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(ii) f �(x1) � 0 and b � 0:
A relative minimum therefore occurs at x � x1, and since t � 0 and
� � 0, X1 � (x1, 0) is a stable critical point. If b2 � 4gm2 f �(x1),
the system is overdamped, and the critical point is a stable node. If
b2 � 4gm2 f �(x1), the system is underdamped, and the critical point is
a stable spiral point. The exact nature of the stable critical point is still
in doubt if b2 � 4gm2 f �(x1).

(iii) f �(x1) � 0 and the system is undamped (b � 0):
In this case the eigenvalues are pure imaginary, but the phase-plane
method can be used to show that the critical point is a center. Therefore
solutions with X(0) � (x(0), x�(0)) near X1 � (x1, 0) are periodic.

412 ● CHAPTER 10 PLANE AUTONOMOUS SYSTEMS

z

xπ

π/3 2−π/ 2

π−

z = sin x

x ′

x

(-2

(-2

π, 15)

π, 10)
15

10

5

-5
-π π

FIGURE 10.4.5 b� 0.01 in Example 2

FIGURE 10.4.4 � p�2 and 3p�2 are
stable in Example 2

π

x′

x

(-2

-

π, 10)
10

5

π

FIGURE 10.4.6 b � 0 in Example 2

EXAMPLE 2 Bead Sliding Along a Sine Wave

A 10-gram bead slides along the graph of z � sin x. According to conclusion (ii),
the relative minima at x1 � �p�2 and 3p�2 give rise to stable critical points (see
Figure 10.4.4). Since f �(�p�2) � f �(3p�2) � 1, the system will be underdamped
provided that b2 � 4gm2. If we use SI units, m � 0.01 kg and g � 9.8 m/s2, then the
condition for an underdamped system becomes b2 � 3.92 � 10�3.

If b � 0.01 is the damping constant, then both of these critical points are stable
spiral points. The two solutions corresponding to initial conditions X(0) �
(x(0), x�(0)) � (�2p, 10) and X(0) � (�2p, 15), respectively, were obtained by
using a numerical solver and are shown in Figure 10.4.5. When x�(0) � 10, the bead
has enough momentum to make it over the hill at x � �3p�2 but not over the hill at
x � p�2. The bead then approaches the relative minimum based at x � �p�2. If
x�(0) � 15, the bead has the momentum to make it over both hills, but then it
rocks back and forth in the valley based at x � 3p�2 and approaches the point
(3p�2, �1) on the wire. Experiment with other initial conditions using your
numerical solver.

Figure 10.4.6 shows a collection of solution curves obtained from a numerical
solver for the undamped case. Since b � 0, the critical points corresponding to
x1 � �p�2 and 3p�2 are now centers. When X(0) � (�2p, 10), the bead has
sufficient momentum to move over all hills. The figure also indicates that when
the bead is released from rest at a position on the wire between x � �3p�2 and
x � p�2, the resulting motion is periodic.

Lotka-Volterra Predator-Prey Model A predator-prey interaction between
two species occurs when one species (the predator) feeds on a second species (the
prey). For example, the snowy owl feeds almost exclusively on a common arctic
rodent called a lemming, while a lemming uses arctic tundra plants as its food
supply. Interest in using mathematics to help explain predator-prey interactions
has been stimulated by the observation of population cycles in many arctic mam-
mals. In the MacKenzie River district of Canada, for example, the principal prey
of the lynx is the snowshoe hare, and both populations cycle with a period of about
10 years.

There are many predator-prey models that lead to plane autonomous systems
with at least one periodic solution. The first such model was constructed inde-
pendently by pioneer biomathematicians Arthur Lotka (1925) and Vito Volterra
(1926). If x denotes the number of predators and y denotes the number of prey, then
the Lotka-Volterra model takes the form

where a, b, c, and d are positive constants.

  y� � �cxy � dy � y(�cx � d ), 

  x� � �ax � bxy �  x(�a �  by)
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Note that in the absence of predators (x � 0), y� � dy, and so the number of prey
grows exponentially. In the absence of prey, x� � �ax, and so the predator popula-
tion becomes extinct. The term �cxy represents the death rate due to predation. The
model therefore assumes that this death rate is directly proportional to the number of
possible encounters xy between predator and prey at a particular time t, and the term
bxy represents the resulting positive contribution to the predator population.

The critical points of this plane autonomous system are (0, 0) and (d�c, a�b),
and the corresponding Jacobian matrices are

.

The critical point at (0, 0) is a saddle point, and Figure 10.4.7 shows a typical
profile of solutions that are in the first quadrant and near (0, 0

Because the matrix A2 has pure imaginary eigenvalues , the criti-
cal point (d�c, a�b) may be a center. This possibility can be investigated by using
the phase-plane method. Since

,

we separate variables and obtain

.

The following argument establishes that all solution curves that originate in the firs
quadrant are periodic.

Typical graphs of the nonnegative functions F(x) � xde�cx and G(y) � yae�by

are shown in Figure 10.4.8. It is not hard to show that F(x) has an absolute maximum
at x � d�c, whereas G(y) has an absolute maximum at y � a�b. Note that with the
exception of 0 and the absolute maximum, F and G each take on all values in their
range precisely twice.

These graphs can be used to establish the following properties of a solution
curve that originates at a noncritical point (x0, y0) in the first quadrant

(i) If y � a�b, the equation F(x)G(y) � c0 has exactly two solutions xm and
xM that satisfy xm � d�c � xM.

(ii) If xm � x1 � xM and x � x1, then F(x)G(y) � c0 has exactly two
solutions y1 and y2 that satisfy y1 � a�b � y2.

(iii) If x is outside the interval [xm, xM], then F(x)G(y) � c0 has no solutions.

We will give the demonstration of (i) and outline parts (ii) and (iii) in the exer-
cises. Since (x0, y0) � (d�c, a�b), F(x0)G(y0) � F(d�c)G(a�b). If y � a�b, then

.

Therefore F(x) � c0�G(a�b) has precisely two solutions xm and xM that satisfy
xm � d�c � xM. The graph of a typical periodic solution is shown in Figure 10.4.9.

0 �
c0

G(a>b)
�

F(x0)G(y0)
G(a>b)

�
F(d>c)G(a>b)

G(a>b)
� F(d>c)

�a ln y � by � �cx � d ln x � c1   or    (xde�cx)(yae�by) � c0

	 
�a � by

y
 dy � 	 

�cx � d
x

 dx

dy
dx

�
y(�cx � d )
x(�a � by)

� � 
1ad i

A1 � g�((0, 0)) � ��a
0

0
d�    and    A2 � g�((d>c, a>b)) � � 0

�ac>b
bd>c

0 �
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FIGURE 10.4.7 Solutions near (0, 0)

FIGURE 10.4.8 Graphs of F and G
help to establish properties (1)– (3)
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Graph of G(y ) 

(a) Maximum of F at x = d/c

(b) Maximum of G at y = a/b

x

y

xm x1 xM

X0

d/c

a/b

FIGURE 10.4.9 Periodic solution of
the Lotka-Volterra model

EXAMPLE 3 Predator-Prey Population Cycles

If we let a � 0.1, b � 0.002, c � 0.0025, and d � 0.2 in the Lotka-Volterra predator-
prey model, the critical point in the first quadrant is (d�c, a�b) � (80, 50), and we
know that this critical point is a center. See Figure 10.4.10, in which we have used
a numerical solver to generate these cycles. The closer the initial condition X0 is
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to (80, 50), the more the periodic solutions resemble the elliptical solutions
to the corresponding linear system. The eigenvalues of g�((80, 50)) are

, and so the solutions near the critical point have period
, or about 44.4.

Lotka-Volterra Competition Model A competitive interaction occurs
when two or more species compete for the food, water, light, and space resources
of an ecosystem. The use of one of these resources by one population therefore
inhibits the ability of another population to survive and grow. Under what conditions
can two competing species coexist? A number of mathematical models have been
constructed that offer insights into conditions that permit coexistence. If x denotes
the number in species I and y denotes the number in species II, then the Lotka-
Volterra model takes the form

(1)

Note that in the absence of species II (y � 0), x� � (r1�K1)x(K1 � x), and so
the first population grows logistically and approaches the steady-state population K1
(see Section 3.3 and Example 4 in Section 10.3). A similar statement holds for
species II growing in the absence of species I. The term �a21xy in the second equa-
tion stems from the competitive effect of species I on species II. The model there-
fore assumes that this rate of inhibition is directly proportional to the number of
possible competitive pairs xy at a particular time t.

This plane autonomous system has critical points at (0, 0), (K1, 0), and (0, K2).
When a12a21 � 0, the lines K1 � x � a12y � 0 and K2 � y � a21x � 0 intersect to
produce a fourth critical point . Figure 10.4.11 shows the two conditions
under which is in the first quadrant. The trace and determinant of the Jacobian
matrix at are, respectively,

.

In case (a) of Figure 10.4.11, K1�a12 � K2 and K2�a21 � K1. It follows that a12a21 � 1,
t� 0, and � � 0. Since

t2 � 4� � 0, and so is a stable node. Therefore if X(0) � X0 is sufficientl
close to , and we may conclude that coexistence is pos-
sible. The demonstration that case (b) leads to a saddle point and the investigation of
the nature of critical points at (0, 0), (K1, 0), and (0, K2) are left to the exercises.

When the competitive interactions between two species are weak, both of the
coefficientsa12 and a21 will be small, so the conditions K1�a12 � K2 and K2�a21 � K1
may be satisfied. This might occur when there is a small overlap in the ranges of two
predator species that hunt for a common prey.

lim t 
:

 

 X(t) � X̂ ,X̂ � (x̂, ŷ)

(x̂, ŷ)

 � �x̂
r1

K1
� ŷ

r2

K2
�

2
� 4a12a21x̂ŷ

r1r2

K1K2
,

 �2 � 4� � �x̂
r1

K1
� ŷ

r2

K2
�

2
� 4(a12a21 � 1)x̂ ŷ

r1r2

K1K2

� � �x̂
r1

K1
� ŷ

r2

K2
    and    � � (1 � a12a21)x̂ ŷ

r1r2

K1K2

(x̂, ŷ)
(x̂, ŷ)

X̂ � (x̂, ŷ)

 y� �
r2

K2
 y(K2 � y � �21x).

 x� �
r1

K1
 x(K1 � x � �12y)

p � 10 12�
� � 
1ad i � 
12 �10 i
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FIGURE 10.4.10 Phase portrait of the
Lotka-Volterra model in Example 3
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FIGURE 10.4.11 Two conditions
when critical point is in the firs
quadrant
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EXAMPLE 4 A Lotka-Volterra Competition Model

A competitive interaction is described by the Lotka-Volterra competition model

Classify all critical points of the system.
  y� � 0.001y(100 � y � 3.0x).
 x� � 0.004x(50 � x � 0.75y)
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SOLUTION You should verify that critical points occur at (0, 0), (50, 0), (0, 100)
and at (20, 40). Since a12a21 � 2.25 � 1, we have case (b) in Figure 10.4.11, so the
critical point at (20, 40) is a saddle point. The Jacobian matrix is

,

and we obtain

g�(X) � �0.2 � 0.008x � 0.003y
�0.003y

�0.003x
0.1 � 0.002y � 0.003x�
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.g�((0, 0)) � �0.2
0

0
0.1�,    g�((50, 0)) � ��0.2

0
�0.15
�0.05�,    g�((0, 100)) � ��0.1

�0.3
0

�0.1�
Therefore (0, 0) is an unstable node, whereas both (50, 0) and (0, 100) are stable
nodes. (Check this!)

Coexistence can also occur in the Lotka-Volterra competition model if there is at
least one periodic solution that lies entirely in the first quadrant. It is possible to
show, however, that this model has no periodic solutions.

EXERCISES 10.4 Answers to selected odd-numbered problems begin on page ANS-19.

Nonlinear Pendulum

1. A pendulum is released at u � p�3 and is given an ini-
tial angular velocity of v0 rad/s. Determine the condi-
tions under which the resulting motion is periodic.

2. (a) If a pendulum is released from rest at u� u0, show
that the angular velocity is again 0 when u � �u0.

(b) The period T of the pendulum is the amount of time
needed for u to change from u0 to �u0 and back to
u0. Show that

.

Sliding Bead

3. A bead with mass m slides along a thin wire whose shape
is described by the function z � f (x). If X1 � (x1, y1) is a
critical point of the plane autonomous system associated
with the sliding bead, verify that the Jacobian matrix at
X1 is

.

4. A bead with mass m slides along a thin wire whose
shape is described by the function z � f (x). When
f �(x1) � 0, f �(x1) � 0, and the system is undamped,
the critical point X1 � (x1, 0) is a center. Estimate
the period of the bead when x(0) is near x1 and
x�(0) � 0.

5. A bead is released from the position x(0) � x0 on the
curve z � x2�2 with initial velocity x�(0) � v0 cm/s.
(a) Use the phase-plane method to show that the

resulting solution is periodic when the system is
undamped.

g�(X1) � � 0
�gf �(x1)

1
��>m�

T �
B

2L
g

  	�0

��0

 
1

1cos � � cos �0
 d�

(b) Show that the maximum height zmax to which the
bead rises is given by .

6. Rework Problem 5 with z � cosh x.

Predator-Prey Models

7. (Refer to Figure 10.4.9.) If xm � x1 � xM and x � x1,
show that F(x)G(y) � c0 has exactly two solutions y1
and y2 that satisfy y1 � a�b � y2. [Hint: First show that
G(y) � c0�F(x1) � G(a�b).]

8. From (i) and (iii) on page 413, conclude that the maxi-
mum number of predators occurs when y � a�b.

9. In many fishery science models, the rate at which a
species is caught is assumed to be directly proportional
to its abundance. If both predator and prey are being
exploited in this manner, the Lotka-Volterra differential
equations take the form

where �1 and �2 are positive constants.
(a) When �2 � d, show that there is a new critical point

in the first quadrant that is a cente .
(b) Volterra’s principle states that a moderate amount

of exploitation increases the average number of prey
and decreases the average number of predators.
Is this fisheries model consistent with Volterra’s
principle?

10. A predator-prey interaction is described by the Lotka-
Volterra model

  y� � 0.2y � 0.025xy.
 x� � �0.1x � 0.02xy

  y� � �cxy � dy � �2 y,
 x� � �ax � bxy � �1x

zmax � 1
2[ev0

2/g (1 � x0
2) � 1]
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(a) Find the critical point in the first quadrant, and use
a numerical solver to sketch some population
cycles.

(b) Estimate the period of the periodic solutions that
are close to the critical point in part (a).

Competition Models

11. A competitive interaction is described by the Lotka-
Volterra competition model

.

Find and classify all critical points of the system.

12. In (1) show that (0, 0) is always an unstable node.

13. In (1) show that (K1, 0) is a stable node when
K1 � K2�a21 and a saddle point when K1 � K2�a21.

14. Use Problems 12 and 13 to establish that (0, 0), (K1, 0),
and (0, K2) are unstable when is a stable
node.

15. In (1) show that is a saddle point when
K1�a12 � K2 and K2�a21 � K1.

Miscellaneous Mathematical Models

16. Damped Pendulum If we assume that a damping
force acts in the direction opposite to the motion of a
pendulum and with a magnitude directly proportional to
the angular velocity du�dt, the displacement angle u for
the pendulum satisfies the nonlinear second-order dif-
ferential equation

.

(a) Write the second-order differential equation as a
plane autonomous system. Find all critical points of
the system.

(b) Find a condition on m, l, and b that will make (0, 0)
a stable spiral point.

17. Nonlinear Damping In the analysis of free, damped
motion in Section 5.1 we assumed that the damping force
was proportional to the velocity x�. Frequently, the magni-
tude of this damping force is proportional to the square of
the velocity, and the new differential equation becomes

.

(a) Write the second-order differential equation as a
plane autonomous system, and find all critical points.

(b) The system is called overdamped when (0, 0) is a
stable node and is called underdamped when (0, 0)

x � � � �

m
 x��x�� � 

k
m

 x

ml 
d 2�

dt2 � �mg sin � � � 
d�

dt

X̂ � (x̂, ŷ)

X̂ � (x̂, ŷ)

  y� � 0.06y(10 � 0.1y � 0.3x)

 x� � 0.08x (20 � 0.4x � 0.3y)
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is a stable spiral point. Physical considerations sug-
gest that (0, 0) must be an asymptotically stable
critical point. Show that the system is necessarily

underdamped. 

Discussion Problems

18. A bead with mass m slides along a thin wire whose
shape may be described by the function z � f (x). Small
stretches of the wire act like an inclined plane, and
in mechanics it is assumed that the magnitude of the
frictional force between the bead and wire is directly
proportional to mg cos u (see Figure 10.4.3).
(a) Explain why the new differential equation for the

x-coordinate of the bead is

for some positive constant m.
(b) Investigate the critical points of the correspond-

ing plane autonomous system. Under what condi-
tions is a critical point a saddle point? A stable
spiral point?

19. An undamped oscillation satisfies a nonlinear second-
order differential equation of the form x� � f (x) � 0,
where f (0) � 0 and x f (x) � 0 for x � 0 and �d � x � d.
Use the phase-plane method to investigate whether it
is possible for the critical point (0, 0) to be a stable
spiral point. 

20. The Lotka-Volterra predator-prey model assumes that
in the absence of predators the number of prey grows
exponentially. If we make the alternative assumption
that the prey population grows logistically, the new
system is

,

where a, b, c, r, and K are positive and K � a�b.
(a) Show that the system has critical points at

(0, 0), (0, K), and , where and

.

(b) Show that the critical points at (0, 0) and (0, K )
are saddle points, whereas the critical point at

is either a stable node or a stable spiral point.
(c) Show that is a stable spiral point if

. Explain why this case will occur

when the carrying capacity K of the prey is large.

ŷ �
4bK2

r � 4bK

(x̂, ŷ)
(x̂, ŷ)

cx̂ �
r
K

 (K � ŷ)

ŷ � a>b(x̂, ŷ)

 y� � �cxy �
r
K

 y(K � y)

 x� � �ax � bxy

that y2 � 2F(x) � c.]
[Hint: Let F(x) � 	x

0  f (u) du and show

x � � g 
� � f �(x)

1 � [ f �(x)]2 �
�

m
 x�

�Hint: 
d
dy

 �y�y�� � 2�y�.�
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21. The dynamical system

arises in a model for the growth of microorganisms in a
chemostat, a simple laboratory device in which a
nutrient from a supply source flows into a growth cham-
ber. In the system, x denotes the concentration of the
microorganisms in the growth chamber, y denotes the

 y� � �
y

1 � y
 x � y � �

 x� � � y
1 � y

 x � x

CHAPTER 10 IN REVIEW ● 417

concentration of nutrients, and a � 1 and b � 0 are
constants that can be adjusted by the experimenter. Find
conditions on a and b that ensure that the system has 
a single critical point in the first quadrant, and 
investigate the stability of this critical point.

22. Use the methods of this chapter together with a numeri-
cal solver to investigate stability in the nonlinear
spring/mass system modeled by

See Problem 8 in Exercises 5.3.

x � � 8x � 6x3 � x5 � 0.

(x̂, ŷ)

CHAPTER 10 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-19.

Answer Problems 1–10 without referring back to the text.
Fill in the blank, or answer true or false.

1. The second-order differential equation x� � f (x�) �
g(x) � 0 can be written as a plane autonomous 
system. 

2. If X � X(t) is a solution to a plane autonomous system
and X(t1) � X(t2) for t1 � t2, then X(t) is a periodic
solution. 

3. If the trace of the matrix A is 0 and det A � 0, then the
critical point (0, 0) of the linear system X� � AX may
be classified as .

4. If the critical point (0, 0) of the linear system X� � AX
is a stable spiral point, then the eigenvalues of A
are .

5. If the critical point (0, 0) of the linear system X� � AX
is a saddle point and X � X(t) is a solution, then

does not exist. 

6. If the Jacobian matrix A � g�(X1) at a critical point of a
plane autonomous system has positive trace and deter-
minant, then the critical point X1 is unstable. 

7. It is possible to show, using linearization, that a
nonlinear plane autonomous system has periodic
solutions. 

8. All solutions to the pendulum equation

are periodic. 

9. For what value(s) of a does the plane autonomous
system

possess periodic solutions? 

 y� � ��x � y
 x� � �x � 2y

d 2�

dt2 �
g
l
 sin � � 0

limt 
:

 



   X(t)

10. For what values of n is x � np an asymptotically stable
critical point of the autonomous first-order differential
equation x� � sin x? 

11. Solve the nonlinear plane autonomous system

by switching to polar coordinates. Describe the geomet-
ric behavior of the solution that satisfies the initial con-
dition X(0) � (1, 0).

12. Discuss the geometric nature of the solutions to the lin-
ear system X� � AX given that the general solution is

(a)

(b)

13. Classify the critical point (0, 0) of the given linear sys-
tem by computing the trace t and determinant �.

(a) x� � �3x � 4y (b) x� � �3x � 2y
y� � �5x � 3y y� � �2x � y

14. Find and classify (if possible) the critical points of the
plane autonomous system

.

15. Determine the value(s) of a for which (0, 0) is a stable
critical point for the plane autonomous system (in polar
coordinates)

 �� � 1.

 r� � ar

  y� � 4y � 2xy � y2

 x� � x � xy � 3x2

X(t) � c1� 1
�1�e�t � c2�1

2�e2t

X(t) � c1�1
1�e�t � c2� 1

�2�e�2t

 y� � x � y(1x2 � y2)3.

 x� � �y � x(1x2 � y2)3
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16. Classify the critical point (0, 0) of the plane autonomous
system corresponding to the nonlinear second-order dif-
ferential equation

,

where m is a real constant.

17. Without solving explicitly, classify (if possible) the crit-
ical points of the autonomous first-order differential
equation x� � (x2 � 1)e�x/2 as asymptotically stable or
unstable.

18. Use the phase-plane method to show that the solutions
to the nonlinear second-order differential equation

that satisfy x(0) � x0 and
x�(0) � 0 are periodic.

19. In Section 5.1 we assumed that the restoring force F of
the spring satisfied Hooke’s law F � ks, where s is the
elongation of the spring and k is a positive constant of
proportionality. If we replace this assumption with the
nonlinear law F � ks3, the new differential equation for
damped motion of the hard spring becomes

,

where ks3 � mg. The system is called overdamped
when (0, 0) is a stable node and is called underdamped
when (0, 0) is a stable spiral point. Find new conditions
on m, k, and b that will lead to overdamping and
underdamping.

mx � � ��x� � k(s � x)3 � mg

x � � �2x 1(x�)2 � 1

x � � �(x2 � 1) x� � x � 0

418 ● CHAPTER 10 PLANE AUTONOMOUS SYSTEMS

20. The rod of a pendulum is attached to a movable joint at
a point P and rotates at an angular speed of v (rad/s) in
the plane perpendicular to the rod. See Figure 10.R.1.
As a result the bob of the rotating pendulum experiences
an additional centripetal force, and the new differential
equation for u becomes

.

(a) If v2 � g�l, show that (0, 0) is a stable critical
point and is the only critical point in the domain
�p � u � p. Describe what occurs physically
when u(0) � u0, u�(0) � 0, and u0 is small.

(b) If v2 � g�l, show that (0, 0) is unstable and there are
two additional stable critical points in the
domain �p� u� p. Describe what occurs physi-
cally when u(0) � u0, u�(0) � 0, and u0 is small.

(
�̂, 0)

ml 
d 2�

dt2 � �2ml sin � cos � � mg sin � � � 
d�

dt

ω

θ

Pivot P

FIGURE 10.R.1 Rotating pendulum in Problem 20
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11.1 Orthogonal Functions
11.2 Fourier Series
11.3 Fourier Cosine and Sine Series
11.4 Sturm-Liouville Problem
11.5 Bessel and Legendre Series

11.5.1 Fourier-Bessel Series
11.5.2 Fourier-Legendre Series

Chapter 11 in Review

When you studied vectors in calculus you saw that two nonzero vectors are
orthogonal when their inner (or dot) product is zero. Beyond calculus the notions of
vectors, orthogonality, and inner product often lose their geometric interpretation.
These concepts have been generalized; it is perfectly common in mathematics to
think of a function as a vector. We can then say that two different functions are
orthogonal when their inner product is zero. We will see in this chapter that the
inner product of these vectors (functions) is actually a definite integral

The concepts of orthogonal functions and the expansion of a given function f in
terms of an infinite set of orthogonal functions is fundamental to the material that i
covered in Chapters 12 and 13.

Fourier Series 11

419
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420 ● CHAPTER 11 FOURIER SERIES

Inner Product Recall that if u and v are two vectors in R3 or 3-space, then
the inner product (u, v) (in calculus this is called the dot product and written as u � v)
possesses the following properties:

(i) (u, v) � (v, u),
(ii) (ku, v) � k(u, v), k a scalar,
(iii) (u, u) � 0 if u � 0 and (u, u) � 0 if u � 0,
(iv) (u � v, w) � (u, w) � (v, w).

We expect that any generalization of the inner product concept should have these
same properties.

Suppose that f1 and f2 are functions defined on an interval [a, b].* Since a definit
integral on [a, b] of the product f1(x) f2(x) possesses the foregoing properties (i)–(iv) of
an inner product whenever the integral exists, we are prompted to make the following
definition

*The interval could also be (��, �), [0, �), and so on.

ORTHOGONAL FUNCTIONS

REVIEW MATERIAL
● The notions of generalized vectors and vector spaces can be found in any linear algebra text.

INTRODUCTION The concepts of geometric vectors in two and three dimensions, orthogonal
or perpendicular vectors, and the inner product of two vectors have been generalized. It is perfectly
routine in mathematics to think of a function as a vector. In this section we will examine an inner
product that is different from the one you studied in calculus. Using this new inner product, we
define orthogonal functions and sets of orthogonal functions. Another topic in a standard calculus
course is the expansion of a function f in a power series. In this section we will also see how to
expand a suitable function f in terms of an infinite set of orthogonal functions

11.1

DEFINITION 11.1.1 Inner Product of Functions

The inner product of two functions f1 and f2 on an interval [a, b] is the number

( f1, f 2) � �b

a
 f1(x) f 2(x) dx.

Orthogonal Functions Motivated by the fact that two geometric vectors u
and v are orthogonal whenever their inner product is zero, we define orthogonal
functions in a similar manner.

DEFINITION 11.1.2 Orthogonal Functions

Two functions f1 and f2 are orthogonal on an interval [a, b] if

(1)( f1, f 2) � �b

a
 f1(x) f 2(x) dx � 0.
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11.1 ORTHOGONAL FUNCTIONS ● 421

EXAMPLE 1 Orthogonal Functions

(a) The functions f1(x) � x2 and f2(x) � x3 are orthogonal on the interval [�1, 1],
since 

(b) The functions f1(x) � x2 and f2(x) � x4 are not orthogonal on the interval [�1, 1],
since

Unlike in vector analysis, in which the word orthogonal is a synonym for perpen-
dicular, in this present context the term orthogonal and condition (1) have no geometric
significance. Note that the zero function is orthogonal to every function

Orthogonal Sets We are primarily interested in infinite sets of orthogonal
functions that are all defined on the same interval a, b].

( f1, f2) � �1

�1
 x2 � x4 dx � �1

�1
 x6 dx �

1
7
 x7 �1

�1
�

1
7
 (1 � (�1)) �

2
7

� 0.

( f1, f2) � �1

�1
 x2 � x3 dx � �1

�1
 x5dx �

1
6
 x6 �1

�1
�

1
6
 (1 � 1) � 0.

DEFINITION 11.1.3 Orthogonal Set

A set of real-valued functions {f0(x), f1(x), f2(x), . . . } is said to be orthogonal
on an interval [a, b] if

(2)(�m , �n) � �b

a
 �m(x)�n(x) dx � 0, m Y n.

Orthonormal Sets The norm, or length �u�, of a vector u can be expressed in

EXAMPLE 2 Orthogonal Set of Functions

Show that the set {1, cos x, cos 2x, . . .} is orthogonal on the interval [�p, p].

SOLUTION If we make the identification f0(x) � 1 and fn(x) � cos nx, we must
then show that 
We have, in the first case

 � 
1
n 

 sin nx �
	

�	
�

1
n
 [sin n	 � sin(�n	)] � 0,    n � 0,

 (�0 , �n) � �	

�	
 �0(x) �n(x) dx � �	

�	
 cos nx dx

�	
�	 �0(x) �n(x) dx � 0, n � 0, and �	

�	 �m(x) �n(x) dx � 0, m � n.

terms of the inner product. The expression (u, u) � �u�2 is called the square norm,
and so the norm is �u� � Similarly, the square norm of a function fn
is �fn(x)�2 � (fn , fn), and so the norm, or its generalized length, is
�fn(x)� � In other words, the square norm and norm of a function fn in
an orthogonal set {fn(x)} are, respectively,

�fn(x)�2 � and �fn(x)� � (3)

If {fn(x)} is an orthogonal set of functions on the interval [a, b] with the additional
property that �fn(x)� � 1 for n � 0, 1, 2, . . . , then {fn(x)} is said to be an ortho-
normal set on the interval.

B
�b

a
f2

n(x) dx.�b

a
 �n

2 (x) dx

1(�n , �n).

1(u, u).
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and, in the second,

; trig identity

 �  
1
2
 �sin (m � n)x

m � n
�

sin (m � n)x
m � n �

�	

	

� 0,    m � n.

 �  
1
2
 �	

�	
[cos(m � n)x � cos(m � n)x] dx

 � �	

�	
cos mx cos nx dx

 (�m , �n) � �	

�	
 �m(x) �n(x) dx

422 ● CHAPTER 11 FOURIER SERIES

EXAMPLE 3 Norms

Find the norm of each function in the orthogonal set given in Example 2.

SOLUTION For f0(x) � 1 we have, from (3),

�f0 (x)�2 �

so �f0(x)� � For fn(x) � cos nx, n � 0, it follows that

�fn (x)�2 �

Thus for n � 0, �fn(x)� �

Normalization Any orthogonal set of nonzero functions {fn(x)}, n �
0, 1, 2, . . . can be made into an orthonormal set by normalizing each function in
the set, that is, by dividing each function by its norm. The next example illustrates
the idea.

1	.

�	

�	
 cos2nx dx �

1
2
 �	

�	
 [1 � cos 2nx ] dx � 	.

12	.

�	

�	
  dx � 2	,

EXAMPLE 4 Orthonormal Set

In Example 2 we proved that the set

{1, cos x, cos 2x, . . .}

is orthogonal on the interval . In Example 3, we then saw that the norms of
the functions in the foregoing set are

�f0(x)� � �1� � and �fn(x)� � � cos nx � �

By dividing each function by its norm we obtain the set

which is orthonormal on the interval [�p, p].

Vector Analogy In the introduction to this section, we stated that our purpose
for studying orthogonal functions is to be able to expand a function in terms of an

� 1
12	

, 
cos x
1	

, 
cos 2x
1	

, . . .�

1	, n � 1, 2, . . . .12	

[�p, p]
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infinite set {fn(x)} of orthogonal functions. To motivate this concept we shall make
one more analogy between vectors and functions. Suppose that v1, v2, and v3 are
three mutually orthogonal nonzero vectors in R3. Such an orthogonal set can be used
as a basis for R3; this means any three-dimensional vector u can be written as a
linear combination

(4)

where the ci , i � 1, 2, 3, are scalars called the components of the vector u. Each
component ci can be expressed in terms of u and the corresponding vector vi . To see
this, we take the inner product of (4) with v1:

(u, v1) � c1(v1, v1) � c2(v2, v1) � c3(v3, v1) � c1�v1�2 � c2 � 0 � c3 � 0.

Hence

In like manner we find that the components c2 and c3 are given by

Hence (4) can be expressed as

(5)

Orthogonal Series Expansion Suppose {fn(x)} is an infinite orthogonal set

u �
(u, v1)
'v1'

2 v1 �
(u, v2)
'v2'

2 v2 �
(u, v3)
'v3'

2 v3 � 	
3

n�1

(u, vn )
'vn'

2 vn.

c2 �
(u, v2)
'v2'

2     and    c3 �
(u, v3)
'v3'

2 .

c1 �
(u, v1)
'v1'

2  .

u � c1v1 � c2v2 � c3v3,
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 � c0(�0, �m) � c1(�1, �m) � 
 
 
 � cn(�n, �m) � 
 
 
.

 �b

a
 f (x)�m(x) dx � c0 �b

a
 �0(x)�m(x) dx � c1 �b

a
 �1(x)�m(x) dx � 
 
 
 � cn �b

a
 �n(x)�m(x) dx � 
 
 


By orthogonality each term on the right-hand side of the last equation is zero except
when m � n. In this case we have

It follows that the required coefficients ar

In other words, (7) f (x) � 	
�

n�0
 cn�n(x),

cn �
�b

a f (x)�n(x) dx
�b

a�2
n(x)dx

,    n � 0, 1, 2, . . . .

�b

a
 f (x)�n(x) dx � cn �b

a
 �

2
n(x) dx.

of functions on an interval [a, b]. We ask: If y � f (x) is a function defined on the
interval [a, b], is it possible to determine a set of coefficients cn, n � 0, 1, 2, . . . , for
which

? (6)

As in the foregoing discussion on finding components of a vector we can find the
desired coefficients cn by using the inner product. Multiplying (6) by fm(x) and inte-
grating over the interval [a, b] gives

f (x) � c0�0(x) � c1�1(x) � 
 
 
 � cn�n(x) � 
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The usual assumption is that w(x) � 0 on the interval of orthogonality [a, b].
The set {1, cos x, cos 2x, . . .} in Example 2 is orthogonal with respect to the weight
function w(x) � 1 on the interval [�p, p].

If {fn(x)} is orthogonal with respect to a weight function w(x) on the interval
[a, b], then multiplying (6) by w(x)fn(x) and integrating yields

(10)

where �fn(x)�2 � (11)

The series (7) with coefficients given by either (8) or (10) is said to be an orthogonal
series expansion of f or a generalized Fourier series.

Complete Sets The procedure outlined for determining the coefficients in
(8) was formal; that is, fundamental questions about whether or not an orthogonal
series expansion of a function f such as (7) actually converges to the function were
ignored. It turns out that for some specific orthogonal sets such series expansions do
indeed converge to the function. In the subsequent sections of this chapter, we will
state conditions on the type of functions defined on the interval of orthogonal-
ity that are sufficient to guarantee that an orthogonal series coverges to its function
f. To make one last point about the kind of set must be, let’s go back to the
vector analogy on pages 422–423. If is a set of mutually orthogonal
nonzero vectors in R3, we can say that the set is complete in R3 because
three such vectors is all we need to write any vector u in that space in the form (5).
We could not write (5) using fewer than three vectors; a set, say, , would be
incomplete in R3. As a necessary consequence of completeness of it is
easy to see that the only vector u in 3-space that is orthogonal to each of the vectors

and is the zero vector. If u were orthogonal to and , then
and (5) shows Similarly, in the discus-

sion of orthogonal series expansions, the function f as well as each of the functions
u � 0.(u, v3) � 0(u, v1) � 0, (u, v2) � 0,

v3v1, v2,v3v1, v2,

{v1, v2, v3}
{v1, v2}

{v1, v2, v3}
{v1, v2, v3}

{fn(x)}

[a, b]

cn

�b

a
w(x)�n

2(x) dx.

cn �
�b

a f (x) w(x)�n(x) dx
'�n(x)'2 ,

424 ● CHAPTER 11 FOURIER SERIES

DEFINITION 11.1.4 Orthogonal Set/Weight Function

A set of real-valued functions {f0(x), f1(x), f2(x), . . .} is said to be
orthogonal with respect to a weight function w(x) on an interval [a, b] if

�b

a
w(x)�m(x)�n(x) dx � 0, m � n. 

where (8)

With inner product notation, (7) becomes

(9)

Thus (9) is seen to be the function analogue of the vector result given in (5).

f (x) � 	
�

n�0

 ( f , �n)
'�n(x)'2  �n(x).

 cn �
�b

a f (x)�n(x) dx
'�n(x)'2 .
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11.1 ORTHOGONAL FUNCTIONS ● 425

EXERCISES 11.1 Answers to selected odd-numbered problems begin on page ANS-19.

In Problems 1–6 show that the given functions are orthog-
onal on the indicated interval.

1. f1(x) � x, f2(x) � x2; [�2, 2]

2. f1(x) � x3, f2(x) � x2 � 1; [�1, 1]

3. f1(x) � ex, f2(x) � xe�x � e�x ; [0, 2]

4. f1(x) � cos x, f2(x) � sin2x ; [0, p]

5. f1(x) � x, f2(x) � cos 2x ; [�p
2, p
2]

6. f1(x) � ex, f2(x) � sin x; [p
4, 5p
4]

In Problems 7–12 show that the given set of functions is
orthogonal on the indicated interval. Find the norm of each
function in the set.

7. {sin x, sin 3x, sin 5x, . . .}; [0, p
2]

8. {cos x, cos 3x, cos 5x, . . .}; [0, p
2]

9. {sin nx}, n � 1, 2, 3, . . . ; [0, p]

10. ; [0, p]

11.

12.

In Problems 13 and 14 verify by direct integration that the
functions are orthogonal with respect to the indicated weight
function on the given interval.

13. H0(x) � 1, H1(x) � 2x, H2(x) � 4x2 � 2;
w (x) � , (��, �)

14. L 0(x) � 1, L1(x) � �x � 1, 
w(x) � e�x, [0, �)

15. Let {fn(x)} be an orthogonal set of functions on [a, b]
such that f0(x) � 1. Show that for
n � 1, 2, . . . .

�b
a�n(x) dx � 0

L2(x) � 1
2 x2 � 2x � 1;

e�x2

m � 1, 2, 3, . . . ; [�p, p]

�1, cos 
n	

p
x , sin 

m	

p
x�,  n � 1, 2, 3, . . . ,

�1, cos  n	

p
x�, n � 1, 2, 3, . . . ; [0, p]

�sin 
n	

p
x�, n � 1, 2, 3, . . .

16. Let {fn(x)} be an orthogonal set of functions on [a, b]
such that f0(x) � 1 and f1(x) � x. Show that

for n � 2, 3, . . . and any
constants a and b.

17. Let {fn(x)} be an orthogonal set of functions on [a, b].
Show that �fm(x) � fn(x)�2 � �fm(x)�2 � �fn(x)�2,
m � n.

18. From Problem 1 we know that f1(x) � x and f2(x) � x2

are orthogonal on the interval [�2, 2]. Find constants c1
and c2 such that f3(x) � x � c1x2 � c2x3 is orthogonal
to both f1 and f2 on the same interval.

19. The set of functions {sin nx}, n � 1, 2, 3, . . . , is
orthogonal on the interval [�p, p]. Show that the set
is not complete.

20. Suppose f1, f2, and f3 are functions continuous on the inter-
val [a, b]. Show that ( f1 � f2, f3) � ( f1, f3) � ( f2, f3).

Discussion Problems

21. A real-valued function f is said to be periodic with period
T if f (x � T ) � f (x). For example, 4p is a period of sin x,
since sin(x � 4p) � sin x. The smallest value of T for
which f (x � T ) � f (x) holds is called the fundamental
period of f. For example, the fundamental period of
f (x) � sin x is T � 2p. What is the fundamental period
of each of the following functions?

(a) f (x) � cos 2px (b)

(c) f (x) � sin x � sin 2x (d) f (x) � sin 2x � cos 4x
(e) f (x) � sin 3x � cos 2x

(f)

An and Bn depend only on n

22. In Problem 9 we saw that set is
orthogonal on the interval Show that the set is also
orthogonal on the interval but is not complete 
in the set of all continuous functions defined on 
[Hint: Consider f (x) � 1.]

[�p, p].
[�p, p]

[0, p].
{sin nx}, n � 1, 2, 3, . . .

f (x) � A0 �	
�

n�1
�An cos  

n	

p
 x � Bn sin  

n	

p
 x�,

f (x) � sin 4
L
 x

�b
a (�x � �)�n(x) dx � 0

in are part of a larger class, or space, S of functions. The class S could be,
say, the set of continuous functions on an interval or the set of piecewise-
continuous functions on We also want the set to be complete in S in
the sense that must contain sufficiently many functions so that every function
f in S can written in the form (7). As in our vector analogy, this means that the only
function that is orthogonal to each member of the set is the zero function.
See Problem 22 in Exercises 11.1.

We assume for the remainder of the discussion in this chapter that any orthog-
onal set used in a series expansion of a function is complete in some class of
functions S. 

{fn(x)}

{fn(x)}
{fn (x)}[a, b].
[a, b],

{fn(x)}
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FOURIER SERIES

REVIEW MATERIAL
● Reread—or, better, rework—Problem 12 in Exercises 11.1.

INTRODUCTION We have just seen that if {f0(x), f1(x), f2(x), . . .} is an orthogonal set on an
interval [a, b] and if f is a function defined on the same interval, then we can formally expand f in an
orthogonal series

where the coefficients cn are determined by using the inner product concept. The orthogonal set of
trigonometric functions

(1)

will be of particular importance later on in the solution of certain kinds of boundary-value problems
involving linear partial differential equations. The set (1) is orthogonal on the interval [�p, p]. See
Problem 12 in Exercises 11.1.

�1,  cos  	

p
 x, cos 2	

p
 x, cos 3	

p
 x, . . ., sin 	

p
 x, sin 2	

p
 x,  sin 3	

p
 x, . . .�

c0�0(x) � c1�1(x) � c2�2(x) � 
 
 
 ,

11.2

A Trigonometric Series Suppose that f is a function defined on the interval

(5)     �	
�

n�1
�an�p

�p
cos m	

p
 x cos n	

p
 x dx � bn�p

�p
cos m	

p
 x sin n	

p
 x dx �.

 �p

�p
f (x) cos m	

p
 x dx �

a0

2�p

�p
cos m	

p
 x dx

(�p, p) and can be expanded in an orthogonal series consisting of the trigonometric
functions in the orthogonal set (1); that is,

(2)

The coefficients a0, a1, a2 , . . . , b1, b2, . . . can be determined in exactly the same for-
mal manner as in the general discussion of orthogonal series expansions on page 423.
Before proceeding, note that we have chosen to write the coefficient of 1 in the set (1)
as rather than a0. This is for convenience only; the formula of an will then reduce
to a0 for n � 0.

Now integrating both sides of (2) from �p to p gives

(3)

Since cos(npx
p) and sin(npx
p), n 
 1 are orthogonal to 1 on the interval, the
right side of (3) reduces to a single term:

Solving for a0 yields

(4)

Now we multiply (2) by cos(mpx
p) and integrate:

a0 �
1
p

 �p

�p
  f (x) dx.

�p

�p
 f (x) dx �

a0

2�p

�p
dx �

a0

2
 x �

p

�p
� pa0.

�p

�p
 f (x) dx �

a0

2�p

�p
 dx � 	

�

n�1
�an�p

�p
cos n	

p
 x dx � bn�p

�p
sin n	

p
 x dx �.

1
2 a0

f (x) �
a0

2
� 	

�

n�1
�an cos n	

p
 x � bn sin n	

p
 x�.
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By orthogonality we have

and

Thus (5) reduces to

and so (6)

Finally, if we multiply (2) by sin(mpx
p), integrate, and make use of the results

and

we find tha (7)

The trigonometric series (2) with coefficients and defined by (4), (6),
and (7), respectively, is said to be the Fourier series of f.  Although the French math-
ematical physicist Jean Baptiste Joseph Fourier (1768–1830) did not invent the se-
ries that bears his name, he is at least responsible for sparking the interest of mathe-
maticians in trigonometric series by his less than rigorous use of them in his
researches on the conduction of heat. The formulas in (4), (6), and (7) that give the
coefficients in a Fourier series are known as the Euler formulas.

bna0, an,

bn �
1
p

 �p

�p
 f (x) sin 

n	

p
 x dx.

�p

�p
sin m	

p
 x sin n	

p
 x dx ��0,

p,
m � n
m � n,

�p

�p
sin m	

p
 x dx � 0,  m �  0,    �p

�p
sin m	

p
 x  cos n	

p
 x dx � 0,

an �
1
p

 �p

�p
  f (x) cos 

n	

p
 x dx.

�p

�p
f (x) cos n	

p
 x dx � anp,

�p

�p
cos m	

p
 x cos n	

p
 x dx ��0,

p,
m � n
m � n.

�p

�p
cos m	

p
 x dx � 0,  m � 0,    �p

�p
cos m	

p
 x sin n	

p
 x dx � 0,
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DEFINITION 11.2.1 Fourier Series

The Fourier series of a function f defined on the interval (�p, p) is given
by

(8)

where (9)

(10)

(11) bn �
1
p

 �p

�p
  f (x) sin 

npx
p

 dx.

 an �
1
p

 �p

�p
  f (x) cos 

npx
p

 dx

 a0 �
1
p�p

�p
  f (x) dx

 f (x) �
a0

2
 �	

�

n�1
�an sin 

n	x
p

 � bn sin 
n	x

p
 �

Convergence of a Fourier Series In the absence of any stated conditions that
guarantee the validity of the steps leading to the coefficients and the equality
sign in (8) should not be taken in a strict or literal sense. Some texts use the symbol ~ to

bn,a0, an,
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signify that (8) is simply the corresponding trigonometric series with coefficient
generated using f in formulas (9)–(11). In view of the fact that most functions in
applications are of the type that guarantee convergence of the series, we shall use the
equality symbol. Is it possible for a series (8) to converge at number x in the interval

and yet not be equal to The answer is an emphatic Yes.

Piecewise Continuous Functions Before stating conditions under which a
Fourier series converges, we need to pause brief y to review two topics from the firs
semester of calculus. We shall use the symbols to denote the one-
sided limits 

called, respectively, the right- and left-hand limits of f at x. A function f is said to be
piecewise continuous on a closed interval if there are 

• a finite number of points in at which f has a finit
(or jump) discontinuity, and

• f is continuous on each open interval 

As a consequence of this definition, the one-sided limits must exist
at every x satisfying The limits must also exist but it is
not required that f be continuous or even defined at either a or b.

Our first theorem gives sufficient conditions for convergence of a Fourier series
at a point x.

f (a�) and f(b�)a � x � b.
f (x�) and f(x�)

(xk, xk�1).

[a, b]x1 � x2 � . . . � xn

[a, b]

h�0h�0

f (x�) � lim
h : 0

 f (x � h), f (x�) � lim
h : 0

 f (x � h),

f (x�) and f(x�)

f(x)?(�p, p),
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In Section 7.1 we defined piecewise
continuity on an unbounded interval 
[0, ). See Figure 7.1.1 on page 277.�

�

THEOREM 11.2.1 Conditions for Convergence

Let f and f � be piecewise continuous on the interval [�p, p]. Then for all x in the
interval (�p, p), the Fourier series of f converges to f(x) at a point continuity. At a
point of discontinuity the Fourier series converges to the average

where f (x�) and f (x�) are the right- and left-hand limits of f at x, respectively.

f (x�) � f (x�)
2

,

EXAMPLE 1 Expansion in a Fourier Series

Expand (12)

in a Fourier series.

SOLUTION The graph of f is given in Figure 11.2.1. With p � p we have from 
(9) and (10) that

� � 1
n	

 
cos nx

n �	

0
�

1 � (�1)n

n2	
,

�
1
	

 �(	 � x) sin nx
n �	

0
�

1
n

 �	

0
sin nx dx�

an �
1
	

 �	

�	  
f (x) cos nx dx �

1
	

 ��0

�	
0 dx ��	

0
(	 � x) cos nx dx�

a0 �
1
	

 �	

�	
  f (x) dx �

1
	

 ��0

�	
0 dx � �	

0
(	 � x) dx� �

1
	

 �	x �
x2

2�
	

0
�

	

2

f (x) � �0,
	 � x,

�	 � x � 0
  0 � x � 	

x

y

π

π−π

FIGURE 11.2.1 Piecewise-continuous
function f in Example 1

; integration 
by parts
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where we have used cos np � (�1)n . In like manner we find from ( 1) that 

Therefore (13)

Note that an defined by (10) reduces to a0 given by (9) when we set n � 0. But as
Example 1 shows, this might not be the case after the integral for an is evaluated.

f (x) �
	

4
 �	

�

n�1
�1 � (�1)n

n2	
 cos nx �

1
n
 sin nx�.

bn �
1
	

 �	

0
(	 � x) sin nx dx �

1
n

.
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x
−1

π−π

y'

FIGURE 11.2.2 Piecewise continuous
derivative in Example 2f�

FIGURE 11.2.3 Periodic extension of function f shown in Figure 11.2.1 

EXAMPLE 2 Example 1 Revisited 

The equality in (13) of Example 1 is justified because both f and are piecewise contin-
uous on the interval See Figures 11.2.1 and 11.2.2. Because f is continuous for
every x in the interval except at the series (13) will converge to the
value At  the function f is discontinuous, so the series (13) will converge to

Periodic Extension Observe that each of the functions in the basic set (1) has

f (0�) � f (0�)
2

�
p

2
.

x � 0f (x).
x � 0,(�p, p),

[�p, p].
f�

EXAMPLE 3 Example 1 Revisited

The Fourier series (13) in Example 1 converges to the periodic extension of the func-
tion (12) on the entire x-axis. See Figure 11.2.3. At and at

the series converges to the values

,  

respectively. The solid black dots in Figure 11.2.3 represent the value p>2.

f (0�) � f (0�)
2

�
p

2
    and    

f(p�) � f (�p�)
2

� 0

�p, �3p, �5p, . . .
0, �2p, �4p, . . .

x

y

ππ

π

−4 π−3 π−2 π−  π2 π3 π4

a different fundamental period*—namely, 2p
n, n 
 1—but since a positive integer
multiple of a period is also a period, we see that all the functions have in common the
period 2p. (Verify.) Hence the right-hand side of (2) is 2p-periodic; indeed, 2p is the
fundamental period of the sum. We conclude that a Fourier series not only repre-
sents the function on the interval (�p, p) but also gives the periodic extension of f
outside this interval. We can now apply Theorem 11.2.1 to the periodic extension of
f, or we may assume from the outset that the given function is periodic with period
2p; that is, f (x � 2p) � f (x). When f is piecewise continuous and the right- and left-
hand derivatives exist at x � �p and x � p, respectively, then the series (8) con-
verges to the average

at these endpoints and to this value extended periodically to �3p, �5p, �7p, and
so on.

f (p�) � f (�p�)
2

*See Problem 21 in Exercises 11.1.
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Sequence of Partial Sums It is interesting to see how the sequence of par-
tial sums {SN (x)} of a Fourier series approximates a function. For example, the firs
three partial sums of (13) in Example 1 are

430 ● CHAPTER 11 FOURIER SERIES

(c) S15(x) (d) S15(x)

y

x

21 3

1

2

3

y

x

-10 -5 105

1

2

3

(a) S3(x) (b) S8(x)

y

x

-3 -2 -1

-3 -2 -1

-3 -2 -12 31

1

2

3

y

x

21 3

1

2

3

FIGURE 11.2.4 Partial sums of Fourier series (13) in Example 1

S1(x) �
	

4
,    S2(x) �

	

4
�

2
	

 cos x � sin x,    and    S3(x) �
	

4
�

2
	

 cos x � sin x �
1
2
 sin 2x.

In Figure 11.2.4 we have used a CAS to graph the partial sums S3(x), S8(x), and
S15(x) of (13) on the interval (�p, p). Figure 11.2.4(d) shows the periodic extension
using S15(x) on (�4p, 4p).

EXERCISES 11.2 Answers to selected odd-numbered problems begin on page ANS-19.

In Problems 1–16 find the Fourier series of f on the given
interval. Give the number to which the Fourier series con-
verges at a point of discontinuity of f.

1.

2.

3.

4. f (x) � �0, �1 � x � 0
x,   0 � x � 1

f (x) � �1, �1 � x � 0
x,   0 � x � 1

f (x) � ��1,
2,

�	 � x � 0
0 � x � 	

f (x) � �0, �	 � x � 0
1,  0 � x � 	

5.

6.

7. f (x) � x � p, �p � x � p

8. f (x) � 3 � 2x, �p � x � p

9.

10. f (x) � �0,
cos x,

�	>2 � x � 0
 0 � x � 	>2

 

f (x) � �0,
sin x,

�	 � x � 0
0 � x � 	

 

f (x) � �	 2,
	 2 � x2,

�	 � x � 0
0 � x � 	

 

f (x) � �0, �	 � x � 0
   x 2 ,  0 � x � 	
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11.3 FOURIER COSINE AND SINE SERIES ● 431

11.

12.

13.

14.

15. f (x) � ex, �p � x � p

16.

In Problems 17 and 18 sketch the periodic extension of the
indicated function.

17. The function f in Problem 9

18. The function f in Problem 14

19. Use the result of Problem 5 to show that

and

20. Use Problem 19 to find a series that gives the numerical
value of p2
8.

	 2

12
 � 1 �

1
22 �

1
32 �

1
42 � 
 
 
.

	 2

6
 � 1 �

1
22 �

1
32 �

1
42 � 
 
 


f (x) � �0,
ex � 1,

�	 � x � 0
    0 � x � 	

f (x) � � 
2 � x, �2 � x � 0
2,      0 � x � 2

f (x) � � 
1,   �5 � x � 0
1 � x,    0 � x � 5

f (x) � �0, �2 � x � 0
x,     0 � x � 1
1,     1 � x � 2

f (x) � �
   0,
�2,
   1,
   0,

�2 � x � �1
�1 � x � 0
   0 � x � 1
   1 � x � 2

21. Use the result of Problem 7 to show that

22. Use the result of Problem 9 to show that

23. (a) Use the complex exponential form of the cosine
and sine,

to show that (8) can be written in the complex form

where 

where n � 1, 2, 3, . . . .
(b) Show that c0, cn, and c�n of part (a) can be written

as one integral

24. Use the results of Problem 23 to find the complex form of
the Fourier series of f (x) � e�x on the interval [�p, p].

cn �
1

2p
 �p

�p
  f (x)e�in	x /p dx,  n � 0, �1, �2, . . . .

c0 �
a0

2
,  cn �

an � ibn

2
,  and  c�n �

an � ibn

2
,

f (x) � 	
�

n���

cnein	x /p,

 sin n	

p
 x �

ein	x /p � e�in	x /p

2i
,

 cos n	

p
 x �

ein	x /p � e�in	x /p

2

	

4
�

1
2

�
1

1 � 3
�

1
3 � 5

�
1

5 � 7
�

1
7 � 9

� 
 
 
.

	

4
� 1 �

1
3

�
1
5

�
1
7

� 
 
 
.

FOURIER COSINE AND SINE SERIES

REVIEW MATERIAL
● Sections 11.1 and 11.2

INTRODUCTION The effort that is expended in evaluation of the definite integrals that defin
the coefficients the a0, an, and bn in the expansion of a function f in a Fourier series is reduced
significantly when f is either an even or an odd function. Recall that a function f is said to be

On a symmetric interval such as (�p, p) the graph of an even function possesses symmetry with
respect to the y-axis, whereas the graph of an odd function possesses symmetry with respect to the
origin.

even if  f (�x) �  f (x)    and    odd if  f (�x) � �f (x).

11.3
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432 ● CHAPTER 11 FOURIER SERIES

Even and Odd Functions It is likely that the origin of the terms even and
odd derives from the fact that the graphs of polynomial functions that consist of all
even powers of x are symmetric with respect to the y-axis, whereas graphs of poly-
nomials that consist of all odd powers of x are symmetric with respect to origin. For
example,

See Figures 11.3.1 and 11.3.2. The trigonometric cosine and sine functions are even
and odd functions, respectively, since cos(�x) � cos x and sin(�x) � �sin x. The
exponential functions f (x) � ex and f (x) � e�x are neither odd nor even.

Properties The following theorem lists some properties of even and odd
functions.

f(x) � x2 is even since f(�x) � (�x)2 � x2 � f (x)
even integer

f(x) � x3 is odd since f(�x) � (�x)3 � �x3 � �f(x).
odd integer

x−x

y

x

y = x2

f (−x) f (x)

FIGURE 11.3.1 Even function; graph
symmetric with respect to y-axis

FIGURE 11.3.2 Odd function; graph
symmetric with respect to origin

−x
x

y = x3

f (−x)

f (x)
x

y

THEOREM 11.3.1 Properties of Even/Odd Functions

(a) The product of two even functions is even.
(b) The product of two odd functions is even.
(c) The product of an even function and an odd function is odd.
(d) The sum (difference) of two even functions is even.
(e) The sum (difference) of two odd functions is odd.
(f) If f is even, then 
(g) If f is odd, then �a

�a  f (x) dx � 0.
�a

�a f (x) dx � 2�a
0 f (x) dx.

PROOF OF (b) Let us suppose that f and g are odd functions. Then we
have f (�x) � �f (x) and g(�x) � �g(x). If we define the product of f and g as
F (x) � f (x)g(x), then

This shows that the product F of two odd functions is an even function. The proofs of
the remaining properties are left as exercises. See Problem 48 in Exercises 11.3.

Cosine and Sine Series If f is an even function on (�p, p), then in view of the
foregoing properties the coefficients (9), (10), and ( 1) of Section 11.2 become

�   f(x) cos     

even

1–p
2–p�   f(x) dx �a0 � �   f(x) dx

 p

�p

p

0

1–p
n�–––pan �

 p

�p

�   f(x) sin x dx � 0.

odd

1–p
n�–––pbn �

 p

�p

�   f (x) cos x dx2–p
n�–––p

p

0
x dx �

F(�x) � f (�x) g(�x) � (�f (x))(�g(x)) � f (x) g(x) � F(x).
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Similarly, when f is odd on the interval (�p, p),

We summarize the results in the following definition

an � 0,  n � 0, 1, 2, . . . ,    bn �
2
p

 �p

0
 f (x) sin n	

p
 x dx.
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DEFINITION 11.3.1 Fourier Cosine and Sine Series

(i) The Fourier series of an even function f defined on the interval (�p, p) is
the cosine series

(1)

where (2)

(3)

(ii) The Fourier series of an odd function f defined on the interval (�p, p) is
the sine series

(4)

where (5) bn �
2
p

 �p

0
 f (x) sin 

np
p

 x dx.

 f (x) � 	
�

n�1
bn sin 

np
p

 x,

 an �
2
p

 �p

0
 f (x) cos 

np
p

 x dx.

 a0 �
2
p

 �p

0
 f (x) dx

 f (x) �
a0

2
 �	

�

n�1
an cos np

p
 x,

Because the term is 0 at a sine series (4)
converges to 0 at those points regardless of whether f is defined at these points

x � �p, x � 0, and x � p,sin(npx>p)

EXAMPLE 1 Expansion in a Sine Series

Expand f (x) � x, �2 � x � 2 in a Fourier series.

SOLUTION Inspection of Figure 11.3.3 shows that the given function is odd on the
interval (�2, 2), and so we expand f in a sine series. With the identification 2p � 4
we have p � 2. Thus (5), after integration by parts, is

Therefore (6)

The function in Example 1 satisfies the conditions of Theorem 11.2.1. Hence
the series (6) converges to the function on (�2, 2) and the periodic extension 
(of period 4) given in Figure 11.3.4.

f (x) �
4
	

 	
�

n�1

(�1)n�1

n
 sin n	

2
 x.

bn ��2

0
x sin n	

2
 x dx �

4(�1)n�1

n	
.

x

y

y = x,  −2 < x < 2 

FIGURE 11.3.3 Odd function in
Example 1

FIGURE 11.3.4 Periodic extension of function shown in Figure 11.3.3

y

x−10 −8 −6 −4 −2 2 4 6 8 10
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−1

1

x

y

π−π

FIGURE 11.3.5 Odd function in
Example 2

FIGURE 11.3.6 Partial sums of sine series (7)

(a) S1(x) (b) S2(x)

(c) S3(x) (d) S15(x)

y

x

-3 -2 -1 -3 -2 -1

-3 -2 -1-3 -2 -1

21

-1

-0.5

0.5

1

y

x

213 3

-0.5

0.5

1

y

x

21

-1

-0.5

0.5

1

y

x

213 3

-1

-0.5

0.5

1

_L L x

y

FIGURE 11.3.7 Even reflectio

EXAMPLE 2 Expansion in a Sine Series

The function shown in Figure 11.3.5 is odd on the 

interval (�p, p). With p � p we have, from (5),

and so (7)

Gibbs Phenomenon With the aid of a CAS we have plotted the graphs S1(x),
S2(x), S3(x), and S15(x) of the partial sums of nonzero terms of (7) in Figure 11.3.6.
As seen in Figure 11.3.6(d), the graph of S15(x) has pronounced spikes near the dis-
continuities at x � 0, x � p, x � �p, and so on. This “overshooting” by the partial
sums SN from the functional values near a point of discontinuity does not smooth out
but remains fairly constant, even when the value N is taken to be large. This behav-
ior of a Fourier series near a point at which f is discontinuous is known as the Gibbs
phenomenon.

The periodic extension of f in Example 2 onto the entire x-axis is a meander
function (see page 310).

f (x) �
2
	

 	
�

n�1

1 � (�1)n

n
 sin nx.

bn �
2
	

 �	

0
(1) sin nx dx �

2
	

 
1 � (�1)n

n
,

f (x) � ��1, �	 � x � 0
  1,    0 � x � 	,

Half-Range Expansions Throughout the preceding discussion it was
understood that a function f was defined on an interval with the origin as its
midpoint—that is, (�p, p). However, in many instances we are interested in repre-
senting a function that is defined only for 0 � x � L by a trigonometric series. This
can be done in many different ways by supplying an arbitrary definitio of f (x) for
�L � x � 0. For brevity we consider the three most important cases. If y � f (x) is
defined on the interval (0 L), then

(i) reflect the graph of f about the y-axis onto (�L, 0); the function is now
even on (�L, L) (see Figure 11.3.7); or
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(ii) reflect the graph of f through the origin onto (�L, 0); the function is now
odd on (�L, L) (see Figure 11.3.8); or

(iii) define f on (�L, 0) by y � f (x � L) (see Figure 11.3.9).

Note that the coefficients of the series (1) and (4) utilize only the definition of
the function on (0, p) (that is, half of the interval (�p, p)). Hence in practice there
is no actual need to make the reflections described in (i) and (ii). If f is defined for
0 � x � L, we simply identify the half-period as the length of the interval p � L. The
coefficient formulas (2), (3), and (5) and the corresponding series yield either an even
or an odd periodic extension of period 2L of the original function. The cosine and
sine series that are obtained in this manner are known as half-range expansions.
Finally, in case (iii) we are defining the function values on the interval (�L, 0) to be
same as the values on (0, L). As in the previous two cases there is no real need to do
this. It can be shown that the set of functions in (1) of Section 11.2 is orthogonal on
the interval [a, a � 2p] for any real number a. Choosing a � �p, we obtain the
limits of integration in (9), (10), and (11) of that section. But for a � 0 the limits of
integration are from x � 0 to x � 2p. Thus if f is defined on the interval (0, L), we
identify 2p � L or p � L
2. The resulting Fourier series will give the periodic exten-
sion of f with period L. In this manner the values to which the series converges will
be the same on (�L, 0) as on (0, L).
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x

y

L

_L

L

f (x) = f (x + L)

x

y

_L

FIGURE 11.3.9 Identity reflectio

FIGURE 11.3.8 Odd reflectio

EXAMPLE 3 Expansion in Three Series

Expand f (x) � x2, 0 � x � L,
(a) in a cosine series (b) in a sine series (c) in a Fourier series.

SOLUTION The graph of the function is given in Figure 11.3.10.

(a) We have

where integration by parts was used twice in the evaluation of an.

Thus (8)

(b) In this case we must again integrate by parts twice:

Hence (9)

(c) With p � L
2, 1
p � 2
L, and np
p � 2np
L we have

and

Therefore (10)f (x) �
L2

3
�

L2

	
 	

�

n�1
 � 1

n2	
 cos 2n	

L
 x �

1
n
 sin 2n	

L
 x�.

bn �
2
L

 �L

0
x2 sin 

2n	

L
 x dx � � L

2

n	
.

a0 �
2
L

 �L

0
x2 dx �

2
3
 L2, an �

2
L

 �L

0
x2 cos 2n	

L
 x dx �

L2

n2	2,

f (x) �
2L2

	
 	

�

n�1
�(�1)n�1

n
�

2
n3	2 [(�1)n � 1]�

 
sin n	

L
 x.

bn �
2
L

 �L

0
x2 sin n	

L
 x dx �

2L2(�1)n�1

n	
�

4L2

n3	3 [(�1)n � 1].

f (x) �
L2

3
�

4L2

	2  	
�

n�1

(�1)n

n2  cos 
n	

L
 x.

a0 �
2
L

 �L

0
x2 dx �

2
3

 L2,    an �
2
L

 �L

0
x2 cos n	

L
 x dx �

4L2(�1)n

n2	2 ,x

y

L

y = x , 0 < x < L

FIGURE 11.3.10 Function f in
Example 3 is neither odd nor even.
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The series (8), (9), and (10) converge to the 2L-periodic even extension of f, the
2L-periodic odd extension of f, and the L-periodic extension of f, respectively. The
graphs of these periodic extensions are shown in Figure 11.3.11.

436 ● CHAPTER 11 FOURIER SERIES

y

y

y

x

x

x

−4L −3L −2L 2L 3L 4L−L L

(a) cosine series

(b) sine series

(c) Fourier series

−4L −3L −2L 2L 3L 4L−L L

−4L −3L −2L 2L 3L 4L−L L

FIGURE 11.3.11 Same function on (0, L) but different periodic extensions

FIGURE 11.3.12 Periodic forcing
function for spring/mass system in
Example 4

t

f (t)

−

π

π

1 2 3 4 5

Periodic Driving Force Fourier series are sometimes useful in determining a
particular solution of a differential equation describing a physical system in which
the input or driving force f (t) is periodic. In the next example we find a periodic par-
ticular solution of the nonhomogeneous linear differential equation

(11)

by first representing f by a half-range sine expansion and then assuming a partic-
ular solution of the form

(12)xp(t) �	
�

n�1
Bn sin 

n	

p
 t.

m d
2x

dt2 � kx � f (t)

EXAMPLE 4 Particular Solution of a DE

An undamped spring/mass system, in which the mass slug and the
spring constant k � 4 lb/ft, is driven by the 2-periodic external force f (t) shown in
Figure 11.3.12. Although the force f (t) acts on the system for t � 0, note that if we
extend the graph of the function in a 2-periodic manner to the negative t-axis, we
obtain an odd function. In practical terms this means that we need only find the half-
range sine expansion of f (t) � pt, 0 � t � 1. With p � 1 it follows from (5) and
integration by parts that

From (11) the differential equation of motion is seen to be

(13)
1

16
 
d 2x
dt2 � 4x � 	

�

n�1

2(�1)n�1

n
 sin n	t.

bn � 2�1

0
	t sin n	t dt �

2(�1)n�1

n
.

m � 1
16
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To find a particular solution xp(t) of (13), we substitute (12) into the equation and
equate coefficients of sin npt. This yields

Thus (14)

Observe in the solution (14) that there is no integer n 
 1 for which the
denominator 64 � n2p2 of Bn is zero. In general, if there is a value of n, say N, for
which Np
p � v, where then the system described by (11) is in a state
of pure resonance. In other words, we have pure resonance if the Fourier series
expansion of the driving force f (t) contains a term sin(Np
L)t (or cos(Np
L)t) that
has the same frequency as the free vibrations.

Of course, if the 2p-periodic extension of the driving force f onto the negative
t-axis yields an even function, then we expand f in a cosine series.

� � 1k>m ,

xp(t) � 	
�

n�1

 32(�1)n�1

n(64 � n2	2)
 sin n	t.

�� 1
16

 n2	2 � 4�Bn �
2(�1)n�1

n
    or    Bn �

32(�1)n�1

n(64 � n2	2)
.
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EXERCISES 11.3 Answers to selected odd-numbered problems begin on page ANS-19.

In Problems 1–10 determine whether the function is even,
odd, or neither.

1. f (x) � sin 3x 2. f (x) � x cos x

3. f (x) � x2 � x 4. f (x) � x3 � 4x

5. f (x) � e � x � 6. f (x) � ex � e�x

7.

8.

9. f (x) � x3, 0 � x � 2

10.

In Problems 11–24 expand the given function in an appropri-
ate cosine or sine series.

11.

12.

13. �p � x � p

14. f (x) � x, �p � x � p

15. f (x) � x2, �1 � x � 1

16. �1 � x � 1f (x) � x � x �,

f (x) � � x �,

f (x) � �1,
0,
1,

�2 � x � �1
�1 � x � 1
   1 � x � 2

f (x) � ��1,
1,

�	 � x � 0
   0 � x � 	

f (x) � � x5 �

f (x) � � x � 5,
�x � 5,

�2 � x � 0
0 � x � 2

f (x) � � x2,
�x2,

�1 � x � 0
0 � x � 1

17. f (x) � p2 � x2, �p � x � p

18. f (x) � x3, �p � x � p

19.

20.

21.

22.

23. �p � x � p

24. f (x) � cos x, �p
2 � x � p
2

In Problems 25–34 find the half-range cosine and sine
expansions of the given function.

25.

26.

27. f (x) � cos x, 0 � x � p
2

28. f (x) � sin x, 0 � x � p

f (x) � �0,
1,

0 � x � 1
2

1
2 � x � 1

f (x) � �1,
0,

0 � x � 1
2

1
2 � x � 1

f (x) � � sin x �,

f (x) � ��	,
 x,
 	,

�2	 � x � �	

 �	 � x � 	

  	 � x � 2	

f (x) � �
   1,
�x,
   x,
   1,

�2 � x � �1
�1 � x � 0
 0 � x � 1
 1 � x � 2

f (x) � �x � 1,
x � 1,

�1 � x � 0
 0 � x � 1

f (x) � �x � 1,
x � 1,

�	 � x � 0
 0 � x � 	
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29.

30.

31.

32.

33. f (x) � x2 � x, 0 � x � 1

34. f (x) � x(2 � x), 0 � x � 2

In Problems 35–38 expand the given function in a Fourier
series.

35. f (x) � x2, 0 � x � 2p

36. f (x) � x, 0 � x � p

37. f (x) � x � 1, 0 � x � 1

38. f (x) � 2 � x, 0 � x � 2

In Problems 39 and 40 proceed as in Example 4 to find a
particular solution xp(t) of equation (11) when m � 1,
k � 10, and the driving force f (t) is as given. Assume that
when f (t) is extended to the negative t-axis in a periodic
manner, the resulting function is odd.

39.

40. f (t) � 1 � t, 0 � t � 2; f (t � 2) � f (t)

In Problems 41 and 42 proceed as in Example 4 to find a par-
ticular solution xp(t) of equation (11) when 
and the driving force f (t) is as given. Assume that when f (t)
is extended to the negative t-axis in a periodic manner, the
resulting function is even.

41. f (t) � 2pt � t2, 0 � t � 2p; f (t � 2p) � f (t)

42.

43. (a) Solve the differential equation in Problem 39,
x� � 10x � f (t), subject to the initial conditions
x(0) � 0, x�(0) � 0.

(b) Use a CAS to plot the graph of the solution x(t) in
part (a).

44. (a) Solve the differential equation in Problem 41,
subject to the initial conditions

x(0) � 1, x�(0) � 0.
(b) Use a CAS to plot the graph of the solution x(t) in

part (a).

1
4 x � � 12x � f (t),

f (t) � �t,
1 � t,

0 � t � 1
2

1
2 � t � 1

; f (t � 1) � f (t)

k � 12,m � 1
4,

f (t) � �   5,
�5,

0 � t � 	

	 � t � 2	
; f (t � 2	) � f (t)

f (x) � �1,
2 � x,

0 � x � 1
1 � x � 2

f (x) � �x,
1,

0 � x � 1
1 � x � 2

f (x) � �0,
x � 	,

0 � x � 	

	 � x � 2	

f (x) � �x,
	 � x,

 0 � x � 	>2
	>2 � x � 	

45. Suppose a uniform beam of length L is simply supported
at x � 0 and at x � L. If the load per unit length is given
by w(x) � w0 x
L, 0 � x � L, then the differential equa-
tion for the deflection y(x) is

where E, I, and w0 are constants. (See (4) in Section 5.2.)
(a) Expand w(x) in a half-range sine series.
(b) Use the method of Example 4 to find a particular

solution yp(x) of the differential equation.

46. Proceed as in Problem 45 to find a particular solu-
tion yp(x) when the load per unit length is as given in
Figure 11.3.13.

EI 
d4y
dx4 �

w0x
L

,

x

w (x)

L/3 2L/3 L

w0

FIGURE 11.3.13 Graph for Problem 46

47. When a uniform beam is supported by an elastic foun-
dation and subject to a load per unit length w(x), the dif-
ferential equation for its deflection y(x) is

where k is the modulus of the foundation. Suppose that
the beam and elastic foundation are infinite in length
(that is, �� � x � �) and that the load per unit length
is the periodic function

Use the method of Example 4 to find a particular solution
yp(x) of the differential equation.

Discussion Problems

48. Prove properties (a), (c), (d), (f), and (g) in Theorem 11.3.1.

49. There is only one function that is both even and odd.
What is it?

50. As we know from Chapter 4, the general solution of the
differential equation in Problem 47 is y � yc � yp.
Discuss why we can argue on physical grounds that the
solution of Problem 47 is simply yp. [Hint: Consider
y � yc � yp as ]x : ��.

w(x) � � 0,
w0,
 0

�	 � x � �	>2
�	>2 � x � 	>2
   	>2 � x � 	,

w(x � 2	) � w(x).

EI 
d4y
dx4 � ky � w(x),
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Computer Lab Assignments

In Problems 51 and 52 use a CAS to plot graphs of partial
sums {SN (x)} of the given trigonometric series. Experiment
with different values of N and graphs on different intervals
of the x-axis. Use your graphs to conjecture a closed-form
expression for a function f defined for 0 � x � L that is rep-
resented by the series.

51. �
1� 2(�1)n

n
 sin nx�f (x) � � 	

4
 �	

�

n�1
�(�1)n � 1

n2	
 cos nx

11.4 STURM-LIOUVILLE PROBLEM ● 439

52.

53. Is your answer in Problem 51 or in Problem 52 unique?
Give a function f defined on a symmetric interval about
the origin (�a, a) that has the same trigonometric series
(a) as in Problem 51,
(b) as in Problem 52.

f (x) �
1
4

�
4

	 2 	
�

n�1

 1
n2

 �1 � cos n	

2
 � cos 

n	

2
 x

STURM-LIOUVILLE PROBLEM

REVIEW MATERIAL
● The concept of eigenvalues and eigenvectors was first introduced in Section 5.2. A review of

that section (especially Example 2) is strongly recommended.

INTRODUCTION In this section we will study some special types of boundary-value problems
in which the ordinary differential equation in the problem contains a parameter l. The values of l
for which the BVP possesses nontrivial solutions are called eigenvalues, and the corresponding
solutions are called eigenfunctions. Boundary-value problems of this type are especially important
throughout Chapters 12 and 13. In this section we also see that there is a connection between
orthogonal sets and eigenfunctions of a boundary-value problem.

11.4

Review of ODEs For convenience we present here a brief review of some of
the linear ODEs that will occur frequently in the sections and chapters that follow.
The symbol a represents a constant.

Constant-coefficient equation General solutions

y� � ay � 0 y � c1e�ax

y� � a2y � 0, a � 0 y � c1 cos ax � c2 sin ax

y� � a2y � 0, a � 0

Cauchy-Euler equation General solutions, x � 0

x2y� � xy� � a2y � 0, a 
 0

Parametric Bessel equation (n� 0) General solution, x � 0

xy� � y� � a2xy � 0, y � c1J0(ax) � c2Y0(ax)

Legendre’s equation Particular solutions are
(n � 0, 1, 2, . . .) polynomials

(1 � x2)y� � 2xy� � n(n � 1)y � 0, y � P0(x) � 1,
y � P1(x) � x,
y � P2(x) � 1

2 (3x2 � 1), . . .

�
 y � c1x�a � c2 xa,
 y � c1 � c2 ln x, 

a � 0
a � 0

�y � c1e�ax � c2eax, or
y � c1 cosh �x � c2 sinh �x
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Regarding the two forms of the general solution of y� � a2y � 0, we will make use of
the following informal rule immediately in Example 1 as well as in future
discussions:

Use the exponential form y � c1e�ax � c2eax when the domain of x is an infinit
or semi-infinite interval; use the hyperbolic form y � c1 cosh ax � c2 sinh ax
when the domain of x is a finite interval

Eigenvalues and Eigenfunctions Orthogonal functions arise in the solution
of differential equations. More to the point, an orthogonal set of functions can be
generated by solving a certain kind of two-point boundary-value problem involving
a linear second-order differential equation containing a parameter l. In Example 2 of
Section 5.2 we saw that the boundary-value problem

(1)

possessed nontrivial solutions only when the parameter l took on the values
ln � n2p2
L2, n � 1, 2, 3, . . . , called eigenvalues. The corresponding nontrivial
solutions yn � c2 sin(npx
L), or simply yn � sin(npx
L), are called the eigenfunc-
tions of the problem. For example, for (1)

For our purposes in this chapter it is important to recognize that the set of trigono-
metric functions generated by this BVP, that is, {sin(npx
L)}, n � 1, 2, 3, . . . , is an
orthogonal set of functions on the interval [0, L] and is used as the basis for the
Fourier sine series. See Problem 10 in Exercises 11.1.

BVP:        y � �2y � 0,    y(0) � 0,    y(L) � 0

Trivial solution:        y � 0

not an eigenvalue

never an eigenfunction

BVP:        y� �         y � 0,    y(0) � 0,    y(L) � 0.

Nontrivial solution:        y3 � sin(3�x/L) eigenfunction

is an eigenvalue (n � 3)

9�2
––––L2

y � � �y � 0,  y(0) � 0,  y(L) � 0,

440 ● CHAPTER 11 FOURIER SERIES

This rule will be useful in
Chapters 12–14. �

EXAMPLE 1 Eigenvalues and Eigenfunctions

Consider the boundary-value problem

(2)

As in Example 2 of Section 5.2 there are three possible cases for the parameter l:
zero, negative, or positive; that is, l � 0, l � �a2 � 0, and l � a2 � 0, where
a � 0. The solution of the DEs

(3)

(4)

(5)

are, in turn,

(6)

(7)

(8) y � c1 cos ax � c2 sin ax.

 y � c1 cosh ax � c2 sinh ax,

 y � c1 � c2x,

 y � � a2y � 0,  � � a2,

 y � � a2y � 0, � � �a2,

 y � � 0,  � � 0,

y � � �y � 0,  y�(0) � 0,  y�(L) � 0.
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When the boundary conditions y�(0) � 0 and y�(L) � 0 are applied to each of these
solutions, (6) yields y � c1, (7) yields only y � 0, and (8) yields y � c1 cos ax
provided that a � np
L, n � 1, 2, 3, . . . . Since y � c1 satisfies the DE in (3) and
the boundary conditions for any nonzero choice of c1, we conclude that l � 0
is an eigenvalue. Thus the eigenvalues and corresponding eigenfunctions of the
problem are l0 � 0, y0 � c1, c1 � 0, and n � 1, 2, . . . ,
yn � c1 cos(npx
L), c1 � 0. We can, if desired, take c1 � 1 in each case. Note also
that the eigenfunction y0 � 1 corresponding to the eigenvalue l0 � 0 can be incor-
porated in the family yn � cos(npx
L) by permitting n � 0. The set {cos (npx
L)},
n � 0, 1, 2, 3, . . . , is orthogonal on the interval [0, L]. You are asked to fill in the
details of this example in Problem 3 in Exercises 11.4.

Regular Sturm-Liouville Problem The problems in (1) and (2) are special

�n � �2
n � n2	2
L2,

11.4 STURM-LIOUVILLE PROBLEM ● 441

cases of an important general two-point boundary value problem. Let p, q, r, and r�
be real-valued functions continuous on an interval [a, b], and let r(x) � 0 and 
p(x) � 0 for every x in the interval. Then

(9)

(10)
(11)

is said to be a regular Sturm-Liouville problem. The coefficients in the boundary con-
ditions (10) and (11) are assumed to be real and independent of l. In addition, A1 and B1
are not both zero, and A2 and B2 are not both zero. The boundary-value problems in (1)
and (2) are regular Sturm-Liouville problems. From (1) we can identify r(x) � 1, q(x) �
0, and p(x) � 1 in the differential equation (9); in boundary condition (10) we identify
a � 0, A1 � 1, B1 � 0, and in (11), b � L, A2 � 1, B2 � 0. From (2) the identification
would be a � 0, A1 � 0, B1 � 1 in (10), b � L, A2 � 0, B2 � 1 in (11).

The differential equation (9) is linear and homogeneous. The boundary condi-
tions in (10) and (11), both a linear combination of y and y� equal to zero at a point,
are also homogeneous. A boundary condition such as A2y(b) � B2y�(b) � C2, where
C2 is a nonzero constant, is nonhomogeneous. A boundary-value problem that con-
sists of a homogeneous linear differential equation and homogeneous boundary
conditions is, of course, said to be a homogeneous BVP; otherwise, it is nonhomo-
geneous. The boundary conditions (10) and (11) are referred to as separated because
each condition involves only a single boundary point.

Because a regular Sturm-Liouville problem is a homogeneous BVP, it always
possesses the trivial solution y � 0. However, this solution is of no interest to us.
As in Example 1, in solving such a problem, we seek numbers l (eigenvalues) and
nontrivial solutions y that depend on l (eigenfunctions).

Properties Theorem 11.4.1 is a list of the more important of the many prop-
erties of the regular Sturm-Liouville problem. We shall prove only the last property.

    A2y(b) � B2y�(b) � 0
 Subject to:     A1y(a) � B1y�(a) � 0

 Solve:  
d
dx

[r(x)y�] � (q(x) � �p(x))y � 0

THEOREM 11.4.1 Properties of the Regular Sturm-Liouville Problem

(a) There exist an infinite number of real eigenvalues that can be arranged in
increasing order such that as

(b) For each eigenvalue there is only one eigenfunction (except for nonzero con-
stant multiples).

(c) Eigenfunctions corresponding to different eigenvalues are linearly indepen-
dent.

(d) The set of eigenfunctions corresponding to the set of eigenvalues is orthog-
onal with respect to the weight function p(x) on the interval [a, b].

n : �.
�n : ��1 � �2 � �3 � 
 
 
 � �n � 
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Now the eigenfunctions ym and yn must both satisfy the boundary conditions (10) and
(11). In particular, from (10) we have

For this system to be satisfied by A1 and B1, not both zero, the determinant of the
coefficients must be zero

A similar argument applied to (11) also gives

Since both members of the right-hand side of (14) are zero, we have established the
orothogonality relation

(15)�b

a
p(x)ym(x)yn(x) dx � 0,    �m � �n.

 ym(b) y�n(b) � yn(b) y�m (b) � 0.

 ym(a)y�n (a) � yn(a)y�m (a) � 0.

 A1
 yn(a) � B1y�n(a) � 0.

 A1ym(a) � B1y�m (a) � 0

PROOF OF (d) Let ym and yn be eigenfunctions corresponding to eigenvalues lm
and ln, respectively. Then

(12)

(13)

Multiplying (12) by yn and (13) by ym and subtracting the two equations gives

Integrating this last result by parts from x � a to x � b then yields

(�m � �n) p(x) ymyn � ym
   

d
dx

 [r(x)y�n ] � yn 
d

dx
 [r(x)y�m] .

 
d

dx
 [r(x)y�n ] � (q(x) � �n

 p(x))yn � 0.

 
d

dx
 [r(x)y�m ] � (q(x) � �m p(x))ym � 0

442 ● CHAPTER 11 FOURIER SERIES

(14)(�m � �n)�b

a
p(x)ym yn dx � r(b)[ym(b)y�n (b) � yn(b)y�m (b)] � r(a)[ym(a)y�n (a) � yn(a)ym� (a)].

FIGURE 11.4.1 Positive roots 
x1, x2, x3, . . . of tan x � �x in Example 2

x

y

x1

y = −x

y = tan x

x2 x3 x4

EXAMPLE 2 A Regular Sturm-Liouville Problem

Solve the boundary-value problem

(16)

SOLUTION We proceed exactly as in Example 1 by considering three cases in
which the parameter l could be zero, negative, or positive: l � 0, l � �a2 � 0, and
l � a2 � 0, where a � 0. The solutions of the DE for these values are listed
in (3)–(5). For the cases l � 0 and l � �a2 � 0 we find that the BVP in (16)
possesses only the trivial solution y � 0. For l � a2 � 0 the general solution of the
differential equation is y � c1 cos ax � c2 sin ax. Now the condition y(0) � 0
implies that c1 � 0 in this solution, so we are left with y � c2 sin ax. The second
boundary condition y(1) � y�(1) � 0 is satisfied i

In view of the demand that c2 � 0, the last equation can be written

(17)

If for a moment we think of (17) as tan x � �x, then Figure 11.4.1 shows the plausi-
bility that this equation has an infinite number of roots, namely, the x-coordinates of

tan a � �a.

c2 sin a � c2a cos a � 0.

y � � �y � 0,  y(0) � 0, y(1) � y�(1) � 0.
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11.4 STURM-LIOUVILLE PROBLEM ● 443

the points where the graph of y � �x intersects the infinite number of branches
of the graph of y � tan x. The eigenvalues of the BVP (16) are then 
where an, n � 1, 2, 3, . . . , are the consecutive positive roots a1, a2, a3, . . . of (17).
With the aid of a CAS it is easily shown that, to four rounded decimal
places, a1 � 2.0288, a2 � 4.9132, a3 � 7.9787, and a4 � 11.0855, and the
corresponding solutions are y1 � sin 2.0288x, y2 � sin 4.9132x, y3 � sin 7.9787x,
and y4 � sin 11.0855x. In general, the eigenfunctions of the problem are {sin anx},
n � 1, 2, 3, . . . .

With the identification r(x) � 1, q(x) � 0, p(x) � 1, A1 � 1, B1 � 0, A2 � 1,
B2 � 1 we see that (16) is a regular Sturm-Liouville problem. We conclude that
{sin anx}, n � 1, 2, 3, . . . , is an orthogonal set with respect to the weight function
p(x) � 1 on the interval [0, 1].

In some circumstances we can prove the orthogonality of solutions of (9)
without the necessity of specifying a boundary condition at x � a and at x � b.

Singular Sturm-Liouville Problem There are several other important condi-
tions under which we seek nontrivial solutions of the differential equation (9):

• r(a) � 0, and a boundary condition of the type given in (11) is
specified at x � b; (18)

• r(b) � 0, and a boundary condition of the type given in (10) is
specified at x � a; (19)

• r(a) � r(b) � 0, and no boundary condition is specified at eithe
x � a or at x � b; (20)

• r(a) � r(b), and boundary conditions y(a) � y(b), y�(a) � y�(b). (21)

The differential equation (9) along with one of conditions (18)– (20), is said to be a
singular boundary-value problem. Equation (9) with the conditions specified in (21)
is said to be a periodic boundary-value problem (the boundary conditions are also
said to be periodic). Observe that if, say, r(a) � 0, then x � a may be a singular point
of the differential equation, and consequently, a solution of (9) may become un-
bounded as However, we see from (14) that if r(a) � 0, then no boundary
condition is required at x � a to prove orthogonality of the eigenfunctions provided
that these solutions are bounded at that point. This latter requirement guarantees the
existence of the integrals involved. By assuming that the solutions of (9) are bounded
on the closed interval [a, b], we can see from inspection of (14) that

• if r(a) � 0, then the orthogonality relation (15) holds with no 
boundary condition specified at x � a; (22)

• if r(b) � 0, then the orthogonality relation (15) holds with no 
boundary condition specified at x � b;* (23)

• if r (a) � r (b) � 0, then the orthogonality relation (15) holds 
with no boundary conditions specified at either x � a or x � b; (24)

• if r(a) � r (b), then the orthogonality relation (15) holds with 
the periodic boundary conditions y(a) � y(b), y�(a) � y�(b). (25)

We note that a Sturm-Liouville problem is also singular when the interval under con-
sideration is infinite. See Problems 9 and 10 in Exercises 1.4.

Self-Adjoint Form By carrying out the indicated differentiation in (9), we see
that the differential equation is the same as

(26)

Examination of (26) might lead one to believe, given the coefficient of y� is the
derivative of the coefficient of y�, that few differential equations have form (9).

r(x)y � � r�(x)y� � (q(x) � �p(x))y � 0.

x : a.

�n � an
2,

*Conditions (22) and (23) are equivalent to choosing A1 � 0, B1 � 0, and A2 � 0, B2 � 0, respectively.

27069_11_ch11_p419-454.qxd  2/2/12  2:52 PM  Page 443

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



On the contrary, if the coefficients are continuous and a(x) � 0 for all x in some
interval, then any second-order differential equation

(27)

can be recast into the so-called self-adjoint form (9). To this end, we basically
proceed as in Section 2.3, where we rewrote a linear first-order equation a1(x)y� �

a0(x)y � 0 in the form by dividing the equation by a1(x) and then
multiplying by the integrating factor m � e
P(x)dx, where, assuming no common
factors, P(x) � a0(x)
a1(x). So first, we divide (27) by a(x). The first two terms are

where for emphasis we have written Y � y�. Second, we multiply
this equation by the integrating factor e
(b(x)/a(x))dx, where a(x) and b(x) are assumed
to have no common factors:

Y� �
b(x)
a(x)

 Y � 
 
 
 ,

d
dx

 [�y] � 0

a(x)y � � b(x)y� � (c(x) � �d(x))y � 0

444 ● CHAPTER 11 FOURIER SERIES



e
(b (x) /a (x))dxY�� 
b(x)
a(x)

 e
(b (x) /a (x))dxY � 
 
 
 �
d

dx
 �e
(b (x) /a (x))dxY� � 
 
 
 �

d
dx

 �e
(b (x) /a (x))dx y�� � 
 
 
 .

derivative of a product

In summary, by dividing (27) by a(x) and then multiplying by e
(b(x)/a(x))dx, we get

(28)

Equation (28) is the desired form given in (26) and is the same as (9):

For example, to express 2y� � 6y� � ly � 0 in self-adjoint form, we write
and then multiply by e
3dx � e3x. The resulting equation is

.

It is certainly not necessary to put a second-order differential equation (27) into
the self-adjoint form (9) to solve the DE. For our purposes we use the form given in
(9) to determine the weight function p(x) needed in the orthogonality relation (15).
The next two examples illustrate orthogonality relations for Bessel functions and for
Legendre polynomials.

e3xy� � 3e3xy� � �   e3xy � 0 [e3xy�] � �  e3xy � 0or

r(x) r�(x) p(x)

d––
dx

1–
2

1–
2

y � � 3y� � � 1
2 y � 0

d––
dx [e
(b/a)dx

y�] � (        e
(b/a)dx
 � �         e


(b/a)dx) y � 0

r(x) q(x) p(x)

c(x)––––
a(x)

d(x)––––
a(x)

e
(b /a)dx y � �
b(x)
a(x)

 e
(b /a)dx y� � �c(x)
a(x)

 e
(b /a)dx
� � d(x)

a(x)
 e
(b /a)dx�y � 0.

EXAMPLE 3 Parametric Bessel Equation

In Section 6.4 we saw that the parametric Bessel differential equation of order
n is x2y� � xy� � (a2x2 � n2)y � 0, where n is a fixed nonnegative integer and
a is a positive parameter. The general solution of this equation is
y � c1Jn(ax) � c2Yn(ax). After dividing the parametric Bessel equation by the
lead coefficient x2 and multiplying the resulting equation by the integrating factor
e
(1/x)dx � eln x � x, x � 0, we obtain

xy � � y� � ��2x �
n2

x �y � 0    or    
d

dx
 [xy�] � ��2x �

n2

x �y � 0.
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11.4 STURM-LIOUVILLE PROBLEM ● 445

By comparing the last result with the self-adjoint form (9), we make the identi-
fications r(x) � x, q(x) � �n2
x, l � a2, and p(x) � x. Now r(0) � 0, and of the
two solutions Jn(ax) and Yn(ax), only Jn(ax) is bounded at x � 0. Thus in view of
(22) above, the set {Jn(ai x)}, i � 1, 2, 3, . . . , is orthogonal with respect to the
weight function p(x) � x on the interval [0, b]. The orthogonality relation is

(29)

provided that the ai, and hence the eigenvalues i = 1, 2, 3, . . . , are define
by means of a boundary condition at x � b of the type given in (11):

(30)

For any choice of A2 and B2, not both zero, it is known that (30) has an infinit
number of roots xi � aib. The eigenvalues are then More will be
said about eigenvalues in the next chapter.

�i � �2
i � (xi  >b)2.

A2Jn(ab) � B2aJ�n (ab) � 0.

�i � �2
i ,

�b

0
xJn(�ix)Jn(�jx) dx � 0,    � i � � j,

The extra factor of a comes from the

Chain Rule: 

aJ�n (ax).

d
dx

 Jn (ax) � J�n (ax) 
d

dx
 ax �

�

EXAMPLE 4 Legendre’s Equation

Legendre’s differential equation (1 � x2)y�� � 2xy� � n(n � 1)y � 0 is exactly of
the form given in (26) with r (x) � 1 � x2 and r�(x) � �2x. Hence the self-adjoint
form (9) of the differential equation is immediate,

(31)

From (31) we can further identify q(x) � 0, l � n(n � 1), and p(x) � 1. Recall from
Section 6.3 that when n � 0, 1, 2, . . . , Legendre’s DE possesses polynomial solu-
tions Pn(x). Now we can put the observation that r(�1) � r(1) � 0 together with the
fact that the Legendre polynomials Pn(x) are the only solutions of (31) that are
bounded on the closed interval [�1, 1] to conclude from (24) that the set {Pn(x)},
n � 0, 1, 2, . . . , is orthogonal with respect to the weight function p(x) � 1 on
[�1, 1]. The orthogonality relation is

�1

�1
Pm(x)Pn(x) dx � 0,    m � n.

d
dx

 �(1 � x2)y�� � n(n � 1)y � 0.

EXERCISES 11.4 Answers to selected odd-numbered problems begin on page ANS-20.

In Problems 1 and 2 find the eigenfunctions and the equa-
tion that defines the eigenvalues for the given boundary-
value problem. Use a CAS to approximate the first four
eigenvalues l1, l2, l3, and l4. Give the eigenfunctions
corresponding to these approximations.

1. y�� � ly � 0, y�(0) � 0, y(1) � y�(1) � 0

2. y�� � ly � 0, y(0) � y�(0) � 0, y(1) � 0

3. Consider y�� � ly � 0 subject to y�(0) � 0, y�(L) � 0.
Show that the eigenfunctions are 

. �1, cos 
	

L
 x, cos 

2	

L
 x, . . .�

This set, which is orthogonal on [0, L], is the basis for
the Fourier cosine series.

4. Consider y�� � ly � 0 subject to the periodic boundary
conditions y(�L) � y(L), y�(�L) � y�(L). Show that
the eigenfunctions are

.

This set, which is orthogonal on [�L, L], is the basis for
the Fourier series.

5. Find the square norm of each eigenfunction in
Problem 1.

�1, cos 
	

L
 x, cos 

2	

L
 x, . . . , sin 

	

L
 x, sin 

2	

L
 x, sin 

3	

L
 x, . . .�
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446 ● CHAPTER 11 FOURIER SERIES

6. Show that for the eigenfunctions in Example 2,

.

7. (a) Find the eigenvalues and eigenfunctions of the
boundary-value problem

.

(b) Put the differential equation in self-adjoint form.
(c) Give an orthogonality relation.

8. (a) Find the eigenvalues and eigenfunctions of the
boundary-value problem

.

(b) Put the differential equation in self-adjoint form.
(c) Give an orthogonality relation.

9. Laguerre’s differential equation

xy�� � (1 � x)y� � ny � 0, n � 0, 1, 2, . . .

has polynomial solutions Ln(x). Put the equation in self-
adjoint form and give an orthogonality relation.

10. Hermite’s differential equation

y�� � 2xy� � 2ny � 0, n � 0, 1, 2, . . .

has polynomial solutions Hn(x). Put the equation in self-
adjoint form and give an orthogonality relation.

11. Consider the regular Sturm-Liouville problem:

.

(a) Find the eigenvalues and eigenfunctions of the
boundary-value problem. [Hint: Let x � tan u and
then use the Chain Rule.]

(b) Give an orthogonality relation.

y(0) � 0, y(1) � 0

d
dx

 �(1 � x2)y�� �
�

1 � x2 y � 0,

y � � y� � �y � 0, y(0) � 0, y(2) � 0

x2y � � xy� � �y � 0,  y(1) � 0, y(5) � 0

'sin anx'2 � 1
2[1 � cos2an]

12. (a) Find the eigenfunctions and the equation that define
the eigenvalues for the boundary-value problem

,

.

Let l� a2, a � 0.
(b) Use Table 6.4.1 of Section 6.4 to find the approxi-

mate values of the first four eigenvalues l1, l2, l3,
and l4.

Discussion Problems

13. Consider the special case of the regular Sturm-Liouville
problem on the interval [a, b]:

.

Is l � 0 an eigenvalue of the problem? Defend your
answer.

Computer Lab Assignments

14. (a) Give an orthogonality relation for the Sturm-Liouville
problem in Problem 1.

(b) Use a CAS as an aid in verifying the orthogonality
relation for the eigenfunctions y1 and y2 that
correspond to the first two eigenvalues l1 and l2,
respectively.

15. (a) Give an orthogonality relation for the Sturm-
Liouville problem in Problem 2.

(b) Use a CAS as an aid in verifying the orthogonality
relation for the eigenfunctions y1 and y2 that
correspond to the first two eigenvalues l1 and l2,
respectively.

y�(a) � 0, y�(b) � 0

d
dx

 [r(x)y�] � �p(x)y �  0,

 y is bounded at x � 0, y(3) � 0

x2y � � xy� � (�x2 � 1)y � 0,  x � 0

BESSEL AND LEGENDRE SERIES

REVIEW MATERIAL
● Because the results in Examples 3 and 4 of Section 11.4 will play a major role in the discussion

that follows, you are strongly urged to reread those examples in conjunction with (6)–(11) of
Section 11.1.

INTRODUCTION Fourier series, Fourier cosine series, and Fourier sine series are three ways of
expanding a function in terms of an orthogonal set of functions. But such expansions are by no means
limited to orthogonal sets of trigonometric functions. We saw in Section 11.1 that a function f define
on an interval (a, b) could be expanded, at least in a formal manner, in terms of any set of a functions
{fn(x)} that is orthogonal with respect to a weight function on [a, b]. Many of these orthogonal
series expansions or generalized Fourier series stem from Sturm-Liouville problems which, in turn,

11.5
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11.5 BESSEL AND LEGENDRE SERIES ● 447

11.5.1 FOURIER-BESSEL SERIES

We saw in Example 3 of Section 11.4 that for a fixed value of n the set of Bessel func-
tions {Jn(ai x)}, i � 1, 2, 3, . . . , is orthogonal with respect to the weight function
p(x) � x on an interval [0, b] whenever the ai are defined by means of a boundary
condition of the form

. (1)

The eigenvalues of the corresponding Sturm-Liouville problem are . From (7)
and (8) of Section 11.1 the orthogonal series, or generalized Fourier series, expansion
of a function f defined on the interval (0, b) in terms of this orthogonal set is

, (2)

where . (3)

The square norm of the function Jn(ai x) is defined by (11) of Section 11.1.

. (4)

The series (2) with coefficients (3) is called a Fourier-Bessel series, or simply, a
Bessel series.

Differential Recurrence Relations The differential recurrence relations that
were given in (21) and (20) of Section 6.3 are often useful in the evaluation of the
coefficients (3). For convenience we reproduce those relations here:

(5)

(6)

Square Norm The value of the square norm (4) depends on how the eigenvalues

 
d

dx
 [x�nJn(x)] � �x�nJn�1(x).

 
d

dx
 [xnJn(x)] � xnJn�1(x)

'Jn(�ix)'2 � �b

0
xJ 2

n (�ix) dx

ci �
�b

0 xJn(�i x) f (x) dx
'Jn(�i x)'2

f (x) � 	
�

i�1
ciJn(ai x)

�i � �i
2

A2Jn(ab) � B2aJ�n(ab) � 0

are defined. If y � Jn(ax), then we know from Example 3 of Section 11.4 that

.

After we multiply by 2xy�, this equation can be written as

.

Integrating the last result by parts on [0, b] then gives

.2�2�b

0
xy2 dx � ([xy�]2 � (�2x2 � n2)y2) �b

0

d
dx

 [xy�]2 � (a2x2 � n2) d
dx

 [y]2 � 0

d
dx

 [xy�] � �a2x �
n2

x
 �y � 0

�i � �i
2

arise from attempts to solve linear partial differential equations that serve as models for physical
systems. Fourier series and orthogonal series expansions, as well as the two series considered in this
section, will appear in the subsequent consideration of these applications in Chapters 12 and 13.
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Since y � Jn(ax), the lower limit is zero because Jn(0) � 0 for n � 0. Furthermore,
for n � 0 the quantity [xy�]2 � a2x2y2 is zero at x � 0. Thus

, (7)

where we have used the Chain Rule to write .
We now consider three cases of (1).

Case I: If we choose A2 � 1 and B2 � 0, then (1) is

. (8)

There are an infinite number of positive roots xi � aib of (8) (see Figure 6.4.1),
which define the ai as ai � xi
b. The eigenvalues are positive and are then

. No new eigenvalues result from the negative roots of (8), since
Jn(�x) � (�1)nJn(x). (See page 262.) The number 0 is not an eigenvalue for any n
because Jn(0) � 0 for n � 1, 2, 3, . . . and J0(0) � 1. In other words, if l � 0, we
get the trivial function (which is never an eigenfunction) for n � 1, 2, 3, . . . , and for
n � 0, l � 0 (or, equivalently, a � 0) does not satisfy the equation in (8). When (6)
is written in the form , it follows from (7) and (8) that the
square norm of Jn(aix) is

. (9)

Case II: If we choose A2 � h 
 0, and B2 � b, then (1) is

. (10)

Equation (10) has an infinite number of positive roots xi � aib for each positive
integer n � 1, 2, 3, . . . . As before, the eigenvalues are obtained from

. l � 0 is not an eigenvalue for n � 1, 2, 3, . . . . Substituting
into (7), we find that the square norm of Jn(ai x) is now

. (11)

Case III: If h � 0 and n � 0 in (10), the ai are defined from the roots o

. (12)

Even though (12) is just a special case of (10), it is the only situation for which l� 0
is an eigenvalue. To see this, observe that for n � 0 the result in (6) implies that

is equivalent to J1(ab) � 0. Since x1 � a1b � 0 is root of the last equa-
tion, a1 � 0, and because J0(0) � 1 is nontrivial, we conclude from 
that l1 � 0 is an eigenvalue. But obviously, we cannot use (11) when a1 � 0, h � 0,
and n � 0. However, from the square norm (4),

. (13)

For ai � 0 we can use (11) with h � 0 and n � 0:

. (14)

The following definition summarizes three forms of the series (2) corresponding to
the square norms in the three cases.

'J0(ai
 x)'2 �

b2

2
 J0

2(aib)

'1'2 � �b

0
x dx �

b2

2

�1 � a1
2 � x1

2>b2
J�0(ab) �  0

J�0(ab) �  0

'Jn(ai
  x)'2 �

ai
2b2 � n2 � h2

2ai
2  Jn

2(ai
 b)

aibJ�n(aib) � �hJn(ai
 b)

�i � ai
2 � xi

2>b2

hJn(ab) � abJ�n(ab) � 0

'Jn(aix)'2 �
b2

2
 Jn�1

2 (ai
 b)

xJ�n(x) � nJn(x) � xJn�1(x)

�i � ai
2 � xi

2>b2

Jn(ab) �  0

y� � aJ�n(ax)

2a2�b

0
xJn

2(ax) dx � a2b2[J�n(ab)]2 � (a2b2 � n2)[Jn(ab)]2
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Convergence of a Fourier-Bessel Series Sufficient conditions for the con-
vergence of a Fourier-Bessel series are not particularly restrictive.

11.5 BESSEL AND LEGENDRE SERIES ● 449

DEFINITION 11.5.1 Fourier-Bessel Series

The Fourier-Bessel series of a function f defined on the interval (0, b) is given
by

(i) (15)

(16)

where the ai are defined by Jn(ab) � 0.

(ii) (17)

(18)

where the ai are defined by .

(iii) (19)

, (20)

where the ai are defined by .J�0(ab) � 0

c1 �
2
b2�b

0
x f (x) dx, ci �

2
b2J0

2(ai
 b)

 �b

0
xJ0(aix) f (x) dx

f (x) � c1 � 	
�

i�2
ci

 J0(ai
 x)

hJn(ab) � abJ�n(ab) � 0

ci �
2ai

2

�ai
2b2 � n2 � h2�Jn

2(aib)
 �b

0
xJn(ai

 x)f (x) dx,

f (x) � 	
�

i�1
ciJn(ai

 x)

ci �
2

b2Jn�1
2 (aib)

 �b

0
xJn(ai

 x) f (x) dx,

f (x) � 	
�

i�1
ciJn(ai

 x)

THEOREM 11.5.1 Conditions for Convergence

Let be piecewise continuous on the interval Then for all x in the
interval the Fourier-Bessel series of f converges to at a point of continu-
ity. At a point of discontinuity, the Fourier-Bessel series converges to the average

,

where denote the limit of f at x from the right and from the left,
respectively. 

f (x�) and f(x�)

f (x�) � f (x�)
2

f (x)(0, b),
[0, b].f and f �

EXAMPLE 1 Expansion in a Fourier-Bessel Series

Expand f (x) � x, 0 � x � 3, in a Fourier-Bessel series, using Bessel functions of
order one that satisfy the boundary condition J1(3a) � 0.

SOLUTION We use (15) where the coefficients ci are given by (16) with b � 3:

.ci �
2

32J2
2(3ai)

 �3

0
x2J1(ai

 x) dx
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FIGURE 11.5.1 Graphs of two partial
sums of the Fourier-Bessel series in
Example 2

To evaluate this integral, we let t � ai x, dx � dt
ai, , and use (5) in the 

form :

.

Therefore the desired expansion is

.

You are asked to find the first four values of the ai for the foregoing Fourier-
Bessel series in Problem 1 in Exercises 11.5.

f (x) � 2 	
�

i�1
 

1
ai

 J2(3ai)
 J1(ai

 x)

ci �
2

9ai
3J2

2(3ai)
 �3ai

0
 
d
dt

  [t2J2(t)] dt �
2

ai
 J2(3ai)

d
dt

 [t2J2(t)] � t2J1(t)

x2 � t2>ai
2

EXAMPLE 2 Expansion in a Fourier-Bessel Series

If the ai in Example 1 are defined by , then the only thing that
changes in the expansion is the value of the square norm. Multiplying the boundary
condition by 3 gives , which now matches (10) when h � 3,
b � 3, and n � 1. Thus (18) and (17) yield, in turn,

and .

Use of Computers Since Bessel functions are “built-in functions” in a CAS, it
is a straightforward task to find the approximate values of the ai and the coefficient
ci in a Fourier-Bessel series. For example, in (10) we can think of xi � aib as a posi-
tive root of the equation . Thus in Example 2 we have used a
CAS to find the first five positive roots xi of , and from these roots
we obtain the first five values of ai: a1 � x1
3 � 0.98320, a2 � x2
3 � 1.94704,
a3 � x3
3 � 2.95758, a4 � x4
3 � 3.98538, and a5 � x5
3 � 5.02078. Knowing
the roots xi � 3ai and the ai, we again use a CAS to calculate the numerical values of
J2(3ai), , and finally the coefficients ci. In this manner we find that the fift
partial sum S5(x) for the Fourier-Bessel series representation of f (x) � x, 0 � x � 3
in Example 2 is

The graph of S5(x) on the interval (0, 3) is shown in Figure 11.5.1(a). In Figure 11.5.1(b)
we have graphed S10(x) on the interval (0, 50). Notice that outside the interval of
definitio (0, 3) the series does not converge to a periodic extension of f because
Bessel functions are not periodic functions. See Problems 11 and 12 in Exercises 11.5.

11.5.2 FOURIER-LEGENDRE SERIES

From Example 4 of Section 11.4 we know that the set of Legendre polynomials
{Pn(x)}, n � 0, 1, 2, . . . , is orthogonal with respect to the weight function p(x) � 1
on the interval [�1, 1]. Furthermore, it can be proved that the square norm of a
polynomial Pn(x) depends on n in the following manner:

'Pn(x)'2 � �1

�1
Pn

2(x) dx �
2

2n � 1
.

     � 1.07106 J1(2.95758x) � 0.70306 J1(3.98538x) � 0.50343 J1(5.02078x).
 S5(x) � 4.01844 J1(0.98320x) � 1.86937J1(1.94704x)

J1
2(3�i)

3J1(x) � xJ�1(x) � 0
hJn(x) � xJ�n(x) � 0

f (x) � 18	
�

i�1

 ai J2(3ai)
�9ai

2 � 8�J1
2(3ai)

 J1(aix)

ci �
18ai J2(3ai)

�9ai
2 � 8�J1

2(3ai)

3J1(3a) � 3aJ�1(3a) � 0

J1(3a) � aJ�1(3a) � 0
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The orthogonal series expansion of a function in terms of the Legendre polynomials
is summarized in the next definition

11.5 BESSEL AND LEGENDRE SERIES ● 451

DEFINITION 11.5.2 Fourier-Legendre Series

The Fourier-Legendre series of a function f defined on the interval (�1, 1) is
given by

, (21)

where . (22)cn �
2n � 1

2
 �1

�1
 f (x)Pn(x) dx

f (x) � 	
�

n�0
cn

  Pn(x)

EXAMPLE 3 Expansion in a Fourier-Legendre Series

Write out the first four nonzero terms in the Fourie -Legendre expansion of

SOLUTION The first several Legendre polynomials are listed on page 266. From
these and (22) we fin

.

Hence .f (x) �
1
2

 P0(x) �
3
4

 P1(x) �
7
16

 P3(x) �
11
32

 P5(x) � 
 
 


c5 �
11
2

 �1

�1
  f (x)P5(x) dx �

11
2

 �1

0
1 �

1
8

  (63x5 � 70x3 � 15x) dx �
11
32

 

c4 �
9
2
 �1

�1
  f (x)P4(x) dx �

9
2
 �1

0
1 �

1
8

  (35x4 � 30x2 � 3) dx � 0 

c3 �
7
2
 �1

�1
  f (x)P3 (x) dx �

7
2
 �1

0
1 �

1
2

  (5x3 � 3x) dx � � 7
16

 

c2 �
5
2
 �1

�1
  f (x)P2(x) dx �

5
2
 �1

0
1 �

1
2

  (3x2 � 1) dx � 0 

c1 �
3
2
 �1

�1
  f (x)P1(x) dx �

3
2
 �1

0
1 � x dx �

3
4
 

c0 �
1
2
 �1

�1
  f (x)P0(x) dx �

1
2
 �1

0
1 � 1 dx �

1
2
 

f (x) � �0,  �1 � x � 0
1,    0 � x � 1.

Convergence of a Fourier-Legendre Series Sufficient conditions for con-
vergence of a Fourier-Legendre series are given in the next theorem.

THEOREM 11.5.2 Conditions for Convergence

Let f and f � be piecewise continuous on the interval [�1, 1]. Then for all x in the
interval the Fourier-Legendre series of f converges to at a point of
continuity. At a point of discontinuity the Fourier-Legendre series converges to
the average

,

where denote the limit of f at x from the right and from the left,
respectively. 

f (x�) and f(x�)

f (x�) � f (x�)
2

f (x)(�1, 1),
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Like the Bessel functions, Legendre polynomials are built-in functions in com-
puter algebra systems such as Maple and Mathematica, so each of the coefficient
just listed can be found by using the integration application of such a program.
Indeed, using a CAS, we further find that c6 � 0 and . The fifth partial sum
of the Fourier-Legendre series representation of the function f defined in Example 3
is then

.

The graph of S5(x) on the interval (�1, 1) is given in Figure 11.5.2.

Alternative Form of Series In applications the Fourier-Legendre series

S5(x) �
1
2

 P0(x) �
3
4

 P1(x) �
7
16

 P3(x) �
11
32

 P5(x) �
65
256

 P7(x)

c7 � � 65
256
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FIGURE 11.5.2 Partial sum S5(x) of
the Fourier-Legendre series in Example 3

EXERCISES 11.5 Answers to selected odd-numbered problems begin on page ANS-20.

11.5.1 FOURIER-BESSEL SERIES

In Problems 1 and 2 use Table 6.4.1 in Section 6.4.

1. Find the first four ai � 0 defined by J1(3a) � 0.

2. Find the first four ai 
 0 defined by .

In Problems 3–6 expand f (x) � 1, 0 � x � 2, in a Fourier-
Bessel series, using Bessel functions of order zero that sat-
isfy the given boundary condition.

3. J0(2a) � 0 4.

5. 6.

In Problems 7–10 expand the given function in a Fourier-
Bessel series, using Bessel functions of the same order as in
the indicated boundary condition.

7. f (x) � 5x, 0 � x � 4,

8. f (x) � x2, 0 � x � 1, J2(a) � 0

9. f (x) � x2, 0 � x � 3, [Hint: t3 � t2 � t.]

10. f (x) � 1 � x2, 0 � x � 1, J0(a) � 0

J�0 (3a) � 0

3J1 (4a) � 4a J�1 (4a) � 0

J0(2a) � aJ�0(2a) � 0J0(2a) � 2aJ�0(2a) � 0

J�0(2a) � 0

J�0 (2a) � 0

Computer Lab Assignments

11. (a) Use a CAS to plot the graph of 
on an interval so that the first five positive x-intercepts
of the graph are shown.

(b) Use the root-finding capability of your CAS to
approximate the first five roots xi of the equation

.
(c) Use the data obtained in part (b) to find the firs

fiv positive values of ai that satisfy
. (See Problem 7.)

(d) If instructed, find the first ten positive values of ai.

12. (a) Use the values of ai in part (c) of Problem 11 and a
CAS to approximate the values of the first fiv
coefficients ci of the Fourier-Bessel series obtained
in Problem 7.

(b) Use a CAS to plot the graphs of the partial sums
SN (x), N � 1, 2, 3, 4, 5 of the Fourier-Bessel series
in Problem 7.

(c) If instructed, plot the graph of the partial sum S10(x)
on the interval (0, 4) and on (0, 50).

Discussion Problems

13. If the partial sums in Problem 12 are plotted on a
symmetric interval such as (�30, 30) would the graphs
possess any symmetry? Explain.

3J1 (4a) � 4aJ�1(4a) � 0

3J1(x) � xJ�1(x) � 0

y � 3J1(x) � xJ�1(x)

appears in an alternative form. If we let x � cos u, then x � 1 implies that u � 0
whereas x � �1 implies that u � p. Since dx � �sin u du, (21) and (22) become,
respectively,

(23)

(24)

where f (cos u) has been replaced by F(u).

cn �
2n � 1

2
 �	

0
F(�) Pn(cos �) sin � d�,

F(�) � 	
�

n�0
cnPn(cos �)
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CHAPTER 11 IN REVIEW ● 453

14. (a) Sketch, by hand, a graph of what you think the
Fourier-Bessel series in Problem 3 converges to on
the interval (�2, 2).

(b) Sketch, by hand, a graph of what you think the
Fourier-Bessel series would converge to on the inter-
val (�4, 4) if the values ai in Problem 7 were
defined by .

11.5.2 FOURIER-LEGENDRE SERIES

In Problems 15 and 16 write out the first five nonzero terms
in the Fourier-Legendre expansion of the given function. If
instructed, use a CAS as an aid in evaluating the coefficients
Use a CAS to plot the graph of the partial sum S5(x).

15.

16. f (x) � ex, �1 � x � 1

17. The first three Legendre polynomials are P0(x) � 1,
P1(x) � x, and . If x � cos u, then
P0(cos u) � 1 and P1(cos u) � cos u. Show that

.

18. Use the results of Problem 17 to find a Fourier-Legendre
expansion (23) of F(u) � 1 � cos 2u.

19. A Legendre polynomial Pn(x) is an even or odd func-
tion, depending on whether n is even or odd. Show that
if f is an even function on the interval (�1, 1), then (21)
and (22) become, respectively,

(25)

. (26)c2n � (4n � 1) �1

0
 f (x)P2n(x) dx

f (x) � 	
�

n�0
c2nP2n(x)

P2(cos �) � 1
4

 (3cos 2� � 1)

P2(x) � 1
2

 (3x2 � 1)

f (x) � �0,
x,

�1 � x � 0
   0 � x � 1

3J2(4a) � 4aJ�2(4a) � 0

The series (25) can also be used when f is defined only
on the interval (0, 1). The series then represents f on 
(0, 1) and an even extension of f on the interval (�1, 0).

20. Show that if f is an odd function on the interval (�1, 1),
then (21) and (22) become, respectively,

(27)

. (28)

The series (27) can also be used when f is defined only
on the interval (0, 1). The series then represents f on
(0, 1) and an odd extension of f on the interval (�1, 0).

In Problems 21 and 22 write out the first four nonzero terms
in the indicated expansion of the given function. What func-
tion does the series represent on the interval (�1, 1)? Use a
CAS to plot the graph of the partial sum S4(x).

21. f (x) � x, 0 � x � 1; use (25)

22. f (x) � 1, 0 � x � 1; use (27)

Discussion Problems

23. Discuss: Why is a Fourier-Legendre expansion of a
polynomial function that is defined on the interval
(�1, 1) necessarily a finite series

24. Using only your conclusions from Problem 23—that is,
do not use (22)—find the finite Fourier-Legendre series
of f (x) � x2. The series of f (x) � x3.

c2n�1 � (4n � 3) �1

0
 f (x)P2n�1(x) dx

f (x) � 	
�

n�0
c2n�1P2n�1(x)

CHAPTER 11 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-20.

In Problems 1–6 fill in the blank or answer true or false
without referring back to the text.

1. The functions f (x) � x2 � 1 and g(x) � x5 are orthogo-
nal on the interval [�p, p]. _______

2. The product of an odd function f with an odd function
g is _______.

3. To expand f (x) � �x � � 1, �p� x � p, in an appropri-
ate trigonometric series, we would use a _____ series.

4. y � 0 is never an eigenfunction of a Sturm-Liouville
problem. _______

5. l � 0 is never an eigenvalue of a Sturm-Liouville
problem. _______

6. If the function is ex- 

panded in a Fourier series, the series will converge to
_______ at x � �1, to _______ at x � 0, and to
_______ at x � 1.

7. Suppose the function f (x) � x2 � 1, 0 � x � 3, is
expanded in a Fourier series, a cosine series, and a sine
series. Give the value to which each series will converge
at x � 0.

8. What is the corresponding eigenfunction for the boundary-
value problem 

for l� 25?

y � � �y � 0, y�(0) � 0, y (	>2) � 0

f (x) � �x � 1, �1 � x � 0
�x,   0 � x � 1
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19. Find the eigenvalues and eigenfunctions of the
boundary-value problem

20. Give an orthogonality relation for the eigenfunctions in
Problem 19.

21. Expand , in a Fourier-Bessel

series, using Bessel functions of order zero that satisfy
the boundary-condition J0(4a) � 0.

22. Expand , in a Fourier-Legendre
series.

23. Suppose the function y � f (x) is defined on the interval
.

(a) Verify the identity f(x) � fe(x) � fo(x), where

(b) Show that fe is an even function and fo an odd
function.

24. The function f (x) � ex is neither even or odd. Use
Problem 23 to write f as the sum of an even function and
an odd function. Identify fe and fo. 

25. Suppose that f is an integrable 2p-periodic function.
Prove that for any number a,

�2p

0
f (x) dx � �a�2p

a
f (x) dx.

fe(x) �
f (x) � f (�x)

2
    and    fo(x) �

f (x) � f (�x)
2

.

(��, �)

f (x) � x4, �1 � x � 1

f (x) � �1, 0 � x � 2
0, 2 � x � 4

x2y � � xy� � 9�y � 0,  y�(1) � 0,  y(e) � 0.

9. Chebyshev’s differential equation

has a polynomial solution for n � 0, 1, 2, . . . .
Specify the weight function w(x) and the interval over
which the set of Chebyshev polynomials {Tn(x)} is
orthogonal. Give an orthogonality relation.

10. The set of Legendre polynomials {Pn(x)}, where
P0(x) � 1, P1(x) � x, . . . , is orthogonal with respect to
the weight function w(x) � 1 on the interval [�1, 1].
Explain why 

11. Without doing any work, explain why the cosine series
of is the finite series

.

12. (a) Show that the set

is orthogonal on the interval [0, L].
(b) Find the norm of each function in part (a). Construct

an orthonormal set.

13. Expand in a Fourier series.

14. Expand f (x) � 2x2 � 1, �1 � x � 1 in a Fourier series.

15. Expand 
(a) in a cosine series (b) in a Fourier series.

16. In Problems 13, 14, and 15, sketch the periodic exten-
sion of f to which each series converges.

17. Discuss: Which of the two Fourier series of f in
Problem 15 converges to 

on the interval (�1, 1)?

18. Consider the portion of the periodic function f shown in
Figure 11.R.1. Expand f in an appropriate Fourier series.

F(x) � � 
f (x),   0 � x � 1
f (�x), �1 � x � 0

f (x) � ex, 0 � x � 1

f (x) � � x � � x, �1 � x � 1

�sin 
	

2L
 x, sin 

3	

2L
 x, sin 

5	

2L
 x, . . . � 

f (x) � 1
2 � 1

2 cos 2x
f (x) � cos2x, 0 � x � 	

�1
�1 Pn(x) dx � 0 for n � 0.

y � Tn(x)

(1 � x2)y � � xy� � n2y � 0
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FIGURE 11.R.1 Graph for Problem 18
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12 Boundary-Value Problems 
in Rectangular Coordinates

12.1 Separable Partial Differential Equations
12.2 Classical PDEs and Boundary-Value Problems
12.3 Heat Equation
12.4 Wave Equation
12.5 Laplace’s Equation
12.6 Nonhomogeneous Boundary-Value Problems
12.7 Orthogonal Series Expansions
12.8 Higher-Dimensional Problems

Chapter 12 in Review

In this and the next two chapters the emphasis will be on two procedures that are
used in solving partial differential equations that occur in problems involving
temperature distributions, vibrations, and potentials. These problems, called
boundary-value problems, are described by relatively simple linear second-order
PDEs. The thrust of these procedures is to find solutions of a linear partia
differential equation by reducing it to two or more linear ordinary differential
equations.

We begin with a method called separation of variables (which is not related to
the method in Section 2.2). The application of this method leads us back to the
important concepts in Chapter 11—namely, eigenvalues, eigenfunctions, and the
expansion of a function in an infinite series of orthogonal functions. 

455
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456 ● CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

Linear Partial Differential Equation If we let u denote the dependent vari-
able and let x and y denote the independent variables, then the general form of a linear
second-order partial differential equation is given by

, (1)

where the coefficients A, B, C, . . . , G are functions of x and y. When G(x, y) � 0,
equation (1) is said to be homogeneous; otherwise, it is nonhomogeneous. For
example, the linear equations

are homogeneous and nonhomogeneous, respectively.

Solution of a PDE A solution of a linear partial differential equation (1) is
a function u(x, y) of two independent variables that possesses all partial derivatives
occurring in the equation and that satisfies the equation in some region of the
xy-plane.

It is not our intention to examine procedures for finding general solutions of
linear partial differential equations. Not only is it often difficult to obtain a general
solution of a linear second-order PDE, but a general solution is usually not all that
useful in applications. Thus our focus throughout will be on finding particular
solutions of some of the more important linear PDEs—that is, equations that appear
in many applications.

Separation of Variables Although there are several methods that can be
tried to find particular solutions of a linear PDE, the one we are interested in at the
moment is called the method of separation of variables. In this method we seek a
particular solution of the form of a product of a function of x and a function of y:

.

With this assumption it is sometimes possible to reduce a linear PDE in two variables
to two ODEs. To this end we note that

,

where the primes denote ordinary differentiation.

�u
�x

� X�Y,    
�u
�y

� XY�,    
�2u
�x2 � X �Y,    

�2u
�y2 � XY �

u(x, y) � X(x)Y(y)

�2u
�x2 �

�2u
�y2 � 0    and    

�2u
�x2 �

�u
�y

� xy

A 
�2u
�x2 � B 

�2u
�x �y

� C 
�2u
�y2 � D 

�u
�x

� E 
�u
�y

� Fu � G

SEPARABLE PARTIAL DIFFERENTIAL EQUATIONS

REVIEW MATERIAL
● Sections 2.3, 4.3, and 4.4
● Reread “Two Equations Worth Knowing” on pages 134–135.

INTRODUCTION Partial differential equations (PDEs), like ordinary differential equations
(ODEs), are classified as either linear or nonlinear. Analogous to a linear ODE, the dependent
variable and its partial derivatives in a linear PDE are only to the first power. For the remaining
chapters of this text we shall be interested in, for the most part, linear second-order PDEs.

12.1
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12.1 SEPARABLE PARTIAL DIFFERENTIAL EQUATIONS ● 457

EXAMPLE 1 Separation of Variables

Find product solutions of .

SOLUTION Substituting u(x, y) � X(x)Y(y) into the partial differential equation
yields

.

After dividing both sides by 4XY, we have separated the variables:

.

Since the left-hand side of the last equation is independent of y and is equal to the
right-hand side, which is independent of x, we conclude that both sides of the equa-
tion are independent of x and y. In other words, each side of the equation must be a
constant. In practice it is convenient to write this real separation constant as �l
(using l would lead to the same solutions).

From the two equalities

we obtain the two linear ordinary differential equations

. (2)

Now, as in Example 1 of Section 11.4 we consider three cases for l: zero, negative,
or positive, that is, l � 0, l � �a2 � 0, and l � a2 	 0, where a	 0.

Case I If l� 0, then the two ODEs in (2) are

.

Solving each equation (by, say, integration), we find X � c1 � c2x and Y � c3. Thus
a particular product solution of the given PDE is

, (3)

where we have replaced c1c3 and c2c3 by A1 and B1, respectively.

Case II If l� �a2, then the DEs in (2) are

.

From their general solutions

we obtain another particular product solution of the PDE,

or (4)

where A2 � c4c6 and B2 � c5c6.

Case III If l� a2, then the DEs

and their general solutions

X � c7 cos 2
x � c8 sin 2
x    and    Y � c9e�
2y

X � � 4
2X � 0    and    Y� � 
2Y � 0

u � A2e
2y cosh 2
x � B2e
2y sinh 2
x,

u � XY � (c4 cosh 2
x � c5 sinh 2
x)c6e
2y

X � c4 cosh 2
x � c5 sinh 2
x    and    Y � c6e
2y

X � � 4a2X � 0    and    Y� � a2Y � 0

u � XY � (c1 � c2x)c3 � A1 � B1x

X � � 0    and    Y� � 0

X � � 4�X � 0    and    Y� � �Y � 0

X �

4X
�

Y�

Y
� ��

X �

4X
�

Y�

Y

X �Y � 4XY�

�2u
�x2 � 4 

�u
�y
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458 ● CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

give yet another particular solution

, (5)

where A3 � c7c9 and B3 � c8c9.

It is left as an exercise to verify that (3), (4), and (5) satisfy the given PDE. See
Problem 29 in Exercises 12.1.

Superposition Principle The following theorem is analogous to
Theorem 4.1.2 and is known as the superposition principle.

u � A3e�
2y cos 2
x � B3e�
2y sin 2
x

THEOREM 12.1.1 Superposition Principle

If u1, u2, . . . , uk are solutions of a homogeneous linear partial differential equa-
tion, then the linear combination

,

where the ci, i � 1, 2, . . . , k, are constants, is also a solution.

u � c1u1 � c2u2 � � � � � ckuk

Throughout the remainder of the chapter we shall assume that whenever we
have an infinite set u1, u2, u3, . . . of solutions of a homogeneous linear equation, we
can construct yet another solution u by forming the infinite serie

,

where the ck, k � 1, 2, . . . are constants.

Classification of Equations A linear second-order partial differential equation
in two independent variables with constant coefficients can be classified as one of three
types. This classification depends only on the coefficients of the second-order deriva-
tives. Of course, we assume that at least one of the coefficients A, B, and C is not zero.

u � �



k�1
ckuk

DEFINITION 12.1.1 Classification of Equation

The linear second-order partial differential equation

where A, B, C, D, E, F and G are real constants, is said to be

elliptic if  B2 � 4AC � 0.
parabolic if  B2 � 4AC � 0,
hyperbolic if B2 � 4AC 	 0,

A 
�2u
�x2 � B 

�2u
�x �y

� C 
�2u
�y2 � D 

�u
�x

� E 
�u
�y

� Fu � G,

EXAMPLE 2 Classifying Linear Second-Order PDEs

Classify the following equations:

(a) (b) (c)

SOLUTION (a) By rewriting the given equation as

,3 
�2u
�x2 �

�u
�y

� 0

�2u
�x2 �

�2u
�y2 � 0

�2u
�x2 �

�2u
�y23 

�2u
�x2 �

�u
�y
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we can make the identifications A � 3, B � 0, and C � 0. Since B2 � 4AC � 0, the
equation is parabolic.

(b) By rewriting the equation as

we see that A � 1, B � 0, C � �1, and B2 � 4AC � �4(1)(�1) 	 0. The equation
is hyperbolic.

(c) With A � 1, B � 0, C � 1, and B2 � 4AC � �4(1)(1) � 0 the equation is
elliptic.

�2u
�x2 �

�2u
�y2 � 0,

12.1 SEPARABLE PARTIAL DIFFERENTIAL EQUATIONS ● 459

REMARKS

(i) In case you are wondering, separation of variables is not a general method
for finding particular solutions; some linear partial differential equations are
simply not separable. You are encouraged to verify that the assumption u � XY
does not lead to a solution for the linear PDE �2u��x2 � �u��y � x.
(ii) A detailed explanation of why we would want to classify a linear second-
order PDE as hyperbolic, parabolic, or elliptic is beyond the scope of this text,
but you should at least be aware that this classification is of practical importance.
We are going to solve some PDEs subject to only boundary conditions and oth-
ers subject to both boundary and initial conditions; the kinds of side conditions
that are appropriate for a given equation depend on whether the equation is
hyperbolic, parabolic, or elliptic. On a related matter, we shall see in Chapter 15
that numerical-solution methods for linear second-order PDEs differ in confor-
mity with the classification of the equation

EXERCISES 12.1 Answers to selected odd-numbered problems begin on page ANS-21.

In Problems 1–16 use separation of variables to find, if
possible, product solutions for the given partial differential
equation.

1. 2.

3. ux � uy � u 4. ux � uy � u

5. 6.

7. 8.

9. 10.

11.

12. a2 
�2u
�x2 �

�2u
�t2 � 2k 

�u
�t

, k 	 0

a2 
�2u
�x2 �

�2u
�t2

k 
�2u
�x2 �

�u
�t

, k 	 0k 
�2u
�x2 � u �

�u
�t

, k 	 0

y 
�2u

�x �y
� u � 0

�2u
�x2 �

�2u
�x �y

�
�2u
�y2 � 0

y 
�u
�x

� x 
�u
�y

� 0x 
�u
�x

� y 
�u
�y

�u
�x

� 3 
�u
�y

� 0
�u
�x

�
�u
�y

13. 14.

15. uxx � uyy � u 16. a2uxx � g � utt, g a constant

In Problems 17–26 classify the given partial differential
equation as hyperbolic, parabolic, or elliptic.

17.

18.

19.

20.

21.
�2u
�x2 � 9 

�2u
�x �y

�2u
�x2 �

�2u
�x �y

� 3 
�2u
�y2 � 0

�2u
�x2 � 6 

�2u
�x �y

� 9 
�2u
�y2 � 0

3 
�2u
�x2 � 5 

�2u
�x �y

�
�2u
�y2 � 0

�2u
�x2 �

�2u
�x �y

�
�2u
�y2 � 0

x2 
�2u
�x2 �

�2u
�y2 � 0

�2u
�x2 �

�2u
�y2 � 0
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460 ● CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

22.

23.

24.

25. 2 6 .

In Problems 27 and 28 show that the given partial differen-
tial equation possesses the indicated product solution.

27.

28.

u � (c1 cos 
� � c2 sin 
�)(c3r
 � c4r�
)

�2u
�r2 �

1
r
 
�u
�r

�
1
r2 

�2u
��2 � 0;

u � e�k
2t�c1J0(
r) � c2Y0(
r)�

k ��2u
�r2 �

1
r
 
�u
�r� �

�u
�t

;

k 
�2u
�x2 �

�u
�t

, k 	 0a2 
�2u
�x2 �

�2u
�t2

�2u
�x2 �

�2u
�y2 � u

�2u
�x2 � 2 

�2u
�x �y

�
�2u
�y2 �

�u
�x

� 6 
�u
�y

� 0

�2u
�x �y

�
�2u
�y2 � 2 

�u
�x

� 0 29. Verify that each of the products u � XY in (3), (4), and
(5) satisfies the second-order PDE in Example 1

30. Definition 12.1.1 generalizes to linear PDEs with coef-
ficients that are functions of x and y. Determine the
regions in the xy-plane for which the equation

is hyperbolic, parabolic, or elliptic.

Discussion Problems

In Problems 31 and 32 discuss whether product solutions 
u � X(x)Y(x) can be found for the given partial differential
equation. [Hint: Use the superposition principle.]

31.

32.
�2u

�x�y
�

�u
�x

� 0

�2u
�x2 � u � 0

(xy � 1) 
�2u
�x2 � (x � 2y) 

�2u
�x �y

�
�2u
�y2 � xy2u � 0

CLASSICAL PDEs AND BOUNDARY-VALUE PROBLEMS

REVIEW MATERIAL
● Reread the material on boundary-value problems in Sections 4.1, 4.3, and 5.2.

INTRODUCTION We are not going to solve anything in this section. We are simply going to
discuss the types of partial differential equations and boundary-value problems that we will be work-
ing with in the remainder of this chapter as well as in Chapters 13–15. The words boundary-value
problem have a slightly different connotation than they did in Sections 4.1, 4.3, and 5.2. If, say, u(x, t)
is a solution of a PDE, where x represents a spatial dimension and t represents time, then we may be
able to prescribe the value of u, or �u��x, or a linear combination of u and �u��x at a specified x as
well as to prescribe u and �u��t at a given time t (usually, t � 0). In other words, a “boundary-value
problem” may consist of a PDE, along with boundary conditions and initial conditions.

12.2

Classical Equations We shall be concerned principally with applying
the method of separation of variables to find product solutions of the following clas-
sical equations of mathematical physics:

(1)

(2)

(3)

or slight variations of these equations. The PDEs (1), (2), and (3) are known, respec-
tively, as the one-dimensional heat equation, the one-dimensional wave equation,
and the two-dimensional form of Laplace’s equation. “One-dimensional” in the
case of equations (1) and (2) refers to the fact that x denotes a spatial variable, whereas
t represents time; “two-dimensional” in (3) means that x and y are both spatial

�2u
�x2 �

�2u
�y2 � 0

a2 
�2u
�x2 �

�2u
�t2

k
�2u
�x2 �

�u
�t

,  k 	 0

27069_12_ch12_p455-492.qxd  2/2/12  2:54 PM  Page 460

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



variables. If you compare (1)–(3) with the linear form in Theorem 12.1.1 (with t play-
ing the part of the symbol y), observe that the heat equation (1) is parabolic, the wave
equation (2) is hyperbolic, and Laplace’s equation is elliptic. This observation will be
important in Chapter 15.

Heat Equation Equation (1) occurs in the theory of heat flow—that is, heat
transferred by conduction in a rod or in a thin wire. The function u(x, t) represents
temperature at a point x along the rod at some time t. Problems in mechanical vibra-
tions often lead to the wave equation (2). For purposes of discussion, a solution
u(x, t) of (2) will represent the displacement of an idealized string. Finally, a solution
u(x, y) of Laplace’s equation (3) can be interpreted as the steady-state (that is, time-
independent) temperature distribution throughout a thin, two-dimensional plate.

Even though we have to make many simplifying assumptions, it is worthwhile
to see how equations such as (1) and (2) arise.

Suppose a thin circular rod of length L has a cross-sectional area A and coin-
cides with the x-axis on the interval [0, L]. See Figure 12.2.1. Let us suppose the
following:

• The flow of heat within the rod takes place only in the x-direction.
• The lateral, or curved, surface of the rod is insulated; that is, no heat

escapes from this surface.
• No heat is being generated within the rod.
• The rod is homogeneous; that is, its mass per unit volume r is a constant.
• The specific heat g and thermal conductivity K of the material of the rod are

constants.

To derive the partial differential equation satisfied by the temperature u(x, t), we
need two empirical laws of heat conduction:

(i) The quantity of heat Q in an element of mass m is

, (4)

where u is the temperature of the element.
(ii) The rate of heat flow Qt through the cross-section indicated in

Figure 12.2.1 is proportional to the area A of the cross section and
the partial derivative with respect to x of the temperature:

. (5)

Since heat flows in the direction of decreasing temperature, the minus sign in (5) is
used to ensure that Qt is positive for ux � 0 (heat flow to the right) and negative for
ux 	 0 (heat flow to the left). If the circular slice of the rod shown in Figure 12.2.1
between x and x � �x is very thin, then u(x, t) can be taken as the approximate tem-
perature at each point in the interval. Now the mass of the slice is m � r(A �x), and
so it follows from (4) that the quantity of heat in it is

. (6)

Furthermore, when heat flows in the positive x-direction, we see from (5) that heat
builds up in the slice at the net rate

. (7)

By differentiating (6) with respect to t, we see that this net rate is also given by

. (8)

Equating (7) and (8) gives

. (9)
K
��

 
ux(x � �x, t) � ux(x, t)

�x
� ut

Qt � ��A �x ut

�KAux(x, t) � [�KAux(x � �x, t)] � KA [ux(x � �x, t) � ux(x, t)]

Q � ��A �x u

Qt � �KAux

Q � �mu

12.2 CLASSICAL PDEs AND BOUNDARY-VALUE PROBLEMS ● 461

x0        x     x + ∆x        L

Cross section of area A 

FIGURE 12.2.1 One-dimensional
flow of hea
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462 ● CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

Finally, by taking the limit of (9) as we obtain (1) in the form*

(K�gr)uxx � ut. It is customary to let k � K�gr and call this positive constant the
thermal diffusivity.

Wave Equation Consider a string of length L, such as a guitar string,
stretched taut between two points on the x-axis—say, x � 0 and x � L. When the
string starts to vibrate, assume that the motion takes place in the xu-plane in such
a manner that each point on the string moves in a direction perpendicular to the x-axis
(transverse vibrations). As is shown in Figure 12.2.2(a), let u(x, t) denote the vertical
displacement of any point on the string measured from the x-axis for t 	 0. We fur-
ther assume the following:

• The string is perfectly flexible
• The string is homogeneous; that is, its mass per unit length r is a

constant.
• The displacements u are small in comparison to the length of the string.
• The slope of the curve is small at all points.
• The tension T acts tangent to the string, and its magnitude T is the same at

all points.
• The tension is large compared with the force of gravity.
• No other external forces act on the string.

Now in Figure 12.2.2(b) the tensions T1 and T2 are tangent to the ends of the
curve on the interval [x, x � �x]. For small u1 and u2 the net vertical force acting on
the corresponding element �s of the string is then

where T � �T1 � � �T2 �. Now r �s � r �x is the mass of the string on [x, x � �x],
so Newton’s second law gives

or

If the limit is taken as the last equation becomes uxx � (r�T )utt. This of
course is (2) with a2 � T�r.

Laplace’s Equation Although we shall not present its derivation, Laplace’s
equation in two and three dimensions occurs in time-independent problems involv-
ing potentials such as electrostatic, gravitational, and velocity in fluid mechanics.
Moreover, a solution of Laplace’s equation can also be interpreted as a steady-state
temperature distribution. As illustrated in Figure 12.2.3, a solution u(x, y) of (3)
could represent the temperature that varies from point to point—but not with time—
of a rectangular plate. Laplace’s equation in two dimensions and in three dimensions
is abbreviated as �2u � 0, where

are called the two-dimensional Laplacian and the three-dimensional Laplacian,
respectively, of a function u.

�2u �
�2u
�x2 �

�2u
�y2    and    �2u �

�2u
�x2 �

�2u
�y2 �

�2u
�z2

�x : 0,

 
ux(x � �x, t) � ux(x, t)

�x
�

�

T
 ut t.

 T [ux(x � �x, t) � ux(x, t)] � � �x ut t

 � T [ux(x � �x, t) � ux(x, t)],†
 T sin �2 � T sin �1 � T tan �2 � T tan �1

�x : 0,

u

∆s
u(x, t)

0 x   x  + ∆x L x

x

u

∆s

x + ∆xx

θ1

θ 2

T1

T2

(a) Segment of string

(b) Enlargement of segment

FIGURE 12.2.2 Flexible string
anchored at x � 0 and x � L
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H 

FIGURE 12.2.3 Steady-state
temperatures in a rectangular plate

*The definition of the second partial derivative is
†tan u2 � ux(x � �x, t) and tan u1 � ux(x, t) are equivalent expressions for slope.

uxx � lim
�x : 0

ux(x � �x, t) � ux(x, t)
�x

.
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We often wish to find solutions of equations (1), (2), and (3) that satisfy certain
side conditions.

Initial Conditions Since solutions of (1) and (2) depend on time t, we can
prescribe what happens at t � 0; that is, we can give initial conditions (IC). If f (x)
denotes the initial temperature distribution throughout the rod in Figure 12.2.1, then
a solution u(x, t) of (1) must satisfy the single initial condition u(x, 0) � f (x),
0 � x � L. On the other hand, for a vibrating string we can specify its initial dis-
placement (or shape) f (x) as well as its initial velocity g(x). In mathematical terms
we seek a function u(x, t) that satisfies (2) and the two initial conditions

. (10)

For example, the string could be plucked, as shown in Figure 12.2.4, and released
from rest (g(x) � 0).

Boundary Conditions The string in Figure 12.2.4 is secured to the x-axis at
x � 0 and x � L for all time. We interpret this by the two boundary conditions (BC):

.

Note that in this context the function f in (10) is continuous, and consequently,
f (0) � 0 and f (L) � 0. In general, there are three types of boundary conditions
associated with equations (1), (2), and (3). On a boundary we can specify the values
of one of the following:

.

Here �u��n denotes the normal derivative of u (the directional derivative of u in
the direction perpendicular to the boundary). A boundary condition of the firs
type (i) is called a Dirichlet condition; a boundary condition of the second type (ii)
is called a Neumann condition; and a boundary condition of the third type (iii) is
known as a Robin condition. For example, for t 	 0 a typical condition at the right-
hand end of the rod in Figure 12.2.1 can be

Condition (i)� simply states that the boundary x � L is held by some means at a
constant temperature u0 for all time t 	 0. Condition (ii)� indicates that the boundary
x � L is insulated. From the empirical law of heat transfer, the flux of heat across a
boundary (that is, the amount of heat per unit area per unit time conducted across the
boundary) is proportional to the value of the normal derivative �u��n of the temper-
ature u. Thus when the boundary x � L is thermally insulated, no heat flows into or
out of the rod, so

We can interpret (iii)� to mean that heat is lost from the right-hand end of the rod by
being in contact with a medium, such as air or water, that is held at a constant tem-
perature. From Newton’s law of cooling, the outward flux of heat from the rod is pro-
portional to the difference between the temperature u(L, t) at the boundary and the

�u
�x �

x�L
� 0.

(iii)� 
�u
�x �

x�L
� �h(u (L, t) � um),    h 	 0 and um constants.

(ii)�  
�u
�x �

x�L
� 0,    or

(i)�   u(L, t) � u0,    u0 a constant,

(i ) u,    (ii ) �u
�n

,    or    (iii) �u
�n

� hu,    h a constant

u(0, t) � 0,    u(L, t) � 0, t 	 0

u(x, 0) � f (x), �u
�t �

t�0
� g(x),  0 � x � L
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xL

h

0 u = 0
at x = 0

u = 0
at x = L

u

FIGURE 12.2.4 Plucked string
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464 ● CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

temperature um of the surrounding medium. We note that if heat is lost from the left-
hand end of the rod, the boundary condition is

.

The change in algebraic sign is consistent with the assumption that the rod is at a
higher temperature than the medium surrounding the ends so that u(0, t) 	 um and
u(L, t) 	 um. At x � 0 and x � L the slopes ux(0, t) and ux(L, t) must be positive and
negative, respectively.

Of course, at the ends of the rod we can specify different conditions at the same
time. For example, we could have

We note that the boundary condition in (i)� is homogeneous if u0 � 0; if u0 � 0,
the boundary condition is nonhomogeneous. The boundary condition (ii)� is homoge-
neous; (iii)� is homogeneous if um � 0 and nonhomogeneous if um � 0.

Boundary-Value Problems Problems such as

(11)

and

(12)

are called boundary-value problems.

Modifications The partial differential equations (1), (2), and (3) must be
modified to take into consideration internal or external influences acting on the
physical system. More general forms of the one-dimensional heat and wave equa-
tions are, respectively,

(13)

and (14)

For example, if there is heat transfer from the lateral surface of a rod into a
surrounding medium that is held at a constant temperature um, then the heat equa-
tion (13) is

.

In (14) the function F could represent the various forces acting on the string. For ex-
ample, when external, damping, and elastic restoring forces are taken into account,

k 
�2u
�x2 � h(u � um) �

�u
�t

a2 
�2u
�x2 � F(x, t, u, ut) �

�2u
�t2 .

k 
�2u
�x2 � G(x, t, u, ux) �

�u
�t

Subject to:   (BC) �
�u
�x �

x�0
� 0, �u

�x �
x�a

� 0,  0 � y � b

u(x, 0) � 0, u(x, b) � f (x),  0 � x � a

Solve:       
�2u
�x2 �

� 2u
�y2  � 0,  0 � x � a,  0 � y � b

(IC) u(x, 0) � f (x), �u
�t �

t�0
� g(x), 0 � x � L

Subject to:    (BC) u(0, t) � 0, u(L, t) � 0,  t 	 0

Solve:     a2 
�2u
�x2 �

�2u
�t2 ,  0 � x � L,  t 	 0

 
�u
�x �

x�0
� 0    and    u(L, t) � u0,  t 	 0.

 
�u
�x �

x�0
� h(u(0, t) � um)
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(14) assumes the form

(15)
a2        � f (x, t) �         � c       � ku

damping
force

restoring
force

external
force

∂2u––––
∂x2

∂2u––––
∂t2

∂u–––
∂t
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EXERCISES 12.2 Answers to selected odd-numbered problems begin on page ANS-21.

In Problems 1–6 a rod of length L coincides with the interval
[0, L] on the x-axis. Set up the boundary-value problem for
the temperature u(x, t).

1. The left end is held at temperature zero, and the right end
is insulated. The initial temperature is f (x) throughout.

2. The left end is held at temperature u0, and the right end
is held at temperature u1. The initial temperature is zero
throughout.

3. The left end is held at temperature 100, and there is heat
transfer from the right end into the surrounding medium
at temperature zero. The initial temperature is f (x)
throughout.

4. The ends are insulated, and there is heat transfer from
the lateral surface into the surrounding medium at tem-
perature 50. The initial temperature is 100 throughout.

5. The left end is at temperature the right end is
held at zero, and there is heat transfer from the lateral sur-
face of the rod into the surrounding medium held at tem-
perature zero. The initial temperature is f(x) throughout.

6. The ends are insulated, and there is heat transfer from the
lateral surface of the rod into the surrounding medium
held at temperature The initial temperature is 
throughout.

In Problems 7–10 a string of length L coincides with the
interval [0, L] on the x-axis. Set up the boundary-value prob-
lem for the displacement u(x, t).

100�50�.

sin(pt>L),

7. The ends are secured to the x-axis. The string is released
from rest from the initial displacement x(L � x).

8. The ends are secured to the x-axis. Initially, the string is
undisplaced but has the initial velocity sin(px�L).

9. The left end is secured to the x-axis, but the right end
moves in a transverse manner according to sin p t.
The string is released from rest from the initial dis-
placement f (x). For t 	 0 the transverse vibrations are
damped with a force proportional to the instantaneous
velocity.

10. The ends are secured to the x-axis, and the string is
initially at rest on that axis. An external vertical force
proportional to the horizontal distance from the left end
acts on the string for t 	 0.

In Problems 11 and 12 set up the boundary-value problem
for the steady-state temperature u(x, y).

11. A thin rectangular plate coincides with the region
defined by 0 � x � 4, 0 � y � 2. The left end and the
bottom of the plate are insulated. The top of the plate is
held at temperature zero, and the right end of the plate is
held at temperature f (y).

12. A semi-infinite plate coincides with the region define
by 0 � x � p, y � 0. The left end is held at temperature
e�y, and the right end is held at temperature 100 for
0 � y � 1 and temperature zero for y 	 1. The bottom of
the plate is held at temperature f (x).

REMARKS

The analysis of a wide variety of diverse phenomena yields mathematical
models (1), (2), or (3) or their generalizations involving a greater number of
spatial variables. For example, (1) is sometimes called the diffusion equation,
since the diffusion of dissolved substances in solution is analogous to the flo
of heat in a solid. The function u(x, t) satisfying the partial differential equation
in this case represents the concentration of the dissolved substance. Similarly,
equation (2) arises in the study of the flow of electricity in a long cable or trans-
mission line. In this setting (2) is known as the telegraph equation. It can be
shown that under certain assumptions the current and the voltage in the line are
functions satisfying two equations identical with (2). The wave equation (2)
also appears in the theory of high-frequency transmission lines, fluid mechan-
ics, acoustics, and elasticity. Laplace’s equation (3) is encountered in the static
displacement of membranes.
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466 ● CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

Solution of the BVP To start, we use the product u(x, t) � X(x)T(t) to separate
variables in (1). Then, if �l is the separation constant, the two equalities

(4)

lead to the two ordinary differential equations

(5)

(6)

Before solving (5), note that the boundary conditions (2) applied to u(x, t) � X(x)T(t)
are

Since it makes sense to expect that T(t) � 0 for all t, the foregoing equalities hold
only if X(0) � 0 and X(L) � 0. These homogeneous boundary conditions together
with the homogeneous DE (5) constitute a regular Sturm-Liouville problem:

. (7)

The solution of this BVP was discussed thoroughly in Example 2 of Section 5.2. In
that example we considered three possible cases for the parameter l: zero, negative,
or positive. The corresponding solutions of the DEs are, in turn, given by

(8)

(9)

(10)

When the boundary conditions X(0) � 0 and X(L) � 0 are applied to (8) and (9),
these solutions yield only X(x) � 0, and so we would have to conclude that u � 0.
But when X(0) � 0 is applied to (10), we find that c1 � 0 and X(x) � c2 sin ax. The
second boundary condition then implies that X(L) � c2 sin aL � 0. To obtain a non-
trivial solution, we must have c2 � 0 and sin aL � 0. The last equation is satisfie
when aL � np or a � np�L. Hence (7) possesses nontrivial solutions when

 X(x) � c1 cos ax � c2 sin ax,  � � a2 	 0.

 X(x) � c1 cosh ax � c2 sinh ax,     � � �a2 � 0

 X(x) � c1 � c2x,   � � 0

X � � �X � 0, X(0) � 0,  X(L) � 0

u(0, t) � X(0)T(t) � 0    and    u(L, t) � X(L)T(t) � 0.

 T � � k�T � 0.

X � � �X  � 0

X �

X
�

T �

kT
� ��

x0 L

u = 0 u = 0

FIGURE 12.3.1 Temperatures in 
a rod of length L

HEAT EQUATION

REVIEW MATERIAL
● Section 12.1
● A rereading of Example 2 in Section 5.2 and Example 1 of Section 11.4 is recommended.

INTRODUCTION Consider a thin rod of length L with an initial temperature f (x) throughout
and whose ends are held at temperature zero for all time t 	 0. If the rod shown in Figure 12.3.1
satisfies the assumptions given on page 461, then the temperature u(x, t) in the rod is determined
from the boundary-value problem

(1)

(2)

(3)

In this section we shall solve this BVP.

u(x, 0) � f (x), 0 � x � L.

u(0, t) � 0, u(L, t) � 0, t 	 0

k 
�2u
�x2 �

�u
�t

,  0 � x � L,  t 	 0

12.3
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n � 1, 2, 3, . . . . These values of l are the eigenvalues of the
problem; the eigenfunctions are

(11)

From (6) we have , so

(12)

where we have replaced the constant c2c3 by An. Each of the product functions un(x, t)
given in (12) is a particular solution of the partial differential equation (1), and each
un(x, t) satisfies both boundary conditions (2) as well. However, for (12) to satisfy the
initial condition (3), we would have to choose the coefficient An in such a manner that

(13)

In general, we would not expect condition (13) to be satisfied for an arbitrary but
reasonable choice of f. Therefore we are forced to admit that un(x, t) is not a solution
of the given problem. Now by the superposition principle (Theorem 12.1.1) the
function or

(14)

must also, although formally, satisfy equation (1) and the conditions in (2). Substituting
t � 0 into (14) implies that

This last expression is recognized as a half-range expansion of f in a sine series.
If we make the identification An � bn, n � 1, 2, 3, . . . , it follows from (5) of
Section 11.3 that

(15)

We conclude that a solution of the boundary-value problem described in (1), (2), and
(3) is given by the infinite serie

. (16)

In the special case when the initial temperature is u(x, 0) � 100, L � p, and
k � 1, you should verify that the coefficients (15) are given b

and that (16) is

(17)

Use of Computers Since u is a function of two variables, the graph of the so-
lution (17) is a surface in 3-space. We could use the 3D-plot application of a computer
algebra system to approximate this surface by graphing partial sums Sn(x, t) over a
rectangular region defined by Alternatively, with the aid of
the 2D-plot application of a CAS we can plot the solution u(x, t) on the x-interval
[0, p] for increasing values of time t. See Figure 12.3.2(a). In Figure 12.3.2(b) the
solution u(x, t) is graphed on the t-interval [0, 6] for increasing values of x (x � 0 is
the left end and x � p�2 is the midpoint of the rod of length L � p.) Both sets of
graphs verify what is apparent in (17)—namely, as t : �.u(x, t) : 0

0 � x � �, 0 � t � T.

u(x, t) �
200
�

 �
�

n�1
�1 � (�1)n

n �e�n2t sin nx.

An �
200
� �1 � (�1)n

n �

u(x, t) �
2
L

 �
�

n�1
��L

0
f (x) sin 

n�

L
 x dx�e�k(n2� 2/L2)t sin 

n�

L
 x

An �
2
L

 �L

0
 f (x) sin 

n�

L
x dx.

u(x, 0) � f (x) � �
�

n�1
An sin 

n�

L
 x.

u(x, t) � �
�

n�1
Ane�k(n2� 2/L2)t sin 

n�

L
 x

u(x, t) � �n�1
�  un

un(x, 0) � f (x) � An sin 
n�

L
 x.

un � X(x)T(t) � An e�k(n2� 2/L2)t sin 
n�

L
 x,

T(t) � c3e�k(n2� 2/L2)t

X(x) � c2 sin 
n�

L
 x,    n � 1, 2, 3, . . . .

�n � an
2 � n2�2>L2,

u

x

t=0

t=0.35
t=0.6

t=1
t=1.5

32.521.510.5

100
80

60
40
20

(a) u(x, t) graphed as a function of
x for various fixed times

(b) u(x, t) graphed as a function of
t for various fixed positions

u

t

x=0

x= �/4
x= �/6
x= �/12

654321

100
80

60

40

20

t=0.05

x= �/2

FIGURE 12.3.2 Graphs of (17)
when one variable is held fixe
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FIGURE 12.3.3 Rod losing heat in Problem 5

Insulated Insulated

x

Heat transfer from
lateral surface of

the rod

0 L0�

0�

6. Solve Problem 5 if the ends x � 0 and x � L are held at
temperature zero.

EXERCISES 12.3 Answers to selected odd-numbered problems begin on page ANS-21.

In Problems 1 and 2 solve the heat equation (1) subject to the
given conditions. Assume a rod of length L.

1.

2.

3. Find the temperature u(x, t) in a rod of length L if the
initial temperature is f (x) throughout and if the ends
x � 0 and x � L are insulated.

4. Solve Problem 3 if L � 2 and

5. Suppose heat is lost from the lateral surface of a thin rod
of length L into a surrounding medium at temperature
zero. If the linear law of heat transfer applies, then the
heat equation takes on the form

0 � x � L, t 	 0, h a constant. Find the temperature
u(x, t) if the initial temperature is f (x) throughout and the
ends x � 0 and x � L are insulated. See Figure 12.3.3.

k 
�2u
�x2 � hu �

�u
�t

,

f (x) � �x, 0 � x � 1
0, 1 � x � 2.

 u(x, 0) � x(L � x)
u(0, t)  � 0, u(L, t) � 0

 u(x, 0) � �1,
0,

0 � x � L>2
L>2 � x � L

u(0, t)  � 0, u(L, t) � 0

7. A thin wire coinciding with the x-axis on the interval
[�L, L] is bent into the shape of a circle so that the ends
x � �L and x � L are joined. Under certain conditions,
the temperature u(x, t) in the wire satisfies the boundary-
value problem

u(�L, t) � u(L, t), t 	 0

u(x, 0) � f(x), �L � x � L.

Find the temperature u(x, t).
8. Find the temperature u(x, t) for the boundary-value

problem (1)–(3) when f (x) � 10 sin(5px/L).

Discussion Problems

9. Figure 12.3.2(b) shows the graphs of u(x, t) for 0 � t � 6
for x � 0, x � p�12, x � p�6, x � p�4, and x � p�2.
Describe or sketch the graphs of u(x, t) on the same time
interval but for the fixed values x � 3p�4, x � 5p�6,
x � 11p�12, and x � p.

Computer Lab Assignments

10. (a) Solve the heat equation (1) subject to

(b) Use the 3D-plot application of your CAS to
graph the partial sum S5(x, t) consisting of the firs
five nonzero terms of the solution in part (a) for
0 � x � 100, 0 � t � 200. Assume that k � 1.6352.
Experiment with various three-dimensional view-
ing perspectives of the surface (called the
ViewPoint option in Mathematica).

u(x, 0) � �0.8x,     0 � x � 50
0.8(100 � x), 50 � x � 100.

u(0, t)  � 0,    u(100, t) � 0, t 	 0

�u
�x �

x� �L
�

�u
�x �

x�L
,  t 	 0

k
�2u
�x2 �

�u
�t

,  �L � x � L, t 	 0,

WAVE EQUATION

REVIEW MATERIAL
● Reread pages 462–464 of Section 12.2.

INTRODUCTION We are now in a position to solve the boundary-value problem (11) that was
discussed in Section 12.2. The vertical displacement u(x, t) of the vibrating string of length L shown
in Figure 12.2.2(a) is determined from

(1)

(2)

(3) u(x, 0) � f (x), �u
�t �

t�0
� g(x), 0 � x � L.

 u(0, t) � 0, u(L, t) � 0, t 	 0

 a2 
�2u
�x2 �

�2u
�t2,   0 � x � L,  t 	 0

12.4
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Solution of the BVP With the usual assumption that u(x, t) � X(x)T(t), sep-
arating variables in (1) gives

so that (4)

(5)

As in the preceding section, the boundary conditions (2) translate into X(0) � 0
and X(L) � 0. Equation (4) along with these boundary conditions is the regular
Sturm-Liouville problem

. (6)

Of the usual three possibilities for the parameter, l � 0, l � �a2 � 0, and
l � a2 	 0 , only the last choice leads to nontrivial solutions. Corresponding to
l � a2, a 	 0, the general solution of (4) is

X(0) � 0 and X(L) � 0 indicate that c1 � 0 and c2 sin aL � 0. The last equation
again implies that aL � np or a � np�L. The eigenvalues and corresponding

eigenfunctions of (6) are ln � n2p2�L2 and 

The general solution of the second-order equation (5) is then

By rewriting c2c3 as An and c2c4 as Bn, solutions that satisfy both the wave equation
(1) and boundary conditions (2) are

(7)

and . (8)

Setting t � 0 in (8) and using the initial condition u(x, 0) � f (x) gives

.

Since the last series is a half-range expansion for f in a sine series, we can write
An � bn:

. (9)

To determine Bn, we differentiate (8) with respect to t and then set t � 0:

For this last series to be the half-range sine expansion of the initial velocity g on
the interval, the total coefficient Bnnpa�L must be given by the form bn in (5) of
Section 11.3, that is,

Bn 
n�a

L
�

2
L

 �L

0
g(x) sin 

n�

L
 x dx

 
�u
�t �

t�0
� g(x) � �




n�1
�Bn 

n�a
L � sin 

n�

L
 x.

 
�u
�t

� �



n�1
��An 

n�a
L

 sin 
n�a

L
 t � Bn 

n�a
L

 cos 
n�a

L
 t�sin 

n�

L
 x

An �
2
L

 �L

0
 f (x) sin 

n�

L
 x dx

u(x, 0) � f (x) � �



n�1
 An sin 

n�

L
 x

u(x, t) � �



n�1
�An cos 

n�a
L

 t � Bn sin 
n�a

L
 t�sin 

n�

L
 x

un � �An cos 
n�a

L
 t � Bn sin 

n�a
L

 t�sin 
n�

L
 x

T(t) � c3 cos 
n�a

L
 t � c4 sin 

n�a
L

 t.

X(x) � c2 sin 
n�

L
 x, n � 1, 2, 3, . . . .

X � c1 cos ax � c2 sin ax.

X � � �X � 0, X(0) � 0, X(L) � 0

 T � � a2�T � 0.

 X � � �X � 0

X �

X
�

T �

a2T
� ��

12.4 WAVE EQUATION ● 469

27069_12_ch12_p455-492.qxd  2/2/12  2:54 PM  Page 469

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



470 ● CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

from which we obtain

. (10)

The solution of the boundary-value problem (1)–(3) consists of the series
(8) with coefficients An and Bn defined by (9) and (10), respectivel .

We note that when the string is released from rest, then g(x) � 0 for every x in
the interval [0, L], and consequently, Bn � 0.

Plucked String A special case of the boundary-value problem in (1)–(3) is the
model of the plucked string. We can see the motion of the string by plotting the solu-
tion or displacement u(x, t) for increasing values of time t and using the animation
feature of a CAS. Some frames of a “movie” generated in this manner are given in
Figure 12.4.1; the initial shape of the string is given in Figure 12.4.1(a). You are asked
to emulate the results given in the figure plotting a sequence of partial sums of (8). See
Problems 7 and 22 in Exercises 12.4.

Bn �
2

n�a
 �L

0
g(x) sin 

n�

L
 x dx

FIGURE 12.4.1 Frames of a CAS “movie”

(a) t = 0 initial shape (b) t = 0.2 (c) t = 0.7

(d) t = 1.0 (e) t = 1.6 (f) t = 1.9
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Standing Waves Recall from the derivation of the one-dimensional wave
equation in Section 12.2 that the constant a appearing in the solution of the boundary-
value problem in (1), (2), and (3) is given by where r is mass per unit length
and T is the magnitude of the tension in the string. When T is large enough, the vibrat-
ing string produces a musical sound. This sound is the result of standing waves. The
solution (8) is a superposition of product solutions called standing waves or normal
modes:

In view of (6) and (7) of Section 5.1 the product solutions (7) can be written as

(11)

where and fn is defined by sin fn � An�Cn and cos fn � Bn�Cn.
For n � 1, 2, 3, . . . the standing waves are essentially the graphs of sin(npx�L), with
a time-varying amplitude given by

Alternatively, we see from (11) that at a fixed value of x each product function
un(x, t) represents simple harmonic motion with amplitude Cn�sin(npx�L)� and
frequency fn � na�2L. In other words, each point on a standing wave vibrates with
a different amplitude but with the same frequency. When n � 1,

u1(x, t) � C1 sin��a
L

 t � �1� sin 
�

L
 x

Cn sin�n�a
L

 t � �n�.

Cn � 1An
2 � Bn

2

un(x, t) � Cn sin �n�a
L

 t � �n� sin 
n�

L
 x,

u(x, t) � u1(x, t) � u2(x, t) � u3(x, t) � � � � .

1T>�,
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is called the first standing wave, the first normal mode, or the fundamental
mode of vibration. The first three standing waves, or normal modes, are shown in
Figure 12.4.2. The dashed graphs represent the standing waves at various values of
time. The points in the interval (0, L), for which sin(np�L)x � 0, correspond to
points on a standing wave where there is no motion. These points are called nodes.
For example, in Figures 12.4.2(b) and 12.4.2(c) we see that the second standing
wave has one node at L�2 and the third standing wave has two nodes at L�3 and
2L�3. In general, the nth normal mode of vibration has n � 1 nodes.

The frequency

of the first normal mode is called the fundamental frequency or first harmonic and
is directly related to the pitch produced by a stringed instrument. It is apparent that
the greater the tension on the string, the higher the pitch of the sound. The
frequencies fn of the other normal modes, which are integer multiples of the funda-
mental frequency, are called overtones. The second harmonic is the first overtone,
and so on.

f1 �
a

2L
�

1
2L

 
B

T
�

12.4 WAVE EQUATION ● 471

0 L

(a) First standing wave

(b) Second standing wave

(c) Third standing wave

Node

0 LL
2

Nodes

0 LL
3

2L
3

x

x

x

FIGURE 12.4.2 First three standing
waves

FIGURE 12.4.3 Initial displacement in Problem 3

LL/3 2L/3

f (x)

x

1

4.

5.

6. u(0, t) � 0, u(1, t) � 0

u(x, 0) � 0.01 sin 3px,
�u
�t �

t�0
� 0

u(x, 0) � 0, �u
�t �

t�0
 � sin x

u(0, t) � 0, u(�, t) � 0

�u
�t �

t�0
 � 0u(x, 0) � 1

6 x(�2 � x2),

u(0, t)  � 0, u(�, t) � 0
FIGURE 12.4.4 Vibrating elastic bar in Problem 8

x

0 L

u(x, t)

9. A string is stretched and secured on the x-axis at x � 0
and x � p for t 	 0. If the transverse vibrations take
place in a medium that imparts a resistance proportional
to the instantaneous velocity, then the wave equation
takes on the form

�2u
�x2 �

�2u
�t2 � 2� 

�u
�t

,  0 � � � 1,  t 	 0.

EXERCISES 12.4 Answers to selected odd-numbered problems begin on page ANS-22.

In Problems 1–8 solve the wave equation (1) subject to the
given conditions.

1.

2.

3. u(0, t) � 0, u(L, t) � 0

u(x, 0) given in Figure 12.4.3,
�u
�t �

t�0
� 0

u(x, 0) � 0, �u
�t �

t�0
� x (L � x)

u(0, t)  � 0, u(L, t) � 0

u(x, 0) �
1
4
 x (L � x), �u

�t �
t�0

� 0

u(0, t)  � 0, u(L, t) � 0

7. u(0, t) � 0, u(L, t) � 0

8.

This problem could describe the longitudinal displace-
ment u(x, t) of a vibrating elastic bar. The boundary
conditions at x � 0 and x � L are called free-end
conditions. See Figure 12.4.4.

u(x, 0) � x, �u
�t �

t�0
� 0

�u
�x �

x�0
� 0, �u

�x �
x�L

� 0

u(x, 0) � �
2hx
L

,

2h�1 �
x
L�,

0 � x �
L
2

L
2

� x � L
, �u

�t �
t�0

� 0
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472 ● CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

Find the displacement u(x, t) if the string starts from rest
from the initial displacement f (x).

10. Show that a solution of the boundary-value problem

is

�u
�t �

t�0
 � 0, 0 � x � �

u(x, 0) � �x,    0 � x � �>2
� � x, �>2 � x � �

u(0, t)  � 0, u(�, t) � 0, t 	 0

�2u
�x2 �

�2u
�t2 � u,    0 � x � �, t 	 0

positive roots of the equation

cosh x cos x � 1.

(b) Show graphically that the equation in part (a) has an
infinite number of roots

(c) Use a calculator or a CAS to find approximations to
the first four eigenvalues. Use four decimal places.

13. Consider the boundary-value problem given in (1), (2),
and (3) of this section. If g(x) � 0 for 0 � x � L, show
that the solution of the problem can be written as

.

[Hint: Use the identity 
2 sin u1 cos u2 � sin(u1 � u2) � sin(u1 � u2).]

14. The vertical displacement u(x, t) of an infinitely long
string is determined from the initial-value problem

(12)

This problem can be solved without separating variables.
(a) Show that the wave equation can be put into the

form �2u��h�j � 0 by means of the substitutions
j � x � at and h � x � at.

(b) Integrate the partial differential equation in part (a),
first with respect to h and then with respect to j,
to show that u(x, t) � F(x � at) � G(x � at), where
F and G are arbitrary twice differentiable functions,
is a solution of the wave equation. Use this solution
and the given initial conditions to show that

and

where x0 is arbitrary and c is a constant of
integration.

(c) Use the results in part (b) to show that

 G(x) �
1
2
 f (x) �

1
2a

 �x

x 0

 g(s)ds � c,

 F(x) �
1
2
 f (x) �

1
2a

 �x

x 0

 g(s)ds � c

u(x, 0) � f (x), �u
�t �

t�0
� g(x).

a2 
�2u
�x2 �

�2u
�t2 ,  �
 � x � 
, t 	 0

u(x, t) �
1
2
 [ f (x � at) � f (x � at)]

sin(2k � 1)x cos1(2k � 1)2 � 1 t.u(x, t) �
4
�

  �



k�1
 

(�1)k�1

 (2k � 1)2

11. The transverse displacement u(x, t) of a vibrating beam
of length L is determined from a fourth-order partial
differential equation

If the beam is simply supported, as shown in Figure
12.4.5, the boundary and initial conditions are

Solve for u(x, t). [Hint: For convenience use l � a4

when separating variables.]

 u(x, 0) � f (x), �u
�t �

t�0
� g(x), 0 � x � L.

�2u
�x2 �

x�0
� 0,    

�2u
�x2 �

x�L
� 0, t 	 0

 u(0, t) � 0,    u(L, t) � 0, t 	 0

a2 
�4u
�x4 �

�2u
�t2 � 0,  0 � x � L,  t 	 0.

FIGURE 12.4.5 Simply supported beam in Problem 11

u

x

L0

. (13)u(x, t) �
1
2
 [ f (x � at) � f (x � at)] �

1
2a

 �x�at

x�at
 g(s) ds

12. If the ends of the beam in Problem 11 are embedded
at x � 0 and x � L, the boundary conditions become,
for t 	 0,

(a) Show that the eigenvalues of the problem are
where xn, n � 1, 2, 3, . . . , are the�n � xn

2>L2,

�u
�x �

x�0
 � 0, �u

�x �
x�L

 � 0.

u(0, t)  � 0, u(L, t)  � 0

Note that when the initial velocity g(x) � 0, we
obtain

This last solution can be interpreted as a super-
position of two traveling waves, one moving to
the right (that is, ) and one moving to the1

2 f (x � at)

u(x, t) �
1
2
 [ f (x � at) � f (x � at)],  �
 � x � 
.
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left . Both waves travel with speed
a and have the same basic shape as the initial
displacement f (x). The form of u(x, t) given in (13) is
called d’Alembert’s solution.

In Problems 15–18 use d’Alembert’s solution (13) to solve
the initial-value problem in Problem 14 subject to the given
initial conditions.

15. f (x) � sin x, g(x) � 1

16. f (x) � sin x, g(x) � cos x

17. f (x) � 0, g(x) � sin 2x

18.

Computer Lab Assignments

19. (a) Use a CAS to plot d’Alembert’s solution in Problem
18 on the interval [�5, 5] at the times t � 0, t � 1,
t � 2, t � 3, and t � 4. Superimpose the graphs on
one coordinate system. Assume that a � 1.

(b) Use the 3D-plot application of your CAS to plot
d’Alembert’s solution u(x, t) in Problem 18 for
�5 � x � 5, 0 � t � 4. Experiment with various
three-dimensional viewing perspectives of this
surface. Choose the perspective of the surface for
which you feel the graphs in part (a) are most
apparent.

20. A model for an infinitely long string that is initially held
at the three points (�1, 0), (1, 0), and (0, 1) and then
simultaneously released at all three points at time t � 0
is given by (12) with

f (x) � �1 � � x �,
0,

� x � � 1
� x � 	 1

   and   g(x) � 0.

f (x) � e�x2, g(x) � 0

(1
2 f (x � at))

12.5 LAPLACE’S EQUATION ● 473

(a) Plot the initial position of the string on the interval
[�6, 6].

(b) Use a CAS to plot d’Alembert’s solution (13) on
[�6, 6] for t � 0.2k, k � 0, 1, 2, . . . , 25. Assume
that a � 1.

(c) Use the animation feature of your computer algebra
system to make a movie of the solution. Describe the
motion of the string over time.

21. An infinitely long string coinciding with the x-axis
is struck at the origin with a hammer whose head is
0.2 inch in diameter. A model for the motion of the
string is given by (12) with

(a) Use a CAS to plot d’Alembert’s solution (13) on
[�6, 6] for t � 0.2k, k � 0, 1, 2, . . . , 25. Assume
that a � 1.

(b) Use the animation feature of your computer algebra
system to make a movie of the solution. Describe the
motion of the string over time.

22. The model of the vibrating string in Problem 7 is called
the plucked string. The string is tied to the x-axis at
x � 0 and x � L and is held at x � L�2 at h units above
the x-axis. See Figure 12.2.4. Starting at t � 0 the string
is released from rest.
(a) Use a CAS to plot the partial sum S6(x, t)—that is,

the first six nonzero terms of your solution—for
t � 0.1k, k � 0, 1, 2, . . . , 20. Assume that a � 1,
h � 1, and L � p.

(b) Use the animation feature of your computer alge-
bra system to make a movie of the solution to
Problem 7.

f (x) � 0   and   g(x) � �1, � x � � 0.1
0, � x � � 0.1.

LAPLACE’S EQUATION

REVIEW MATERIAL
● Reread page 462 of Section 12.2 and Example 1 in Section 11.4.

INTRODUCTION Suppose we wish to find the steady-state temperature u(x, y) in a rectangular
plate whose vertical edges x � 0 and x � a are insulated, as shown in Figure 12.5.1. When no heat
escapes from the lateral faces of the plate, we solve the following boundary-value problem:

(1)

(2)

. (3)u(x, 0) � 0,  u(x, b) � f (x), 0 � x � a

�u
�x �

x�0
� 0, �u

�x �
x�a

� 0, 0 � y � b

�2u
�x2 �

�2u
�y2 � 0, 0 � x � a, 0 � y � b

12.5
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474 ● CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

Solution of the BVP With u(x, y) � X(x)Y(y) separation of variables in (1)
leads to

(4)
(5)

The three homogeneous boundary conditions in (2) and (3) translate into X�(0) � 0,
X�(a) � 0, and Y(0) � 0. The Sturm-Liouville problem associated with the equation
in (4) is then

(6)

Examination of the cases corresponding to l � 0, l � �a2 � 0, and l � a2 	 0,
where a 	 0, has already been carried out in Example 1 in Section 11.4.* Here is a
brief summary of that analysis.

For l � 0, (6) becomes

The solution of the DE is X � c1 � c2x. The boundary conditions imply X � c1.
By imposing c1 � 0, this problem possesses a nontrivial solution. For l� �a2 � 0,
(6) possesses only the trivial solution. For l� a2 	 0, (6) becomes

The solution of the DE in this problem is X � c1 cos ax � c2 sin ax. The boundary
condition X�(0) � 0 implies that c2 � 0, so X � c1 cos ax. Differentiating this last
expression and then setting x � a gives �c1 sin aa � 0. Since we have assumed that
a	 0, this last condition is satisfied when aa � np or a� np�a, n � 1, 2, . . . . The
eigenvalues of (6) are then l0 � 0 and n � 1, 2, . . . . If we cor-
respond l0 � 0 with n � 0, the eigenfunctions of (6) are

We now solve equation (5) subject to the single homogeneous boundary
condition Y(0) � 0. There are two cases. For l0 � 0, equation (5) is simply Y� � 0;
therefore its solution is Y � c3 � c4 y. But Y(0) � 0 implies that c3 � 0, so Y � c4y.

For ln � n2p2�a2, (5) is Because 0 � y � b defines a finite

interval, we use (according to the informal rule indicated on page 440) the hyperbolic
form of the general solution:

Y(0) � 0 again implies that c3 � 0, so we are left with Y � c4 sinh (np y�a).
Thus product solutions un � X(x)Y(y) that satisfy the Laplace’s equation (1) and

the three homogeneous boundary conditions in (2) and (3) are

where we have rewritten c1c4 as A0 for n � 0 and as An for n � 1, 2, . . . .

A0y, n � 0,    and    An sinh 
n�

a
 y cos 

n�

a
 x,    n � 1, 2, . . . ,

Y � c3 cosh (n�y>a) � c4 sinh (n�y>a).

Y � �
n2�2

a2  Y � 0.

X � c1,   n � 0,    and    X � c1 cos 
n�

a
 x,    n � 1, 2, . . . .

�n � an
2 � n2�2>a2,

X � � a2X � 0,  X�(0) � 0, X�(a) � 0.

X � � 0,  X�(0) � 0,  X�(a) � 0.

X � � �X � 0,  X�(0) � 0,  X�(a) � 0.

Y � � �Y � 0.
X � � �X � 0

X �

X
� �

Y �

Y
� ��

FIGURE 12.5.1 Steady-state
temperatures in a rectangular plate

Insulated Insulated

u = 0

u = f (x)
(a, b)

x

y

*In that example the symbols y and L play the part of X and a in the current discussion.
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The superposition principle yields another solution:

(7)

We are now in a position to use the last boundary condition in (3). Substituting
x � b in (7) gives

which is a half-range expansion of f in a cosine series. If we make the identification
A0 b � a0 �2 and An sinh (npb�a) � an, n � 1, 2, 3, . . . , it follows from (2) and
(3) of Section 11.3 that

(8)

and

(9)

The solution of the boundary-value problem (1)–(3) consists of the series
in (7), with coefficients A0 and An defined in (8) and (9), respectivel .

Dirichlet Problem A boundary-value problem in which we seek a solution of
an elliptic partial differential equation such as Laplace’s equation �2u � 0, within a
bounded region R (in the plane or in 3-space) such that u takes on prescribed values
on the entire boundary of the region is called a Dirichlet problem. In Problem 1 in
Exercises 12.5 you are asked to show that the solution of the Dirichlet problem for a
rectangular region

is

u(x, 0) � 0,  u(x, b) � f (x),   0 � x � a

u(0, y) � 0,  u(a, y) � 0,  0 � y � b

�2u
�x2 �

�2u
�y2 � 0,  0 � x � a,  0 � y � b

An �
2

a sinh 
n�

a
 b

  �a

0
 f (x) cos 

n�

a
 x dx.

 An sinh 
n�

a
 b �

2
a

 �a

0
 f (x) cos 

n�

a
 x dx

 A0 �
1

ab
 �a

0
 f (x) dx

 2A0b �
2
a
 �a

0
 f (x) dx

u(x, b) � f (x) � A0b � �



n�1
�An

   sinh 
n�

a
 b� cos 

n�

a
 x,

u(x, y) � A0 y � �



n�1
An sinh 

n�

a
 y cos 

n�

a
 x.
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(10)u(x, y) � �



n�1
An sinh 

n�

a
 y sin 

n�

a
 x,    where    An �

2

a sinh 
n�

a
 b

 �a

0
 f (x) sin 

n�

a
 x dx.

In the special case when f (x) � 100, a � 1, b � 1, the coefficients An in (10) are

given by With the help of a CAS we plotted the surface 

define by u(x, y) over the region R: 0 � x � 1, 0 � y � 1, in Figure 12.5.2(a). You
can see in the figur that the boundary conditions are satisfied especially note that
along y � 1, u � 100 for 0 � x � 1. The isotherms, or curves in the rectangular re-
gion along which the temperature u(x, y) is constant, can be obtained by using the con-
tour plotting capabilities of a CAS and are illustrated in Figure 12.5.2(b). The isotherms
can also be visualized as the curves of intersection (projected into the xy-plane) of
horizontal planes u � 80, u � 60, and so on, with the surface in Figure 12.5.2(a).
Notice that throughout the region the maximum temperature is u � 100 and occurs on

An � 200 
1 � (�1)n

n� sinh n�
.
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476 ● CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

the portion of the boundary corresponding to y � 1. This is no coincidence. There is a
maximum principle that states a solution u of Laplace’s equation within a bounded
region R with boundary B (such as a rectangle, circle, sphere, and so on) takes on its
maximum and minimum values on B. In addition, it can be proved that u can have no
relative extrema (maxima or minima) in the interior of R. This last statement is clearly
borne out by the surface shown in Figure 12.5.2(a).

Superposition Principle A Dirichlet problem for a rectangle can be readily
solved by separation of variables when homogeneous boundary conditions are spec-
ified on two parallel boundaries. However, the method of separation of variables is
not applicable to a Dirichlet problem when the boundary conditions on all four sides
of the rectangle are nonhomogeneous. To get around this difficult , we break the
problem

(11)

into two problems, each of which has homogeneous boundary conditions on parallel
boundaries, as shown:

u(x, 0) � f (x),  u(x, b) � g(x),  0 � x � a

u(0, y) � F(y),   u(a, y) � G(y),  0 � y � b

�2u
�x2 �

�2u
�y2 � 0,  0 � x � a,  0 � y � b

x0
1

100

0

50

y
0.5 0.51

u(
x,

 y
)

(a) Surface

(b) Isotherms

x

y
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0.2 0.4 0.6 0.8 1

10

20

40

60
80

1

FIGURE 12.5.2 Surface is graph
of partial sums when f (x) � 100 and 
a � b � 1 in (10)

Problem 1

        �         � 0,

u1(0, y) � 0,

u1(x, 0) � f (x),

0 � x � a,

0 � x � a

∂2u1––––
∂x2

∂2u1––––
∂y2

Problem 2

        �         � 0,

u2(0, y) � F(y),

u2(x, 0) � 0,

0 � x � a,

0 � x � a

∂2u2––––
∂x2

∂2u2––––
∂y2

u1(a, y) � 0,

u1(x, b) � g(x),

0 � y � b

0 � y � b

0 � y � b

u2(x, b) � 0,

u2(a, y) � G(y), 0 � y � b

Suppose u1 and u2 are the solutions of Problems 1 and 2, respectively. If we
define u(x, y) � u1(x, y) � u2(x, y), it is seen that u satisfies all boundary conditions
in the original problem (11). For example,

and so on. Furthermore, u is a solution of Laplace’s equation by Theorem 12.1.1.
In other words, by solving Problems 1 and 2 and adding their solutions, we have
solved the original problem. This additive property of solutions is known as the
superposition principle. See Figure 12.5.3.

 u(x, b) � u1(x, b) � u2(x, b) � g(x) � 0 � g(x),

 u(0, y) � u1(0, y) � u2(0, y) � 0 � F(y) � F(y),

x

y

2u = 0

∆

F(y) F(y) G (y)G (y)

f (x)

g(x) (a, b)

x

y

2u1 = 0

∆

0 0

f (x)

g(x) (a, b)

x

y

2u2 == +  0

∆

0

0 (a, b)

FIGURE 12.5.3 Solution u � Solution u1 of Problem 1 � Solution u2 of Problem 2

We leave as exercises (see Problems 13 and 14 in Exercises 12.5) to show that a
solution of Problem 1 is

u1(x, y) � �



n�1
�An cosh 

n�

a
 y � Bn sinh 

n�

a
 y�

 
sin 

n�

a
 x,
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where

and that a solution of Problem 2 is

where

 Bn �
1

sinh 
n�

b
 a

 �2
b

 �b

0
 G(y) sin 

n�

b
 y dy � An cosh 

n�

b
 a�.

 An �
2
b

 �b

0
F(y) sin 

n�

b
 y dy

u2(x, y) � �



n�1
�An cosh 

n�

b
 x � Bn sinh 

n�

b
 x�

 
sin 

n�

b
 y,

 Bn �
1

sinh 
n�

a
 b

 �2
a

 �a

0
g(x) sin 

n�

a
 x dx � An cosh 

n�

a
 b�,

 An �
2
a

 �a

0
 f (x) sin 

np
a

x dx

12.5 LAPLACE’S EQUATION ● 477

EXERCISES 12.5 Answers to selected odd-numbered problems begin on page ANS-22.

In Problems 1–10 solve Laplace’s equation (1) for a rectan-
gular plate subject to the given boundary conditions.

1. u(0, y) � 0, u(a, y) � 0
u(x, 0) � 0, u(x, b) � f (x)

2. u(0, y) � 0, u(a, y) � 0

3. u(0, y) � 0, u(a, y) � 0
u(x, 0) � f (x), u(x, b) � 0

4.

u(x, 0) � x, u(x, b) � 0

5. u(0, y) � 0, u(1, y) � 1 � y

6.

7.

u(x, 0) � 0, u(x, p) � 0

8. u(0, y) � 0, u(1, y) � 0

9. u(0, y) � 0, u(1, y) � 0
u(x, 0) � 100, u(x, 1) � 200

�u
�y �

y�0
� u(x, 0), u(x, 1) � f (x)

�u
�x �

x�0
� u(0, y), u(�, y) � 1

�u
�y �

y�0
� 0,  

�u
�y �

y��
� 0

 u(0, y) � g(y), �u
�x �

x�1
� 0

�u
�y �

y�0
� 0, �u

�y �
y�1

� 0

�u
�x �

x�0
� 0, �u

�x �
x�a

� 0

�u
�y �

y�0
� 0, u(x, b) � f (x)

10.

u(x, 0) � 0, u(x, 1) � 0
In Problems 11 and 12 solve Laplace’s equation (1) for the
given semi-infinite plate extending in the positive y-direction.
In each case assume that u(x, y) is bounded as 
11.

y : 
.

u(0, y) � 10y, �u
�x �

x�1
� �1

FIGURE 12.5.4 Plate in Problem 11

x

y

u = 0 u = 0

 0
u = f (x)

π

12.

FIGURE 12.5.5 Plate in Problem 12

y

InsulatedInsulated

x 0
u = f (x)

π

In Problems 13 and 14 solve Laplace’s equation (1) for a rec-
tangular plate subject to the given boundary conditions.
13. u(0, y) � 0, u(a, y) � 0

u(x, 0) � f (x), u(x, b) � g(x)
14. u(0, y) � F(y), u(a, y) � G(y)

u(x, 0) � 0, u(x, b) � 0
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478 ● CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

Explain why a necessary condition for a solution u to
exist is that g satisfy

This is sometimes called a compatibility condition. Do
some extra reading and explain the compatibility condi-
tion on physical grounds.

20. Consider the boundary-value problem

u(0, y) � u0 cos y, u(1, y) � u0(1 � cos 2y)

Discuss how the following answer was obtained:

Carry out your ideas.

Computer Lab Assignments

21. (a) Use the contour-plot application of your CAS to
graph the isotherms u � 170, 140, 110, 80, 60, 30
for the solution of Problem 9. Use the partial sum
S5(x, y) consisting of the first five nonzero terms of
the solution.

(b) Use the 3D-plot application of your CAS to graph
the partial sum S5(x, y).

22. Use the contour-plot application of your CAS to graph
the isotherms u � 2, 1, 0.5, 0.2, 0.1, 0.05, 0, �0.05
for the solution of Problem 10. Use the partial sum
S5(x, y) consisting of the first five nonzero terms of
the solution.

u(x, y) � u0x � u0 
sinh(1� x)

sinh 1
 cos y �

u0

sinh 2
 sinh 2x cos 2y.

�u
�y �y�p

� 0.�u
�y �y�0

� 0,

�2u
�x2 �

�2u
�y2 � 0,  0 � x � 1,  0 � y � p

�b

0
 g(y)dy � 0.

In Problems 15 and 16 use the superposition principle to
solve Laplace’s equation (1) for a square plate subject to the
given boundary conditions.
15. u(0, y) � 1, u(p, y) � 1

u(x, 0) � 0, u(x, p) � 1
16. u(0, y) � 0, u(2, y) � y(2 � y)

Discussion Problems

17. (a) In Problem 1 suppose that a � b � p and
f (x) � 100x (p � x). Without using the solution
u(x, y), sketch, by hand, what the surface would
look like over the rectangular region defined by
0 � x � p, 0 � y � p.

(b) What is the maximum value of the temperature u for
0 � x � p, 0 � y � p?

(c) Use the information in part (a) to compute the
coefficients for your answer in Problem 1. Then
use the 3D-plot application of your CAS to graph
the partial sum S5(x, y) consisting of the firs
fiv nonzero terms of the solution in part (a) for
0 � x � p, 0 � y � p. Use different perspectives
and then compare with your sketch from part (a).

18. In Problem 16 what is the maximum value of the tem-
perature u for 0 � x � 2, 0 � y � 2?

19. Solve the Neumann problem for a rectangle:

0 � x � a

0 � y � b.
�u
�x �

x�a
� g(y),�u

�x �
x�0

� 0,

�u
�y �

y�b
� 0,�u

�y �y�0
� 0,

�2u
�x2 �

�2u
�y2 � 0,  0 � x � 0,  0 � y � b

u(x, 0) � 0, u(x, 2) � �x,   0 � x � 1
2 � x, 1 � x � 2

NONHOMOGENEOUS BOUNDARY-VALUE PROBLEMS

REVIEW MATERIAL
● Sections 12.3–12.5

INTRODUCTION A boundary-value problem is said to be nonhomogeneous if either the partial
differential equation or the boundary conditions are nonhomogeneous. The method of separation of
variables that we employed in the preceding three sections may not be applicable to a nonhomoge-
neous boundary-value problem directly. However, in the first of the two techniques examined in this
section we employ a change of variable that transforms a nonhomogeneous boundary-value problem
into a two problems: one a relatively simple BVP for an ODE and the other a homogeneous BVP for
a PDE. The latter problem is solvable by separation of variables. The second technique is basically a
frontal attack on the BVP using orthogonal series expansions.

12.6
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Nonhomogeneous BVPs When heat is generated at a rate r within a rod of
finite length, the heat equation takes on the for

(1)

Equation (1) is nonhomogeneous and is readily shown not to be separable. On the other
hand, suppose we wish to solve the homogeneous heat equation kuxx � ut when the
boundary conditions at x � 0 and x � L are nonhomogeneous—say, the boundaries
are held at nonzero temperatures: u(0, t) � u0 and u(L, t) � u1. Even though the sub-
stitution u(x, t) � X(t)T(t) separates kuxx � ut, we quickly find ourselves at an impasse
in determining eigenvalues and eigenfunctions, since no conclusion can be drawn
about X(0) and X(L) from u(0, t) � X(0)T(t) � u0 and u(L, t) � X(L)T(t) � u1.

What follows are two solution methods that are distinguished by different types
of nonhomogeneous BVPs.

Method 1 Consider a BVP involving a time-independent nonhomogeneous
equation and time-independent boundary conditions such as

(2)

where u0 and u1 are constants. By changing the dependent variable u to a new
dependent variable v by the substitution u(x, t) � v(x, t) � c (x), the problem in
(2) can be reduced to two problems:

Notice that Problem A involves an ODE that can be solved by integration, whereas
Problem B is a homogeneous BVP that is solvable by the usual separation of variables.
A solution of the original problem (2) is the sum of the solutions of Problems A and B.

The following example illustrates this first method

 
Problem B: � k �

2v
�x2 �

�v
�t

,

 v(0, t) � 0, v(L, t) � 0
 v(x, 0) � f (x) � � (x)

 Problem A:  {k� � � F(x) � 0,  � (0) � u0,  � (L) � u1

u(x, 0) � f (x),  0 � x � L ,

u(0, t)  � u0, u(L, t) � u1, t 	 0

k �
2u

�x2 � F(x) �
�u
�t

,  0 � x � L, t 	 0

k �
2u

�x2 � r �
�u
�t

,  0 � x � L, t 	 0.

12.6 NONHOMOGENEOUS BOUNDARY-VALUE PROBLEMS ● 479

EXAMPLE 1 Using Method 1

Suppose r is a positive constant. Solve (1) subject to

SOLUTION Both the partial differential equation and the boundary condition at
x � 1 are nonhomogeneous. If we let u(x, t) � v(x, t) � c(x), then

Substituting these results into (1) gives

(3)

Equation (3) reduces to a homogeneous equation if we demand that c satisfy

k� � � r � 0    or    � � � �
r
k
.

k �
2v

�x2 � k� � � r �
�v
�t

.

�2u
�x2 �

�2v
�x2 � � �    and    

�u
�t

�
�v
�t

.

 u(x, 0) � f (x), 0 � x � 1.
 u(0, t) � 0,  u(1, t) � u0, t 	 0
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480 ● CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

Integrating the last equation twice reveals that

(4)

Furthermore,

We have v(0, t) � 0 and v(1, t) � 0, provided that

Applying the latter two conditions to (4) gives, in turn, c2 � 0 and c1 � r�2k � u0.
Consequently,

Finally, the initial condition u(x, 0) � v(x, 0) � c(x) implies that v(x, 0) � u(x, 0) �
c(x) � f (x) � c(x). Thus to determine v(x, t), we solve the new boundary-value
problem

by separation of variables. In the usual manner we fin

where

(5)

A solution of the original problem is obtained by adding c (x) and v(x, t):

(6)

where the coefficients An are defined in (5)

Observe in (6) that as In the context of solving forms of
the heat equation, c is called a steady-state solution. Since as it
is called a transient solution.

Method 2 Another type of problem involves a time-dependent nonhomo-
geneous equation and homogeneous boundary conditions. Unlike Method 1, in
which u(x, t) is found by solving two separate problems, it is possible to find the entire
solution of a problem such as

(7)

by making the assumption that time-dependent coefficients un(t) and Fn(t) can be
found such that both u(x, t) and F(x, t) in (7) can be expanded in the series

(8)u(x, t) � �



n�1
un(t) sin 

n�

L
 x    and    F(x, t) � �




n�1
Fn(t) sin 

n�

L
 x,

u(x, 0) � f (x), 0 � x � L,
u(0, t)  � 0, u(L, t) � 0, t 	 0

k �
2u

�x2 � F(x, t) �
�u
�t

,  0 � x � L, t 	 0

t : 
,v(x, t) : 0
t : 
.u(x, t) : � (x)

u(x, t) � �
r

2k
 x2 � � r

2k
� u0�x � �




n�1
An

 e�kn2� 2t sin n�x,

An � 2�1

0
 	f (x) �

r
2k

 x2 � � r
2k

� u0�x
sin n�x dx.

v(x, t) � �



n�1
An e�kn2� 2t sin n�x,

v(x, 0) � f (x) �
r

2k
 x2 � � r

2k
� u0�x,  0 � x � 1

v(0, t) � 0, v(1, t) � 0, t 	 0

k 
�2v
�x2 �

�v
�t

, 0 � x � 1, t 	 0

� (x) � �
r

2k
 x2 � � r

2k
� u0�x.

� (0) � 0    and    � (1) � u0.

 u(1, t) � v(1, t) � � (1) � u0.

 u(0, t) � v(0, t) � � (0) � 0

� (x) � �
r

2k
 x2 � c1x � c2.
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where sin(npx�L), n � 1, 2, 3, . . . , are the eigenfunctions of X� � lX � 0,
X(0) � 0, X(L) � 0 corresponding to the eigenvalues The lat-
ter problem would have been obtained had separation of variables been applied to the
associated homogeneous PDE in (7). In (8) observe that the assumed form for u(x, t)
already satisfies the boundary conditions in (7). The basic idea here is to substitute
the first series in (8) into the nonhomogeneous PDE in (7), collect terms, and equat
the resulting series with the actual series expansion found for F(x, t).

The next example illustrates this method.

�n � 
n
2 � n2�2>L2.

12.6 NONHOMOGENEOUS BOUNDARY-VALUE PROBLEMS ● 481

EXAMPLE 2 Using Method 2

Solve

SOLUTION With k � 1, L � 1, the eigenvalues and eigenfunctions of X� � lX � 0,
X(0) � 0, X(1) � 0 are found to be and sin npx, n � 1, 2, 3, . . . . If we
assume that

(9)

then the formal partial derivatives of u are

(10)

Now the assumption that we can write F(x, t) � (1 � x) sin t as

implies that

Hence, (11)

Substituting the series in (10) and (11) into ut � uxx � (1 � x) sin t, we get

To determine un(t), we now equate the coefficients of sin npx on each side of the pre-
ceding equality:

This last equation is a linear first-order ODE whose solution i

un(t) �
2

n�
 	n2�2 sin t � cos t

n4�4 � 1 
 � Cne�n2 � 2t,

u�n (t) � n2�2un(t) �
2 sin t

n�
.

�



n�1
	u�n (t) � n2�2un(t)
sin n�x � �




n�1

2 sin t
n�

 sin n�x.

(1 � x)sin t � �



n�1

 2
n�

 sin t sin n�x.

Fn(t) �
2
1
 �1

0
(1 � x) sin t sin n� x dx � 2 sin t �1

0
(1 � x) sin n�x dx �

2
n� 

 sin t.

(1 � x)sin t � �



n�1
Fn(t) sin n� x

�2u
�x2 � �




n�1
un(t)(�n2�2) sin n�x    and    

�u
�t

� �



n�1
u�n (t) sin n�x.

u(x, t) � �



n�1
un(t) sin n�x,

�n � an
2 � n2�2

u(x, 0) � 0, 0 � x � 1.

u(0, t)  � 0, u(1, t) � 0, t 	 0,

�2u
�x2 � (1 � x) sin t �

�u
�t

,  0 � x � 1, t 	 0
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482 ● CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

where Cn denotes the arbitrary constant. Therefore the assumed form of u(x, t)
in (9) can be written as the sum of two series:

(12)

Finally, we apply the initial condition u(x, 0) � 0 to (12). By rewriting the resulting
expression as one series,

we conclude from this identity that the total coefficient of sin npx must be zero, so

Hence from (12) we see that a solution of the given problem is

u(x, t) �
2
�

   �



n�1
 
n2�2sin t � cos t

n(n4�4 � 1)
 sin n�x �

2
�

   �



n�1
 

1
n(n4�4 � 1)

 e�n2 � 2t sin n�x.

Cn �
2

n� (n4�4 � 1)
.

0 � �



n�1
	 �2

n�(n4�4 � 1)
� Cn
sin n�x,

u(x, t) � �



n�1

 2
n�

 	n2�2sin t � cos t
n4�4 � 1 
sin n�x � �




n�1
Cne�n2� 2t sin n�x.

EXERCISES 12.6 Answers to selected odd-numbered problems begin on page ANS-22.

In Problems 1–12 use Method 1 of this section to solve the
given boundary-value problem.

In Problems 1 and 2 solve the heat equation kuxx � ut, 
0 � x � 1, t 	 0, subject to the given conditions.

1. u(0, t) � 100, u(1, t) � 100
u(x, 0) � 0

2. u(0, t) � u0, u(1, t) � 0
u(x, 0) � f (x)

In Problems 3 and 4 solve the partial differential equation (1)
subject to the given conditions.

3. u(0, t) � u0, u(1, t) � u0
u(x, 0) � 0

4. u(0, t) � u0, u(1, t) � u1
u(x, 0) � f (x)

5. Solve the boundary-value problem

The partial differential equation is a form of the heat
equation when heat is generated within a thin rod from
radioactive decay of the material.

u(x, 0) � f (x), 0 � x � 1.

 u(0, t) � 0, u(1, t) � 0, t 	 0

k �
2u

�x2 � Ae��x �
�u
�t

,  � 	 0, 0 � x � 1, t 	 0

6. Solve the boundary-value problem

The partial differential equation is a form of the heat
equation when heat is lost by radiation from the lat-
eral surface of a thin rod into a medium at temperature
zero.

7. Find a steady-state solution c (x) of the boundary-value
problem

8. Find a steady-state solution c(x) if the rod in Problem 7
is semi-infinite extending in the positive x-direction,
radiates from its lateral surface into a medium of
temperature zero, and

u(x, 0) � f (x), x 	 0.

u(0, t)  � u0,   lim
x : 


u(x, t) � 0, t 	 0

 u(x, 0) � f (x), 0 � x � 1.

u(0, t) � u0, u(1, t) � 0, t 	 0

k 
�2u
�x2 � h(u � u0) �

�u
�t

,  0 � x � 1, t 	 0

u(x, 0) � 0, 0 � x � �.

u(0, t)  � 0, u(�, t) � u0, t 	 0

 k �
2u

�x2 � hu �
�u
�t

,  0 � x � �, t 	 0
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9. When a vibrating string is subjected to an external
vertical force that varies with the horizontal distance
from the left end, the wave equation takes on the form

where A is a constant. Solve this partial differential
equation subject to

10. A string initially at rest on the x-axis is secured on the
x-axis at x � 0 and x � 1. If the string is allowed to fall
under its own weight for t 	 0, the displacement u(x, t)
satisfie

where g is the acceleration of gravity. Solve for u(x, t).

11. Find the steady-state temperature u(x, y) in the 
semi-infinite plate shown in Figure 12.6.1. Assume
that the temperature is bounded as [Hint: Try
u(x, y) � v(x, y) � c (y).]

x : 
.

a2 �2u
�x2 � g �

�2u
�t2 ,  0 � x � 1, t 	 0,

 u(x, 0) � 0, �u
�t �

t�0
� 0, 0 � x � 1.

 u(0, t) � 0, u(1, t) � 0, t 	 0

a2 �2u
�x2 � Ax �

�2u
�t2 ,

12.7 ORTHOGONAL SERIES EXPANSIONS ● 483

electrical potential. Solve the equation subject to the
conditions

In Problems 13–18 use Method 2 of this section to solve the
given boundary-value problem.

13.

u(0, t) � 0, u(p, t) � 0, t 	 0
u(x, 0) � 0, 0 � x � p

14.

u(x, 0) � 0, 0 � x � p

15.

u(0, t) � 0, u(1, t) � 0, t 	 0
u(x, 0) � x(1 � x), 0 � x � 1

16.

u(0, t) � 0, u(p, t) � 0, t 	 0,

17.

u(0, t) � sin t, u(1, t) � 0, t 	 0
u(x, 0) � 0, 0 � x � 1

18.

u(0, t) � t2, u(1, t) � 1, t 	 0
u(x, 0) � x2, 0 � x � 1

�2u
�x2 � 2t � 3tx �

�u
�t

,  0 � x � 1,  t 	 0

�2u
�x2 �

�u
�t

,  0 � x � 1,  t 	 0

u(x, 0) � 0, �u
�t �

t�0
� 0, 0 � x � p

�2u
�x2 � cos t sin x �

�2u
�t2 ,  0 � x � �, t 	 0

�2u
�x2 � 1 � x � x cos t �

�u
�t

, 0 � x � 1, t 	 0

�u
�x �

x�0
� 0, �u

�x �
x��

� 0, t 	 0

�2u
�x2 � xe�3t �

�u
�t

,  0 � x � �, t 	 0

�2u
�x2 � xe�3t �

�u
�t

,  0 � x � �, t 	 0

 u(x, 0) � 0, 0 � x � �.

 u(0, y) � 0, u(�, y) � 1, y 	 0

x

y

 0 u = u1

u = 0

1
u = u0

FIGURE 12.6.1 Plate in Problem 11

12. The partial differential equation

where h 	 0 is a constant, is known as Poisson’s
equation and occurs in many problems involving

�2u
�x2 �

�2u
�y2 � �h,

ORTHOGONAL SERIES EXPANSIONS

REVIEW MATERIAL
● The results in (7)–(11) of Section 11.1 form the backbone of the discussion that follows.

A review that material is recommended.

INTRODUCTION For certain types of boundary conditions, the method of separation of variables
and the superposition principle lead to an expansion of a function in a trigonometric series that is not
a Fourier series. To solve the problems in this section, we will use the concept of orthogonal series
expansions or generalized Fourier series.

12.7
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484 ● CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

EXAMPLE 1 Using Orthogonal Series Expansions

The temperature in a rod of unit length in which there is heat transfer from its right
boundary into a surrounding medium kept at a constant temperature zero is deter-
mined from

Solve for u(x, t).

SOLUTION Proceeding as in Section 12.3 with u(x, t) � X(x)T(t) and using �l as the
separation constant, we find the separated equations and boundary conditions to be,
respectively,

(1)
(2)
(3)

Equation (1) and the homogeneous boundary conditions (3) make up a regular
Sturm-Liouville problem:

(4)

By analyzing the usual three cases in which l is zero, negative, or positive, we fin
that only the last case will yield nontrivial solutions. Thus with l � a2 	 0, a 	 0,
the general solution of the DE in (4) is

(5)

The first boundary condition in (4) immediately gives c1 � 0. Applying the second
condition in (4) to X(x) � c2 sin ax yields

(6)

From the analysis in Example 2 of Section 11.4 we know that the last equation in
(6) has an infinite number of roots. If the consecutive positive roots are denoted an,
n � 1, 2, 3, . . . , then the eigenvalues of the problem are and the corre-
sponding eigenfunctions are X(x) � c2 sin an x, n � 1, 2, 3, . . . . The solution of
the first-order DE (2) is so

Now at t � 0, u(x, 0) � 1, 0 � x � 1, so

(7)

The series in (7) is not a Fourier sine series; rather, it is an expansion of u(x, 0) � 1
in terms of the orthogonal functions arising from the regular Sturm-Liouville prob-
lem (4). It follows that the set of eigenfunctions {sin anx}, n � 1, 2, 3, . . . , where
the a’s are defined by tana � �a�h, is orthogonal with respect to the weight
function p(x) � 1 on the interval [0, 1]. By matching (7) with (7) of Section 11.1, it

1 � �



n�1
An sin 
nx.

un � XT � Ane�k
n
2t sin 
n x    and    u(x, t) � �




n�1
Ane�k
n

2t sin 
n x.

T(t) � c3e�kan
2  t ,

�n � an
2,


 cos 
 � h sin 
 � 0    or    tan 
 � �



h
.

X(x) � c1 cos ax � c2 sin ax.

X � � �X � 0, X(0) � 0, X�(1) � hX(1) � 0.

X(0) � 0    and    X�(1) � �hX(1).
T� � k�T � 0
X � � �X � 0

 u(x, 0) � 1, 0 � x � 1.

 u(0, t) � 0, �u
�x �

x�1
� �hu(1, t), h 	 0, t 	 0

 k �
2u

�x2 �
�u
�t

,  0 � x � 1, t 	 0
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12.7 ORTHOGONAL SERIES EXPANSIONS ● 485

follows from (8) of that section, with f (x) � 1 and fn(x) � sin anx, that the coeffi
cients An are given by

(8)

To evaluate the square norm of each of the eigenfunctions, we use a trigonometric
identity:

(9)

Using the double-angle formula sin 2an � 2 sin an cos an and the first equation in
(6) in the form an cos an � �h sin an, we simplify (9) to

Also

Consequently, (8) becomes

Finally, a solution of the boundary-value problem is

u(x, t) � 2h�



n�1

 1 � cos 
n


n(h � cos2
n)
 e�kan

2 t sin 
nx.

An �
2h(1 � cos 
n)

n(h � cos2
n)

.

�1

0
sin 
n x dx � �

1

n

  cos 
n x �1

0
�

1

n

 (1 � cos 
n).

�1

0
sin2
n x dx �

1
2h

 (h � cos2
n).

�1

0
sin2
nx dx �

1
2
 �1

0
(1 � cos 2
x) dx �

1
2

 �1 �
1

2
n
 sin 2
n�.

An �
�1

0
 sin 
nx dx

�1
0
 sin2
nx dx

.

10

θ

FIGURE 12.7.1 Twisted shaft in
Example 2

EXAMPLE 2 Using Orthogonal Series Expansions

The twist angle u(x, t) of a torsionally vibrating shaft of unit length is determined from

See Figure 12.7.1. The boundary condition at x � 1 is called a free-end condition.
Solve for u(x, t).

SOLUTION Proceeding as in Section 12.4 with u(x, t) � X(x)T(t) and using �l
once again as the separation constant, the separated equations and boundary condi-
tions are

(10)
(11)
(12)

A regular Sturm-Liouville problem in this case consists of equation (10) and the
homogeneous boundary conditions in (12):

(13)X � � �X � 0,  X(0) � 0, X�(1) � 0.

X(0) � 0   and    X�(1) � 0.
 T � � a2�T � 0
 X � � �X � 0

 �(x, 0) � x, ��

�t �
t�0

� 0, 0 � x � 1.

 �(0, t) � 0, ��

�x �
x�1

� 0, t 	 0

 a2 �
2�

�x2 �
�2�

�t2,  0 � x � 1, t 	 0
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486 ● CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

As in Example 1, (13) possesses nontrivial solutions only for l � a2 	 0, a 	 0.
The boundary conditions X(0) � 0 and X�(1) � 0 applied to the general solution

(14)

give, in turn, c1 � 0 and c2 cos a � 0. Since the cosine function is zero at
odd multiples of p�2, a � (2n � 1)p�2, and the eigenvalues of (13) are

The solution of the second-order
DE (11) is T(t) � c3 cos aan t � c4 sin aan t. The initial condition T�(0) � 0 gives
c4 � 0, so

To satisfy the remaining initial condition, we form

(15)

When t � 0, we must have, for 0 � x � 1,

(16)

As in Example 1 the set of eigenfunctions n � 1, 2, 3, . . . , 

is orthogonal with respect to the weight function p(x) � 1 on the interval [0, 1].
Although the series in (16) looks like a Fourier sine series, it is not, because the
argument of the sine function is not an integer multiple of px�L (here L � 1). The
series again is an orthogonal series expansion or generalized Fourier series. Hence
from (8) of Section 11.1 the coefficients in (16) ar

Carrying out the two integrations, we arrive at

The twist angle is then

(17)

We can use a CAS to plot u (x, t) defined in (17) either as a three-dimensional
surface or as two-dimensional curves by holding one of the variables constant. In
Figure 12.7.2 we have plotted the surface defined by u (x, t) over the rectangular
region 0 � x � 1, 0 � t � 10. The cross sections of this surface are interesting.
In Figure 12.7.3 we have plotted u as a function of time t on the interval [0, 10] using
four specified values of x and a partial sum of (17) (with a � 1). As can be seen in the
four parts of Figure 12.7.3, the twist angle of each cross section of the rod oscillates
back and forth (positive and negative values of u) as time t increases. Figure 12.7.3(d)
portrays what we would intuitively expect in the absence of any damping, the end of
the rod x � 1 is displaced initially 1 radian (u (1, 0) � 1); when in motion, this end
oscillates indefinitely between its maximum displacement of 1 radian and minimum
displacement of �1 radian. The graphs in Figure 12.7.3(a)–(c) show what appears to
be a “pausing” behavior of u at its maximum (minimum) displacement of each of the

�(x, t) �
8

�2 �  



  
n�1

 
(�1)n�1

(2n � 1)2 cos a �2n � 1
2 ��t sin �2n � 1

2 ��x.

An �
8(�1)n�1

(2n � 1)2�2.

An �

�1

0
x sin �2n � 1

2 ��x dx

�1

0
sin2 �2n � 1

2 ��x dx
.

�sin �2n � 1
2

 ��x�,

�(x, 0) � x � �



n�1
An sin �2n � 1

2 ��x.

�(x, t) � �



n�1
An cos a �2n � 1

2 ��t sin �2n � 1
2 ��x.

�n � XT � An cos a �2n � 1
2 ��t sin �2n � 1

2 ��x.

�n � an
2 � (2n � 1)2�2>4, n � 1, 2, 3, . . . .

X(x) � c1 cos ax � c2 sin ax

FIGURE 12.7.2 Surface is the graph of
a partial sum of (17) in Example 2

10
8

6
4

2 0
0.2

0.4
0.6

0.8
1

1

-1
0

0

� (x,t)

t

x
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12.7 ORTHOGONAL SERIES EXPANSIONS ● 487

specified cross sections before changing direction and heading toward its minimum
(maximum). This behavior diminishes as x : 1.

2

-1

-0.5

0

0.5

1

(a) x = 0.2 (b) x = 0.5

(c) x = 0.8 (d) x = 1

(0.2, t) (0.5, t)

(0.8, t)� �

��

(1, t)

4 6 8 10

t t

20 0

-1

-0.5

0

0.5

1

4 6 8 10

2

-1

-0.5

0

0.5

1

4 6 8 10

t t

20 0

-1

-0.5

0

0.5

1

4 6 8 10

FIGURE 12.7.3 Angular displacements u as a function of time at various cross sections
of the rod in Example 2

EXERCISES 12.7 Answers to selected odd-numbered problems begin on page ANS-23.

1. In Example 1 find the temperature u(x, t) when the left
end of the rod is insulated.

2. Solve the boundary-value problem

3. Find the steady-state temperature for a rectangular plate
for which the boundary conditions are

4. Solve the boundary-value problem

 
�u
�y �

y�0
� 0,    �u

�y �
y�1

� �hu(x, 1), h 	 0, x 	 0.

 u(0, y) � u0, lim
x : 


u(x, y) � 0, 0 � y � 1

�2u
�x2 �

�2u
�y2 � 0, 0 � y � 1, x 	 0

u(x, 0) � 0, u(x, b) � f (x), 0 � x � a.

 u(0, y) � 0, �u
�x �

x�a
� �hu(a, y), 0 � y � b

u(x, 0) � f (x), 0 � x � 1.

u(0, t) � 0, 
�u
�x �

x�1
� �h(u(1, t) � u0),  h 	 0,  t 	 0

k �
2u

�x2 �
�u
�t

, 0 � x � 1,  t 	 0

5. Find the temperature u(x, t) in a rod of length L if the ini-
tial temperature is f (x) throughout and if the end x � 0 is
kept at temperature zero and the end x � L is insulated.

6. Solve the boundary-value problem

The solution u(x, t) represents the longitudinal displace-
ment of a vibrating elastic bar that is anchored at its left
end and is subjected to a constant force of magnitude F0
at its right end. See Figure 12.4.4 in Exercises 12.4. E is
a constant called the modulus of elasticity.

7. Solve the boundary-value problem

 u(x, 0) � 0, �u
�y �

y�1
� 0, 0 � x � 1.

 
�u
�x �

x�0
� 0, u(1, y) � u0, 0 � y � 1

 
�2u
�x2 �

�2u
�y2 � 0, 0 � x � 1, 0 � y � 1

 u(x, 0) � 0, �u
�t �

t�0
� 0, 0 � x � L.

 u(0, t) � 0, E 
�u
�x �

x�L
� F0, t 	 0

 a2 �
2u

�x2 �
�2u
�t2 , 0 � x � L, t 	 0
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488 ● CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

8. The initial temperature in a rod of unit length is f (x)
throughout. There is heat transfer from both ends, x � 0
and x � 1, into a surrounding medium kept at a constant
temperature zero. Show that

where

.

The eigenvalues are where
the an are the consecutive positive roots of
tan a � 2ah�(a2 � h2).

9. Use Method 2 of Section 12.6 to solve the boundary-
value problem

Computer Lab Assignments

10. A vibrating cantilever beam is embedded at its left end
(x � 0) and free at its right end (x � 1). See Figure 12.7.4.
The transverse displacement u(x, t) of the beam is

 u(x, 0) � 0, 0 � x � 1.

 u(0, t) � 0, �u
�x �

x�1
� �u(1, t), t 	 0

 k �
2u

�x2 � xe�2t �
�u
�t

,  0 � x � 1, t 	 0

�n � an
2, n � 1, 2, 3, . . . ,

An �
2

(
2
n � 2h � h2)

 �1

0
 f (x)(
n cos
nx � h sin 
nx) dx

u(x, t) � �



n�1
 Ane�k
n

2 t(
n cos 
nx � h sin 
nx),

determined from the boundary-value problem

Use a CAS to find approximations to the first two positive
eigenvalues of the problem. [Hint: See Problems 11 and
12 in Exercises 12.4.]

u(x, 0) � f (x), �u
�t �

t�0
� g(x), 0 � x � 1.

�2u
�x2 �

x�1
� 0,  

�3u
�x3 �

x�1
� 0, t 	 0

u(0, t) � 0,  
�u
�x �

x�0
� 0, t 	 0

 
�4u
�x4 �

�2u
�t2 � 0, 0 � x � 1, t 	 0

u

x1

FIGURE 12.7.4 Vibrating cantilever beam in Problem 10

Heat and Wave Equations in Two Dimensions Suppose the rectangular
region in Figure 12.8.1(a) is a thin plate in which the temperature u is a function of
time t and position (x, y). Then, under suitable conditions, u(x, y, t) can be shown to
satisfy the two-dimensional heat equation

(1)

On the other hand, suppose Figure 12.8.1(b) represents a rectangular frame over
which a thin flexible membrane has been stretched (a rectangular drum). If the
membrane is set in motion, then its displacement u, measured from the xy-plane

k ��2u
�x2 �

�2u
�y2� �

�u
�t

.

11. (a) Find an equation that defines the eigenvalues when
the ends of the beam in Problem 10 are embedded
at x � 0 and x � 1.

(b) Use a CAS to find approximations to the first two
positive eigenvalues.

HIGHER-DIMENSIONAL PROBLEMS

REVIEW MATERIAL
● Sections 12.3 and 12.4

INTRODUCTION Up to now we have solved boundary-value problems involving the one-
dimensional heat and wave equations. In this section we show how to extend the method of separa-
tion of variables to problems involving the two-dimensional versions of these partial differential
equations.

12.8
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12.8 HIGHER-DIMENSIONAL PROBLEMS ● 489

(transverse vibrations), is also a function of t and position (x, y). When the vibrations
are small, free, and undamped, u(x, y, t) satisfies the two-dimensional wave
equation

(2)

To separate variables in (1) and (2), we assume a product solution of the form
u(x, y, t) � X(x)Y(y)T(t). We note that

As we see next, with appropriate boundary conditions, boundary-value problems
involving (1) and (2) lead to the concept of Fourier series in two variables.

�2u
�x2 � X�YT,    

�2u
�y2 � XY�T,    and    

�u
�t

� XYT�.

a2 ��2u
�x2 �

�2u
�y2 � �

�2u
�t2 .

y

x

c

b

(b, c)

u

y
x

c
b

(a)

(b)

FIGURE 12.8.1 (a) Rectangular plate
and (b) rectangular membrane

EXAMPLE 1 Temperatures in a Plate

Find the temperature u(x, y, t) in the plate shown in Figure 12.8.1(a) if the initial
temperature is f (x, y) throughout and if the boundaries are held at temperature zero
for time t 	 0.

SOLUTION We must solve

subject to

Substituting u(x, y, t) � X(x)Y(y)T(t), we get

(3)

Since the left-hand side of the last equation in (3) depends only on x and the right
side depends only on y and t, we must have both sides equal to a constant �l:

and so (4)

(5)

By the same reasoning, if we introduce another separation constant �m in (5), then

yield (6)

Now the homogeneous boundary conditions

Thus we have two Sturm-Liouville problems:

(7)

and (8) Y � � �Y � 0, Y(0) � 0, Y(c) � 0.

 X � � �X � 0, X(0) � 0, X(b) � 0

u(0, y, t) � 0, u(b, y, t) � 0
u(x, 0, t) � 0, u(x, c, t) � 0�   imply that   �X(0) � 0, X(b) � 0

Y(0) � 0, Y(c) � 0.

Y � � �Y � 0   and   T� � k(� � �)T � 0.

Y �

Y
� ��   and   

T�

kT
� � � ��

Y �

Y
�

T�

kT
� �.

 X � � �X � 0

 
X �

X
� �

Y �

Y
�

T�

kT
� ��

k(X �YT � XY �T ) � XY T�    or    
X �

X
� �

Y �

Y
�

T�

kT
.

 u(x, y, 0) � f (x, y), 0 � x � b, 0 � y � c.

 u(x, 0, t) � 0, u(x, c, t) � 0, 0 � x � b,  t 	 0

 u(0, y, t) � 0, u(b, y, t) � 0, 0 � y � c,  t 	 0

k��2u
�x2 �

�2u
�y2� �

�u
�t

,  0 � x � b, 0 � y � c, t 	 0
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490 ● CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

The usual consideration of cases (l � 0, l � a2 	 0, l � �a2 � 0, m � 0, and
so on) leads to two independent sets of eigenvalues,

The corresponding eigenfunctions are

�m �
m2�2

b2    and   �n �
n2�2

c2 .

(9)X(x) � c2 sin m�

b
 x, m � 1, 2, 3 . . . ,    and    Y(y) � c4 sin n�

c
 y, n � 1, 2, 3, . . . .

After we substitute the known values of ln and mn in the first-order DE in (6), its
general solution is found to be A product solution of
the two-dimensional heat equation that satisfies the four homogeneous boundary
conditions is then

where Amn is an arbitrary constant. Because we have two sets of eigenvalues, we are
prompted to try the superposition principle in the form of a double sum

(10)

At t � 0 we must have

(11)

We can find the coefficients Amn by multiplying the double sum (11) by the product
sin(mpx�b) sin(npy�c) and integrating over the rectangle defined by the inequali-
ties 0 � x � b, 0 � y � c. It follows that

(12)

Thus the solution of the BVP consists of (10) with the Amn defined in (12)

The series (11) with coefficients (12) is called a sine series in two vari-
ables or a double sine series. We summarize next the cosine series in two
variables.

The double cosine series of a function f (x, y) defined over a rectangular region
defined by � x � b, 0 � y � c is given by

where

For a problem leading to a double-cosine series see Problem 2 in Exercises 12.8.

 Amn �
4

bc
 �c

0
�b

0
f (x, y) cos 

m�

b
 x cos 

n�

c
 y dx dy.

 A0n �
2

bc
 �c

0
�b

0
f (x, y) cos 

n�

c
 y dx dy

 Am0 �
2

bc
 �c

0
�b

0
f (x, y) cos 

m�

b
 x dx dy

 A00 �
1
bc

 �c

0
�b

0
f (x, y) dx dy

 � �



m�1

 �



n�1
Amn cos 

m�

b
 x cos 

n�

c
 y,

 f (x, y) � A00 � �



m�1
Am0 cos 

m�

b
 x � �




n�1
A0n cos 

n�

c
 y

Amn �
4
bc

 �c

0
�b

0
 f (x, y) sin 

m�

b
 x sin 

n�

c
 y dxdy.

u(x, y, 0) � f (x , y) � �



m�1

 �



n�1
Amn sin 

m�

b
 x sin 

n�

c
 y.

u(x, y, t) � �



m�1

 �



n�1
Amne�k [(m� /b)2�(n� /c)2 ]t sin 

m�

b
 x sin 

n�

c
 y.

umn(x, y, t) � Amn e�k [(m�/b)2�(n� /c)2 ]t sin 
m�

b
 x sin 

n�

c
 y,

T(t) � c5 e�k [(m� /b)2�(n� /c)2 ]t.

27069_12_ch12_p455-492.qxd  2/2/12  2:55 PM  Page 490

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



CHAPTER 12 IN REVIEW ● 491

EXERCISES 12.8 Answers to selected odd-numbered problems begin on page ANS-23.

In Problems 1 and 2 solve the heat equation (1) subject to the
given conditions.

1. u(0, y, t) � 0, u(p, y, t) � 0
u(x, 0, t) � 0, u(x, p, t) � 0
u(x, y, 0) � u0

2.

u(x, y, 0) � xy

In Problems 3 and 4 solve the wave equation (2) subject to
the given conditions.

3. u(0, y, t) � 0, u(p, y, t) � 0
u(x, 0, t) � 0, u(x, p, t) � 0
u(x, y, 0) � xy (x � p)(y � p)

4. u(0, y, t) � 0, u(b, y, t) � 0
u(x, 0, t) � 0, u (x, c, t) � 0
u(x, y, 0) � f (x, y)
�u
�t �

t�0
� g(x, y)

�u
�t �

t�0
� 0

�u
�y �

y�0
� 0, �u

�y �
y�1

� 0

�u
�x �

x�0
� 0, �u

�x �
x�1

� 0

The steady-state temperature u(x, y, z) in the rectangular par-
allelepiped shown in Figure 12.8.2 satisfies Laplace’s equa-
tion in three dimensions:

(13)
�2u
�x2 �

�2u
�y2 �

�2u
�z2 � 0.

y

x

z

(a, b, c)

FIGURE 12.8.2 Rectangular parallelepiped in
Problems 5 and 6

5. Solve Laplace’s equation (13) if the top (z � c) of
the parallelepiped is kept at temperature f (x, y) and the
remaining sides are kept at  temperature zero.

6. Solve Laplace’s equation (13) if the bottom (z � 0) of
the parallelepiped is kept at temperature f (x, y) and the
remaining sides are kept at temperature zero.

CHAPTER 12 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-23.

1. Use separation of variables to find product solutions of

.

2. Use separation of variables to find product solutions of

.

Is it possible to choose a separation constant so that both
X and Y are oscillatory functions?

3. Find a steady-state solution c (x) of the boundary-value
problem

4. Give a physical interpretation for the boundary condi-
tions in Problem 3.

 u(x, 0) � 0, 0 � x � �.

 u(0, t) � u0, �
�u
�x �

x��
� u(�, t) � u1, t 	 0

 k �
2u

�x2 �
�u
�t

, 0 � x � �, t 	 0,

�2u
�x2 �

�2u
�y2 � 2

�u
�x

� 2
�u
�y

� 0

�2u
�x �y

� u

5. At t � 0 a string of unit length is stretched on the positive
x-axis. The ends of the string x � 0 and x � 1 are secured
on the x-axis for t 	 0. Find the displacement u(x, t) if the
initial velocity g(x) is as given in Figure 12.R.1.

x

g(x)

h

1
4

1
2

3
4

1

FIGURE 12.R.1 Initial velocity g(x) in Problem 5

6. The partial differential equation

is a form of the wave equation when an external vertical
force proportional to the square of the horizontal distance
from the left end is applied to the string. The string is se-
cured at x � 0 one unit above the x-axis and on the x-axis
at x � 1 for t 	 0. Find the displacement u(x, t) if the
string starts from rest from the initial displacement f (x).

�2u
�x2 � x2 �

�2u
�t2
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492 ● CHAPTER 12 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

7. Find the steady-state temperature u(x, y) in the square
plate shown in Figure 12.R.2.

11. Solve the boundary-value problem

12. Solve the boundary-value problem

13. Find a formal series solution of the problem

14. The concentration c(x, t) of a substance that both
diffuses in a medium and is convected by the cur-
rents in the medium satisfies the partial differential
equation

k and h constants. Solve the PDE subject to

where c0 is a constant.

15. Solve the boundary-value problem

where are constants.u0 and  u1

u(x, 0) � u0,   0 � x � 1,

u(0, t) � u0,    
�u
�x �

x�1
� �u(1, t) � u1,   t 	 0

�2u
�x2 �

�u
�t

,   0 � x � 1,  t 	 0

 c(x, 0) � c0, 0 � x � 1,
 c(0, t) � 0, c(1, t) � 0, t 	 0

k �
2c

�x2 � h �c
�x

�
�c
�t

,

 
�u
�t �

t�0
� 0, 0 � x � �.

u(0, t) � 0, u(�, t) � 0,  t 	 0

 
�2u
�x2 � 2 �u

�x
�

�2u
�t2 � 2 �u

�t
� u, 0 � x � �, t 	 0

u(x, 0) � 400 � sin x, 0 � x � �.
u(0, t) � 400, u(�, t) � 200,  t 	 0

�2u
�x2 � sin x �

�u
�t

, 0 � x � �, t 	 0

 u(x, 0) � sin x, 0 � x � �.
u(0, t) � 0, u(�, t) � 0, t 	 0

�2u
�x2 �

�u
�t

,  0 � x � �,  t 	 0
y

u = 0

u = 0

u = 0

u = 50

(   ,    )π π

x

x

y

π

0

Insulated

Insulated

u = 50

x−L L

y

u = 0 u = 0

FIGURE 12.R.2 Square plate in Problem 7

FIGURE 12.R.3 Semi-infinite plate in Problem 

FIGURE 12.R.4 Infinite plate in Problem 1

8. Find the steady-state temperature u(x, y) in the semi-
infinite plate shown in Figure 12.R.3

9. Solve Problem 8 if the boundaries y � 0 and y � p are
held at temperature zero for all time.

10. Find the temperature u(x, t) in the infinite plate of width
2L shown in Figure 12.R.4 if the initial temperature is u0
throughout. [Hint: u(x, 0) � u0, �L � x � L is an even
function of x.]
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13.1 Polar Coordinates
13.2 Polar and Cylindrical Coordinates
13.3 Spherical Coordinates

Chapter 13 in Review

All the boundary-value problems that we have considered up to this point were
expressed only in terms of a rectangular coordinate system. But if we wish to find
say, temperatures in a circular plate, in a circular cylinder, or in a sphere, we would
naturally try to describe the problem in polar coordinates, cylindrical coordinates,
or spherical coordinates, respectively. In this chapter we shall see that by trying to
solve boundary-value problems in these latter three coordinate systems by the
method of separation of variables, the theory of Fourier-Bessel series and Fourier-
Legendre series is put to practical use.

Boundary-Value Problems 
in Other Coordinate Systems13

493
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Laplacian in Polar Coordinates The relationships between polar coordinates
in the plane and rectangular coordinates are given by

.

See Figure 13.1.1. The first pair of equations transforms polar coordinates (r, u) into
rectangular coordinates (x, y); the second pair of equations enables us to transform
rectangular coordinates into polar coordinates. These equations also make it possi-
ble to convert the two-dimensional Laplacian �2u � �2u��x2 � �2u��y2 into polar
coordinates. You are encouraged to work through the details of the Chain Rule and
show that

 
�u
�y

�
�u
�r

 
�r
�y

�
�u
��

 
��

�y
� sin � 

�u
�r

�
cos �

r
 
�u
��

 
�u
�x

�
�u
�r

 
�r
�x

�
�u
��

 
��

�x
� cos � 

�u
�r

�
sin �

r
 
�u
��

x � r cos �,    y � r sin �,    and    r2 � x2 � y2,    tan � �
y
x
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(1)

(2) 
�2u
�y2 � sin2 � 

�2u
�r2 �

2 sin � cos �
r

 
�2u

�r ��
�

cos2�

r2  
�2u
�� 2 �

cos2�

r
 
�u
�r

�
2 sin � cos �

r2  
�u
��

.

 
�2u
�x2 � cos2 � 

�2u
�r2 �

2 sin � cos �
r

 
�2u

�r ��
�

sin2�

r2  
�2u
��2 �

sin2�

r
 
�u
�r

�
2 sin � cos �

r2  
�u
��

Adding (1) and (2) and simplifying yields the Laplacian of u in polar coordinates

.

In this section we focus only on boundary-value problems involving Laplace’s
equation �2u � 0 in polar coordinates:

. (3)

Our first example is a Dirichlet problem for a circular disk. We wish to
solve Laplace’s equation (3) for the steady-state temperature u(r, u) in a
circular disk or plate of radius c when the temperature on the circumference is
u(c, u) � f (u), 0 � u � 2p. See Figure 13.1.2. It is assumed that the two faces of
the plate are insulated. This seemingly simple problem is unlike any we encountered
in the previous chapter.

�2u
�r2 �

1
r
 
�u
�r

�
1
r2 

�2u
�� 2 � 0

�2u �
�2u
�r2 �

1
r
 
�u
�r

�
1
r2 

�2u
�� 2

FIGURE 13.1.1 Polar coordinates 
of a point (x, y) are (r, u)

FIGURE 13.1.2 Dirichlet problem
for a circle

x
x

y

r

θ

( x, y ) or 
( r , ) θ 

y

x

u = f ( )θ

c

y

POLAR COORDINATES

REVIEW MATERIAL
● Cauchy-Euler ODEs in Section 4.7
● Review of ODEs in Section 11.4 (page 439)

INTRODUCTION Because only steady-state temperature problems in polar coordinates are
considered in this section, the first thing we must do is convert the familiar Laplace’s equation in
rectangular coordinates to polar coordinates.

13.1

EXAMPLE 1 Steady Temperatures in a Circular Plate

Solve Laplace’s equation (3) subject to u(c, u) � f (u), 0 � u � 2p.
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SOLUTION Before attempting separation of variables, we note that the single
boundary condition is nonhomogeneous. In other words, there are no explicit condi-
tions in the statement of the problem that enable us to determine either the coeffi
cients in the solutions of the separated ODEs or the required eigenvalues. However,
there are some implicit conditions.

First, our physical intuition leads us to expect that the temperature u(r, u) should
be continuous and therefore bounded inside the circle r � c. In addition, the temper-
ature u(r, u) should be single-valued; this means that the value of u should be the
same at a specified point in the circle regardless of the polar description of that point.
Because (r, u � 2p) is an equivalent description of the point (r, u), we must have
u(r, u) � u(r, u � 2p). That is, u(r, u) must be periodic in u with period 2p. If we
seek a product solution u � R(r)	(u), then 	(u) needs to be 2p-periodic.

With all this in mind we choose to write the separation constant in the separation
of variables as l:

.

The separated equations are then

(4)

(5)

We are seeking a solution of the problem

. (6)

Although (6) is not a regular Sturm-Liouville problem, nonetheless the problem
generates eigenvalues and eigenfunctions. The latter form an orthogonal set on the
interval [0, 2p].

Of the three possible general solutions of (5),

(7)

(8)

(9)

we can dismiss (8) as inherently nonperiodic unless c1 � c2 � 0. Similarly, solution
(7) is nonperiodic unless we define c2 � 0. The remaining constant solution 
	(u) � c1, c1 
 0, can be assigned any period, and so l� 0 is an eigenvalue. Finally,
solution (9) will be 2p-periodic if we take a� n, where n � 1, 2, . . . . The
eigenvalues of (6) are then l0 � 0 and ln � n2, n � 1, 2, . . . . If we correspond l0 � 0
with n � 0, the eigenfunctions of (6) are

When ln � n2, n � 0, 1, 2, . . . , the solutions of the Cauchy-Euler DE (4) are

(10)

(11)

Now observe in (11) that r�n � 1�rn. In either of the solutions (10) or (11) we must
define c4 � 0 to guarantee that the solution u is bounded at the center of the plate
(which is r � 0). Thus product solutions un � R(r)	(u) for Laplace’s equation in
polar coordinates are

u0 � A0, n � 0,  and  un � rn(An cos n� � Bn sin n�), n � 1, 2, . . . ,

 R(r) � c3rn � c4r�n,     n � 1, 2, . . . .

 R(r) � c3 � c4 ln r,  n � 0,

	(�) � c1,  n � 0,    and    	(�) � c1 cos n� � c2 sin n�,  n � 1, 2, . . . .

 	(�) � c1 cos �� � c2 sin ��,     � � �2 
 0

 	(�) � c1 cosh �� � c2 sinh ��,     � � ��2 � 0

 	(�) � c1 � c2�,  � � 0

	� � �	 � 0, 	(�) � 	(� � 2�)

	� � �	 � 0.

r2R � � rR� � �R � 0

r2R � � rR�

R
� �

	�

	
� �

13.1 POLAR COORDINATES ● 495

For example, note that cos n(u � 2p) �
cos(nu � 2np) � cos nu. �
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where we have replaced c3c1 by A0 for n � 0 and by An for n � 1, 2, . . . ; the
combination c3c2 has been replaced by Bn. The superposition principle then gives

. (12)

By applying the boundary condition at r � c to (12), we recognize

as an expansion of f in a full Fourier series. Consequently, we can make the
identifications

.

That is, (13)

(14)

(15)

The solution of the problem consists of the series given in (12), where the coeffi
cients A0, An, and Bn are defined in (13), (14), and (15)

Observe in Example 1 that corresponding to each positive eigenvalue
ln � n2, n � 1, 2, . . . , there are two different eigenfunctions—namely, cos nu and
sin nu. In this situation the eigenvalues are sometimes called double eigenvalues.

 Bn �
1

cn�
 �2�

0
 f (�) sin n� d�.

 An �
1

cn�
 �2�

0
 f (�) cos n� d�

 A0 �
1

2p
 �2�

0
 f (�) d�

A0 �
a0

2
,  cnAn � an,  and  cnBn � bn

f (�) � A0 � �
�

n�1
cn(An cos n� � Bn sin n�)

u(r, �) � A0 � �
�

n�1
rn(An cos n� � Bn sin n�)
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FIGURE 13.1.3 Semicircular plate
in Example 2

x

u = u0

c

y

u = 0 at
=θ π =θ

u = 0
0
 at

=θ π

EXAMPLE 2 Steady Temperatures in a Semicircular Plate

Find the steady-state temperature u(r, u) in the semicircular plate shown in Figure 13.1.3.

SOLUTION The boundary-value problem is

Defining u � R(r)	(u) and separating variables gives

and (16)

(17)

The homogeneous conditions stipulated at the boundaries u � 0 and u � p translate
into 	(0) � 0 and 	(p) � 0. These conditions together with equation (17) constitute
a regular Sturm-Liouville problem:

(18)

This familiar problem possesses eigenvalues ln � n2 and eigenfunctions 
	(u) � c2 sin nu, n � 1, 2, . . . . Also, by replacing l by n2, the solution of (16) is

	� � �	 � 0,  	(0) � 0, 	(�) � 0.

 	� � �	 � 0.

 r2R � � rR� � �R � 0

r2R � � rR�

R
� �

	�

	
� �

 u(r, 0) � 0, u(r, �) � 0, 0 � r � c.

 u(c, �) � u0, 0 � � � �

�2u
�r2 �

1
r
 
�u
�r

�
1
r2 

�2u
�� 2 � 0,  0 � � � �, 0 � r � c

This is Example 2 in
Section 5.2 with L � p. �
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R(r) � c3rn � c4r�n. The reasoning that was used in Example 1, namely, that we
expect a solution u of the problem to be bounded at r � 0, prompts us to defin
c4 � 0. Therefore un � R(r)	(u) � Anrn sin nu, and

The remaining boundary condition at r � c gives the sine series

Consequently,

and so

Hence the solution of the problem is given by

.u(r, �) �
2u0

�
 �

�

n�1
 
1 � (�1)n

n
 �r

c�
n
sin n�

 An �
2u0

�cn 
1 � (�1)n

n
.

 Ancn �
2
�

 ��

0
u0 sin n� d�,

 u0 � �
�

n�1
 Ancn sin n�.

u(r, �) � �
�

n�1
 Anrn sin n�.
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EXERCISES 13.1 Answers to selected odd-numbered problems begin on page ANS-23.

In Problems 1–4 find the steady-state temperature u(r, u) in
a circular plate of radius r � 1 if the temperature on the cir-
cumference is as given.

1.

2.

3.

4.

5. Solve the exterior Dirichlet problem for a circular plate of
radius c if u(c, u) � f (u), 0 � u� 2p. In other words,
find the steady-state temperature u(r, u) in a plate that
coincides with the entire xy-plane in which a circular hole
of radius c has been cut out around the origin and the tem-
perature on the circumference of the hole is f (u). [Hint:
Assume that the temperature is bounded as .]

6. Find the steady-state temperature in the quarter-circular
plate shown in Figure 13.1.4.

r : �

u(1, �) � �, 0 � � � 2�

u(1, �) � 2�� � �2, 0 � � � 2�

u(1, �) � ��,
� � �,

0 � � � �

� � � � 2�

u(1, �) � �u0, 0 � � � �

0,  � � � � 2�

7. If the boundaries u � 0 and u � p�2 in Figure 13.1.4
are insulated, we then have, respectively,

Find the steady-state temperature if

8. Find the steady-state temperature in the wedge-
shaped plate shown in Figure 13.1.5. [Hint: Assume
that the temperature is bounded as and as

]r : �.
r : 0

u(r, u)

u(c, �) � �1,  0 � � � �>4
0, �>4 � � � �>2.

�u
�� �

��0
� 0,  �u

�� �
���/2

� 0.

FIGURE 13.1.4 Quarter-circular plate in Problem 6

x

y

c

u = 0

u = f (  )θ

u = 0

FIGURE 13.1.5 Wedge-shaped plate in Problem 8

y

x
u = 0

u = 30

y = x

9. Find the steady-state temperature in the plate in
the form of an annulus bounded between two concentric

u(r, u)
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where is a constant, and the edges and 
are insulated.

16. The plate in the first quadrant shown in Figure 13.1.8 is
one-eighth of the annular plate ring in Figure 13.1.6.
Find the steady-steady temperature u(r, u).

u � pu � 0u0

10. If the boundary conditions for the annular plate in
Figure 13.1.6 are

where are constants, show that the steady-
state temperature is given by

.

[Hint: Try a solution of the form u(r, u) � v(r, u) � c(r).]

11. Find the steady-state temperature u(r, u) in the annular
plate shown in Figure 13.1.6 if a � 1, b � 2, and

12. Find the steady-state temperature u(r, u) in the semian-
nular plate shown in Figure 13.1.7 if

u(r, 0) � 0,  u(r, �) � 0, a � r � b.
u(a, �) � �(� � �),  u(b, �) � 0, 0 � � � �

u(1, u) � 75sinu,  u(2, u) � 60cosu,  0 � u� 2p.

u(r, �) �
u0 ln(r>b) � u1ln(r>a)  

ln(a>b)

u0 and u1

u(a, u) � u0,  u(b, u) � u1,  0 � u � 2p,
Discussion Problems

17. Consider the annular plate in Figure 13.1.6. Discuss
how the steady-state temperature can be found
when the boundary conditions are

18. Carry out your ideas from Problem 17 to find the steady-
state temperature in the annular plate shown in
Figure 13.1.6. When the boundary conditions are

19. Consider the steady-state temperature in the
semiannular plate shown in Figure 13.1.7 with 

and

Show in this case the choice of as the separation
constant along with in (4) and (5) leads to
eigenvalues and eigenfunctions. Discuss how to find

Carry out your ideas.

Computer Lab Assignments

20. (a) Find the series solution for u(r, u) in Example 1 when

(b) Use a CAS or a graphing utility to plot the partial
sum S5(r, u) consisting of the first five nonzero
terms of the solution in part (a) for r � 0.9,
r � 0.7, r � 0.5, r � 0.3, and r � 0.1. Superimpose
the graphs on the same coordinate axes.

(c) Approximate the temperatures u(0.9, 1.3), u(0.7, 2),
u(0.5, 3.5), u(0.3, 4), u(0.1, 5.5). Then approximate
u(0.9, 2p� 1.3), u(0.7, 2p� 2), u(0.5, 2p� 3.5),
u(0.3, 2p� 4), u(0.1, 2p� 5.5).

(d) What is the temperature at the center of the circular
plate? Why is it appropriate to call this value the
average temperature in the plate? [Hint: Look at the
graphs in part (b) and look at the numbers in part (c).]

u(1, �) � �100, 0 � � � �

0,  � � � � 2�.

u(r, u).

� � a2
��

u(r, 0) � 0,  u(r, p) � r,  1 � r � 2.
u(1, u) � 0,  u(2, u) � 0,  0 � u � p

b � 2,
a � 1,

u(r, u)

u(1
2, u) �100(1�0.5 cosu),  u(1, u) � 200,  0 � u � 2p.

u(r, u)

u(a, u) � f (u),  u(b, u) � g(u),  0 � u � 2p.

u(r, u)

FIGURE 13.1.7 Semiannular plate in Problem 12

y

x

 

ba

FIGURE 13.1.8 Plate in Problem 16

u
ba

= 0

u = 100u = 0

u = 0

y = xy

x
FIGURE 13.1.6 Annular plate in Problem 9

u = 0

y

x

u = f ( )θ

ba

circles of radius a and b shown in Figure 13.1.6.
[Hint: Proceed as in Example 1.]

13. Find the steady-state temperature in the semian-
nular plate shown in Figure 13.1.7 if and

where is a constant.

14. Find the steady-state temperature u(r, u) in a semicircu-
lar plate of radius r � 1 if

where is a constant.

15. Find the steady-state temperature in a semicir-
cular plate of radius if

u(2, �) � �u0,  0 � � � �>2
0,  � >2 � � � �,

r � 2
u(r, u)

u0

u(r, 0) � 0, u(r, �) � u0, 1 � r � 2,
 u(1, �) � u0, 0 � � � �

u0

 u(r, 0) � 0, u(r, �) � 0, 1 � r � 2,

u(1, u) � 0,  u(2, u) � u0,  0 � u � p

a � 1, b � 2,
u(r, u)
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Radial Symmetry The two-dimensional heat and wave equations

expressed in polar coordinates are, in turn,

, (1)

where u � u(r, u, t). To solve a boundary-value problem involving either of these equa-
tions by separation of variables, we must define u � R(r)	(u)T(t). As in Section 12.8,
this assumption leads to multiple infinite series. See Problem 16 in Exercises 13.2. In
the discussion that follows we shall consider the simpler, but still important, problems
that possess radial symmetry—that is, problems in which the unknown function u is
independent of the angular coordinate u. In this case the heat and wave equations in (1)
take, respectively, the forms

, (2)

where u � u(r, t). Vibrations described by the second equation in (2) are said to be
radial vibrations.

The first example deals with the free undamped radial vibrations of a thin circular
membrane. We assume that the displacements are small and that the motion is such that
each point on the membrane moves in a direction perpendicular to the xy-plane (trans-
verse vibrations)—that is, the u-axis is perpendicular to the xy-plane. A physical model
to keep in mind while working through this example is a vibrating drumhead.

k��2u
�r2 �

1
r
 
�u
�r� �

�u
�t
  and  a2��2u

�r2 �
1
r
 
�u
�r� �

�2u
�t2

k��2u
�r2 �

1
r
 
�u
�r

�
1
r2 

�2u
�� 2� �

�u
�t
  and  a2��2u

�r2 �
1
r
 
�u
�r

�
1
r2 

�2u
�� 2� �

�2u
�t2

k��2u
�x2 �

�2u
�y2� �

�u
�t
  and  a2��2u

�x2 �
�2u
�y2� �

�2u
�t2
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FIGURE 13.2.1 Initial displacement
of a circular membrane in Example 1

u

y

x
u = 0 at r = c

at t  = 0u = f(r) 

POLAR AND CYLINDRICAL COORDINATES

REVIEW MATERIAL
● Parametric Bessel differential equation in Section 6.4
● Parametric modified Bessel di ferential equation in Section 6.4
● Forms of Fourier-Bessel series in Definition 1.5.1

INTRODUCTION In this section we are going to consider boundary-value problems involving
forms of the heat and wave equation in polar coordinates and a form of Laplace’s equation in cylin-
drical coordinates. There is a commonality throughout the examples and exercises: Each boundary-
value problem in this section possesses radial symmetry.

13.2

EXAMPLE 1 Radial Vibrations of a Circular Membrane

Find the displacement u(r, t) of a circular membrane of radius c clamped along its
circumference if its initial displacement is f (r) and its initial velocity is g(r). See
Figure 13.2.1.

SOLUTION The boundary-value problem to be solved is

u(r, 0) � f (r), �u
�t �

t�0
� g(r),  0 � r � c.

u(c, t) � 0, t 
 0

a2��2u
�r2 �

1
r
 
�u
�r� �

�2u
�t2,  0 � r � c, t 
 0
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Substituting u � R(r)T(t) into the partial differential equation and separating
variables gives

(3)

Note that in (3) we have returned to our usual separation constant �l. The two equa-
tions obtained from (3) are

(4)
and (5)

Because of the vibrational nature of the problem, equation (5) suggests that we use
only l � a2 
 0, a 
 0, since this choice leads to periodic functions. Also, take a
second look at equation (4); it is not a Cauchy-Euler equation but is the parametric
Bessel equation of order n� 0, that is, rR� � R� � a2rR � 0. From (13) of Section 6.4
the general solution of the last equation is

(6)

The general solution of the familiar equation (5) is

.

Now recall that , so the implicit assumption that the
displacement u(r, t) should be bounded at r � 0 forces us to define c2 � 0 in (6).
Thus R � c1J0(ar).

Since the boundary condition u(c, t) � 0 is equivalent to R(c) � 0, we must have
c1J0(ac) � 0. We rule out c1 � 0 (this would lead to a trivial solution of the PDE), so
consequently,

. (7)

If xn � anc are the positive roots of (7), then an � xn�c, and so the eigenvalues of the
problem are , and the eigenfunctions are c1J0(anr). Product solu-
tions that satisfy the partial differential equation and the boundary conditions are

, (8)

where we have done the usual relabeling of constants. The superposition prin-
ciple gives

. (9)

The given initial conditions determine the coefficients An and Bn.
Setting t � 0 in (9) and using u(r, 0) � f (r) gives

(10)

The last result is recognized as the Fourier-Bessel expansion of the function f on the in-
terval (0, c). Hence by a direct comparison of (7) and (10) with (8) and (15) of Section
11.5 we can identify the coefficients An with those given in (16) of Section 11.5:

(11)

Next, we differentiate (9) with respect to t, set t � 0, and use ut(r, 0) � g(r):

This is now a Fourier-Bessel expansion of the function g. By identifying the total
coefficient aanBn with (16) of Section 11.5, we can write

. (12)Bn �
2

a�nc2J1
2(�nc)

 �c

0
rJ0(�nr)g(r) dr

g(r) � �
�

n�1
a�nBnJ0(�nr).

An �
2

c2J1
2(�nc)

 �c

0
 rJ0(�nr) f (r) dr.

f (r) � �
�

n�1
 AnJ0(�n r).

u(r, t) � �
�

n�1
(An cos a�nt � Bn sin a�nt) J0(�nr)

un � R(r)T(t) � (An cos a�nt � Bn sin a�nt) J0(�nr)

�n � �2
n � x2

n >c2

J0(�c) � 0

Y0(�r) : �� as r : 0�

 T(t) � c3 cos a�t � c4 sin a�t

 R(r) � c1J0(�r) � c2Y0(�r).

 T � � a2�T � 0.
 rR� � R� � �rR � 0

R � �
1
r
 R�

R
�

T �

a2T
� ��.
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See Figure 6.4.2 on page 259. �
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Finally, the solution of the original boundary-value problem is the series in (9) with
coefficients An and Bn defined in ( 1) and (12).

Standing Waves Analogous to (11) of Section 12.4, the product solutions (8)

13.2 POLAR AND CYLINDRICAL COORDINATES ● 501

FIGURE 13.2.2 Standing waves

n = 3

n = 1

(a)

(b)

(c)

n = 2

FIGURE 13.2.3 Frames of a CAS “movie”

are called standing waves. For n � 1, 2, 3, . . . the standing waves are basically the
graph of J0(anr) with the time varying amplitude

The standing waves at different values of time are represented by the dashed
graphs in Figure 13.2.2. The zeros of each standing wave in the interval (0, c)
are the roots of J0(anr) � 0 and correspond to the set of points on a standing wave
where there is no motion. The set of points is called a nodal line. If (as in
Example 1) the positive roots of J0(anc) � 0 are denoted by xn, then xn � anc
implies that an � xn�c, and consequently, the zeros of the standing wave are
determined from

Now, from Table 6.4.1, the first three positive zeros of J0 are (approximately) x1 � 2.4,
x2 � 5.5, and x3 � 8.7. Thus for n � 1 the first positive root o

Since we are seeking zeros of the standing waves in the open interval (0, c), the last
result means that the first standing wave has no nodal line. For n � 2 the first two
positive roots of

Thus the second standing wave has one nodal line defined by r � x1c�x2 � 2.4c�5.5.
Note that r 	 0.44c � c. For n � 3 a similar analysis shows that there are two nodal
lines defined by r � x1c�x3 � 2.4c�8.7 and r � x2c�x3 � 5.5c�8.7. In general, the
nth standing wave has n � 1 nodal lines r � x1c�xn, r � x2c�xn, . . . , r � xn�1c�xn.
Since r � constant is an equation of a circle in polar coordinates, we see in
Figure 13.2.2 that the nodal lines of a standing wave are concentric circles.

Use of Computers It is possible to see the effect of a single drumbeat for the
model solved in Example 1 by means of the animation capabilities of a computer
algebra system. In Problem 17 in Exercises 13.2 you are asked to find the solution
given in (9) when

Some frames of a “movie” of the vibrating drumhead are given in Figure 13.2.3.

c � 1, f (r) � 0,  and  g(r) � ��v0, 0 � r � b
0,   b � r � 1.

J0�x2

c
 r� � 0  are determined from  5.5

c
 r � 2.4  and  5.5

c
 r � 5.5.

J0 �x1

c
 r� � 0  is  2.4

c
 r � 2.4  or  r � c.

J0(�nr) � J0 �xn

c
 r� � 0.

Ancos a�nt � Bn sin a�nt. 
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Laplacian in Cylindrical Coordinates In Figure 13.2.4 we can see that the
relationship between the cylindrical coordinates (r, u, z) of a point in space and its
rectangular coordinates (x, y, z) is given by

It follows immediately from the derivation of the Laplacian in polar coordinates (see
Section 13.1) that the Laplacian of a function u in cylindrical coordinates is

�2u �
�2u
�r2 �

1
r
 
�u
�r

�
1
r2 

�2u
�� 2 �

�2u
�z2.

x � r cos �,  y � r sin �,  z � z.
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FIGURE 13.2.4 Cylindrical
coordinates of a point (x, y, z) 
are (r, u, z).

θ 
( x, y, z ) or 

( r ,   ,  z )  z

y

x

r
θ

z

FIGURE 13.2.5 Circular cylinder
in Example 2

z

y

x

u = 0
at r = 2

u = 0 at z = 0

u = u0 at z = 4

EXAMPLE 2 Steady Temperatures in a Circular Cylinder

Find the steady-state temperature u in the circular cylinder shown in Figure 13.2.5.

SOLUTION The boundary conditions suggest that the temperature u has radial sym-
metry. Accordingly, u(r, z) is determined from

Using u � R(r)Z(z) and separating variables gives

(13)

and (14)

(15)

By considering the cases l � 0, l � �a2, and l � a2 we determine that the
choice l � a2 leads to eigenvalues and eigenfunctions. The solution of (14) is then

Since the solution of (15) is defined on the finite interval [0, 4], we write its general
solution as

As in Example 1, the assumption that the temperature u is bounded at r � 0
demands that c2 � 0. The condition u(2, z) � 0 implies that R(2) � 0. This equation,

(16)

defines the positive eigenvalues of the problem. Finally, Z(0) � 0 implies
that c3 � 0. Hence we have R(r) � c1J0(anr), Z(z) � c4 sinh anz, and

The remaining boundary condition at z � 4 then yields the Fourier-Bessel series

u0 � �
�

n�1
 An sinh 4�nJ0(�nr),

u(r, z) � �
�

n�1
 An sinh �nzJ0(�nr).

un � R(r)Z(z) � An sinh �nzJ0(�nr)

�n � �2
n

J0(2a) � 0,

 Z(z) � c3 cosh az � c4 sinh az.

 R(r) � c1J0(�r) � c2Y0(�r).

Z � � � Z � 0.

rR � � R� � lrR � 0

R � �
1
r
 R�

R
� �

Z �

Z
� ��

 u(r, 0) � 0, u(r, 4) � u0, 0 � r � 2.

 u(2, z) � 0, 0 � z � 4

 
�2u
�r2 �

1
r
 
�u
�r

�
�2u
�z2 � 0,  0 � r � 2, 0 � z � 4
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so in view of the defining equation (16) the coefficients are given by (16) of
Section 11.5,

To evaluate the last integral, we first use the substitution t � anr, followed by

. From

we get

Thus the temperature in the cylinder is

In boundary-value problems involving a finite circular cylinder such as that in
Example 2, it is not uncommon to encounter modified Bessel functions. See Problems 7
and 8 in Exercises 13.2.

u(r, z) � u0 �
�

n�1
 

1
an sinh 4anJ1(2an)

 sinh anz J0(anr).

An �
u0

�n sinh 4�nJ1(2�n)
.

An sinh 4an �
u0

2a2
nJ 1

2(2an)
 �2an

0
 
d
dt

 [tJ1(t)] dt �
u0

anJ1(2an)

d
dt

 [tJ1(t)] � tJ0(t)

An sinh 4an �
2u0

22J1
2(2an)

 �2

0
rJ0(anr) dr.
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EXERCISES 13.2 Answers to selected odd-numbered problems begin on page ANS-24.

1. Find the displacement u(r, t) in Example 1 if f (r) � 0
and the circular membrane is given an initial unit
velocity in the upward direction.

2. A circular membrane of unit radius 1 is clamped along
its circumference. Find the displacement u(r, t) if the
membrane starts from rest from the initial displacement
f (r) � 1 � r2, 0 � r � 1. [Hint: See Problem 10 in
Exercises 11.5.]

3. Find the steady-state temperature u(r, z) in the cylinder
in Example 2 if the boundary conditions are u(2, z) � 0,
0 � z � 4, u(r, 0) � u0, u(r, 4) � 0, 0 � r � 2.

4. If the lateral side of the cylinder in Example 2 is insu-
lated, then

.

(a) Find the steady-state temperature u(r, z) when
u(r, 4) � f (r), 0 � r � 2.

(b) Show that the steady-state temperature in part (a)
reduces to u(r, z) � u0z�4 when f (r) � u0. [Hint:
Use (12) of Section 11.5.]

5. Find the steady-state temperature in the cylinder
in Figure 13.2.5 if the lateral side is kept at temperature
0, the top is kept at temperature 50, and the base

is insulated.

6. Find the steady-state temperature in the cylinder
in Figure 13.2.5 if the lateral side is kept at temperature
50 and the top and base are insulated.z � 0z � 4

u(r, z)

z � 0
z � 4

u(r, z)

�u
�r �

r�2
� 0,  0 � z � 4

7. Find the steady-state temperatures u(r, z) in the circular
cylinder defined by if the bound-
ary conditions are

With l as the separation constant in (13) show that the
case l � a2 in (14) and (15) leads to eigenvalues and
eigenfunctions. [Hint: Review the discussion of the modi-
fied Bessel functions in Section 6.4 and Figure 6.4. .]

8. Find the steady-state temperatures u(r, z) in the circular
cylinder defined by if the bound-
ary conditions are

9. The temperature u(r, t) in a circular plate of radius c is
determined from the boundary-value problem

Solve for u(r, t).

10. Solve Problem 9 if the edge r � c of the plate is
insulated.

u(r, 0) � f (r), 0 � r � c.

u(c, t) � 0, t 
 0

k��2u
�r2 �

1
r
 
�u
�r� �

�u
�t

,  0 � r � c, t 
 0

 
�u
�z �z�0

� 0,  �u
�z �z�1

� 0, 0 � r � 1.

 u(1, z) � z, 0 � z � 1

0 � r � 1, 0 � z � 1

u(r, 0) � 0,  u(r, 1) � 0,  0 � r � 1.
u(1, z) � 1 � z, 0 � z � 1

0 � r � 1, 0 � z � 1
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11. When there is heat transfer from the lateral side of an
infinite circular cylinder of unit radius (see Figure 13.2.6)
into a surrounding medium at temperature zero, the tem-
perature u(r, t) inside the cylinder is determined from

Solve for u(r, t).

u(r, 0) � f (r), 0 � r � 1.

�u
�r �

r�1
� �hu(1, t),  h 
 0, t 
 0

k��2u
�r2 �

1
r
 
�u
�r� �

�u
�t

,  0 � r � 1, t 
 0
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14. Solve the boundary-value problem

Assume that b is a constant.

15. The horizontal displacement u(x, t) of a heavy uniform
chain of length L oscillating in a vertical plane satisfie
the partial differential equation

See Figure 13.2.8.
(a) Using �l as a separation constant, show that the or-

dinary differential equation in the spatial variable
x is x X� � X� � lX � 0. Solve this equation by
means of the substitution x � t2�4.

(b) Use the result of part (a) to solve the given partial
differential equation subject to

[Hint: Assume that the oscillations at the free end 
x � 0 are finite.

u(x, 0) � f (x), �u
�t �

t�0
� 0, 0 � x � L.

u (L, t) � 0, t 
 0

g 
�

�x
 �x 

�u
�x� �

�2u
�t2 ,  0 � x � L, t 
 0.

u(r, 0) � 0, 0 � r � 1.

u(1, t) � 0, t 
 0

�2u
�r2 �

1
r
 
�u
�r

� � �
�u
�t

,  0 � r � 1, t 
 0

FIGURE 13.2.6 Infinite cylinder in Problem 1

z

y

x

1

FIGURE 13.2.8 Oscillating chain in Problem 15

x

L

u 0

12. Find the steady-state temperature u(r, z) in a semi-infinit
cylinder of unit radius (z � 0) if there is heat transfer from
its lateral side into a surrounding medium at temperature
zero and if the temperature of the base z � 0 is held at a
constant temperature u0.

13. A circular plate is a composite of two different materials
in the form of concentric circles. See Figure 13.2.7. The
temperature u(r, t) in the plate is determined from the
boundary-value problem

Solve for u(r, t). [Hint: Let u(r, t) � v(r, t) � c(r).]

u(r, 0) � �200, 0 � r � 1
100, 1 � r � 2.

u (2, t) � 100, t 
 0

�2u
�r2 �

1
r
 
�u
�r

�
�u
�t

,  0 � r � 2, t 
 0

FIGURE 13.2.7 Composite circular plate in Problem 13

u = 100
y

x

2
1

16. In this problem we consider the general case—that is,
with u dependence—of the vibrating circular membrane
of radius c:

(a) Assume that u � R(r)	(u)T(t) and that the separa-
tion constants are �l and �n. Show that the sepa-
rated differential equations are

r2R � � rR� � (�r2 � �)R � 0.

T � � a2�T � 0,   	� � �	 � 0

�u
�t �

t�0
� g(r, �), 0 � r � c, 0 � � � 2�.

u(r, �, 0) � f (r, �), 0 � r � c, 0 � � � 2�

u(c, �, t) � 0, 0 � � � 2�, t 
 0

a2��2u
�r2 �

1
r
 
�u
�r

�
1
r2 

�2u
��2� �

�2u
�t2 ,  0 � r � c, t 
 0
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(b) Let l � a2 and n � b2 and solve the separated
equations.

(c) Determine the eigenvalues and eigenfunctions of
the problem.

(d) Use the superposition principle to determine a mul-
tiple series solution. Do not attempt to evaluate the
coefficients

Computer Lab Assignments

17. Consider an idealized drum consisting of a thin mem-
brane stretched over a circular frame of unit radius.
When such a drum is struck at its center, one hears a
sound that is frequently described as a dull thud rather
than a melodic tone. We can model a single drumbeat
using the boundary-value problem solved in Example 1.
(a) Find the solution u(r, t) given in (9) when c � 1,

f (r) � 0, and

(b) Show that the frequency of the standing wave 
un(r, t) is fn � aan�2p, where an is the nth positive
zero of J0(x). Unlike the solution of the one-
dimensional wave equation in Section 12.4, the fre-
quencies are not integer multiples of the fundamen-
tal frequency f1. Show that f2 	 2.295 f1 and 
f3 	 3.598 f1. We say that the drumbeat produces
anharmonic overtones. As a result, the displace-
ment function u(r, t) is not periodic, so our ideal
drum cannot produce a sustained tone.

(c) Let a � 1, and v0 � 1 in your solution in
part (a). Use a CAS to graph the fifth partial sum 
S5(r, t) at the times t � 0, 0.1, 0.2, 0.3, . . . , 5.9, 6.0

b � 1
4,

g(r) � ��v0, 0 � r � b
0,   b � r � 1.
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for �1 � r � 1. Use the animation capabilities of
your CAS to produce a movie of these vibrations.

(d) For a greater challenge, use the 3D-plot application
of your CAS to make a movie of the motion of the
circular drum head that is shown in cross section in
part (c). [Hint: There are several ways of proceed-
ing. For a fixed time, either graph u as a function of
x and y using or use the equivalent of
Mathematica’s RevolutionPlot3D.]

18. (a) Consider Example 1 with a � 1, c � 10, g(r) � 0,
and f (r) � 1 � r�10, 0 � r � 10. Use a CAS as an
aid in finding the numerical values of the first three
eigenvalues l1, l2, l3 of the boundary-value prob-
lem and the first three coefficients A1, A2, A3 of the
solution u(r, t) given in (9). Write the third partial
sum S3(r, t) of the series solution.

(b) Use a CAS to plot the graph of S3(r, t) for t � 0, 4,
10, 12, 20.

19. Solve Problem 7 with boundary conditions u(c, t) �
200, u(r, 0) � 0. With these imposed conditions, one
would expect intuitively that at any interior point of
the plate, u(r, t) : 200 as t : �. Assume that c � 10
and that the plate is cast iron so that k � 0.1 (approxi-
mately). Use a CAS as an aid in finding the numerical
values of the first five eigenvalues l1, l2, l3, l4, l5
of the boundary-value problem and the five coeffi
cients A1, A2, A3, A4, A5 in the solution u(r, t). Let the
corresponding approximate solution be denoted by
S5(r, t). Plot S5(5, t) and S5(0, t) on a sufficiently large
time interval 0 � t � T. Use the plots of S5(5, t) and
S5(0, t) to estimate the times (in seconds) for which
u(5, t) 	 100 and u(0, t) 	 100. Repeat for u(5, t) 	 200
and u(0, t) 	 200.

r � 1x2 � y2

Laplacian in Spherical Coordinates As shown in Figure 13.3.1, a point in
3-space is described in terms of rectangular coordinates and in spherical coordinates.
The rectangular coordinates x, y, and z of the point are related to its spherical coordi-
nates r, u, and f through the equations

(1) x � r sin � cos �,  y � r sin � sin �,  z � r cos �.

SPHERICAL COORDINATES

REVIEW MATERIAL
● Legendre’s differential equation in Section 6.4
● Forms of Fourier-Legendre series in Section 11.5

INTRODUCTION We conclude our examination of boundary-value problems in different coor-
dinate systems by next considering problems involving the heat, wave, and Laplace’s equation in
spherical coordinates.

13.3
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FIGURE 13.3.1 Spherical coordinates
of a point (x, y, z) are (r, u, f).

θ φ
(x, y, z) or
(r, , )

z

r
θ

φ
y

x

FIGURE 13.3.2 Dirichlet problem
for a sphere in Example 1

u = f ( )
at r = c

θ

z

c

y

x
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By using the equations in (1), it can be shown that the three-dimensional Laplacian
�2u in the spherical coordinate system is

(2)

As you might imagine, problems involving (2) can be quite formidable. Consequently,
we shall consider only a few of the simpler problems that are independent of the
azimuthal angle f.

The next example is a Dirichlet problem for a sphere.

�2u �
�2u
�r2 �

2
r
 
�u
�r

�
1

r2sin2�
 
�2u
��2 �

1
r2 

�2u
�� 2 �

cot �
r2  

�u
��

.

EXAMPLE 1 Steady Temperatures in a Sphere

Find the steady-state temperature u(r, u) within the sphere shown in Figure 13.3.2.

SOLUTION The temperature is determined from

If u � R(r)	(u), then the partial differential equation separates as

and so (3)

(4)

After we substitute x � cos u, 0 � u � p, (4) becomes

(5)

The latter equation is a form of Legendre’s equation (see Problem 46 in Exercises 6.4).
Now the only solutions of (5) that are continuous and have continuous derivatives on
the closed interval [�1, 1] are the Legendre polynomials Pn(x) corresponding to
l � n(n � 1), n � 0, 1, 2, . . . . Therefore we take the solutions of (4) to be

Furthermore, when l � n(n � 1), the general solution of the Cauchy-Euler
equation (3) is

Since we again expect u(r, u) to be bounded at r � 0, we define c2 � 0. Hence 
un � AnrnPn(cos u), and

At r � c,

Therefore Ancn are the coefficients of the Fourier-Legendre series (23) of Section 11.5:

It follows that the solution is

u(r, �) � �
�

n�0
�2n � 1

2
 ��

0
 f (�) Pn(cos �) sin � d���r

c�
n
Pn(cos �).

An �
2n � 1

2cn  ��

0
 f (�)Pn(cos �) sin � d�.

 f (�) � �
�

n�0
 AncnPn(cos �).

 u(r, �) � �
�

n�0
 AnrnPn(cos �).

R(r) � c1rn � c2r�(n�1).

	(u) � Pn(cos �).

(1 � x2) 
d 2	

dx2 � 2x 
d	

dx
� � 	 � 0, �1 � x � 1.

sin � 	� � cos � 	� � � sin � 	 � 0.

r2R � � 2rR� � �R � 0

 
r2R � � 2rR�

R
� �

	� � cot � 	�

	
� �,

 u(c, �) � f (�), 0 � � � �.

�2u
�r2 �

2
r
 
�u
�r

�
1
r2 

�2u
�� 2 �

cot �
r2  

�u
��

� 0,  0 � r � c, 0 � � � �

27069_13_ch13_p493-509.qxd  2/2/12  2:56 PM  Page 506

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



13.3 SPHERICAL COORDINATES ● 507

EXERCISES 13.3 Answers to selected odd-numbered problems begin on page ANS-24.

1. Solve the BVP in Example 1 if

Write out the first four nonzero terms of the series
solution. [Hint: See Example 3 in Section 11.5.]

2. The solution u(r, u) in Example 1 of this section could
also be interpreted as the potential inside the sphere due
to a charge distribution f (u) on its surface. Find the
potential outside the sphere.

3. Find the solution of the problem in Example 1 if 
f (u) � cos u, 0 � u� p. [Hint: P1(cos u) � cos u. Use
orthogonality.]

4. Find the solution of the problem in Example 1 if 
f (u) � 1 � cos 2u, 0 � u � p. [Hint: See Problem 18
in Exercises 11.5.]

5. Find the steady-state temperature u(r, u) within a hol-
low sphere a � r � b if its inner surface r � a is kept
at temperature f (u) and its outer surface r � b is kept at
temperature zero. The sphere in the first octant is shown
in Figure 13.3.3.

f (�) � �50,     0 � � � �>2
 0, �>2 � � � �.

8. Solve Problem 6 for r 
 c.

9. The time-dependent temperature within a sphere of unit
radius is determined from

Solve for u(r, t). [Hint: Verify that the left-hand side of
the partial differential equation can be written as

. Let ru(r, t) � v(r, t) � c(r). Use only

functions that are bounded as ]

10. A uniform solid sphere of radius 1 at an initial constant
temperature u0 throughout is dropped into a large container
of fluid that is kept at a constant temperature u1 (u1 
 u0)
for all time. See Figure 13.3.4. Since there is heat transfer
across the boundary r � 1, the temperature u(r, t) in the
sphere is determined from the boundary-value problem

Solve for u(r, t). [Hint: Proceed as in Problem 9.]

 u(r, 0) � u0, 0 � r � 1.

�u
�r �

r�1 
� �h(u(1, t) � u1), 0 � h � 1

�2u
�r2 �

2
r
 
�u
�r

�
�u
�t

, 0 � r � 1, t 
 0

r : 0.

1
r
 
�2

�r2 (ru)

u(r, 0) � 0, 0 � r � 1.

u(1, t) � 100, t 
 0

�2u
�r2 �

2
r
 
�u
�r

�
�u
�t

,  0 � r � 1, t 
 0

FIGURE 13.3.3 Hollow sphere in Problem 5

θu = f( )
at r = a z

y

u = 0
at r = bx

FIGURE 13.3.4 Container of fluid in Problem 1

1

u16. The steady-state temperature in a hemisphere of radius
r � c is determined from

Solve for u(r, u). [Hint: Pn(0) � 0 only if n is odd. Also
see Problem 20 in Exercises 11.5.]

7. Solve Problem 6 when the base of the hemisphere is
insulated; that is,

�u
�� �

���/2
� 0,  0 � r � c.

�>2u(r, �) � f (�), 0 � � �

u(r, �>2) � 0, 0 � r � c
0 � r � c, 0 � � � �>2

�2u
�r2 �

2
r
 
�u
�r

�
1
r2 

�2u
�� 2 �

cot �
r2  

�u
��

� 0,

11. Solve the boundary-value problem involving spherical
vibrations:

[Hint: Verify that the left side of the partial differential

equation is . Let v(r, t) � ru(r, t).]a2 
1
r
 
�2

�r2
 (ru)

u(r, 0) � f (r), �u
�t �

t�0
� g(r), 0 � r � c.

u(c, t) � 0, t 
 0

a2��2u
�r2 �

2
r
 
�u
�r� �

�2u
�t2 ,  0 � r � c, t 
 0
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12. A conducting sphere of radius r � c is grounded and
placed in a uniform electric field that has intensity E in
the z-direction. The potential u(r, u) outside the sphere
is determined from the boundary-value problem

Show that

.

[Hint: Explain why for
all nonnegative integers except n � 1. See (24) of Sec-
tion 11.5.]

��
0  cos � Pn(cos �) sin � d� � 0

u(r, �) �  �Er cos � � E 
c3

r2 cos �

 lim 
r : �

u(r, �) � �Ez � �Er cos �.
 u(c, �) � 0, 0 � � � �

�2u
�r2 �

2
r
 
�u
�r

�
1
r2 

�2u
�� 2 �

cot �
r2  

�u
��

� 0, r 
 c, 0 � � � �

13. In spherical coordinates, the 3-dimensional form of
Helmholtz’s partial differential equation is

where the Laplacian is given in (2).
Proceed as in Example 1 but use 

and the separation constant   to
show that the radial dependence of the solution u is define
by the equation 

.

Solve this differential equation. [Hint: See Problem 54
in Exercises 6.4.]

r2 
d 2R
dr 2  � 2r 

dR
dr

� [k2r2 � n(n � 1)]R � 0

n(n � 1)R(r)	(u)�(f)
u (r, u, f) �

�2u � k2u � 0

1. Find the steady-state temperature u(r, u) in a circular
plate of radius c if the temperature on the circumference
is given by

2. Find the steady-state temperature in the circular plate in
Problem 1 if

3. Find the steady-state temperature u(r, u) in a semicircu-
lar plate of radius 1 if

4. Find the steady-state temperature u(r, u) in the semicir-
cular plate in Problem 3 if u(1, u) � sin u, 0 � u � p.

5. Find the steady-state temperature u(r, u) in the plate
shown in Figure 13.R.1.

u(r, 0) � 0, u(r, �) � 0, 0 � r � 1.
u(1, �) � u0(�� � �2),  0 � � � �

u(c, �) � �1,
0,
1,

   0 � � � �>2
  �>2 � � � 3�>2
3�>2 � � � 2�.

u(c, �) � � u0, 0 � � � �

�u0, � � � � 2�.

7. Suppose heat is lost from the flat surfaces of a very thin
circular unit disk into a surrounding medium at temper-
ature zero. If the linear law of heat transfer applies, the
heat equation assumes the form

See Figure 13.R.3. Find the temperature u(r, t) if the
edge r � 1 is kept at temperature zero and if initially the
temperature of the plate is unity throughout.

�2u
�r2 �

1
r
 
�u
�r

� hu �
�u
�t

,  h 
 0, 0 � r � 1, t 
 0.

FIGURE 13.R.1 Wedge-shaped plate in Problem 5

x

y

insulated

y = x

1
2 u = 0

u = u0

u = 0

1

FIGURE 13.R.2 Infinite plate in Problem 

u = 0
x

u = f( )θ

u = 0

1

y

FIGURE 13.R.3 Circular plate in Problem 7

1

u = 0

0�

0�

6. Find the steady-state temperature u(r, u) in the infinit
plate shown in Figure 13.R.2.

CHAPTER 13 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-24.
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8. Suppose xk is a positive zero of J0. Show that a solution
of the boundary-value problem

is u(r, t) � u0J0(xkr) cos axkt.

9. Find the steady-state temperature u(r, z) in the cylinder
in Figure 13.2.5 if the lateral side is kept at temperature
50, the top z � 4 is kept at temperature 0, and the base
z � 0 is insulated.

10. Solve the boundary-value problem

11. Find the steady-state temperature u(r, u) in a sphere of
unit radius if the surface is kept at

[Hint: See Problem 22 in Exercises 11.5.]

12. Solve the boundary-value problem

[Hint: Proceed as in Problems 9 and 10 in Exercises 13.3,
but let v(r, t) � ru(r, t). See Section 12.7.]

13. The function u(x) � Y0(aa)J0(ax) � J0(aa)Y0(ax), a 
 0
is a solution of the parametric Bessel equation

on the interval [a, b]. If the eigenvalues are
defined by the positive roots of the equatio

show that the functions

 un(x) � Y0(�na)J0(�nx) � J0(�na)Y0(�n x)

 um(x) � Y0(�ma)J0(�mx) � J0(�ma)Y0(�mx)

Y0(�a)J0(�b) � J0(�a)Y0(�b) � 0,

�n � �2
n

x2 
d 2u
dx2 � x 

du
dx

� �2x2u � 0

u(r, 0) � f (r), �u
�t �

t�0
� g(r), 0 � r � 1.

�u
�r �

r�1
� 0, t 
 0

�2u
�r2 �

2
r
 
�u
�r

�
�2u
�t2,  0 � r � 1, t 
 0

u (1, �) � �   100,
�100,

   0 � � � �>2
 �>2 � � � �.

u(r, 0) � f (r), u(r, 1) � g(r), 0 � r � 1.

�u
�r �

r�1
� 0, 0 � z � 1

�2u
�r2 �

1
r
 
�u
�r

�
�2u
�z2 � 0,  0 � r � 1, 0 � z � 1

u(r, 0) � u0J0(xkr), �u
�t �

t�0
� 0, 0 � r � 1

u(1, t) � 0, t 
 0

a2��2u
�r2 �

1
r
 
�u
�r� �

�2u
�t2 ,  0 � r � 1, t 
 0

are orthogonal with respect to the weight function 
p(x) � x on the interval [a, b]; that is,

[Hint: Follow the procedure on pages 441–442.]

14. Use the results of Problem 13 to solve the following
boundary-value problem for the temperature u(r, t) in an
annular plate:

15. Discuss how to solve

with the boundary conditions given in Figure 13.R.4.
Carry out your ideas and find u(r, z). [Hint: Review (11)
of Section 12.5.]

�2u
�r2 �

1
r
 
�u
�r

�
�2u
�z2 � 0,  0 � r � c, 0 � z � L

 u(r, 0) � f (r), a � r � b.
 u(a, t) � 0, u(b, t) � 0, t 
 0

�2u
�r2 �

1
r
 
�u
�r

�
�u
�t

,  a � r � b, t 
 0

�b

a
xum(x)un(x) dx � 0,  m 
 n.

FIGURE 13.R.4 Cylinder in Problem 15

∇2 u = 0
u z = h( )
at r = c

u r = f ( )
at z = L

u r = g( )
at z = 0

16. Find the steady-state temperature u(r, u) in the semian-
nular plate shown in Figure 13.1.7 if a � 1, b � 2, and
the boundary conditions are

[Hint: Use �l as the separation constant in (4) and (5)
of Section 13.1.]

17. Find the steady-state temperature u(r, z) in a finite cylin-
der defined by if the boundary
conditions are

[Hint: Use l as the separation constant in (13) of
Section 13.2.]

 u(r, 0) � 0, �u
�z �z�1

� 0, 0 � r � 1.

 u(1, z) � u0, 0 � z � 1

0 � r � 1, 0 � z � 1

u(r, 0) � f (r),  u(r, �) � 0, 1 � r � 2.
u(1, �) � 0,   u(2, �) � 0,  0 � � � �
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Integral Transforms

14.1 Error Function
14.2 Laplace Transform
14.3 Fourier Integral
14.4 Fourier Transforms

Chapter 14 in Review

The method of separation of variables is a powerful but not universally applicable
method for solving boundary-value problems.  If the partial differential equation is
nonhomogeneous, if the boundary conditions are time dependent, or if the domain
of the spatial variable is an infinite interval or a semi-infinite interva

we may be able to solve problems that involve the heat and wave equations
by means of the familiar Laplace transform.  In Section 14.4 we introduce three
new integral transforms—the Fourier transforms.

(a, �),
(��, �)

14

510
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14.1 ERROR FUNCTION ● 511

Properties and Graphs The definitions of the error function erf(x) and
complementary error function erfc(x) are, respectively,

. (1)

With the aid of polar coordinates it can be demonstrated that

Thus from the additive interval property of definite integrals, , the last
result can be written as

This shows that erf(x) and erfc(x) are related by the identity

. (2)

The graphs of erf(x) and erfc(x) for x � 0 are given in Figure 14.1.1. Note that 
erf(0) � 0, erfc(0) � 1 and that as . Other numerical
values of erf(x) and erfc(x) can be obtained from a CAS or tables. In tables the error
function is often referred to as the probability integral. The domain of erf(x) and of
erfc(x) is (��, �). In Problem 13 in Exercises 14.1 you are asked to obtain the graph
of each function on this interval and to deduce a few additional properties.

Table 14.1.1, of Laplace transforms, will be useful in the exercises in the next
section. The proofs of these results are complicated and will not be given.

x : �erf(x) : 1, erfc(x) : 0

erf(x) � erfc(x) � 1

2
1�

 ��x

0
e�u2 du � ��

x
e�u2 du� � 1.

��
0 � �x

0 � ��
x

��

0
e�u2 du �

1�

2
    or    

2
1�

 ��

0
e�u2 du � 1.

erf(x) �
2
1�

 �x

0
e�u2 du    and    erfc(x) �

2
1�

 ��

x
e�u2 du

TABLE 14.1.1 Laplace Transforms

f (t), a � 0 f (t), a � 0

1. 4.

2. 5.

3. 6.
be�a1s

s �1s � b�
�eabeb2t erfc�b1t �

a
21t� � erfc� a

21t�
e�a1s

s
erfc� a

21t�

e�a1s

1s �1s � b�
eabeb2t erfc�b1t �

a
21t�e�a1sa

21� t3
 e�a2/4t

e�a1s

s1s
2
B

t
�

 e�a2/4t � a erfc� a
21t�

e�a1s

1s
1

1� t
 e�a2/4t

�{ f (t)} � F(s)�{ f (t)} � F(s)

x
erfc(x)

y

21.510.5

1
0.8
0.6
0.4
0.2

erf(x)

FIGURE 14.1.1 Graphs of erf(x)
and erfc(x) for x � 0

ERROR FUNCTION

REVIEW MATERIAL
● See (10) and Example 7 in Section 2.3.

INTRODUCTION There are many functions in mathematics that are defined in terms of an
integral. For example, in many traditional calculus texts the natural logarithm is defined in the
following manner: . In earlier chapters we saw, albeit briefl , the error function
erf(x), the complementary error function erfc(x), the sine integral function Si(x), the Fresnel sine
integral S(x), and the gamma function 	(a); all these functions are defined by means of an integral.
Before applying the Laplace transform to boundary-value problems, we need to know a little more
about the error function and the complementary error function. In this section we examine the
graphs and a few of the more obvious properties of erf(x) and erfc(x).

ln x � �x
1 dt>t, x � 0

14.1
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512 ● CHAPTER 14 INTEGRAL TRANSFORMS

EXERCISES 14.1 Answers to selected odd-numbered problems begin on page ANS-25.

1. (a) Show that .

(b) Use the convolution theorem and the results of
Problem 43 in Exercises 7.1 to show that

2. Use the result of Problem 1 to show that

.

3. Use the result of Problem 1 to show that

4. Use the result of Problem 2 to show that

5. Use the result of Problem 4 to show that

6. Find the inverse transform 

[Hint: Rationalize a denominator, followed by a ratio-
nalization of a numerator.]

 � �1� 1
 1 � 1s � 1�.

 � � 1
1pt

� et erfc(1t)� �
1

 1s � 1
.

 � {et erfc(1t)} �
1

1s (1s � 1)
.

 � {et erf(1t)} �
1

1s (s � 1)
.

 � {erfc(1t)} �
1
s
 �1 �

1
1s � 1�

 � {erf(1t)} �
1

s1s � 1
.

erf(1t) �
1
1�

 �t

0
 
e�


1

 d


7. Let C, G, R, and x be constants. Use Table 14.1.1 to show
that

8. Let a be a constant. Show that

� �1� C
Cs � G

 (1 � e�x1RCs�RG)� � e�Gt/C erf�x
2
 
B

RC
t �.

LAPLACE TRANSFORM

REVIEW MATERIAL
● Linear second-order initial-value problems (Sections 4.3 and 4.4)
● Operational properties of the Laplace Transform (Sections 7.2–7.4)

INTRODUCTION The Laplace transform of a function f (t), t � 0, is defined to be
whenever the improper integral converges. This integral transforms the

function f (t) into a function F of the transform parameter s, that is, . Similar to
Chapter 7, where the Laplace transform was used mainly to solve linear ordinary differential
equations, in this section we use the Laplace transform to solve linear partial differential equations.
But in contrast to Chapter 7, where the Laplace transform reduced a linear ODE with constant coef-
ficients to an algebraic equation, in this section we see that a linear PDE with constant coefficient
is transformed into an ODE.

�{ f (t)} � F(s)
�{ f (t)} � ��

0  e�st f (t) dt

14.2

.� erf �2n � 1 � a
21t �� � �1�sinh a 1s

s sinh 1s�� 	
�

n�0
 �erf �2n � 1 � a

21t �
[Hint: Use the exponential definition of the hyperbolic
sine. Expand in a geometric series.]

9. Use the Laplace transform and Table 14.1.1 to solve the
integral equation

10. Use the third and fifth entries in Table 14.1.1 to derive
the sixth entry.

11. Show that .

12. Show that .

Computer Lab Assignments

13. The functions erf(x) and erfc(x) are defined for x � 0.
Use a CAS to superimpose the graphs of erf(x) 
and erfc(x) on the same axes for �10 � x � 10. 
Do the graphs possess any symmetry? What are 
limx:�� erf(x) and limx:�� erfc(x)?

�a

�a
e�u2 du � 1� erf(a)

�b

a
e�u2 du �

1�

2
 [erf(b) � erf(a)]

y(t) � 1 � �t

0
 

y(
)
1t � 


 d
.

1
(1 � e�21s)
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14.2 LAPLACE TRANSFORM ● 513

Transform of a Function of Two Variables The boundary-value problems
that we consider in this section will involve either the one-dimensional wave and heat
equations or slight variations of these equations. These PDEs involve an unknown func-
tion of two independent variables u(x, t), where the variable t represents time t � 0. The
Laplace transform of the function u(x, t) with respect to t is defined b

,

where x is treated as a parameter. We continue the convention of using capital letters
to denote the Laplace transform of a function by writing

.

Transform of Partial Derivatives The transforms of the partial derivatives

u

t and 
2u

t2 follow analogously from (6) and (7) of Section 7.2:

(1)

. (2)

Because we are transforming with respect to t, we further suppose that it is
legitimate to interchange integration and differentiation in the transform of

2u

x2:

 ��
2u

t2� � s2U(x, s) � su(x, 0) � ut (x, 0)

��
u

t� � sU(x, s) � u(x, 0),

�{u(x, t)} � U(x, s)

�{u(x, t)} � ��

0
e�st u(x, t) dt

��
2u

x2� � ��

0
e�st 


2u

x2

 dt � ��

0


2


x2 [e
�st u(x, t)] dt �

d 2

dx2 ��

0
e�st u(x, t) dt �

d 2

dx2 �{u(x, t)};

that is, (3)

In view of (1) and (2) we see that the Laplace transform is suited to problems
with initial conditions—namely, those problems associated with the heat equation or
the wave equation.

��
2u

x2� �

d 2U
dx2 .

EXAMPLE 1 Laplace Transform of a PDE

Find the Laplace transform of the wave equation .

SOLUTION From (2) and (3),

becomes

or . (4)

The Laplace transform with respect to t of either the wave equation or the heat
equation eliminates that variable, and for the one-dimensional equations the trans-
formed equations are then ordinary differential equations in the spatial variable x. In
solving a transformed equation, we treat s as a parameter.

a2 
d 2U
dx2 � s2U � �su(x, 0) � ut(x, 0)

a2 
d 2

dx2
 �{u(x, t)} � s2�{u(x, t)} � su(x, 0) � ut(x, 0)

��a2 

2u

x2� � ��
2u


t2�

a2 

2u

x2 �


2u

t2 , t � 0
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514 ● CHAPTER 14 INTEGRAL TRANSFORMS

EXAMPLE 2 Using the Laplace Transform to Solve a BVP

Solve

subject to

.

SOLUTION The partial differential equation is recognized as the wave equation
with a � 1. From (4) and the given initial conditions the transformed equation is

, (5)

where . Since the boundary conditions are functions of t, we
must also find their Laplace transforms

. (6)

The results in (6) are boundary conditions for the ordinary differential equation (5).
Since (5) is defined over a finite interval, its complementary function 

.

The method of undetermined coefficients yields a particular solutio

.

Hence .

But the conditions U(0, s) � 0 and U(1, s) � 0 yield, in turn, c1 � 0 and c2 � 0. We
conclude that

.

Therefore .u(x, t) �
1
�

 sin �x sin �t

 u(x, t) � � �1� 1
s2 � � 2 sin �x� �

1
�

 sin �x � �1� �

s2 � � 2�

 U(x, s) �
1

s2 � � 2 sin �x

U(x, s) � c1 cosh sx � c2 sinh sx �
1

s2 � � 2 sin �x

Up(x, s) �
1

s2 � � 2 sin �x

Uc(x, s) � c1 cosh sx � c2 sinh sx

�{u(0, t)} � U(0, s) � 0    and    �{u(1, t)} � U(1, s) � 0

U(x, s) � �{u(x, t)}

d 2U
dx2 � s2U � �sin �x

 u(x, 0) � 0, 
u

t �

t�0
� sin �x, 0 � x � 1

u(0, t) � 0, u(1, t) � 0, t � 0


2u

x2 �


2u

t2 ,  0 � x � 1,  t � 0

EXAMPLE 3 Using the Laplace Transform to Solve a BVP

A very long string is initially at rest on the nonnegative x-axis. The string is secured
at x � 0, and its distant right end slides down a frictionless vertical support. The
string is set in motion by letting it fall under its own weight. Find the displace-
ment u(x, t).

SOLUTION Since the force of gravity is taken into consideration, it can be shown
that the wave equation has the form

a2 

2u

x2 � g �


2u

t2 ,  x � 0,  t � 0.
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14.2 LAPLACE TRANSFORM ● 515

Here g represents the constant acceleration due to gravity. The boundary and initial
conditions are, respectively,

.

The second boundary condition, , indicates that the string is 
horizontal at a great distance from the left end. Now from (2) and (3),

becomes

or, in view of the initial conditions,

The transforms of the boundary conditions are

.

With the aid of undetermined coefficients, the general solution of the transformed equa-
tion is found to be

.

The boundary condition implies that c2 � 0, and U(0, s) � 0 gives 
c1 � g
s3. Therefore

.

Now by the second translation theorem we have

or

To interpret the solution, let us suppose that t � 0 is fixed. For 0 � x � at the
string is the shape of a parabola passing through (0, 0) and For x � at the
string is described by the horizontal line . See Figure 14.2.1.

Observe that the problem in the next example could be solved by the procedure
in Section 12.6. The Laplace transform provides an alternative solution.

u � �1
2gt2

(at, �1
2gt2).

u(x, t) � �� 1
2
 gt2,       0 � t �

x
a

� g
2a2 (2axt � x2), t �

x
a
.

u(x, t) � � �1 �g
s3 e

�(x/a)s �
g
s3� �

1
2
 g �t �

x
a�

2
 ��t �

x
a� �

1
2
 gt2

U(x, s) �
g
s3 e

�(x/a)s �
g
s3

limx : � dU>dx � 0

U(x, s) � c1e�(x/a)s � c2e(x/a)s �
g
s3

�{u(0, t)} � U(0, s) � 0    and    �� lim
x : �

 

u

x� � lim

x : �
 
dU
dx

� 0

d 2U
dx2 �

s2

a2 U �
g

a2s
.

a2 
d 2U
dx2 �

g
s

� s2U � su(x, 0) � ut(x, 0)

��a2 

2u

x2� � �{g} � ��
2u


t2�

limx :  � 
u>
x � 0

 u(x, 0) � 0, 
u

t �t�0

� 0,  x � 0

 u(0, t) � 0, lim
x : �

 

u

x

� 0, t � 0

FIGURE 14.2.1 “Infinitely long
string falling under its own weight in
Example 3

x

(at ,−   gt 2)1
2

Vertical
support
“at ∞”at

u

EXAMPLE 4 A Solution in Terms of erf(x)

Solve the heat equation


2u

x2 �


u

t

,    0 � x � 1, t � 0
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subject to

SOLUTION From (1) and (3) and the given initial condition,

becomes (7)

The transforms of the boundary conditions are

. (8)

Since we are concerned with a finite interval on the x-axis, we choose to write the
general solution of (7) as

.

Applying the two boundary conditions in (8) yields c1 � 0 and c2 � ,
respectively. Thus

.

Now the inverse transform of the latter function cannot be found in most tables.
However, by writing

and using the geometric series

we fin .

If we assume that the inverse Laplace transform can be done term by term, it follows
from entry 3 of Table 14.1.1 that

. (9)

The solution (9) can be rewritten in terms of the error function using
erfc(x) � 1 � erf(x):

. (10)

Figure 14.2.2(a), obtained with the aid of the 3D-plot application in a CAS,
shows the surface over the rectangular region 0 � x � 1, 0 � t � 6, defined by the
partial sum S10(x, t) of the solution (10) with u0 � 100. It is apparent from the sur-
face and the accompanying two-dimensional graphs that at a fixed value of x (the
curve of intersection of a plane slicing the surface perpendicular to the x-axis on

u(x, t) � u0 	
�

n�0
 �erf�2n � 1 � x

21t � � erf�2n � 1 � x
21t ��

 � u0 	
�

n�0
 �erfc�2n � 1 � x

21t � � erfc�2n � 1 � x
21t ��

 � u0 	
�

n�0
 �� �1�e�(2n�1�x)1s

s � � � �1�e�(2n�1�x)1s

s ��

 u(x, t) � u0� �1� 
sinh(1sx)
s sinh1s �

sinh(1sx)
s sinh1s

� 	
�

n�0
 �e�(2n�1�x)1s

s
�

e�(2n�1�x)1s

s �

1
1 � e�21s � 	

�

n�0
e�2n1s

sinh(1sx)
s sinh1s

�
e1 sx � e�1sx

s(e1s � e�1s)
�

e(x�1)1s � e�(x�1)1s

s(1 � e�21s)

U(x, s) � u0 
sinh(1sx)
s sinh1s

u0 
(s sinh 1s)

U(x, s) � c1 cosh(1sx) � c2 sinh(1sx)

U(0, s) � 0 and U(1, s) �
u0

s

d 2U
dx2 � sU � 0.

��
2u

x2� � ��
u


t�

  u(x, 0) � 0, 0 � x � 1.

 u(0, t) � 0, u(1, t) � u0, t � 0

516 ● CHAPTER 14 INTEGRAL TRANSFORMS
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14.2 LAPLACE TRANSFORM ● 517

the interval [0, 1] the temperature u(x, t) increases rapidly to a constant value as time
increases. See Figures 14.2.2(b) and 14.2.2(c). For a fixed time (the curve of intersec-
tion of a plane slicing the surface perpendicular to the t-axis) the temperature u(x, t)
naturally increases from 0 to 100. See Figures 14.2.2(d) and 14.2.2(e).

FIGURE 14.2.2 Graph of solution given in (10). In (b) and (c) x is held constant.
In (d) and (e) t is held constant.

(b) x � 0.2 (c) x � 0.7

(d) t � 0.1 (e) t � 4

(a)

u(0.2, t )

621 543 621 543

100

t

u (0.7, t )
100
80
60
40
20

80
60
40
20

t

u (x,0.1)

10.80.60.40.2 10.80.60.40.2

120
100
80
60
40
20

120
100
80
60
40
20

x

u(x,4)

x

0
0

6
4
t20.2 0.4

x 0.6 0.8 10

25
50
75

100
(x, t)u

EXERCISES 14.2 Answers to selected odd-numbered problems begin on page ANS-25.

1. A string is stretched along the x-axis between (0, 0) and
(L, 0). Find the displacement u(x, t) if the string starts
from rest in the initial position A sin(px
L).

2. Solve the boundary-value problem

.

3. The displacement of a semi-infinite elastic string is
determined from

Solve for u(x, t).

4. Solve the boundary-value problem in Problem 3 when

.

Sketch the displacement u(x, t) for t � 1.

f (t) � �sin �t,
0,

0 � t � 1
  t � 1

 u(x, 0) � 0,   

u

t �t�0

� 0, x � 0.

u(0, t) � f (t), lim
x : �

 u(x, t) � 0, t � 0

a2 

2u

x2 �


2u

t2 ,  x � 0, t � 0

u(x, 0) � 0, 
u

t �

t�0
� 2 sin �x � 4 sin 3�x

u(0, t) � 0, u(1, t) � 0


2u

x2 �


2u

t2 ,  0 � x � 1, t � 0

5. In Example 3 find the displacement u(x, t) when the left
end of the string at x � 0 is given an oscillatory motion
described by f (t) � A sin vt.

6. The displacement u(x, t) of a string that is driven by an
external force is determined from

Solve for u(x, t).

7. A uniform bar is clamped at x � 0 and is initially at rest.
If a constant force F0 is applied to the free end at 
x � L, the longitudinal displacement u(x, t) of a cross
section of the bar is determined from

Solve for u(x, t). [Hint: Expand 1
(1 � e�2sL/a) in a
geometric series.]

8. A uniform semi-infinite elastic beam moving along the
x-axis with a constant velocity �v0 is brought to a

u(x, 0) � 0, 
u

t �t�0

� 0, 0 � x � L.

u(0, t) � 0, E 

u

x �x�L

� F0, E a constant, t � 0

a2 

2u

x2 �


2u

t2 ,  0 � x � L, t � 0

 u(x, 0) � 0, 
u

t �

t�0
� 0, 0 � x � 1.

 u(0, t) � 0, u(1, t) � 0, t � 0


2u

x2 � sin �x sin �t �


2u

t2 ,  0 � x � 1, t � 0
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stop by hitting a wall at time t � 0. See Figure 14.2.3.
The longitudinal displacement u(x, t) is determined
from

Solve for u(x, t).

u(x, 0) � 0, 
u

t �

t�0
� �v0, x � 0.

u(0, t) � 0, lim
x : �

 

u

x

� 0, t � 0

a2 

2u

x2 �


2u

t2 ,  x � 0, t � 0
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16. ,

17. ,

18. ,

19. Solve the boundary-value problem

20. Show that a solution of the boundary-value problem

where r is a constant, is given by

21. A rod of length L is held at a constant temperature
u0 at its ends x � 0 and x � L. If the rod’s initial
temperature is u0 � u0 sin(xp
L), solve the heat
equation uxx � ut, 0 � x � L, t � 0 for the tempera-
ture u(x, t).

22. If there is a heat transfer from the lateral surface of
a thin wire of length L into a medium at constant
temperature um, then the heat equation takes on the
form

,

where h is a constant. Find the temperature u(x, t) if the
initial temperature is a constant u0 throughout and
the ends x � 0 and x � L are insulated.

23. A rod of unit length is insulated at x � 0 and is kept at
temperature zero at x � 1. If the initial temperature of
the rod is a constant u0, solve kuxx � ut, 0 � x � 1,
t � 0 for the temperature u(x, t). [Hint: Expand

in a geometric series.]

24. An infinite porous slab of unit width is immersed
in a solution of constant concentration c0. A dissolved

1
(1 � e�21s/k)

k 

2u

x2 � h(u � um) �


u

t

,  0 � x � L, t � 0

u(x, t) � rt � r �t

0
 erfc� x

21k
� d
.

 u(x, 0) � 0, x � 0,

 u(0, t) � 0, lim
x : �

 

u

x

� 0, t � 0

 k 

2u

x2 � r �


u

t

, x � 0, t � 0

u(x, 0) � 0, �� � x � 1.


u

x �

x�1
� 100 � u(1, t), lim

x : ��
 u(x, t) � 0, t � 0


2u

x2 �


u

t

, �� � x � 1, t � 0

u(x, 0) � 100

u(0, t) � �20,
0,

0 � t � 1
t � 1

, lim
x : �

 u(x, t) � 100

 u(x, 0) � 60

u(0, t) � 60 � 40�(t � 2), lim
x : �

 u(x, t) � 60

 u(x, 0) � 0

u

x �

x�0
� �f (t), lim

x : �
 u(x, t) � 0

x

Wall

x = 0

Beam
v0

FIGURE 14.2.3 Moving elastic beam in Problem 8

9. Solve the boundary-value problem

.

10. Solve the boundary-value problem

In Problems 11–18 use the Laplace transform to solve the
heat equation uxx � ut, x � 0, t � 0, subject to the given
conditions.

11. ,

12. ,

13. ,

14. ,

15. ,

[Hint: Use the convolution theorem.]

 u(x, 0) � 0u(0, t) � f (t), lim
x : �

 u(x, t) � 0

 u(x, 0) � 0

u

x �

x�0
� u(0, t) � 50, lim

x : �
 u(x, t) � 0

 u(x, 0) � u0

u

x �

x�0
� u(0, t), lim

x : �
 u(x, t) � u0

 u(x, 0) � u1x u(0, t) � u0, lim
x : �

 
u(x, t)

x
� u1

 u(x, 0) � u1 u(0, t) � u0, lim
x : �

 u(x, t) � u1

u(x, 0) � e�x, 
u

t �

t�0
� 0, x � 0.

u(0, t) � 1, lim
x : �

 u(x, t) � 0, t � 0


2u

x2 �


2u

t2 , x � 0, t � 0

u(x, 0) � xe�x, 
u

t �

t�0
� 0, x � 0

u(0, t) � 0,  lim
x : �

 u(x, t) � 0, t � 0


2u

x2 �


2u

t2 ,  x � 0, t � 0
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14.2 LAPLACE TRANSFORM ● 519

substance in the solution diffuses into the slab. The con-
centration c(x, t) in the slab is determined from

where D is a constant. Solve for c(x, t).

25. A very long telephone transmission line is initially at a
constant potential u0. If the line is grounded at x � 0 and
insulated at the distant right end, then the potential u(x, t)
at a point x along the line at time t is determined from

where R, C, and G are constants known as resistance,
capacitance, and conductance, respectively. Solve for
u(x, t). [Hint: See Problem 7 in Exercises 14.1.]

26. Show that a solution of the boundary-value problem

is

27. In Problem 9 of Exercises 13.3 you were asked to fin
the time-dependent temperatures within a unit
sphere. The temperatures outside the sphere are de-
scribed by the boundary-value problem

Use the Laplace transform to find [Hint: After
transforming the PDE, let 

28. Starting at t � 0, a concentrated load of magnitude F0
moves with a constant velocity v0 along a semi-
infinite string. In this case the wave equation becomes

, a2 

2u

x2 �


2u

t2 � F0��t �

x
v0
�

v(r, t) � ru(r, t).]
u(r, t).

u(r, 0) � 0,   r � 1.

u(1, t) � 100,  lim
r : �

u(r, t) � 0,   t � 0


2u

r2 �

2
r
 

u

r

�

u

t

,  r � 1,  t � 0

u(r, t)

u(x, t) �
u0x

21�
 �t

0
 
e�h
�x2/4



 3/2  d
.

u(x, 0) � 0,  x � 0

u(0, t) � u0, lim
x : �

 u(x, t) � 0, t � 0


2u

x2 � hu �


u

t

,  x � 0, t � 0, h constant

u(x, 0) � u0, x � 0,

u(0, t) � 0,  lim
x : �

 

u

x

� 0,  t � 0


2u

x2 � RC 


u

t

� RGu � 0,  x � 0, t � 0

c(x, 0) � 0, 0 � x � 1,

c(0, t) � c0, c(1, t) � c0,  t � 0

D 

2c

x2 �


c

t

,  0 � x � 1,  t � 0

where d(t � x
v0) is the Dirac delta function. Solve the
above PDE subject to

(a) when v0 � a (b) when v0 � a.

Computer Lab Assignments

29. (a) The temperature in a semi-infinite solid is modeled
by the boundary-value problem

Solve for u(x, t). Use the solution to determine ana-
lytically the value of .

(b) Use a CAS to graph u(x, t) over the rectangular
region defined by 0 � x � 10, 0 � t � 15. Assume
that u0 � 100 and k � 1. Indicate the two boundary
conditions and initial condition on your graph. Use
2D and 3D plots of u(x, t) to verify your answer to
part (a).

30. (a) In Problem 29 if there is a constant flux of heat
into the solid at its left-hand boundary, then the

boundary condition is .

Solve for u(x, t). Use the solution to determine ana-
lytically the value of .

(b) Use a CAS to graph u(x, t) over the rectangular
region defined by 0 � x � 10, 0 � t � 15. Assume
that u0 � 100 and k � 1. Use 2D and 3D plots of
u(x, t) to verify your answer to part (a).

31. Humans gather most of our information on the outside
world through sight and sound. But many creatures use
chemical signals as their primary means of communica-
tion; for example, honeybees, when alarmed, emit a
substance and fan their wings feverishly to relay the warn-
ing signal to the bees that attend to the queen. These mo-
lecular messages between members of the same species
are called pheromones. The signals may be carried by
moving air or water or by a diffusion process in which the
random movement of gas molecules transports the chem-
ical away from its source. Figure 14.2.4 shows an ant
emitting an alarm chemical into the still air of a tunnel. If
c(x, t) denotes the concentration of the chemical x cen-
timeters from the source at time t, then c(x, t) satisfie

k 

2c

x2 �


c

t

,  x � 0, t � 0

limt : � u(x, t), x � 0


u

x �

x�0
� �A, A � 0, t � 0

limt : � u(x, t), x � 0

u(x, 0) � 0,  x � 0.

u(0, t) � u0, lim
x : �

 u(x, t) � 0, t � 0

k 

2u

x2 �


u

t

,  x � 0, t � 0

 u(x, 0) � 0, 
u

t �

t�0
� 0, x � 0

 u(0, t) � 0, lim
x : �

 u(x, t) � 0, t � 0
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and k is a positive constant. The emission of
pheromones as a discrete pulse gives rise to a boundary
condition of the form

,

where d(t) is the Dirac delta function.
(a) Solve the boundary-value problem if it is further

known that

c(x, 0) � 0, x � 0 and t � 0.limx : � c(x, t) � 0,


c

x �

x�0
� �A�(t)
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FIGURE 14.2.4 Ant responding to chemical signal
in Problem 31

x0

. (1)f (x) �
1

2p
 �p

�p
  f (t) dt �

1
p
 	

�

n�1
���p

�p
  f (t) cos 

n�

p
 t dt� cos 

n�

p
 x � ��p

�p
  f (t) sin 

n�

p
 t dt � sin 

n�

p
 x�

If we let an � np
p, �a � an�1 � an � p
p, then (1) becomes

. (2)f (x) �
1

2�
 ��p

�p
 f (t) dt� �� �

1
�

 	
�

n�1
���p

�p
  f (t) cos �nt dt� cos �nx � ��p

�p
  f (t) sin �n

  t dt � sin �nx� ��

We now expand the interval (�p, p) by letting . Since implies that
, the limit of (2) has the form which is suggestive

of the definition of the integral . Thus if exists, the limit of the
first term in (2) is zero, and the limit of the sum become

. (3)

The result given in (3) is called the Fourier integral of f on (��, �). As the follow-
ing summary shows, the basic structure of the Fourier integral is reminiscent of that
of a Fourier series.

f (x) �
1
�

 ��

0
 ����

��
 f (t) cos �t dt� cos �x � ���

��
 f (t) sin �t dt� sin �x� d�

��
��  f (t) dt��

0 F(�) d�
lim

�� : 0 
�n�1

�  F(an) ��,�� : 0
p : �p : �

(b) Use a CAS to graph the solution in part (a) for
x � 0 at the fixed times t � 0.1, t � 0.5, t � 1,
t � 2, and t � 5.

(c) For any fixed time t, show that .
Thus Ak represents the total amount of chemical
discharged.

��
0  c(x, t) dx � Ak

FOURIER INTEGRAL

REVIEW MATERIAL
● The Fourier integral has different forms that are analogous to the four forms of Fourier series

given in Definitions 1.2.1 and 11.3.1 and Problem 23 in Exercises 11.2. A review of these
various forms is recommended.

INTRODUCTION In Chapters 11–13 we used Fourier series to represent a function f defined on
a finite interval such as (�p, p) or (0, L). When f and f � are piecewise continuous on such an inter-
val, a Fourier series represents the function on the interval and converges to the periodic extension
of f outside the interval. In this way we are justified in saying that Fourier series are associated only
with periodic functions. We shall now derive, in a nonrigorous fashion, a means of representing
certain kinds of nonperiodic functions that are defined on either an infinite interval (��, �) or a
semi-infinite interval (0, �).

14.3

Fourier Series to Fourier Integral Suppose a function f is defined on the in-
terval (�p, p). If we use the integral definitions of the coefficients (9), (10), and (11)
of Section 11.2 in (8) of that section, then the Fourier series of f on the interval is
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FIGURE 14.3.1 Piecewise-continuous
function defined on ��, �) in Example 1

y

x2

1

*This means that the integral converges.��
�� � f (x)� dx

DEFINITION 14.3.1 Fourier Integral

The Fourier integral of a function f defined on the interval (��, �) is
given by

, (4)

where (5)

. (6)B(�) � ��

��
 f (x) sin �x dx

A(�) � ��

��
 f (x) cos �x dx

f (x) �
1
�

 ��

0
[ A(�) cos �x � B(�) sin �x] d�

Convergence of a Fourier Integral Sufficient conditions under which a
Fourier integral converges to f (x) are similar to, but slightly more restrictive than, the
conditions for a Fourier series.

THEOREM 14.3.1 Conditions for Convergence

Let f and f � be piecewise continuous on every finite interval and let f be absolutely
integrable on (��, �).* Then the Fourier integral of f on the interval converges to
f (x) at a point of continuity. At a point of discontinuity the Fourier integral will
converge to the average

,

where f (x�) and f (x�) denote the limit of f at x from the right and from the left,
respectively.

f (x�) � f (x�)
2

EXAMPLE 1 Fourier Integral Representation

Find the Fourier integral representation of the function

SOLUTION The function, whose graph is shown in Figure 14.3.1, satisfies the
hypotheses of Theorem 14.3.1. Hence from (5) and (6) we have at once

 B(�) � ��

��

 f (x) sin �x dx � �2

0
 sin �x dx �

1 � cos 2�

�
.

 � �2

0
 cos �x dx �

sin 2�

�

 � �0

��

 f (x) cos �x dx � �2

0
 f (x) cos �x dx � ��

2
 f (x) cos �x dx 

 A(�) � ��

��
  f (x) cos �x dx

f (x) � � 
0,   x � 0
1, 0 � x � 2
0,   x � 2.

27069_14_ch14_p510-533.qxd  2/2/12  2:58 PM  Page 521

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Substituting these coefficients into (4) then give

When we use trigonometric identities, the last integral simplifies t

. (7)

The Fourier integral can be used to evaluate integrals. For example, it follows
from Theorem 14.3.1 that (7) converges to f (1) � 1; that is,

The latter result is worthy of special note, since it cannot be obtained in the “usual”
manner; the integrand (sin x)
x does not possess an antiderivative that is an elemen-
tary function.

Cosine and Sine Integrals When f is an even function on the interval (��, �),
then the product f (x) cos ax is also an even function, whereas f (x) sin ax is an odd
function. As a consequence of property (g) of Theorem 11.3.1, B(a) � 0, and so
(4) becomes

Here we have also used property ( f ) of Theorem 11.3.1 to write

Similarly, when f is an odd function on (��, �), products f (x) cos ax and f (x) sin ax
are odd and even functions, respectively. Therefore A(a) � 0, and

We summarize these results in the following definition

f (x) �
2
�

 ��

0
���

0
f (t) sin �t dt� sin �x d�.

��

��
 f (t) cos �t dt � 2 ��

0
 f (t) cos �t dt.

f (x) �
2
�

 ��

0
���

0
f (t) cos �t dt� cos �x d�.

2
�

 ��

0
 
sin �

�
 d� � 1    and so    ��

0
 
sin �

�
 d� �

�

2
.

f (x) �
2
�

 ��

0
  
sin � cos �(x � 1)

�
 d�

f (x) �
1
�

 ��

0
 �� 

sin 2�

� � cos �x � �1 � cos 2�

� � sin �x� d�.

522 ● CHAPTER 14 INTEGRAL TRANSFORMS

DEFINITION 14.3.2 Fourier Cosine and Sine Integrals

(i) The Fourier integral of an even function f defined on the interval (��, �)
is the cosine integral

(8)

where (9)

(ii) The Fourier integral of an odd function f defined on the interval (��, �)
is the sine integral

(10)

where (11) B(�) � ��

0
f (x) sin �x dx.

 f (x) �
2
�

 ��

0
 B(�) sin �x d�,

 A(�) � ��

0
f (x) cos �x dx.

 f (x) �
2
�

 ��

0
 A(�) cos �x d�,
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FIGURE 14.3.3 Function define
on (0, �) in Example 3

FIGURE 14.3.4 (a) is the even
extension of f; (b) is the odd extension 
of f

x

y
1

(a) cosine integral

(b) sine integral

x

y

x

y

FIGURE 14.3.2 Piecewise-continuous
even function defined on ��, �) in
Example 2

y

xa−a

1

EXAMPLE 2 Cosine Integral Representation

Find the Fourier integral representation of the function

SOLUTION It is apparent from Figure 14.3.2 that f is an even function. Hence we
represent f by the Fourier cosine integral (8). From (9) we obtain

so (12)

The integrals (8) and (10) can be used when f is neither odd nor even and define
only on the half-line (0, �). In this case (8) represents f on the interval (0, �) and its
even (but not periodic) extension to (��, 0), whereas (10) represents f on (0, �) and
its odd extension to the interval (��, 0). The next example illustrates this concept.

f (x) �
2
�

 ��

0
 
sin a� cos �x

�
 d�.

 ��a

0
 cos �x dx �

sin a�

�
,

 A(�) � ��

0
 f (x) cos �x dx � �a

0
 f (x) cos �x dx � ��

a
f (x) cos �x dx 

f (x) � �1, � x � � a
0, � x � � a.

EXAMPLE 3 Cosine and Sine Integral Representations

Represent f (x) � e�x, x � 0
(a) by a cosine integral (b) by a sine integral.

SOLUTION The graph of the function is given in Figure 14.3.3.

(a) Using integration by parts, we fin

Therefore the cosine integral of f is

(13)

(b) Similarly, we have

The sine integral of f is then

(14)

Figure 14.3.4 shows the graphs of the functions and their extensions represented by
the two integrals in (13) and (14).

Use of Computers We can examine the convergence of a Fourier integral in a
manner similar to graphing partial sums of a Fourier series. To illustrate, let’s use part
(b) of Example 3. Then by definition of an improper integral the Fourier sine integral
representation (14) of f (x) � e�x, x � 0, can be written as ,
where x is considered a parameter in

. (15)Fb(x) �
2
�

 �b

0
 
� sin �x
1 � �2  d�

f (x) � limb : �  Fb(x)

f (x) �
2
�

 ��

0
 
� sin �x
1 � �2  d�.

B(�) � ��

0
e�x sin �x dx �

�

1 � �2.

f (x) �
2
�

 ��

0
 
cos �x
1 � �2 d�.

A(�) � ��

0
e�x cos �x dx �

1
1 � �2.

27069_14_ch14_p510-533.qxd  2/2/12  2:58 PM  Page 523

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Now the idea is this: Since the Fourier sine integral (14) converges, for a specifie
value of b � 0 the graph of the partial integral Fb(x) in (15) will be an
approximation to the graph of f in Figure 14.3.4(b). The graphs of Fb(x) for b � 5
and b � 20 given in Figure 14.3.5 were obtained by using Mathematica and its
NIntegrate application. See Problem 21 in Exercises 14.3.
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1.5
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FIGURE 14.3.5 Convergence of Fb(x) to f (x) in Example 3(b) as b : �

Complex Form The Fourier integral (4) also possesses an equivalent complex
form, or exponential form, that is analogous to the complex form of a Fourier series
(see Problem 23 in Exercises 11.2). If (5) and (6) are substituted into (4), then

(16)

(17)

(18)

We note that (16) follows from the fact that the integrand is an even function of a. In
(17) we have simply added zero to the integrand;

because the integrand is an odd function of a. The integral in (18) can be expressed as

(19)

where (20)

This latter form of the Fourier integral will be put to use in the next section when
we return to the solution of boundary-value problems.

C(�) ���

��

 f (x)ei�x dx.

f (x) �
1

2�
 ��

��

C(�)e�i�x d�,

i ��

��

 ��

��

 f (t) sin �(t � x) dt d� � 0

 � 
1

2�
 ��

��

 ���

��

 f (t) ei�t dt�e�i�x  d�.

 � 
1

2�
 ��

��

 ��

��

 f (t) ei�(t�x) dt d�

 � 
1

2�
 ��

��

 ��

��

 f (t) [cos �(t � x) � i sin �(t � x)] dt d�

 � 
1

2�
 ��

��

 ��

��

 f (t) cos �(t � x) dt d�

 � 
1
�

 ��

0
��

��

 f (t) cos �(t � x) dt d�

 f (x) �
1
�

 ��

0
��

��

 f (t) [cos �t cos �x � sin �t sin �x] dt d�
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14.3 FOURIER INTEGRAL ● 525

In Problems 1–6 find the Fourier integral representation of
the given function.

1.

2.

3.

4.

5.

6.

In Problems 7–12 represent the given function by an appro-
priate cosine or sine integral.

7.

8.

9. 10.

11. f (x) � e�| x | sin x 12. f (x) � xe�| x |

In Problems 13–16 find the cosine and sine integral repre-
sentations of the given function.

13. f (x) � e�kx, k � 0, x � 0

14. f (x) � e�x � e�3x, x � 0

15. f (x) � xe�2x, x � 0

16. f (x) � e�x cos x, x � 0

f (x) � �x,
0,

� x � � �

� x � � �
f (x) � �� x �,

0,
� x � � �

� x � � �

f (x) � �
0,
�,
0,

� x � � 1
1 � � x � � 2

� x � � 2

f (x) � �
  0,     x � �1
�5, �1 � x � 0
  5,  0 � x � 1
  0,    x � 1

f (x) � �ex, � x � � 1
0,  � x � � 1

f (x) � �0,   x � 0
e�x, x � 0

f (x) � �0,       x � 0
sin x, 0 � x � �

0,       x � �

f (x) � �0,    x � 0
x, 0 � x � 3
0,     x � 3

f (x) � �0,     x � �

4, � � x � 2�

0,     x � 2�

f (x) � �
  0,     x � �1
�1, �1 � x � 0
  2,  0 � x � 1
  0,    x � 1

In Problems 17 and 18 solve the given integral equation for
the function f.

17.

18.

19. (a) Use (7) to show that

[Hint: a is a dummy variable of integration.]
(b) Show in general that for k � 0,

20. Use the complex form (19) to find the Fourier integral
representation of f (x) � e�|x |. Show that the result is the
same as that obtained from (8).

Computer Lab Assignments

21. While the integral (12) can be graphed in the same man-
ner discussed on pages 523–524 to obtain Figure 14.3.5,
it can also be expressed in terms of a special function
that is built into a CAS.
(a) Use a trigonometric identity to show that an

alternative form of the Fourier integral repre-
sentation (12) of the function f in Example 2
(with a � 1) is

.

(b) As a consequence of part (a), 
where

.

Show that the last integral can be written as

,

where Si(x) is the sine integral function. See
Problem 55 in Exercises 2.3.

(c) Use a CAS and  the sine integral form of Fb(x) in
part (b) to obtain the graphs on the interval [�3, 3]
for b � 4, 6, and 15. Then graph Fb(x) for larger
values of b � 0.

Fb(x) �
1
�

 [Si(b(x � 1)) � Si(b(x � 1))]

Fb(x) �
1
�

 �b

0
 
sin �(x � 1) � sin �(x � 1)

�
  d�

f (x) � lim
b : � 

Fb(x),

f (x) �
1
�

 ��

0
 
sin �(x � 1) � sin �(x � 1)

�
  d�

��

0
 
sin kx

x
 dx �

�

2
.

��

0
 
sin 2x

x
 dx �

�

2
.

��

0
f (x) sin �x dx � �1,

0,
0 � � � 1

� � 1

��

0
f (x) cos �x dx � e��

EXERCISES 14.3 Answers to selected odd-numbered problems begin on page ANS-25.
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Transform Pairs The Laplace transform F(s) of a function f (t) is defined by
an integral, but up to now we have been using the symbolic representation

to denote the inverse Laplace transform of F(s). Actually, the
inverse Laplace transform is also an integral transform.

If , then the inverse Laplace transform is

.

The last integral is called a contour integral; its evaluation requires the use of com-
plex variables and is beyond the scope of this text. The point here is this: Integral
transforms appear in transform pairs. If f (x) is transformed into F(a) by an
integral transform

,

then the function f can be recovered by another integral transform

,

called the inverse transform. The functions K and H in the integrands are called
the kernels of their respective transforms. We identify K(s, t) � e�st as the kernel
of the Laplace transform and H(s, t) � est
2pi as the kernel of the inverse Laplace
transform.

Fourier Transform Pairs The Fourier integral is the source of three new in-
tegral transforms. From (20)–(19), (11)–(10), and (9)–(8) of Section 14.3 we are
prompted to define the following Fourier transform pairs.

f (x) � �d

c
F(�)H(�, x) d�

F(�) � �b

a
  f (x)K(�, x) dx

� �1{F(s)} �
1

2�i
 ��� i�

�� i�
 estF(s) ds � f (t)

�{ f (t)} � ��
0  e�st  f (t) dt � F(s)

f (t) � � �1{F(s)}

526 ● CHAPTER 14 INTEGRAL TRANSFORMS

FOURIER TRANSFORMS

REVIEW MATERIAL
● Definition 14.3.
● Equations (19) and (20) in Section 14.3

INTRODUCTION So far in this text we have studied and used only one integral transform: the
Laplace transform. But in Section 14.3 we saw that the Fourier integral had three alternative forms:
the cosine integral, the sine integral, and the complex or exponential form. In the present section we
shall take these three forms of the Fourier integral and develop them into three new integral trans-
forms, not surprisingly called Fourier transforms. In addition, we shall expand on the concept of
a transform pair, that is, an integral transform and its inverse. We shall also see that the inverse of an
integral transform is itself another integral transform.

14.4

DEFINITION 14.4.1 Fourier Transform Pairs

(i) Fourier (1)
transform:

Inverse Fourier (2)
transform:

� �1{F(�)} �
1

2�
 ��

��

F(�)e�i�x d� � f (x)

� { f (x)} � ��

��
 f (x)ei�x dx � F(�)
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14.4 FOURIER TRANSFORMS ● 527

(ii) Fourier sine (3)
transform:

Inverse Fourier (4)
sine transform:

(iii) Fourier cosine (5)
transform:

Inverse Fourier (6)
cosine transform:

� �1
c {F(�)} �

2
�

 ��

0
F(�) cos �x da � f (x)

�c{ f (x)} � ��

0
f(x) cos �x dx � F(�)

� �1
s {F(�)} �

2
�

 ��

0
F(�) sin �x da � f (x)

�s{ f (x)} � ��

0
 f (x) sin �x dx � F(�)

Existence The conditions under which (1), (3), and (5) exist are more stringent
than those for the Laplace transform. For example, you should verify that �{1},
�s{1}, and �c{1} do not exist. Sufficient conditions for existence are that f be
absolutely integrable on the appropriate interval and that f and f � be piecewise con-
tinuous on every finite interval

Operational Properties Since our immediate goal is to apply these new
transforms to boundary-value problems, we need to examine the transforms of
derivatives.

Fourier Transform Suppose that f is continuous and absolutely integrable on
the interval (��, �) and f � is piecewise continuous on every finite interval. If

as , then integration by parts gives

that is, . (7)

Similarly, under the added assumptions that f � is continuous on (��, �), f �(x)
is piecewise continuous on every finite interval and as , we have

. (8)

It is important to be aware that the sine and cosine transforms are not suitable for
transforming the first derivative (or, for that matter, any derivative of odd order). It is
readily shown that

.

The difficulty is apparent; the transform of f �(x) is not expressed in terms of the orig-
inal integral transform.

Fourier Sine Transform Suppose that f and f � are continuous, f is absolutely
integrable on the interval [0, �), and f � is piecewise continuous on every finit

�s{ f �(x)} � ���c{ f (x)}    and    �c{ f �(x)} � ��s{ f (x)} � f (0)

� { f �(x)} � (�i�)2 � { f (x)} � ��2F(�)

x : ��f �(x) : 0

� { f �(x)} � �i� F(�)

 � �i���

��
 f (x)ei�x dx,

 � f (x) ei�x ��

��
� i� ��

��
 f (x)ei�x dx

 � { f �(x)} � ��

��

f �(x)ei�x dx

x : ��f (x) : 0
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interval. If and as , then

that is, . (9)

Fourier Cosine Transform Under the same assumptions that lead to (9) we
find the Fourier cosine transform of f �(x) to be

. (10)

A natural question is “How do we know which transform to use on a given
boundary-value problem?” Clearly, to use a Fourier transform, the domain of the
variable to be eliminated must be (��, �). To utilize a sine or cosine transform, the
domain of at least one of the variables in the problem must be [0, �). But the deter-
mining factor in choosing between the sine transform and the cosine transform is the
type of boundary condition specified at zero

In the examples that follow, we shall assume without further mention that both
u and 
u

x (or 
u

y) approach zero as . This is not a major restriction,
since these conditions hold in most applications.

x : ��

�c{ f �(x)} � ��2F(�) � f �(0)

�s{ f �(x)} � ��2F(�) � � f (0)

 � � f (0) � �2�s{ f (x)},

 � �� �f (x) cos �x ��

0
� � ��

0
 f (x) sin �x dx�

 � f �(x) sin �x ��

0
� ���

0
 f �(x) cos �x dx

 �s{ f �(x)} � ��

0
f �(x) sin �x dx

x : �f � : 0f : 0

528 ● CHAPTER 14 INTEGRAL TRANSFORMS

Remember this when working
the problems in Exercises 14.4. �

EXAMPLE 1 Using the Fourier Transform

Solve the heat equation , �� � x � �, t � 0, subject to

SOLUTION The problem can be interpreted as finding the temperature u(x, t) in an
infinite rod. Because the domain of x is the infinite interval (��, �), we use the
Fourier transform (1) and defin

.

If we transform the partial differential equation and use (8),

yields .

Solving the last equation gives . Now the transform of the initial
condition is

.�{u(x, 0)} � ��

��
 f (x)ei�x dx � �1

�1
 u0 ei�x dx � u0

ei� � e�i�

i�

U(�, t) � ce�k�2t

�k�2U(�, t) �
dU
dt

   or   dU
dt

� k�2U(�, t) � 0

� �k 

2u

x2� � � �
u


t�

�{u(x, t)} � ��

��
 u(x, t)ei�x dx � U(�, t)

u(x, 0) � f (x),   where   f (x) � �u0,  � x � � 1
0,  � x � � 1.

k 

2u

x2 �


u

t

27069_14_ch14_p510-533.qxd  2/2/12  2:58 PM  Page 528

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



14.4 FOURIER TRANSFORMS ● 529

This result is the same as . Applying this condition to the solution

U(a, t) gives U(a, 0) � c � (2u0 sin a)
a, so

.

It then follows from the inverse Fourier transform (2) that

.

The last expression can be simplified somewhat by using Euler’s formula
e�iax � cos ax � i sin ax and noting that

, 

since the integrand is an odd function of a. Hence we finally hav

(11)

It is left to the reader to show that the solution (11) can be expressed in terms of
the error function. See Problem 23 in Exercises 14.4.

u(x, t) �
u0

�
 ��

��

 
sin � cos �x

�
 e�k�2t d�.

��

��

 
sin �

�
 e�k�2t sin �x  d� � 0

u(x, t) �
u0

�
 ��

��

 
sin �

�
 e�k�2te�i�x d�

U(�, t) � 2u0
sin �

�
 e�k�2t

U(�, 0) � 2u0
sin �

�

EXAMPLE 2 Using the Cosine Transform

The steady-state temperature in a semi-infinite plate is determined fro

Solve for u(x, y).

SOLUTION The domain of the variable y and the prescribed condition at y � 0 
indicate that the Fourier cosine transform is suitable for the problem. We defin

In view of (10),

becomes .

Since the domain of x is a finite interval, we choose to write the solution of the
ordinary differential equation as

. (12)

Now are in turn equivalent to

U(0, �) � 0   and   U(�, �) �
1

1 � �2.

�c{u(0, y)} � �c{0} and �c{u(�, y)} � �c{e�y}

U(x, �) � c1 cosh �x � c2 sinh �x

d 2U
dx2 � �2U(x, �) � uy(x, 0) � 0   or   d 2U

dx2 � �2U � 0

�c�
2u

x2� � �c�
2u


y2� � �c{0}

�c{u(x, y)} � ��

0
u(x, y) cos �y dy � U(x, �).


u

y �

y�0
� 0, 0 � x � �.

u(0, y) � 0, u(�, y) � e�y, y � 0


2u

x2 �


2u

y2 � 0,  0 � x � �, y � 0
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When we apply these latter conditions, the solution (12) gives c1 � 0 and
c2 � 1
[(1 � a2) sinh ap]. Therefore

,

so from (6) we arrive at

(13)

Had u(x, 0) been given in Example 2 rather than uy(x, 0), then the sine transform
would have been appropriate.

u(x, y) �
2
�

 ��

0
 

sinh �x
(1 � �2) sinh ��

 cos �y d�.

U(x, �) �
sinh �x

(1 � �2) sinh ��

530 ● CHAPTER 14 INTEGRAL TRANSFORMS

In Problems 1–21 use the Fourier integral transforms of this
section to solve the given boundary-value problem. Make
assumptions about boundedness where necessary.

1.

2.

3. Find the temperature u(x, t) in a semi-infinite rod if
u(0, t) � u0, t � 0 and u(x, 0) � 0, x � 0.

4. Use the result , to show that

the solution of Problem 3 can be written as

.

5. Find the temperature u(x, t) in a semi-infinite rod if
u(0, t) � 0, t � 0, and

6. Solve Problem 3 if the condition at the left boundary is

,

where A is a constant.


u

x �

x�0
� �A, t � 0

u(x, 0) � �1,
0,

0 � x � 1
x � 1.

u(x, t) � u0 �
2u0

�
 ��

0
 
sin�x

�
 e�k�2t d�

��

0
 
sin �x

�
 d� �

�

2
, x � 0

u(x, 0) � �
   0,            x � �1
�100, �1 � x � 0
  100,    0 � x � 1
       0,            x � 1

k 

2u

x2 �


u

t

, �� � x � �, t � 0

u(x, 0) � e��x�,  �� � x � �

k 

2u

x2 �


u

t

, �� � x � �, t � 0

7. Solve Problem 5 if the end x � 0 is insulated.

8. Find the temperature u(x, t) in a semi-infinite rod if
u(0, t) � 1, t � 0, and u(x, 0) � e�x, x � 0.

9. (a)

(b) If g(x) � 0, show that the solution of part (a) can be
written as .

10. Find the displacement u(x, t) of a semi-infinite string if

11. Solve the problem in Example 2 if the boundary condi-
tions at x � 0 and x � p are reversed: u(0, y) � e�y,
u(p, y) � 0, y � 0.

12. Solve the problem in Example 2 if the boundary condi-
tion at y � 0 is u(x, 0) � 1, 0 � x � p.

13. Find the steady-state temperature u(x, y) in a plate
defined by x � 0, y � 0 if the boundary x � 0 is insu-
lated and, at y � 0,

14. Solve Problem 13 if the boundary condition at x � 0 is
u(0, y) � 0, y � 0.

15.

 u(x, 0) � f (x), u(x, 2) � 0, x � 0
 u(0, y) � 0, 0 � y � 2


2u

x2 �


2u

y2 � 0, x � 0, 0 � y � 2

u(x, 0) � �50, 0 � x � 1
 0,   x � 1.

 u(x, 0) � xe�x, 
u

t �

t�0
� 0, x � 0

u(0, t) � 0, t � 0

u(x, t) � 1
2[ f (x � at) �  f (x � at)]

u(x, 0) � f (x),  

u

t �

t�0
� g(x), �� � x � �

 a2 

2u

x2 �


2u

t2 , �� � x � �, t � 0

EXERCISES 14.4 Answers to selected odd-numbered problems begin on page ANS-25.
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14.4 FOURIER TRANSFORMS ● 531

16.

In Problems 17 and 18 find the steady-state temperature 
in the plate given in the figure. [Hint: One way of proceeding is
to express Problems 17 and 18 as two- and three-boundary-value
problems, respectively. Use the superposition principle. See
Section 12.5.]

17.

u(x, y)


u

y �

y�0
� 0, 0 � x � �

 u(0, y) � f (y), 
u

x �

x��
� 0, y � 0


2u

x2 �


2u

y2 � 0, 0 � x � �, y � 0

21. Use the transform given in Problem 19 to
find the steady-state temperature in the infinite strip
shown in Figure 14.4.3.

� {e�x2/4p2}

FIGURE 14.4.2 Plate in Problem 18

FIGURE 14.4.1 Plate in Problem 17

u = e − y

u = e −x x

y

x

y

u = 0
u = e −y

u = 100
u = f (x)

1

0 π

18.

19. Use the result to solve the
boundary-value problem

20. If , then the con-
volution theorem for the Fourier transform is given by

.

Use this result and to show
that a solution of the boundary-value problem

is  u(x, t) �
1

21k�t
 ��

��

f (
)e�(x�
)2/4kt d
.

 u(x, 0) � f (x), �� � x � �

 k 

2u

x2 �


u

t

,  �� � x � �, t � 0

� {e�x2/4p2} � 21�pe�p2�2

��

��
 f (
)g(x � 
) d
 � � �1{F(�)G(�)}

� { f (x)} � F(�) and � {g(x)} � G(�)

u(x, 0) � e�x2, �� � x � �.

k 

2u

x2 �


u

t

,  �� � x � �, t � 0

�{e�x2/4p2} � 21�pe�p2�2

FIGURE 14.4.3 Infinite strip in Problem 2

x

y
u = e −x2

1

Insulated

.�
1
2
 arctan 

x � 1
y �u(x, y) �

100
�

 �arctan 
x
y

�
1
2
 arctan 

x � 1
y

23. Use the solution given in Problem 20 to rewrite the so-
lution of Example 1 in an alternative integral form.
Then use the change of variables 
and the results of Problem 11 in Exercises 14.1 to show
that the solution of Example 1 can be expressed as

.

24. The steady-state temperatures in a semi-infinit
cylinder are described by the boundary-value problem

Use an appropriate Fourier transform to find
[Hint: See Problem 4 and the parametric form of the
modified Bessel equation on page 260.

25. Find the steady-state temperatures in the semi-
infinite cylinder in Problem 24 if the base of the cylinder
is insulated and

Discussion Problems

26. (a) Suppose where

Find f (x).

F(a) � �1 � a,  0 � a � 1
0,          a � 1.

��

0 f (x)cosaxdx �  F(a),

u(1, z) � �1,  0 � z � 1
0,  z � 1.

u(r, z)

u(r, z).

u(r, 0) � u0,    0 � r � 1.
u(1, z) � 0,     z � 0


2u

r2 �

1
r
 

u

r

�

2u

z2 � 0,  0 � r � 1,  z � 0

u(r, z)

u(x, t) �
u0

2
 �erf�x � 1

21kt� � erf�x � 1
21kt��

v � (x � 
) 
21kt

22. The solution of Problem 14 can be integrated. Use entries
42 and 43 of the table in Appendix III to show that
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532 ● CHAPTER 14 INTEGRAL TRANSFORMS

CHAPTER 14 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-26.

In Problems 1–17 solve the given boundary-value problem
by an appropriate integral transform. Make assumptions
about boundedness where necessary.

1.

2.

3.

4.

5.

u(x, 0) � 0, x � 0 [Hint: Use Theorem 7.4.2.]

6.

7.

 u(x, 0) � �0,     x � 0
u0, 0 � x � �

0,      x � �

 k 

2u

x2 �


u

t

, �� � x � �, t � 0

 u(x, 0) � sin �x, 
u

t �

t�0
� �sin �x,  0 � x � 1

 u(0, t) � 0, u(1, t) � 0, t � 0


2u

x2 �


2u

t2 , 0 � x � 1, t � 0

 u(0, t) � t, lim
x : �

 u(x, t) � 0


2u

x2 �


u

t

, x � 0, t � 0

 u(x, 0) � 0, �� � x � �


u

t

�

2u

x2 � e��x�, �� � x � �, t � 0

 u(x, 0) � u0, x � 0

 u(0, t) � 0, lim
x : �

 

u

x

� 0, t � 0


2u

x2 � hu �


u

t

, h � 0, x � 0, t � 0

 u(x, 0) � 50 sin 2�x, 0 � x � 1
 u(0, t) � 0, u(1, t) � 0, t � 0


2u

x2 �


u

t

, 0 � x � 1, t � 0

 u(x, 0) � 0, 
u

y �

y��
� e�x, x � 0


u

x �

x� 0
� 0, 0 � y � �


2u

x2 �


2u

y2 � 0, x � 0, 0 � y � �

8.

9.

10.

11.

12.

[Hint: Use the identity
sinh(x � y) � sinh x cosh y � cosh x sinh y,

and then use Problem 8 in Exercises 14.1.]

13.

u(x, 0) � �0,    x � 0
e�x, x � 0

k 

2u

x2 �


u

t

, �� � x � �, t � 0

u(x, 0) � 0, 0 � x � 1
u(0, t) � u0, u(1, t) � u0, t � 0


2u

x2 �


u

t

, 0 � x � 1, t � 0


u

y �

y�0
� 0, 
u


y �
y��

� Be�x, x � 0

u(0, y) � A, 0 � y � �


2u

x2 �


2u

y2 � 0, x � 0, 0 � y � �

u(x, 0) � 0, 0 � x � 1


u

x �

x�0
� 0, u(1, t) � 0, t � 0


2u

x2 � r �


u

t

, 0 � x � 1, t � 0

u(x, 0) � �100, 0 � x � 1
    0,     x � 1

u(0, y) � �50, 0 � y � 1
  0,     y � 1


2u

x2 �


2u

y2 � 0, x � 0, y � 0


u

y �

y�0
� 0, 0 � x � �

u(0, y) � 0, u(�, y) � �0, 0 � y � 1
1, 1 � y � 2
0,     y � 2


2u

x2 �


2u

y2 � 0, 0 � x � �, y � 0

(b) Use part (a) to show that

Computer Lab Assignments

27. Assume that u0 � 100 and k � 1 in the solution in
Problem 23. Use a CAS to graph u(x, t) over the 

��

0

sin2x
x2 dx �

p

2
.

rectangular region defined by �4 � x � 4, 0 � t � 6.
Use a 2D plot to superimpose the graphs of u(x, t) for
t � 0.05, 0.125, 0.5, 1, 2, 4, 6, and 15 on the interval
[�4, 4]. Use the graphs to conjecture the values
of and . Then prove these
results analytically using the properties of erf(x).

limx : � u(x, t)limt :� u(x, t)
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14.

15.

16. Show that a solution of the BVP

is .u(x, y) �
1
�

 ��

0
 ��

��
 f (t) 

cosh �y cos �(t � x)
cosh �

 dt d�


u

y �

y�0
� 0, u(x, 1) � f (x), �� � x � �


2u

x2 �


2u

y2 � 0,  �� � x � �, 0 � y � 1

u(x, 0) � e�x, x � 0


u

x �

x�0
� 0, t � 0

k 

2u

x2 �


u

t

,  x � 0, t � 0

u(x, 0) � 100, x � 0


u

x �

x�0
� �50, lim

x : �
 u(x, t) � 100, t � 0


2u

x2 �


u

t

, x � 0, t � 0

CHAPTER 14 IN REVIEW ● 533

17.

18. Solve the boundary-value problem

using an appropriate Fourier transform.

19. Solve the boundary-value problem in Problem 18 using
the Laplace transform. Give two different forms of the
solution 

20. Show that the solution in Problem 18 is equivalent to
one of the two forms of in Problem 19. You may
need a CAS to carry out an integration.

u(x, t)

u(x, t).

u(x, 0) � 0,  x � 0,


u

x �

x�0
� �100, lim

x : �
 u(x, t) � 0, t � 0,


2u

x2 �


u

t

,  x � 0,  t � 0

u(x, 0) � 0,  x � 0

lim
x : �

u (x, t) � 0,  t � 0u(0, t) � �u0, 0 � t � 1
  0, t � 1

,


2u

x2 �


u

t

,  x � 0,  t � 0
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534 ● CHAPTER 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Numerical Solutions of 
Partial Differential Equations

15.1 Laplace’s Equation
15.2 Heat Equation
15.3 Wave Equation

Chapter 15 in Review

We saw in Section 9.5 that one way of approximating a solution of a second-order
boundary-value problem was to work with a finite di ference equation replacement
of the linear ordinary differential equation. The difference equation was constructed
by replacing the ordinary derivatives and by difference quotients.
The same idea carries over to boundary-value problems involving linear partial
differential equations. In the succeeding sections of this chapter we will form a
difference equation replacement for the two-dimensional form of Laplace’s
equation, and the one-dimensional forms of the heat and wave equations by replacing
the partial derivatives �2u��x2, �2u��y2, �2u��t2, and �u��t by difference
quotients.

dy>dxd 2y>dx2

15

534
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15.1 LAPLACE’S EQUATION ● 535

Difference Equation Replacement Suppose that we are seeking a solution
u(x, y) of Laplace’s equation

(1)

in a planar region R that is bounded by some curve C. See Figure 15.1.1. Analogous
to (6) of Section 9.5, by using the central differences

�2u
�x2 �

�2u
�y2 � 0

u(x � h, y) � 2u(x, y) � u(x � h, y)  and  u(x, y � h) � 2u(x, y) � u(x, y � h),

approximations for the second partial derivatives uxx and uyy can be obtained using
the difference quotients

(2)

(3)

By adding (2) and (3), we obtain a five-point app oximation to the Laplacian:

Hence we can replace Laplace’s equation (1) by the difference equation

(4)

If we adopt the notation u(x, y) � uij and

then (4) becomes

. (5)ui�1, j � ui, j�1 � ui�1, j � ui, j�1 � 4uij � 0

 u(x � h, y) � ui�1, j, u(x, y � h) � ui, j�1,

 u(x � h, y) � ui�1, j, u(x, y � h) � ui, j�1

u(x � h, y) � u(x, y � h) � u(x � h, y) � u(x, y � h) � 4u(x, y) � 0.

�2u
�x2 �

�2u
�y2 �

1
h2 [u(x � h, y) � u(x, y � h) � u(x � h, y) � u(x, y � h) � 4u(x, y)].

 
�2u
�y2 �

1
h2 [u(x, y � h) � 2u (x, y) � u(x, y � h)].

 �2u
�x2 �

1
h2 [u(x � h, y) � 2u(x, y) � u(x � h, y)]

FIGURE 15.1.1 Planar region R
with boundary C

R

2u = 0∆

C

y

x

LAPLACE’S EQUATION

REVIEW MATERIAL
● Sections 9.5, 12.1, 12.2, and 12.5

INTRODUCTION In Section 12.1 we saw that linear second-order PDEs in two independent
variables are classified as elliptic, parabolic, and hyperbolic. Roughly, elliptic PDEs involve partial
derivatives with respect to spatial variables only, and as a consequence solutions of such equations
are determined by boundary conditions alone. Parabolic and hyperbolic equations involve partial
derivatives with respect to both spatial and time variables, so solutions of such equations generally
are determined from boundary and initial conditions. A solution of an elliptic PDE (such as
Laplace’s equation) can describe a physical system whose state is in equilibrium (steady-state); a so-
lution of a parabolic PDE (such as the heat equation) can describe a diffusional state, whereas a hy-
perbolic PDE (such as the wave equation) can describe a vibrational state.

In this section we begin our discussion with approximation methods that are appropriate for
elliptic equations. Our focus will be on the simplest but probably the most important PDE of the
elliptic type: Laplace’s equation.

15.1
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536 ● CHAPTER 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

To understand (5) a little better, suppose a rectangular grid consisting of horizontal
lines spaced h units apart and vertical lines spaced h units apart is placed over the
region R. The number h is called the mesh size. See Figure 15.1.2(a). The points
Pij � P(ih, jh), where i and j are integers, of intersection of the horizontal and ver-
tical lines, are called mesh points or lattice points. A mesh point is an interior
point if its four nearest neighboring mesh points are points of R. Points in R or
on C that are not interior points are called boundary points. For example, in
Figure 15.1.2(a) we have

and so on. Of the points just listed, P21 and P22 are interior points, whereas P20 and
P11 are boundary points. In Figure 15.1.2(a) interior points are the dots shown in
red, and the boundary points are shown in black. Now from (5) we see that

(6)

so, as can be seen in Figure 15.1.2(b), the value uij at an interior mesh point of R is
the average of the values of u at four neighboring mesh points. The neighboring
points Pi�1, j, Pi, j�1, Pi�1, j, and Pi, j�1 correspond to the four points on the compass
E, N, W, and S, respectively.

Dirichlet Problem Recall that in the Dirichet problem for Laplace’s equa-
tion �2u � 0 the values of u(x, y) are prescribed on the boundary of a region R. The
basic idea is to find an approximate solution to Laplace’s equation at interior mesh
points by replacing the partial differential equation at these points by the difference
equation (5). Hence the approximate values of u at the mesh points—namely, the
uij —are related to each other and possibly to known values of u if a mesh point lies
on the boundary. In this manner we obtain a system of linear algebraic equations that
we solve for the unknown uij. The following example illustrates the method for a
square region.

uij �
1
4�ui�1, j � ui, j�1 � ui�1, j � ui, j�1�,

P20 � P(2h, 0),  P11 � P(h, h),  P21 � P(2h, h),  P22 � P(2h, 2h),

FIGURE 15.1.2 Region R overlaid
with rectangular grid

y

x0 0

0
P 12 

P 11 

P 22 

P 21 0

2
3

2
3

8
9
8
9

FIGURE 15.1.3 Square region R
for Example 1

xh

h

6h2h 5h3h 4h

3h

4h

2h

5h

6h

7h

P13

P12

P11

P 22 

P 21 

P20

P31

R

C

h

h

Pi, j + 1

P i j Pi + 1, jPi − 1, j

Pi, j − 1

(a)

(b)

y

EXAMPLE 1 A BVP Revisited

In Problem 16 of Exercises 12.5 you were asked to solve the boundary-value problem

utilizing the superposition principle. To apply the present numerical method, let us
start with a mesh size of . As we see in Figure 15.1.3, that choice yields
four interior points and eight boundary points. The numbers listed next to the bound-
ary points are the exact values of u obtained from the specified condition along that
boundary. For example, at we have x � 2 and , and so
the condition u(2, y) gives Similarly, at the
condition u(x, 2) gives . We now apply (5) at each interior point. For
example, at P11 we have i � 1 and j � 1, so (5) becomes

.u21 � u12 � u01 � u10 � 4u11 � 0

u(2
3, 2) � 2

3

P13 � P(2
3, 2)u(2, 23) � 2

3(2 � 2
3) � 8

9.
y � 2

3P31 � P(3h, h) � P(2, 23)

h � 2
3

 u(x, 0) � 0, u(x, 2) � �x,   0 � x � 1
2 � x, 1 � x � 2

 u(0, y) � 0, u(2, y) � y(2 � y), 0 � y � 2

�2u
�x2 �

�2u
�y2 � 0,  0 � x � 2, 0 � y � 2
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15.1 LAPLACE’S EQUATION ● 537

Since and , the foregoing equation becomes
�4u11 � u21 � u12 � 0. Repeating this, in turn, at P21, P12, and P22 we get three
additional equations:

(7)

Using a computer algebra system to solve the system, we find the approximate val-
ues at the four interior points to be

u21 �   u12 � 4u22 � �14
9 .

  u11      � 4u12 �   u22 � �2
3

  u11 � 4u21 �         u22 � �8
9

�4u11 �   u21 �   u12      � 0

u10 � u(2
3, 0) � 0u01 � u(0, 23) � 0

u11 �
7

36
� 0.1944, u21 �

5
12

� 0.4167, u12 �
13
36

� 0.3611, u22 �
7

12
� 0.5833.

As in the discussion of ordinary differential equations, we expect that a
smaller value of h will improve the accuracy of the approximation. However, using
a smaller mesh size means, of course, that there are more interior mesh points, and
correspondingly there is a much larger system of equations to be solved. For a
square region whose length of side is L, a mesh size of h � L�n will yield a total
of (n � 1)2 interior mesh points. In Example 1, for n � 8 the mesh size is a reason-
able , but the number of interior points is (8 � 1)2 � 49. Thus we have
49 equations in 49 unknowns. In the next example we use a mesh size of .h � 1

2

h � 2
8 � 1

4

y

P 13 

P 11 

P 22 

P 21 P 31 

P 23 

P 12 P 32 

P 33 

1

1

0 0

0

0

0

0

x

1
2

1
2

3
4

3
4

FIGURE 15.1.4 Region R
in Example 1 with additional 
mesh points

EXAMPLE 2 Example 1 with More Mesh Points

As we see in Figure 15.1.4, with n � 4 a mesh size for the square in
Example 1 gives 32 � 9 interior mesh points. Applying (5) at these points and using
the indicated boundary conditions, we get nine equations in nine unknowns. So that
you can verify the results, we give the system in an unsimplified form

(8)

In this case a CAS yields

 u13 �
145
448

� 0.3237,   u23 �
131
224

� 0.5848,    u33 �
39
64

� 0.6094.

 u12 �
47

224
� 0.2098,   u22 �

13
32

� 0.4063,   u32 �
135
224

� 0.6027

 u11 �
7

64
� 0.1094,   u21 �

51
224

� 0.2277,   u31 �
177
448

� 0.3951

  3
4  �  1

2  � u23 � u32 � 4u33 � 0.

 u33 �  1 � u13 � u22 � 4u23 � 0

 u23 �  1
2  �  0 � u12 � 4u13 � 0

  1 � u33 � u22 � u31 � 4u32 � 0

 u32 � u23 � u12 � u21 � 4u22 � 0

 u22 � u13 � u11 �  0 � 4u12 � 0

  3
4  � u32 � u21 �  0 � 4u31 � 0

 u31 � u22 � u11 �  0 � 4u21 � 0

 u21 � u12 �  0 �  0 � 4u11 � 0

h � 2
4 � 1

2
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538 ● CHAPTER 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

After we simplify (8), it is interesting to note that the 9 	 9 matrix of coefficient is

( ).�4
1
0
1
0
0
0
0
0

1
�4

1
0
1
0
0
0
0

0
1

�4
0
0
1
0
0
0

1
0
0

�4
1
0
1
0
0

0
1
0
1

�4
1
0
1
0

0
0
1
0
1

�4
0
0
1

0
0
0
1
0
0

�4
1
0

0
0
0
0
1
0
1

�4
1

0
0
0
0
0
1
0
1

�4

(9)

This is an example of a sparse matrix in that a large percentage of the entries are
zeros. The matrix (9) is also an example of a banded matrix. These kinds of matri-
ces are characterized by the properties that the entries on the main diagonal and on
diagonals (or bands) parallel to the main diagonal are all nonzero.

Gauss-Seidel Iteration Problems that require approximations to solutions of
partial differential equations invariably lead to large systems of linear algebraic equa-
tions. It is not uncommon to have to solve systems involving hundreds of equations.
Although a direct method of solution such as Gaussian elimination leaves unchanged
the zero entries outside the bands in a matrix such as (9), it does fill in the positions
between the bands with nonzeros. Since storing very large matrices uses up a large
portion of computer memory, it is usual practice to solve a large system in an indirect
manner. One popular indirect method is called Gauss-Seidel iteration.

We shall illustrate this method for the system in (7). For the sake of simplicity
we replace the double-subscripted variables u11, u21, u12, and u22 by x1, x2, x3, and x4,
respectively.

EXAMPLE 3 Gauss-Seidel Iteration

Step 1: Solve each equation for the variables on the main diagonal of the system.
That is, in (7) solve the first equation for x1, the second equation for x2, and so on:

(10)

These equations can be obtained directly by using (6) rather than (5) at the interior
points.

Step 2: Iterations. We start by making an initial guess for the values of x1, x2, x3,
and x4. If this were simply a system of linear equations and we knew nothing
about the solution, we could start with x1 � 0, x2 � 0, x3 � 0, x4 � 0. But since
the solution of (10) represents approximations to a solution of a boundary-value
problem, it would seem reasonable to use as the initial guess for the values of 
x1 � u11, x2 � u21, x3 � u12, and x4 � u22 the average of all the boundary condi-
tions. In this case the average of the numbers at the eight boundary points shown in
Figure 15.1.3 is approximately 0.4. Thus our initial guess is x1 � 0.4, x2 � 0.4, 
x3 � 0.4, and x4 � 0.4. Iterations of the Gauss-Seidel method use the x values as
soon as they are computed. Note that the first equation in (10) depends only on x2
and x3; thus substituting x2 � 0.4 and x3 � 0.4 gives x1 � 0.2. Since the second and

  x4 �      0.25x2 � 0.25x3   � 0.3889.

  x3 � 0.25x1 �         0.25x4 � 0.1667

  x2 � 0.25x1 �         0.25x4 � 0.2222

  x1 �      0.25x2 � 0.25x3
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15.1 LAPLACE’S EQUATION ● 539

third equations depend on x1 and x4, we use the newly calculated values x1 � 0.2
and x4 � 0.4 to obtain x2 � 0.3722 and x3 � 0.3167. The fourth equation depends
on x2 and x3, so we use the new values x2 � 0.3722 and x3 � 0.3167 to get
x4 � 0.5611. In summary, the first iteration has given the value

Note how close these numbers are already to the actual values given at the end of
Example 1.

The second iteration starts with substituting x2 � 0.3722 and x3 � 0.3167 into
the first equation. This gives x1 � 0.1722. From x1 � 0.1722 and the last computed
value of x4 (namely, x4 � 0.5611), the second and third equations give, in turn,
x2 � 0.4055 and x3 � 0.3500. Using these two values, we find from the fourth equa-
tion that x4 � 0.5678. At the end of the second iteration we have

The third through seventh iterations are summarized in Table 15.1.1.

x1 � 0.1722,  x2 � 0.4055,  x3 � 0.3500,  x4 � 0.5678.

x1 � 0.2,  x2 � 0.3722,  x3 � 0.3167,  x4 � 0.5611.

TABLE 15.1.1

Iteration 3rd 4th 5th 6th 7th

x1 0.1889 0.1931 0.1941 0.1944 0.1944
x2 0.4139 0.4160 0.4165 0.4166 0.4166
x3 0.3584 0.3605 0.3610 0.3611 0.3611
x4 0.5820 0.5830 0.5833 0.5833 0.5833

Note To apply Gauss-Seidel iteration to a general system of n linear equa-
tions in n unknowns, the variable xi must actually appear in the ith equation of the
system. Moreover, after each equation is solved for xi, i � 1, 2, . . . , n, the result-
ing system has the form X � AX � B, where all the entries on the main diagonal
of A are zero.

y

y =

x = 1

1
2

100 100

P 11 P 21 P 31 

100

00

0 00

x

FIGURE 15.1.5 Rectangular region R

REMARKS

(i) In the examples given in this section the values of uij were determined by
using known values of u at boundary points. But what do we do if the region is
such that boundary points do not coincide with the actual boundary C of the
region R? In this case the required values can be obtained by interpolation.
(ii) It is sometimes possible to cut down the number of equations to solve by
using symmetry. Consider the rectangular region 0 � x � 2, 0 � y � 1, shown
in Figure 15.1.5. The boundary conditions are u � 0 along the boundaries
x � 0, x � 2, y � 1, and u � 100 along y � 0. The region is symmetric about
the lines x � 1 and , and the interior points P11 and P31 are equidistant
from the neighboring boundary points at which the specified values of u are the
same. Consequently, we assume that u11 � u31, so the system of three equations
in three unknowns reduces to two equations in two unknowns. See Problem 2 in
Exercises 15.1.
(iii) In the context of approximating a solution to Laplace’s equation the iteration
technique illustrated in Example 3 is often referred to as Liebman’s method.
(iv) Although it may not be noticeable on a computer, convergence of Gauss-
Seidel iteration, or Liebman’s method, might not be particularly fast. Also, in
a more general setting, Gauss-Seidel iteration might not converge at all. For
conditions that are sufficient to guarantee convergence of Gauss-Seidel itera-
tion, you are encouraged to consult texts on numerical analysis.

y � 1
2
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540 ● CHAPTER 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

In Problems 1–8 use a computer as a computation aid.

In Problems 1–4 use (5) to approximate the solution of
Laplace’s equation at the interior points of the given region.
Use symmetry when possible.

1. u(0, y) � 0, u(3, y) � y(2 � y), 0 � y � 2
u(x, 0) � 0, u(x, 2) � x(3 � x), 0 � x � 3
mesh size: h � 1

2. u(0, y) � 0, u(2, y) � 0, 0 � y � 1
u(x, 0) � 100, u(x, 1) � 0, 0 � x � 2
mesh size: 

3. u(0, y) � 0, u(1, y) � 0, 0 � y � 1
u(x, 0) � 0, u(x, 1) � sin px, 0 � x � 1
mesh size: 

4. u(0, y) � 108y2(1 � y), u(1, y) � 0, 0 � y � 1
u(x, 0) � 0, u(x, 1) � 0, 0 � x � 1
mesh size: 

In Problems 5 and 6 use (6) and Gauss-Seidel iteration to
approximate the solution of Laplace’s equation at the inte-
rior points of a unit square. Use the mesh size . In
Problem 5 the boundary conditions are given; in Problem 6
the values of u at boundary points are given in Figure 15.1.6.

5. u(0, y) � 0, u(1, y) � 100y, 0 � y � 1
u(x, 0) � 0, u(x, 1) � 100x, 0 � x � 1

6.

h � 1
4

h � 1
3

h � 1
3

h � 1
2

equation . Show that the differ-

ence equation replacement for Poisson’s equation is

(b) Use the result in part (a) to approximate the solution

of the Poisson equation at the inte-

rior points of the region in Figure 15.1.7. The mesh
size is , u � 1 at every point along ABCD, and
u � 0 at every point along DEFGA. Use symmetry
and, if necessary, Gauss-Seidel iteration.

h � 1
2

�2u
�x2 �

�2u
�y2 � �2

ui�1, j � ui, j�1 � ui�1, j � ui, j�1 � 4uij � h2 f (x, y).

�2u
�x2 �

�2u
�y2 � f (x, y)

FIGURE 15.1.6 Region for Problem 6
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FIGURE 15.1.8 Region for Problem 8
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FIGURE 15.1.7 Region for Problem 7
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8. Use the result in part (a) of Problem 7 to approximate
the solution of the Poisson equation

at the interior points of the region in Figure 15.1.8. The
mesh size is , and u � 0 at every point on the bound-
ary of the region. If necessary, use Gauss-Seidel iteration.

h � 1
8

�2u
�x2 �

�2u
�y2 � �64

7. (a) In Problem 12 of Exercises 12.6 you solved a
potential problem using a special form of Poisson’s

EXERCISES 15.1 Answers to selected odd-numbered problems begin on page ANS-26.

HEAT EQUATION

REVIEW MATERIAL
● Sections 9.5, 12.1, 12.2, 12.3, and 15.1

INTRODUCTION The basic idea in the discussion that follows is the same as in Section 15.1:
We approximate a solution of a PDE—this time a parabolic PDE—by replacing the equation with a
finite difference equation. But unlike the preceding section we shall consider two finite-di ference
approximation methods for parabolic partial differential equations: one called an explicit method
and the other called an implicit method.

For the sake of definiteness we consider only the one-dimensional heat equation

15.2
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15.2 HEAT EQUATION ● 541

Difference Equation Replacement To approximate a solution u(x, t) of the
one-dimensional heat equation

(1)

we again replace each derivative by a difference quotient. By using the central
difference approximation (2) of Section 15.1,

and the forward difference approximation (3) of Section 9.5,

equation (1) becomes

. (2)

If we let l � ck�h2 and

then, after simplifying, (2) is

(3)

In the case of the heat equation (1), typical boundary conditions are u(0, t) � u1,
u(a, t) � u2, t 
 0, and an initial condition is u(x, 0) � f (x), 0 � x � a. The function f
can be interpreted as the initial temperature distribution in a homogeneous rod extend-
ing from x � 0 to x � a; u1 and u2 can be interpreted as constant temperatures at the end-
points of the rod. Although we shall not prove it, the boundary-value problem consisting
of (1) and these two boundary conditions and one initial condition has a unique solution
when f is continuous on the closed interval [0, a]. This latter condition will be assumed,
and so we replace the initial condition by u(x, 0) � f (x), 0 � x � a. Moreover, instead
of working with the semi-infinite region in the xt-plane defined by the inequalities
0 � x � a, t � 0, we use a rectangular region defined by 0 � x � a, 0 � t � T, where
T is some specified value of time. Over this region we place a rectangular grid consist-
ing of vertical lines h units apart and horizontal lines k units apart. See Figure 15.2.1. If
we choose two positive integers n and m and defin

then the vertical and horizontal grid lines are defined by

As illustrated in Figure 15.2.2, the plan here is to use formula (3) to estimate the
values of the solution u(x, t) at the points on the ( j � 1)st time line using only values
from the jth time line. For example, the values on the first time line ( j � 1) depend on
the initial condition ui,0 � u(xi, 0) � f (xi) given on the zeroth time ( j � 0). This kind
of numerical procedure is called an explicit finite diffe ence method.

xi � ih, i � 0, 1, 2, . . . , n  and  tj � jk, j � 0, 1, 2, . . . , m.

h �
a
n
  and  k �

T
m

,

ui, j�1 � �ui�1, j � (1 � 2�) uij � �ui�1, j.

u(x, t) � uij, u(x � h, t) � ui�1, j, u(x � h, t) � ui�1, j, u(x, t � k) � ui, j�1,

c
h2 [u(x � h, t) � 2u(x, t) � u(x � h, t)] �

1
k
 [u(x, t � k) � u(x, t)]

�u
�t

�
1
h
 [u(x, t � h) � u(x, t)]

�2u
�x2 �

1
h2 [u(x � h, t) � 2u(x, t) � u(x � h, t)]

c 
�2u
�x2 �

�u
�t

h

k

2h 3h . . .

3k
2k

T

a

. .
 .

0

t

x

( j + 1)st time
line

j th time line
k

ui − 1, j u i j u i + 1, j

h

u i ,  j  +   1 

FIGURE 15.2.1 Rectangular region
in xt-plane

FIGURE 15.2.2 u at t � j � 1 is
determined from three values of u
at t � j

EXAMPLE 1 Using the Finite Difference Method

Consider the boundary-value problem

u(x, 0) � sin 
x, 0 � x � 1.

u(0, t) � 0, u(1, t) � 0, 0 � t � 0.5

�2u
�x2 �

�u
�t

,  0 � x � 1, 0 � t � 0.5
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542 ● CHAPTER 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

First we identify c � 1, a � 1, and T � 0.5. If we choose, say, n � 5 and m � 50,
then h � 1�5 � 0.2, k � 0.5�50 � 0.01, l � 0.25,

Thus (3) becomes
.

By setting j � 0 in this formula, we get a formula for the approximations to the tem-
perature u on the first time line

If we then let i � 1, . . . , 4 in the last equation, we obtain, in turn,

The first equation in this list is interpreted a

From the initial condition u(x, 0) � sin px the last line becomes

This number represents an approximation to the temperature u(0.2, 0.01).
Since it would require a rather large table of over 200 entries to summarize all

the approximations over the rectangular grid determined by h and k, we give only se-
lected values in Table 15.2.1.

u11 � 0.25(0.951056516 � 2(0.587785252) � 0) � 0.531656755.

 � 0.25(u(0.4, 0) � 2u(0.2, 0) � u(0, 0)).

  u11 � 0.25(u(x2, 0) � 2u(x1, 0) � u(0, 0))

  u41 � 0.25(u50 � 2u40 � u30).

  u31 � 0.25(u40 � 2u30 � u20)

  u21 � 0.25(u30 � 2u20 � u10)

  u11 � 0.25(u20 � 2u10 � u00)

ui,1 � 0.25(ui�1,0 � 2ui,0 � ui�1,0).

ui, j�1 � 0.25(ui�1, j � 2uij � ui�1, j)

xi � i 
1
5
, i � 0, 1, 2, 3, 4, 5,  tj � j 

1
100

, j � 0, 1, 2, . . . , 50.

TABLE 15.2.1 Explicit Difference Equation Approximation with h � 0.2, 
k � 0.01, l � 0.25

Time x � 0.20 x � 0.40 x � 0.60 x � 0.80

0.00 0.5878 0.9511 0.9511 0.5878
0.10 0.2154 0.3486 0.3486 0.2154
0.20 0.0790 0.1278 0.1278 0.0790
0.30 0.0289 0.0468 0.0468 0.0289
0.40 0.0106 0.0172 0.0172 0.0106
0.50 0.0039 0.0063 0.0063 0.0039

TABLE 15.2.2

Actual Approx.

u(0.4, 0.05) � 0.5806 u25 � 0.5758
u(0.6, 0.06) � 0.5261 u36 � 0.5208
u(0.2, 0.10) � 0.2191 u1,10 � 0.2154
u(0.8, 0.14) � 0.1476 u4,14 � 0.1442

You should verify, using the methods of Chapter 12, that an exact solution of the
boundary-value problem in Example 1 is given by . Using this
solution, we compare in Table 15.2.2 a sample of actual values with their correspond-
ing approximations.

Stability These approximations are comparable to the exact values and are
accurate enough for some purposes. But there is a problem with the foregoing
method. Recall that a numerical method is unstable if round-off errors or any other
errors grow too rapidly as the computations proceed. The numerical procedure
illustrated in Example 1 can exhibit this kind of behavior. It can be proved that the
procedure is stable if l is less than or equal to 0.5 but unstable otherwise. To obtain
l � 0.25 � 0.5 in Example 1, we had to choose the value k � 0.01; the necessity of

u(x, t) � e�
 2t sin 
x
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15.2 HEAT EQUATION ● 543

using very small step sizes in the time direction is the principal fault of this method.
You are urged to work Problem 12 in Exercises 15.2 and witness the predictable
instability when l� 1.

Crank-Nicholson Method There are implicit finite difference methods for
solving parabolic partial differential equations. These methods require that we solve a
system of equations to determine the approximate values of u on the ( j � 1)st time
line. However, implicit methods do not suffer from instability problems.

The algorithm introduced by J. Crank and P. Nicholson in 1947 is used mostly
for solving the heat equation. The algorithm consists of replacing the second partial

derivative in by an average of two central difference quotients, one 

evaluated at t and the other at t � k:

c 
�2u
�x2 �

�u
�t

.
(4)

�
1
k
 [u(x, t � k) � u(x, t)]

c
2
 �u(x � h, t) � 2u(x, t) � u(x � h, t)

h2  �
u(x � h, t � k) � 2u(x, t � k) � u(x � h, t � k)

h2 �

If we again define l � ck�h2, then after rearranging terms, we can write (4) as

, (5)

where a� 2(1 � 1�l) and b� 2(1 � 1�l), j � 0, 1, . . . , m � 1, and
i � 1, 2, . . . , n � 1.

For each choice of j the difference equation (5) for i � 1, 2, . . . , n � 1 gives
n � 1 equations in n � 1 unknowns ui, j�1. Because of the prescribed boundary con-
ditions, the values of ui, j�1 are known for i � 0 and for i � n. For example, in the
case n � 4 the system of equations for determining the approximate values of u on
the ( j � 1)st time line is

or

(6)

where

In general, if we use the difference equation (5) to determine values of u on the
( j � 1)st time line, we need to solve a linear system AX � B, where the coefficien
matrix A is a tridiagonal matrix,

a

�1
0
0

0
0

�1
a

�1
0

0
0

0
�1

a

�1

0
0

0
0

�1
a

0
0

0
0
0

�1

0
0

a

�1

0
0
0
0

�1
a

A � ( ),...
...

. . .

. . .

. . .

  b3 � u4, j � �u3, j � u2, j � u4, j�1.

  b2 � u3, j � �u2, j � u1, j

 b1 � u2, j � �u1, j � u0, j � u0, j�1

� u2, j�1 � �u3, j�1 � b3,

 �u1, j�1 � au2, j�1 �  u3, j�1 � b2

�u1, j�1 �  u2, j�1     � b1

 �u2, j�1 � au3, j�1 � u4, j�1 � u4, j � �u3, j � u2, j

 �u1, j�1 � au2, j�1 � u3, j�1 � u3, j � �u2, j � u1, j

 �u0, j�1 � au1, j�1 � u2, j�1 � u2, j � �u1, j � u0, j

�ui�1, j�1 � aui, j�1 � ui�1, j�1 � ui�1, j � �uij � ui�1, j
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544 ● CHAPTER 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

and the entries of the column matrix B are

  bn�1 � un, j � �un�1, j � un�2, j � un, j�1.
�
�

�

  b3 � u4, j � �u3, j � u2, j

  b2 � u3, j � �u2, j � u1, j

  b1 � u2, j � �u1, j � u0, j � u0, j�1

TABLE 15.2.3 Crank-Nicholson Method with h � 0.25, k � 0.01, l � 0.25

Time x � 0.25 x � 0.50 x � 0.75 x � 1.00 x � 1.25 x � 1.50 x � 1.75

0.00 0.7071 1.0000 0.7071 0.0000 �0.7071 �1.0000 �0.7071
0.05 0.6289 0.8894 0.6289 0.0000 �0.6289 �0.8894 �0.6289
0.10 0.5594 0.7911 0.5594 0.0000 �0.5594 �0.7911 �0.5594
0.15 0.4975 0.7036 0.4975 0.0000 �0.4975 �0.7036 �0.4975
0.20 0.4425 0.6258 0.4425 0.0000 �0.4425 �0.6258 �0.4425
0.25 0.3936 0.5567 0.3936 0.0000 �0.3936 �0.5567 �0.3936
0.30 0.3501 0.4951 0.3501 0.0000 �0.3501 �0.4951 �0.3501

Like Example 1, the boundary-value problem in Example 2 possesses an
exact solution given by . The sample comparisons listed in
Table 15.2.4 show that the absolute errors are of the order 10�2 or 10�3. Smaller
errors can be obtained by decreasing either h or k.

u(x, t) � e�
2t/4 sin 
x
TABLE 15.2.4

Actual Approx.

u(0.75, 0.05) � 0.6250 u35 � 0.6289
u(0.50, 0.20) � 0.6105 u2, 20 � 0.6259
u(0.25, 0.10) � 0.5525 u1, 10 � 0.5594

In Problems 1–12 use a computer as a computation aid.

1. Use the difference equation (3) to approximate the solu-
tion of the boundary-value problem

Use n � 8 and m � 40.

u(x, 0) � �1, 0 � x � 1
0, 1 � x � 2.

u(0, t) � 0, u(2, t) � 0, 0 � t � 1

�2u
�x2 �

�u
�t

,  0 � x � 2, 0 � t � 1

2. Using the Fourier series solution obtained in Problem 1 of
Exercises 12.3, with L � 2, one can sum the first 20 terms
to estimate the values for u(0.25, 0.1), u(1, 0.5), and
u(1.5, 0.8) for the solution u(x, t) of Problem 1 above. A
student wrote a computer program to do this and obtained
the results u(0.25, 0.1) � 0.3794, u(1, 0.5) � 0.1854,
and u(1.5, 0.8) � 0.0623. Assume that these results are
accurate for all digits given. Compare these values with
the approximations obtained in Problem 1 above. Find the
absolute errors in each case.

3. Solve Problem 1 by the Crank-Nicholson method with
n � 8 and m � 40. Use the values for u(0.25, 0.1),

EXERCISES 15.2 Answers to selected odd-numbered problems begin on page ANS-26.

EXAMPLE 2 Using the Crank-Nicholson Method

Use the Crank-Nicholson method to approximate the solution of the boundary-value
problem

using n � 8 and m � 30.

SOLUTION From the identifications a � 2, T � 0.3, , 
and c � 0.25 we get l� 0.04. With the aid of a computer we get the results in
Table 15.2.3. As in Example 1. the entries in this table represent only a selected number
from the 210 approximations over the rectangular grid determined by h and k.

k � 1
100 � 0.01,h � 1

4 � 0.25

 u(x, 0) � sin 
x, 0 � x � 2,
 u(0, t) � 0, u(2, t) � 0, 0 � t � 0.3

 0.25 
�2u
�x2 �

�u
�t

,  0 � x � 2, 0 � t � 0.3
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u(1, 0.5), and u(1.5, 0.8) given in Problem 2 to compute
the absolute errors.

4. Repeat Problem 1 using n � 8 and m � 20. Use the val-
ues for u(0.25, 0.1), u(1, 0.5), and u(1.5, 0.8) given in
Problem 2 to compute the absolute errors. Why are the
approximations so inaccurate in this case?

5. Solve Problem 1 by the Crank-Nicholson method with
n � 8 and m � 20. Use the values for u(0.25, 0.1),
u(1, 0.5), and u(1.5, 0.8) given in Problem 2 to compute
the absolute errors. Compare the absolute errors with
those obtained in Problem 4.

6. It was shown in Section 12.2 that if a rod of length L is
made of a material with thermal conductivity K, specifi
heat g, and density r, the temperature u(x, t) satisfies the
partial differential equation

Consider the boundary-value problem consisting of the
foregoing equation and the following conditions:

Use the difference equation (3) in this section with
n � 10 and m � 10 to approximate the solution of the
boundary-value problem when
(a) L � 20, K � 0.15, r � 8.0, g � 0.11, f (x) � 30
(b) L � 50, K � 0.15, r � 8.0, g � 0.11, f (x) � 30
(c) L � 20, K � 1.10, r � 2.7, g � 0.22, 

f (x) � 0.5x(20 � x)
(d) L � 100, K � 1.04, r � 10.6, g � 0.06,

7. Solve Problem 6 by the Crank-Nicholson method with
n � 10 and m � 10.

f (x) � �0.8x,     0 � x � 50
0.8(100 � x), 50 � x � 100

 u(x, 0) � f (x), 0 � x � L.

 u(0, t) � 0, u(L, t) � 0, 0 � t � 10

K
��

 
�2u
�x2 �

�u
�t

,  0 � x � L.

8. Repeat Problem 6 if the endpoint temperatures are
u(0, t) � 0, u(L, t) � 20, 0 � t � 10.

9. Solve Problem 8 by the Crank-Nicholson method.

10. Consider the boundary-value problem in Example 2.
Assume that n � 4.
(a) Find the new value of l.
(b) Use the Crank-Nicholson difference equation (5)

to find the system of equations for u11, u21, and
u31 —that is, the approximate values of u on the
first time line. [Hint: Set j � 0 in (5) and let i take
on the values 1, 2, 3.]

(c) Solve the system of three equations without the aid
of a computer program. Compare your results with
the corresponding entries in Table 15.2.3.

11. Consider a rod whose length is L � 20 for which
K � 1.05, r � 10.6, and g � 0.056. Suppose

(a) Use the method outlined in Section 12.6 to find the
steady-state solution c(x).

(b) Use the Crank-Nicholson method to approximate the
temperatures u(x, t) for 0 � t � Tmax. Select Tmax
large enough to allow the temperatures to approach
the steady-state values. Compare the approximations
for t � Tmax with the values of c(x) found in part (a).

12. Use the difference equation (3) to approximate the
solution of the boundary-value problem

Use n � 5 and m � 25.

u(x, 0) � sin 
x, 0 � x � 1.

u(0, t) � 0, u(1, t) � 0, 0 � t � 1

�2u
�x2 �

�u
�t

,  0 � x � 1, 0 � t � 1

u(x, 0) � 50.

u(0, t)  � 20,  u(20, t) � 30

15.3 WAVE EQUATION ● 545

Difference Equation Replacement Suppose u(x, t) represents a solution of
the one-dimensional wave equation

. (1)c2 
�2u
�x2 �

�2u
�t2

WAVE EQUATION

REVIEW MATERIAL
● Sections 9.5, 12.1, 12.2, 12.4, and 15.2

INTRODUCTION In this section we approximate a solution of the one-dimensional wave
equation using the finite difference method that we used in the preceding two sections. The one-
dimensional wave equation is the archetype of a hyperbolic partial differential equation.

15.3
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546 ● CHAPTER 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Using two central differences,

we replace equation (1) by

 
�2u
�t2 �

1
k2 [u(x, t � k) � 2u(x, t) � u(x, t � k)],

 
�2u
�x2 �

1
h2 [u(x � h, t) � 2u(x, t) � u(x � h, t)]

(2)
c2

h2 [u(x � h, t) � 2u(x, t) � u(x � h, t)] �
1
k2 [u(x, t � k) � 2u(x, t) � u(x, t � k)].

We solve (2) for u(x, t � k), which is ui, j�1. If l� ck�h, then (2) yields

(3)

for i � 1, 2, . . . , n � 1 and j � 1, 2, . . . , m � 1.
In the case in which the wave equation (1) is a model for the vertical

displacements u(x, t) of a vibrating string, typical boundary conditions are
u(0, t) � 0, u(a, t) � 0, t 
 0, and initial conditions are u(x, 0) � f (x), 
�u��t �t�0 � g(x), 0 � x � a. The functions f and g can be interpreted as the initial
position and the initial velocity of the string. The numerical method based on
equation (3), like the first method considered in Section 15.2, is an explicit finit
difference method. As before, we use the difference equation (3) to approximate the
solution u(x, t) of (1), using the boundary and initial conditions, over a rectangular
region in the xt-plane defined by the inequalities 0 � x � a, 0 � t � T, where T is
some specified value of time. If n and m are positive integers and

the vertical and horizontal grid lines on this region are defined by

As shown in Figure 15.3.1, (3) enables us to obtain the approximation ui, j�1 on the
( j � 1)st time line from the values indicated on the jth and ( j � 1)st time lines.
Moreover, we use

; boundary conditions

and . ; initial condition

There is one minor problem in getting started. You can see from (3) that for j � 1
we need to know the values of ui,1 (that is, the estimates of u on the first time line)
in order to find ui,2. But from Figure 15.3.1, with j � 0, we see that the values of ui,1 on
the first time line depend on the values of ui,0 on the zeroth time line and on the values
of ui,�1. To compute these latter values, we make use of the initial-velocity condition
ut(x, 0) � g(x). At t � 0 it follows from (5) of Section 9.5 that

(4)

To make sense of the term u(xi, �k) � ui,�1 in (4), we have to imagine u(x, t)
extended backward in time. It follows from (4) that

This last result suggests that we defin

(5)

in the iteration of (3). By substituting (5) into (3) when j � 0, we get the special case

(6)ui,1 �
�2

2
 (ui�1,0 � ui�1,0) � (1 � �2)ui,0 � kg(xi).

ui,�1 �  ui,1 � 2kg(xi)

u(xi,�k) � u(xi, k) � 2kg(xi).

g(xi) � ut(xi, 0) �
u(xi, k) � u(xi, �k)

2k
.

ui,0 � u(xi, 0) � f (xi)

u0, j � u(0, jk) � 0,  un, j � u(a, jk) � 0

xi � ih, i � 0, 1, 2, . . . , n  and  tj � jk, j � 0, 1, 2, . . . , m.

h �
a
n
  and  k �

T
m

,

ui, j�1 � �2 ui�1, j � 2(1 � �2)uij � �2 ui�1, j � ui, j�1

( j − 1)st time
line

( j + 1)st time
line

h

k

ui j u i + 1, ju i − 1, j

u i, j − 1

j th time line

u i ,  j  +   1 

FIGURE 15.3.1 u at t � j � 1 is
determined from three values of u at 
t � j and one value at t � j � 1.
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15.3 WAVE EQUATION ● 547

TABLE 15.3.1 Explicit Difference Equation Approximation with h � 0.2,
k � 0.05, l� 0.5

Time x � 0.20 x � 0.40 x � 0.60 x � 0.80

0.00 0.5878 0.9511 0.9511 0.5878
0.10 0.4782 0.7738 0.7738 0.4782
0.20 0.1903 0.3080 0.3080 0.1903
0.30 �0.1685 �0.2727 �0.2727 �0.1685
0.40 �0.4645 �0.7516 �0.7516 �0.4645
0.50 �0.5873 �0.9503 �0.9503 �0.5873
0.60 �0.4912 �0.7947 �0.7947 �0.4912
0.70 �0.2119 �0.3428 �0.3428 �0.2119
0.80 0.1464 0.2369 0.2369 0.1464
0.90 0.4501 0.7283 0.7283 0.4501
1.00 0.5860 0.9482 0.9482 0.5860

EXAMPLE 1 Using the Finite Difference Method

Approximate the solution of the boundary-value problem

using (3) with n � 5 and m � 20.

SOLUTION We make the identifications c � 2, a � 1, and T � 1. With n � 5 and
m � 20 we get , , and l � 0.5. Thus, with g(x) � 0, equa-
tions (6) and (3) become, respectively,

(7)
(8)

For i � 1, 2, 3, 4, equation (7) yields the following values for the ui,1 on the first time
line:

(9)

Note that the results given in (9) were obtained from the initial condition
u(x, 0) � sin px. For example, u20 � sin(0.2p), and so on. Now j � 1 in (8) gives

and so for i � 1, 2, 3, 4 we get

.

Using the boundary conditions, the initial conditions, and the data obtained in (9), we
get from these equations the approximations for u on the second time line. These last
results and an abbreviation of the remaining calculations are given in Table 15.3.1.

  u42 � 0.25u51 � 1.5u41 � 0.25u31 � u40

  u32 � 0.25u41 � 1.5u31 � 0.25u21 � u30

  u22 � 0.25u31 � 1.5u21 � 0.25u11 � u20

  u12 � 0.25u21 � 1.5u11 � 0.25u01 � u10

ui,2 � 0.25ui�1,1 � 1.5ui,1 � 0.25ui�1,1 � ui,0,

  u41 � 0.125(u50 � u30) � 0.75u40 � 0.55972100.
  u31 � 0.125(u40 � u20) � 0.75u30 � 0.90564761
  u21 � 0.125(u30 � u10) � 0.75u20 � 0.90564761
  u11 � 0.125(u20 � u00) � 0.75u10 � 0.55972100

 ui, j�1 � 0.25ui�1, j � 1.5uij � 0.25ui�1, j � ui, j�1.
 ui,1 � 0.125(ui�1,0 � ui�1,0) � 0.75ui,0

k � 1
20 � 0.05h � 1

5 � 0.2

u(x, 0) � sin px, �u
�t �

t�0
� 0, 0 � x � 1,

u(0, t)  � 0, u(1, t) � 0, 0 � t � 1

4 
�2u
�x2 �

�2u
�t2 ,  0 � x � 1, 0 � t � 1
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548 ● CHAPTER 15 NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

It is readily verified that the exact solution of the BVP in Example 1 is 
u(x, t) � sin px cos 2p t. With this function we can compare actual values with ap-
proximations. For example, some selected comparisons are given in Table 15.3.2.
As you can see in the table, the approximations are in the same ballpark as the
actual values, but the accuracy is not particularly impressive. We can, however,
obtain more accurate results. The accuracy of the algorithm varies with the choice
of l. Of course, l is determined by the choice of integers n and m, which in turn
determine the values of the step sizes h and k. It can be proved that the best accu-
racy is always obtainable from this method when the ratio l � kc�h is equal to
one — in other words, when the step in the time direction is k � h�c. For example,
the choice n � 8 and m � 16 yields , and l � 1. The sample values
listed in Table 15.3.3 clearly show the improved accuracy.

h � 1
8, k � 1

16

TABLE 15.3.2

Actual Approx.

u(0.4, 0.25) � 0 u25 � 0.0185
u(0.6, 0.3) � �0.2939 u36 � �0.2727
u(0.2, 0.5) � �0.5878 u1,10 � �0.5873
u(0.8, 0.7) � �0.1816 u4,14 � �0.2119

TABLE 15.3.3

Actual Approx.

u(0.25, 0.3125) � �0.2706 u25 � �0.2706
u(0.375, 0.375) � �0.6533 u36 � �0.6533
u(0.125, 0.625) � �0.2706 u1,10 � �0.2706

Stability We note in conclusion that this explicit finite difference method for
the wave equation is stable when l � 1 and unstable when l � 1.

In Problems 1, 3, 5, and 6 use a computer as a computation
aid.

1. Use the difference equation (3) to approximate the solu-
tion of the boundary-value problem

when

(a) c � 1, a � 1, T � 1, f (x) � x(1 � x); n � 4 and 
m � 10

(b) c � 1, a � 2, T � 1, ; n � 5 and
m � 10

(c)

 n � 10 and m � 25.

f (x) � �0,   0  � x � 0.5
0.5, 0.5 � x � 1

c � 12, a � 1, T � 1, 

f (x) � e�16(x�1)2

u(x, 0) � f (x),  �u
�t �

t�0
� 0, 0 � x � a

u(0, t) � 0,  u(a, t) � 0, 0 � t � T

c2 
�2u
�x2 �

�2u
�t2,  0 � x � a, 0 � t � T

2. Consider the boundary-value problem

(a) Use the methods of Chapter 12 to verify that the so-
lution of the problem is u(x, t) � sin px cos pt.

(b) Use the method of this section to approximate the
solution of the problem without the aid of a com-
puter program. Use n � 4 and m � 5.

(c) Compute the absolute error at each interior grid point.

3. Approximate the solution of the boundary-value prob-
lem in Problem 2 using a computer program with
(a) n � 5, m � 10 (b) n � 5, m � 20.

4. Given the boundary-value problem

u(x, 0) � x (1 � x),  
�u
�t �

t�0
� 0, 0 � x � 1,

u(0, t) � 0, u(1, t) � 0, 0 � t � 1

�2u
�x2 �

�2u
�t2,  0 � x � 1, 0 � t � 1

u(x, 0) � sin � x,  
�u
�t �

t�0
� 0, 0 � x � 1.

u(0, t) � 0,  u(1, t) � 0, 0 � t � 0.5

�2u
�x2 �

�2u
�t2 ,  0 � x � 1, 0 � t � 0.5

EXERCISES 15.3 Answers to selected odd-numbered problems begin on page ANS-29.
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CHAPTER 15 IN REVIEW ● 549

use in equation (6) to compute the values of
ui,1 by hand.

5. It was shown in Section 12.2 that the equation of a
vibrating string is

where T is the constant magnitude of the tension in the
string and r is its mass per unit length. Suppose a string
of length 60 centimeters is secured to the x-axis at its ends
and is released from rest from the initial displacement

f (x) � �0.01x,      0 � x � 30

0.30 �
x � 30

100
, 30 � x � 60.

T
�

 
�2u
�x2 �

�2u
�t2 ,

h � k � 1
5 Use the difference equation (3) in this section to

approximate the solution of the boundary-value problem
when h � 10, and where r� 0.0225 g�cm,
T � 1.4 	 107 dynes. Use m � 50.

6. Repeat Problem 5 using

and h � 10, . Use m � 50.k � 2.51�>T

f (x) � �0.2x,       0 � x � 15

0.30 �
x � 15

150
, 15 � x � 60

k � 51�>T

TABLE 15.R.1

Time x � 0.00 x � 0.20 x � 0.40 x � 0.60 x � 0.80 x � 1.00

0.00 0.0000 0.2000 0.4000 0.6000 0.8000 0.0000
0.01 0.0000 0.0000
0.02 0.0000 0.0000
0.03 0.0000 0.0000
0.04 0.0000 0.0000
0.05 0.0000 0.0000

TABLE 15.R.2

Time x � 0.00 x � 0.20 x � 0.40 x � 0.60 x � 0.80 x � 1.00

0.00 0.0000 0.2000 0.4000 0.6000 0.8000 1.0000
0.01 0.0000 0.0000
0.02 0.0000 0.0000
0.03 0.0000 0.0000
0.04 0.0000 0.0000
0.05 0.0000 0.0000

CHAPTER 15 IN REVIEW Answers to selected odd-numbered problems begin on page ANS-31.

1. Consider the boundary-value problem

Approximate the solution of the differential equation at
the interior points of the region with mesh size .
Use Gaussian elimination or Gauss-Seidel iteration.

2. Solve Problem 1 using mesh size . Use Gauss-
Seidel iteration.

3. Consider the boundary-value problem

(a) Note that the initial temperature u(x, 0) � x indi-
cates that the temperature at the right boundary
x � 1 should be u(1, 0) � 1, whereas the boundary
conditions imply that u(1, 0) � 0. Write a computer
program for the explicit finite difference method so

u(x, 0) � x, 0 � x � 1.

u(0, t) � 0, u(1, t) � 0, t 
 0

�2u
�x2 �

�u
�t

,  0 � x � 1, 0 � t � 0.05

h � 1
4

h � 1
2

u(x, 0) � 0,  u(x, 1) � 0,  0 � x � 2.

u(0, y) � 0,  u(2, y) � 50,  0 � y � 1

�2u
�x2 �

�2u
�y2 � 0,  0 � x � 2, 0 � y � 1

that the boundary conditions prevail for all times
considered, including t � 0. Use the program to
complete Table 15.R.1.

(b) Modify your computer program so that the initial
condition prevails at the boundaries at t � 0. Use
this program to complete Table 15.R.2.

(c) Are Tables 15.R.1 and 15.R.2 related in any way?
Use a larger time interval if necessary.
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Euler’s integral definition of the gamma function is

(1)

Convergence of the integral requires that x � 1 � �1 or x � 0. The recurrence
relation

(2)

which we saw in Section 6.4, can be obtained from (1) with integration by parts. Now
when and thus (2) gives

,

and so on. In this manner, it is seen that when n is a positive integer, �(n � 1) � n!.
For this reason, the gamma function is often called the generalized factorial
function.

Although the integral form (1) does not converge for x � 0, it can be shown
by means of alternative definitions that the gamma function is defined for all real and
complex numbers except x � �n, n � 0, 1, 2, . . . . As a consequence, (2) is actually
valid for x � �n. The graph of �(x), considered as a function of a real variable x, is
as given in Figure I.1. Observe that the nonpositive integers correspond to vertical
asymptotes of the graph.

In Problems 31 and 32 of Exercises 6.4 we used the fact that This
result can be derived from (1) by setting :

(3)

When we let t � u2, (3) can be written as But
so

Switching to polar coordinates u � r cos u, v � r sin u enables us to evaluate the
double integral:

Hence (4)[�(1
2)]2

� 	  or  �(1
2) � 1	.

4�


0
�


0
e�(u2�v2 ) du dv � 4�	 / 2

0
�


0
e�r 2 r dr d� � 	.

[�(1
2)]2

� �2�


0
e�u2 du��2�


0
e�v2 dv� � 4�


0
�


0
e�(u2�v2) du dv.

�

0  e�u2 du � �


0  e�v2 dv,
�(1

2) � 2 �

0  e�u2 du.

�(1
2) � �


0
t�1/2e�t dt.

x � 1
2

�(1
2) � 1	.

 �(4) � 3�(3) � 3 � 2 � 1

 �(3) � 2�(2) � 2 � 1

 �(2) � 1�(1) � 1

x � 1, �(1) � �

0  e�t dt � 1,

�(x � 1) � x�(x),

�(x) � �


0
tx�1e�t dt.

FIGURE I.1 Graph of for x
neither 0 nor a negative integer

�(x)

APP-1

Γ(x)

x

Appendix I
Gamma Function
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EXAMPLE 1 Value of 

Evaluate 

SOLUTION In view of (2) and (4), it follows that, with 

Therefore �(�1
2) � �2�(1

2) � �21	.

�(1
2) � �1

2�(�1
2).

x � �1
2,

�(�1
2).

�(�1
2)

EXERCISES FOR APPENDIX I Answers to selected odd-numbered problems begin on page ANS-31.

1. Evaluate.
(a) �(5) (b) �(7)

(c) (d)

2. Use (1) and the fact that to evaluate

[Hint: Let t � x5.]

3. Use (1) and the fact that to evaluate

4. Evaluate [Hint: Let t � �ln x.]�1

0
x3 �ln 1

x�
3
dx.

�


0
x4e�x3 dx.

�(5
3) � 0.89

�


0
x5e�x 5 dx.

�(6
5) � 0.92

�(�5
2)�(�3

2)

5. Use the fact that to show that �(x)

is unbounded as 

6. Use (1) to derive (2) for x � 0.

7. A definition of the gamma function due to Carl
Friedrich Gauss that is valid for all real numbers, except

is given by

Use this definition to show that .�(x � 1) � x�(x)

�(x) � lim
n: 


n !nx

x(x � 1)(x � 2) . . . (x � n)
.

x � 0, �1, �2, . . . ,

x : 0�.

�(x) � �1

0
t x�1e�t dt

APP-2 ● APPENDIX I GAMMA FUNCTION
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II.1 BASIC DEFINITIONS AND THEORY

APP-3

Appendix II
Matrices

DEFINITION II.1 Matrix

A matrix A is any rectangular array of numbers or functions:

(1)

a11

a21

am1

a1n

a2n

amn

a12

a22

am2

. . .

. . .

. . .

A �
 ( .)...

...

If a matrix has m rows and n columns, we say that its size is m by n (written
m � n). An n � n matrix is called a square matrix of order n.

The entry in the ith row and jth column of an m � n matrix A is written
ai j . An m � n matrix A is then abbreviated as A � (aij)m�n or simply A � (aij).
A 1 � 1 matrix is sximply one constant or function.

DEFINITION II.2 Equality of Matrices

Two m � n matrices A and B are equal if aij � bij for each i and j.

DEFINITION II.3 Column Matrix

A column matrix X is any matrix having n rows and one column:
b11

b21

bn1

 X �
 ( )  � (bi1)n�1....

A column matrix is also called a column vector or simply a vector.

DEFINITION II.4 Multiples of Matrices

A multiple of a matrix A is defined to b

where k is a constant or a function.

ka11

ka21

kam1

ka1n

ka2n

kamn

ka12

ka22

kam2

. . .

. . .

. . .

kA �
 ( )  � (kaij)m�n,...

...
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APP-4 ● APPENDIX II MATRICES

EXAMPLE 1 Multiples of Matrices

(a) (b)

We note in passing that, for any matrix A, the product kA is the same as Ak. For
example,

e�3t �2
5� � �2e�3t

5e�3t� � �2
5� e�3t.

et  � 1
�2

4
� � � et

�2et

4et�5 �2
4
1
5

�3
�1

6
� � �10

20
1

�15
�5
30
�

DEFINITION II.5 Addition of Matrices

The sum of two m � n matrices A and B is defined to be the matri

A � B � (ai j � bi j)m�n.

In other words, when adding two matrices of the same size, we add the correspond-
ing entries.

EXAMPLE 2 Matrix Addition

The sum of and is

A � B � �   2 � 4 �1 � 7    3 � (�8)
   0 � 9    4 � 3    6 � 5
�6 � 1  10 � (�1) �5 � 2

� � �   6 6 �5
   9 7 11
�5 9 �3

�.

B �  �4 7 �8
9 3 5
1 �1 2

�A � � 2 �1 3
0 4 6

�6 10 �5
�

EXAMPLE 3 A Matrix Written as a Sum of Column Matrices

The single matrix can be written as the sum of three column vectors:

The difference of two m � n matrices is defined in the usual manner:
A � B � A � (�B), where �B � (�1)B.

�3t2 � 2et

t2 � 7t
5t

�� �3t2

t2

0
� � � 0

7t
5t
� � ��2et

0
0

�� �3
1
0
� t 2 � �0

7
5
� t � ��2

0
0
�et.

�3t2 � 2et

t2 � 7t
5t

�
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APPENDIX II MATRICES ● APP-5

q q

DEFINITION II.6 Multiplication of Matrices

Let A be a matrix having m rows and n columns and B be a matrix having
n rows and p columns. We define the product AB to be the m � p matrix

� ( � aikbkj)m�p
.

k�1

n

a11b11 � a12b21 �
a21b11 � a22b21 �

am1b11 � am2b21 �

� a1nbn1

� a2nbn1 

� amnbn1

�
 ( )...

. . .

. . .

. . .

a11b1p � a12b2p �
a21b1p � a22b2p �

am1b1p � am2b2p �

� a1nbnp

� a2nbnp 

� amnbnp

...

. . .

. . .

. . .

. . .

. . .

. . .

a11

a21

am1

a1n

a2n

amn

a12

a22

am2

. . .

. . .

. . .

AB �
 ( ) ( )...

...

b11

b21

bn1

b1p

b2p

bnp

b12

b22

bn2

. . .

. . .

. . .

...
...

Note carefully in Definition II.6 that the product AB � C is defined only when
the number of columns in the matrix A is the same as the number of rows in B. The
size of the product can be determined from

Also, you might recognize that the entries in, say, the ith row of the final matrix AB
are formed by using the component definition of the inner, or dot, product of the ith
row of A with each of the columns of B.

Am�nBn�p � Cm�p.

EXAMPLE 4 Multiplication of Matrices

(a) For and 

(b) For and 

In general, matrix multiplication is not commutative; that is, AB � BA.

Observe in part (a) of Example 4 that whereas in part (b) 

the product BA is not defined, since Definition II.6 requires that the first matrix (in
this case B) have the same number of columns as the second matrix has rows.

We are particularly interested in the product of a square matrix and a column
vector.

BA � �30 53
48 82�,

AB � �5 � (�4) � 8 � 2 5 � (�3) � 8 � 0
1 � (�4) � 0 � 2 1 � (�3) � 0 � 0
2 � (�4) � 7 � 2 2 � (�3) � 7 � 0

� � ��4 �15
�4 �3

6 �6
�.

B � ��4 �3
2 0�,A � �5 8

1 0
2 7

�

AB � �4 � 9 � 7 � 6 4 � (�2) � 7 � 8
3 � 9 � 5 � 6 3 � (�2) � 5 � 8� � �78 48

57 34�.

B � �9 �2
6 8�,A � �4 7

3 5�
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APP-6 ● APPENDIX II MATRICES

EXAMPLE 5 Multiplication of Matrices

(a)

(b)

Multiplicative Identity For a given positive integer n the n � n matrix

is called the multiplicative identity matrix. It follows from Definition II.6 that for
any n � n matrix A.

Also, it is readily verified that, if X is an n � 1 column matrix, then IX � X.

Zero Matrix A matrix consisting of all zero entries is called a zero matrix and
is denoted by 0. For example,

and so on. If A and 0 are m � n matrices, then

Associative Law Although we shall not prove it, matrix multiplication is
associative. If A is an m � p matrix, B a p � r matrix, and C an r � n matrix, then

is an m � n matrix.

Distributive Law If all products are defined, multiplication is distributive
over addition:

Determinant of a Matrix Associated with every square matrix A of constants
is a number called the determinant of the matrix, which is denoted by det A.

A(B � C) � AB � AC    and    (B � C)A � BA � CA.

A(BC) � (AB)C

A � 0 � 0 � A � A.

0 � �0
0�,    0 � �0 0

0 0�,    0 � �0 0
0 0
0 0

�,

AI � IA � A.

1
0

0

0
1

0

0
0

0

. . .

. . .

. . .

I �
 ( )...

0
0

1

...

��4 2
3 8��

x
y� � ��4x � 2y

3x � 8y�

�2 �1 3
0 4 5
1 �7 9

���3
6
4
� � �2 � (�3) � (�1) � 6 � 3 � 4

0 � (�3) �     4 � 6 � 5 � 4
1 � (�3) � (�7) � 6 � 9 � 4

� � � 0
44

�9
�

EXAMPLE 6 Determinant of a Square Matrix

For we expand det A by cofactors of the first row

 � 3(20 � 2) � 6(8 � 1) � 2(4 � 5) � 18.

 det A � p
3  6  2
2  5  1

�1  2  4
p �  3�5 1

2 4� � 6� 2 1
�1 4� � 2� 2 5

�1 2�

A � � 3 6 2
2 5 1

�1 2 4
�
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APPENDIX II MATRICES ● APP-7

It can be proved that a determinant det A can be expanded by cofactors using any
row or column. If det A has a row (or a column) containing many zero entries,
then wisdom dictates that we expand the determinant by that row (or column).

DEFINITION II.7 Transpose of a Matrix

The transpose of the m � n matrix (1) is the n � m matrix AT given by

In other words, the rows of a matrix A become the columns of its transpose AT.

a11

a12

a1n

am1

am2

amn

a21

a22

a2n

. . .

. . .

. . .

AT �
 ( .)...

...

EXAMPLE 7 Transpose of a Matrix

(a) The transpose of is 

(b) If then  XT � (5 0 3).X � �5
0
3
�,

AT � �3 2 �1
6 5 2
2 1 4

�.A � � 3 6 2
2 5 1

�1 2 4
�

DEFINITION II.8 Multiplicative Inverse of a Matrix

Let A be an n � n matrix. If there exists an n � n matrix B such that

where I is the multiplicative identity, then B is said to be the multiplicative 
inverse of A and is denoted by B � A�1.

AB � BA � I,

DEFINITION II.9 Nonsingular/Singular Matrices

Let A be an n � n matrix. If det A � 0, then A is said to be nonsingular. If 
det A � 0, then A is said to be singular.

The following theorem gives a necessary and sufficient condition for a square
matrix to have a multiplicative inverse.

THEOREM II.1 Nonsingularity Implies A Has an Inverse

An n � n matrix A has a multiplicative inverse A�1 if and only if A is
nonsingular.

The following theorem gives one way of finding the multiplicative inverse for a
nonsingular matrix.
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APP-8 ● APPENDIX II MATRICES

THEOREM II.2 A Formula for the Inverse of a Matrix

Let A be an n � n nonsingular matrix and let Cij � (�1) i�jMij, where Mij is the
determinant of the (n � 1) � (n � 1) matrix obtained by deleting the ith row and
jth column from A. Then

(2)A�1 �
1

det A
 (Cij)T.

Each Cij in Theorem II.2 is simply the cofactor (signed minor) of the corresponding
entry aij in A. Note that the transpose is utilized in formula (2).

For future reference we observe in the case of a 2 � 2 nonsingular matrix

that C11 � a22, C12 � �a21, C21 � �a12, and C22 � a11. Thus

(3)

For a 3 � 3 nonsingular matrix

and so on. Carrying out the transposition gives

(4)A�1 �
1

det A
 �C11 C21 C31

C12 C22 C32

C13 C23 C33
�.

 C11 � �a 22 a 23

a32 a33
�,    C12 � � �a 21 a 23

a31 a33
�,    C13 � �a 21 a 22

a31 a32
�,

A � �a11 a12 a13

a 21 a 22 a 23

a31 a32 a33
�,

A�1 �
1

det A
 � a 22 �a 21

�a12 a11
�

T
�

1
det A

 � a 22 �a12

�a 21 a11
�.

A � �a11 a12

a 21 a 22
�

EXAMPLE 9 Inverse of a 3 � 3 Matrix

Find the multiplicative inverse for A � � 2 2 0
�2 1 1

3 0 1
�.

EXAMPLE 8 Inverse of a 2 � 2 Matrix

Find the multiplicative inverse for 

SOLUTION Since det A � 10 � 8 � 2 � 0, A is nonsingular. It follows from
Theorem II.1 that A�1 exists. From (3) we fin

Not every square matrix has a multiplicative inverse. The matrix 
is singular, since det A � 0. Hence A�1 does not exist.

A � �2 2
3 3�

A�1 �
1
2

 � 10 �4
�2 1� � � 5 �2

�1 1
2
�.

A � �1 4
2 10�.
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SOLUTION Since det A � 12 � 0, the given matrix is nonsingular. The cofactors
corresponding to the entries in each row of det A are

If follows from (4) that

You are urged to verify that A�1A � AA�1 � I.

Formula (2) presents obvious difficulties for nonsingular matrices larger than
3 � 3. For example, to apply (2) to a 4 � 4 matrix, we would have to calculate
sixteen 3 � 3 determinants.* In the case of a large matrix there are more efficien
ways of finding A�1. The curious reader is referred to any text in linear algebra.

Since our goal is to apply the concept of a matrix to systems of linear first-orde
differential equations, we need the following definitions

A�1 �
1

12
 � 1 �2 2

5 2 �2
�3 6 6

� � �
1
12 �1

6
1
6

5
12

1
6 �1

6

�1
4

1
2

1
2
�.

 C31 � �2 0
1 1� � 2  C32 � �� 2 0

�2 1� � �2    C33 � � 2 2
�2 1� � 6.

 C21 � ��2 0
0 1� � �2    C22 � �2 0

3 1� � 2  C23 � ��2 2
3 0� � 6

 C11 � �1 1
0 1� � 1  C12 � ���2 1

3 1� � 5  C13 � ��2 1
3 0� � �3

APPENDIX II MATRICES ● APP-9

*Strictly speaking, a determinant is a number, but it is sometimes convenient to refer to a determinant as
if it were an array.

DEFINITION II.10 Derivative of a Matrix of Functions

If A(t) � (aij (t))m�n is a matrix whose entries are functions differentiable on a
common interval, then

dA
dt

� � d
dt

 ai j�
m�n

.

DEFINITION II.11 Integral of a Matrix of Functions

If A(t) � (aij (t))m�n is a matrix whose entries are functions continuous on a
common interval containing t and t0, then

�t

t 0

A(s) ds � ��t

t 0

ai j(s) ds�
m�n

.

EXAMPLE 10 Derivative/Integral of a Matrix

If X(t) � � sin 2t
e3t

8t � 1
�,   then   X�(t) � �

d
dt

 sin 2t

d
dt

 e3t

d
dt

 (8t � 1)
� � �2 cos 2t

3e3t

8
�

To differentiate (integrate) a matrix of functions, we simply differentiate
(integrate) each entry. The derivative of a matrix is also denoted by A�(t).
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and

II.2 GAUSSIAN AND GAUSS-JORDAN ELIMINATION

Matrices are an invaluable aid in solving algebraic systems of n linear equations in
n variables or unknowns,

(5)

If A denotes the matrix of coefficients in (5), we know that Cramer’s rule could be
used to solve the system whenever det A � 0. However, that rule requires a
herculean effort if A is larger than 3 � 3. The procedure that we shall now consider
has the distinct advantage of being not only an efficient way of handling large
systems, but also a means of solving consistent systems (5) in which det A � 0 and
a means of solving m linear equations in n unknowns.

a11x1 � a12x2 � � � � � a1n xn � b1

a21x1 � a22x2 � � � � � a2nxn � b2

                                               

an1x1 � an2x2 � � � � � annxn � bn.

�t

0
X(s) ds � �

�t
0 sin 2s ds
�t

0 e3s ds
�t

0 (8s � 1) ds
� � ��1

2
 cos 2t � 1

2
1
3 e3t � 1

3

4t2 � t
�.

APP-10 ● APPENDIX II MATRICES

DEFINITION II.12 Augmented Matrix

The augmented matrix of the system (5) is the n � (n � 1) matrix

a11

a21

an1

a1n

a2n

ann

a12

a22

an2 

. . .

. . .

. . .( ...

b1

b2

bn
) ....�

If B is the column matrix of the bi, i � 1, 2, . . . , n, the augmented matrix of (5)
is denoted by 

Elementary Row Operations Recall from algebra that we can transform an
algebraic system of equations into an equivalent system (that is, one having the same
solution) by multiplying an equation by a nonzero constant, interchanging the posi-
tions of any two equations in a system, and adding a nonzero constant multiple of an
equation to another equation. These operations on equations in a system are, in turn,
equivalent to elementary row operations on an augmented matrix:

(i) Multiply a row by a nonzero constant.
(ii) Interchange any two rows.
(iii) Add a nonzero constant multiple of one row to any other row.

Elimination Methods To solve a system such as (5) using an augmented ma-
trix, we use either Gaussian elimination or the Gauss-Jordan elimination method.
In the former method, we carry out a succession of elementary row operations until
we arrive at an augmented matrix in row-echelon form:

(i) The first nonzero entry in a nonzero row is 1
(ii) In consecutive nonzero rows the first entry 1 in the lower row appears t

the right of the first 1 in the higher ro .
(iii) Rows consisting of all 0’s are at the bottom of the matrix.

(A�B).
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In the Gauss-Jordan method the row operations are continued until we obtain an aug-
mented matrix that is in reduced row-echelon form. A reduced row-echelon matrix
has the same three properties listed above in addition to the following one:

(iv) A column containing a first entry 1 has 0 s everywhere else.

*We can always interchange equations so that the first equation contains the variable x1.

EXAMPLE 11 Row-Echelon/Reduced Row-Echelon Form

(a) The augmented matrices

are in row-echelon form. You should verify that the three criteria are satisfied
(b) The augmented matrices

are in reduced row-echelon form. Note that the remaining entries in the columns
containing a leading entry 1 are all 0’s.

Note that in Gaussian elimination we stop once we have obtained an augmented
matrix in row-echelon form. In other words, by using different sequences of row
operations we may arrive at different row-echelon forms. This method then requires
the use of back-substitution. In Gauss-Jordan elimination we stop when we have
obtained the augmented matrix in reduced row-echelon form. Any sequence of row
operations will lead to the same augmented matrix in reduced row-echelon form.
This method does not require back-substitution; the solution of the system will be
apparent by inspection of the final matrix. In terms of the equations of the original
system, our goal in both methods is simply to make the coefficient of x1 in the firs
equation* equal to 1 and then use multiples of that equation to eliminate x1 from other
equations. The process is repeated on the other variables.

To keep track of the row operations on an augmented matrix, we utilize the
following notation:

Symbol Meaning

Rij Interchange rows i and j
cRi Multiply the ith row by the nonzero constant c
cRi � Rj Multiply the ith row by c and add to the jth row

�1
0
0

0
1
0

0
0
0

7
p   �1

0
�  and  �0

0
0
0

1
0

�6
0

0
1 � �6

4�

�1
0
0

5
1
0

0
0
0

2
p   �1

0
�  and  �0

0
0
0

1
0

�6
0

2
1 � 2

4�

EXAMPLE 12 Solution by Elimination

Solve

using (a) Gaussian elimination and (b) Gauss-Jordan elimination.

 5x1 � 7 x2 � 4 x3 � 9

 x1 � 2 x2 �  x3 � �1

 2x1 � 6 x2 �  x3 � 7
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SOLUTION (a) Using row operations on the augmented matrix of the system, we
obtain

APP-12 ● APPENDIX II MATRICES

( �2
1
5

1
�1
�4

7
�1

9

6
2
7

 ) ( �1
2
5

�1
1

�4

2
6
7

R12

�1
7
9
 ) ( �1

0
0

�1
3
1

2
2

�3

�1
9

14
 )�2R1 � R2

�5R1 � R3

( �1
0
0

�1

1

�1

14

2
1

�3
 ) ( �1

0
0

�12
1
0

3R2 � R3

�1
 ) ( �1

0
0

�1

1

2
1
0

�1

5
 ). R2  R3

1_
2

2__
113_

2
9_
2

3_
2
11__
2

55__
2

9_
2

3_
2

9_
2

The last matrix is in row-echelon form and represents the system

Substituting x3 � 5 into the second equation then gives x2 � �3. Substituting both
these values back into the first equation finally yield x1 � 10.
(b) We start with the last matrix above. Since the first entries in the second and third
rows are 1’s, we must, in turn, make the remaining entries in the second and
third columns 0’s:

The last matrix is now in reduced row-echelon form. Because of what the matrix
means in terms of equations, it is evident that the solution of the system is x1 � 10,
x2 � �3, x3 � 5.

( �1
0
0

�1

1

�1

5

2
1
0

 ) ( �1
0
0

�4

1

0
1
0

�2R2 � R1

�10

5
) ( �1

0
0

0
0
1

0
1
0

10
�3

5
 ).    4R3 � R1

� R3 � R2
3_
23_

2
9_
2

3_
2

9_
2

     x3 � 5.

 x2 �
3
2

  x3 �
9
2

 x1 � 2x2 �  x3 � �1

EXAMPLE 13 Gauss-Jordan Elimination

Solve

SOLUTION We solve the system using Gauss-Jordan elimination:

In this case, the last matrix in reduced row-echelon form implies that the original
system of three equations in three unknowns is really equivalent to two equations in
three unknowns. Since only z is common to both equations (the nonzero rows), we

�  R2
�  R3

1__
11

1__
11

( �1
4
2

�2
3
7

�7
5

19

3
1

�5
 ) ( �1

0
0

�2
11
11

3
�11
�11

�7
33
33

 )�4R1 � R2
�2R1 � R3

( �1
0
0

�2
�1
�1

�7
�3
�3

3
1
1

 ) ( �1
0
0

1
�1

0

0
1
0

�3R2 � R1
�R2 � R3

1
�3

0
 ).

 2x � 5 y � 7z  � 19.

 4x �  y � 3z � 5

 x � 3 y � 2z � �7
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APPENDIX II MATRICES ● APP-13

can assign its values arbitrarily. If we let z � t, where t represents any real number,
then we see that the system has infinitely many solutions: x � 2 � t, y � �3 � t,
z � t. Geometrically, these equations are the parametric equations for the line of
intersection of the planes x � 0y � z � 2 and 0x � y � z � 3.

Using Row Operations to Find an Inverse Because of the number of deter-
minants that must be evaluated, formula (2) in Theorem II.2 is seldom used to find the
inverse when the matrix A is large. In the case of 3 � 3 or larger matrices the method
described in the next theorem is a particularly efficient means for findin A�1.

( �2
�2
�5

1
4
6

0
3
5

1
0
0

0
1
0

0
0
1
 ) ( �1

�2
�5

4
6

0
3
5

0
0

0
1
0

0
0
1
 )R1

2R1 � R2
5R1 � R3

1_
2

1_
2

1_
2 ( �1

0
0

5
0
3
5

1
0
1
0

0
0
1
 )1_

2
1_
2

17__
2

5_
2

THEOREM II.3 Finding A�1 Using Elementary Row Operations

If an n � n matrix A can be transformed into the n � n identity I by a
sequence of elementary row operations, then A is nonsingular. The same
sequence of operations that transforms A into the identity I will also trans-
form I into A�1.

It is convenient to carry out these row operations on A and I simultaneously
by means of an n � 2n matrix obtained by augmenting A with the identity I as
shown here:

The procedure for finding A�1 is outlined in the following diagram:

( A �  I  )  (I � A�1). 

Perform row operations
on A until I is obtained. This
means that A is nonsingular.

By simultaneously applying
the same row operations
to I, we get A�1.

(A � I) � ( a11

a21

an1

a1n

a2n

ann

a12

a22

an2 

. . .

. . .

. . .

. . .

. . .

. . .

...

1
1

0

0
0

0

...
...

0
0

1

... ).�

EXAMPLE 14 Inverse by Elementary Row Operations

Find the multiplicative inverse for 

SOLUTION We shall use the same notation as we did when we reduced an
augmented matrix to reduced row-echelon form:

A � � 2 0 1
�2 3 4
�5 5 6

�.
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Because I appears to the left of the vertical line, we conclude that the matrix to the
right of the line is

If row reduction of (A�I ) leads to the situation

where the matrix B contains a row of zeros, then necessarily A is singular. Since fur-
ther reduction of B always yields another matrix with a row of zeros, we can never
transform A into I.

II.3 THE EIGENVALUE PROBLEM

Gauss-Jordan elimination can be used to find the eigenvectors of a square matrix.

(A � I) (B � C),
row

operations

A�1 � ��2 5 �3
�8 17 �10

5 �10 6
�.

( �1
0
0 1

0
1
0 5

0

�10

0
0
6
 )30R3

� R3 � R1
� R3 � R2

1_
2
1_
3

1_
3

1_
2
5_
3 ( �1

0
0

0
0
1

0
1
0

�2
�8

5

5
17

�10

�3
�10

6
 ).5_

3

1_
3

( �1
0
0

0
1
1

0

0

0
0 )R2

R3 �R2 � R3
1_
5

1_
3 1_

2
1_
2
5_
3
17__
10

1_
3
1_
2

1_
3

1_
5

0

�

0
0 )1_

2
1_
3
1_
3

1_
5

( �1
0
0

0
1
0

1_
2
5_
3

1_
3

1__
30

1_
6

APP-14 ● APPENDIX II MATRICES

EXAMPLE 15 Eigenvector of a Matrix

Verify that is an eigenvector of the matrix

A � � 0 �1 �3
2 3 3

�2 1 1
�.

K � � 1
�1

1
�

DEFINITION II.13 Eigenvalues and Eigenvectors

Let A be an n � n matrix. A number l is said to be an eigenvalue of A if there
exists a nonzero solution vector K of the linear system

(6)

The solution vector K is said to be an eigenvector corresponding to the 
eigenvalue l.

AK � 	K.

The word eigenvalue is a combination of German and English terms adapted
from the German word eigenwert, which, translated literally, is “proper value.”
Eigenvalues and eigenvectors are also called characteristic values and character-
istic vectors, respectively.
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APPENDIX II MATRICES ● APP-15

SOLUTION By carrying out the multiplication AK, we see that

We see from the preceding line and Definition II.13 that l � �2 is an 
eigenvalue of A.

Using properties of matrix algebra, we can write (6) in the alternative form

(7)

where I is the multiplicative identity. If we let

then (7) is the same as

(8)

Although an obvious solution of (8) is k1 � 0, k2 � 0, . . . , kn � 0, we are seeking
only nontrivial solutions. It is known that a homogeneous system of n linear equa-
tions in n unknowns (that is, bi � 0, i � 1, 2, . . . , n in (5)) has a nontrivial solution
if and only if the determinant of the coefficient matrix is equal to zero. Thus to find a
nonzero solution K for (7), we must have

(9)

Inspection of (8) shows that the expansion of det(A � lI) by cofactors results in an
nth-degree polynomial in l. The equation (9) is called the characteristic equation
of A. Thus the eigenvalues of A are the roots of the characteristic equation. To fin
an eigenvector corresponding to an eigenvalue l, we simply solve the system of
equations (A � lI)K � 0 by applying Gauss-Jordan elimination to the augmented
matrix (A � 	I�0).

det(A � 	I) � 0.

(a11 � l)k1 �
a21k1 �

an1k1 �

a12k2 �
(a22 � l)k2 �

an2k2 �

�

�

� (ann � l)kn � 0.

a1nkn � 0
a2nkn � 0...

...

. . .

. . .

. . .

K � �
k1

k2



kn

�,

(A � 	I)K � 0,

AK � ( 0
2

�2

1
�1

1

�3
3
1

�1
3
1

1
�1

1

�2
2

�2
) ( ) � ( ) � (�2) ( ) � (�2)K.

eigenvalue

EXAMPLE 16 Eigenvalues/Eigenvectors

Find the eigenvalues and eigenvectors of 

SOLUTION To expand the determinant in the characteristic equation, we use the
cofactors of the second row:

From �l3 � l2 � 12l � �l(l � 4)(l� 3) � 0 we see that the eigenvalues
are l1 � 0, l2 � �4, and l3 � 3. To find the eigenvectors, we must now reduce

three times corresponding to the three distinct eigenvalues.(A � 	I�0)

det(A � 	I) � p
1 � 	 2 1

6 �1 � 	 0
�1 �2 �1 � 	

p � �	3 � 	2 � 12	 � 0.

A � � 1 2 1
6 �1 0

�1 �2 �1
�.
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For l1 � 0 we have

Thus we see that and Choosing k3 � �13, we get the
eigenvector*

For l2 � �4,

K1 � � 1
6

�13
�.

k2 � � 6
13 k3.k1 � � 1

13 k3

6__
13

6__
13

1__
13

�6R1 � R2
R1 � R3

� R2
1__

13

(A � 0I � 0) � ( 1
6

�1

2
�1
�2

1
0

�1

0
0
0
 ) ( �� 1

0
0

1
�6

0

0
0
0

2
�13

0
 )

�2R2 � R1( �1
0
0

2
1
0

1

0

0
0
0
 ) ( �1

0
0 0

0
0
0

0
1
0

 ).
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� R2
� R3

�2R2 � R1
�R2 � R3( �1

0
0

2
1
1

�3
�2
�2

0
0
0
 ) ( �1

0
0

1
�2

0

0
0
0

0
1
0

 )�6R1 � R2
�5R1 � R3 ( �1

0
0

�3
18
16

0
0
0

2
�9
�8

 ) 1_
9
1_
8

�R3  
R31(A � 4I � 0) � ( �5

6
�1

2
3

�2

1
0
3

0
0
0
 ) ( �1

6
5

�3
0
1

0
0
0

2
3
2

 )

implies that k1 � �k3 and k2 � 2k3. Choosing k3 � 1 then yields the second
eigenvector

Finally, for l3 � 3 Gauss-Jordan elimination gives

so k1 � �k3 and The choice of k3 � �2 leads to the third eigenvector:

When an n � n matrix A possesses n distinct eigenvalues l1, l2, . . . , ln, it can
be proved that a set of n linearly independent† eigenvectors K1, K2, . . . , Kn can be
found. However, when the characteristic equation has repeated roots, it may not be
possible to find n linearly independent eigenvectors for A.

K3 � � 2
3

�2
�.

k2 � �3
2

 k3.

(A � 3I � 0) � ( ��2
6

�1

1
0

�4

0
0
0

2
�4
�2

 ) ( �1
0
0

1

0

0
0
0

0
1
0

 ),row
operations 3_

2

K2 � ��1
2
1
�.

*Of course, k3 could be chosen as any nonzero number. In other words, a nonzero constant multiple of an
eigenvector is also an eigenvector.
†Linear independence of column vectors is defined in exactly the same manner as for functions
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APPENDIX II MATRICES ● APP-17

EXAMPLE 17 Eigenvalues/Eigenvectors

Find the eigenvalues and eigenvectors of 

SOLUTION From the characteristic equation

we see that l1 � l2 � 5 is an eigenvalue of multiplicity two. In the case of a 2 � 2
matrix there is no need to use Gauss-Jordan elimination. To find the eigenvector(s)
corresponding to l1 � 5, we resort to the system in its equivalent form

It is apparent from this system that k1 � 2k2. Thus if we choose k2 � 1, we find the
single eigenvector

K1 � �2
1�.

 �k1 � 2k2 � 0.

 �2k1 � 4k2 � 0

(A � 5I�0)

det(A � 	I) � �3 � 	 4
�1 7 � 	� � (	 � 5)2 � 0

A � � 3 4
�1 7�.

EXAMPLE 18 Eigenvalues/Eigenvectors

Find the eigenvalues and eigenvectors of .

SOLUTION The characteristic equation

shows that l1 � 11 and that l2 � l3 � 8 is an eigenvalue of multiplicity two.
For l1 � 11 Gauss-Jordan elimination gives

Hence k1 � k3 and k2 � k3. If k3 � 1, then

Now for l2 � 8 we have

(A � 8I � 0) � ( �1
1
1

1
1
1

0
0
0

1
1
1

 ) ( �1
0
0

1
0
0

0
0
0

1
0
0

 ).row
operations

K1 � �1
1
1
�.

(A � 11I � 0) � ( ��2
1
1

1
1

�2

0
0
0

1
�2

1
 ) ( �1

0
0

�1
�1

0

0
0
0

0
1
0

 ).row
operations

det(A � 	I ) � p
9 � 	 1 1

1 9 � 	 1
1 1 9 � 	

p � �(	 � 11)(	 � 8)2 � 0

A � �9 1 1
1 9 1
1 1 9

�
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In the equation k1 � k2 � k3 � 0, we are free to select two of the variables arbitrar-
ily. Choosing, on the one hand, k2 � 1, k3 � 0 and, on the other, k2 � 0, k3 � 1, we
obtain two linearly independent eigenvectors

K2 � ��1
1
0
�   and   K3 � ��1

0
1
�.

APP-18 ● APPENDIX II MATRICES

EXERCISES FOR APPENDIX II Answers to selected odd-numbered problems begin on page ANS-31.

II.1 BASIC DEFINITIONS AND THEORY

1. If and fin

(a) A � B (b) B � A (c) 2A � 3B

2. If and fin

(a) A � B (b) B � A (c) 2(A � B)

3. If and fin

(a) AB (b) BA (c) A2 � AA (d) B2 � BB

4. If and fin

(a) AB (b) BA

5. If and 

fin
(a) BC (b) A(BC) (c) C(BA) (d) A(B � C)

6. If and

fin

(a) AB (b) BA (c) (BA)C (d) (AB)C

7. If and fin

(a) ATA (b) BT B (c) A � BT

B � (2 4 5),A � � 4
8

�10
�

C � �1 2 4
0 1 �1
3 2 1

�,

A � (5 �6 7), B � � 3
4

�1
�,

C � �0 2
3 4�,A � � 1 �2

�2 4�, B � �6 3
2 1�,

B � ��4 6 �3
1 �3 2�,A � �1 4

5 10
8 12

�

B � ��1 6
3 2�,A � � 2 �3

�5 4�

B � � 3 �1
0 2

�4 �2
�,A � ��2 0

4 1
7 3

�

B � ��2 6
8 �10�,A � � 4 5

�6 9�
8. If and fin

(a) A � BT (b) 2AT � BT (c) AT(A � B)

9. If and fin

(a) (AB)T (b) BTAT

10. If and fin

(a) AT � BT (b) (A � B)T

In Problems 11–14 write the given sum as a single column
matrix.

11.

12.

13.

14.

In Problems 15–22 determine whether the given matrix is
singular or nonsingular. If it is nonsingular, find A�1 using
Theorem II.2.

15. 16.

17. 18.

19. 20. A � � 3 2 1
4 1 0

�2 5 �1
�A � � 2 1 0

�1 2 1
1 2 1

�
A � �7 10

2 2�A � � 4 8
�3 �5�

A � �2 5
1 4�A � ��3 6

�2 4�

�1 �3 4
2 5 �1
0 �4 �2

�   t�2t � 1
�t

� � ��t
1
4
� � � 2

8
�6

�
�2 �3

1 4��
�2

5� � ��1 6
�2 3��

�7
2�

3t� 2
t

�1
� � (t � 1)��1

�t
3
� � 2� 3t

4 
�5t

�
4 ��1

2� � 2 �2
8� � 3 ��2

3�

B � ��3 11
�7 2�,A � � 5 9

�4 6�

B � � 5 10
�2 �5�,A � �3 4

8 1�

B � ��2 3
5 7�,A � �1 2

2 4�
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APPENDIX II MATRICES ● APP-19

21. 22.

In Problems 23 and 24 show that the given matrix is
nonsingular for every real value of t. Find A�1(t) using
Theorem II.2.

23.

24.

In Problems 25–28 find dX�dt.

25. 26 .

27. 28.

29. Let Find

(a) (b) (c)

30. Let and Find

(a) (b)

(c) (d)

(e) A(t)B(t) (f)

(g)

II.2 GAUSSIAN AND GAUSS-JORDAN
ELIMINATION

In Problems 31–38 solve the given system of equations by
either Gaussian elimination or Gauss-Jordan elimination.

31. x � y � 2z � 14 32. 5x � 2y � 4z � 10
2x � y � z � 0 x � y � z � 9
6x � 3y � 4z � 1 4x � 3y � 3z � 1

33. y � z � �5 34. 3x � y � z � 4
5x � 4y � 16z � �10 4x � 2y � z � 7

x � y � 5z � 7 x � y � 3z � 6

�t

1
A(s)B(s) ds

d
dt

A(t)B(t)

�2

1
B(t) dt�1

0
A(t) dt

dB
dt

dA
dt

B(t) � � 6t 2
1> t 4t�.A(t) � �

1
t2 � 1

3t

t2 t �
�t

0
A(s) ds�2

0
A(t) dt

dA
dt

A(t) � �e4t cos 
t
2t 3t2 � 1�.

X � � 5te2t

t sin 3t�X � 2 � 1
�1�e2t � 4 �2

1�e�3t

X � �
1
2 sin 2t � 4 cos 2t

�3 sin 2t � 5 cos 2t�X � � 5e�t

2e�t

�7e�t�

A(t) � �2et sin t �2et cos t
 et cos t       et sin t�

A(t) � �2e�t e4t

4e�t 3e4t�

A � � 4 1 �1
6 2 �3

�2 �1 2
�A � �2 1 1

1 �2 �3
3 2 4

� 35. 2x � y � z � 4 36. x � 2z � 8
10x � 2y � 2z � �1 x � 2y � 2 z � 4

6x � 2y � 4z � 8 2x � 5y � 6 z � 6

37. x1 � x2 � x3 � x4 � �1 38. 2x1 � x2 � x3 � 0
x1 � x2 � x3 � x4 � 3 x1 � 3x2 � x3 � 0
x1 � x2 � x3 � x4 � 3 7x1 � x2 � 3x3 � 0

4x1 � x2 � 2x3 � x4 � 0

In Problems 39 and 40 use Gauss-Jordan elimination to
demonstrate that the given system of equations has no
solution.

39. x � 2y � 4z � 2 40. x1 � x2 � x3 � 3x4 � 1
2x � 4y � 3z � 1 x2 � x3 � 4x4 � 0

x � 2y � z � 7 x1 � 2x2 � 2x3 � x4 � 6
4x1 � 7x2 � 7x3 � 9

In Problems 41–46 use Theorem II.3 to find A�1 for the
given matrix or show that no inverse exists.

41. 42.

43. 44.

45. 46.

II.3 THE EIGENVALUE PROBLEM

In Problems 47–54 find the eigenvalues and eigenvectors of
the given matrix.

47. 48.

49. 50.

51. 52.

53. 54. �1 6 0
0 2 1
0 1 2

�� 0 4 0
�1 �4 0

0 0 �2
�

�3 0 0
0 2 0
4 0 1

��5 �1 0
0 �5 9
5 �1 0

�
�1 1

1
4 1���8 �1

16 0�

�2 1
2 1���1 2

�7 8�

A � �
1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

�A � �
1 2 3 1

�1 0 2 1
2 1 �3 0
1 1 2 1

�
A � �1 2 3

0 1 4
0 0 8

�A � ��1 3 0
1 �2 1
0 1 2

�

A � �2 4 �2
4 2 �2
8 10 �6

�A � � 4 2 3
2 1 0

�1 �2 0
�
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In Problems 55 and 56 show that the given matrix has
complex eigenvalues. Find the eigenvectors of the matrix.

55. 56.

Miscellaneous Problems

57. If A(t) is a 2 � 2 matrix of differentiable functions and
X(t) is a 2 � 1 column matrix of differentiable func-
tions, prove the product rule

58. Derive formula (3). [Hint: Find a matrix

for which AB � I. Solve for b11, b12, b21, and b22. Then
show that BA � I.]

B � �b11 b12

b21 b22
�

d
dt

 [A(t)X(t)] � A(t)X�(t) � A�(t)X(t).

�2 �1 0
5 2 4
0 1 2

���1 2
�5 1�

APP-20 ● APPENDIX II MATRICES

59. If A is nonsingular and AB � AC, show that B � C.

60. If A and B are nonsingular, show that (AB)�1 � B�1A�1.

61. Let A and B be n � n matrices. In general, is

62. A square matrix A is said to be a diagonal matrix if
all its entries off the main diagonal are zero—that is,
aij � 0, i � j. The entries aii on the main diagonal may
or may not be zero. The multiplicative identity matrix I
is an example of a diagonal matrix.
(a) Find the inverse of the 2 � 2 diagonal matrix

when a11 � 0, a22 � 0.
(b) Find the inverse of a 3 � 3 diagonal matrix A

whose main diagonal entries aii are all nonzero.
(c) In general, what is the inverse of an n � n diagonal

matrix A whose main diagonal entries aii are all
nonzero?

A � �a11 0
0 a22

�

(A � B)2 � A2 � 2AB � B2?
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APP-21

f (t)

1. 1

2. t

3. tn n a positive integer

4. t�1/2

5. t1/2

6. ta

7. sin kt

8. cos kt

9. sin2 kt

10. cos2 kt

11. eat

12. sinh kt

13. cosh kt

14. sinh2kt

15. cosh2kt

16. teat

17. tn eat n a positive integer
n!

(s � a)n�1 ,

1
(s � a)2

s2 � 2k2

s(s2 � 4k2)

2k2

s(s2 � 4k2)

s
s2 � k2

k
s2 � k2

1
s � a

s2 � 2k2

s(s2 � 4k2)

2k2

s(s2 � 4k2)

s
s2 � k2

k
s2 � k2

�(� � 1)
s��1 , a � �1

1�

2s3/2

B

�

s

n!
sn�1 ,

1
s2

1
s

�{ f (t)} � F(s)

Appendix III
Laplace Transforms
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APP-22 ● APPENDIX III LAPLACE TRANSFORMS

f (t)

18. eat sin kt

19. eat cos kt

20. eat sinh kt

21. eat cosh kt

22. t sin kt

23. t cos kt

24. sin kt � kt cos kt

25. sin kt � kt cos kt

26. t sinh kt

27. t cosh kt

28.

29.

30. 1 � cos kt

31. kt � sin kt

32.

33.

34. sin kt sinh kt

35. sin kt cosh kt

36. cos kt sinh kt

37. cos kt cosh kt
s3

s4 � 4k4

k(s2 � 2k2)
s4 � 4k4

k(s2 � 2k2)
s4 � 4k4

2k2s
s4 � 4k4

s
(s2 � a2)(s2 � b2)

cos bt � cos at
a2 � b2

1
(s2 � a2)(s2 � b2)

a sin bt � b sin at
ab (a2 � b2)

k3

s2(s2 � k2)

k2

s(s2 � k2)

s
(s � a)(s � b)

aeat � bebt

a � b

1
(s � a)(s � b)

eat � ebt

a � b

s2 � k2

(s2 � k2)2

2ks
(s2 � k2)2

2k3

(s2 � k2)2

2ks2

(s2 � k2)2

s2 � k2

(s2 � k2)2

2ks
(s2 � k2)2

s � a
(s � a)2 � k2

k
(s � a)2 � k2

s � a
(s � a)2 � k2

k
(s � a)2 � k2

�{ f (t)} � F(s)

27069_18_app_III.qxd  2/2/12  3:05 PM  Page 22

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



f (t)

38. J0(kt)

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50. eat f (t) F(s � a)

51.

52. e�asF(s)

53. e�as

54. f (n)(t)

55. tn f (t)

56. F(s)G(s)

57. d(t) 1

58. d(t � t0) e�st0

�t

0
f (	)g(t � 	) d	

(�1)n 
dn

dsn F(s)

snF(s) � s(n�1) f (0) � 
 
 
 � f (n�1)(0)

�{ g(t � a)}g(t)�(t � a)

f (t � a)�(t � a)

e�as

s
�(t � a)

� erfc � a
2 1t�

be�a1s

s(1s � b)
�eabeb2 terfc �b 1t �

a
2 1t�

e�a1s

1s(1s � b)
eabeb2t erfc �b1t �

a
2 1t�

e�a1s

s1s
2
B

t
�

 e�a2/4t � a erfc � a
21t�

e�a1s

s
erfc � a

21t�

e�a1sa
21�t3 e

�a2/4t

e�a 1s

1s
1

1�t
 e�a2 /4t

1
2
 arctan 

a � b
s

�
1
2
 arctan 

a � b
s

sin at cos bt
t

arctan �a
s�

sin at
t

ln 
s2 � k2

s2
2(1 � cosh kt)

t

ln s
2 � k2

s2
2(1 � cos kt)

t

ln 
s � a
s � b

ebt � eat

t

1
1s2 � k2

�{ f (t)} � F(s)

APPENDIX III LAPLACE TRANSFORMS ● APP-23
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ANS-1

ANSWERS FOR SELECTED 
ODD-NUMBERED PROBLEMS

EXERCISES 1.1 (PAGE 10)

1. linear, second order 3. linear, fourth order
5. nonlinear, second order 7. linear, third order
9. linear in x but nonlinear in y

15. domain of function is [�2, �); largest interval of
definition for solution is �2, �)

17. domain of function is the set of real numbers except
x � 2 and x � �2; largest intervals of definition fo
solution are (��, �2), (�2, 2), or (2, �)

19. defined on ��, ln 2) or on (ln 2, �)

27. m � �2 29. m � 2, m � 3 31. m � 0, m � �1
33. y � 2 35. no constant solutions

EXERCISES 1.2 (PAGE 17)

1. y � 1�(1 � 4e�x)
3. y � 1�(x2 � 1); (1, �)
5. y � 1�(x2 � 1); (��, �)
7. x � �cos t � 8 sin t

9. 11.

13. y � 5e�x�1 15. y � 0, y � x3

17. half-planes defined by either y � 0 or y � 0
19. half-planes defined by either x � 0 or x � 0
21. the regions defined by y � 2, y � �2, or �2 � y � 2
23. any region not containing (0, 0)
25. yes
27. no
29. (a) y � cx

(b) any rectangular region not touching the y-axis
(c) No, the function is not differentiable at x � 0.

31. (b) y � 1�(1 � x) on (��, 1);
y � �1�(x � 1) on (�1, �);

(c) y � 0 on (��, �)
39.
41. y � 0
43. no solution

EXERCISES 1.3 (PAGE 28)

1.

3.

7.
dx
dt

� kx (1000 � x)

dP
dt

� k1P � k2P2

dP
dt

� kP � r; 
dP
dt

� kP � r

y � 3sin 2x

y � 3
2

 ex � 1
2

 e�xx � 13
4  cos t � 1

4 sin t

X �
et � 1
et � 2

9.

11. 13.

15. 17.

19.

21.

23. 25.

27. 29.

CHAPTER 1 IN REVIEW (PAGE 33)

1. 3. y� � k2y � 0

5. y� � 2y	 � y � 0 7. (a), (d)
9. (b) 11. (b)

13. y � c1 and y � c2ex, c1 and c2 constants
15. y	 � x2 � y2

17. (a) The domain is the set of all real numbers.
(b) either (��, 0) or (0, �)

19. For x0 � �1 the interval is (��, 0), and for x0 � 2 the
interval is (0, �).

21. (c) 23. (��, �)

25. (0, �) 31.
33.

35. y0 � �3, y1 � 0

37.

EXERCISES 2.1 (PAGE 43)

21. 0 is asymptotically stable (attractor); 3 is unstable
(repeller).

23. 2 is semi-stable.
25. �2 is unstable (repeller); 0 is semi-stable; 2 is

asymptotically stable (attractor).
27. �1 is asymptotically stable (attractor); 0 is unstable

(repeller).
39. 0 � P0 � h�k
41. 1mg>k

dP
dt

� k(P � 200 � 10t)

y � 3
2 e3x�3 � 9

2 e�x�1 � 2x.
y � 1

2 e3x � 1
2 e�x � 2x

y � ��x2,
x2,

x � 0
x 
 0

dy
dx

� 10y

dy
dx

�
�x � 1x2 � y2

y
dx
dt

� kx � r, k � 0

dA
dt

� k(M � A), k � 0
d 2r
dt2 �

gR2

r 2 � 0

m
dv
dt

� v
dm
dt

� kv � �mg � R

m d
2x

dt2 � �kx

m dv
dt

� mg � kv2L di
dt

� Ri � E(t)

dh
dt

� �
c�

450
 1h

dA
dt

�
7

600 � t
 A � 6

dA
dt

�
1

100
 A � 0; A(0) � 50
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ANS-2 ● ANSWERS FOR SELECTED ODD-NUMBERED PROBLEMS
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EXERCISES 2.2 (PAGE 51)

1. 3.
5. y � cx4 7. �3e�2y � 2e3x � c
9.

11. 4 cos y � 2x � sin 2x � c
13. (ex � 1)�2 � 2(ey � 1)�1 � c

15. S � cekr 17.

19. ( y � 3)5 ex � c(x � 4)5 ey 21.

23. 25.

27. 29.

31.

33.

35. (a)

37. y � �1 and y � 1 are singular solutions of Problem 21;
of Problem 22

39. y � 1

41.

45.

47.

49.

57. y(x) � (4h�L2)x2 � a

EXERCISES 2.3 (PAGE 61)

1. y � ce5x, (��, �)
3. ; is transient
5. ; is transient
7. y � x�1 ln x � cx�1, (0, �); solution is transient
9. y � cx � x cos x, (0, �)

11. ; is transient

13. ; is transient
15. x � 2y6 � cy4, (0, �)
17. y � sin x � c cos x, (�p�2, p�2)
19. (x � 1)exy � x2 � c, (�1, �); solution is transient
21. (sec u � tan u)r � u � cos u � c, (�p�2, p�2)
23. y � e�3x � cx�1e�3x, (0, �); solution is transient
25.

27.

29. i �
E
R

� �i0 �
E
R�e�Rt>L; (��, �)

y � x�1ex � (2 � e)x�1; (0, �)

y � �1
5 x � 1

25 � 76
25 e5x; (��, �)

cx�2e�xy � 1
2

 x�2ex � cx�2e�x, (0, �)

cx�4y � 1
7

 x3 � 1
5

 x � cx�4, (0, �)

ce�x3y � 1
3 � ce�x3, (��, �)

ce�xy � 1
4

 e3x � ce�x, (��, �)

y � 221xe1x
� e1x

� 4

y � [�1 � c(1 � 2x)]2

y � tan x � sec x � c

y � 1 � 1
10

 tan ( 1
10

 x)

y � 0

y � 2, y � �2, y � 2 3 � e4x�1

3 � e4x�1

y � �ln(2 � ex); (��, ln2)

y � �2x2 � x � 1;  ���, �
1 � 15

2 �.

y � e�
x
4 e-t2dty � 1

2
 x � 13

2
 11 � x2

y �
e�(1�1/x)

x
x � tan (4t � 3

4
 �)

y � sin (1
2

 x2 � c)
P �

cet

1 � cet

1
3

 x3 ln x � 1
9

 x3 � 1
2

 y2 � 2y � ln � y � � c

y � 1
3

 e�3x � cy � �1
5

 cos 5x � c

31.
33.
35.

37.

39.

41.

43.

53. E(t) � E0e�(t�4)/RC

EXERCISES 2.4 (PAGE 69)

1. 3.

5. x2y2 � 3x � 4y � c 7. not exact
9.

11. not exact
13. xy � 2xex � 2ex � 2x3 � c
15. x3y3 � tan�1 3x � c
17.
19. t4y � 5t3 � ty � y3 � c
21.

23. 4ty � t2 � 5t � 3y2 � y � 8
25. y2 sin x � x3y � x2 � y ln y � y � 0
27. k � 10 29. x2y2 cos x � c
31. x2y2 � x3 � c 33. 3x2y3 � y4 � c
35.

37.

39. (c)

45. (a) (b) 12.7 ft /s

EXERCISES 2.5 (PAGE 74)

1.

3.

5.
7. ln(x2 � y2) � 2 tan�1( y�x) � c
9. 4x � y(ln�y � � c)2 11. y3 � 3x3 ln�x � � 8x3

13. ln�x � � ey/x � 1 15. y3 � 1 � cx�3

17. 19. et/y � ct

21.

23. y � �x � 1 � tan(x � c)

y�3 � �9
5 x�1 � 49

5  x�6

y�3 � x � 1
3 � ce3x

x � y ln�x � � cy

(x � y)ln� x � y � � y � c(x � y)

y � x ln�x � � cx

v(x) � 8 

B

x
3

�
9
x2

y2(x) � �x2 � 1x4 � x3 � 4

y1(x) � �x2 � 1x4 � x3 � 4

ey 2 (x2 � 4) � 20

�2ye3x � 10
3

 e3x � x � c

1
3

 x3 � x2y � xy2 � y � 4
3

�ln� cos x � � cos x sin y � c

xy3 � y2 cos x � 1
2

 x2 � c

5
2

 x2 �  4xy � 2y4 � cx2 � x � 3
2

 y2 � 7y � c

y � ex2�1 � 1
2

 1� ex2 (erf(x) � erf(1))

y � �2x � 1 � 4e�2x,
4x2 ln x � (1 � 4e�2)x2,

0 � x � 1
x � 1

y � �
1
2 � 3

2
 e�x2,

(1
2

 e � 3
2)e�x2,

0 � x � 1
x 
 1

y � �
1
2

 (1 � e�2x),
1
2

 (e6 � 1)e�2x,
0 � x � 3
x � 3

y � �2 � 3e�cos x; (��, �)
(x � 1)y � x lnx � x � 21; (0, �)
y � 2x � 1 � 5>x; (0, �)
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ANSWERS FOR SELECTED ODD-NUMBERED PROBLEMS ● ANS-3
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25. 2y � 2x � sin 2(x � y) � c
27. 4( y � 2x � 3) � (x � c)2

29.

35. (b)

EXERCISES 2.6 (PAGE 79)

1. y2 � 2.9800, y4 � 3.1151
3. y10 � 2.5937, y20 � 2.6533; y � ex

5. y5 � 0.4198, y10 � 0.4124
7. y5 � 0.5639, y10 � 0.5565
9. y5 � 1.2194, y10 � 1.2696

13. Euler: y10 � 3.8191, y20 � 5.9363
RK4: y10 � 42.9931, y20 � 84.0132

CHAPTER 2 IN REVIEW (PAGE 80)

1. �A�k, a repeller for k � 0, an attractor for k � 0
3. true

5.

7. true
9.

11.

13.

15. semi-stable for n even and unstable for n odd; 
semi-stable for n even and asymptotically stable 
for n odd.

19. 2x � sin 2x � 2 ln( y2 � 1) � c
21. (6x � 1)y3 � �3x3 � c
23.

25.
27. y � csc x, (p, 2p)

29. (b)

EXERCISES 3.1 (PAGE 90)

1. 7.9 yr; 10 yr
3. 760; approximately 11 persons/yr
5. 11 h
7. 136.5 h
9. I(15) � 0.00098I0 or approximately 0.1% of I0

11. 15,600 years
13. T(1) � 36.67° F; approximately 3.06 min
15. approximately 82.1 s; approximately 145.7 s
17. 390°
19. about 1.6 hours prior to the discovery of the body
21. A(t) � 200 � 170e�t /50

y � 1
4 (x � 2 1y0 � x0)2, (x0 � 2 1y0, �)

y � 1
4 � c(x2 � 4)�4

Q � ct�1 � 1
25 t4 (�1 � 5 ln t )

dy
dx

� ( y � 1)2 ( y � 3)2

dy
dx

� (sinx)y � x

y � c1eex

d3y
dx3 � x siny

y �
2
x

� (�1
4 x � cx�3)�1

�cot(x � y) � csc(x � y) � x � 12 � 1

23. A(t) � 1000 � 1000e�t /100

25.
27. 64.38 lb
29.
31.

33.

35. (a)

(b) as 

(c)

39. (a)

(c)

41. (a)
43. (a) As .

(b) x(t) � r�k � (r�k)e�kt; (ln 2)�k
47. (c) 1.988 ft

EXERCISES 3.2 (PAGE 100)

1. (a) N � 2000

(b)

3. 1,000,000; 5.29 mo

5. (b)

(c) For 0 � P0 � 1, time of extinction is

.

7. ;

time of extinction is

9. 29.3 g; as ; 0 g of A and 30 g of B

11. (a)

(b) or 30.36 min
13. (a) approximately 858.65 s or 14.31 min

(b) 243 s or 4.05 min

576 110 s

h(t) � �1H �
4Ah

Aw

 t�
2
; I is 0 � t � 1HAw �4Ah

t : �X : 60

t �
2
13

 �tan�1 5
13

� tan�1 �2P0 � 5
13 �	

P(t) �
5
2

�
13
2

  tan�� 13
2

 t � tan�1 �2P0 � 5
13 �	

t � � 1
3

 ln 4(P0 � 1)
P0 � 4

P(t) �
4(P0 � 1) � (P0 � 4)e�3t

(P0 � 1) � (P0 � 4)e�3t

N(t) �
2000 et

1999 � et; N(10) � 1834

t : �, x(t) : r>k
P(t) � P0 e(k1�k2)t

331
3 seconds

v(t) �

g
4k

 � k


 t � r0� �


gr0

4k
 � r0

k


 t � r0�

3

 �
m
k

 �v0 �
mg
k �

s(t) �  
mg
k

 t �
m
k

 �v0 �
mg
k �e�kt/m

t : �v :
mg
k

v(t) �
mg
k

� �v0 �
mg
k �e�kt /m

i(t) � �60 � 60e�t /10,  0 � t � 20
60(e2 � 1)e�t /10,   t � 20

q(t) � 1
100 � 1

100 e�50t; i(t) � 1
2 e�50t

i(t) � 3
5 � 3

5 e�500t; i : 3
5 as t : �

A(t) � 1000 � 10t � 1
10 (100 � t)2; 100 min
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ANS-4 ● ANSWERS FOR SELECTED ODD-NUMBERED PROBLEMS

15. (a)

(b)

(c) ,

where c2 � �(m�k)ln cosh c1

17. (a) ,

where r is the weight density of water

(b)

(c)

19. (a) W � 0 and W � 2
(b) W(x) � 2 sech2(x � c1)
(c) W(x) � 2 sech2x

21. (a)

(b) approximately 724 months
(b) approximately 12,839 and 28,630,966

EXERCISES 3.3 (PAGE 110)

1.

3. 5, 20, 147 days. The time when y(t) and z(t) are the
same makes sense because most of A and half of B
are gone, so half of C should have been formed.

5.

7. (a)

(b) x1(t) � x2(t) � 150; x2(30) 
 47.4 lb

13.

15. i(0) � i0, s(0) � n � i0, r(0) � 0

L2
di3

dt
� R1i2 � (R1 � R3) i3 � E(t)

L1
di2

dt
� (R1 � R2)i2 � R1

  i3  � E(t)

 
dx2

dt
� 2 x1

100 � t
� 3 x2

100 � t

 
dx1

dt
� 3 x2

100 � t
� 2 x1

100 � t

dx2

dt
� 2

25 x1 � 2
25 x2

dx1

dt
� 6 � 2

25 x1 � 1
50 x2

z(t) � x0 �1 �
�2

�2 � �1
 e��1 t �

�1

�2 � �1
 e��2 t�

y(t) �
x0�1

�2 � �1
 (e��1t � e��2 t)

x(t) � x0 e��1t

P(t) �
1

(�0.001350t � 10�0.01)100

B

mg � 
V
k

v(t) �
B

mg � 
V
k

 tanh �1kmg � k
V
m

 t � c1�

m dv
dt

� mg � kv2 � 
V

s(t) �
m
k

 ln cosh �B
kg
m

 t � c1� � c2

B

mg
k

where c1 � tanh�1 �B
k

mg
 v0�

v(t) �
B

mg
k

 tanh �B
kg
m

 t � c1�
CHAPTER 3 IN REVIEW (PAGE 113)

1. dP�dt � 0.15P
3. P(45) � 8.99 billion

5.

7. (a)

(b)

9.

11.

13. x � �y � 1 � c2e�y

15. (a)

(b)

(c)

EXERCISES 4.1 (PAGE 127)

1.
3. y � 3x � 4x ln x
9. (��, 2)

11. (a) (b)

13. (a) y � ex cos x � ex sin x
(b) no solution
(c) y � ex cos x � e�p/2ex sin x
(d) y � c2ex sin x, where c2 is arbitrary

15. dependent 17. dependent
19. dependent 21. independent
23. The functions satisfy the DE and are linearly independent

on the interval since W(e�3x, e4x) � 7ex � 0;
y � c1e�3x � c2e4x.

25. The functions satisfy the DE and are linearly independent
on the interval since W(ex cos 2x, ex sin 2x) � 2e2x � 0;
y � c1ex cos 2x � c2ex sin 2x.

27. The functions satisfy the DE and are linearly
independent on the interval since W(x3, x4) � x6 � 0;
y � c1x3 � c2 x4.

29. The functions satisfy the DE and are linearly independent
on the interval since W(x, x�2, x�2 ln x) � 9x�6 � 0;
y � c1x � c2x�2 � c3x�2 ln x.

35. (b) yp � x2 � 3x � 3e2x; yp � �2x2 � 6x � 1
3 e2x

y �
sinh x
sinh 1

y �
e

e2 � 1
 (ex � e�x)

y � 1
2 ex � 1

2 e�x

89%, 11%

1.3 � 109 years

A(t) �
l2

l1 � l2
K0[1 � e�(l1�l2)t]

C(t) �
l1

l1 � l2
K0[1 � e�(l1�l2)t],

K(t) � K0e�(l1�l2)t,

x(t) �
ac1eak1t

1 � c1eak1t
 , y(t) � c2 (1 � c1eak1t )k2 /k1

i(t) � �4t � 1
5

 t2, 0 � t � 10
20,     t 
 10

T(t) �
BT1 � T2

1 � B
�

T1 � T2

1 � B
 ek(1�B)t

BT1 � T2

1 � B
,  

BT1 � T2

1 � B

x � 10 ln�10 � 1100 � y2

y � � 1100 � y2
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EXERCISES 4.2 (PAGE 131)

1. y2 � xe2x 3. y2 � sin 4x
5. y2 � sinh x 7. y2 � xe2x/3

9. y2 � x4 ln�x � 11. y2 � 1
13. y2 � x cos(ln x) 15. y2 � x2 � x � 2
17. 19.

EXERCISES 4.3 (PAGE 137)

1. y � c1 � c2e�x/4 3. y � c1e3x � c2e�2x

5. y � c1e�4x � c2xe�4x 7. y � c1e2x /3 � c2e�x /4

9. y � c1cos 3x � c2sin 3x
11. y � e2x(c1cos x � c2sin x)
13.
15. y � c1 � c2e�x � c3e5x

17. y � c1e�x � c2e3x � c3xe3x

19. u � c1e t � e�t (c2cos t � c3sin t)
21. y � c1e�x � c2xe�x � c3x2e�x

23.
25.

27. u � c1er � c2rer � c3e�r � c4re�r � c5e�5r

29.
31.
33. y � 0
35.
37. y � e5x � xe5x

39. y � 0

41.

49. y� � 6y	 � 5y � 0 51. y� � 2y	 � 0

53. y� � 9y � 0 55. y� � 2y	 � 2y � 0

57. y	� � 8y� � 0

EXERCISES 4.4 (PAGE 147)

1. y � c1e�x � c2e�2x � 3
3.
5.
7.
9. y � c1 � c2ex � 3x

11.
13.
15.
17.
19.

� 12
25 

 sin 2x � 9
25 cos 2x

y � c1e�x � c2xe�x � 1
2 cos x 

y � c1ex cos 2x � c2ex sin 2x � 1
4

  xex sin 2x
y � c1 cos x � c2 sin x � 1

2
 x2 cos x � 1

2
 x sin x

y � c1 cos 2x � c2 sin 2x � 3
4

 x cos 2x
y � c1ex/2 � c2xex/2 � 12 � 1

2
 x2ex/2 

y � c1 cos 13x � c2 sin 13x � (�4x2 � 4x � 4
3)e3x

y � c1e�2x � c2xe�2x � x2 � 4x � 7
2

y � c1e5x � c2xe5x � 6
5 x � 3

5

y � cosh 13x �
5
13

 sinh13x

y �
1
2
 �1 �

5
13� e�13x �

1
2
 �1 �

5
13� e13x;

y � 5
36 � 5

36 e�6x � 1
6 xe�6x

y � �1
3 e�(t�1) � 1

3 e5(t�1)
y � 2 cos 4x � 1

2 sin 4x

� c3 x cos 12 13 x � c4 x sin 1
2 13 x

y � c1 cos 12 13 x � c2 sin 12 13 x
y � c1 � c2 x � e�x /2 (c3 cos 12 13 x � c4 sin 12 13 x)

y � e�x /3(c1 cos 13 12 x � c2 sin 13 12 x)

y2 � e2x, yp � 5
2 e3xy2 � e2x, yp � �1

2

21.
23.
25. y � c1 cos x � c2 sin x � c3x cos x � c4x sin x

� x2 � 2x � 3
27.
29. y � �200 � 200e�x/5 � 3x2 � 30x
31. y � �10e�2x cos x � 9e�2x sin x � 7e�4x

33.

35.
37. y � 6 cos x � 6(cot 1) sin x � x2 � 1

39.

41.

EXERCISES 4.5 (PAGE 155)

1. (3D � 2)(3D � 2)y � sin x
3. (D � 6)(D � 2)y � x � 6
5. D(D � 5)2y � ex

7. (D � 1)(D � 2)(D � 5)y � xe�x

9. D(D � 2)(D2 � 2D � 4)y � 4
15. D4 17. D(D � 2)
19. D2 � 4 21. D3(D2 � 16)
23. (D � 1)(D � 1)3 25. D(D2 � 2D � 5)
27. 1, x, x2, x3, x4 29. e6x, e�3x/2

31. 33. 1, e5x, xe5x

35. y � c1e�3x � c2e3x � 6
37. y � c1 � c2e�x � 3x
39.
41.
43.
45. y � c1e�x � c2e3x � ex � 3
47.
49.
51.
53.
55. y � c1cos 5x � c2sin 5x � 2x cos 5x

57.

� sin x � 2 cos x � x cos x
59.
61.
63.
65.
67.
69.
71. y � 2e2x cos 2x � 3

64
 e2x sin 2x � 1

8
 x3 � 3

16
 x2 � 3

32
 x

y � �� cos x � 11
3  sin x � 8

3 cos 2x � 2x cos x
y � � 41

125 � 41
125

 e5x � 1
10

 x2 � 9
25

 x
y � 5

8
 e�8x � 5

8
 e8x � 1

4

y � c1 � c2x � c3ex � c4xex � 1
2

 x2ex � 1
2

 x2

y � c1ex � c2xex � c3x2ex � 1
6

 x3ex � x � 13
y � c1 � c2x � c3e�8x � 11

256
 x2 � 7

32
 x3 � 1

16
 x4

y � e�x/2�c1 cos 13
2

 x � c2 sin 
13
2

 x�

y � ex (c1cos 2x � c2sin 2x) � 1
3

 ex sin x
y � c1e�x � c2ex � 1

6
 x3ex � 1

4
 x2ex � 1

4
 xex � 5

y � c1e�3x � c2xe�3x � 1
49

 xe4x � 2
343

 e4x

y � c1 cos 5x � c2 sin 5x � 1
4 sin x

y � c1e�3x � c2e4x � 1
7

 xe4x

y � c1 � c2x � c3e�x � 2
3

 x4 � 8
3

 x3 � 8x2

y � c1e�2x � c2x e�2x � 1
2

 x � 1

cos 15x, sin 15x

y � �cos 2x � 5
6 sin 2x � 1

3 sin x,
2
3 cos 2x � 5

6 sin 2x,
0 � x � �>2
  x � �>2

y �
�4 sin 13x

sin 13 � 13 cos 13
� 2x

y � 11 � 11ex � 9xex � 2x � 12x2ex � 1
2

 e5x

x �
F0

2�2 sin �t �
F0

2�
 t cos �t

y � 12 sin 2 x � 1
2

y � c1ex � c2xex � c3x2ex � x � 3 � 2
3

 x3ex

y � c1 � c2x � c3e6x � 1
4 x2 � 6

37 cos x � 1
37 sin x
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EXERCISES 4.6 (PAGE 161)

1.
3.
5.
7.

9.

11. y � c1e�x � c2e�2x � (e�x � e�2x) ln(1 � ex)
13. y � c1e�2x � c2e�x � e�2x sin ex

15.
17.

19.

21.

23. y � c1x�1/2 cos x � c2x�1/2 sin x � x�1/2

25.

27.

EXERCISES 4.7 (PAGE 168)

1. y � c1x�1 � c2x2

3. y � c1 � c2 ln x
5. y � c1 cos(2 ln x) � c2 sin(2 ln x)
7.

9.

11. y � c1x�2 � c2x�2 ln x

13.

15.
17. y � c1 � c2x � c3x2 � c4x�3

19.

21. y � c1x � c2x ln x � x(ln x)2

23. y � c1x�1 � c2x � ln x
25. y � 2 � 2x�2

27. y � cos(ln x) � 2 sin(ln x)

29.

31. y � c1x�10 � c2x2

33.

35.
37. y � 2(�x)1/2 � 5(�x)1/2 ln(�x), x � 0
39.

41. y � c1cos[ln(x � 2)] � c2sin[ln(x � 2)]

y � c1(x � 3)2 � c2(x � 3)7

y � x2 [c1 cos(3 ln x) � c2 sin(3 ln x)] � 4
13 � 3

10
 x

y � c1x�1 � c2x�8 � 1
30

 x2

y � 3
4 � ln x � 1

4
 x2

y � c1 � c2x5 � 1
5

 x5 ln x

y � c1x3 � c2 cos(12 ln x) � c3 sin(12 ln x)
y � x�1/2[c1 cos(1

6
 13 ln x) � c2 sin(1

6
 13 ln x)]

y � c1 cos (1
5 ln x) � c2 sin (1

5 ln x)
y � c1x(2�16) � c2x(2�16)

y � c1ex � c2e�x � c3e2x � 1
30

 e4x

� sin x ln� sec x � tan x �
y � c1 � c2 cos x � c3 sin x � ln� cos x �

y � 4
9

 e�4x � 25
36

 e2x � 1
4

 e�2x � 1
9

 e�x

y � 1
4

 e�x/2 � 3
4

 ex/2 � 1
8

 x2ex/2 � 1
4

 xex/2

� 1
3

 ex cos x ln� cos x �
y � c1ex sin x � c2ex cos x � 1

3
 xex sin x

y � c1e�t � c2te�t � 1
2

 t2e�t ln t � 3
4 t2e�t

x0 � 0

y � c1e2x � c2e�2x � 1
4

 �e2x ln� x � � e�2x�x

x0

 
e4 t

t
 dt�,

y � c1ex � c2e�x � 1
2

 x sinh x
y � c1 cos x � c2 sin x � 1

2 � 1
6 cos 2x

y � c1 cos x � c2 sin x � 1
2 x cos x

y � c1 cos x � c2 sin x � x sin x � cos x ln� cos x �

EXERCISES 4.8 (PAGE 179)

1.

3.

5.

7.

9.

11.

13.

15.

17.

19.
21.
23.
25.

27.

29.

31.

where yp (x)

33.

where 

35.

37.

39.

41.

43.

EXERCISES 4.9 (PAGE 184)

1. x � c1et � c2 tet

y � (c1 � c2)et � c2 tet

3. x � c1 cos t � c2 sin t � t � 1
y � c1 sin t � c2 cos t � t � 1

yp(x) � 1
2 (lnx)2 � 1

2 lnx

yp(x) � �excos x � exsin x � ex

yp(x) �
sin(x � 1)

sin1
�

sinx
sin1

� 1

yp(x) � 1
2 x2 � 1

2 x

yp(x) � (x � 1)�x

0
t f(t)dt � x�1

x
(t � 1) f (t)dt

yp(x) � �0,                 x � 0
10 � 10 cos x,   0 � x � 3�

�20cos x,        x � 3�

y � cosx � sinx � yp(x), 

� � 1 � cosh x, x � 0
�1 � cosh x, x 
 0

y(x) � 5ex � 3e�x � yp(x),

y � 46
45 x3 � 1

20x�2 � 1
36 � 1

6 ln x

y � 4x � 2x2 � x lnx

y � (cos1� 2)e�x � (1 � sin1� cos1)e�2x � e�2xsinex

y � �xsinx � cosx ln�sinx�
y � �e5x � 6xe5x � 1

2x2e5x

y � 25
16 e�2x � 9

16 e2x � 1
4 xe2x

yp(x) � �cosx �
p

2
sinx � x sinx � cosx ln�sinx �

yp(x) � 1
2 x2e5x

yp(x) � 1
4 xe2x � 1

16e2x � 1
16 e�2x

y � c1cos3x � c2sin3x � 1
3�x

x0

sin3(x � t)(t � sint)dt

y � c1e�x � c2xe�x � �x

x0

(x � t)e�(x� t)e�tdt

y � c1e�4x � c2e4x � 1
4�x

x0

sinh4(x � t)te�2tdt

yp(x) � 1
3�x

x0

sin3(x � t) f(t)dt

yp(x) � �x

x0

(x � t)e�(x� t)f(t)dt

yp(x) � 1
4�x

x0

sinh 4(x � t)f(t)dt
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5.

7.

9.

11.

13.

15.

17.

19. x � �6c1e�t � 3c2e�2t � 2c3e3t

y � c1e�t � c2e�2t � c3e3t

z � 5c1e�t � c2e�2t � c3e3t

21. x � e�3t�3 � te�3t�3

y � �e�3t�3 � 2te�3t�3

23. mx� � 0
my� � �mg;
x � c1t � c2

EXERCISES 4.10 (PAGE 189)

3.

5.

7.

9.

11.

13.

15.

17.

19. y � �11 � x2

y � 1 � x � 1
2

 x2 � 2
3

 x3 � 1
4

 x4 � 7
60

 x5 � � � �

y � 1 � x � 1
2

 x2 � 1
2

 x3 � 1
6

 x4 � 1
10

 x5 � � � �

y � � 1
c1

 11 � c2
1x2 � c2

y � tan (1
4

 � � 1
2

 x), �1
2

 � � x � 3
2

 �

y � 2
3 (x � 1)3>2 � 4

3

1
3

 y3 � c1y � x � c2

y �
1
c2

1

 ln� c1x � 1 � �
1
c1

 x � c2

y � ln� cos (c1 � x) � � c2

y � �1
2

 gt2 � c3t � c4

� (� 1
2

 13c2 � 1
2

 c3)e�t / 2 cos 12 13t

z � c1et � (�1
2

 c2 � 1
2

 13c3)e�t/2 sin 12 13t

� ( 1
2

 13c2 � 1
2

 c3)e�t/2 cos 12 13t

y � c1et � (�1
2

 c2 � 1
2

 13c3)e�t / 2 sin 12 13t

x � c1et � c2e�t / 2 sin 12 13t � c3e�t / 2 cos 12 13t

y � (c1 � c2 � 2) � (c2 � 1)t � c4e�t � 1
2

 t2

x � c1 � c2t � c3et � c4e�t � 1
2

 t2

y � �3
4

 c1e4t � c2 � 5et

x � c1e4t � 4
3

 et

� (1
2

 13c2 � 3
2

 c3)e�t/2 sin 12 13t

y � (�3
2

 c2 � 1
2

 13c3)e�t / 2 cos 12 13t

x � c1et � c2e�t/2 cos 12 13t � c3e�t/2 sin 12 13t

y � c1 � c2
 sin t � c3

     cos t � 4
15

 e3t

x � c1 � c2
 cos t � c3

     sin t � 17
15

 e3t

y � c1e2t � c2e�2t � c3 sin 2t � c4 cos 2t � 1
5

 et

x � c1e2t � c2e�2t � c3 sin 2t � c4 cos 2t � 1
5

 et

y � c1 sin t � c2 cos t � c3 sin 16t � c4 cos 16t

x � 1
2

 c1 sin t � 1
2

 c2 cos t � 2c3 sin 16t � 2c4 cos 16t CHAPTER 4 IN REVIEW (PAGE 190)

1. y � 0
3. false
5. 7.
9. 11. (��, 0); (0, �)

13. y � c1e3x � c2e�5x � c3xe�5x � c4ex � c5xex � c6x2ex;
y � c1x3 � c2x�5 � c3x�5 ln x � c4x � c5x ln x 

� c6x (ln x)2

15.

17. y � c1 � c2e�5x � c3xe�5x

19.

21.

23.

25.

27. y � c1x�1/3 � c2x1/2

29. y � c1x2 � c2x3 � x4 � x2 ln x
31. (a)

;

(b)

33. (a) y � c1cosh x � c2sinh x � c3x cosh x
� c4x sinh x

(b) yp � Ax2 cosh x � Bx2 sinh x
35. y � ex�p cos x
37.
39. y � x2 � 4
43.

y � c1et � c2e2 t � 3
45. x � c1et � c2e5 t � tet

y � �c1et � 3c2e5t � te t � 2et

EXERCISES 5.1 (PAGE 205)

1. 3.

5. (a)

(b) 4 ft /s; downward

(c) t �
(2n � 1)�

16
, n � 0, 1, 2, . . .

 x (�
4) � 1

2; x (9�
32) � 12

4

 x ( �
12) � � 1

4; x (�
8) � � 1

2; x (�
6) � � 1

4;

x(t) � �1
4

 cos 4 16 t
12 �

8
 

x � �c1et � 3
2

 c2e2t � 5
2

y � 13
4

 ex � 5
4

 e�x � x � 1
2

 sin x

y � c1e�� x � c2e� x � Axe�x , � � �

y � c1e�� x � c2e� x � Ae�x , � � �;
� Bx sin �x, � � �

y � c1
 cos �x � c2sin �x � Ax cos �x

� B sin �x, � � �

y � c1
 cos �x � c2sin �x � A cos �x

� ex cos x ln� sec x � tan x �

y � ex (c1 cos x � c2 sin x)

y � c1 � c2e2x � c3e3x � 1
5

 sin x � 1
5

 cos x � 4
3

 x

� 46
125

 x � 222
625

y � e3x / 2 (c2 cos 12 111x � c3 sin 12 111x) � 4
5

 x3 � 36
25

 x2

y � c1e�x / 3 � e�3x / 2 (c2 cos 1
2

 17x � c3 sin 1
2

 17x)

y � c1e(1�13)x � c2e(1�13)x

yp � x2 � x � 2
x2y� � 3xy	 � 4y � 0y � c1cos5x � c2sin5x
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7. (a) the 20-kg mass
(b) the 20-kg mass; the 50-kg mass
(c) t � np, n � 0, 1, 2, . . . ; at the equilibrium position;

the 50-kg mass is moving upward whereas the 20-kg
mass is moving upward when n is even and
downward when n is odd.

9. (a)

(b)

(c)

11. (a)

(b)

(c) 15 cycles
(d) 0.721 s

(e)

(f) x (3) � �0.597 ft
(g) x	(3) � �5.814 ft /s
(h) x�(3) � 59.702 ft /s2

(i)

(j)

(k)

13.
17. (a) above

(b) heading upward
19. (a) below

(b) heading upward
21. that is, the weight is approximately

0.14 ft below the equilibrium position.

23. (a)
(b)

25. (a)

(b)

(c) t � 1.294 s

27. (a) (b) (c)

29.

31.

33.

� 2e�2t sin 4t

x(t) � �1
2 cos 4t � 9

4 sin 4t � 1
2

 e�2t cos 4t

x(t) � 1
4

 e�4t � te�4t � 1
4 cos 4t

� 10
3  (cos 3t � sin 3t)

x(t) � e�t / 2 �� 4
3 cos 247

2
 t � 64

3147 sin 247
2

 t�

0 � � � 5
2� � 5

2� � 5
2

x(t) � 25
2  e�2t sin (4t � 4.249)

x(t) � e�2t (�cos 4t � 1
2 sin 4t)

x(t) � �2
3

 e�2t � 5
3

 e�8t

x(t) � 4
3

 e�2t � 1
3

 e�8t

1
4

 s; 12 s, x (1
2) � e�2;

120 lb/ft; x(t) � 23
12  sin 813 t 

0.3545 �
n�

5
, n � 0, 1, 2, . . .

0.1451 �
n�

5
; 0.3545 �

n�

5
, n � 0, 1, 2, . . .

�81
3 ft/s

(2n � 1)�
20

� 0.0927, n � 0, 1, 2, . . .

5
6
 ft;  

�

5

 � 5
6

 sin (10t � 0.927)

 x(t) � �2
3

 cos 10t � 1
2

 sin 10t 

x(t) � 213
4  cos(2t � 0.983)

x(t) � 213
4  sin(2t � 0.588)

x(t) � 1
2 cos 2t � 3

4 sin 2t

35. (a)

where 2l � b�m and v2 � k�m

(b)

37.

39. (b)

45. 4.568 C; 0.0509 s
47. q(t) � 10 � 10e�3t(cos 3t � sin 3t)

i(t) � 60e�3t sin 3t; 10.432 C
49.

53.

57.

EXERCISES 5.2 (PAGE 215)

1. (a)

3. (a)

5. (a)

(c) x 
 0.51933, ymax 
 0.234799

7.

9. ln � n2, n � 1, 2, 3, . . . ; y � sin nx

11.

y � cos (2n � 1)�x
2L

�n �
(2n � 1)2�2

4L2 , n � 1, 2, 3, . . . ;

 �
w0

2P
 x2 �

w0EI
P2

 � �w0EI
P2

 sinh 
B

P
EI

 L �
w0L1EI

P1P � sinh 
B

P
EI

  x

cosh 
B

P
EI

 L

y(x) �  � w0EI
P2

  cosh 
B

P
EI

 x

y(x) �
w0

360EI
 (7L4x � 10L2x3 � 3x5)

y(x) �
w0

48EI
 (3L2x2 � 5Lx3 � 2x4)

y(x) �
w0

24EI
 (6L2x2 � 4Lx3 � x4)

�
E0C�

1 � � 2LC
 sin �t

i(t) � i0 cos 
t

1LC
�

1
1LC

 �q0 �
E0C

1 � � 2LC�
 
sin 

t
1LC

� 1LCi0 sin 
t

1LC
�

E0C
1 � � 2LC

 cos �t

q(t) � �q0 �
E0C

1 � � 2LC�
 
cos 

t
1LC

q(t) � �1
2

 e�10t (cos 10t � sin 10t) � 3
2

 ; 32 C

 ip � 100
13  cos t � 150

13  sin t

 qp � 100
13  sin t � 150

13  cos t

F0

2�
 t sin �t

x(t) � �cos 2t � 1
8 sin 2t � 3

4
 t sin 2t � 5

4
 t cos 2t

� 32
13 sin t

x(t) � e�2t (�56
13 cos 2t � 72

13 sin 2t) � 56
13 cos t

d 2x
dt2 � 2� 

dx
dt

� �2x � �2h(t),

m 
d 2x
dt2 � �k(x � h) � � 

dx
dt

  or
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13. ln � n2, n � 0, 1, 2, . . . ; y � cos nx

15.

17. ln � n2, n � 1, 2, 3, . . . ; y � sin(n ln x)
19. ln � n4p4, n � 1, 2, 3, . . . ; y � sin npx
21. x � L�4, x � L�2, x � 3 L�4

25.

27.

EXERCISE 5.3 (PAGE 224)

7.

15. (a) 5 ft (b) (c) ; 7.5 ft
17. (a) .

When t � 0, x � a, y � 0, dy�dx � 0.
(b) When r � 1,

When r � 1,

(c) The paths intersect when r � 1.

19. (a)

(b) use at 
(c) use cos 
(d)

CHAPTER 5 IN REVIEW (PAGE 228)

1. 8 ft 3.
5. False; there could be an impressed force driving the

system.
7. overdamped
9. y � 0 since l� 8 is not an eigenvalue

11. 14.4 lb

13.

15. 0 � m � 2

17.

19. x(t) � e�4t (26
17 cos 2 

12 t � 28
17 12 sin 2 12 t) � 8

17
 e�t

� � 8
3

 13

x(t) � �2
3e�2t � 1

3 e�4t

5
4 m

vb 
 21,797 cm/s
umax 
 1 � 1

2 u
2
max

umax, sin 1g>l t � 1

u(t) � v0B

l
g
  sin

B

g
l
 t

y(x) �
1
2
 � 1

2a
 (x2 � a2) �

1
a

 ln a
x	

�
ar

1 � r2

y(x) �
a
2
 � 1

1 � r
 �x

a�
1�r

�
1

1 � r
 �x

a�
1�r

	

xy � � r 11 � (y	)2

0 � t � 3
8 1104 110 ft/s

d 2x
dt2 � x � 0

u(r) � �u0 � u1

b � a �
 ab

r
�

u1b � u0a
b � a

�n �
n�

 
1T

L1

, n � 1, 2, 3, . . . ; y � sin n�x

L

�n �
n2�2

25
, n � 1, 2, 3, . . . ; y � e�x sin n�x

5

21. (a)

(b)

(c)

25.

27.

EXERCISES 6.1 (PAGE 237)

1. 3.
5. 7.

9. 11.

13. 15.

17.

19.

21.

23. 25.

27.

29.

35. 37.

EXERCISES 6.2 (PAGE 246)

1. 5; 4

3.

5.

7.

 �
1

10 � 9 � 7 � 6 � 4 � 3
 x10 � � � �	

y2(x) � c1 � x �
1

4 � 3
 x4 �

1
7 � 6 � 4 � 3

 x7

 �
1

9 � 8 � 6 � 5 � 3 � 2
 x9 � � � �	

y1(x) � c0 � 1 �
1

3 � 2
 x3 �

1
6 � 5 � 3 � 2

 x6

y2(x) � c1 � x �
1
2!

 x2 �
1
3!

 x3 �
1
4!

 x4 � . . .	
y1(x) � c0

y2(x) � c1 � x �
1
3!

 x3 �
1
5!

 x5 �
1
7!

 x7 � . . .	
y1(x) � c0 � 1 �

1
2!

 x2 �
1
4!

 x4 �
1
6!

 x6 � . . .	

y � c0 �
�

k�0

1
k!

 �x2

2�
k

y � c0 �
�

k�0

1
k!

(5x)k

c0 � 2c2 � �
�

k�1
[(k � 2)(k � 1)ck�2 � (2k � 1)ck]xk

2c1 � �
�

k�1
[2(k � 1)ck�1 � 6ck�1]xk

�
�

k�0
[(k � 1)ck�1 � ck]xk�

�

k�3
(k � 2)ck�2xk

1 � 1
2 x2 � 5

24 x4 � 61
720 x6 � . . ., (�p>2, p>2)

x � 2
3 x3 � 2

15 x5 � 4
315 x7 � . . . 

�
�

n�0

(�1)n

(2n � 1)!
(x � 2p)2n�1

�
�

n�1

�1
n

xn�
�

n�0

(�1)n

2n�1 xn

�
�

n�0

(�1)n

n!2n xn(�75
32, 

75
32), R � 75

32

[0, 23], R � 1
3(�5, 15), R � 10

[�1
2, 

1
2), R � 1

2(�1,1], R � 1

mx� � fk sgn(x	) � kx � 0

m d
2x

dt2 � kx � 0

t �
n�

50
, n � 0, 1, 2, . . .

i(t) � �2
3 cos 100t � 2

3 cos 50t

q(t) � � 1
150 sin 100t � 1

75 sin 50t

27069_19_Ans.qxd  2/2/12  4:38 PM  Page 9

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



ANS-10 ● ANSWERS FOR SELECTED ODD-NUMBERED PROBLEMS
A

N
SW

ER
S 

FO
R 

SE
LE

C
TE

D
 O

D
D

-N
U

M
BE

RE
D

 P
RO

BL
EM

S 
 •

  C
H

A
PT

ER
 6

9.

11.

13.

15.

17.

19.

� 8x � 2ex

21. y(x) � 3 � 12x2 � 4x4

23.

EXERCISES 6.3 (PAGE 255)

1. x � 0, irregular singular point
3. x � �3, regular singular point;

x � 3, irregular singular point
5. x � 0, 2i, �2i, regular singular points
7. x � �3, 2, regular singular points
9. x � 0, irregular singular point;

x � �5, 5, 2, regular singular points

11.

13.

15.

 � C2 �1 � 2x � 2 x2 �
23

3 � 3!
 x3 � � � �	

 �
23

9 � 7 � 5 � 3!
 x3 � � � �	

y(x) � C1x3/2 � 1 �
2
5

 x �
22

7 � 5 � 2
 x2

r1 � 3
2, r2 � 0

r1 � 1
3, r2 � �1

for x � �1: p(x) �
5(x � 1)

x � 1
, q(x) � x2 � x

for x � 1: p(x) � 5, q(x) �
x (x � 1)2

x � 1

 y2(x) � c1 [x � 1
12

 x4 � 1
180

 x6 � � � �]
 y1(x) � c0 [1 � 1

6
 x3 � 1

120
 x5 � � � �]

y(x) � �2 �1 �
1
2!

 x2 �
1
3!

 x3 �
1
4!

 x4 � � � �	 � 6x

 y2(x) � c1�x �
1
6

 x3 �
14

2 � 5!
 x5 �

34 � 14
4 � 7!

 x7 � � � �	

 y1(x) � c0 �1 �
1
4

 x2 �
7

4 � 4!
 x4 �

23 � 7
8 � 6!

 x6 � � � �	
 y2(x) � c1 [x � 1

2
 x2 � 1

2
 x3 � 1

4
 x4 � � � �]

 y1(x) � c0 [1 � 1
2

 x2 � 1
6

 x3 � 1
6

 x4 � � � �]
y1(x) � c0; y2 (x) � c1 �

�

n�1

 1
n

 xn

 �
82 � 52 � 22

10!
 x10 � � � �	

 y2(x) � c1 �x �
22

4!
 x4 �

52 � 22

7!
 x7

 y1(x) � c0 �1 �
1
3!

 x3 �
42

6!
 x6 �

72 � 42

9!
 x9 � � � �	

 y2(x) � c1 �x �
1
3!

 x3 �
5
5!

 x5 �
45
7!

 x7 � � � �	

 y1(x) � c0 �1 �
1
2!

 x2 �
3
4!

 x4 �
21
6!

 x6 � � � �	 17.

19.

21.

23.

25. r1 � 0, r2 � �1

27. r1 � 1, r2 � 0

29. r1 � r2 � 0

where y1(x) � �
�

n�0
 
1
n!

 xn � ex

�
1

3 � 3!
 x3 �

1
4 � 4!

 x4 � � � ��	
y(x) � C1y(x) � C2 �y1(x) ln x � y1(x)��x �

1
4

 x2

 � 1
12

 x3 � 1
72

 x4 � � � �]
y(x) � C1x � C2 [ x ln x � 1 � 1

2
 x2

 �
1
x

 [C1 sinh x � C2
  cosh x]

 � C1x�1 �
�

n�0
 

1
(2n � 1)!

 x2n�1 � C2x�1 �
�

n�0
 

1
(2n)!

 x2n

y(x) � C1 �
�

n�0

  
1

(2n � 1)!
 x2n � C2x�1 �

�

n�0

  1
(2n)!

 x2n

� C2x1/3[1 � 1
2

 x � 1
5

 x2 � 7
120

 x3 � � � �]
y(x) � C1x2/3 [1 � 1

2
 x � 5

28
 x2 � 1

21
 x3 � � � �]

r1 � 2
3, r2 � 1

3

� C2 �1 �
1
3

 x �
1
6

 x2 �
1
6

 x3 � � � �	

�
23 � 4

11 � 9 � 7
 x3 � � � �	

y(x) � C1x5/2 �1 �
2 � 2

7
 x �

22 � 3
9 � 7

 x2

r1 � 5
2, r2 � 0

� C2 �1 �
1
2

 x �
1

5 � 2
 x2 �

1
8 � 5 � 2

 x3 � � � �	

  �
1

33 � 3!
 x3 � � � �	

y(x) � C1x1/3 �1 �
1
3

 x �
1

32 � 2
 x2 

r1 � 1
3 , r2 � 0

 �
23

17 � 9 � 3!
 x3 � � � �	

� c2 �1 � 2x �
22

9 � 2
 x2

�
23

31 � 23 � 15 � 3!
 x3 � � � �	

y(x) � c1x7/8 �1 �
2

15
 x �

22

23 � 15 � 2
 x2

r1 � 7
8, r2 � 0
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33. (b)

(c)

EXERCISES 6.4 (PAGE 267)

1. y � c1J1/3(x) � c2J�1/3(x)
3. y � c1J5/2(x) � c2J�5/2(x)
5. y � c1J0(x) � c2Y0(x)
7. y � c1J2(3x) � c2Y2(3x)
9. y � c1J2/3(5x) � c2J�2/3(5x)

11. y � c1x�1/2J1/2(ax) � c2 x�1/2J�1/2(ax)
13. y � x�1/2 [c1J1(4x1/2) � c2Y1(4x1/2)]
15. y � x [c1J1(x) � c2Y1(x)]
17. y � x1/2 [c1J3/2(x) � c2Y3/2(x)
19.
23. y � x1/2 [c1J1/2(x) � c2 J�1/2(x)]

� C1 sin x � C2 cos x

25.

35.
45. P2(x), P3(x), P4(x), and P5(x) are given in the text,

,

47. l1 � 2, l2 � 12, l3 � 30

53.

CHAPTER 6 IN REVIEW (PAGE 271)

1. False
3.
7. x2(x � 1)y� � y	 � y � 0
9.

11.

13. r1 � 3, r2 � 0

15.

17. 1
6

 �

�2 [x � 1
2

 x3 � 1
8

 x5 � 1
48

 x7 � � � �]
y(x) � 3[1 � x2 � 1

3
 x4 � 1

15
 x6 � � � �]

y2(x) � C2 [1 � x � 1
2

 x2]
y1(x) � C1x3 [1 � 1

4
 x � 1

20
 x2 � 1

120
 x3 � � � �]

y2(x) � c1 [x � 1
2

 x3 � 1
4

 x4 � � � �]
y1(x) � c0 [1 � 3

2
 x2 � 1

2
 x3 � 5

8
 x4 � � � �]

y2(x) � C2 [1 � x � 1
6

 x2 � 1
90

 x3 � � � �]
y1(x) � C1x1/2 [1 � 1

3
 x � 1

30
 x2 � 1

630
 x3 � � � �]

r1 � 1
2, r2 � 0

[�1
2, 

1
2]

 y � x � 4x3 � 16
5 x 5

P7(x) � 1
16

 (429x7 � 693x5 � 315x3 � 35x)
P6(x) � 1

16
 (231x6 � 315x4 � 105x2 � 5)

y � c1x1/2J1/3(2
3

 ax3/2) � c2x1/2J�1/3(2
3

 ax3/2)
 � C1x�3/2sin(1

8
 x2) � C2 x�3/2 cos(1

8
 x2)

 y � x�1/2 [c1J1/2(1
8

 x2) � c2J�1/2(1
8

 x2)]

y � x�1[c1J1/2(1
2

 x2) � c2J�1/2(1
2

 x2)]

y � C1x sin �1�

x � � C2x cos �1�

x �

y2(t) � t�1 �
�

n�0
 
(�1)n

(2n)!
 (1� t)2n �

cos (1�
 t)

 t

y1(t) � �
�

n�0
 

(�1)n

(2n � 1)!
 (1� t)2n �

sin (1� t)
1�

 t
19. x � 0 is an ordinary point

21.

EXERCISES 7.1 (PAGE 280)

1. 3.

5. 7.

9. 11.

13. 15.

17. 19.

21. 23.

25. 27.

29. 31.

33. Use sinh and linearity to show that

35. 37.

39. 43. 45.

EXERCISES 7.2 (PAGE 288)

1. 3. t � 2t4

5. 7. t � 1 � e2t

9. 11.

13. 15. 2 cos 3t � 2 sin 3t

17. 19.

21. 0.3e0.1t � 0.6e�0.2t 23.

25. 27. �4 � 3e�t � cos t � 3 sin t1
5 � 1

5 cos 15
 

t

1
2

 e2t � e3t � 1
2

 e6t

3
4

 e�3t � 1
4

 et1
3 � 1

3
 e�3t

cos 
t
2

5
7

 sin 7t1
4

 e�t/4

1 � 3t � 3
2

 t 2 � 1
6

 t 3

1
2

 t2

31p
4s5>2

1p

s1>2
4 cos 5 � (sin 5)s

s2 � 16

2
s2 � 16

1
2(s � 2)

�
1
2s

�{sinh kt} �
k

s2 � k2.

kt �
ekt � e�kt

2

8
s3 �

15
s2 � 9

1
s

�
2

s � 2
�

1
s � 4

1
s

�
1

s � 4
6
s4 �

6
s3 �

3
s2 �

1
s

2
s3 �

6
s2 �

3
s

4
s2 �

10
s

48
s5

s2 � 1
(s2 � 1)2

1
s2 � 2s � 2

1
(s � 4)2

e7

s � 1
1
s

�
1
s2 �

1
s2

 e�s

1
s

 e�s �
1
s2

 e�s1 � e��s

s2 � 1

1
s2 �

1
s2

 e�s2
s

 e�s �
1
s

�
1

32 � 2!
 x6 �

1
33 � 3!

 x9 � � � �	
�

1
4 � 7 � 10

 x10 � � � �	 � �5
2

 x2 �
1
3

 x3

� c1 �x �
1
4

 x4 �
1

4 � 7
 x7

y(x) � c0 �1 �
1
3

 x3 �
1

32 � 2!
 x6 �

1
33 � 3!

 x9 � � � �	
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29. 31. y � �1 � et

33. 35.
37.
39.
41.

EXERCISES 7.3 (PAGE 297)

1. 3.

5. 7.

9.

11. 13. e3t sin t
15. e�2t cos t � 2e�2t sin t 17. e�t � te�t

19.
21. y � te�4t � 2e�4t 23. y � e�t � 2te�t

25. 27.
29.
31. y � (e � 1)te�t � (e � 1)e�t

33.

37. 39.

41. 43.

45. 47.
49. (c) 51. (f)
53. (a)

55.

57.

59.

61.

63.

65.

67.

69.

� [1 � cos(t � 2�)] �(t � 2�)

y �  sin t � [1 � cos(t � �)]�(t � �)

 � 1
3

 sin (t � 2�) �(t � 2�)

y �  cos 2t � 1
6

 sin 2(t � 2�) �(t � 2�)

 � 1
2

 (t � 1) �(t � 1) � 1
4

 e�2(t�1) �(t � 1)

y �  �1
4 � 1

2
 t � 1

4
 e�2t � 1

4
 �(t � 1)

y � [5 � 5e�(t�1)] �(t � 1)

f (t) � �(t � a) � �(t � b); �{ f (t)} �
e�as

s
�

e�bs

s

f (t) � t � t  
�(t � 2); �{ f (t)} �

1
s2 �

e�2s

s2 � 2 e
�2s

s

f (t) � t2 �(t � 1); �{ f (t)} � 2 e
�s

s3 � 2 e
�s

s2 �
e�s

s

f (t) � 2 � 4�(t � 3); �{ f (t)} �
2
s

�
4
s

 e�3s

�(t � 1) � e�(t�1) �(t � 1)�sin t �(t � �)

1
2

 (t � 2)2  �(t � 2)
s

s2 � 4
 e��s

e�2s

s2 � 2 e
�2s

s
e�s

s2

x(t) � � 3
2

 e�7t/2cos 115
2

 t �
7115

10 e�7t/2 sin 115
2 t

y � 1
2 � 1

2
 et cos t � 1

2
 et sin t

y � �3
2

 e3t sin 2ty � 1
9

 t � 2
27 � 2

27
 e3t � 10

9
 te3t

5 � t � 5e�t � 4 te�t � 3
2

 t2 e�t

1
2

 t2 e�2t

s
s2 � 25

�
s � 1

(s � 1)2 � 25
� 3 s � 4

(s � 4)2 � 25

3
(s � 1)2 � 9

1
(s � 2)2 �

2
(s � 3)2 �

1
(s � 4)2

6
(s � 2)4

1
(s � 10)2

y � 1
4

 e�t � 1
4

 e�3t cos 2t � 1
4

 e�3t sin 2t
y � �8

9
 e�t /2 � 1

9
 e�2t � 5

18
 et � 1

2
 e�t

y � 10 cos t � 2 sin t � 12 sin 12 t
y � 4

3
 e�t � 1

3
 e�4ty � 1

10
 e4t � 19

10
 e�6t

1
3

 sin t � 1
6

 sin 2t 71.

73.

75. (a)

(b) imax 
 0.1 at t 
 1.7, imin 
 �0.1 at t 
 4.7

77.

79.

81. (a) � k[T � 70 � 57.5t � (230 � 57.5t)�(t � 4)]

EXERCISES 7.4 (PAGE 309)

1. 3.

5. 7.

9.

11.

13.

17. 19.

21. 23.

25. 27.

29. 31. et � 1
3s2 � 1

s2(s2 � 1)2

1
s2(s � 1)

s � 1
s[(s � 1)2 � 1]

1
s(s � 1)

s � 1
(s � 1)[(s � 1)2 � 1]

6
s5y � 2

3
 t 3 � c1t 2

 � 1
8

 (t � �) sin 4(t � �)�(t � �)

y �  14 sin 4t � 1
8

 t sin 4t

y � 2 cos 3t � 5
3

 sin 3t � 1
6

 t sin 3t

y � �1
2

 e�t � 1
2

 cos t � 1
2

 t cos t � 1
2

 t sin t

12s � 24
[(s � 2)2 � 36]2

6s2 � 2
(s2 � 1)3

s2 � 4
(s2 � 4)2

1
(s � 10)2

dT
dt

 �
w0

60EIL
 �5L

2
 x4 � x5 � �x �

L
2�

5
��x �

L
2�	

y(x) �  
w0L2

48EI
  x2 �

w0L
24EI

  x3

 �
w0

24EI
 �x �

L
2�

4
��x �

L
2�

y(x) �  
w0L2

16EI
  x2 �

w0L
12EI

 x3 �
w0

24EI
  x4

 �
1

101 sin�t �
3�

2 � ��t �
3�

2 � 

 �
10

101 cos�t �
3�

2 � ��t �
3�

2 � 

 �
10

101
 e�10(t�3�/2) ��t �

3�

2 �

i(t) �  
1

101
 e�10t �

1
101

 cos t �
10

101
 sin t

q(t) � 2
5 �(t � 3) � 2

5
 e�5(t�3) �(t � 3)

 � 25
4

 cos 4(t � 5) �(t � 5)

 � 5
16

 sin 4(t � 5) �(t � 5) � 25
4  �(t � 5)

x(t) �  54 t � 5
16

 sin 4t � 5
4

 (t � 5) �(t � 5)
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33. 37. f (t) � sin t

39. 41. f (t) � e�t

43.

45.

47.

49. 51.

53.

55.

57.

EXERCISES 7.5 (PAGE 315)

1.

3.

5.

7.

9.

11.

13.

EXERCISES 7.6 (PAGE 319)

1. 3.

5. 7.

9.

y � � 2
3!

 t3 �
1
4!

 t 4

x � 8 �
2
3!

 
 t3 �

1
4!

 t 4

y � �1
2

 t � 3
4 12 sin 12 ty � 8

3
 e3t � 5

2
 e2t � 1

6

x � �1
2

 t � 3
4 12 sin 12 tx � �2e3t � 5

2
  e2t � 1

2

y � 2 cos 3t � 7
3  sin 3ty � 1

3
 e�2t � 2

3
 et

x � �cos 3t � 5
3

  sin 3tx � �1
3

 e�2t � 1
3

 et

y(x) � �
P0

EI
 �L

4
 x2 �

1
6

 x3�, 0 � x �
L
2

P0L2

4EI
 �1

2
 x �

L
12�, L

2
� x � L

� 1
3

 e�2(t�3�) sin 3(t � 3�) �(t � 3�)
� 1

3
 e�2(t��) sin 3(t � �) �(t � �)

y � e�2t cos 3t � 2
3

 e�2t sin 3t

y � e�2(t�2�) sin t �(t � 2�)

y � 1
2 � 1

2
 e�2t � [1

2 � 1
2

 e�2(t�1)] �(t � 1)

y � �cos t �(t � �
2) � cos t �(t � 3�

2 )
y � sin t � sin t �(t � 2�)

y � e3(t�2) �(t � 2)

 � 1
3

 e�(t�n�) sin 3(t � n�)]�(t � n�)

 � 4 �
�

n�1
(�1)n [1 � e�(t�n�) cos 3(t � n�)

x(t) �  2(1 � e�t cos 3t � 1
3

 e�t sin 3t)

 �
2
R

 �
�

n�1
(�1)n (1 � e�R(t�n)/L)�(t � n)

i(t) �  
1
R

 (1 � e�Rt/L)

coth (�s>2)
s2 � 1

a
s
 � 1

bs
�

1
ebs � 1�

1 � e�as

s(1 � e�as)

 � 100[e�10(t�2) � e�20(t�2)]�(t � 2)
i(t) �  100[e�10(t�1) � e�20(t�1)]�(t � 1)

y(t) � sin t � 1
2

 t sin t

f (t) � 3
8

 e2t � 1
8

 e�2t � 1
2

 cos 2t � 1
4

 sin 2t

f (t) � �1
8

 e�t � 1
8

 et � 3
4

 tet � 1
4

 t 2et

et � 1
2

 t 2 � t � 1 11.

13.

15. (b)

(c) i1 � 20 � 20e�900t

17.

19.

CHAPTER 7 IN REVIEW (PAGE 320)

1. 3. false

5. true 7.

9. 11.

13. 15.
17.
19.
21. �5
23. e�k(s�a)F(s � a)
25.
27.
29. ;

;

31. ;

;

33.

35.

 � 9
100

 e�5(t�2) �(t � 2)
 � 1

5
 (t � 2) �(t � 2) � 1

4
 e�(t�2) �(t � 2)

y �  � 6
25 � 1

5
 t � 3

2
 e�t � 13

50
 e�5t � 4

25 �(t � 2)

y � 5tet � 1
2

 t2 et

�{et f (t)} �
2

s � 1
�

1
(s � 1)2 e

�2(s�1)

�{ f (t)} �
2
s

�
1
s2 e

�2s

f (t) � 2 � (t � 2) �(t � 2)

 �
1

s � 1
 e�4(s�1)

�{et f (t)} �  
1

(s � 1)2 �
1

(s � 1)2 e
�(s�1)

�{ f (t)} �
1
s2 �

1
s2 e

�s �
1
s
 e�4s

f (t) � t � (t � 1)�(t � 1) � �(t � 4)
f (t � t0)�(t � t0)
f (t)�(t � t0)

cos � (t � 1)�(t � 1) � sin � (t � 1)�(t � 1)
e5t cos 2t � 5

2 e5t sin 2t

1
2

 t 2 e5t1
6 t 5

4s
(s2 � 4)2

2
s2 � 4

1
s � 7

1
s2 �

2
s2 e

�s

i2 �
6
5

�
6
5
 e�100t cosh 5012 t �

612
5

 e�100t sinh 5012 t

i1 �
6
5

�
6
5
 e�100t cosh 5012 t �

912
10

 e�100t sinh 5012 t

i3 � 30
13 e�2t � 250

1469 e�15t � 280
113 cos t � 810

113 sin t

i2 � �20
13 e�2t � 375

1469 e�15t � 145
113 cos t � 85

113 sin t

i3 � 80
9 � 80

9  e�900t

i2 � 100
9 � 100

9  e�900t

x2 �
2
5
 sin t �

16
15

 sin 16 t �
4
5
 cos t �

1
5
 cos 16 t

x1 �
1
5
 sin t �

216
15

 sin 16 t �
2
5
 cos t �

2
5
 cos 16 t

y � �1
3 � 1

3
 e�t � 1

3
 te�t

x � 1
2

 t2 � t � 1 � e�t
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37.

39.

41.

43. i(t) � �9 � 2t � 9e�t/5

45.

47. (a)

49. (a)

(b)

and use the double-angle formula for sin 

(d) approximately 2729 ft; approximately 11.54 s

EXERCISES 8.1 (PAGE 332)

1. , where 

3.

5.

7.

9.

17. Yes; W(X1, X2) � �2e�8t � 0 implies that X1 and X2
are linearly independent on (��, �).

dz
dt

 � �2x � 5y � 6z � 2e�t � t

dy
dt

 � 3x � 4y � z � 2e�t � t

dx
dt

 � x � y � 2z � e�t � 3t

dy
dt

� �x � 3y � et

dx
dt

� 4x � 2y � et

where X � �x
y
z
�

X	 � �1
2
1

�1
1
1

1
�1

1
�X � � 0

�3t2

t2� � � t
0

�t
� � ��1

0
2
�,

X	 � ��3
6

10

4
�1

4

�9
0
3
�X, where X � �x

y
z
�

X �  �x
y�X	 � �3  �5

4  8�X

2u

y(x) � �
g

2v2
0 cos2 u

 x2 �
sin u
cos u

 x;  solve y(x) � 0

x(t) � (v0 cos u) t,  y(t) � �1
2 gt2 � (v0 sin u)t

�2(t) �
�0 � �0

2
 cos �t �

�0 � �0

2
 cos 1�2 � 2K

 
t

�1(t) �
�0 � �0

2
 cos �t �

�0 � �0

2
 cos 1�2 � 2K t

 �
1
5
 �x �

L
2�

5
 ��x �

L
2�	

y(x) �
w0

12EIL
 � � 1

5
 x5 �

L
2

 x4 �
L2

2
 x3 �

L3

4
 x2

y � t � 9
4 e�2t � 1

4 e2t

x � �1
4 � 9

8 e�2t � 1
8 e2t

y � 1 � t � 1
2

 t 2

 � [�1
4 � 1

2 (t � 3) � 1
4

 e�2(t�3) ]�(t � 3)
 � 2[�1

4 � 1
2 (t � 2) � 1

4
 e�2(t�2)]�(t � 2)

y(t) � e�2t � [ �1
4 � 1

2
 (t � 1) � 1

4
 e�2(t�1)]�(t � 1) 19. No; W(X1, X2, X3) � 0 for every t. The solution

vectors are linearly dependent on (��, �). Note
that X3 � 2X1 � X2.

EXERCISES 8.2 (PAGE 346)

1.

3.

5.

7.

9.

11.

13.

19.

21.

23.

25.

27.

� c3 ��0
1
1
� 

 t2

2
 et � �0

1
0
�tet � �

1
2

0
0
�et	

X � c1�0
1
1
�et � c2 ��0

1
1
�tet � �0

1
0
�et	

� c3 �� 2
0

�1
�te5t � ��1

2

�1
2

�1
�e5t	

X � c1��4
�5

2
� � c2 � 2

0
�1

�e5t

X � c1�1
1
1
�et � c2 �1

1
0
�e2t � c3 �1

0
1
�e2t

X � c1�1
1�e2t � c2��1

1�te2t � ��1
3

0�e2t	

X � c1
 �1

3� � c2 ��1
3�t � �

1
4

�1
4
�	

X � 3�1
1�et / 2 � 2�0

1�e�t / 2

X � c1 � 4
0

�1
�e�t � c2 ��12

6
5
�e�t / 2 � c3 � 4

2
�1

�e�3t / 2

X � c1 ��1
0
1
�e�t � c2 �1

4
3
�e3t � c3 � 1

�1
3
�e�2t

X � c1 �1
0
0
�et � c2 �2

3
1
�e2t � c3 �1

0
2
�e�t

X � c1 �5
2�e8t � c2 �1

4�e�10t

X � c1 �2
1�e�3t � c2 �2

5�et

X � c1 �1
2�e5t � c2 ��1

1�e�t
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29.

31. Corresponding to the eigenvalue l1 � 2 of multiplicity
five, the eigenvectors ar

33.

35.

37.

39.

41.

43.

45.

EXERCISES 8.3 (PAGE 354)

1.

3.

� �
1
4

�1
4
�t � ��2

3
4
�

X � c1� 1
�1�e�2t � c2 �1

1�e4t � ��1
4
3
4
� t2

X � c1��1
1�e�t � c2 ��3

1�et � ��1
3�

� 6 �5 cos 5t � sin 5t
sin 5t
sin 5t

�
X � �� 25

�7
6
�et � �cos 5t � 5 sin 5t

cos 5t
cos 5t

�

� c3 �3 cos 3t � 4 sin 3t
�5 sin 3t

0
�e�2t

X � c1
 � 28

�5
25
�e2t � c2

 �4 cos 3t � 3 sin 3t
�5 cos 3t

0
�e�2t

X � c1�0
2
1
�et � c2 �sin t

cos t
cos t

�et � c3 � cos t
�sin t
�sin t

�et

X � c1�1
0
0
� � c2 ��cos t

cos t
sin t

�� c3 � sin t
�sin t

cos t
�

X � c1� 5 cos 3t
4 cos 3t � 3 sin 3t� � c2 � 5 sin3t

4 sin 3t � 3 cos 3t�

X � c1� cos t
�cos t � sin t�e4t � c2 � sin t

�sin t � cos t�e4t

X � c1� cos t
2 cos t � sin t�e4t � c2 � sin t

2 sin t � cos t�e4t

K1 � �
1
0
0
0
0
�,  K2 � �

0
0
1
0
0
�

 

,  K3 � �
0
0
0
1
0
�.

X � �7�2
1�e4t � 13�2t � 1

t � 1�e4t 5.

7.

9.

11.

13.

15.

17.

19.

21.

23.

25.

27.

29.

31.

33.

�
4

29�
83
69�sin t

�i1

i2
� � 2�1

3�e�2t �
6

29�
3

�1�e�12t �
4

29�
19
42�cos t

X � �2
2�te2t � ��1

1�e2t � ��2
2�te4t � �2

0�e4t

� � �1
4

 e2t � 1
2

 te2t

�et � 1
4

 e2t � 1
2

 te2t

1
2

 t2e3t �
X � c1� 1

�1
0
� � c2 �1

1
0
�e2t � c3 �0

0
1
�e3t

� � cos t
�1

2 sin t�et ln� sin t � � �2 cos t
�sin t�et ln� cos t �

X � c1�2 sin t
cos t �et � c2 �2 cos t

�sin t�et � �3 sin t
3
2 cos t�tet

� � �sin t
sin t tan t� � �sin t

cos t�
 
ln� cos t �

X � c1� cos t
�sin t� � c2 �sin t

cos t� � � cos t
�sin t�t

X � c1�cos t
sin t�et � c2 � sin t

�cos t�et � �cos t
sin t�tet

� ��sin t
cos t �

 
ln� cos t �

X � c1�cos t
sin t� � c2 � sin t

�cos t� � �cos t
sin t�t

X � c1� 1
�1�et � c2� t

1
2 � t�et � �

1
2

�2�e�t

X � c1�4
1�e3t � c2 ��2

1�e�3t � ��12
0�t � �

4
3
4
3
�

X � c1�2
1�et � c2�1

1�e2t � �3
3�et � �4

2� tet

X � c1�2
1�et / 2 � c2 �10

3�e3t / 2 � �
13
2
13
4
�tet / 2 � �

15
2
9
4
�et / 2

X � c1�1
1� � c2 �3

2�et � �11
11�t � �15

10�

X � 13� 1
�1�et � 2��4

6�e2t � ��9
6�

X � c1�1
0
0
�et � c2 �1

1
0
�e2t � c3 �1

2
2
�e5t � �

3
2
7
2

2
�e4 t

X � c1� 1
�3�e3t � c2 �1

9�e7t � �
55
36

�19
4

 �
 

et
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ANS-16 ● ANSWERS FOR SELECTED ODD-NUMBERED PROBLEMS
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EXERCISES 8.4 (PAGE 359)

1.

3.

5.

7.

9.

11.

13.

15.

17.

23.

CHAPTER 8 IN REVIEW (PAGE 360)

1.

5.

7. X � c1� cos 2t
�sin 2t�et � c2 �sin 2t

cos 2t�et

X � c1� 1
�1�et � c2 �� 1

�1�tet � �0
1�et	

k � 1
3

X � c3 �1
1�e3t � c4 �1

3�e5t

X � c1�
3
2 e3t � 1

2 e5t

3
2 e3t � 3

2 e5t� � c2 ��1
2 e3t � 1

2 e5t

�1
2 e3t � 3

2 e5t� or

X � c1�1 � 3t
t �e2t � c2 � �9t

1 � 3t�e2t

eAt � �e2t � 3te2t

te2t
�9te2t

e2t � 3te2t�;

X � c3 � 3
�2�e2t � c4 � 1

�2�e�2t

X � c1�
3
2

 e2t � 1
2

 e�2t

�e2t � e�2t� � c2 �
3
4 e2t � 3

4 e�2t

�1
2 e2t � 3

2 e�2t� or

eAt � �
3
2

 e2t � 1
2

 e�2t

�e2t � e�2t

3
4

 e2t � 3
4

 e�2t

�1
2

 e2t � 3
2

 e�2t�;

X � �t � 1
t

�2t
� � 4� t

t � 1
�2t

� � 6� t
t

�2t � 1
�

X � c1�cosh t 
sinh t � � c2 �sinh t

cosh t� � �1
1�

X � c3 �1
0�et � c4 �0

1�e2t � ��3
1
2
�

X � c1�t � 1
t

�2t
� � c2 � t

t � 1
�2t

� � c3 � t
t

�2t � 1
�

X � c1�1
0�et � c2 �0

1�e2t

eAt � �t � 1
t

�2t

t
t � 1
�2t

t
t

�2t � 1
�

eAt � �et

0
0
e2t�;  e�At � �e�t

0
0

e�2t�
9.

11.

13.

15. (b)

EXERCISES 9.1 (PAGE 367)

1. for h � 0.1, y5 � 2.0801; for h � 0.05, y10 � 2.0592
3. for h � 0.1, y5 � 0.5470; for h � 0.05, y10 � 0.5465
5. for h � 0.1, y5 � 0.4053; for h � 0.05, y10 � 0.4054
7. for h � 0.1, y5 � 0.5503; for h � 0.05, y10 � 0.5495
9. for h � 0.1, y5 � 1.3260; for h � 0.05, y10 � 1.3315

11. for h � 0.1, y5 � 3.8254; for h � 0.05, y10 � 3.8840;
at x � 0.5 the actual value is y(0.5) � 3.9082

13. (a) y1 � 1.2

(b)

(c) Actual value is y(0.1) � 1.2214. Error is 0.0214.
(d) If h � 0.05, y2 � 1.21.
(e) Error with h � 0.1 is 0.0214. Error with h � 0.05

is 0.0114.

15. (a) y1 � 0.8

(b)

for 0 � c � 0.1.
(c) Actual value is y(0.1) � 0.8234. Error is 0.0234.
(d) If h � 0.05, y2 � 0.8125.
(e) Error with h � 0.1 is 0.0234. Error with h � 0.05

is 0.0109.

17. (a) Error is 19h2e�3(c�1).

(b)

(c) If h � 0.1, y5 � 1.8207.
If h � 0.05, y10 � 1.9424.

(d) Error with h � 0.1 is 0.2325. Error with h � 0.05
is 0.1109.

y�(c) h
2

2
� 19(0.1)2(1) � 0.19

y�(c) h
2

2
� 5e�2c 

(0.1)2

2
� 0.025e�2c � 0.025

 � 0.0244

y�(c) h
2

2
� 4e2c (0.1)2

2
� 0.02e2c � 0.02e0.2

X � c1��1
1
0
� � c2 ��1

0
1
� � c3�1

1
1
�e3t

� � sin t 
sin t � cos t� ln� csc t � cot t �

X � c1� cos t
cos t � sin t� � c2 � sin t

sin t � cos t� � �1
1�

X � c1�1
0�e2t � c2 �4

1�e4t � � 16
�4�t � � 11

�1�

X � c1��2
3
1
�e2t � c2 �0

1
1
�e4t � c3 � 7

12
�16

�e�3t
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19. (a) Error is .

(b)

(c) If h � 0.1, y5 � 0.4198. If h � 0.05, y10 � 0.4124.
(d) Error with h � 0.1 is 0.0143. Error with h � 0.05

is 0.0069.

EXERCISES 9.2 (PAGE 371)

1. y5 � 3.9078; actual value is y(0.5) � 3.9082
3. y5 � 2.0533 5. y5 � 0.5463
7. y5 � 0.4055 9. y5 � 0.5493

11. y5 � 1.3333
13. (a) 35.7130

(c)

15. (a) for h � 0.1, y4 � 903.0282;
for h � 0.05, y8 � 1.1 � 1015

17. (a) y1 � 0.82341667

(b)

(c) Actual value is y(0.1) � 0.8234134413. Error is
3.225 � 10�6 � 3.333 � 10�6.

(d) If h � 0.05, y2 � 0.82341363.
(e) Error with h � 0.1 is 3.225 � 10�6. Error with

h � 0.05 is 1.854 � 10�7.

19. (a)

(b)

(c) From calculation with h � 0.1, y5 � 0.40546517.
From calculation with h � 0.05, y10 � 0.40546511.

EXERCISES 9.3 (PAGE 375)

1. y(x) � �x � ex; actual values are y(0.2) � 1.0214,
y(0.4) � 1.0918, y(0.6) � 1.2221, y(0.8) � 1.4255;
approximations are given in Example 1.

3. y4 � 0.7232
5. for h � 0.2, y5 � 1.5569; for h � 0.1, y10 � 1.5576
7. for h � 0.2, y5 � 0.2385; for h � 0.1, y10 � 0.2384

EXERCISES 9.4 (PAGE 379)

1. y(x) � �2e2x � 5xe2x; y(0.2) � �1.4918,
y2 � �1.6800

3. y1 � �1.4928, y2 � �1.4919
5. y1 � 1.4640, y2 � 1.4640
7. x1 � 8.3055, y1 � 3.4199;

x2 � 8.3055, y2 � 3.4199

24
(c � 1)5 

h5

5!
� 24 

(0.1)5

5!
� 2.0000 � 10�6

y(5) (c) 
h5

5!
�

24
(c � 1)5 

h5

5!

 � 3.333 � 10�6

y(5)(c) h
5

5!
 � 40e�2c h

5

5!
� 40e2(0) 

(0.1)5

5!

v(t) �
B

mg
k

 tanh 
B

kg
m

 t; v(5) � 35.7678

�y�(c) h
2

2 � � (1) (0.1)2

2
� 0.005

1
(c � 1)2 

h2

2

ANSWERS FOR SELECTED ODD-NUMBERED PROBLEMS ● ANS-17

9. x1 � �3.9123, y1 � 4.2857;
x2 � �3.9123, y2 � 4.2857

11. x1 � 0.4179, y1 � �2.1824;
x2 � 0.4173, y2 � �2.1821

EXERCISES 9.5 (PAGE 383)

1. y1 � �5.6774, y2 � �2.5807, y3 � 6.3226
3. y1 � �0.2259, y2 � �0.3356, y3 � �0.3308,

y4 � �0.2167
5. y1 � 3.3751, y2 � 3.6306, y3 � 3.6448, y4 � 3.2355,

y5 � 2.1411
7. y1 � 3.8842, y2 � 2.9640, y3 � 2.2064, y4 � 1.5826,

y5 � 1.0681, y6 � 0.6430, y7 � 0.2913
9. y1 � 0.2660, y2 � 0.5097, y3 � 0.7357, y4 � 0.9471,

y5 � 1.1465, y6 � 1.3353, y7 � 1.5149, y8 � 1.6855,
y9 � 1.8474

11. y1 � 0.3492, y2 � 0.7202, y3 � 1.1363, y4 � 1.6233,
y5 � 2.2118, y6 � 2.9386, y7 � 3.8490

13. (c) y0 � �2.2755, y1 � �2.0755, y2 � �1.8589,
y3 � �1.6126, y4 � �1.3275

CHAPTER 9 IN REVIEW (PAGE 384)

1. Comparison of numerical methods with h � 0.1:

Comparison of numerical methods with h � 0.05:

3. Comparison of numerical methods with h � 0.1:

Improved
xn Euler Euler RK4

0.60 0.6000 0.6048 0.6049
0.70 0.7095 0.7191 0.7194
0.80 0.8283 0.8427 0.8431
0.90 0.9559 0.9752 0.9757
1.00 1.0921 1.1163 1.1169

Improved
xn Euler Euler RK4

1.10 2.1469 2.1554 2.1556
1.20 2.3272 2.3450 2.3454
1.30 2.5409 2.5689 2.5695
1.40 2.7883 2.8269 2.8278
1.50 3.0690 3.1187 3.1197

Improved
xn Euler Euler RK4

1.10 2.1386 2.1549 2.1556
1.20 2.3097 2.3439 2.3454
1.30 2.5136 2.5672 2.5695
1.40 2.7504 2.8246 2.8278
1.50 3.0201 3.1157 3.1197
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Comparison of numerical methods with h � 0.05:

5. h � 0.2: y(0.2) 
 3.2; h � 0.1: y(0.2) 
 3.23
7. x(0.2) 
 1.62, y(0.2) 
 1.84

EXERCISES 10.1 (PAGE 391)

1. x	 � y
y	 � �9 sin x; critical points at (�np, 0)

3. x	 � y
y	 � x2 � y(x3 � 1); critical point at (0, 0)

5. x	 � y
y	 � �x3 � x;

critical points at (0, 0), 

7. (0, 0) and (�1, �1)

9. (0, 0) and 

11. (0, 0), (10, 0), (0, 16), and (4, 12)
13. (0, y), y arbitrary
15. (0, 0), (0, 1), (0, �1), (1, 0), (�1, 0)
17. (a) x � c1e5t � c2e�t (b) x � �2e�t

y � 2c1e5t � c2e�t y � 2e�t

19. (a) x � c1(4 cos 3t � 3 sin 3t) � c2(4 sin 3t � 3 cos 3t)
y � c1(5 cos 3t) � c2(5 sin 3t)

(b) x � 4 cos 3t � 3 sin 3t
y � 5 cos 3t

21. (a) x � c1(sin t � cos t)e4t � c2(�sin t � cos t)e4t

y � 2c1(cos t)e4t � 2c2(sin t)e4t

(b) x � (sin t � cos t)e4t

y � 2(cos t)e4t

23.

the solution spirals toward the origin as t increases.

25. u� t � c2; r � 1, u� t (or x � cos t

and y � sin t) is the solution that satisfies X(0) � (1, 0);

u � t is the solution that satisfie

X(0) � (2, 0). This solution spirals toward the circle
r � 1 as t increases.

27. There are no critical points and therefore no periodic
solutions.

29. There appears to be a periodic solution enclosing the
critical point (0, 0).

r �
1

11 � 3
4 e�2t

 ,

r �
1

11 � c1e�2t
 ,

r � 1
4
14t � c1

 , � � t � c2; r � 4 
1

4
11024t � 1

 , � � t;

( 4
3 , 43)

� 1
1�

 , 0�, ��
1
1�

 , 0�

Improved
xn Euler Euler RK4

0.60 0.6024 0.6049 0.6049
0.70 0.7144 0.7193 0.7194
0.80 0.8356 0.8430 0.8431
0.90 0.9657 0.9755 0.9757
1.00 1.1044 1.1168 1.1169

EXERCISES 10.2 (PAGE 399)

1. (a) If X(0) � X0 lies on the line y � 2x, then X(t)
approaches (0, 0) along this line. For all other
initial conditions, X(t) approaches (0, 0) from the
direction determined by the line y � �x�2.

3. (a) All solutions are unstable spirals that become
unbounded as t increases.

5. (a) All solutions approach (0, 0) from the direction
specified by the line y � x.

7. (a) If X(0) � X0 lies on the line y � 3x, then X(t)
approaches (0, 0) along this line. For all other
initial conditions, X(t) becomes unbounded and
y � x serves as the asymptote.

9. saddle point
11. saddle point
13. degenerate stable node 15. stable spiral
17.
19. m � �1 for a saddle point; �1 � m � 3 for an

unstable spiral point
23. (a) (�3, 4)

(b) unstable node or saddle point
(c) (0, 0) is a saddle point.

25. (a)
(b) unstable spiral point
(c) (0, 0) is an unstable spiral point.

EXERCISES 10.3 (PAGE 408)

1. r � r0e�t

3. x � 0 is unstable; x � n � 1 is asymptotically stable.
5. T � T0 is unstable.
7. x � a is unstable; x � b is asymptotically stable.
9. P � c is asymptotically stable; P � a�b is unstable.

11. is a stable spiral point.

13. are saddle points; is a
stable spiral point.

15. (1, 1) is a stable node; (1, �1) is a saddle point; (2, 2)
is a saddle point; (2, �2) is an unstable spiral point.

17. (0, �1) is a saddle point; (0, 0) is unclassified; (0, 1) i
stable but we are unable to classify further.

19. (0, 0) is an unstable node; (10, 0) is a saddle point;
(0, 16) is a saddle point; (4, 12) is a stable node.

21. u � 0 is a saddle point. It is not possible to classify
either u� p�3 or u � �p�3.

23. It is not possible to classify x � 0.
25. It is not possible to classify x � 0, but and

and are each saddle points.

29. (a) (0, 0) is a stable spiral point.
33. (a) (1, 0), (�1, 0)
35. � v0 � � 1

2
 12

x � �1 �1�
x � 1 �1�

( 1
2

 , �7
4)�12, 0� and ��12, 0�

( 1
2

 , 1)

( 1
2

 , 2)

� � � � 1
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37. If b� 0, (0, 0) is the only critical point and is
stable. If b� 0, (0, 0), and where

are critical points. (0, 0) is stable,
while and are each saddle points.

39. (b) (5p�6, 0) is a saddle point.
(c) (p�6, 0) is a center.

EXERCISES 10.4 (PAGE 415)

1.

5. (a) First show that 

9. (a) The new critical point is 
(b) yes

11. (0, 0) is an unstable node, (0, 100) is a stable node,
(50, 0) is a stable node, and (20, 40) is a saddle point.

17. (a) (0, 0) is the only critical point.

CHAPTER 10 IN REVIEW (PAGE 417)

1. true 3. a center or a saddle point
5. false 7. false
9. a � �1

11. The solution curve spirals
toward the origin.

13. (a) center
(b) degenerate stable node

15. (0, 0) is a stable critical point for a� 0.
17. x � 1 is unstable; x � �1 is asymptotically stable.
19. The system is overdamped when b2 � 12 kms2 and

underdamped when b2 � 12 kms2.

EXERCISES 11.1 (PAGE 425)

7.
9.

11.
21. (a) T � 1 (b) T � pL �2

(c) T � 2p (d) T � p
(e) T � 2p (f) T � 2p

EXERCISES 11.2 (PAGE 430)

1.

3. ;

5.

� �(�1)n�1�

n
�

2
�n3 [(�1)n � 1]� sin nx�

f (x) �
�2

6
� �

�

n�1
�2(�1)n

n2  cos nx

1
2
 at x � 0

f (x) �
3
4

� �
�

n�1
�(�1)n � 1

n2�2  cos n�x �
1

n�
 sin n�x�

f (x) �
1
2

�
1
�

 �
�

n�1

1 � (�1)n

n
 sin nx; 

1
2
 at x � 0

'1' � 1p; 'cos (n�x>p)' � 1p>2
1�/2

1
2

 1�

r � 1   � 3
13t � 1, � � t.

(d>c � �2>c, a>b � �1>b).

y2 � v0
2 � g ln �1 � x2

1 � x0
2�.

� �0 � � 13g>L

(� x̂ , 0)( x̂ , 0),
x̂2 � ��>�,

(� x̂ , 0),( x̂ , 0),

ANSWERS FOR SELECTED ODD-NUMBERED PROBLEMS ● ANS-19

7.

9.

11.

;

13.

15.

17.

21. Set x � p�2.

EXERCISES 11.3 (PAGE 437)

1. odd 3. neither even nor odd
5. even 7. odd
9. neither even nor odd

11.

13.

15.

17.

19.

21.

23.

25.

f (x) �
2
�

 �
�

n�1

1 � cos n�

2
n

 sin n�x

f (x) �
1
2

�
2
�

 �
�

n�1

sin n�

2
n

 cos n�x

f (x) �
2
�

�
2
�

 �
�

n�2

1 � (�1)n

1 � n2  cos nx

f (x) �
3
4

�
4
�2 �

�

n�1

cos n�

2
� 1

n2  cos 
n�

2
x

f (x) �
2
�

 �
�

n�1

1 � (�1)n(1 � �)
n

 sin nx

f (x) �
2�2

3
� 4 �

�

n�1

(�1)n�1

n2  cos nx

f (x) �
1
3

�
4
�2 �

�

n�1

(�1)n

n2  cos n�x

f (x) �
�

2
�

2
�

 �
�

n�1

(�1)n � 1
n2  cos nx

f (x) �
2
�

 �
�

n�1

1 � (�1)n

n
 sin nx

x

1

π−π

y

−  π3 −  π2   π2   π3

f (x) �
2 sinh �

�
 �1

2
� �

�

n�1

 (�1)n

1 � n2 (cos nx � n sin nx)	

�
(�1)n�1

n�
 sin 

n�

5
 x�

f (x) �
9
4

� 5�
�

n�1
�(�1)n � 1

n2�2  cos 
n�

5
 x

�1 at x � �1, �
1
2
 at x � 0, 

1
2
 at x � 1

�
3
n
 �1 � cos 

n�

2 � sin 
n�

2
 x�

f (x) � � 
1
4

�
1
�

 �
�

n�1
�� 

1
n
 sin 

n�

2
 cos 

n�

2
x

f (x) �
1
�

�
1
2
 sin x �

1
�

 �
�

n�2

(�1)n � 1
1 � n2  cos nx

f (x) � � � 2�
�

n�1

(�1)n�1

n
 sin nx
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27.

29.

31.

33.

35.

37.

39.

41.

43.

45. (b)

47.

EXERCISES 11.4 (PAGE 445)

1. y � cos an x; a defined by cot a � a;
l1 � 0.7402, l2 � 11.7349, 
l3 � 41.4388, l4 � 90.8082
y1 � cos 0.8603x, y2 � cos 3.4256x,
y3 � cos 6.4373x, y4 � cos 9.5293x

5.

7. (a) �n � � n�

ln 5�
2
, yn � sin � n�

ln 5
 ln x�, n � 1, 2, 3, . . .

1
2

 [1 � sin2 �n]

yp(x) �
w0

2k
�

2w0

�
 �

�

n�1
 

sin(n�/2)
n(EIn4 � k)

 cos nx

yp(x) �
2w0L4

EI�5  �
�

n�1
 
(�1)n�1

n5  sin 
n�

L
 x

x (t) �
10
�

 �
�

n�1
 
1 � (�1)n

10 � n2
 �1

n
 sin nt �

1
110

 sin 110t�

xp(t) �
�2

18
� 16 �

�

n�1
 

1
n2(n2 � 48)

 cos nt

xp(t) �
10
�

 �
�

n�1
 
1 � (�1)n

n(10 � n2)
 sin nt

f (x) �
3
2

�
1
�

 �
�

n�1

 1
n
 sin 2n�x

f (x) �
4�2

3
� 4 �

�

n�1
� 1

n2 cos nx �
�

n
 sin nx�

f (x) � 4 �
�

n�1
�(�1)n�1

n�
�

(�1)n � 1
n3�3 � sin n�x

f (x) �
5
6

�
2

�2 �
�

n�1

3(�1)n � 1
n2  cos n�x

f (x) � �
�

n�1
� 4

n2�2 sin 
n�

2
�

2
n�

 (�1)n� sin 
n�

2
 x

f (x) �
3
4

�
4
�2 �

�

n�1

cos n�

2
� 1

n2  cos 
n�

2
x

f (x) �
4
�

 �
�

n�1

sin n�

2
n2  sin nx

f (x) �
�

4
�

2
�

 �
�

n�1

2 cos n�

2
� (�1)n � 1

n2  cos nx

f (x) �
8
�

 �
�

n�1

 n
4n2 � 1

 sin 2nx

f (x) �
2
�

�
4
�

 �
�

n�1

(�1)n

1 � 4n2 cos 2nx (b)

(c)

9.

11. (a) ln � 16n2, yn � sin (4n tan�1 x), n � 1, 2, 3, . . .

(b)

EXERCISES 11.5 (PAGE 452)

1. a1 � 1.277, a2 � 2.339, a3 � 3.391, a4 � 4.441

3.

5.

7.

9.

15.

21.

CHAPTER 11 IN REVIEW (PAGE 453)

1. true 3. cosine
5. false 7. 5.5, 1, 0

9.

13.

15. (a)

(b) f (x) � �
�

n�1

2n�[1 � (�1)n e�1]
1 � n2�2  sin n�x

f (x) � 1 � e�1 � 2 �
�

n�1

1 � (�1)n e�1

1 � n2�2  cos n�x

�
2
n
 (�1)n sin n�x�

f (x) �
1
2

�
2
�

 �
�

n�1
� 1

n2�
 [(�1)n � 1] cos n�x

�1

�1
 

1
11 � x2

 Tm (x)Tn (x) dx � 0, m � n

1
11 � x2

 , �1 � x � 1,

f (x) � � x � on (�1, 1)
f (x) � 1

2
 P0(x) � 5

8
 P2(x) � 3

16
 P4(x) � � � � ,

f (x) � 1
4

 P0(x) � 1
2

 P1(x) � 5
16

 P2(x) � 3
32

 P4(x) � � � �

f (x) �
9
2

� 4�
�

i�1

 J2(3�i )
�2

i J2
0 (3�i )

 J0(�i x)

f (x) � 20�
�

i�1

 �i J2(4�i )
(2�2

i � 1)J2
1 (4�i )

 J1(�i x)

f (x) � 4 �
�

i�1

 �i J1(2�i )
(4�2

i � 1)J2
0 (2�i )

 J0(�i x)

f (x) � �
�

i�1

 1
�i J1(2�i )

 J0(�i x)

m � n�1

0

1
1 � x2

 sin (4m tan�1 x) sin (4n tan�1 x) dx � 0,

��

0
e�xLm(x)Ln(x) dx � 0, m � n

d
dx

 [xe�xy	] � ne�xy � 0;

�5

1
 
1
x
 sin �m�

ln 5
 ln x�

 
sin � n�

ln 5
 ln x�

 
dx � 0, m � n

d
dx

 [xy	] �
�

x
 y � 0
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19.

21.

EXERCISES 12.1 (PAGE 459)

1. The possible cases can be summarized in one form
where c1 and c2 are constants.

3.
5.
7. not separable
9.

11. u � (c1 cosh ax � c2 sinh ax)(c3 cosh aat � c4 sinh aat)
u � (c5 cos ax � c6 sin ax)(c7 cos aat � c8 sin aat)
u � (c9 x � c10)(c11t � c12)

13. u � (c1 cosh ax � c2 sinh ax)(c3 cos ay � c4 sin ay)
u � (c5 cos ax � c6 sin ax)(c7 cosh ay � c8 sinh ay)
u � (c9 x � c10)(c11 y � c12)

15. For l � a2 � 0 there are three possibilities:
(i) For 0 � a2 � 1,

(ii) For a2 � 1,

(iii) For a2 � 1,

The results for the case l� �a2 are similar. For l� 0,

17. elliptic 19. parabolic
21. hyperbolic 23. parabolic
25. hyperbolic

EXERCISES 12.2 (PAGE 465)

1.

u(x, 0) � f(x), 0 � x � L

3.

u(x, 0) � f(x), 0 � x � L

u(0, t) � 100, 
�u
�x �x�L

� �hu(L, t), t � 0

k �
2u

�x2 �
�u
�t

 , 0 � x � L , t � 0

u(0, t) � 0, �u
�x �x�L

� 0, t � 0

k �
2u

�x2 �
�u
�t

 , 0 � x � L , t � 0

u � (c1x � c2)(c3 cosh y � c4 sinh y)

u � (c1 cosh x � c2 sinh x)(c3y � c4)

� c4 sin 1�2 � 1y)
u � (c1 cosh �x � c2 sinh �x)(c3 cos 1�2 � 1y

� c4 sinh 11 � �2y)

u � (c1 cosh �x � c2 sinh �x)(c3 cosh 11 � �2y

u � e�t(A3x � B3)
u � e�t(A2e�k�2 t cos �x � B2e�k�2 t sin �x)
u � e�t(A1ek�2 t cosh �x � B1ek�2 t sinh �x)

u � c1(xy)c2

u � c1ey�c2 (x�y)
u � c1ec2 (x�y),

f (x) �
1
4

 �
�

i�1

 J1(2�i )
�i

 J2
1 (4�i )

 J0(�i x)

yn � cos �2n � 1
2

 � ln x�
�n �

(2n � 1)2�2

36
, n � 1, 2, 3, . . . ,

ANSWERS FOR SELECTED ODD-NUMBERED PROBLEMS ● ANS-21

5.

u(0, t) � sin(pt�L), u(L, t) � 0, t � 0
u(x, 0) � f (x), 0 � x � L

7.

u(0, t) � 0, u(L, t) � 0, t � 0

9.

u(0, t) � 0, u(L, t) � sin pt, t � 0

11.

EXERCISES 12.3 (PAGE 468)

1.

3.

5.

7.

 Bn �
1
L

 �L

�L
f (x)sin 

npx
L

dx

 An �
1
L

 �L

�L
f (x)cos 

npx
L

dx,

where   A0 �
1

2L
 �L

�L
f (x) dx,

u(x, t) � A0 � �
�

k�1
e�k(n� /L)2 t �Ancos n�

L
x � Bnsin 

n�

L
x�,

�
2
L

 �
�

n�1
��L

0
f (x) cos n�

L
 x dx� 

e�k(n2 � 2 /L2 ) t cos n�

L
 x	

u(x, t) � e�ht �1
L

 �L

0
f (x) dx

�
2
L

 �
�

n�1
��L

0
f (x) cos n�

L
 x dx� 

e�k(n2 � 2 /L2 ) t cos n�

L
 x

u(x, t) �
1
L

 �L

0
f (x) dx

u(x, t) �
2
�

 �
�

n�1
��cos n�

2
� 1

n �
 

e�k(n2 �2 /L2) t sin n�

L
x

�u
�y �y�0

� 0, u(x , 2) � 0, 0 � x � 4

�u
�x �x�0

� 0, u(4, y) � f (y), 0 � y � 2

�2u
�x2 �

�2u
�y2 � 0,  0 � x � 4, 0 � y � 2

u(x, 0) � f (x), 
�u
�t �t�0

� 0, 0 � x � L

a2 �
2u

�x2 � 2� �u
�t

�
�2u
�t2

 , 0 � x � L , t � 0

u(x, 0) � x(L � x), 
�u
�t �t�0

� 0, 0 � x � L

a2 �
2u

�x2 �
�2u
�t2

 , 0 � x � L , t � 0

k �
2u

�x2 � hu �
�u
�t

 , 0 � x � L , t � 0, h a constant
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EXERCISES 12.4 (PAGE 471)

1.

3.

5.

7.

9.

11.

where

15.

17.

EXERCISES 12.5 (PAGE 477)

1.

3.

5. u(x, y) �
1
2
 x �

2
�2

 �
�

n�1

 1 � (�1)n

n2 sinh n�
 sinh n�x cos n�y

� sinh n�

a
 (b � y) sin n�

a
 x

u(x, y) �
2
a

 �
�

n�1 
 � 1

sinh n�

a
 b

 �a

0
 f (x) sin n�

a
 x dx�

� sinh n�

a
 y sin n�

a
 x

u(x, y) �
2
a

 �
�

n�1 
   � 1

sinh 
n�

a
 b

 �a

0
 f (x) sin n�

a
 x dx�

u(x, t) �
1

2a
 sin 2x sin 2at

u(x, t) � sin x cos 2at � t

Bn �
2L

n2�2a
 �L

0
g(x) sin n�

L
 x dx

An �
2
L

  �L

0
 f (x) sin n�

L
 x dx

x sin n�

L
 x ,u(x, t) � �

�

n�1
�An cos n

2�2

L2  at � Bn sin n
2�2

L2  at�

where An �
2
�

 ��

0
f (x) sin nx dx and qn � 1n2 � �2

u(x, t) � e��t �
�

n�1
An�cos qnt �

�

qn
 sin qnt�

 
sin nx ,

u(x, t) �
8h
�2

 �
�

n�1

sin n�

2
n2  cos n�a

L
 t sin n�

L
 x

u(x, t) �
1
a
 sin at sin x

�
1
72 cos 7�a

L
 t sin 7�

L
x � � � ��

�
1
52 cos 5�a

L
 t sin 5�

L
 x

u(x, t) �
613

�2  �cos �a
L

 t sin �

L
 x

u(x, t) �
L2

�3
  �

�

n�1

1 � (�1)n

n3  cos n�a
L

 t sin n�

L
x

7.

9.

11.

13.

15. u � u1 � u2, where

EXERCISES 12.6 (PAGE 482)

1.

3.

5.

7.

9.

�
2A

a2�3
 �

�

n�1

(�1)n

n3  cos n�at sin n�x

u(x, t) �
A

6a2
 (x � x3)

�(x) � u0 �1 �
sinh 1h/k x
sinh 1h/k �

and  An � 2 �1

0
[ f (x) � �(x)] sin n�x dx

where  �(x) �
A

k�2 [�e�� x � (e�� � 1)x � 1]

u(x, t) � �(x) � �
�

n�1
 An e�kn2 �2 t sin n�x,

� [(�1)n � 1]e�kn2 � 2 t sin n�x

u(x, t) � u0 �
r

2k
 x (x � 1) � 2 �

�

n�1
 �u0

n�
�

r
kn3�3	

u(x, t) � 100 �
200
�

 �
�

n�1
 
(�1)n � 1

n
 e�kn2 � 2 t sin n�x

�
sinh nx � sinh n(� � x)

sinh n�
 sin ny

u2(x, y) �
2
�

 �
�

n�1

[1 � (�1)n]
n

u1(x, y) �
2
�

 �
�

n�1

1 � (�1)n

n sinh n�
 sinh ny sin nx

� An cosh n�

a
 b�Bn �

1

sinh n�

a
 b

 �2
a

 �a

0
g(x) sin n�

a
 x dx

 where An �
2
a

 �a

0
f (x) sin n�

a
 x dx

u(x, y) � �
�

n�1
�An cosh n�

a
 y � Bn sinh n�

a
 y�

 
sin n�

a
 x ,

u(x, y) �
2
�

 �
�

n�1
���

0
f (x) sin nx dx� e�ny sin nx

 Bn � 200 
[1 � (�1)n]

n�
 
[2 � cosh n�]

sinh n�

 where  An � 200 
[1 � (�1)n]

n�

u(x, y) � �
�

n�1
(An cosh n� y � Bn sinh n� y) sin n�x,

�
n cosh nx � sinh nx
n cosh n� � sinh n�

 sin ny

u(x, y) �
2
�

  �
�

n�1

[1 � (�1)n]
n
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11.

13.

15.

17.

EXERCISES 12.7 (PAGE 487)

1. where

the an are the consecutive positive roots of cot a� a�h

3. where

and the an are the consecutive positive roots of
tan aa � �a�h

5. where

7.

9.

EXERCISES 12.8 (PAGE 491)

1.

where Amn �
4u0

mn�2 [1 � (�1)m][1 � (�1)n]

u(x, y, t) � �
�

m�1 
�
�

n�1
Amne�k (m2�n2 ) t sin mx sin ny,

� �e�2t � e�k�2
n t� sin �n x

u(x, t) � �
�

n�1

 4 sin �n

�2
n (k�2

n � 2)(1 � cos2�n)

� cosh �2n � 1
2 ��x sin �2n � 1

2 �� y

u(x, y) �
4u0

�
 �

�

n�1

 1

(2n � 1) cosh �2n � 1
2 ��

An �
2
L

 �L

0
f (x) sin �2n � 1

2L ��x dx

u(x, t) � �
�

n�1
An e�k (2n�1)2 � 2 t / 4L2 sin �2n � 1

2L ��x,

An �
2h

sinh �n b(ah � cos2�n a)
 �a

0
 f (x) sin �n x dx

u(x, y) � �
�

n�1
An sinh �ny sin �n x,

u(x, t) � 2h�
�

n�1

 sin �n

�n(h � sin2�n)
 e�k�2

nt  cos �nx,

�
2
p

 �
�

n�1

 �n2p2e�n2p2t � n2p2cost � sin t
n(n4p4 � 1)

 	sin npx.

u(x, t) � (1 � x)sin t 

� (�1)n 
2n�

n4�4 � 1	
 
e�n2 � 2 t sin n�x

��
�

n�1
 �4 � 2(�1)n

n3�3

u(x, t) � �
�

n�1

 2
n�

 �� 1
n2�2 � (�1)n 

n2�2 cos t � sin t
n4�4 � 1 	

 
sin n�x

� 2�
�

n�1

 (�1)n

n(n2 � 3)
 e�n2 t sin nx

u(x, t) � 2�
�

n�1

 (�1)n�1

n(n2 � 3)
 e�3t sin nx

�
2
�

 �
�

n�1

 u0(�1)n � u1

n
 e�n� x sin n�y

u(x, y) � (u0 � u1)y � u1

ANSWERS FOR SELECTED ODD-NUMBERED PROBLEMS ● ANS-23

3.

5.

CHAPTER 12 IN REVIEW (PAGE 491)

1.

3.

5.

7.

9.

11. u(x, t) � e�t sin x

13.

15.

EXERCISES 13.1 (PAGE 497)

1.

3.

5.

where

Bn �
cn

�
 �2�

0
 f (�) sin n� d�

An �
cn

�
 �2�

0
 f (�) cos n� d�

A0 �
1

2�
 �2�

0
f (�) d�

u(r, �) � A0 ��
�

n�1
r�n(An cos n� � Bn

 sin n�),

u(r, �) �
2�2

3
� 4�

�

n�1

 r
n

n2 cos n�

u(r, �) �
u0

2
�

u0

�
 �

�

n�1

1 � (�1)n

n
 rn sin n�

� �
�

n�1

 cos �n

�n(1 � cos2�n)
 e��2

nt  sin �nx.

u(x, t) � u0 � 1
2(u1 � u0)x � 2(u1 � u0)

� sin 1n2 � 1 t] sin nx

u(x, t) � e�(x�t ) �
�

n�1
An [1n2 � 1 cos 1n2 � 1t

u(x, y) �
100
�

 �
�

n�1

1 � (�1)n

n
 e�nx sin ny

u(x, y) �
100
�

 �
�

n�1

 1 � (�1)n

n sinh n�
 sinh nx sin ny

u(x, t) �
2h

�2a
 �

�

n�1

 
cos n�

4
� cos 3n�

4
n2  sin n�at sin n�x

�(x) � u0 �
(u1 � u0)

1 � �
 x

u � c1e(c2 x�y /c2)

� sin m�

a
 x sin n�

b
 y dx dy

 Amn �
4

ab sinh (c�mn)
 �b

0
�a

0
f (x, y)

 where �mn � 1(m�>a)2 � (n�>b)2

u(x, y, z) � �
�

m�1  
�
�

n�1
Amn sinh �mn z sin m�

a
 x sin n�

b
 y,

where Amn �
16

m3n3�2
 [(�1)m � 1][(�1)n � 1]

u(x, y, t) � �
�

m�1 
�
�

n�1
Amn sin mx sin ny cos a 1m2 � n2 t,
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7.

9.

11.

13.

15.

EXERCISES 13.2 (PAGE 503)

1.

3.

5.

7.

9.

11.

13.

15. (b)

where An �
2

LJ2
1(2�n1L)

 �1L

0
 vJ0(2�nv) f (v2) dv

u(x, t) ��
�

n�1
An cos (�n1gt) J0(2�n1x),

u(r, t) � 100 � 50 �
�

n�1

 J1(�n) J0 (�n r)
�n J1

2 (2�n)
 e�� 2

nt

where An �
2�2

n

(�2
n � h2) J0

2 (�n)
 �1

0
rJ0 (�n r) f (r) dr

u(r, t) ��
�

n�1
An J0(�n r)e�ka2

nt ,

where An �
2

c2J1
2 (�n c)�c

0
rJ0(�n r) f (r) dr

u(r, t) ��
�

n�1
An J0(�n r)e�ka2

nt ,

u(r, z) �
2
p

�
�

n�1

I0(npr)
I0(np)

 sinnpz

u(r, z) � 50�
�

n�1

 cosh(�n z)
�n cosh(4�n) J1(2�n)

 J0 (�n r)

u(r, z) � u0 �
�

n�1

 sinh �n (4 � z)
�n sinh(4�n) J1(2�n)

 J0 (�n r)

u(r, t) �
2

ac
 �

�

n�1

 sin �n at
�2

n J1(�n c)
 J0(�n r)

u(r, �) �
u0

2
�

2u0

�

 �
�

n�1

 
sin n�

2
n

 �r
2�

n
cos n�

u(r, �) �
2u0

p
 �

�

n�1
 
1� (�1)n

n
 
rn � r�n

2n � 2�n sin nu

u(r, �) � 40�r �
1
r�cos� � 25�r �

4
r�sin u

��b
a�

n
� �a

b�
n

	
 
Bn �

1
�

 �2�

0
f (�) sin n� d�

��b
a�

n
� �a

b�
n

	
 
An �

1
�

 �2�

0
f (�) cos n� d�

where A0 ln �a
b� �

1
2�

 �2�

0
   f (�) d�

� [An cos n� � Bn sin n� ],

u(r, �) � A0 ln �r
b� ��

�

n�1
��b

r�
n

� �r
b�

n

	

u(r, �) �
1
2

�
2
�

 �
�

n�1

 
sin n�

2
n

 �r
c�

2n
cos 2n�

EXERCISES 13.3 (PAGE 507)

1.

3.

5. where

7. , where

9.

11.

CHAPTER 13 IN REVIEW (PAGE 508)

1.

3.

5.

7.

9.

11.

17. u(x, z) �
4u0

p �
�

n�1

 I0(2n�1
2 pr)

(2n � 1)I0(2n�1
2 p)

 sin �2n � 1
2 �pz 

�
11
16

 r5P5(cos �) � � � �	

u(r, �) � 100�3
2
 rP1(cos �) �

7
8
 r3P3(cos �)

u(r, z) � 50 � 50 �
�

n�1
 

cosh(�n z)
�n cosh(4�n) J1(2�n)

 J0(�n r)

u(r, t) � 2e�ht �
�

n�1
 

1
�n J1(�n)

 J0(�n r) e��n
2 t

u(r, �) �
2u0

�
 �

�

n�1
 
r4n � r�4n

24n � 2�4n 
1 � (�1)n

n
 sin 4n�

u(r, �) �
4u0

�
 �

�

n�1
 
1 � (�1)n

n3  rn sin n�

u(r, �) �
2u0

�
 �

�

n�1
 
1 � (�1)n

n
 �r

c�
n
 sin n�

Bn �
2

n� a
 �c

0
rg(r) sin 

n�

c
 r dr

 where      An �
2
c

 �c

0
r f (r) sin 

n�

c
 r dr

u(r, t) �
1
r
 �

�

n�1
�An cos 

n�a
c

 t � Bn sin 
n�a

c
 t� sin 

n�

c
 r,

u(r, t) � 100 �
200
�r

 �
�

n�1

 (�1)n

n
 e�n2 � 2 t sin n�r

A2n �
4n � 1

c2n  �� / 2

0
f (�)P2n(cos �) sin � d�

u(r, �) ��
�

n�0
A2n

 r2n P2n (cos �)

b2n�1 � a2n�1

b2n�1 an�1  An �
2n � 1

2 ��

0
f (�) Pn(cos �) sin � d�

u(r, �) ��
�

n�0
An

 b
2n�1 � r2n�1

b2n�1 rn�1  Pn(cos � ),

u(r, �) �
r
c
 cos�

�
7

16
 �r

c�
3
P3(cos �) �

11
32

 �r
c�

5
P5(cos �) � � � �	

u(r, �) � 50 �1
2
 P0(cos �) �

3
4
 �r

c�P1(cos �)
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EXERCISES 14.1 (PAGE 512)

1. (a) Let t� u2 in the integral 
9.

11. Use the property .

EXERCISES 14.2 (PAGE 517)

1.

3.

5.

7.

9.

11.

13.

15.

17.

19.

21.

23.

� erfc�2n � 1 � x
21kt �	

u(x, t) � u0 � u0 �
�

n�0
(�1)n �erfc�2n � 1 � x

21kt �

u(x, t) � u0 � u0e�(�2 /L2)t sin ��

L
 x�

� erfc�1 � x
21t �	

u(x, t) � 100 ��e1�x�t erfc�1t �
1 � x
21t �

u(x, t) � 60 � 40 erfc� x
21t � 2� �(t � 2)

u(x, t) �
x

2 1�
 �t

0

 f (t � �)
� 3/2  e�x 2 / 4� d�

� ex�t erfc�1t �
x

21t��	

u(x, t) � u0 �1 � � erfc� x
21t�

u(x, t) � u1 � (u0 � u1) erfc� x
21t�

� xe�x cosh t � e�x t sinh t
u(x, t) � 2(t � x) sinh (t � x)� (t � x)

� � �t �
2nL � L � x

a ��
� �t �

2nL � L � x
a �

� � �t �
2nL � L � x

a �
u(x, t) � a 

F0

E
 �

�

n�0
(�1)n ��t �

2nL � L � x
a �

� ��t �
x
a� �

1
2
 gt2

u(x, t) � �1
2
 g�t �

x
a�

2
� A sin � �t �

x
a�	

u(x, t) � f �t �
x
a�

 
��t �

x
a�

u(x, t) � A cos 
a�t

L
 sin 

�x
L

�b

0
� �a

0
� �b

0
� �0

a

y(t) � e� t erfc(1�t )
erf(1t).

ANSWERS FOR SELECTED ODD-NUMBERED PROBLEMS ● ANS-25

25.

27.

EXERCISES 14.3 (PAGE 525)

1.

3.

5.

7.

9.

11.

13.

15.

17.

19. Let x � 2 in (7). Use a trigonometric identity and replace
a by x. In part (b) make the change of variable 2x � kt.

EXERCISES 14.4 (PAGE 530)

1.

3.

5. u(x, t) �
2
�

 ��

0

 1 � cos �
�

 e�k�2 t sin �x d�

u(x, t) �
2u0

�

 ��

��

 1 � e�k�2 t

�
 sin �x d�

 �
1
�

 ��

��

 cos �x
1 � �2 e

�k�2 t d�

 u(x, t) �
1
�

 ��

��

 e�k�2 t

1 � �2 e
�i�x d�

f (x) �
2
�

  
1

1 � x2 , x � 0

f (x) �
8
�

 ��

0

 � sin �x
(4 � �2)2 d�

f (x) �
2
�

 ��

0

 (4 � �2) cos �x
(4 � �2)2  d�

f (x) �
2
�

 ��

0

 � sin �x
k2 � �2 d�

f (x) �
2k
�

 ��

0

cos �x
k2 � �2 d�

f (x) �
4
�

 ��

0

 � sin �x
4 � �4  d�

f (x) �
2
�

 ��

0
 
(�� sin �� � cos �� � 1) cos �x

�2  d�

f (x) �
10
�

 ��

0

 (1 � cos �) sin �x
�

 d�

f (x) �
1
�

 ��

0

 cos �x � � sin �x
1 � �2  d�

B(�) �
sin 3� � 3� cos 3�

�2

 where       A(�) �
3� sin 3� � cos 3� � 1

�2

f (x) �
1
�

 ��

0
[A(�) cos �x � B(�) sin �x] d�,

f (x) �
1
�

 ��

0
 
sin � cos �x � 3(1 � cos �) sin �x

�
 d�

u(r, t) �
100

r
 erfc�r � 1

21t
 �

u(x, t) � u0e�Gt /C erf �x
2

  

B

RC
t �

A
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EXERCISES 15.2 (PAGE 544)

The tables in this section give a selection of the total number of approximations.

7.

9. (a)

11.

13.

15.

17.

19.

21.

25.

CHAPTER 14 IN REVIEW (PAGE 532)

1.

3. u(x, t) � u0
   e�ht erf� x

21t�

u(x, y) �
2
�

 ��

0

sinh �y
�(1 � �2) cosh ��

 cos �x d�

u(r, z) �
2
�

 ��

0

 I0(�r)
� I0(�)

 sin � cos �z dz.

 �
1

21�

 ��

��

 e
��2 / 4 cosh �y

cosh �
 cos �x d�

 u(x, y) �
1

21�

 ��

��

 e
��2 / 4 cosh �y

cosh �
 e�i� x d�

u(x, t) �
1

11 � 4kt
 e�x 2 /(1�4k t)

u(x, y) �
2
�

 ��

0

�

1 � �2 [e�� x sin �y � e��y sin �x ] d�

u(x, y) �
2
�

 ��

0
F(�) sinh �(2 � y)

sinh 2�
 sin �x d�

u(x, y) �
100
�

 ��

0

 sin �
�

 e��y cos �x d�

u(x, y) �
2
�

 ��

0

 sinh �(� � x)
(1 � �2) sinh ��

 cos �y d�

� G(�)  sin �at
�a � e�i�x d�

u(x, t) �
1

2�

 ��

��

 �F(�) cos �at

u(x, t) �
2
�

 ��

0

 sin �
�

 e�k�2 t cos �x d� 5.

7.

9.

11.

13.

15.

17.

19.

EXERCISES 15.1 (PAGE 540)

1.
3.
5. u21 � u12 � 12.50, u31 � u13 � 18.75, u32 � u23 � 37.50,

u11 � 6.25, u22 � 25.00, u33 � 56.25
7. (b) u14 � u41 � 0.5427, u24 � u42 � 0.6707,

u34 � u43 � 0.6402, u33 � 0.4451, u44 � 0.9451

u11 � u21 � 13>16, u22 � u12 � 313>16
u11 � 11

15
 , u21 � 14

15
 

u(x, t) �
100
1p

�t

0
 
e�x 2>4(t�t)

1t � t
dt

u(x, t) � 200
B

t
�

 e�x 2>4t � 100 x erfc� x
21t�, or

u(x, t) � �u0 erfc� x
21t�,  0 � t � 1

u0 erfc� x
21t� � u0 erfc� x

21t � 1�,  t �1
 

u(x, t) �
2
�

 ��

0

 �e�k�2 t

�2 � 1
 cos �x d�

u(x, y) �
1

2�

 ��

��

 cos �x � � sin �x
1 � �2  e�k�2 t d�

u(x, y) �
2
�

 ��

0
� B cosh �y

(1 � �2) sinh ��
�

A
�� sin �x d�

� [e�� x sin �y � 2e�� y sin �x] d�

u(x, y) �
100
�

 ��

0
�1 � cos �

� �

u(x, t) �
u0

2�

 ��

��

 sin �(� � x) � sin �x
�

 e�k�2 t d�

u(x, t) ��t

0

 erfc� x
21�� d�
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5

Time x � 0.25 x � 0.50 x � 0.75 x � 1.00 x � 1.25 x � 1.50 x � 1.75

0.000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
0.100 0.3728 0.6288 0.6800 0.5904 0.3840 0.2176 0.0768
0.200 0.2248 0.3942 0.4708 0.4562 0.3699 0.2517 0.1239
0.300 0.1530 0.2752 0.3448 0.3545 0.3101 0.2262 0.1183
0.400 0.1115 0.2034 0.2607 0.2757 0.2488 0.1865 0.0996
0.500 0.0841 0.1545 0.2002 0.2144 0.1961 0.1487 0.0800
0.600 0.0645 0.1189 0.1548 0.1668 0.1534 0.1169 0.0631
0.700 0.0499 0.0921 0.1201 0.1297 0.1196 0.0914 0.0494
0.800 0.0387 0.0715 0.0933 0.1009 0.0931 0.0712 0.0385
0.900 0.0301 0.0555 0.0725 0.0785 0.0725 0.0554 0.0300
1.000 0.0234 0.0432 0.0564 0.0610 0.0564 0.0431 0.0233

1.
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Time x � 0.25 x � 0.50 x � 0.75 x � 1.00 x � 1.25 x � 1.50 x � 1.75

0.000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
0.100 0.4015 0.6577 0.7084 0.5837 0.3753 0.1871 0.0684
0.200 0.2430 0.4198 0.4921 0.4617 0.3622 0.2362 0.1132
0.300 0.1643 0.2924 0.3604 0.3626 0.3097 0.2208 0.1136
0.400 0.1187 0.2150 0.2725 0.2843 0.2528 0.1871 0.0989
0.500 0.0891 0.1630 0.2097 0.2228 0.2020 0.1521 0.0814
0.600 0.0683 0.1256 0.1628 0.1746 0.1598 0.1214 0.0653
0.700 0.0530 0.0976 0.1270 0.1369 0.1259 0.0959 0.0518
0.800 0.0413 0.0762 0.0993 0.1073 0.0989 0.0755 0.0408
0.900 0.0323 0.0596 0.0778 0.0841 0.0776 0.0593 0.0321
1.000 0.0253 0.0466 0.0609 0.0659 0.0608 0.0465 0.0252

Absolute errors are approximately 2.2 � 10�2, 3.7 � 10�2, 1.3 � 10�2.

3.

Time x � 0.25 x � 0.50 x � 0.75 x � 1.00 x � 1.25 x � 1.50 x � 1.75

0.00 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
0.10 0.3972 0.6551 0.7043 0.5883 0.3723 0.1955 0.0653
0.20 0.2409 0.4171 0.4901 0.4620 0.3636 0.2385 0.1145
0.30 0.1631 0.2908 0.3592 0.3624 0.3105 0.2220 0.1145
0.40 0.1181 0.2141 0.2718 0.2840 0.2530 0.1876 0.0993
0.50 0.0888 0.1625 0.2092 0.2226 0.2020 0.1523 0.0816
0.60 0.0681 0.1253 0.1625 0.1744 0.1597 0.1214 0.0654
0.70 0.0528 0.0974 0.1268 0.1366 0.1257 0.0959 0.0518
0.80 0.0412 0.0760 0.0991 0.1071 0.0987 0.0754 0.0408
0.90 0.0322 0.0594 0.0776 0.0839 0.0774 0.0592 0.0320
1.00 0.0252 0.0465 0.0608 0.0657 0.0607 0.0464 0.0251

Absolute errors are approximately 1.8 � 10�2, 3.7 � 10�2, 1.3 � 10�2.

5.

Time x � 2.00 x � 4.00 x � 6.00 x � 8.00 x � 10.00 x � 12.00 x � 14.00 x � 16.00 x � 18.00

0.00 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000
2.00 27.6450 29.9037 29.9970 29.9999 30.0000 29.9999 29.9970 29.9037 27.6450
4.00 25.6452 29.6517 29.9805 29.9991 29.9999 29.9991 29.9805 29.6517 25.6452
6.00 23.9347 29.2922 29.9421 29.9963 29.9996 29.9963 29.9421 29.2922 23.9347
8.00 22.4612 28.8606 29.8782 29.9898 29.9986 29.9898 29.8782 28.8606 22.4612

10.00 21.1829 28.3831 29.7878 29.9782 29.9964 29.9782 29.7878 28.3831 21.1829

7. (a)

Time x � 5.00 x � 10.00 x � 15.00 x � 20.00 x � 25.00 x � 30.00 x � 35.00 x � 40.00 x � 45.00

0.00 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000
2.00 29.5964 29.9973 30.0000 30.0000 30.0000 30.0000 30.0000 29.9973 29.5964
4.00 29.2036 29.9893 29.9999 30.0000 30.0000 30.0000 29.9999 29.9893 29.2036
6.00 28.8212 29.9762 29.9997 30.0000 30.0000 30.0000 29.9997 29.9762 28.8213
8.00 28.4490 29.9585 29.9992 30.0000 30.0000 30.0000 29.9993 29.9585 28.4490

10.00 28.0864 29.9363 29.9986 30.0000 30.0000 30.0000 29.9986 29.9363 28.0864

(b)
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Time x � 2.00 x � 4.00 x � 6.00 x � 8.00 x � 10.00 x � 12.00 x � 14.00 x � 16.00 x � 18.00

0.00 18.0000 32.0000 42.0000 48.0000 50.0000 48.0000 42.0000 32.0000 18.0000
2.00 15.3312 28.5348 38.3465 44.3067 46.3001 44.3067 38.3465 28.5348 15.3312
4.00 13.6371 25.6867 34.9416 40.6988 42.6453 40.6988 34.9416 25.6867 13.6371
6.00 12.3012 23.2863 31.8624 37.2794 39.1273 37.2794 31.8624 23.2863 12.3012
8.00 11.1659 21.1877 29.0757 34.0984 35.8202 34.0984 29.0757 21.1877 11.1659

10.00 10.1665 19.3143 26.5439 31.1662 32.7549 31.1662 26.5439 19.3143 10.1665

Time x � 10.00 x � 20.00 x � 30.00 x � 40.00 x � 50.00 x � 60.00 x � 70.00 x � 80.00 x � 90.00

0.00 8.0000 16.0000 24.0000 32.0000 40.0000 32.0000 24.0000 16.0000 8.0000
2.00 8.0000 16.0000 23.9999 31.9918 39.4932 31.9918 23.9999 16.0000 8.0000
4.00 8.0000 16.0000 23.9993 31.9686 39.0175 31.9686 23.9993 16.0000 8.0000
6.00 8.0000 15.9999 23.9978 31.9323 38.5701 31.9323 23.9978 15.9999 8.0000
8.00 8.0000 15.9998 23.9950 31.8844 38.1483 31.8844 23.9950 15.9998 8.0000

10.00 8.0000 15.9996 23.9908 31.8265 37.7498 31.8265 23.9908 15.9996 8.0000

Time x � 2.00 x � 4.00 x � 6.00 x � 8.00 x � 10.00 x � 12.00 x � 14.00 x � 16.00 x � 18.00

0.00 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000
2.00 27.6450 29.9037 29.9970 29.9999 30.0000 30.0000 29.9990 29.9679 29.2150
4.00 25.6452 29.6517 29.9805 29.9991 30.0000 29.9997 29.9935 29.8839 28.5484
6.00 23.9347 29.2922 29.9421 29.9963 29.9997 29.9988 29.9807 29.7641 27.9782
8.00 22.4612 28.8606 29.8782 29.9899 29.9991 29.9966 29.9594 29.6202 27.4870

10.00 21.1829 28.3831 29.7878 29.9783 29.9976 29.9927 29.9293 29.4610 27.0610

9. (a)

(c)

(d)

Time x � 5.00 x � 10.00 x � 15.00 x � 20.00 x � 25.00 x � 30.00 x � 35.00 x � 40.00 x � 45.00

0.00 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000
2.00 29.5964 29.9973 30.0000 30.0000 30.0000 30.0000 30.0000 29.9991 29.8655
4.00 29.2036 29.9893 29.9999 30.0000 30.0000 30.0000 30.0000 29.9964 29.7345
6.00 28.8212 29.9762 29.9997 30.0000 30.0000 30.0000 29.9999 29.9921 29.6071
8.00 28.4490 29.9585 29.9992 30.0000 30.0000 30.0000 29.9997 29.9862 29.4830

10.00 28.0864 29.9363 29.9986 30.0000 30.0000 30.0000 29.9995 29.9788 29.3621

Time x � 2.00 x � 4.00 x � 6.00 x � 8.00 x � 10.00 x � 12.00 x � 14.00 x � 16.00 x � 18.00

0.00 18.0000 32.0000 42.0000 48.0000 50.0000 48.0000 42.0000 32.0000 18.0000
2.00 15.3312 28.5350 38.3477 44.3130 46.3327 44.4671 39.0872 31.5755 24.6930
4.00 13.6381 25.6913 34.9606 40.7728 42.9127 41.5716 37.4340 31.7086 25.6986
6.00 12.3088 23.3146 31.9546 37.5566 39.8880 39.1565 35.9745 31.2134 25.7128
8.00 11.1946 21.2785 29.3217 34.7092 37.2109 36.9834 34.5032 30.4279 25.4167

10.00 10.2377 19.5150 27.0178 32.1929 34.8117 34.9710 33.0338 29.5224 25.0019

(b)

(c)
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Time x � 10.00 x � 20.00 x � 30.00 x � 40.00 x � 50.00 x � 60.00 x � 70.00 x � 80.00 x � 90.00

0.00 8.0000 16.0000 24.0000 32.0000 40.0000 32.0000 24.0000 16.0000 8.0000
2.00 8.0000 16.0000 23.9999 31.9918 39.4932 31.9918 24.0000 16.0102 8.6333
4.00 8.0000 16.0000 23.9993 31.9686 39.0175 31.9687 24.0002 16.0391 9.2272
6.00 8.0000 15.9999 23.9978 31.9323 38.5701 31.9324 24.0005 16.0845 9.7846
8.00 8.0000 15.9998 23.9950 31.8844 38.1483 31.8846 24.0012 16.1441 10.3084

10.00 8.0000 15.9996 23.9908 31.8265 37.7499 31.8269 24.0023 16.2160 10.8012

(d)

11. (a)
(b)

� (x) � 1
2 x � 20

Time x � 4.00 x � 8.00 x � 12.00 x � 16.00

0.00 50.0000 50.0000 50.0000 50.0000
10.00 32.7433 44.2679 45.4228 38.2971
30.00 26.9487 32.1409 34.0874 32.9644
50.00 24.1178 27.4348 29.4296 30.1207
70.00 22.8995 25.4560 27.4554 28.8998
90.00 22.3817 24.6176 26.6175 28.3817

110.00 22.1619 24.2620 26.2620 28.1619
130.00 22.0687 24.1112 26.1112 28.0687
150.00 22.0291 24.0472 26.0472 28.0291
170.00 22.0124 24.0200 26.0200 28.0124
190.00 22.0052 24.0085 26.0085 28.0052
210.00 22.0022 24.0036 26.0036 28.0022
230.00 22.0009 24.0015 26.0015 28.0009
250.00 22.0004 24.0007 26.0007 28.0004
270.00 22.0002 24.0003 26.0003 28.0002
290.00 22.0001 24.0001 26.0001 28.0001
310.00 22.0000 24.0001 26.0001 28.0000
330.00 22.0000 24.0000 26.0000 28.0000
350.00 22.0000 24.0000 26.0000 28.0000

EXERCISES 15.3 (PAGE 548)

The tables in this section give a selection of the total number of approximations.

1. (a) (b)

Time x � 0.25 x � 0.50 x � 0.75

0.00 0.1875 0.2500 0.1875
0.20 0.1491 0.2100 0.1491
0.40 0.0556 0.0938 0.0556
0.60 �0.0501 �0.0682 �0.0501
0.80 �0.1361 �0.2072 �0.1361
1.00 �0.1802 �0.2591 �0.1802

Time x � 0.4 x � 0.8 x � 1.2 x � 1.6

0.00 0.0032 0.5273 0.5273 0.0032
0.20 0.0652 0.4638 0.4638 0.0652
0.40 0.2065 0.3035 0.3035 0.2065
0.60 0.3208 0.1190 0.1190 0.3208
0.80 0.3094 �0.0180 �0.0180 0.3094
1.00 0.1450 �0.0768 �0.0768 0.1450
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Time x � 0.2 x � 0.4 x � 0.6 x � 0.8

0.00 0.5878 0.9511 0.9511 0.5878
0.10 0.5599 0.9059 0.9059 0.5599
0.20 0.4788 0.7748 0.7748 0.4788
0.30 0.3524 0.5701 0.5701 0.3524
0.40 0.1924 0.3113 0.3113 0.1924
0.50 0.0142 0.0230 0.0230 0.0142

Time x � 0.2 x � 0.4 x � 0.6 x � 0.8

0.00 0.5878 0.9511 0.9511 0.5878
0.05 0.5808 0.9397 0.9397 0.5808
0.10 0.5599 0.9060 0.9060 0.5599
0.15 0.5257 0.8507 0.8507 0.5257
0.20 0.4790 0.7750 0.7750 0.4790
0.25 0.4209 0.6810 0.6810 0.4209
0.30 0.3527 0.5706 0.5706 0.3527
0.35 0.2761 0.4467 0.4467 0.2761
0.40 0.1929 0.3122 0.3122 0.1929
0.45 0.1052 0.1701 0.1701 0.1052
0.50 0.0149 0.0241 0.0241 0.0149

3. (a) (b)

(c)

Time x � 0.1 x � 0.2 x � 0.3 x � 0.4 x � 0.5 x � 0.6 x � 0.7 x � 0.8 x � 0.9

0.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.5000 0.5000 0.5000 0.5000
0.12 0.0000 0.0000 0.0082 0.1126 0.3411 0.1589 0.3792 0.3710 0.0462
0.24 0.0071 0.0657 0.2447 0.3159 0.1735 0.2463 �0.1266 �0.3056 �0.0625
0.36 0.1623 0.3197 0.2458 0.1657 0.0877 �0.2853 �0.2843 �0.2104 �0.2887
0.48 0.1965 0.1410 0.1149 �0.1216 �0.3593 �0.2381 �0.1977 �0.1715 0.0800
0.60 �0.2194 �0.2069 �0.3875 �0.3411 �0.1901 �0.1662 �0.0666 0.1140 �0.0446
0.72 �0.3003 �0.6865 �0.5097 �0.3230 �0.1585 0.0156 0.0893 �0.0874 0.0384
0.84 �0.2647 �0.1633 �0.3546 �0.3214 �0.1763 �0.0954 �0.1249 0.0665 �0.0386
0.96 0.3012 0.1081 0.1380 �0.0487 �0.2974 �0.3407 �0.1250 �0.1548 0.0092

Time x � 10 x � 20 x � 30 x � 40 x � 50

0.00000 0.1000 0.2000 0.3000 0.2000 0.1000
0.60134 0.0984 0.1688 0.1406 0.1688 0.0984
1.20268 0.0226 �0.0121 0.0085 �0.0121 0.0226
1.80401 �0.1271 �0.1347 �0.1566 �0.1347 �0.1271
2.40535 �0.0920 �0.2292 �0.2571 �0.2292 �0.0920
3.00669 �0.0932 �0.1445 �0.2018 �0.1445 �0.0932
3.60803 �0.0284 �0.0205 0.0336 �0.0205 �0.0284
4.20936 0.1064 0.1555 0.1265 0.1555 0.1064
4.81070 0.1273 0.2060 0.2612 0.2060 0.1273
5.41204 0.0625 0.1689 0.2038 0.1689 0.0625
6.01338 0.0436 0.0086 �0.0080 0.0086 0.0436
6.61472 �0.0931 �0.1364 �0.1578 �0.1364 �0.0931
7.21605 �0.1436 �0.2173 �0.2240 �0.2173 �0.1436
7.81739 �0.0625 �0.1644 �0.2247 �0.1644 �0.0625
8.41873 �0.0287 �0.0192 �0.0085 �0.0192 �0.0287
9.02007 0.0654 0.1332 0.1755 0.1332 0.0654
9.62140 0.1540 0.2189 0.2089 0.2189 0.1540

5.

Note: Time is expressed in milliseconds.
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CHAPTER 15 IN REVIEW (PAGE 549)

1. u11 � 0.8929, u21 � 3.5714, u31 � 13.3929

x � 0.20 x � 0.40 x � 0.60 x � 0.80

0.2000 0.4000 0.6000 0.8000
0.2000 0.4000 0.6000 0.5500
0.2000 0.4000 0.5375 0.4250
0.2000 0.3844 0.4750 0.3469
0.1961 0.3609 0.4203 0.2922
0.1883 0.3346 0.3734 0.2512

x � 0.20 x � 0.40 x � 0.60 x � 0.80

0.2000 0.4000 0.6000 0.8000
0.2000 0.4000 0.6000 0.8000
0.2000 0.4000 0.6000 0.5500
0.2000 0.4000 0.5375 0.4250
0.2000 0.3844 0.4750 0.3469
0.1961 0.3609 0.4203 0.2922

3. (a)

(b)

EXERCISES FOR APPENDIX I (PAGE APP-2)

1. (a) 24 (b) 720 (c) (d)

3. 0.297

EXERCISES FOR APPENDIX II (PAGE APP-18)

1. (a) (b)

(c)

3. (a) (b)

(c) (d)

5. (a) (b)

(c) (d)

7. (a) 180 (b) (c) � 6
12

�5
�� 4

8
10

8
16
20

10
20
25
�

��4
8

�5
10��0

0
0
0�

� 3
�6

8
�16��9

3
24
8�

�19
3

6
22�� 19

�30
�18

31�
��32

�4
27

�1���11
17

6
�22�

� 2
12

28
�12�

��6
14

1
�19��2

2
11

�1�

�
81�

15
41�

3

9. (a) (b)

11.

13.

15. singular

17. nonsingular; 

19. nonsingular; 

21. nonsingular; 

23.

25.

27.

29. (a) (b)

(c)

31. x � 3, y � 1, z � �5
33. x � 2 � 4t, y � �5 � t, z � t
35.
37.

41.

43.

45.

47. �1 � 6, �2 � 1, K1 � �2
7�, K2 � �1

1�

A�1 � �
�1

2

1
0

�1
2

�2
3
1
3

�1
3

1

�1
6
1
3

�1
3
1
2

7
6

�4
3
1
3
1
2

�
A�1 � � 5

2
�1

6
2

�1

�3
�1

1
�

A�1 � �0
0
1
3

2
3

�1
3

�2
3

1
3

�2
3

0
�

x1 � 1, x2 � 0, x3 � 2, x4 � 0
x � �1

2, y � 3
2, z � 7

2

�
1
4e4t � 1

4

t2 
(1/�) sin �t

t3 � t �
�

1
4e8 � 1

4

4 
0
6��4e4t

2
�� sin �t

6t  �

dX
dt

� 4 � 1
�1�e2t � 12 �2

1�e�3t

dX
dt

� ��5e�t

�2e�t

7e�t�
A�1(t) �

1
2e3t � 3e4t

�4e�t
�e4t

2e�t�

A�1 � �
1
9
 � �2

�13
8

�2
5

�1

�1
7

�5
�

A�1 �
1
2
 � 0

2
�4

�1
2

�3

1
�2

5
�

A�1 �
1
4
 ��5

3
�8

4�

��38
�2�

��14
1�

� 7
10

38
75�� 7

10
38
75�

(c) Yes; the table in part (b) is the table in part (a)
shifted downward.
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49.

51.

K1 � � 9
45
25
�, K2 � �1

1
1
�, K3 � �1

9
1
�

�1 � 0, �2 � 4, �3 � �4,

�1 � �2 � �4, K1 � � 1
�4�

53.

55.

K1 � �1 � 3i
5 �, K2 � �1 � 3i

5 �
�1 � 3i, �2 � �3i,

K1 � � 2
�1

0
�, K2 � �0

0
1
�

�1 � �2 � �3 � �2,
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I-1

A
Absolute convergence of a power 

series, 232
Absolute error, 78
Acceleration due to gravity, 26, 193
Adams-Bashforth-Moulton method, 373
Adams-Bashforth predictor, 373
Adams-Moulton corrector, 373
Adaptive numerical method, 371
Addition:

of matrices, APP-4 
of power series, 234

Aging spring, 197, 261, 268
Agnew, Ralph Palmer, 33, 137
Air resistance:

proportional to square of velocity, 30,
45, 102 

proportional to velocity, 26, 45, 92
Airy, George Biddel, 243
Airy’s differential equation: 

definition of, 197, 243
numerical solution curves, 246 
power series solutions, 241–243
solution in terms of Bessel 

functions, 261, 268
Algebra of matrices, APP-3
Algebraic equations, methods for solving,

APP-10
Alternative form of second translation

theorem, 295
Ambient temperature, 22
Amperes (A), 25
Amplitude:

damped, 200
of free vibrations, 195

Analytic at a point, 233
Anharmonic overtones, 505
Annihilator approach to method of

undetermined coefficients, 14
Annihilator differential operator, 149
Approaches to the study of differential

equations:
analytical, 27 
numerical, 27 
qualitative, 27

Arc, 388
Archimedes’ principle, 30, 102
Arithmetic of power series, 234
Associated homogeneous differential

equation, 119
Associated homogeneous system, 

331, 348
Asymptotically stable critical point, 42
Attractor, 42, 336

Augmented matrix:
definition of, APP-10
elementary row operations on, APP-10
in reduced row-echelon form, APP-11 
in row-echelon form, APP-10

Autonomous differential equation:
first-orde , 38 
second-order, 188 
translation property of, 42

Autonomous systems of differential
equations:

definition of, 38
as mathematical models, 410

Auxiliary equation:
for Cauchy-Euler equations, 163
for linear equations with constant

coefficients, 133
roots of, 133, 163–165

Axis of symmetry, 210

B
Backward difference, 381
Banded matrix, 538
Ballistic pendulum, 226
Beams:

cantilever, 211 
deflection curve of, 210
embedded, 211, 472 
free, 211
simply supported, 211 
static deflection of, 29
supported on an elastic foundation, 322 
vibrating, 472

Beats, 208
Bernoulli’s differential equation, 73
Bessel, Friedrich Wilhelm, 257
Bessel functions:

aging spring and, 261, 268
differential equations solvable in terms

of, 259–261 
differential recurrence relations 

for, 262–263
of the first kind, 258
graphs of, 259, 260, 264
of half-integral order, 263–264 
modified of the first kind, 260 
modified of the second kind, 26
numerical values of, 262
of order n, 258
of order , 264
of order , 264 
properties of, 262
recurrence relation for, 268
of the second kind, 258, 259 

�1
2

1
2

spherical, 264
zeros of, 262

Bessel’s differential equation:
general solution of, 259 
modified of order n, 260 
of order n, 257
parametric of order n, 259–260 
in self-adjoint form, 444 
solution of, 257

Bessel series, 449
Boundary conditions:

definition of, 17, 18, 464
Dirichlet, 463, 536 
homogeneous, 441
Neumann, 463 
nonhomogeneous, 441 
periodic, 217
Robin, 463 
separated, 441

Boundary-value problem:
definition of, 1
homogeneous, 441
nonhomogeneous, 441, 478–479 
numerical methods for ODEs, 381, 383 
numerical methods for PDEs, 534
for an ordinary differential equations,

17, 118 
for a partial differential equation, 464 
periodic, 443
shooting method for, 383 
singular, 443

Boundary point, 536
Branch point, 110
Buckling modes, 214
Buckling of a tapered column, 256
Buckling of a thin vertical column, 269
Buoyant force, 30
BVP, 17, 118

C
Calculation of order hn, 364
Cantilever beam, 211
Capacitance, 25
Carbon dating, 85
Carrying capacity, 95
Catenary, 221
Cauchy, Augustin-Louis, 163
Cauchy-Euler differential equation: 

auxiliary equation for, 163 
definition of, 162–16
general solution of, 163, 164, 165 
method of solution for, 163
reduction to constant coefficients, 16

Center, 397
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I-2 ● INDEX

Center of a power series, 232
Central difference, 381
Central difference approximations, 381
Chain pulled up by a constant force, 223
Change of scale theorem, 281
Characteristic equation of a matrix, 334,

APP-15
Characteristic values, APP-14
Characteristic vectors, APP-14
Chebyshev, Pafnuty, 270
Chebyshev polynomials, 454
Chebyshev’s differential equation, 

270, 454
Chemical reactions:

first-orde , 23
second-order, 23, 46, 98-99

Circuits, differential equations of, 25,
88–89

Circular frequency, 194
Clamped end of a beam, 211
Classification of critical points, 398

405–406
Classification of ordinary di ferential

equations:
by linearity, 4 
by order, 3
by type, 2

Classification of second-order PDEs, 45
Closed form solution, 9
Clepsydra, 105
Coefficient matrix, 326–32
Cofactor, APP-8
Column bending under its own weight,

268–269
Column matrix, 327, APP-3
Compatibility condition, 478
Competition models, 109–110, 414
Competition term, 96
Competitive interactions, 96, 109, 414
Complementary error function:

definition of, 59, 5 1 
graph of, 511
properties of, 511

Complementary function:
for a homogeneous linear differential

equation, 125 
for a homogeneous linear system, 

331, 348
Complete set:

of vectors, 424
of orthogonal functions, 425

Complex form of a Fourier integral, 524
Complex form of a Fourier series, 431
Components of a vector, 423
Concentration of a nutrient in a cell, 112
Constant solution of plane autonomous

system, 388
Continuing method, 373
Continuous compound interest, 22, 90
Contour integral, 526
Convergence, conditions for: 

Fourier-Bessel series, 449
Fourier integrals, 521

Fourier series, 428
Fourier-Legendre series, 451

Convergent improper integral, 274
Convergent power series, 232
Convolution of two functions, 302
Convolution theorem, Fourier 

transform, 531
Convolution theorem, inverse form 

of, 304
Convolution theorem, Laplace 

transform, 303
Cooling/Warming, Newton’s Law of,

22–23, 86–87, 91
Cosine series:

in one variable, 433
in two variables, 490

Coulomb, Charles Augustin de, 323
Coulomb friction, 230, 323
Coulombs (C), 25
Coupled pendulums, 323
Coupled springs, 315–316
Cover-up method, 288
Cramer, Gabriel, 464
Cramer’s Rule, 464
Crank-Nicholson method, 543
Criterion for an exact differential, 64
Critical loads, 213–214
Critical point of an autonomous first-orde

differential equation:
asymptotically stable, 42 
definition of, 3
isolated, 45 
semi-stable, 42
stability criteria for, 403 
unstable, 42

Critical point of plane autonomous system:
asymptotically stable, 401 
definition of, 38
locally stable, 392 
stable, 401 
unstable, 392, 401

Critical speeds, 216–217
Critically damped series circuit, 203
Critically damped spring/mass 

system, 198
Curvature, 189, 210
Cycle, 388
Cycloid, 114

D
D’Alembert’s solution, 473
Damped amplitude, 200
Damped motion, 197
Damped nonlinear pendulum, 225, 416
Damping constant, 197
Damping factor, 198
Daphnia, 96
DE, 2
Dead sea scrolls, 86
Dead zone, 323
Death rate due to predation, 413
Decay, radioactive, 22, 85–86, 115

Decay constant, 85
Definition, interval of, 
Deflection of a beam, 210–211, 296
Deflection curve, 21
Degenerate nodes, 395–396
Density-dependent hypothesis, 95
Derivative notation, 3
Derivatives of a Laplace transform, 301
Determinant of a square matrix:

definition of, APP-6
expansion by cofactors, APP-6

Diagonal matrix, 357, APP-20
Difference equation:

replacement for an ordinary differential
equation, 381 

replacement for a partial differential
equation, 535, 541, 546

Difference quotients, 381
Differences, finite, 38
Differential, exact, 64
Differential equation:

autonomous, 38, 188
Bernoulli, 73
Bessel, 257
Cauchy-Euler, 162
Chebyshev, 270, 454 
definition of, 
exact, 64
families of solutions for, 7–8 
first order, 3,
Hermite, 270 
homogeneous linear, 119
with homogeneous coefficients, 7
Laguerre, 311
Legendre, 257 
linear, 4, 54
modified Bessel, 26
nonautonomous, 38
nonhomogeneous linear, 119 
nonlinear, 4
normal form of, 4 
notation for, 3 
order of, 3 
ordinary, 2
parametric Bessel, 260 
parametric modified Bessel, 26
partial, 2, 456
Riccati, 75 
separable, 46
solution of, 5–6, 8, 456 
standard form of, 54
systems of, 9, 106, 180, 365, 

375–377, 385
type, 2

Differential equations as mathematical
models, 20–21

Differential equations solvable in terms of
Bessel functions, 259–261

Differential form of a first-order equation
3, 64

Differential of a function of two 
variables, 63

Differential operator, 120
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INDEX ● I-3

Differential recurrence relation, 262–263
Differentiation notation, 3
Differentiation of a power series, 233
Diffusion equation, 465
Dirac delta function:

definition of, 31
Laplace transform of, 313

Direction field of a first-order d ferential
equation:

for an autonomous first-orde
differential equation, 42 

definition of, 3
method of isoclines for, 38, 44 
nullclines for, 44

Dirichlet condition, 463
Dirichlet problem:

for a circle, 494 
definition of, 475, 536
for a rectangle, 476 
for a sphere, 506, 536
superposition for, 476

Discontinuous coefficients, 5
Discretization error, 364
Distributions, theory of, 314
Divergent improper integral, 274
Divergent power series, 232
Domain:

of a function, 6 
of a solution, 6

Doomsday equation, 103
Dot notation, 3
Double cosine series, 490
Double eigenvalues, 496
Double pendulum, 318
Double sine series, 490
Double spring systems, 206, 

315–316, 319
Draining of a tank, 24, 101
Driven motion, 200
Driving function, 61, 193
Drosophila, 96
Duffing s differential equation, 224
Dynamical system, 28, 387

E
Effective spring constant, 206
Eigenfunctions of a boundary-value

problem, 192, 213, 439, 467
Eigenvalues of a boundary-value problem,

192, 213, 439, 467
Eigenvalues of a matrix:

complex, 342–344 
definition of, 334, APP-14 
distinct real, 334
of multiplicity m, 338
of multiplicity three, 340
of multiplicity two, 338, APP-17 
repeated, 337

Eigenvectors of a matrix, 334, APP-14
Elastic curve, 210
Electrical series circuits, analogy with

spring/mass systems, 203

Electrical networks, 110, 317
Electrical vibrations:

forced, 204 
free, 203

Elementary functions, 10
Elementary row operations: 

definition of, APP-10 
notation for, APP-11

Elimination methods:
for systems of algebraic equations, 

APP-10
for systems of ordinary differential

equations, 180
Embedded end of a beam, 211, 472
Emigration model, 98
Empirical laws of heat conduction, 461
Elliptic linear second-order PDE, 458
Environmental carrying capacity, 75
Equality of matrices, APP-3
Equation of motion, 194
Equilibrium point, 38
Equilibrium position, 193, 196
Equilibrium solution, 38, 388
Error:

absolute, 78
analysis, 363 
discretization, 364 
formula, 364
global truncation, 365
local truncation, 364, 366–367 
percentage relative, 78 
relative, 78
round off, 363–364

Error function:
definition of, 59, 5 1 
graph of, 511 
properties of, 511

Escape velocity, 225
Euler, Leonhard, 163
Euler formulas for the coefficients of 

Fourier series, 427
Euler load, 214
Euler’s constant, 262, 311
Euler’s formula, 133
Euler’s method:

for first-order di ferential equations,
76–77, 363 

improved, 365
for second-order differential 

equations, 376 
for systems, 379

Evaporating raindrop, 93
Evaporation, 102
Even function:

definition of, 431
properties of, 432

Exact differential:
criterion for, 64 
definition of, 6

Exact differential equation:
definition of, 64
method of solution, 65

Excitation function, 127

Existence:
of a Fourier transform, 527
interval of, 5
of a Laplace transform, 277–278
and uniqueness of a solution, 15–16,

117, 328
Explicit finite di ference method:

definition of, 541
stability of, 542, 548

Explicit solution, 6
Exponential form of the Fourier 

integral, 524
Exponential growth and decay, 84
Exponential matrix:

computation of, 358 
definition of, 356
derivative of, 357

Exponential order, 277
Exponents of a singularity, 251
Extreme displacement, 194

F
Factorial function, APP-1
Falling body, 25, 26, 30
Falling chain, 70, 75
Falling raindrop, 33, 93, 105
Falling string, 514–515
Family of solutions, 7
Farads (f), 25
Fick’s law, 114
Finite difference approximations, 380–381
Finite difference equation, 381
Finite differences:

backward, 381 
central, 381 
definition of, 381
forward, 381

First buckling mode, 214
First harmonic, 471
First normal mode, 471
First standing wave, 471
First translation theorem:

form of, 290
inverse form of, 290

First-order chemical reaction, 23, 84
First-order differential equations:

applications of, 22–25, 83–84, 95 
methods for solving, 46, 54, 63, 71

First-order initial-value problem, 13–14
First-order Runge-Kutta method, 368
First-order system of differential equations

definition of, 32
linear system, 326

Five-point approximation to Laplacian, 535
Flexural rigidity, 210
Flux of heat, 463
Focus, 399
Folia of Descartes, 12, 409
Forced electrical vibrations, 203–204
Forced motion of a spring/mass system,

200, 202
Forcing function, 127, 169, 193
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I-4 ● INDEX

Forgetfulness, 32
Formula error, 364
Forward difference, 381
Fourier, Jean Baptiste Joseph, 427
Fourier-Bessel series:

conditions for convergence, 449 
definition of, 44
forms of, 448–449

Fourier coefficients, 426–42
Fourier cosine series, 433
Fourier cosine transform: 

of derivatives, 528 
definition of, 527
existence of, 527 
inverse of, 527
operational properties of, 527

Fourier integral:
complex form of, 524
conditions for convergence, 521 
cosine form of, 522
definition of, 52
sine form of, 522

Fourier-Legendre series:
alternative forms of, 452, 453 
conditions for convergence, 451 
definition of, 45

Fourier series:
complex form of, 431
conditions for convergence, 428 
definition of, 42
fundamental period of, 429 
generalized, 424
sequence of partial sums of, 430

Fourier sine series, 433
Fourier sine transform:

definition of, 52
of derivatives, 527–528 
existence of, 527 
inverse of, 527
operational properties of, 527

Fourier transform:
convolution theorem for, 531 
definition of, 52
of derivatives, 527 
existence of, 527 
inverse of, 526
operational properties of, 527

Fourier transform pairs, 526
Fourth-order Runge-Kutta method:

for first-order di ferential equations, 
78, 369

for second-order differential 
equations, 376 

for systems of first-order equations, 378
truncation errors for, 370

Free electrical vibrations, 203
Free motion of a spring/mass system:

damped, 197
undamped, 193–194

Free-end conditions, 471, 485
Freely falling body, 25
Frequency:

circular, 194

of simple harmonic motion, 194
natural, 194

Frequency response curve, 209
Fresnel sine integral, 63
Frobenius, Ferdinand Georg, 249
Frobenius, method of, 250
Frobenius’ theorem, 249
Fulcrum supported ends of a beam, 211
Full-wave rectification of sine

function, 310
Functions defined by integrals, 59–6
Fundamental frequency, 471
Fundamental matrix, 351, 357–358
Fundamental mode of vibration, 471
Fundamental period, 425, 429
Fundamental set of solutions:

existence of, 123
of a linear differential equation, 123 
of a linear system, 330

G
g (acceleration due to gravity), 25, 193
Galileo Galilei, 26
Gamma function, 258, 280, APP-1
Gauss’ hypergeometric function, 257
Gaussian elimination, 383, APP-10
Gauss-Jordan elimination, 337, 338, 

APP-10
Gauss-Seidel iteration, 538
General form of a differential equation, 

3, 456
General solution:

of Bessel’s differential equation, 259, 260
of a Cauchy-Euler differential equation,

163–165 
of a differential equation, 10, 123, 125
of a homogeneous linear differential

equation, 123
of a nonhomogeneous linear differential

equation, 125
of a homogeneous system of linear

differential equations, 330, 334 
of a linear first-order di ferential

equation, 57
of the modified Bessel s differential

equation, 260
of a nonhomogeneous system of linear

differential equations, 331, 348
Generalized factorial function, APP-1
Generalized Fourier series, 424
Generalized functions, 314
Gibbs phenomenon, 434
Global truncation error, 365
Gompertz, Benjamin, 98
Gompertz differential equation, 98
Gospel of Judas, 86
Green’s function:

for a boundary-value problem, 
176–177

for an initial-value problem, 170 
relationship to Laplace transform, 

306–307 

for a second-order differential 
operator, 170

Growth and decay, 84
Growth constant, 85

H
Half-life:

of carbon-14, 86 
definition of, 8
of plutonium-239, 85 
of potassium-40, 115 
of radium-226, 85
of uranium-238, 85

Half-range expansions, 434–435
Half-wave rectification of sine

function, 310
Hard spring, 219, 409
Harvesting of a fisher , model of, 98, 100
Heart pacemaker, model for, 63, 94
Heaviside, Oliver, 293
Heaviside function, 293
Heat equation:

difference equation replacement of, 541 
derivation of, 461
one dimensional, 460, 466, 541 
in polar coordinates, 499
two dimensional, 488, 499

Heat generated in a rod by radioactive
decay, 482

Heat loss from a boundary, 463–464
Heat loss from a lateral side of a

rod, 468
Helmholtz’s partial differential 

equation, 508
Henries (h), 25
Hermite, Charles, 270
Hermite polynomials, 270
Hermite’s differential equation, 270, 446
Higher-order differential equations, 118,

135, 192
Hinged ends of a beam, 211
Hole through the Earth, 31
Homogeneous boundary condition, 441
Homogeneous differential equation:

linear, 60, 119
with homogeneous coefficients, 7

Homogeneous function of degree a, 71
Homogeneous systems:

of algebraic equations, APP-15
of linear first-order di ferential

equations, 326
Hooke’s law, 31, 193
Hyperbolic linear second-order 

PDE, 458

I
IC, 13, 463
Identity matrix, APP-6
Identity property of power series, 233
Immigration model, 98, 103
Impedance, 204
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INDEX ● I-5

Implicit finite di ference method:
definition of, 543
stability of, 543

Implicit solution of an ODE, 6
Improved Euler method, 365–366
Impulse response, 314
Indicial equation, 251
Indicial roots, 251
Inductance, 25
Inflection, points of, 45, 9
Inhibition term, 96
Initial condition(s):

for an ordinary differential equation, 
13, 117

for a system of linear first-orde
differential equations, 328 

for partial differential equations,
463–464

Initial-value problem: 
definition of, 13, 17 
first-orde , 13, 362
geometric interpretation of, 14 
for a linear system, 328
nth-order, 13, 117 
second-order, 14, 375

Inner product of functions: 
definition of, 420
properties of, 420

Input, 61, 127, 169, 193
Insulated boundary, 463
Integral curve, 7
Integral of a differential equation, 7
Integral equation, 305
Integral, Laplace transform of an, 304
Integral transform:

definition of, 274, 52
Fourier, 526
inverse of, 281, 526 
kernel of, 274, 526
Laplace, 274, 513 
pair, 526

Integrating factor(s):
for a linear first-order di ferential

equation, 55
for a nonexact first-order di ferential

equation, 67–68 
Integration of a power series, 233
Integrodifferential equation, 305
Interactions, number of, 23, 414
Interest compounded continuously, 90
Interior mesh points, 381
Interior point, 536
Interpolating function, 372
Interval:

of convergence, 232 
of definition, 
of existence, 5
of existence and uniqueness, 16 
of validity, 5

Inverse Fourier cosine transform, 527
Inverse Fourier sine transform, 527
Inverse Fourier transform, 526
Inverse integral transform, 526

Inverse Laplace transform:
definition of, 281, 526
linearity of, 282

Inverse matrix:
definition of, APP-7
by elementary row operations, APP-13 
formula for, APP-8

Irregular singular point, 248
Isoclines, 38, 44
Isolated critical point, 45
Isotherms, 475
IVP, 13

J
Jacobian matrix, 403–404

K
Kernel of an integral transform, 274, 526
Kinetic friction, 230
Kirchhoff’s first law, 110
Kirchhoff’s second law, 25, 110

L
Laguerre polynomials, 311
Laguerre’s differential equation, 311, 446
Laplace, Pierre-Simon Marquis de, 274
Laplace transform:

behavior as s , 279
change of scale theorem for, 281 
convolution theorem for, 303 
definition of, 27
of a derivative, 284, 513 
derivatives of, 301
of Dirac delta function, 313
existence, sufficient conditions fo ,

277–278 
of a function of two variables, 513
of an integral, 304 
inverse of, 281, 526 
kernel of, 274, 526
of a linear initial-value problem,

284–285 
linearity of, 276
of a periodic function, 307
of systems of linear differential

equations, 315 
tables of, 277, APP–21
translation theorems for, 290, 294 
of unit step function, 294

Laplace’s equation:
in cylindrical coordinates, 502 
difference equation replacement of, 535 
in polar coordinates, 494
in spherical coordinates, 506 
in three dimensions, 462, 491
in two dimensions, 460, 462, 473, 

494, 535
Laplacian:

in cylindrical coordinates, 502 
five point approximation to, 535

: �

in polar coordinates, 494
in spherical coordinates, 506 
in three dimensions, 462
in two dimensions, 462

Lascaux cave paintings, dating of, 90
Lattice points, 536
Law of mass action, 98
Leaking tanks, 24, 29-30, 101, 105
Least-squares line, 103
Left-hand limit, 428
Legendre, Adrien-Marie, 257
Legendre function, 267
Legendre polynomials: 

first six, 266
graphs of, 266 
properties of, 266
recurrence relation for, 266
Rodrigues’ formula for, 267

Legendre’s differential equation:
of order n, 257
self-adjoint form of, 445 
solution of, 265–266

Leibniz notation, 3
Leibniz’s formula for differentiation of an

integral, 172
Level curves, 49
Level of resolution of a mathematical

model, 21
Libby, Willard, 85
Liebman’s method, 539
Lineal element, 36
Linear dependence:

of functions, 121
of solution vectors, 329

Linear differential operator, 120, 
149–151, 170

Linear independence:
of eigenvectors, APP-16 
of functions, 121
of solutions, 121
of solution vectors, 329
and the Wronskian, 122, 329–330

Linear operator, 120
Linear ordinary differential equation:

applications of, 84, 193, 210
associated homogeneous equation, 119 
auxiliary equation for, 133
boundary-value problem for, 117 
complementary function for, 125 
definition of, 
first order, 54
fundamental set of solutions for, 123 
general solution of, 57, 123, 125 
homogeneous, 60, 119
initial-value problem for, 117 
nonhomogeneous, 60, 119 
particular solution of, 124
solution of, 56, 112–113, 139, 149,

157–158, 162–165, 241, 249 
standard forms for, 54, 130, 157, 

158, 160
superposition principles for, 120, 126

Linear regression, 103
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I-6 ● INDEX

Linear second-order boundary-value
problem, 381

Linear second-order partial differential
equation:

classification of, 458
general form of, 456 
homogeneous, 456 
nonhomogeneous, 456 
solution of, 456

Linear spring, 218
Linear system, 127, 326
Linear systems of algebraic equations,

APP-10
Linear systems of differential equations:

definition of, 106, 326
homogeneous, 326, 333 
matrix form of, 326
method for solving, 333, 348 
nonhomogeneous, 326, 348

Linear transform, 276
Linearity property:

of differentiation, 274 
of integration, 274
of the inverse Laplace transform, 282 
of the Laplace transform, 276

Linearization:
of a differential equation, 220, 403
of a function of one variable at a point,

76, 400, 403 
of a function of two variables at a point,

400, 403
of a nonlinear system, 402–403

Lissajous curve, 320
Local truncation error, 364, 366, 370
Locally stable critical point, 392
Logistic curve, 96
Logistic differential equation, 75, 96
Logistic function, 96
Losing a solution, 48
Lotka, Arthur, 412
Lotka-Volterra, equations of:

competition model, 109, 414 
predator-prey model, 108, 412

LR-series circuit, differential equation of,
30, 88

LRC-series circuit, differential equation of,
25, 203

M
Malthus, Thomas, 21
Maple, 60, 384, 452
Mass action, law of, 98
Mathematica, 60, 136–137, 337, 360, 384,

452, 468, 524
Mathematical model(s):

absolute temperature of a cooling 
body, 114

aging spring, 197 
ballistic pendulum, 226 
bead sliding on a curve, 411
bobbing motion of a floating barrel, 3

box sliding down an inclined plane,
94–95 

buckling of a thin vertical column, 
213, 216 

cables of a suspension bridge, 26–27
carbon dating, 85
chain pulled upward by a constant 

force, 223 
chemical reactions, 23, 98, 101
competition models, 109–110, 414 
concentration of a nutrient in a cell, 114 
constant harvest, 93, 98
continuous compound interest, 90 
cooling cup of coffee, 91 
cooling/warming, 22, 86
coupled pendulums, 318, 322–323 
coupled springs, 316
definition of, 20–2
deflection of beams, 210–2 1 
doomsday for a population, 103 
double pendulum, 318
double spring, 206, 229, 230 
draining a tank, 24, 29
dropping supplies from a plane,

226–225
drug infusion, 32 
evaporating raindrop, 93 
evaporation, 102
extinction of a population, 102
falling body (with air resistance), 26
falling body (with no air resistance),

25–26 
forgetfulness, 32
fluctuating population, 32, 9
fluid flow around a circular cylind ,

388 
growth and decay, 84
hard spring, 219 
harvesting fisheries, 98
heart pacemaker, 94
hole through the Earth, 31 
immigration, 98, 103 
leaking tanks, 101
learning theory, 32 
least time, 114
LR-series circuit, 30, 88, 92
LRC-series circuit, 25, 203, 409 
memorization, 94
mixtures, 24, 87, 107 
networks, 110, 354–355
nutrient flow through a membrane, 12 
oscillating chain, 504
pendulum motion on the Earth, 220, 410 
pendulum motion on the Moon, 227 
population growth, 21
potassium-40 decay, 115 
predator-prey, 108, 412–413
pursuit curves, 225
radioactive decay, 22
radioactive decay series, 106 
raindrops, 33, 93, 105
range of a projectile, 323, 324

RC-series circuit, 30, 89, 92 
reflecting surface, 32
resonance, 202
restocking fisheries, 98
rocket motion, 31, 222 
rotating fluid, 32–33
rotating pendulum, 418
rotating rod containing a sliding bead,

229–230
rotating string, 214 
skydiving, 30, 93, 104
soft spring, 219, 406, 407 
solar collector, 102
spread of a disease, 23
spring/mass systems, 193–203, 316, 319 
suspended cables, 26–27
snowplow problem, 33
steady-state temperature in a rectangular

plate, 462, 473 
swimming a river, 104, 105
temperature in an annular plate, 498 
temperature in circular cylinder, 502 
temperature in circular plate, 494 
temperature in a circular ring, 217 
temperature in an infinite wedge, 497
temperature in a quarter-circular 

plate, 497 
temperature in a semiannular plate, 498 
temperature in a semicircular plate, 496 
temperature in a sphere, 217, 506 
temperature in a thin rod, 217, 466, 482 
terminal velocity, 45, 92
time of death, 91 
tractrix, 32
transverse vibrations of a string, 

461, 468
tsunami, shape of, 102
U.S. population, 100 
variable mass, 31, 222–223
vibrations of a circular membrane, 499 
water clock, 105
wire hanging under its own weight, 221

Mathieu functions, 257
Matrices:

addition of, APP-4
associative law of, APP-6 
augmented, APP-10 
banded, 538
characteristic equation of, 334, APP-15 
column, APP-3
definition of, APP-3
derivative of, APP-9 
determinant of, APP-6 
diagonal, APP-20 
difference of, APP-4 
distributive law for, APP-6 
eigenvalue of, 334, APP-14
eigenvector of, 334, APP-14
elementary row operations on, APP-10 
entry of, APP-3
equality of, APP-3 
exponential, 356 
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INDEX ● I-7

fundamental, 351 
integral of, APP-9
inverse of, APP-8, APP-13
Jacobian, 403–404 
multiples of, APP-3 
multiplication of, APP-5 
multiplicative identity, APP-6 
multiplicative inverse, APP-7 
nilpotent, 360
nonsingular, APP-7 
product of, APP-5
reduced row-echelon form of,

APP-11 
row-echelon form of, APP-10 
singular, APP-7
size, APP-3 
sparse, 538 
square, APP-3 
sum of, APP-4 
symmetric, 339
transpose of, APP-7
tridiagonal, 543 
vector, APP-3 
zero, APP-6

Matrix. See Matrices. 
Matrix exponential:

computation of, 356, 358
definition of, 356
derivative of, 357
as a fundamental matrix, 357–358

Matrix form of a linear system, 326–327
Maximum principle, 476
Meander function, 310
Memorization, mathematical model for, 32
Mesh size, 536
Mesh points, 536
Method of Frobenius, 249–250
Method of isoclines, 38
Method of separation of variables, 456–457
Method of undetermined coefficients,

140, 151
Minor, APP-8
Mixtures:

multiple tanks, 107, 111 
single tank, 24, 87–88

Modeling process, steps in, 21
Modified Bessel equation

of order n, 260
general solution of, 260 
parametric form of, 260

Modified Bessel functions
of the first kind, 260
graphs of, 260
of the second kind, 260

Movie, 320, 470, 501
Multiplication:

of matrices, APP-5
of power series, 234–235

Multiplicative identity, APP-6
Multiplicative inverse, APP-7
Multiplicity of eigenvalues, 338, 

340, APP-17

Multistep numerical method:
advantages of, 374–375 
definition of, 373
disadvantages of, 374–375

N
Named functions, 257
Natural frequency of free undamped

motion, 194
Networks, 110
Neumann condition, 463
Neumann problem for a rectangle, 478
Newton, Isaac, 25
Newton’s dot notation for differentiation, 3
Newton’s first law of motion, 2
Newton’s law of cooling/warming:

with constant ambient temperature,
22–23, 86–87, 91

with variable ambient temperature, 
29, 91

Newton’s second law of motion, 25, 222
Newton’s second law of motion as the rate

of change of momentum, 31, 222
Newton’s universal law of gravitation, 31
Nilpotent matrix, 360
Nodal line, 501
Node, 394–396, 471
Nonelementary integral, 51, 59
Nonhomogeneous boundary condition, 441
Nonhomogeneous boundary-value

problem for ODEs, 441
Nonhomogeneous boundary-value

problem for PDEs, 478–480
Nonhomogeneous linear ordinary

differential equation, 60, 119
Nonhomogeneous linear partial differential

equation, 456
Nonhomogeneous systems of linear first

order differential equations:
definition of, 32
general solution of, 330, 331, 

333–344 
particular solution of, 331, 348–352

Nonlinear damping, 218–219, 410, 416
Nonlinear ordinary differential equation:

definition of, 
solvable by first-order methods, 18
Taylor series solution of, 187

Nonlinear oscillations of a sliding 
bead, 411

Nonlinear pendulum, 220, 410
Nonlinear spring:

definition of, 218
hard, 218–219 
soft, 218–219

Nonlinear system of differential equations,
106, 400

Nonsingular matrix, APP-7
Norm of a function:

definition of, 421
square, 421

Normal form:
of a linear system, 326
of an ordinary differential equation, 3
of a system of first-order

equations, 326
Normal modes, 470
Normalization of a function, 422
Notation for derivatives, 3
n-parameter family of solutions, 7 
nth-order differential operator, 120 
nth-order initial-value problem, 13
Nullcline, 44
Numerical methods:

Adams-Bashforth-Moulton 
method, 373 

adaptive methods, 371
applied to higher-order equations, 188,

375–376 
applied to systems, 375–378
continuing, 373
Crank-Nicholson, 543 
errors in, 364
Euler’s method, 76–77, 363, 379 
explicit finite di ference, 541, 548
finite di ference method, 381, 541, 

543, 546
implicit finite di ference, 543 
improved Euler’s method, 

365–366 
multistep, 373
predictor-corrector method, 

366, 373
RK4 method, 78, 369
RKF45 method, 371
shooting method, 383 
single-step, 373
stability of, 374, 542, 543, 548 
starting, 373
truncation errors in, 364, 370

Numerical solution curve, 79
Numerical solver, 78–79, 187–188
Nutrient flow through a membrane, 12

O
Odd function:

definition of, 431
properties of, 432

ODE, 2
Ohms ( ), 25
Ohm’s Law, 89
One-dimensional heat equation:

definition of, 460
derivation of, 461–462

One-dimensional phase portrait, 39
One-dimensional wave equation:

definition of, 460
derivation of, 461

One-parameter family of solutions, 7
Order, exponential, 277
Order of a differential equation, 3
Order of a Runge-Kutta method, 368
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Ordinary differential equation, 2
Ordinary point of a linear second-order

differential equation:
definition of, 239
solution about, 240

Orthogonal functions, definition of, 42
Orthogonal series expansion, 423–424
Orthogonal set of functions, 421
Orthogonal trajectories, 114–115
Orthogonality with respect to a weight

function, 424
Orthonormal set of functions, 420
Oscillating chain, 504
Output, 61, 127, 169, 193
Overdamped series circuit, 203
Overdamped spring/mass system, 198
Overtones, 471

P
Parabolic linear second-order PDE, 458
Parametric form of Bessel equation:

of order n, 444
of order n, 259–260
in self-adjoint form, 444

Parametric form of modified Besse
equation of order v, 260

Partial differential equation:
classification of linear second

order, 458 
definition of, 
homogeneous linear second order, 456 
linear second order, 456
nonhomogeneous linear second order,

456, 478–480 
separable, 456
solution of, 456
superposition principle for

homogeneous linear, 458
Partial fractions, 283
Partial integral, 524
Particular integral, 124
Particular solution:

definition of, 
of a linear differential equation, 124
of a system of linear differential

equations, 331, 345
Path, 387
PDE, 2, 456
Pendulum:

ballistic, 226 
double, 318
free damped, 225, 416 
linear, 220
nonlinear, 220, 225, 410 
period of, 228
physical, 220 
rotating, 418 
simple, 220
spring-coupled, 322–323 
of varying length, 269

Pendulum motion on the Moon, 227

Percentage relative error, 78
Period of a nonlinear pendulum, 415
Period of simple harmonic motion, 194
Periodic boundary conditions, 217, 443
Periodic boundary-value problem, 443
Periodic driving force, 436
Periodic extension of a function, 429
Periodic function, fundamental period 

of, 425
Periodic function, Laplace transform 

of, 307
Periodic solution of plane autonomous

system, 388
Phase angle, 195
Phase line, 39
Phase plane, 327, 335, 393
Phase-plane method, 406–407
Phase portrait(s):

for first-order equations, 3
for systems of two linear first-orde

differential equations, 335–336, 393
Physical pendulum, 220
Piecewise-continuous functions, 

277, 428
Pin supported ends of a beam, 211
Plane autonomous system, 387
Plucked string, 470, 473
Points of inflection, 4
Poisson’s partial differential equation, 

483, 540
Polar coordinates, 494
Polynomial operator, 120
Population growth, 21
Population models:

birth and death, 93
doomsday, 103 
extinction, 103 
fluctuating, 9
harvesting, 45, 93, 98, 100 
immigration, 98, 103 
logistic, 45, 95–97, 100
Malthusian, 21–22 
restocking, 98

Potassium-argon dating method, 115
Potassium-40 decay, 115
Power series:

absolute convergence of, 232
arithmetic of, 234 
center, 232 
convergence of, 232 
defines a function, 233
definition of, 232
differentiation of, 233 
divergence of, 232
identity property of, 233 
integration of, 233
interval of convergence, 232
Maclaurin, 234
radius of convergence, 232 
ratio test for, 233
represents a continuous function, 233 
represents an analytic function, 233 

review of, 232
solutions of differential equations, 236,

240, 241
Taylor, 234

Power series solutions:
existence of, 240 
method of finding, 241
solution curves of, 245–246

Predator-prey interaction, 412
Predator-prey model, 108, 412–413
Predictor-corrector method, 366, 373
Prime notation, 3
Projectile motion, 184
Probability integral, 511
Proportional quantities, 22
Pure resonance, 202
Pursuit curve, 225

Q
Qualitative analysis:

of a first-order di ferential equation,
36–42, 403

of a second-order differential equation,
386–387, 410 

of systems of differential equations,
392, 400, 410

Quasi frequency, 200
Quasi period, 200

R
Radial symmetry, 499
Radial vibrations, 499
Radioactive decay, 22, 84–85, 106, 115
Radioactive decay series, 62, 106
Radius of convergence of a power 

series, 232
Radium decay, 85
Radon, 85
Raindrop, 33, 105
Raleigh’s differential equation, 408
Rate function, 36
Ratio test, 232
Rational roots of a polynomial equation, 136
RC-series circuit, differential equation 

of, 30, 89
Reactance, 204
Reactions, chemical, 23, 98
Rectangular pulse, 299
Rectified sine wave, 29
Recurrence relation, 242
Recurrence relation, differential, 262–263
Reduced row-echelon form of a matrix,

APP-11
Reduction of order, 129–131
Reduction to separation of variables, 73
Reflecting surface, 3
Regular singular point, 248
Regular Sturm-Liouville problem:

definition of, 441
properties of, 441
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Regression line, 103
Relative error, 78
Relative growth rate, 95
Repeller, 42, 366
Resistance:

air, 26, 30, 45, 92–93 
electrical, 25, 88–89, 203–204

Resonance, pure, 202
Resonance curve, 209
Resonance frequency, 209
Response:

impulse, 314
as a solution of a DE, 61, 125, 169, 

193, 203 
of a system, 28, 88, 387
zero-input, 288 
zero-state, 288

Rest point, 399
Rest solution, 170
Restocking of a fisher , model of, 98
Riccati’s differential equation, 75
Right-hand limit, 428
RK4 method, 78, 369
RKF45 method, 371
Robin condition, 463
Robins, Benjamin, 226
Rocket motion, 31, 222, 225
Rodrigues’ formula, 267
Rotating fluid, shape of, 32–3
Rotating pendulum, 418
Rotating rod and bead, 229–230
Rotating string, 214, 216
Round-off error, 363–364
Row-echelon form, APP-10
Row operations:

elementary, APP-10 
symbols for, APP-11

Runge-Kutta-Fehlberg method, 371
Runge-Kutta methods:

first-orde , 368 
fourth-order, 78, 369 
second-order, 368
for systems, 376, 378 
truncation errors for, 370

S
Saddle point, 395
Sawtooth function, 310
Schwartz, Laurent, 314
Second–order boundary-value problem,

380–381, 383
Second-order chemical reaction, 23,

98, 101
Second-order homogeneous linear 

system, 345
Second-order initial-value problem, 14,

375, 380, 383
Second-order ordinary differential

equation as a system, 188, 376
Second-order partial differential 

equation, 456

Second-order Runge-Kutta 
method, 368

Second translation theorem:
alternative form of, 295 
form of, 294
inverse form of, 295

Self-adjoint form of a second-order
differential equation, 443

Semi-stable critical point, 42
Separated boundary conditions, 411
Separation constant, 457
Separation of variables, method of:

for first-order ordinary di ferential
equations, 46–47

for linear second-order partial
differential equations, 456

Sequence of partial sums, 439
Series:
Fourier, 427, 433
Fourier-Bessel, 449
Fourier-Legendre, 451, 452, 453 
power, 232
review of, 232–234
solutions of ordinary differential

equations, 236, 240, 249
Series circuits, differential equations of,

25, 30, 88–89, 203, 409
Shifting the summation index, 235
Shifting theorems for Laplace transforms,

290, 294
Shooting method, 383
Shroud of Turin, dating of, 90
Sifting property, 314
Signum function, 230
Simple harmonic electrical vibrations, 203
Simple harmonic motion of a spring/mass

system, 194
Simple pendulum, 220
Simply supported ends of a beam, 211, 472
Sine integral function, 63, 525
Sine series:

in one variable, 433 
in two variables, 490

Single-step numerical method:
advantages of, 374–375 
definition of, 373
disadvantages of, 374–375

Singular matrix, APP-7
Singular point:

at , 239
irregular, 248
of a linear first-order di ferential

equation, 57
of a linear second-order differential

equation, 239
regular, 248

Singular solution, 8
Singular Sturm-Liouville problem, 443
Sink, 399
SIR model, 112
Sky diving, 30, 93
Sliding bead, 400–401, 411

�

Sliding box on an inclined plane, 94–95
Sliding friction, 94–95, 230
Slope field, 3
Slope function, 36
Snowplow problem, 33
Soft spring, 219
Solar collector, 102
Solution curve, 6
Solution of an ordinary differential

equation:
about an ordinary point, 238 
about a singular point, 247 
constant, 11, 38
defined by an integral, 50
definition of, 5
equilibrium, 38
explicit, 6
general, 10, 57, 123, 125 
graph of, 6
implicit, 6 
integral, 7
interval of definition for, 5 
n-parameter family of, 7 
number of, 7
particular, 7,
piecewise defined, 8 
singular, 8
trivial, 6

Solution of a partial differential 
equation, 456

Solution of a system of ordinary
differential equations:

defined, 9, 180, 38
equilibrium, 388 
general, 330, 331 
particular, 331 
periodic, 388

Solution vector, 327
Source, 399
Sparse matrix, 538
Special functions, 59, 61, 257
Specific growth rate, 9
Spiral points, 397
Spherical Bessel functions:

of the first kind, 26
of the second kind, 264

Spread of a communicable disease, 23, 
97, 112

Spring constant, 193
Spring/mass system:

dashpot damping of a, 197
Hooke’s law and, 193
linear models for, 193 
nonlinear models for, 218–219

Springs, coupled, 229, 315–316, 319
Square matrix, APP-3
Square norm of a function, 421, 

447–448, 450
Square wave, 310
Stability of a plane autonomous system:

locally stable, 392 
unstable, 392
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Stability criteria:
for a first-order autonomous di ferential

equation, 403 
for a plane autonomous system, 

399, 404
Stable critical point, 42, 401
Stable node, 394
Stable numerical method, 374, 542, 548
Stable spiral point, 397
Staircase function, 299
Standard form of a linear differential

equation:
first order, 54, 157
second order, 130, 158, 160, 238, 239

Standing waves, 470, 501
Starting methods, 373
State of a system, 21, 28, 127, 387
State variables, 28, 127
Stationary point, 38, 388
Steady-state current, 89, 204
Steady-state solution, 204, 480
Steady state temperature distribution, 

462, 491
Steady state term, 89, 201
Stefan’s law of radiation, 114
Step size, 76
Streamlines, 70
Sturm-Liouville problem: 

definition of, 441
homogeneous, 441 
nonhomogeneous, 441 
periodic, 443 
properties of, 441 
regular, 441
singular, 443

Subscript notation, 3
Substitutions in an ordinary differential

equation, 71, 186
Substitutions in a partial differential

equation, 472, 479–480
Sum of two matrices, APP-4
Summation index, shifting of, 235
Superposition principle:

for a Dirichlet problem, 476
for homogeneous linear differential

equations, 120
for homogeneous linear partial

differential equations, 458 
for homogeneous linear systems, 328
for nonhomogeneous linear differential

equations, 126
Suspended cables, 26
Suspension bridge, 26, 53
Symmetric matrix, 339
Synthetic division, 136
Systematic elimination, 180
Systems, autonomous, 386
Systems of linear differential equations,

methods for solving:
by Laplace transforms, 315
by matrices, 333, 348
by systematic elimination, 180

Systems of linear first-order di ferential
equations: 

complementary function for, 331, 348 
definition of, 9, 106, 32
existence of a unique solution for, 328
fundamental set of solutions for, 330 
general solution of, 330, 331, 334 
homogeneous, 326
initial-value problem for, 328 
matrix form of, 326–327 
nonhomogeneous, 326
normal form of, 326
particular solution for, 331, 348, 352
solution of, 327, 331, 33–334, 338, 342,

344, 348–352 
superposition principle for, 328
undetermined coefficients for, 348–349 
variation of parameters for, 351–352
Wronskian for, 329–330

Systems of ordinary differential equations,
9, 106, 180, 187, 315, 325, 385

Systems reduced to first-order systems, 37

T
Table of Laplace transforms, APP-21
Tangent lines, use of, 76–77
Taylor polynomial, 188, 369
Taylor series, use of, 187
Telegraph equation, 465
Telephone wires, shape of, 217
Temperature:

in an annular plate, 497–498
in a circular cylinder, 502, 504, 509 
in a circular plate, 494–495, 504, 508 
in a circular ring, 217
in a hollow sphere, 507
in a quarter-circular plate, 496 
in a semiannular plate, 498
in a semicircular plate, 496 
in a sphere, 217, 508
in a wedge-shaped plate, 497, 508

Terminal velocity of a falling body, 45, 92,
93, 102

Thermal diffusivity, 462
Theory of distributions, 314
Three-dimensional Laplace’s equation, 491
Three-dimensional Laplacian:

in cylindrical coordinates, 502
in rectangular coordinates, 462 
in spherical coordinates, 506

Three-term recurrence relation, 244
Time of death, 91
Torricelli’s law, 24
Trace of a matrix, 393
Tractrix, 32, 113
Trajectories:

orthogonal, 114
parametric equations of, 327, 335, 387

Transfer function, 288
Transform of a derivative, 284
Transform pairs, 526

Transient solution, 204, 480
Transient term, 59, 89, 201, 204
Translation property of an autonomous

DE, 42
Translation theorems for Laplace

transform:
first, 29
second, 294, 295
inverse forms of, 290, 295

Transpose of a matrix, APP-7
Transverse vibrations, 462, 499
Traveling waves, 472
Triangular wave, 310
Tridiagonal matrix, 543
Trigonometric series, 426
Trivial solution, 6
Truncation error:

for Euler’s method, 364 
global, 364
for Improved Euler’s method, 364–365 
local, 364
for RK4 method, 370

Tsunami, model for, 102
Twisted shaft, 485
Two-dimensional heat equation:

in polar coordinates, 499
in rectangular coordinates, 488

Two-dimensional Laplace’s equation: 
in cylindrical coordinates, 502 
in polar coordinates, 494
in rectangular coordinates, 460, 

462, 473
Two-dimensional Laplacian:

in cylindrical coordinates, 502 
in polar coordinates, 494
in rectangular coordinates, 462

Two-dimensional phase portrait, 335–336,
393, 407

Two-dimensional wave equation:
in polar coordinates, 499
in rectangular coordinates, 489

U
Undamped spring/mass system, 193–194
Underdamped series circuit, 203
Underdamped spring/mass system, 198
Undetermined coefficients for linear DEs:

annihilator approach, 149–155 
superposition approach, 139–146

Undetermined coefficients for linea
systems, 348

Uniqueness theorems, 16, 117, 328
Unit impulse, 312
Unit step function:

definition of, 293
graph of, 293
Laplace transform of, 294

Universal law of gravitation, 31
Unstable critical point, 42
Unstable numerical method, 374
Unsymmetrical vibrations of a spring, 219
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V
Variable mass, 222
Variable spring constant, 197
Variables, separable, 46
Variation of parameters:

for linear first-order di ferential
equations, 157

for linear higher-order differential
equations, 158–159, 161

for systems of linear first-orde
differential equations, 348, 351–352

Vector field, 38
Vectors, definition of, APP-3
Vectors, as solutions of systems of linear

differential equations, 327
Velocity of a falling raindrop, 105
Verhulst, P. F., 96
Vibrating beam, 472, 488
Vibrating elastic bar, 471
Vibrating twisted beam, 485
Vibrations, spring/mass systems, 193, 

197, 200

Virga, 33
Viscous damping, 26
Voltage drops, 25
Volterra, Vito, 412
Volterra integral equation, 305
Volterra’s principle, 415
Vortex point, 399

W
Water clock, 105
Wave equation:

difference equation replacement of,
545–546 

derivation of, 462
one dimensional, 460, 468, 545
in polar coordinates, 499 
two dimensional, 489, 499

Weight, 26
Weight function:

of a linear system, 314 
orthogonality with respect to, 424

Weighted average, 368
Wire hanging under its own weight, 221
Wronskian determinant:

for a set of functions, 122
for a set of solutions of a homogeneous

linear differential equation, 122 
for a set of solution vectors of a

homogeneous linear system, 329–330

Y
Young’s modulus of elasticity, 210

Z
Zero-input response, 288
Zero rna trix, APP-6
Zero-state response, 288
Zeros of Bessel functions, 262
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TABLE OF LAPLACE TRANSFORMS

f (t)

1. 1

2. t

3. tn n a positive integer

4. t�1/2

5. t1/2

6. ta

7. sin kt

8. cos kt

9. sin2 kt

10. cos2 kt

11. eat

12. sinh kt

13. cosh kt

14. sinh2kt

15. cosh2kt

16. teat

17. tn eat n a positive integer

18. eat sin kt

19. eat cos kt
s � a

(s � a)2 � k2

k
(s � a)2 � k2

n!
(s � a)n�1 ,

1
(s � a)2

s2 � 2k2

s(s2 � 4k2)

2k2

s(s2 � 4k2)

s
s2 � k2

k
s2 � k2

1
s � a

s2 � 2k2

s(s2 � 4k2)

2k2

s(s2 � 4k2)

s
s2 � k2

k
s2 � k2

�(� � 1)
s��1 , a � �1

1�

2s3/2

B

�

s

n!
sn�1 ,

1
s2

1
s

�{ f (t)} � F(s) f (t)

20. eat sinh kt

21. eat cosh kt

22. t sin kt

23. t cos kt

24. sin kt � kt cos kt

25. sin kt � kt cos kt

26. t sinh kt

27. t cosh kt

28.

29.

30. 1 � cos kt

31. kt � sin kt

32.

33.

34. sin kt sinh kt

35. sin kt cosh kt

36. cos kt sinh kt

37. cos kt cosh kt

38. J0(kt)
1

1s2 � k2

s3

s4 � 4k4

k(s2 � 2k2)
s4 � 4k4

k(s2 � 2k2)
s4 � 4k4

2k2s
s4 � 4k4

s
(s2 � a2)(s2 � b2)

cos bt � cos at
a2 � b2

1
(s2 � a2)(s2 � b2)

a sin bt � b sin at
ab (a2 � b2)

k3

s2(s2 � k2)

k2

s(s2 � k2)

s
(s � a)(s � b)

aeat � bebt

a � b

1
(s � a)(s � b)

eat � ebt

a � b

s2 � k2

(s2 � k2)2

2ks
(s2 � k2)2

2k3

(s2 � k2)2

2ks2

(s2 � k2)2

s2 � k2

(s2 � k2)2

2ks
(s2 � k2)2

s � a
(s � a)2 � k2

k
(s � a)2 � k2

�{ f (t)} � F(s)
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f (t)

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50. eat f (t) F(s � a)

51.

52. e�asF(s)

53. e�as

54. f (n)(t)

55. tn f (t)

56. F(s)G(s)

57. d(t) 1

58. d(t � t0) e�st0

�t

0
f (	)g(t � 	) d	

(�1)n 
dn

dsn F(s)

snF(s) � s(n�1) f (0) � 
 
 
 � f (n�1)(0)

�{ g(t � a)}g(t)�(t � a)

f (t � a)�(t � a)

e�as

s
�(t � a)

� erfc � a
2 1t�

be�a1s

s(1s � b)
�eabeb2 terfc �b 1t �

a
2 1t�

e�a1s

1s(1s � b)
eabeb2t erfc �b1t �

a
2 1t�

e�a1s

s1s
2
B

t
�

 e�a2/4t � a erfc � a
21t�

e�a1s

s
erfc � a

21t�

e�a1sa
21�t3 e

�a2/4t

e�a 1s

1s
1

1�t
 e�a2 /4t

1
2
 arctan 

a � b
s

�
1
2
 arctan 

a � b
s

sin at cos bt
t

arctan �a
s�

sin at
t

ln 
s2 � k2

s2
2(1 � cosh kt)

t

ln s
2 � k2

s2
2(1 � cos kt)

t

ln 
s � a
s � b

ebt � eat

t

�{ f (t)} � F(s)

27069_end05-07_ptg01_hires.qxd  1/30/12  5:10 PM  Page 7

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.


	Cover

	Review of Differentiation��������������������������������
	Brief Table of Integrals�������������������������������
	Title Page

	Copyright

	Contents���������������
	Preface��������������
	Projects
	Ch 1: Introduction to Differential Equations���������������������������������������������������
	1.1 Definitions and Terminology��������������������������������������
	Exercises 1.1
	1.2 Initial-Value Problems���������������������������������
	Exercises 1.2
	1.3 Differential Equations as Mathematical Models��������������������������������������������������������
	Exercises 1.3
	Chapter 1 in Review��������������������������

	Ch 2: First-Order Differential Equations�����������������������������������������������
	2.1 Solution Curves without a Solution���������������������������������������������
	Exercises 2.1
	2.2 Separable Equations������������������������������
	Exercises 2.2
	2.3 Linear Equations���������������������������
	Exercises 2.3
	2.4 Exact Equations��������������������������
	Exercises 2.4
	2.5 Solutions by Substitutions�������������������������������������
	Exercises 2.5
	2.6 A Numerical Method�����������������������������
	Exercises 2.6
	Chapter 2 in Review��������������������������

	Ch 3: Modeling with First-Order Differential Equations�������������������������������������������������������������
	3.1 Linear Models������������������������
	Exercises 3.1
	3.2 Nonlinear Models���������������������������
	Exercises 3.2
	3.3 Modeling with Systems of First-Order DEs���������������������������������������������������
	Exercises 3.3
	Chapter 3 in Review��������������������������

	Ch 4: Higher-Order Differential Equations������������������������������������������������
	4.1 Preliminary Theory-Linear Equations����������������������������������������������
	Exercises 4.1
	4.2 Reduction of Order�����������������������������
	Exercises 4.2
	4.3 Homogeneous Linear Equations with Constant Coefficients������������������������������������������������������������������
	Exercises 4.3
	4.4 Undetermined Coefficients-Superposition Approach�����������������������������������������������������������
	Exercises 4.4
	4.5 Undetermined Coefficients-Annihilator Approach���������������������������������������������������������
	Exercises 4.5
	4.6 Variation of Parameters����������������������������������
	Exercises 4.6
	4.7 Cauchy-Euler Equation��������������������������������
	Exercises 4.7
	4.8 Green's Functions����������������������������
	Exercises 4.8
	4.9 Solving Systems of Linear DEs by Elimination�������������������������������������������������������
	Exercises 4.9
	4.10 Nonlinear Differential Equations��������������������������������������������
	Exercises 4.10
	Chapter 4 in Review��������������������������

	Ch 5: Modeling with Higher-Order Differential Equations��������������������������������������������������������������
	5.1 Linear Models: Initial-Value Problems������������������������������������������������
	Exercises 5.1
	5.2 Linear Models: Boundary-Value Problems�������������������������������������������������
	Exercises 5.2
	5.3 Nonlinear Models���������������������������
	Exercises 5.3
	Chapter 5 in Review��������������������������

	Ch 6: Series Solutions of Linear Equations�������������������������������������������������
	6.1 Review of Power Series���������������������������������
	Exercises 6.1
	6.2 Solutions about Ordinary Points������������������������������������������
	Exercises 6.2
	6.3 Solutions about Singular Points������������������������������������������
	Exercises 6.3
	6.4 Special Functions����������������������������
	Exercises 6.4
	Chapter 6 in Review��������������������������

	Ch 7: The Laplace Transform����������������������������������
	7.1 Definition of the Laplace Transform����������������������������������������������
	Exercises 7.1
	7.2 Inverse Transforms and Transforms of Derivatives�����������������������������������������������������������
	Exercises 7.2
	7.3 Operational Properties I�����������������������������������
	Exercises 7.3
	7.4 Operational Properties II������������������������������������
	Exercises 7.4
	7.5 The Dirac Delta Function�����������������������������������
	Exercises 7.5
	7.6 Systems of Linear Differential Equations���������������������������������������������������
	Exercises 7.6
	Chapter 7 in Review��������������������������

	Ch 8: Systems of Linear First-Order Differential Equations�����������������������������������������������������������������
	8.1 Preliminary Theory-Linear Systems��������������������������������������������
	Exercises 8.1
	8.2 Homogeneous Linear Systems�������������������������������������
	Exercises 8.2
	8.3 Nonhomogeneous Linear Systems����������������������������������������
	Exercises 8.3
	8.4 Matrix Exponential�����������������������������
	Exercises 8.4
	Chapter 8 in Review��������������������������

	Ch 9: Numerical Solutions of Ordinary Differential Equations�������������������������������������������������������������������
	9.1 Euler Methods and Error Analysis�������������������������������������������
	Exercises 9.1
	9.2 Runge-Kutta Methods������������������������������
	Exercises 9.2
	9.3 Multistep Methods����������������������������
	Exercises 9.3
	9.4 Higher-Order Equations and Systems���������������������������������������������
	Exercises 9.4
	9.5 Second-Order Boundary-Value Problems�����������������������������������������������
	Exercises 9.5
	Chapter 9 in Review��������������������������

	Ch 10: Plane Autonomous Systems��������������������������������������
	10.1 Autonomous Systems������������������������������
	Exercises 10.1
	10.2 Stability of Linear Systems���������������������������������������
	Exercises 10.2
	10.3 Linearization and Local Stability���������������������������������������������
	Exercises 10.3
	10.4 Autonomous Systems as Mathematical Models�����������������������������������������������������
	Exercises 10.4
	Chapter 10 in Review���������������������������

	Ch 11: Fourier Series����������������������������
	11.1 Orthogonal Functions��������������������������������
	Exercises 11.1
	11.2 Fourier Series��������������������������
	Exercises 11.2
	11.3 Fourier Cosine and Sine Series������������������������������������������
	Exercises 11.3
	11.4 Sturm-Liouville Problem�����������������������������������
	Exercises 11.4
	11.5 Bessel and Legendre Series��������������������������������������
	Exercises 11.5
	Chapter 11 in Review���������������������������

	Ch 12: Boundary-Value Problems in Rectangular Coordinates����������������������������������������������������������������
	12.1 Separable Partial Differential Equations����������������������������������������������������
	Exercises 12.1
	12.2 Classical PDEs and Boundary-Value Problems������������������������������������������������������
	Exercises 12.2
	12.3 Heat Equation�������������������������
	Exercises 12.3
	12.4 Wave Equation�������������������������
	Exercises 12.4
	12.5 Laplace's Equation������������������������������
	Exercises 12.5
	12.6 Nonhomogeneous Boundary-Value Problems��������������������������������������������������
	Exercises 12.6
	12.7 Orthogonal Series Expansions����������������������������������������
	Exercises 12.7
	12.8 Higher-Dimensional Problems���������������������������������������
	Exercises 12.8
	Chapter 12 in Review���������������������������

	Ch 13: Boundary-Value Problems in Other Coordinate Systems�����������������������������������������������������������������
	13.1 Polar Coordinates�����������������������������
	Exercises 13.1
	13.2 Polar and Cylindrical Coordinates���������������������������������������������
	Exercises 13.2
	13.3 Spherical Coordinates���������������������������������
	Exercises 13.3
	Chapter 13 in Review���������������������������

	Ch 14: Integral Transforms���������������������������������
	14.1 Error Function��������������������������
	Exercises 14.1
	14.2 Laplace Transform�����������������������������
	Exercises 14.2
	14.3 Fourier Integral����������������������������
	Exercises 14.3
	14.4 Fourier Transforms������������������������������
	Exercises 14.4
	Chapter 14 in Review���������������������������

	Ch 15: Numerical Solutions of Partial Differential Equations�������������������������������������������������������������������
	15.1 Laplace's Equation������������������������������
	Exercises 15.1
	15.2 Heat Equation�������������������������
	Exercises 15.2
	15.3 Wave Equation�������������������������
	Exercises 15.3
	Chapter 15 in Review���������������������������

	Appendixes
	Appendix I: Gamma Function
	Appendix II: Matrices
	Appendix III: Laplace Transforms

	Answers for Selected Odd-Numbered Problems�������������������������������������������������
	Index������������



