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Note: Some techniques of integration, such as integration by parts and partial fractions, are
reviewed in the Student Resource Manual that accompanies this text.
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Preface

TO THE STUDENT

Authors of books live with the hope that someone actually reads them. Contrary to
what you might believe, almost everything in a typical college-level mathematics
text is written for you, and not the instructor. True, the topics covered in the text are
chosen to appeal to instructors because they make the decision on whether to use it
in their classes, but everything written in it is aimed directly at you, the student. So
we want to encourage you—no, actually we want to tell you—to read this textbook!
But do not read this text like you would a novel; you should not read it fast and you
should not skip anything. Think of it as a workbook. By this we mean that mathemat-
ics should always be read with pencil and paper at the ready because, most likely, you
will have to work your way through the examples and the discussion. Before attempt-
ing any of the exercises, work a// the examples in a section; the examples are con-
structed to illustrate what we consider the most important aspects of the section, and
therefore, reflect the procedures necessary to work most of the problems in the exer-
cise sets. We tell our students when reading an example, copy it down on a piece of
paper, and do not look at the solution in the book. Try working it, then compare your
results against the solution given, and, if necessary resolve, any differences. We have
tried to include most of the important steps in each example, but if something is not
clear you should always try—and here is where the pencil and paper come in again—
to fill in the details or missing steps. This may not be easy, but that is part of the learn-
ing process. The accumulation of facts followed by the slow assimilation of under-
standing simply cannot be achieved without a struggle.

Specifically for you, a Student Resource Manual (SRM) is available as an op-
tional supplement. In addition to containing solutions of selected problems from the
exercises sets, the SRM contains hints for solving problems, extra examples, and a re-
view of those areas of algebra and calculus that we feel are particularly important to
the successful study of differential equations. Bear in mind you do not have to pur-
chase the SRM; by following my pointers given at the beginning of most sections, you
can review the appropriate mathematics from your old precalculus or calculus texts.

In conclusion, we wish you good luck and success. We hope you enjoy the text
and the course you are about to embark on—as undergraduate math majors it was
one of our favorites because we liked mathematics that connected with the physical
world. If you have any comments, or if you find any errors as you read/work your
way through the text, or if you come up with a good idea for improving either it or
the SRM, please feel free to contact us through our editor at Cengage Learning:

molly.taylor@cengage.com

TO THE INSTRUCTOR

In case you are examining this book for the first time, Differential Equations with
Boundary-Value Problems, Eighth Edition can be used for either a one-semester course,
or a two-semester course that covers ordinary and partial differential equations. The
shorter version of the text, 4 First Course in Differential Equations with Modeling
Applications, Tenth Edition, is intended for either a one-semester or a one-quarter course
in ordinary differential equations. This book ends with Chapter 9. For a one semester
course, we assume that the students have successfully completed at least two semesters
of calculus. Since you are reading this, undoubtedly you have already examined the

Xi
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PREFACE

table of contents for the topics that are covered. You will not find a “suggested syl-
labus” in this preface; we will not pretend to be so wise as to tell other teachers what to
teach. We feel that there is plenty of material here to pick from and to form a course to
your liking. The textbook strikes a reasonable balance between the analytical, qualita-
tive, and quantitative approaches to the study of differential equations. As far as our
“underlying philosophy” it is this: An undergraduate textbook should be written with
the student’s understanding kept firmly in mind, which means to me that the material
should be presented in a straightforward, readable, and helpful manner, while keeping
the level of theory consistent with the notion of a “first course.

For those who are familiar with the previous editions, we would like to mention
a few of the improvements made in this edition.

» Eight new projects appear at the beginning of the book. Each project includes
a related problem set, and a correlation of the project material with a chapter
in the text.

* Many exercise sets have been updated by the addition of new problems to
better test and challenge the students. In like manner, some exercise sets have
been improved by sending some problems into retirement.

* Additional examples and figures have been added to many sections

* Several instructors took the time to e-mail us expressing their concerns
about our approach to linear first-order differential equations. In response,
Section 2.3, Linear Equations, has been rewritten with the intent to simplify
the discussion.

» This edition contains a new section on Green’s functions in Chapter 4 for those
who have extra time in their course to consider this elegant application of
variation of parameters in the solution of initial-value and boundary-value prob-
lems. Section 4.8 is optional and its content does not impact any other section.

e Section 5.1 now includes a discussion on how to use both trigonometric
forms

y = Asin(owt + ¢) and y = Acos(wt — ¢)

in describing simple harmonic motion.

« At the request of users of the previous editions, a new section on the review
of power series has been added to Chapter 6. Moreover, much of this chapter
has been rewritten to improve clarity. In particular, the discussion of the
modified Bessel functions and the spherical Bessel functions in Section 6.4
has been greatly expanded.

* Several boundary-value problems involving modified Bessel functions have
been added to Exercises 13.2.

STUDENT RESOURCES

*  Student Resource Manual (SRM), prepared by Warren S. Wright and Carol D.
Wright (ISBN 9781133491927 accompanies 4 First Course in Differential
Equations with Modeling Applications, Tenth Edition, and ISBN 9781133491958
accompanies Differential Equations with Boundary-Value Problems, Eighth
Edition), provides important review material from algebra and calculus, the
solution of every third problem in each exercise set (with the exception of the
Discussion Problems and Computer Lab Assignments), relevant command
syntax for the computer algebra systems Mathematica and Maple, lists of
important concepts, as well as helpful hints on how to start certain problems.

INSTRUCTOR RESOURCES

o Instructor’s Solutions Manual (ISM) prepared by Warren S. Wright and
Carol D. Wright (ISBN 9781133602293) provides complete, worked-out
solutions for all problems in the text.

*  Solution Builder is an online instructor database that offers complete, worked-
out solutions for all exercises in the text, allowing you to create customized,
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PREFACE ° xiii

secure solutions printouts (in PDF format) matched exactly to the problems you
assign in class. Access is available via

www.cengage.com/solutionbuilder

e ExamView testing software allows instructors to quickly create, deliver, and
customize tests for class in print and online formats, and features automatic
grading. Included is a test bank with hundreds of questions customized di-
rectly to the text, with all questions also provided in PDF and Microsoft
Word formats for instructors who opt not to use the software component.

o Enhanced WebAssign is the most widely used homework system in higher
education. Available for this title, Enhanced WebAssign allows you to assign,
collect, grade, and record assignments via the Web. This proven homework
system includes links to textbook sections, video examples, and problem spe-
cific tutorials. Enhanced WebAssign is more than a homework system—it is
a complete learning system for students.
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Project for Section 3.1

Is AIDS an Invariably
Fatal Disease?

by Ivan Kramer

This essay will address and answer the question: Is the acquired immunodeficienc
syndrome (AIDS), which is the end stage of the human immunodeficiency virus
(HIV) infection, an invariably fatal disease?

Like other viruses, HI'V has no metabolism and cannot reproduce itself outside of
a living cell. The genetic information of the virus is contained in two identical strands
of RNA. To reproduce, HIV must use the reproductive apparatus of the cell it invades
and infects to produce exact copies of the viral RNA. Once it penetrates a cell, HIV
transcribes its RNA into DNA using an enzyme (reverse transcriptase) contained in the
virus. The double-stranded viral DNA migrates into the nucleus of the invaded cell and
is inserted into the cell’s genome with the aid of another viral enzyme (integrase). The
viral DNA and the invaded cell’s DNA are then integrated, and the cell is infected.
When the infected cell is stimulated to reproduce, the proviral DNA is transcribed into
viral DNA, and new viral particles are synthesized. Since anti-retroviral drugs like zi-
dovudine inhibit the HIV enzyme reverse transcriptase and stop proviral DNA chain
synthesis in the laboratory, these drugs, usually administered in combination, slow
down the progression to AIDS in those that are infected with HIV (hosts).

What makes HIV infection so dangerous is the fact that it fatally weakens a
host’s immune system by binding to the CD4 molecule on the surface of cells vital
for defense against disease, including T-helper cells and a subpopulation of natural
killer cells. T-helper cells (CD4 T-cells, or T4 cells) are arguably the most important
cells of the immune system since they organize the body’s defense against antigens.
Modeling suggests that HIV infection of natural killer cells makes it impossible for
even modern antiretroviral therapy to clear the virus [1]. In addition to the CD4
molecule, a virion needs at least one of a handful of co-receptor molecules (e.g., CCRS
and CXCR4) on the surface of the target cell in order to be able to bind to it, pene-
trate its membrane, and infect it. Indeed, about 1% of Caucasians lack coreceptor
molecules, and, therefore, are completely immune to becoming HIV infected.

Once infection is established, the disease enters the acute infection stage, lasting
a matter of weeks, followed by an incubation period, which can last two decades or
more! Although the T-helper cell density of a host changes quasi-statically during the
incubation period, literally billions of infected T4 cells and HIV particles are
destroyed—and replaced—daily. This is clearly a war of attrition, one in which the
immune system invariably loses.

A model analysis of the essential dynamics that occur during the incubation
period to invariably cause AIDS is as follows [1]. Because HIV rapidly mutates, its
ability to infect T4 cells on contact (its infectivity) eventually increases and the
rate T4 cells become infected increases. Thus, the immune system must increase the
destruction rate of infected T4 cells as well as the production rate of new, uninfected
ones to replace them. There comes a point, however, when the production rate of T4
cells reaches its maximum possible limit and any further increase in HIV’s infectiv-
ity must necessarily cause a drop in the T4 density leading to AIDS. Remarkably,
about 5% of hosts show no sign of immune system deterioration for the first ten years
of the infection; these hosts, called long-ferm nonprogressors, were originally

Thomas Deerinck, NCMIR/ Photo Researchers, Inc.
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thought to be possibly immune to developing AIDS, but modeling evidence suggests
that these hosts will also develop AIDS eventually [1].

In over 95% of hosts, the immune system gradually loses its long battle with the
virus. The T4 cell density in the peripheral blood of hosts begins to drop from normal
levels (between 250 over 2500 cells/mm?) towards zero, signaling the end of the
incubation period. The host reaches the AIDS stage of the infection either when one
of the more than twenty opportunistic infections characteristic of AIDS develops
(clinical AIDS) or when the T4 cell density falls below 250 cells/mm? (an additional
definition of AIDS promulgated by the CDC in 1987). The HIV infection has now
reached its potentially fatal stage.

In order to model survivability with AIDS, the time ¢ at which a host develops
AIDS will be denoted by # = 0. One possible survival model for a cohort of AIDS
patients postulates that AIDS is not a fatal condition for a fraction of the cohort,
denoted by S;, to be called the immortal fraction here. For the remaining part of the
cohort, the probability of dying per unit time at time ¢ will be assumed to be a con-
stant k, where, of course, k£ must be positive. Thus, the survival fraction S(¢) for this
model is a solution of the linear first-order di ferential equation

asw _

~7 = —HIS() - S M

Using the integrating-factor method discussed in Section 2.3, we see that the
solution of equation (1) for the survival fraction is given by

S(t) = S, + [1 — Sle*. @)

Instead of the parameter k appearing in (2), two new parameters can be defined for
a host for whom AIDS is fatal: the average survival time Tyyer given by Toyer = k'and
the survival half-life Ty /> given by T > = In(2)/k. The survival half-life, defined as the
time required for half of the cohort to die, is completely analogous to the half-life in
radioactive nuclear decay. See Problem 8 in Exercise 3.1. In terms of these parameters
the entire time-dependence in (2) can be written as

ekt = o= tToea = 2=H/Tp2 (3)

Using a least-squares program to fit the survival fraction function in (2) to the
actual survival data for the 159 Marylanders who developed AIDS in 1985 produces
an immortal fraction value of S; = 0.0665 and a survival half life value of 7}/, =
0.666 year, with the average survival time being T,y = 0.960 years [2]. See Figure 1.
Thus only about 10% of Marylanders who developed AIDS in 1985 survived three
years with this condition. The 1985 Maryland AIDS survival curve is virtually iden-
tical to those of 1983 and 1984. The first antiretroviral drug found to be effective
against HIV was zidovudine (formerly known as AZT). Since zidovudine was not
known to have an impact on the HIV infection before 1985 and was not common
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FIGURE 1 Survival fraction curve S(7).
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therapy before 1987, it is reasonable to conclude that the survival of the 1985
Maryland AIDS patients was not significantly influenced by zidovudine therap .

The small but nonzero value of the immortal fraction S; obtained from the
Maryland data is probably an artifact of the method that Maryland and other states
use to determine the survivability of their citizens. Residents with AIDS who
changed their name and then died or who died abroad would still be counted as alive
by the Maryland Department of Health and Mental Hygiene. Thus, the immortal
fraction value of S; = 0.0665 (6.65%) obtained from the Maryland data is clearly an
upper limit to its true value, which is probably zero.

Detailed data on the survivability of 1,415 zidovudine-treated HIV-infected
hosts whose T4 cell densities dropped below normal values were published by
Easterbrook et al. in 1993 [3]. As their T4 cell densities drop towards zero, these peo-
ple develop clinical AIDS and begin to die. The longest survivors of this disease live
to see their T4 densities fall below 10 cells/mm?>. If the time ¢ = 0 is redefined to
mean the moment the T4 cell density of a host falls below 10 cells/mm?, then the
survivability of such hosts was determined by Easterbrook to be 0.470, 0.316, and
0.178 at elapsed times of 1 year, 1.5 years, and 2 years, respectively.

A least-squares fit of the survival fraction function in (2) to the Easterbrook
data for HIV-infected hosts with T4 cell densities in the 0—10 cells/mm? range yields
a value of the immortal fraction of S; = 0 and a survival half-life of 77 , = 0.878 year
[4]; equivalently, the average survival time is Tyyer = 1.27 years. These results clearly
show that zidovudine is not effective in halting replication in all strains of HIV,
since those who receive this drug eventually die at nearly the same rate as those who
do not. In fact, the small difference of 2.5 months between the survival half-life
for 1993 hosts with T4 cell densities below 10 cells/mm?® on zidovudine therapy
(T1/, = 0.878 year) and that of 1985 infected Marylanders not taking zidovudine
(T1/2 = 0.666 year) may be entirely due to improved hospitalization and improve-
ments in the treatment of the opportunistic infections associated with AIDS over the
years. Thus, the initial ability of zidovudine to prolong survivability with HIV dis-
ease ultimately wears off, and the infection resumes its progression. Zidovudine
therapy has been estimated to extend the survivability of an HIV-infected patient by
perhaps 5 or 6 months on the average [4].

Finally, putting the above modeling results for both sets of data together, we fin
that the value of the immortal fraction falls somewhere within the range 0 < S; < 0.0665
and the average survival time falls within the range 0.960 years < Tyyer < 1.27 years.
Thus, the percentage of people for whom AIDS is not a fatal disease is less than 6.65%
and may be zero. These results agree with a 1989 study of hemophilia-associated AIDS
cases in the USA which found that the median length of survival after AIDS diagno-
sis was 11.7 months [5]. A more recent and comprehensive study of hemophiliacs
with clinical AIDS using the model in (2) found that the immortal fraction was S; =
0, and the mean survival times for those between 16 to 69 years of age varied be-
tween 3 to 30 months, depending on the AIDS-defining condition [6]. Although
bone marrow transplants using donor stem cells homozygous for CCRS delta32
deletion may lead to cures, to date clinical results consistently show that AIDS is
an invariably fatal disease.

Related Problems

1. Suppose the fraction of a cohort of AIDS patients that survives a time ¢ after
AIDS diagnosis is given by S(¢) = exp(—kf). Show that the average survival
time T,y after AIDS diagnosis for a member of this cohort is given by
Tover = 1/k.

2. The fraction of a cohort of AIDS patients that survives a time ¢ after AIDS
diagnosis is given by S(¢) = exp(—k?). Suppose the mean survival for a cohort
of hemophiliacs diagnosed with AIDS before 1986 was found to be Tyyer = 6.4
months. What fraction of the cohort survived 5 years after AIDS diagnosis?
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The fraction of a cohort of AIDS patients that survives a time ¢ after AIDS diag-

nosis is given by S(¢) = exp(—kt). The time it takes for S(¢) to reach the value of

0.5 is defined as the survival half-life and denoted by 77 .

(a) Show that S(¢) can be written in the form S(f) = 2777,

(b) Show that T, = Tyyer In(2), where Ty is the average survival time define
in problem (1). Thus, it is always true that 7, < Tyyer.

. About 10% of lung cancer patients are cured of the disease, i.¢., they survive

5 years after diagnosis with no evidence that the cancer has returned. Only 14%
of lung cancer patients survive 5 years after diagnosis. Assume that the fraction
of incurable lung cancer patients that survives a time ¢ after diagnosis is given
by exp(—kf). Find an expression for the fraction S(f) of lung cancer patients that
survive a time ¢ after being diagnosed with the disease. Be sure to determine the
values of all of the constants in your answer. What fraction of lung cancer patients
survives two years with the disease?
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Project for Section 3.2

The Allee Effect

by Jo Gascoigne

The top five most famous Belgians apparently include a cyclist, a punk singer, the in-
ventor of the saxophone, the creator of Tintin, and Audrey Hepburn. Pierre Francois
Verhulst is not on the list, although he should be. He had a fairly short life, dying at
the age of 45, but did manage to include some excitement—he was deported from
Rome for trying to persuade the Pope that the Papal States needed a written constitu-
tion. Perhaps the Pope knew better even then than to take lectures in good gover-
nance from a Belgian. . . .

Aside from this episode, Pierre Verhulst (1804—1849) was a mathematician who
concerned himself, among other things, with the dynamics of natural populations—
fish, rabbits, buttercups, bacteria, or whatever. (I am prejudiced in favour of fish, so
we will be thinking fish from now on.) Theorizing on the growth of natural popula-
tions had up to this point been relatively limited, although scientists had reached the
obvious conclusion that the growth rate of a population (dN/dt, where N(z) is the
population size at time 7) depended on (7) the birth rate b and (i7) the mortality rate m,
both of which would vary in direct proportion to the size of the population N:

dN

— = bN — mN. 1

7 (1
After combining b and m into one parameter r, called the intrinsic rate of natural
increase—or more usually by biologists without the time to get their tongues around
that, just ~—equation (1) becomes

dN
7 rN. 2)
This model of population growth has a problem, which should be clear to you—if
not, plot dN/dt for increasing values of M. It is a straightforward exponential growth
curve, suggesting that we will all eventually be drowning in fish. Clearly, something
eventually has to step in and slow down dN/dt. Pierre Verhulst’s insight was that this
something was the capacity of the environment, in other words,

How many fish can an ecosystem actually support?

He formulated a differential equation for the population N(#) that included both
r and the carrying capacity K:

dN N
—_— = —_ — > 0.
0l rN<1 ), r>0 3)

Equation (3) is called the logistic equation, and it forms to this day the basis of much
of the modern science of population dynamics. Hopefully, it is clear that the term
(1 — N/K), which is Verhulst’s contribution to equation (2), is (1 — N/K) = 1 when
N = 0, leading to exponential growth, and (1 — N/K) — 0 as N — K, hence it causes
the growth curve of N(7) to approach the horizontal asymptote N(f) = K. Thus the size
of the population cannot exceed the carrying capacity of the environment.

P-5

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



P-6

PROJECTS THE ALLEE EFFECT

The logistic equation (3) gives the overall growth rate of the population, but the
ecology is easier to conceptualize if we consider per capita growth rate—that is, the
growth rate of the population per the number of individuals in the population—some
measure of how “well” each individual in the population is doing. To get per capita
growth rate, we just divide each side of equation (3) by N:

1 dN ( N) 7
— = —|l1-—=]=r— =N
N dt K K

This second version of (3) immediately shows (or plot it) that this relationship is a
1d

straight line with a maximum value of Nt at N = 0 (assuming that negative popu-

lation sizes are not relevant) and dN/dt = 0 at N = K.

1 dN
Er, hang on a minute . . . “a maximum value of Ndr at N = 0?!” Each shark in

the population does best when there are . . . zero sharks? Here is clearly a flaw in the
logistic model. (Note that it is now a model—when it just presents a relationship be-
tween two variables dN/dt and N, it is just an equation. When we use this equation
to try and analyze how populations might work, it becomes a model.)

The assumption behind the logistic model is that as population size decreases, indi-
viduals do better (as measured by the per capita population growth rate). This assump-
tion to some extent underlies all our ideas about sustainable management of natural
resources—a fish population cannot be fished indefinitely unless we assume that when
a population is reduced in size, it has the ability to grow back to where it was before.

This assumption is more or less reasonable for populations, like many fish pop-
ulations subject to commercial fisheries, which are maintained at 50% or even 20%
of K. But for very depleted or endangered populations, the idea that individuals keep
doing better as the population gets smaller is a risky one. The Grand Banks popula-
tion of cod, which was fished down to 1% or perhaps even 0.1% of K, has been pro-
tected since the early 1990s, and has yet to show convincing signs of recovery.

Warder Clyde Allee (1885—1955) was an American ecologist at the University
of Chicago in the early 20th century, who experimented on goldfish, brittlestars, flou
beetles, and, in fact, almost anything unlucky enough to cross his path. Allee showed
that, in fact, individuals in a population can do worse when the population becomes
very small or very sparse.” There are numerous ecological reasons why this might
be—for example, they may not find a suitable mate or may need large groups to fin
food or express social behavior, or in the case of goldfish they may alter the water
chemistry in their favour. As a result of Allee’s work, a population where the per
capita growth rate declines at low population size is said to show an Allee effect. The
jury is still out on whether Grand Banks cod are suffering from an Allee effect, but
there are some possible mechanisms—females may not be able to find a mate, or a
mate of the right size, or maybe the adult cod used to eat the fish that eat the juvenile
cod. On the other hand, there is nothing that an adult cod likes more than a snack of
baby cod—they are not fish with very picky eating habits—so these arguments may
not stack up. For the moment we know very little except that there are still no cod.

Allee effects can be modelled in many ways. One of the simplest mathematical
models, a variation of the logistic equation, is:

dN N\(N
Z—rN(l _§><Z_1>' 4)

where 4 is called the Allee threshold. The value N (f) = A is the population size below
which the population growth rate becomes negative due to an Allee effect—situated at

“Population size and population density are mathematically interchangeable, assuming a fixed area i
which the population lives (although they may not necessarily be interchangeable for the individuals in
question).
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a value of N somewhere between N = 0 and N = K, that is, 0 < 4 < K, depending on
the species (but for most species a good bit closer to 0 than K, luckily).

Equation (4) is not as straightforward to solve for N(?) as (3), but we don’t need
to solve it to gain some insights into its dynamics. If you work through Problems 2
and 3, you will see that the consequences of equation (4) can be disastrous for endan-
gered populations.

Related Problems

1. (a) The logistic equation (3) can be solved explicitly for N(#) using the technique
of partial fractions. Do this, and plot N(?) as a function of  for 0 = ¢ = 10.
Appropriate values for r, K, and N(0) are » = 1, K = 1, N(0) = 0.01 (fish per
cubic metre of seawater, say). The graph of N(7) is called a sigmoid growth
curve.

(b) The value of r can tell us a lot about the ecology of a species—sardines,
where females mature in less than one year and have millions of eggs, have
a high r, while sharks, where females bear a few live young each year, have
a low r. Play with  and see how it affects the shape of the curve. Question:
If a marine protected area is put in place to stop overfishing, which species
will recover quickest—sardines or sharks?

2. Find the population equilibria for the model in (4). [Hint: The population is at
equilibrium when dN/dt = 0, that is, the population is neither growing nor
shrinking. You should find three values of N for which the population is at equi-
librium. ]

3. Population equilibria can be stable or unstable. If, when a population deviates a
bit from the equilibrium value (as populations inevitably do), it tends to return to
it, this is a stable equilibrium; if, however, when the population deviates from
the equilibrium it tends to diverge from it ever further, this is an unstable equi-
librium. Think of a ball in the pocket of a snooker table versus a ball balanced on
a snooker cue. Unstable equilibria are a feature of Allee effect models such as
(4). Use a phase portrait of the autonomous equation (4) to determine whether
the nonzero equilibria that you found in Problem 2 are stable or unstable. [Hint:
See Section 2.1 of the text.]

4. Discuss the consequences of the result above for a population N(7) fluctuatin
close to the Allee threshold 4.
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A gray wolf in the wild
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Wolf Population Dynamics
by C.J. Knickerbocker

Early in 1995, after much controversy, public debate, and a 70-year absence, gray
wolves were re introduced into Yellowstone National Park and Central Idaho. During
this 70-year absence, significant changes were recorded in the populations of other
predator and prey animals residing in the park. For instance, the elk and coyote pop-
ulations had risen in the absence of influence from the larger gray wolf. With the
reintroduction of the wolf in 1995, we anticipated changes in both the predator and
prey animal populations in the Yellowstone Park ecosystem as the success of the
wolf population is dependent upon how it influences and is influenced by the other
species in the ecosystem.

For this study, we will examine how the elk (prey) population has been influ
enced by the wolves (predator). Recent studies have shown that the elk population
has been negatively impacted by the reintroduction of the wolves. The elk population
fell from approximately 18,000 in 1995 to approximately 7,000 in 2009. This article
asks the question of whether the wolves could have such an effect and, if so, could
the elk population disappear?

Let’s begin with a more detailed look at the changes in the elk population inde-
pendent of the wolves. In the 10 years prior to the introduction of wolves, from 1985
to 1995, one study suggested that the elk population increased by 40% from 13,000
in 1985 to 18,000 in 1995. Using the simplest differential equation model for popu-
lation dynamics, we can determine the growth rate for elks (represented by the vari-
able 7) prior to the reintroduction of the wolves.

dE
= =B B0) =130, £(10) = 18.0 (M

In this equation, £(#) represents the elk population (in thousands) where ¢ is measured
in years since 1985. The solution, which is left as an exercise for the reader, finds the
combined birth/death growth rate r to be approximately 0.0325 yielding:

E(f) = 13.0 2032

In 1995, 21 wolves were initially released, and their numbers have risen. In
2007, biologists estimated the number of wolves to be approximately 171.

To study the interaction between the elk and wolf populations, let’s consider the
following predator-prey model for the interaction between the elk and wolf within
the Yellowstone ecosystem:

dE

= =0.0325E — 0.8EW

dt

dw

—5 = 06+ 0.05EW ©)
E(0) = 18.0, W(0) = 0.021

where E(?) is the elk population and /(%) is the wolf population. All populations are
measured in thousands of animals. The variable ¢ represents time measured in years
from 1995. So, from the initial conditions, we have 18,000 elk and 21 wolves in the
year 1995. The reader will notice that we estimated the growth rate for the elk to be
the same as that estimated above » = 0.0325.
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Before we attempt to solve the model (2), a qualitative analysis of the system
can yield a number of interesting properties of the solutions. The first equation
shows that the growth rate of the elk (dE/dr) is positively impacted by the size of
the herd (0.0325F). This can be interpreted as the probability of breeding in-
creases with the number of elk. On the other hand the nonlinear term (0.8 E£/¥) has
a negative impact on the growth rate of the elk since it measures the interaction
between predator and prey. The second equation dW/dt = —0.6W + 0.05EW
shows that the wolf population has a negative effect on its own growth which can
be interpreted as more wolves create more competition for food. But, the interac-
tion between the elk and wolves (0.05EW) has a positive impact since the wolves
are finding more food.

Since an analytical solution cannot be found to the initial-value problem (2), we
need to rely on technology to find approximate solutions. For example, below is a set
of instructions for finding a numerical solution of the initial-value problem using the
computer algebra system MAPLE.

el := diff(e(t),t)-0.0325*e(t) + 0.8 *e(t)*w(t)
e2 := diff(w(t),t)+0.6*w(t) - 0.05*e(t)*w(t)
sys := {el,e2}

ic := {e(0)=18.0,w(0)=0.021}

ivp := sys union ic

H:= dsolve(ivp,{e(t),w(t)},numeric)

The graphs in Figures 1 and 2 show the populations for both species between 1995
and 2009. As predicted by numerous studies, the reintroduction of wolves into
Yellowstone had led to a decline in the elk population. In this model, we see the popula-
tion decline from 18,000 in 1995 to approximately 7,000 in 2009. In contrast, the wolf
population rose from an initial count of 21 in 1995 to a high of approximately 180 in
2004.

20000 200
18000 180
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16000 160 //// N
_ 14000 = 140 \\\
o
2 12000 £ 120 N
2. 10000 & 100
2 2 /
& 8000 = 80
— o /
= 6000 Z 60
4000 40
2000 20
0 0
1995 1997 1999 2001 2003 2005 2007 2009 1995 1997 1999 2001 2003 2005 2007 2009
Year Year
FIGURE 1 Elk population FIGURE 2 Wolf population

The alert reader will note that the model also shows a decline in the wolf popu-
lation after 2004. How might we interpret this? With the decline in the elk population
over the first 10 years, there was less food for the wolves and therefore their popula-
tion begins to decline.

Figure 3 below shows the long-term behavior of both populations. The interpre-
tation of this graph is left as an exercise for the reader.

Information on the reintroduction of wolves into Yellowstone Park and central
Idaho can be found on the Internet. For example, read the U.S. Fish and Wildlife
Service news release of November 23, 1994, on the release of wolves into
Yellowstone National Park.
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FIGURE 3 Long-term behavior of the populations

Related Problems

1. Solve the pre-wolf initial-value problem (1) by first solving the differential
equation and applying the initial condition. Then apply the terminal condition to
find the growth rate

2. Biologists have debated whether the decrease in the elk from 18,000 in 1995 to
7,000 in 2009 is due to the reintroduction of wolves. What other factors might
account for the decrease in the elk population?

3. Consider the long-term changes in the elk and wolf populations. Are these cyclic
changes reasonable? Why is there a lag between the time when the elk begins to
decline and the wolf population begins to decline? Are the minimum values for
the wolf population realistic? Plot the elk population versus the wolf population
and interpret the results.

4. What does the initial-value problem (1) tell us about the growth of the elk pop-
ulation without the influence of the wolves? Find a similar model for the intro-
duction of rabbits into Australia in 1859 and the impact of introducing a prey
population into an environment without a natural predator population.
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Bungee jumping from a bridge
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FIGURE 1 The bungee setup
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Bungee Jumping
by Kevin Cooper

Suppose that you have no sense. Suppose that you are standing on a bridge above the
Malad River canyon. Suppose that you plan to jump off that bridge. You have no sui-
cide wish. Instead, you plan to attach a bungee cord to your feet, to dive gracefully
into the void, and to be pulled back gently by the cord before you hit the river that is
174 feet below. You have brought several different cords with which to affix your
feet, including several standard bungee cords, a climbing rope, and a steel cable. You
need to choose the stiffness and length of the cord so as to avoid the unpleasantness
associated with an unexpected water landing. You are undaunted by this task, because
you know math!

Each of the cords you have brought will be tied off so as to be 100 feet long
when hanging from the bridge. Call the position at the bottom of the cord 0, and
measure the position of your feet below that “natural length” as x(#), where x increases
as you go down and is a function of time #. See Figure 1. Then, at the time you
jump, x(0) =—100, while if your six-foot frame hits the water head first, at that time
x(¢) = 174 — 100 — 6 = 68. Notice that distance increases as you fall, and so your
velocity is positive as you fall and negative when you bounce back up. Note also
that you plan to dive so your head will be six feet below the end of the chord when
it stops you.

You know that the acceleration due to gravity is a constant, called g, so that the
force pulling downwards on your body is mg. You know that when you leap from the
bridge, air resistance will increase proportionally to your speed, providing a force in
the opposite direction to your motion of about Bv, where 3 is a constant and v is your
velocity. Finally, you know that Hooke’s law describing the action of springs says
that the bungee cord will eventually exert a force on you proportional to its distance
past its natural length. Thus, you know that the force of the cord pulling you back
from destruction may be expressed as

0 x=0
b(x):{—kx x>0

The number £ is called the spring constant, and it is where the stiffness of the cord
you use influences the equation. For example, if you used the steel cable, then &
would be very large, giving a tremendous stopping force very suddenly as you passed
the natural length of the cable. This could lead to discomfort, injury, or even a
Darwin award. You want to choose the cord with a & value large enough to stop you
above or just touching the water, but not too suddenly. Consequently, you are inter-
ested in finding the distance you fall below the natural length of the cord as a func-
tion of the spring constant. To do that, you must solve the differential equation that
we have derived in words above: The force mx” on your body is given by

mx" = mg + b(x) — Bx’.

Here mg is your weight, 160 Ib., and x’ is the rate of change of your position below
the equilibrium with respect to time; i.e., your velocity. The constant 3 for air resis-
tance depends on a number of things, including whether you wear your skin-tight
pink spandex or your skater shorts and XXL T-shirt, but you know that the value
today is about 1.0.

P-11

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



P-12 ° PROJECTS BUNGEE JUMPING

-100 —80 —60 —40 -20 O
x(7) T
=0 4t

—40 +

FIGURE 2 An example plot of x(?)
against x'(¢) for a bungee jump

This is a nonlinear differential equation, but inside it are two linear differential
equations, struggling to get out. We will work with such equations more extensively
in later chapters, but we already know how to solve such equations from our past
experience. When x < 0, the equation is mx”" = mg — Bx’, while after you pass the
natural length of the cord it is mx” = mg — kx — Bx". We will solve these separately,
and then piece the solutions together when x(¢) = 0.

In Problem 1 you find an expression for your position ¢ seconds after you step off
the bridge, before the bungee cord starts to pull you back. Notice that it does not
depend on the value for &, because the bungee cord is just falling with you when you
are above x(¢) = 0. When you pass the natural length of the bungee cord, it does start
to pull back, so the differential equation changes. Let #; denote the first time for which
x(t;) = 0, and let v; denote your speed at that time. We can thus describe the motion
for x(¢) > 0 using the problem x" = g — kx — Bx’, x(¢;) = 0, x'(¢;) = v;. An illustration
of a solution to this problem in phase space can be seen in Figure 2.

This will yield an expression for your position as the cord is pulling on you. All
we have to do is to find out the time #, when you stop going down. When you stop
going down, your velocity is zero, i.e., x'(£) = 0.

As you can see, knowing a little bit of math is a dangerous thing. We remind
you that the assumption that the drag due to air resistance is linear applies only for
low speeds. By the time you swoop past the natural length of the cord, that approx-
imation is only wishful thinking, so your actual mileage may vary. Moreover,
springs behave nonlinearly in large oscillations, so Hooke’s law is only an approx-
imation. Do not trust your life to an approximation made by a man who has been
dead for 200 years. Leave bungee jumping to the professionals.

Related Problems

1. Solve the equation mx” + Bx" = mg for x(f), given that you step off the bridge—no
jumping, no diving! Stepping off means x(0) = —100, x'(0) = 0. You may use
mg =160, B=1, and g = 32.

2. Use the solution from Problem 1 to compute the length of time #; that you freefall
(the time it takes to go the natural length of the cord: 100 feet).

3. Compute the derivative of the solution you found in Problem 1 and evaluate it at
the time you found in Problem 2. Call the result v;. You have found your down-
ward speed when you pass the point where the cord starts to pull.

4. Solve the initial-value problem
mx" + Bx" + kx = mg, x(¢;) = 0, x'(¢;,) = v,.

For now, you may use the value k£ = 14, but eventually you will need to replace
that with the actual values for the cords you brought. The solution x(¢) repre-
sents the position of your feet below the natural length of the cord after it starts
to pull back.

5. Compute the derivative of the expression you found in Problem 4 and solve for
the value of # where it is zero. This time is ;. Be careful that the time you compute
is greater than #;—there are several times when your motion stops at the top and
bottom of your bounces! After you find #,, substitute it back into the solution you
found in Problem 4 to find your lowest position

6. You have brought a soft bungee cord with k= 8.5, a stiffer cord with k= 10.7, and
a climbing rope for which k£ = 16.4. Which, if any, of these may you use safely
under the conditions given?

7. You have a bungee cord for which you have not determined the spring constant.
To do so, you suspend a weight of 10 1b. from the end of the 100-foot cord, caus-
ing the cord to stretch 1.2 feet. What is the £ value for this cord? You may neglect
the mass of the cord itself.
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The Collapse of the Tacoma
Narrows Suspension Bridge

by Gilbert N. Lewis

In the summer of 1940, the Tacoma Narrows Suspension Bridge in the State of
Washington was completed and opened to traffic. Almost immediately, observers no-
ticed that the wind blowing across the roadway would sometimes set up large verti-
cal vibrations in the roadbed. The bridge became a tourist attraction as people came
to watch, and perhaps ride, the undulating bridge. Finally, on November 7, 1940, dur-
ing a powerful storm, the oscillations increased beyond any previously observed, and
the bridge was evacuated. Soon, the vertical oscillations became rotational, as ob-
served by looking down the roadway. The entire span was eventually shaken apart by
the large vibrations, and the bridge collapsed. Figure 1 shows a picture of the bridge
during the collapse. See [1] and [2] for interesting and sometimes humorous anec-
dotes associated with the bridge. Or, do an Internet search with the key words
“Tacoma Bridge Disaster” in order to find and view some interesting videos of the
collapse of the bridge.

The noted engineer von Karman was asked to determine the cause of the col-
lapse. He and his coauthors [3] claimed that the wind blowing perpendicularly across
the roadway separated into vortices (wind swirls) alternately above and below the

¢ roadbed, thereby setting up a periodic, vertical force acting on the bridge. It was this

force that caused the oscillations. Others further hypothesized that the frequency of
this forcing function exactly matched the natural frequency of the bridge, thus lead-
ing to resonance, large oscillations, and destruction. For almost fifty years, resonance
was blamed as the cause of the collapse of the bridge, although the von Karman
group denied this, stating that “it is very improbable that resonance with alternating
vortices plays an important role in the oscillations of suspension bridges” [3].

As we can see from equation (31) in Section 5.1.3, resonance is a linear phe-
nomenon. In addition, for resonance to occur, there must be an exact match between
the frequency of the forcing function and the natural frequency of the bridge.
Furthermore, there must be absolutely no damping in the system. It should not be
surprising, then, that resonance was not the culprit in the collapse.

If resonance did not cause the collapse of the bridge, what did? Recent research
provides an alternative explanation for the collapse of the Tacoma Narrows Bridge.
Lazer and McKenna [4] contend that nonlinear effects, and not linear resonance,
were the main factors leading to the large oscillations of the bridge (see [5] for a good
review article). The theory involves partial differential equations. However, a simpli-
fied model leading to a nonlinear ordinary differential equation can be constructed.

The development of the model below is not exactly the same as that of Lazer and
McKenna, but it results in a similar differential equation. This example shows an-
other way that amplitudes of oscillation can increase.

Consider a single vertical cable of the suspension bridge. We assume that it acts
like a spring, but with different characteristics in tension and compression, and with
no damping. When stretched, the cable acts like a spring with Hooke’s constant, b,
while, when compressed, it acts like a spring with a different Hooke’s constant, a. We
assume that the cable in compression exerts a smaller force on the roadway than
when stretched the same distance, so that 0 < a < b. Let the vertical deflectio
(positive direction downward) of the slice of the roadbed attached to this cable be
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denoted by y(7), where ¢ represents time, and y = 0 represents the equilibrium posi-
tion of the road. As the roadbed oscillates under the influence of an applied vertical
force (due to the von Karman vortices), the cable provides an upward restoring force
equal to by when y > 0 and a downward restoring force equal to ay when y < 0. This
change in the Hooke’s Law constant at y = 0 provides the nonlinearity to the differ-
ential equation. We are thus led to consider the differential equation derived from
Newton’s second law of motion

my" + f(y) = g(1),

where f{(y) is the nonlinear function given by

)by ify =0
f(y)_{ay ify<0}’

g(?) is the applied force, and m is the mass of the section of the roadway. Note that
the differential equation is linear on any interval on which y does not change sign.

Now, let us see what a typical solution of this problem would look like. We will
assume that m = 1 kg, b = 4 N/m, a = 1 N/m, and g(¢) = sin(4¢) N. Note that the fre-
quency of the forcing function is larger than the natural frequencies of the cable in
both tension and compression, so that we do not expect resonance to occur. We also
assign the following initial values to y: ¥(0) = 0, »'(0) = 0.01, so that the roadbed
starts in the equilibrium position with a small downward velocity.

Because of the downward initial velocity and the positive applied force, y(7) will
initially increase and become positive. Therefore, we first solve this initial-value
problem

V' + 4y = sin(4s), »(0)=0, »'(0)=0.01. (1)

The solution of the equation in (1), according to Theorem 4.1.6, is the sum of the
complementary solution, y.(¢), and the particular solution, y,(?). It is easy to see
that y.(f) = cicos(2f) + csin(27) (equation (9), Section 4.3), and y,(¢) = —% sin(4¢)
(Table 4.4.1, Section 4.4). Thus,

1
W(t) = cicos(2f) + ¢, sin(2f) — Esin(4t). )
The initial conditions give
¥(0) =0 =cy,
1
y'(0) = 0.01 = 2¢, — 7

so that ¢; = (0.01 + 1)/2. Therefore, (2) becomes

W) = %(0.01 = é)sin(%) — %sin(4t)

. 1 1\ 1 3
= s1n(21)[z<0.01 4 5) - gcos(2t)}.

We note that the first positive value of ¢ for which y(7) is again equal to zero is ¢ = 5

o
At that point, y'(5) = —(0.01 + %). Therefore, equation (3) holds on [0, 7/2].
After t = 7, y becomes negative, so we must now solve the new problem

Y+ y = sin(49), y<%> 0, y(%) = —(0.01 + %) )

Proceeding as above, the solution of (4) is

2 1
w(?) <0.01 S §>cost = Esin(4t)

©)

2 4
cost (0.01 I —) — —sinz cos(27) |.
5 15
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The next positive value of ¢ after t = 7 at which y(f) = 0is ¢ = 37”, at which point
¥'CE) = 0.01 + Z, so that equation (5) holds on [7/2, 37/2].

At this point, the solution has gone through one cycle in the time interval [0, 37”].
During this cycle, the section of the roadway started at the equilibrium with positive
velocity, became positive, came back to the equilibrium position with negative ve-
locity, became negative, and finally returned to the equilibrium position with positive
velocity. This pattern continues indefinitel , with each cycle covering 37” time units.
The solution for the next cycle is

W) = sin(2t)[—%<0.01 I 1—75> = é cos(2t)] on [37/2,2],

(6)

8\ 4
n = Sint[— (0.0l + E) T costcos(Zt)] on [2, 3]

It is instructive to note that the velocity at the beginning of the second cycle is
(0.01 + %), while at the beginning of the third cycle it is (0.01 + %). In fact, the
velocity at the beginning of each cycle is 12—5 greater than at the beginning of the pre-
vious cycle. It is not surprising then that the amplitude of oscillations will increase
over time, since the amplitude of (one term in) the solution during any one cycle is
directly related to the velocity at the beginning of the cycle. See Figure 2 for a
graph of the deflection function on the interval [0, 377]. Note that the maximum
deflection on [37/2, 27r] is larger than the maximum deflection on [0, 77 /2], while
the maximum deflection on [27r, 3] is larger than the maximum deflection on
[7w/2,3m7/2].

It must be remembered that the model presented here is a very simplified one-
dimensional model that cannot take into account all of the intricate interactions of
real bridges. The reader is referred to the account by Lazer and McKenna [4] for a
more complete model. More recently, McKenna [6] has refined that model to provide
a different viewpoint of the torsional oscillations observed in the Tacoma Bridge.

Research on the behavior of bridges under forces continues. It is likely that
the models will be refined over time, and new insights will be gained from the
research. However, it should be clear at this point that the large oscillations caus-
ing the destruction of the Tacoma Narrows Suspension Bridge were not the result
of resonance.

—0.6 +
FIGURE 2 Graph of deflection function y()

Related Problems

1. Solve the following problems and plot the solutions for 0 = ¢ = 67r. Note that reso-

nance occurs in the first problem but not in the second

(@) y' +y = —cost,y(0) = 0,y'(0) = 0.
(b) ' + y = cos(2¢), (0) = 0,y'(0) = 0.
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Solve the initial-value problem y” + f(v) = sin(4¢), »(0) = 0, y'(0) = 1, where

_ by ify=0
) = {ay ify < 0}’

and

(@) b=1,a =4, (Compare your answer with the example in this project.)

(b) b=064,a =4,

(¢) b=36,a=25.

Note that, in part (a), the condition b > a of the text is not satisfied. Plot the solu-
tions. What happens in each case as # increases? What would happen in each case
if the second initial condition were replaced with y'(0) = 0.01? Can you make any
conclusions similar to those of the text regarding the long-term solution?

. What would be the effect of adding damping (+c¢y’, where ¢ > 0) to the system?

How could a bridge design engineer incorporate more damping into the bridge?
Solve the problem " + ¢y’ + f(y) = sin(4¢), »(0) = 0, »'(0) = 1, where

a4y ity =0

and
(a) ¢=0.01
(b) ¢c=0.1
© c=05
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Project for Section 7.3

Murder at the Mayfair Diner

by Tom LoFaro

Dawn at the Mayfair Diner. The amber glow of streetlights mixed with the violent
red flash of police cruisers begins to fade with the rising of a furnace orange sun.
Detective Daphne Marlow exits the diner holding a steaming cup of hot joe in one
hand and a summary of the crime scene evidence in the other. Taking a seat on the
bumper of her tan LTD, Detective Marlow begins to review the evidence.

At 5:30 a.m. the body of one Joe D. Wood was found in the walk in refrigerator in
the diner’s basement. At 6:00 a.m. the coroner arrived and determined that the core body
temperature of the corpse was 85 degrees Fahrenheit. Thirty minutes later the coroner
again measured the core body temperature. This time the reading was 84 degrees
Fahrenheit. The thermostat inside the refrigerator reads 50 degrees Fahrenheit.

Daphne takes out a fading yellow legal pad and ketchup-stained calculator from
the front seat of her cruiser and begins to compute. She knows that Newton’s Law of
Cooling says that the rate at which an object cools is proportional to the difference
between the temperature 7 of the body at time ¢ and the temperature 7}, of the envi-
ronment surrounding the body. She jots down the equation

dT

” KT —1T,), t>0, (1)
where £ is a constant of proportionality, 7'and 7, are measured in degrees Fahrenheit,
and ¢ is time measured in hours. Because Daphne wants to investigate the past using
positive values of time, she decides to correspond ¢ = 0 with 6:00 a.m., and so, for
example, # = 4 is 2:00 a.m. After a few scratches on her yellow pad, Daphne realizes
that with this time convention the constant & in (1) will turn out to be positive. She
jots a reminder to herself that 6:30 a.m. is now ¢t = —1/2.

As the cool and quiet dawn gives way to the steamy midsummer morning,
Daphne begins to sweat and wonders aloud, “But what if the corpse was moved into
the fridge in a feeble attempt to hide the body? How does this change my estimate?”
She re-enters the restaurant and finds the grease-streaked thermostat above the empty
cash register. It reads 70 degrees Fahrenheit.

“But when was the body moved?” Daphne asks. She decides to leave this ques-
tion unanswered for now, simply letting /2 denote the number of hours the body has
been in the refrigerator prior to 6:00 a.m. For example, if # = 6, then the body was
moved at midnight.

Daphne flips a page on her legal pad and begins calculating. As the rapidly cooling
coffee begins to do its work, she realizes that the way to model the environmental tem-
perature change caused by the move is with the unit step function %(¢). She writes

Tn() = 50 + 20Ut — h) 2)
and below it the differential equation
ar_ k(T —T,(0)) 3)
dt e

Daphne’s mustard-stained polyester blouse begins to drip sweat under the blaze
of a midmorning sun. Drained from the heat and the mental exercise, she fires up
her cruiser and motors to Boodle’s Café for another cup of java and a heaping plate
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of scrapple and fried eggs. She settles into the faux leather booth. The intense
air-conditioning conspires with her sweat-soaked blouse to raise goose flesh on her
rapidly cooling skin. The intense chill serves as a gruesome reminder of the tragedy
that occurred earlier at the Mayfair.

While Daphne waits for her breakfast, she retrieves her legal pad and quickly
reviews her calculations. She then carefully constructs a table that relates refrigeration
time / to time of death while eating her scrapple and eggs.

Shoving away the empty platter, Daphne picks up her cell phone to check in with
her partner Marie. “Any suspects?” Daphne asks.

“Yeah,” she replies, “we got three of em. The first is the late Mr. Wood’s ex-wife,
a dancer by the name of Twinkles. She was seen in the Mayfair between 5 and 6 p.m.
in a shouting match with Wood.”

“When did she leave?”

“A witness says she left in a hurry a little after six. The second suspect is a South
Philly bookie who goes by the name of Slim. Slim was in around 10 last night
having a whispered conversation with Joe. Nobody overheard the conversation, but
witnesses say there was a lot of hand gesturing, like Slim was upset or something.”

“Did anyone see him leave?”

“Yeah. He left quietly around 11. The third suspect is the cook.”

“The cook?”

“Yep, the cook. Goes by the name of Shorty. The cashier says he heard Joe and
Shorty arguing over the proper way to present a plate of veal scaloppine. She said
that Shorty took an unusually long break at 10:30 p.m. He took off in a huff when the
restaurant closed at 2:00 a.m. Guess that explains why the place was such a mess.”

“Great work, partner. I think I know who to bring in for questioning.”

Related Problems

1. Solve equation (1), which models the scenario in which Joe Wood is killed in the
refrigerator. Use this solution to estimate the time of death (recall that normal liv-
ing body temperature is 98.6 degrees Fahrenheit).

2. Solve the differential equation (3) using Laplace transforms. Your solution 7(7)
will depend on both ¢ and /. (Use the value of £ found in Problem 1.)

3. (CAS) Complete Daphne’s table. In particular, explain why large values of / give
the same time of death.

h time body moved time of death
12 6:00 p.m.
11
10

9

8

7

6

5

4

3

2

4. Who does Daphne want to question and why?

5. Still Curious? The process of temperature change in a dead body is known as
algor mortis (rigor mortis is the process of body stiffening), and although it is not
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perfectly described by Newton’s Law of Cooling, this topic is covered in most
forensic medicine texts. In reality, the cooling of a dead body is determined by
more than just Newton’s Law. In particular, chemical processes in the body con-
tinue for several hours after death. These chemical processes generate heat, and
thus a near constant body temperature may be maintained during this time before
the exponential decay due to Newton’s Law of Cooling begins.

A linear equation, known as the Glaister equation, is sometimes used to give
a preliminary estimate of the time ¢ since death. The Glaister equation is

98.4 — T,
r=—2

1.5 @

where 7j is measured body temperature (98.4° F is used here for normal living
body temperature instead of 98.6° F). Although we do not have all of the tools to
derive this equation exactly (the 1.5 degrees per hour was determined experimen-
tally), we can derive a similar equation via linear approximation.

Use equation (1) with an initial condition of 7(0) = T, to compute the equa-
tion of the tangent line to the solution through the point (0, 7j). Do not use the
values of 7}, or k£ found in Problem 1. Simply leave these as parameters. Next, let
T = 98.4 and solve for ¢ to get

984T,

KT - T, ©)
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Collapsed apartment building in San
Francisco, October 18, 1989, the day after
the massive Loma Prieta earthquake

Project for Section 8.2

Earthquake Shaking of
Multistory Buildings

by Gilbert N. Lewis

Large earthquakes typically have a devastating effect on buildings. For example,
the famous 1906 San Francisco earthquake destroyed much of that city. More re-
cently, that area was hit by the Loma Prieta earthquake that many people in the
United States and elsewhere experienced second-hand while watching on televi-
sion the Major League Baseball World Series game that was taking place in San
Francisco in 1989.

In this project, we attempt to model the effect of an earthquake on a multi-story
building and then solve and interpret the mathematics. Let x; represent the horizontal
displacement of the ith floor from equlibrium. Here, the equilibrium position will be
a fixed point on the ground, so that xo = 0. During an earthquake, the ground moves
horizontally so that each floor is considered to be displaced relative to the ground.
We assume that the ith floor of the building has a mass m;, and that successive floor
are connected by an elastic connector whose effect resembles that of a spring.
Typically, the structural elements in large buildings are made of steel, a highly
elastic material. Each such connector supplies a restoring force when the floors are
displaced relative to each other. We assume that Hooke’s Law holds, with propor-
tionality constant k; between the ith and the (i + 1)st floors. That is, the restoring
force between those two floors i

F = ki(xi+1 — xp),

where x;+1 — x; is the displacement (shift) of the (i + 1)st floor relative to the ith floo .
We also assume a similar reaction between the first floor and the ground, with pro-
portionality constant &, . Figure 1 shows a model of the building, while Figure 2
shows the forces acting on the ith floo .

my kn*l
my—1 kn*2

n ky miv1 | kixie1 — X))
(A ko kici(xj — xi—1) | my
ground i
FIGURE 1 Floors of building FIGURE 2 Forces on ith floo
P-21
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We can apply Newton’s second law of motion (Section 5.1), F = ma, to each
floor of the building to arrive at the following system of linear differential equations.

d’x

ml?; = —kox; + ki(x, — xy)
d’x

mz?j = k0 — x) T kals — x)
d*x,

m, dtz = _knfl(xn - xn*l)'

As a simple example, consider a two-story building with each floor having
mass m = 5000 kg and each restoring force constant having a value of k = 10000 kg/s>.
Then the differential equations are

d’x

721 = —4x1 =F 2X2
d’x

722 = le - 2x2.

The solution by the methods of Section 8.2 is

x,(f) = 2¢, cos wt + 2¢, sin w,f + 2¢5 coS wyt + 2¢, Sin wyt,
x(f) = (4 — w?)c; cos ot + (4 — wd)e, sin wyt + (4 — wd)c; cos w,t
+ (4 — wd)cy sin wat,

where v, = V3 + V5 = 2288, and w, = V'3 — V5 = 0.874. Now suppose that
the following initial conditions are applied: x;(0) = 0, x{(0) = 0.2, x,(0) = 0,
x3(0) = 0. These correspond to a building in the equilibrium position with the firs
floor being given a horizontal speed of 0.2 m/s. The solution of the initial value
problem is

x1() = 2¢,81n wt + 2¢, Sin wst,

xX(f) = (4 — w%)cz sin w,¢ + (4 — w%)c4 sin w,t,

where ¢, = (4 — 03)0.1/[(w? — ®})w,] = 0.0317 = ¢,. See Figures 3 and 4 for
graphs of x1(¢) and x»(¢). Note that initially x; moves to the right but is slowed by the
drag of x,, while x; is initially at rest, but accelerates, due to the pull of x;, to over-
take x; within one second. It continues to the right, eventually pulling x; along until
the two-second mark. At that point, the drag of x; has slowed x; to a stop, after which
X, moves left, passing the equilibrium point at 3.2 seconds and continues moving left,
draging x; along with it. This back-and-forth motion continues. There is no damping
in the system, so that the oscillatory behavior continues forever.

x1(9) X(2)
0.10 r
0.05 | 0.2 |
: =i 0.1
1 2 5 f

-0.05 [ ‘ ‘ p

i 1 2 3 4 5

-0.10 [ I
i -0.1 F

FIGURE 3 Graph of x(7)

FIGURE 4 Graph of xx()
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If a horizontal oscillatory force of frequency w, or w, is applied, we have a sit-
uation analogous to resonance discussed in Section 5.1.3. In that case, large oscil-
lations of the building would be expected to occur, possibly causing great damage
if the earthquake lasted an appreciable length of time.

Let’s define the following matrices and vector

m 0 0 0
0 m O 0
M = s
I 0 0 m,
—(ky + ky) ki 0 0 ... 0 0 0
ky —(ky + k) ks, 0 ... 0 0 0
e O k, —(y +hk3) ks ... 0 0 0
0 0 0 0 ... kyoy —(ky_r» + k,—1) k,:
0 0 0 0 ... 0 k1 —k,
x(2)
t
x@) = |2
x,(f)
Then the system of differential equations can be written in matrix form
d*X .
MWIKX or MX" = KX.

Note that the matrix M is a diagonal matrix with the mass of the ith floor being
the ith diagonal element. Matrix M has an inverse given by

m' 0 0 - 0
Moo | O om0 0
0 0 0 - m!

n

We can therefore represent the matrix differential equation by
X'=M'K)X or X'=AX

Where A = M 'K, the matrix M is called the mass matrix, and the matrix K is the
stiffness matrix.

The eigenvalues of the matrix A reveal the stability of the building during an earth-
quake. The eigenvalues of A are negative and distinct. In the first example, the eigen-
values are —3 + V5 = —0.764 and —3 — \/5 = —5.236. The natural frequencies
of the building are the square roots of the negatives of the eigenvalues. If A, is the ith eigen-
value, then w; = V —A; is the ith frequency, fori = 1, 2, . . ., n. During an earth-
quake, a large horizontal force is applied to the first floo . If this is oscillatory in
nature, say of the form F(¢) = G cosyt, then large displacements may develop in the
building, especially if the frequency vy of the forcing term is close to one of the natural
frequencies of the building. This is reminiscent of the resonance phenomenon studied
in Section 5.1.3.
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As another example, suppose we have a 10-story building, where each floor has a
mass 10000 kg, and each k; value is 5000 kg/s?. Then

-1 05 0 0 0 0 0 0 0 0
05 -1 05 0 0 0 0 0 0 0
0 05 -1 05 O 0 0 0 0 0
0 0 05 -1 05 0 0 0 0 0
_ 0 0 0 05 -1 05 0 0 0 0
A=MIK =
0 0 0 0 05 -1 05 O 0 0
0 0 0 0 0 05 -1 05 0 0
0 0 0 0 0 0 05 -1 05 0
0 0 0 0 0 0 0 05 -1 05
0 0 0 0 0 0 0 0 05 —05

The eigenvalues of A are found easily using Mathematica or another similar computer
package. These values are —1.956, —1.826, —1.623, —1.365, —1.075, —0.777,
—0.5, —0.267, —0.099, and —0.011, with corresponding frequencies 1.399, 1.351,
1.274, 1.168, 1.037, 0.881, 0.707, 0.517, 0.315, and 0.105 and periods of oscillation
(2m/w) 4.491, 4.651, 4.932, 5.379, 6.059, 7.132, 8.887, 12.153, 19.947, and 59.840.
During a typical earthquake whose period might be in the range of 2 to 3 seconds, this
building does not seem to be in any danger of developing resonance. However, if
the k£ values were 10 times as large (multiply A by 10), then, for example, the sixth
period would be 2.253 seconds, while the fifth through seventh are all on the order of
2-3 seconds. Such a building is more likely to suffer damage in a typical earthquake
of period 23 seconds.

Related Problems

1. Consider a three-story building with the same m and & values as in the first exam-
ple. Write down the corresponding system of differential equations. What are the
matrices M, K, and A? Find the eigenvalues for A. What range of frequencies of
an earthquake would place the building in danger of destruction?

2. Consider a three-story building with the same m and £ values as in the second
example. Write down the corresponding system of differential equations. What
are the matrices M, K, and A? Find the eigenvalues for A. What range of fre-
quencies of an earthquake would place the building in danger of destruction?

3. Consider the tallest building on your campus. Assume reasonable values for the
mass of each floor and for the proportionality constants between floors. If you
have trouble coming up with such values, use the ones in the example problems.
Find the matrices M, K, and A, and find the eigenvalues of A and the frequen-
cies and periods of oscillation. Is your building safe from a modest-sized period-
2 earthquake? What if you multiplied the matrix K by 10 (that is, made the
building stiffer)? What would you have to multiply the matrix K by in order to
put your building in the danger zone?

4. Solve the earthquake problem for the three-story building of Problem 1:

MX" = KX + F(?),

where F(£)=G cosyt, G=EB,B=[1 0 0]7, E=10,000 Ibs is the amplitude
of the earthquake force acting at ground level, and y = 3 is the frequency of the
earthquake (a typical earthquake frequency). See Section 8.3 for the method of
solving nonhomogeneous matrix differential equations. Use initial conditions
for a building at rest.
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Weapons and ammunition recovered during
military operations against Taliban militants
in South Waziristan in October 2009

Project for Section 8.3

Modeling Arms Races

by Michael Olinick

The last hundred years have seen numerous dangerous, destabilizing, and expensive
arms races. The outbreak of World War I climaxed a rapid buildup of armaments
among rival European powers. There was a similar mutual accumulation of conven-
tional arms just prior to World War II. The United States and the Soviet Union en-
gaged in a costly nuclear arms race during the forty years of the Cold War. Stockpiling
of ever-more deadly weapons is common today in many parts of the world, including
the Middle East, the Indian subcontinent, and the Korean peninsula.

British meteorologist and educator Lewis F. Richardson (1881-1953) developed
several mathematical models to analyze the dynamics of arms races, the evolution
over time of the process of interaction between countries in their acquisition of
weapons. Arms race models generally assume that each nation adjusts its accumula-
tion of weapons in some manner dependent on the size of its own stockpile and the
armament levels of the other nations.

Richardson’s primary model of a two country arms race is based on mutual
fear: A nation is spurred to increase its arms stockpile at a rate proportional to the
level of armament expenditures of its rival. Richardson’s model takes into account
internal constraints within a nation that slow down arms buildups: The more a
nation is spending on arms, the harder it is to make greater increases, because it
becomes increasingly difficult to divert society’s resources from basic needs such
as food and housing to weapons. Richardson also built into his model other factors
driving or slowing down an arms race that are independent of levels of arms expen-
ditures.

The mathematical structure of this model is a linked system of two first-orde
linear differential equations. If x and y represent the amount of wealth being spent on
arms by two nations at time #, then the model has the form

dx N
—=ay—mx tr
a~ v

d
d—J;=bx—ny+s

where a, b, m, and n are positive constants while » and s are constants which can be
positive or negative. The constants a and b measure mutual fear; the constants m and
n represent proportionality factors for the “internal brakes” to further arms increases.
Positive values for 7 and s correspond to underlying factors of ill will or distrust that
would persist even if arms expenditures dropped to zero. Negative values for 7 and s
indicate a contribution based on goodwill.

The dynamic behavior of this system of differential equations depends on the
relative sizes of ab and mn together with the signs of 7 and s. Although the model
is a relatively simple one, it allows us to consider several different long-term out-
comes. It’s possible that two nations might move simultaneously toward mutual
disarmament, with x and y each approaching zero. A vicious cycle of unbounded
increases in x and y is another possible scenario. A third eventuality is that the arms
expenditures asymptotically approach a stable point (x*, y*) regardless of the initial
level of arms expenditures. In other cases, the eventual outcome depends on the
starting point. Figure 1 shows one possible situation with four different initial
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FIGURE 1 Expenditures approaching a stable point

levels, each of which leads to a “stable outcome,” the intersection of the nullclines
dx/dt = 0 and dy/dt = 0.

Although “real world” arms races seldom match exactly with Richardson’s model,
his pioneering work has led to many fruitful applications of differential equation models
to problems in international relations and political science. As two leading researchers in
the field note in [3], “The Richardson arms race model constitutes one of the most impor-
tant models of arms race phenomena and, at the same time, one of the most influentia
formal models in all of the international relations literature.”

Arms races are not limited to the interaction of nation states. They can take place
between a government and a paramilitary terrorist group within its borders as, for ex-
ample, the Tamil Tigers in Sri Lanka, the Shining Path in Peru, or the Taliban in
Afghanistan. Arms phenomena have also been observed between rival urban gangs
and between law enforcement agencies and organized crime.

The “arms” need not even be weapons. Colleges have engaged in “amenities
arms races,” often spending millions of dollars on more luxurious dormitories,
state- of-the-art athletic facilities, epicurean dining options, and the like, to be more
competitive in attracting student applications. Biologists have identified the possi-
bility of evolutionary arms races between and within species as an adaptation in one
lineage may change the selection pressure on another lineage, giving rise to a counter-
adaptation. Most generally, the assumptions represented in a Richardson-type
model also characterize many competitions in which each side perceives a need to
stay ahead of the other in some mutually important measure.

Related Problems

1. (a) By substituting the proposed solutions into the differential equations, show
that the solution of the particular Richardson arms model

=y—3x+3

d
dt
ly

Do — 4y +8

a7
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with initial condition x(0) = 12, (0) = 15 is
32 2
x(t) = ?672’ = 5675t + 2

32 4
() = ?6_2’ + ge‘S’ +3

What is the long-term behavior of this arms race?

(b) For the Richardson arms race model (a) with arbitrary initial conditions
x(0) = 4, y(0) = B, show that the solution is given by

x(f) = Ce > + De % + 2 C=A-B+1)/3
where
¥(t) = —2Ce > + De % + 3 D=QA+B—-17)/3
Show that this result implies that the qualitative long-term behavior of such an
arms race is the same (x(z) — 2, y(f) — 3), no matter what the initial values of x
and y are.
2. The qualitative long-term behavior of a Richardson arms race model can, in
some cases, depend on the initial conditions. Consider, for example, the system

B - 10
Lo
dt Y

dy
Y4 — 3y - 10
a0

For each of the given initial conditions below, verify that the proposed solu-

tion works and discuss the long-term behavior:

(@ x(0) =1,¥(0) = 1:x() = 10 — 9¢, y(t) = 10 — 9¢'

(b) x(0) = 1,p(0) = 22 : x(¢) = 10 — 9¢™ %, y(t) = 10 + 12¢*

(©) x(0) =1,y(0) =29 : x() = — 12~ + 3¢ + 10, y(£) = 16e” % + 3¢’ + 10

(d) x(0) = 10,»(0) = 10 : x(¢) = 10, »(¢) = 10 for all ¢

3. (a) Asapossible alternative to the Richardson model, consider a stock adjustment

model for an arms race. The assumption here is that each country sets a desired
level of arms expenditures for itself and then changes its weapons stock pro-
portionally to the gap between its current level and the desired one. Show that
this assumption can be represented by the system of differential equations

d.
jlf:a(x*—x)
dx

= = b(v* —
0 0* =)

where x* and y* are desired constant levels and a, b are positive constants.
How will x and y evolve over time under such a model?

(b) Generalize the stock adjustment model of (a) to a more realistic one where
the desired level for each country depends on the levels of both countries. In
particular, suppose x* has the form x* = ¢ + dy where ¢ and d are positive
constants and that y* has a similar format. Show that, under these assump-
tions, the stock adjustment model is equivalent to a Richardson model.

4. Extend the Richardson model to three nations, deriving a system of linear differen-
tial equations if the three are mutually fearful: each one is spurred to arm by the ex-
penditures of the other two. How might the equations change if two of the nations
are close allies not threatened by the arms buildup of each other, but fearful of the
armaments of the third. Investigate the long-term behavior of such arms races.

5. In the real world, an unbounded runaway arms race is impossible since there is
an absolute limit to the amount any country can spend on weapons; e.g. gross na-
tional product minus some amount for survival. Modify the Richardson model to
incorporate this idea and analyze the dynamics of an arms race governed by
these new differential equations.
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Introduction to Differential Equations

1.1 Definitions and Terminology
1.2 Initial-Value Problems
1.3 Differential Equations as Mathematical Models

Chapter 1 in Review

The words differential and equations certainly suggest solving some kind of
equation that contains derivatives y’, y”, . . . . Analogous to a course in algebra and
trigonometry, in which a good amount of time is spent solving equations such as
x> + 5x + 4 = 0 for the unknown number x, in this course one of our tasks will be
to solve differential equations such as y” + 2y’ + y = 0 for an unknown function
y = o).

The preceding paragraph tells something, but not the complete story, about
the course you are about to begin. As the course unfolds, you will see that there is
more to the study of differential equations than just mastering methods that
mathematicians over past centuries devised to solve them.

But first things first. In order to read, stu , and be conversant in a specialized

subject, you have to master some of the terminology of that discipline. This is the

thrust of the first two sections of this chapte . In the last section we briefly examin
the link between differential equations and the real world. Practical questions

such as
How fast does a disease spread? How fast does a population change?

involve rates of change or derivatives. And so the mathematical description—or
mathematical model—of phenomena, experiments, observations, or theories may

be a differential equation.
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

1.1  DEFINITIONS AND TERMINOLOGY

REVIEW MATERIAL

The definition of the derivativ

Rules of differentiation

Derivative as a rate of change

Connection between the first derivative and increasing/decreasin
Connection between the second derivative and concavity

INTRODUCTION The derivative dy/dx of a function y = ¢(x) is itself another function ¢’ (x)
found by an appropriate rule. The exponential function y = e%*" is differentiable on the interval

(—, ), and, by the Chain Rule, its first derivative is dy/dx = 0.2xe"'*’ If we replace e”!*" on the
right-hand side of the last equation by the symbol y, the derivative becomes
d
2 = 0.2x. (1)
dx

Now imagine that a friend of yours simply hands you equation (1)—you have no idea how it was
constructed—and asks, What is the function represented by the symbol y? You are now face to face
with one of the basic problems in this course:

How do you solve such an equation for the function y = ¢(x)?

— A Definition The equation that we made up in (1) is called a differential
equation. Before proceeding any further, let us consider a more precise definition of
this concept.

DEFINITION 1.1.1 Differential Equation

An equation containing the derivatives of one or more unknown functions (or
dependent variables), with respect to one or more independent variables, is said
to be a differential equation (DE).

To talk about them, we shall classify differential equations according to type, order,
and linearity.

= Classification by Type If a differential equation contains only ordinary de-
rivatives of one or more unknown functions with respect to a single independent
variable, it is said to be an ordinary differential equation (ODE). An equation in-
volving partial derivatives of one or more unknown functions of two or more inde-
pendent variables is called a partial differential equation (PDE). Our first example
illustrates several of each type of differential equation.

DN\ IZNZINE Types of Differential Equations

(a) The equations

an ODE can contain more
than one unknown function

d dy d d
—y+5y=e", > _ 2y *

i @ e 6y = 0, and

are examples of ordinary differential equations.

y
T 2
da a7 @

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1.1 DEFINITIONS AND TERMINOLOGY ° 3

(b) The following equations are partial differential equations:”
Fu , ou

u  u ou du v
prede: v

L : S 3
x> o at’  dy ax (3

= 0’ —_——
Notice in the third equation that there are two unknown functions and two indepen-
dent variables in the PDE. This means « and v must be functions of two or more

independent variables. =

=— Notation Throughout this text ordinary derivatives will be written by using
either the Leibniz notation dy/dx, d*y/dx?, d*y/dx?, . . . or the prime notation y', )",
y", . ... By using the latter notation, the first two differential equations in (2) can be
written a little more compactly as y' + S5y = ¢* and y" — y" + 6y = 0. Actually, the
prime notation is used to denote only the first three derivatives; the fourth derivative
is written y® instead of y"”. In general, the nth derivative of y is written d”y/dx" or
™. Although less convenient to write and to typeset, the Leibniz notation has an ad-
vantage over the prime notation in that it clearly displays both the dependent and
independent variables. For example, in the equation

unknown function

or dependent variable
d’x
— tlex=0
dt

L independent variable

it is immediately seen that the symbol x now represents a dependent variable,
whereas the independent variable is 7 You should also be aware that in physical
sciences and engineering, Newton’s dot notation (derogatorily referred to by some
as the “flyspeck” notation) is sometimes used to denote derivatives with respect
to time ¢. Thus the differential equation d’s/dt> = —32 becomes § = —32. Partial
derivatives are often denoted by a subscript notation indicating the indepen-
dent variables. For example, with the subscript notation the second equation in
(3) becomes u,, = uy — 2u;.

— Classification by Order The order of a differential equation (either ODE
or PDE) is the order of the highest derivative in the equation. For example,

second order n r first order
dy dy\ .
w”(a) —dy=e

is a second-order ordinary differential equation. In Example 1, the first and third
equations in (2) are first-order ODEs, whereas in (3) the first two equations are
second-order PDEs. First-order ordinary differential equations are occasionally writ-
ten in differential form M(x, y) dx + N(x, y) dy = 0. For example, if we assume that
v denotes the dependent variable in (y — x) dx + 4xdy = 0, then y' = dy/dx, so by
dividing by the differential dx, we get the alternative form 4xy’ + y = x.

In symbols we can express an nth-order ordinary differential equation in one
dependent variable by the general form

Fx, y, ', 0") =0, 4)

where F is a real-valued function of n + 2 variables: x, y,)’, . . ., . For both prac-
tical and theoretical reasons we shall also make the assumption hereafter that it is
possible to solve an ordinary differential equation in the form (4) uniquely for the

“Except for this introductory section, only ordinary differential equations are considered in A First Course
in Differential Equations with Modeling Applications, Tenth Edition. In that text the word equation and
the abbreviation DE refer only to ODEs. Partial differential equations or PDEs are considered in the
expanded volume Differential Equations with Boundary-Value Problems, Eighth Edition.
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CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

highest derivative y in terms of the remaining n + 1 variables. The differential
equation

n

y ! n—
T =Sy D), (5)

where s a real-valued continuous function, is referred to as the normal form of (4).
Thus when it suits our purposes, we shall use the normal forms

d*y

1y
= fey)  and fxp,5")
dx

dx*
to represent general first- and second-order ordinary differential equations. For example,
the normal form of the first-order equation 4xy’ + y = xisy’ = (x — y)/4x; the normal
form of the second-order equation y” —y" + 6y = 0 is " = y" — 6y. See (iv) in the
Remarks.

= Classification by Linearity An nth-order ordinary differential equation (4)
is said to be linear if F is linear in y, ), . . ., y. This means that an nth-order ODE is
linear when (4) is a,(x)y™ + a,—1(x)y" D+ - - - + a1(x)y" + ao(x)y — g(x) = 0 or
1

d" d
Lt am gy = g, 6)
dx dx

d"y
dx" + an*l(x)

a,(x)

Two important special cases of (6) are linear first-order (n = 1) and linear second-
order (n = 2) DEs:

2

d d d
@) Tt aey =g and a5 e+ ay =g, ()

In the additive combination on the left-hand side of equation (6) we see that the char-
acteristic two properties of a linear ODE are as follows:

+ The dependent variable y and all its derivatives y', 3", . .., '™ are of the
first degree, that is, the power of each term involving y is 1.

+ The coefficients ag, ay, . . ., a, of y,y', ..., y" depend at most on the
independent variable x.

A nonlinear ordinary differential equation is simply one that is not linear. Nonlinear
functions of the dependent variable or its derivatives, such as sin y or ¢, cannot
appear in a linear equation.

DN IANPE Linear and Nonlinear ODEs

(a) The equations

dy  dy
St x——5y=¢

dx’® a7
are, in turn, /inear first-, second-, and third-order ordinary differential equations. We
have just demonstrated that the first equation is linear in the variable y by writing it in

the alternative form 4xy” + y = x.

(y —x)dx + 4xydy =0, y" =2y +y=0, x

(b) The equations

nonlinear term: nonlinear term: nonlinear term:

coefficient depends ony nonlinear function of y power not 1
d?y d*y

I =y +2y=¢ — +siny =0 and —— 4+ 1y2=0

=y +2y=e, -5 y=0, T

are examples of nonlinear first-, second-, and fourth-order ordinary differential equa-

tions, respectively. =
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1.1 DEFINITIONS AND TERMINOLOGY ° 5

— Solutions As was stated before, one of the goals in this course is to solve, or
find solutions of, differential equations. In the next definition we consider the con-
cept of a solution of an ordinary differential equation.

DEFINITION 1.1.2 Solution of an ODE

Any function ¢, defined on an interval / and possessing at least n derivatives
that are continuous on /, which when substituted into an nth-order ordinary dif-
ferential equation reduces the equation to an identity, is said to be a solution of
the equation on the interval.

In other words, a solution of an nth-order ordinary differential equation (4) is a func-
tion ¢ that possesses at least n derivatives and for which

F(x, ), ' (x), ..., dP(x) = 0 for all x in 7.

We say that ¢ satisfie the differential equation on /. For our purposes we shall also
assume that a solution ¢ is a real-valued function. In our introductory discussion we
saw that y = ¢! is a solution of dy/dx = 0.2xy on the interval (—o%, ).

Occasionally, it will be convenient to denote a solution by the alternative
symbol y(x).

= Interval of Definition You cannot think solution of an ordinary differential
equation without simultaneously thinking interval. The interval / in Definition 1.1.2
is variously called the interval of definition the interval of existence, the interval
of validity, or the domain of the solution and can be an open interval (a, b), a closed
interval [a, b], an infinite interval a, %), and so on.

DY\ AN Verification of a Solutio

Verify that the indicated function is a solution of the given differential equation on
the interval (—oo, o).

(@) dy/dx =xy"% y=3x* () y' -2 +y=0 y=xe

SOLUTION One way of verifying that the given function is a solution is to see,
after substituting, whether each side of the equation is the same for every x in the
interval.

(a) From

dy 1 1
left-hand side: —=— UG- =-x3
efi-hand side I 16( x’) 4x,

1 1/2 1 1
right-hand side: xy?=x- (E x“) =x- (_ x2> =2,

we see that each side of the equation is the same for every real number x. Note that

y'2 = 1x? is, by definition, the nonnegative square root of 1 x*.
(b) From the derivatives y’ = xe* + ¢* and y" = xe* + 2e* we have, for every real
number x,

left-hand side: Yy =2y +y = (xe" + 2¢) — 2xe* + &) + xe* =0,
right-hand side: 0. =
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6 ° CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

(a) function y = 1/x, x # 0

(b) solution y = 1/x, (0, )

FIGURE 1.1.1 In Example 4 the
function y = 1/x is not the same as the
solution y = 1/x

Note, too, that in Example 3 each differential equation possesses the constant so-
lution y = 0, —o0 < x < . A solution of a differential equation that is identically
zero on an interval [ is said to be a trivial solution.

=— Solution Curve The graph of a solution ¢ of an ODE is called a solution
curve. Since ¢ is a differentiable function, it is continuous on its interval / of defini
tion. Thus there may be a difference between the graph of the function ¢ and the
graph of the solution ¢. Put another way, the domain of the function ¢ need not be
the same as the interval / of definition (or domain) of the solution ¢. Example 4
illustrates the difference.

DVN\WYIHANW Function versus Solution

The domain of y = 1/x, considered simply as a function, is the set of all real
numbers x except 0. When we graph y = 1/x, we plot points in the xy-plane cor-
responding to a judicious sampling of numbers taken from its domain. The ratio-
nal function y = 1/x is discontinuous at 0, and its graph, in a neighborhood of
the origin, is given in Figure 1.1.1(a). The function y = 1/x is not differentiable at
x = 0, since the y-axis (whose equation is x = 0) is a vertical asymptote of the
graph.

Now y = 1/x is also a solution of the linear first-order differential equation
xy' +y = 0. (Verify.) But when we say that y = 1/x is a solution of this DE, we
mean that it is a function defined on an interval / on which it is differentiable and
satisfies the equation. In other words, y = 1/x is a solution of the DE on any inter-
val that does not contain 0, such as (—3, —1), %, 10), (=%, 0), or (0, ©). Because
the solution curves definedby y = 1/x for =3 <x < —1 and% < x < 10 are sim-
ply segments, or pieces, of the solution curves defined by y = 1/x for —o0 < x <0
and 0 < x < o, respectively, it makes sense to take the interval / to be as large as
possible. Thus we take 7 to be either (—o°, 0) or (0, »). The solution curve on (0, ©)

is shown in Figure 1.1.1(b). =

= Explicit and Implicit Solutions You should be familiar with the terms
explicit functions and implicit functions from your study of calculus. A solution in
which the dependent variable is expressed solely in terms of the independent
variable and constants is said to be an explicit solution. For our purposes, let us
think of an explicit solution as an explicit formula y = ¢ (x) that we can manipulate,
evaluate, and differentiate using the standard rules. We have just seen in the last two
examples that y = %x“, y=xe", and y = 1/x are, in turn, explicit solutions
of dy/dx = xy'?, y" — 2y’ +y =0, and xy’ + y = 0. Moreover, the trivial solu-
tion y = 0 is an explicit solution of all three equations. When we get down to
the business of actually solving some ordinary differential equations, you will
see that methods of solution do not always lead directly to an explicit solution
y = ¢(x). This is particularly true when we attempt to solve nonlinear first-orde
differential equations. Often we have to be content with a relation or expression
G(x, y) = 0 that defines a solution ¢ implicitly.

DEFINITION 1.1.3 Implicit Solution of an ODE

A relation G(x, y) =0 is said to be an implicit solution of an ordinary
differential equation (4) on an interval /, provided that there exists at least one
function ¢ that satisfies the relation as well as the differential equation on /.
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(a) implicit solution

x*+y? =25

(b) explicit solution

v =V25—-x-5<x<5

y
5

(¢) explicit solution

Vv, = —V25—-x} -5<x<5

FIGURE 1.1.2 An implicit solution
and two explicit solutions of (8) in
Example 5

A\

FIGURE 1.1.3 Some solutions of DE
in part (a) of Example 6

1.1 DEFINITIONS AND TERMINOLOGY ° 7

It is beyond the scope of this course to investigate the conditions under which a
relation G(x, y) = 0 defines a differentiable function ¢. So we shall assume that if
the formal implementation of a method of solution leads to a relation G(x, y) = 0,
then there exists at least one function ¢ that satisfies both the relation (that is,
G(x, ¢(x)) = 0) and the differential equation on an interval /. If the implicit solution
G(x, y) = 0 is fairly simple, we may be able to solve for y in terms of x and obtain
one or more explicit solutions. See (i) in the Remarks.

DN IHNIW Verification of an Implicit Solutio

The relation x*> + y? = 25 is an implicit solution of the differential equation

dy X
i ®)
X y
on the open interval (—5, 5). By implicit differentiation we obtain
d d d dy
—x*+—)y=—25 2x + 2y—=0.
dx * dx Y dx o * Y dx

Solving the last equation for the symbol dy/dx gives (8). Moreover, solving
x2 4+ y> =25 for y in terms of x yields y = =V/25 — x2. The two functions
V= ¢(x) = V25 —x>and y = ¢,(x) = — V25 — x? satisfy the relation (that is,
x2 4+ ¢7 =25 and x> + ¢3 = 25) and are explicit solutions defined on the interval
(—5, 5). The solution curves given in Figures 1.1.2(b) and 1.1.2(c) are segments of

the graph of the implicit solution in Figure 1.1.2(a). =

Any relation of the form x> + y? — ¢ = 0 formally satisfies (8) for any constant c.
However, it is understood that the relation should always make sense in the real number
system; thus, for example, if ¢ = —25, we cannot say that x> + y> + 25 = 0 is an
implicit solution of the equation. (Why not?)

Because the distinction between an explicit solution and an implicit solution
should be intuitively clear, we will not belabor the issue by always saying, “Here is
an explicit (implicit) solution.”

— Families of Solutions The study of differential equations is similar to that of
integral calculus. In some texts a solution ¢ is sometimes referred to as an integral
of the equation, and its graph is called an integral curve. When evaluating an anti-
derivative or indefinite integral in calculus, we use a single constant ¢ of integration.
Analogously, when solving a first-order differential equation F(x, y, y') =0, we
usually obtain a solution containing a single arbitrary constant or parameter c¢. A
solution containing an arbitrary constant represents a set G(x, y, ¢) = 0 of solutions
called a one-parameter family of solutions. When solving an nth-order differential
equation F(x, y, »',...,y™) =0, we seeck an n-parameter family of solutions
G(x,y,c1, €2, . .., ¢y) = 0. This means that a single differential equation can possess
an infinite number of solutions corresponding to the unlimited number of choices
for the parameter(s). A solution of a differential equation that is free of arbitrary
parameters is called a particular solution.

DV WIS Particular Solutions

(a) The one-parameter family y = c¢x — xcos x is an explicit solution of the linear
first-order equation

xy —y=x’sinx

on the interval (—, «). (Verify.) Figure 1.1.3 shows the graphs of some particular
solutions in this family for various choices of ¢. The solution y = —x cos x, the blue
graph in the figure, is a particular solution corresponding to ¢ = 0.
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N

A\

A

FIGURE 1.1.4 Some solutions
of DE in part (b) of Example 6

(a) two explicit solutions

Y

c=-1,
x<0

(b) piecewise-defined solution

FIGURE 1.1.5 Some solutions of DE

in Example 8

(b) The two-parameter family y = cje* + cxe” is an explicit solution of the linear
second-order equation

V=2 +y=0

in part (b) of Example 3. (Verify.) In Figure 1.1.4 we have shown seven of the “dou-
ble infinity” of solutions in the family. The solution curves in red, green, and blue
are the graphs of the particular solutions y = 5xe¢* (¢; = 0, ¢c; = 5), v = 3¢" (¢; = 3,
¢ =0),and y = 5¢" — 2xe* (c) = 5, ¢ = 2), respectively. =

Sometimes a differential equation possesses a solution that is not a member of a
family of solutions of the equation—that is, a solution that cannot be obtained by spe-
cializing any of the parameters in the family of solutions. Such an extra solution is called
a singular solution. For example, we have seen thaty = 11—6x4 and y = 0 are solutions of
the differential equation dy/dx = xy"? on (—, «). In Section 2.2 we shall demonstrate,
by actually solving it, that the differential equation dy/dx = xy"? possesses the one-
parameter family of solutions y = (%xz + ¢) . When ¢ = 0, the resulting particular
solutionisy = 11—6x4. But notice that the trivial solution y = 0 is a singular solution, since
it is not a member of the family y = (i X2+ c) ; there is no way of assigning a value to
the constant ¢ to obtain y = 0.

In all the preceding examples we used x and y to denote the independent and
dependent variables, respectively. But you should become accustomed to seeing
and working with other symbols to denote these variables. For example, we could
denote the independent variable by ¢ and the dependent variable by x.

DN\ ILNIWE Using Different Symbols

The functions x = ¢; cos 4f and x = c¢; sin 4, where ¢ and ¢, are arbitrary constants
or parameters, are both solutions of the linear differential equation

x" + 16x = 0.
For x = ¢ cos 4t the first two derivatives with respect to ¢ are x’ = —4c¢; sin 4¢
and x” = —16¢) cos 4¢. Substituting x” and x then gives

x" + 16x = —16¢, cos 4t + 16(c, cos 4f) = 0.
In like manner, for x = ¢, sin 4¢ we have x” = —16¢, sin 4t¢, and so

x" + 16x = —16¢,sin 4t + 16(c, sin 4¢) = 0.
Finally, it is straightforward to verify that the linear combination of solutions, or the
two-parameter family x = ¢; cos 4¢ + ¢, sin 4¢, is also a solution of the differential

equation. =

The next example shows that a solution of a differential equation can be a
piecewise-defined function

DV WIHANE Piecewise-Defined Solutio

The one-parameter family of quartic monomial functions y = cx* is an explicit solu-
tion of the linear first-order equatio

xy' —4y=0

on the interval (—oo, ). (Verify.) The blue and red solution curves shown in
Figure 1.1.5(a) are the graphs of y = x* and y = —x* and correspond to the choices
¢ = 1land ¢ = —1, respectively.
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1.1 DEFINITIONS AND TERMINOLOGY ° 9

The piecewise-defined di ferentiable function

_f=xh o x<o0
Y X x>0

is also a solution of the differential equation but cannot be obtained from the family
y = cx* by a single choice of c. As seen in Figure 1.1.5(b) the solution is constructed

from the family by choosingc = —1 forx <0Oandc = 1 forx = 0. =

= Systems of Differential Equations Up to this point we have been
discussing single differential equations containing one unknown function. But
often in theory, as well as in many applications, we must deal with systems of
differential equations. A system of ordinary differential equations is two or more
equations involving the derivatives of two or more unknown functions of a single
independent variable. For example, if x and y denote dependent variables and ¢
denotes the independent variable, then a system of two first-orde differential
equations is given by

gff(f V)
PR
)
B i
dt 7

A solution of a system such as (9) is a pair of differentiable functions x = ¢(?),
¥ = ¢(?), defined on a common interval /, that satisfy each equation of the system
on this interval.

REMARKS

(?) A few last words about implicit solutions of differential equations are in
order. In Example 5 we were able to solve the relation x> + y? = 25 for
y in terms of x to get two explicit solutions, ¢;(x) = V25 — x> and
b,(x) = —V25 — x2, of the differential equation (8). But don’t read too much
into this one example. Unless it is easy or important or you are instructed to,
there is usually no need to try to solve an implicit solution G(x, y) = 0 for y
explicitly in terms of x. Also do not misinterpret the second sentence following
Definition 1.1.3. An implicit solution G(x, y) = 0 can define a perfectly good
differentiable function ¢ that is a solution of a DE, yet we might not be able to
solve G(x, y) = 0 using analytical methods such as algebra. The solution curve
of ¢ may be a segment or piece of the graph of G(x, y) = 0. See Problems 45
and 46 in Exercises 1.1. Also, read the discussion following Example 4 in
Section 2.2.

(if) Although the concept of a solution has been emphasized in this section,
you should also be aware that a DE does not necessarily have to possess
a solution. See Problem 39 in Exercises 1.1. The question of whether a
solution exists will be touched on in the next section.

(#i7) It might not be apparent whether a first-order ODE written in differential
form M(x, y)dx + N(x, y)dy = 0 is linear or nonlinear because there is nothing
in this form that tells us which symbol denotes the dependent variable. See
Problems 9 and 10 in Exercises 1.1.

(iv) It might not seem like a big deal to assume that F(x, y, ', . .., y"™) = 0 can
be solved for y™, but one should be a little bit careful here. There are exceptions,
and there certainly are some problems connected with this assumption. See
Problems 52 and 53 in Exercises 1.1.

(v) You may run across the term closed form solutions in DE texts or in
lectures in courses in differential equations. Translated, this phrase usually
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refers to explicit solutions that are expressible in terms of elementary (or
familiar) functions: finite combinations of integer powers of x, roots, exponen-
tial and logarithmic functions, and trigonometric and inverse trigonometric
functions.

(vi) If every solution of an nth-order ODE F(x, , ', ..., »™) = 0 on an inter-
val / can be obtained from an n-parameter family G(x, y, ¢1, ¢a, - . ., ¢;,) = 0 by
appropriate choices of the parameters ¢;, i = 1, 2, . . ., n, we then say that the
family is the general solution of the DE. In solving linear ODEs, we shall im-
pose relatively simple restrictions on the coefficients of the equation; with these
restrictions one can be assured that not only does a solution exist on an interval
but also that a family of solutions yields all possible solutions. Nonlinear ODEs,
with the exception of some first-order equations, are usually difficult or impos-
sible to solve in terms of elementary functions. Furthermore, if we happen to
obtain a family of solutions for a nonlinear equation, it is not obvious whether
this family contains all solutions. On a practical level, then, the designation
“general solution” is applied only to linear ODEs. Don’t be concerned about
this concept at this point, but store the words “general solution” in the back of
your mind—we will come back to this notion in Section 2.3 and again in

Chapter 4.

EXERCISES 1.1

Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1—8 state the order of the given ordinary differ-
ential equation. Determine whether the equation is linear or
nonlinear by matching it with (6).

1. (1 —x)p" —4xy'+ Sy =cosx

d3y (dy>4
a2 () =0
Y dx Y

3.55W -1y +6y=0

d? d
4. ﬁ+d—:+u=cos(r+u)
dzy <dy>2
5. —==,4/1+|—
dx? dx
d’R k
6. — = ——
dr? R?

7. (sin 0)y" — (cos B)y’ =2
22
8.5&—(1 —%)x +x=0

In Problems 9 and 10 determine whether the given
first-order differential equation is linear in the indicated
dependent variable by matching it with the first differential
equation given in (7).

9. *— l)dx+xdy=0;iny;inx

10. udv+ (v+uv—ue)ydu=0;inv;inu

In Problems 11-14 verify that the indicated function is an
explicit solution of the given differential equation. Assume
an appropriate interval / of definition for each solution

11. 2y +y=0; y=e 2

122 %420y =24y 5
S T =24

—20¢

e

w |
SR

13. " — 6y’ + 13y =0; y=e*cos2x

14. y" + y =tanx; y = —(cos x)In(sec x + tan x)

In Problems 15-18 wverify that the indicated function
v = ¢(x) is an explicit solution of the given first-orde
differential equation. Proceed as in Example 2, by consider-
ing ¢ simply as a function, give its domain. Then by consid-

ering ¢ as a solution of the differential equation, give at least
one interval / of definition

15. (y—x)py'=y—x+8 y=x+4Vx+2

16. y' =25+ y% y=5tan5x

17. y' =2xy% y=1/(4—x?)

18. 2y’ =y3cosx; y = (1 —sinx) 2

In Problems 19 and 20 verify that the indicated expression is

an implicit solution of the given first-order differential equa-
tion. Find at least one explicit solution y = ¢(x) in each case.
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Use a graphing utility to obtain the graph of an explicit solu-
tion. Give an interval / of definition of each solution ¢.

19. X X — 1)1 —2x); 1 <2X_ 1) t
e T = - — : n =
dt ’ X—-1

20. 2xydx + (x> —»)dy=0; —2x*y+y*=1
In Problems 21-24 verify that the indicated family of func-

tions is a solution of the given differential equation. Assume
an appropriate interval / of definition for each solution

dpP :
1.5 =pa-p; P=—C
dt 1 + ¢

d T )
2 2y 2xy=1;, y= eXJ e'dt + ce™
dx 0

d? d
23. d_x); — 4d—i +4y =0; y=ce¥ + cxe**
d’y d’y  dy
24, x3 T + 2x? ik +y = 12x%

y=cx '+ cox + exlnx + 452

25. Verify that the piecewise-defined functio

= x<o0
Y X2, x=0

is a solution of the differential equation xy" — 2y = 0
on (—%, ®).

26. In Example 5 we saw that y = ¢(x) = V25 — x* and
y = ¢y(x) = —V25 — x* are solutions of dy/dx =
—x/y on the interval (—35, 5). Explain why the piecewise-
defined functio

Va5 =X, S5<x<0
YTl-V25 =2, 0=x<5

is not a solution of the differential equation on the
interval (=5, 5).

In Problems 27-30 find values of m so that the function

JNX 3

y = €™ is a solution of the given differential equation.

27. y' +2y=0
29. y" =5y +6y=0

28. 5y =2y
30. 2"+ 7y —4y =0

In Problems 31 and 32 find values of m so that the function
y = x™ is a solution of the given differential equation.

3. " +2y' =0

32. X' =Ty’ + 159y =0

1.1 DEFINITIONS AND TERMINOLOGY ° 11

In Problems 33—-36 use the concept that y = ¢, —0 < x < o0,
is a constant function if and only if ' = 0 to determine
whether the given differential equation possesses constant
solutions.

33. 3xy' + 5y =10

34. ' =y +2y -3

35. y— 1))y ' =1

36. y' + 4 +6y=10

In Problems 37 and 38 verify that the indicated pair of

functions is a solution of the given system of differential
equations on the interval (—oe, ).

dx d*x

37. —=x+3 38. — =4y + ¢
a T dt? yTe
dy d*y
E=5x+3y; ﬁ=4x—e’;

x = e 2+ 3¢ X = cos 2t + sin 2t + %e’,

y = —e ¥+ 5¢ y = —cos 2t — sin 2t — %e’

Discussion Problems

39. Make up a differential equation that does not possess
any real solutions.

40. Make up a differential equation that you feel confiden
possesses only the trivial solution y = 0. Explain your
reasoning.

41. What function do you know from calculus is such that
its first derivative is itself? Its first derivative is a
constant multiple & of itself? Write each answer in
the form of a first-order differential equation with a
solution.

42. What function (or functions) do you know from calcu-
lus is such that its second derivative is itself? Its second
derivative is the negative of itself? Write each answer in
the form of a second-order differential equation with a
solution.

43. Given that y = sin x is an explicit solution of the first-
d
order differential equation d_y = V1 — »?. Find an in-
X
terval I of definition [Hint: Iis not the interval (—, o).]
44. Discuss why it makes intuitive sense to presume that
the linear differential equation y” + 2y’ + 4y = 5 sin ¢
has a solution of the form y = 4 sin ¢ + B cos t, where
A and B are constants. Then find specific constants 4
and B so that y = 4 sin ¢ + B cos ¢ is a particular solu-
tion of the DE.
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In Problems 45 and 46 the given figure represents the graph
of an implicit solution G(x, y) = 0 of a differential equation
dy/dx = f(x,y). In each case the relation G(x,y) =0
implicitly defines several solutions of the DE. Carefully
reproduce each figure on a piece of paper. Use different
colored pencils to mark off segments, or pieces, on each
graph that correspond to graphs of solutions. Keep in mind
that a solution ¢ must be a function and differentiable. Use
the solution curve to estimate an interval / of definition of
each solution ¢.

45.

46.

FIGURE 1.1.7  Graph for Problem 46

47.

48.

49.

50.

The graphs of members of the one-parameter family
x* + y3 = 3cxy are called folia of Descartes. Verify
that this family is an implicit solution of the first-orde
differential equation

dy _y(»’ —2x)
dx  x(2y° — ¥%)

The graph in Figure 1.1.7 is the member of the family of
folia in Problem 47 corresponding to ¢ = 1. Discuss:
How can the DE in Problem 47 help in finding points
on the graph of x* + y* = 3xy where the tangent line
is vertical? How does knowing where a tangent line is
vertical help in determining an interval / of definitio
of a solution ¢ of the DE? Carry out your ideas,
and compare with your estimates of the intervals in
Problem 46.

In Example 5 the largest interval / over which the
explicit solutions y = ¢1(x) and y = ¢,(x) are define
is the open interval (—5, 5). Why can’t the interval / of
definition be the closed interval —5, 5]?

In Problem 21 a one-parameter family of solutions of
the DE P’ = P(1 — P) is given. Does any solution
curve pass through the point (0, 3)? Through the
point (0, 1)?

51.

52.

53.

54.

55.

56.

57.

INTRODUCTION TO DIFFERENTIAL EQUATIONS

Discuss, and illustrate with examples, how to solve
differential equations of the forms dy/dx = f(x) and
d*y/dx* = f(x).

The differential equation x(y')> — 4y’ — 12x3 = 0 has
the form given in (4). Determine whether the equation
can be put into the normal form dy/dx = f(x, y).

The normal form (5) of an nth-order differential equa-
tion is equivalent to (4) whenever both forms have
exactly the same solutions. Make up a first-order differ-
ential equation for which F(x, y, y") = 0 is not equiva-
lent to the normal form dy/dx = f(x, y).

Find a linear second-order differential equation
F(x, y,y', y") = 0 for which y = c¢;x + cyx? is a two-
parameter family of solutions. Make sure that your equa-
tion is free of the arbitrary parameters ¢; and c;.

Qualitative information about a solution y = ¢(x) of a
differential equation can often be obtained from the
equation itself. Before working Problems 55—58, recall
the geometric significance of the derivatives dy/dx
and d?y /dx>.

Consider the differential equation dy/dx = e ™.

(a) Explain why a solution of the DE must be an
increasing function on any interval of the x-axis.

(b) Whatare lim dy/dx and lim dy/dx? What does
this suggest about a solution curve as x — =®?

(¢) Determine an interval over which a solution curve is
concave down and an interval over which the curve
is concave up.

(d) Sketch the graph of a solution y = ¢(x) of the dif-
ferential equation whose shape is suggested by

parts (a)—(c).
Consider the differential equation dy/dx = 5 — y.

(a) Either by inspection or by the method suggested in
Problems 33-36, find a constant solution of the DE.

(b) Using only the differential equation, find intervals on
the y-axis on which a nonconstant solution y = ¢(x)
is increasing. Find intervals on the y-axis on which
y = ¢(x) is decreasing.

Consider the differential equation dy/dx = y(a — by),
where @ and b are positive constants.

(a) Either by inspection or by the method suggested
in Problems 33-36, find two constant solutions of
the DE.

(b) Using only the differential equation, find intervals on
the y-axis on which a nonconstant solution y = ¢(x)
is increasing. Find intervals on which y = ¢(x) is
decreasing.

(¢) Using only the differential equation, explain why
y = a/2b is the y-coordinate of a point of inflectio
of the graph of a nonconstant solution y = ¢(x).
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(d) On the same coordinate axes, sketch the graphs of Computer Lab Assignments

the two constant solutions found in part (a). These
constant solutions partition the xy-plane into three
regions. In each region, sketch the graph of a non-
constant solution y = ¢(x) whose shape is sug-
gested by the results in parts (b) and (¢).

58. Consider the differential equation y' = y* + 4.

(a) Explain why there exist no constant solutions of

ential equation.

59. y® — 20y + 158y” — 580y’ + 841y = 0;

y = xe> cos 2x

the DE. 60. x*y" + 2x3" + 20xy’ — 78 = 0;
(b) Describe the graph of a solution y = ¢(x). For cos(5 In x) sin(5 In x)

example, can a solution curve have any relative y =20 -3

extrema? x x

(¢) Explain why y = 0 is the y-coordinate of a point of
inflection of a solution curve

(d) Sketch the graph of a solution y = ¢(x) of the
differential equation whose shape is suggested by
parts (a)—(c).

1.2

INITIAL-VALUE PROBLEMS

REVIEW MATERIAL

e Normal form of a DE
e Solution of a DE
e Family of solutions

INTRODUCTION We are often interested in problems in which we seek a solution y(x) of a
differential equation so that y(x) also satisfies certain prescribed side conditions—that is, conditions
that are imposed on the unknown function y(x) and its derivatives at a point xo. On some interval /
containing x, the problem of solving an nth-order differential equation subject to n side conditions
specified at x:

d"y
d n
Subject to: (%) = yo, ¥'(%0) = y1, -+, WD) = v,

Solve: —f(x y,y,.--,y(””))

(M

where yo, yi,...,V,—1 are arbitrary real constants, is called an mnth-order initial-value
problem (IVP). The values of y(x) and its firstn — 1 derivatives at xo, y(xo) = vo, ¥ (X0) = ¥1, - - -
y"D(xg) = y,-1 are called initial conditions (IC).

Solving an nth-order initial-value problem such as (1) frequently entails first finding an
n-parameter family of solutions of the given differential equation and then using the initial-
conditions at xo to determine the n constants in this family. The resulting particular solution is
defined on some interval / containing the initial point xj.

=— Geometric Interpretation of IVPs The casesn = 1 and n = 2 in (1),

dy

T*/‘(\ »)
Y (x

0) =

Solve:

Subject to:
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In Problems 59 and 60 use a CAS to compute all derivatives
and to carry out the simplifications needed to verify that the
indicated function is a particular solution of the given differ-

2
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solutions of the DE

FIGURE 1.2.1 Solution curve of
first-orde IVP

solutions of the DE
s
| |
| |
|

| m=y,

| (X0, Y0)
1

1

FIGURE 1.2.2 Solution curve of
second-order IVP

(0,3) Z

<

FIGURE 1.2.3 Solution curves of two
IVPs in Example 1

d*y

dx?

and Solve:

= fx».)") (3)

Subject to: Y(x) = v, V' (%) =

are examples of first and second-order initial-value problems, respectively. These
two problems are easy to interpret in geometric terms. For (2) we are seeking a solution
y(x) of the differential equation " = f(x, y) on an interval / containing x, so that its
graph passes through the specified point (x(, y¢). A solution curve is shown in blue
in Figure 1.2.1. For (3) we want to find a solution y(x) of the differential equation
y" = f(x,y,y") on an interval / containing x, so that its graph not only passes through
(0, y0) but the slope of the curve at this point is the number y;. A solution curve is
shown in blue in Figure 1.2.2. The words initial conditions derive from physical sys-
tems where the independent variable is time ¢ and where y(¢9) = y and y'(¢9) = y; rep-
resent the position and velocity, respectively, of an object at some beginning, or initial,
time ¢.

DVN\YIHANMEW Two First-Order IVPs

(a) In Problem 41 in Exercises 1.1 you were asked to deduce that y = ce” is a one-
parameter family of solutions of the simple first-order equation y’ = y. All the
solutions in this family are defined on the interval (—%, %). If we impose an initial
condition, say, y(0) = 3, then substituting x = 0, y = 3 in the family determines the
constant 3 = ce” = ¢. Thus y = 3¢ is a solution of the IVP

Yy =y, y0)=3.

(b) Now if we demand that a solution curve pass through the point (1, —2) rather
than (0, 3), then y(1) = —2 will yield —2 = ce or ¢ = —2¢~ . In this case y =
—2¢* !is a solution of the IVP

Y=y y1)=-2

The two solution curves are shown in dark blue and dark red in Figure 1.2.3. =

The next example illustrates another first-order initial-value problem. In this
example notice how the interval I of definition of the solution y(x) depends on the
initial condition y(xg) = yo.

DO\ IHANIPE Interval / of Definition of a Solutio

In Problem 6 of Exercises 2.2 you will be asked to show that a one-parameter family
of solutions of the first-order differential equation y’ + 2xy> = 0isy = 1/(x> + ¢).
If we impose the initial condition y(0) = —1, then substituting x = 0 and y = —1
into the family of solutions gives —1 = 1/c or ¢ = —1. Thus y = 1 /(x> — 1). We
now emphasize the following three distinctions:

+ Considered as a function, the domain of y = 1 /(x> — 1) is the set of real
numbers x for which y(x) is defined; this is the set of all real number
exceptx = —1 and x = 1. See Figure 1.2.4(a).

+ Considered as a solution of the differential equation y' + 2xy*> = 0, the
interval 7 of definition of y = 1/(x> — 1) could be taken to be any
interval over which y(x) is defined and di ferentiable. As can be seen in
Figure 1.2.4(a), the largest intervals on which y = 1/(x*> — 1) is a solution
are (—o,—1), (—1, 1), and (1, ).
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(a) function defined for all x except x = +1

-1

(b) solution defined on interval containing x =0

FIGURE 1.2.4 Graphs of function
and solution of IVP in Example 2
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FIGURE 1.2.5 Two solutions curves
of the same IVP in Example 4
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+ Considered as a solution of the initial-value problem y' + 2xy* = 0,
¥(0) = —1, the interval 7 of definition of y = 1/(x> — 1) could be taken to
be any interval over which y(x) is defined, di ferentiable, and contains the
initial point x = 0; the largest interval for which this is true is (— 1, 1). See
the red curve in Figure 1.2.4(b). =

See Problems 3—6 in Exercises 1.2 for a continuation of Example 2.

DVNVYIHANIEN Second-Order IVP

In Example 7 of Section 1.1 we saw that x = ¢; cos 4¢ + ¢; sin 4¢ is a two-parameter
family of solutions of x” + 16x = 0. Find a solution of the initial-value problem

x" + 16x = 0, x<7—T> = -2, x’<7—7> = 1. @)

2 2
SOLUTION  We first apply x(7r/2) = —2 to the given family of solutions: ¢| cos 27 +
cysin2m = —2.Since cos 27 = 1 and sin 27 = 0, we find that ¢c; = —2. We next apply

x'(m/2) = 1 to the one-parameter family x(f) = —2 cos 4¢ + ¢, sin 4+. Differentiating
and then setting t = 77/2 and x’ = 1 gives 8 sin 27 + 4c; cos 27r = 1, from which we

see thatc, = %. Hencex = —2 cos 47 + % sin 47 is a solution of (4). =

= Existence and Uniqueness Two fundamental questions arise in considering
an initial-value problem:

Does a solution of the problem exist?
If a solution exists, is it unique?

For the first-order initial-value problem (2) we ask

Does the differential equation dy/dx = f(x, y) possess solutions?

Existence {Do any of the solution curves pass through the point (x¢, yo)?

When can we be certain that there is precisely one solution curve

Uniqueness assing through the point (xo, y¢)?

Note that in Examples 1 and 3 the phrase “a solution” is used rather than “the solu-
tion” of the problem. The indefinite article “a” is used deliberately to suggest the
possibility that other solutions may exist. At this point it has not been demonstrated
that there is a single solution of each problem. The next example illustrates an initial-

value problem with two solutions.

DO\ IMNW An IVP Can Have Several Solutions

Each of the functions y =0 and y = %,\'4 satisfies the differential equation
dy/dx = xy'’? and the initial condition y(0) = 0, so the initial-value problem
dy
2= w0 =0
X

has at least two solutions. As illustrated in Figure 1.2.5, the graphs of both functions,

shown in red and blue pass through the same point (0, 0). =

Within the safe confine of a formal course in differential equations one can be
fairly confiden that most differential equations will have solutions and that solutions of
initial-value problems will probably be unique. Real life, however, is not so idyllic.
Therefore it is desirable to know in advance of trying to solve an initial-value problem
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FIGURE 1.2.6 Rectangular region R

whether a solution exists and, when it does, whether it is the only solution of the prob-
lem. Since we are going to consider first-orde differential equations in the next two
chapters, we state here without proof a straightforward theorem that gives conditions
that are sufficien to guarantee the existence and uniqueness of a solution of a first-orde
initial-value problem of the form given in (2). We shall wait until Chapter 4 to address
the question of existence and uniqueness of a second-order initial-value problem.

THEOREM 1.2.1 Existence of a Unique Solution

Let R be a rectangular region in the xy-plane definedbya =x=b,c=y=d
that contains the point (xo, yo) in its interior. If /(x, y) and 9f/dy are continuous
on R, then there exists some interval Iy: (xo — A&, xo + &), h > 0, contained in
[a, b], and a unique function y(x), defined on /j, that is a solution of the initial-
value problem (2).

The foregoing result is one of the most popular existence and uniqueness theo-
rems for first-order differential equations because the criteria of continuity of f(x, )
and 0f/dy are relatively easy to check. The geometry of Theorem 1.2.1 is illustrated
in Figure 1.2.6.

DN\ IHNIE Example 4 Revisited

We saw in Example 4 that the differential equation dy/dx = xy'? possesses at least
two solutions whose graphs pass through (0, 0). Inspection of the functions
of X
x,y) = xy? and —=—
fx,y) = xy o "
shows that they are continuous in the upper half-plane defined by y > 0. Hence
Theorem 1.2.1 enables us to conclude that through any point (xg, yo), vo > 0 in the
upper half-plane there is some interval centered at x, on which the given differential
equation has a unique solution. Thus, for example, even without solving it, we know
that there exists some interval centered at 2 on which the initial-value problem

dy/dx = xy'?,y(2) = 1 has a unique solution. =

In Example 1, Theorem 1.2.1 guarantees that there are no other solutions of the
initial-value problems y’ = y, y(0) = 3 and y’ = y, y(1) = —2 other than y = 3¢*
and y = —2¢*7 !, respectively. This follows from the fact that f(x, y) =y and
df/dy = 1 are continuous throughout the entire xy-plane. It can be further shown that
the interval 7 on which each solution is defined is —o, ©).

= Interval of Existence/Uniqueness Suppose y(x) represents a solution of
the initial-value problem (2). The following three sets on the real x-axis may not be
the same: the domain of the function y(x), the interval / over which the solution y(x)
is defined or exists, and the interval / of existence and uniqueness. Example 2 of
Section 1.1 illustrated the difference between the domain of a function and the
interval / of definition. Now suppose (xg, Vo) is a point in the interior of the rectan-
gular region R in Theorem 1.2.1. It turns out that the continuity of the function
f(x, y) on R by itself is sufficient to guarantee the existence of at least one solution
of dy/dx = f(x, ), y(xo) = yo, defined on some interval 1. The interval / of defini

tion for this initial-value problem is usually taken to be the largest interval contain-
ing xo over which the solution y(x) is defined and differentiable. The interval /
depends on both f(x, y) and the initial condition y(x() = y. See Problems 31-34 in
Exercises 1.2. The extra condition of continuity of the first partial derivative 9f/dy
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on R enables us to say that not only does a solution exist on some interval /, con-
taining x, but it is the only solution satisfying y(x) = yo. However, Theorem 1.2.1
does not give any indication of the sizes of intervals I and ly; the interval I of
definition need not be as wide as the region R, and the interval I of existence and
uniqueness may not be as large as I. The number 4 > 0 that defines the interval
Io: (xg — h, xo + h) could be very small, so it is best to think that the solution y(x)
is unique in a local sense—that is, a solution defined near the point (xg, yo). See
Problem 50 in Exercises 1.2.

REMARKS

(7) The conditions in Theorem 1.2.1 are sufficient but not necessary. This means
that when f(x, y) and 9f/dy are continuous on a rectangular region R, it must
always follow that a solution of (2) exists and is unique whenever (xg, y) is a
point interior to R. However, if the conditions stated in the hypothesis of
Theorem 1.2.1 do not hold, then anything could happen: Problem (2) may still
have a solution and this solution may be unique, or (2) may have several solu-
tions, or it may have no solution at all. A rereading of Example 5 reveals that the
hypotheses of Theorem 1.2.1 do not hold on the line y = 0 for the differential
equation dy/dx = xy'?, so it is not surprising, as we saw in Example 4 of this
section, that there are two solutions defined on a common interval =4 <x < &
satisfying (0) = 0. On the other hand, the hypotheses of Theorem 1.2.1 do
not hold on the line y = 1 for the differential equation dy/dx = |y — 1.
Nevertheless it can be proved that the solution of the initial-value problem
dy/dx = |y — 1/, y(0) = 1, is unique. Can you guess this solution?

(if) You are encouraged to read, think about, work, and then keep in mind
Problem 49 in Exercises 1.2.

(¢ii) Initial conditions are prescribed at a single point x,. But we are also inter-
ested in solving differential equations that are subject to conditions specifie
on y(x) or its derivative at two different points xy and x;. Conditions such as

y1)=0, 5 =0 or  Wm/2)=0, y'(m)=1

and called boundary conditions. A differential equation together with bound-
ary conditions is called a boundary-value problem (BVP). For example,

Y+ A=0, »(0)=0, y(m)=0

is a boundary-value problem. See Problems 3944 in Exercises 1.2.

When we start to solve differential equations in Chapter 2 we will solve
only first-order equations and first-order initial-value problems. The mathe-
matical description of many problems in science and engineering involve
second-order IVPs or two-point BVPs. We will examine some of these prob-
lems in Chapters 4 and 5.

EXERCISES 1.2 Answers to selected odd-numbered problems begin on page ANS-1.

solution of the first-order IVP consisting of this differential
equation and the given initial condition. Give the largest
interval / over which the solution is defined

In Problems 1 and 2,y = 1/(1 + cje™¥) is a one-parameter
family of solutions of the first-order DE ' = y — 2. Find a
solution of the first-order IVP consisting of this differential
equation and the given initial condition.

3.9(2) =5 4. y(=2) =3
L y(0) = =5 2 y(-1=2 5. 9(0) = 1 6. y(}) = —4
In Problems 36,y = 1/(x*> + ¢) is a one-parameter family In Problems 7—-10, x = ¢j cos t + ¢; sin ¢ is a two-parameter

of solutions of the first-order DE y’ + 2xy? = 0. Find a family of solutions of the second-order DE x” + x = 0. Find
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a solution of the second-order IVP consisting of this differ-
ential equation and the given initial conditions.

7. x(0) = —1, x'(0)=8
8. x(7/2) =0, x'(m/2)=1
9. x(m/6) =3, x'(m/6) =0
10. x(m/4) = V2, x'(m/4) =2V2

In Problems 11-14, y = cje* + ce™ is a two-parameter

family of solutions of the second-order DE y” — y = 0. Find
a solution of the second-order IVP consisting of this differ-
ential equation and the given initial conditions.

1. y0) =1, y'(0)=2
12. y(h) =0, y'()=e
13. y(-1) =5, y(-1)=-5
14. y(0)=0, y'(0)=0

In Problems 15 and 16 determine by inspection at least two
solutions of the given first-order IV .

15. y' =3y?3, »(0)=0

16. xy' =2y, y(0)=0

In Problems 17-24 determine a region of the xy-plane for
which the given differential equation would have a unique
solution whose graph passes through a point (x¢, y¢) in the
region.

dy y
17. == = 3 18. — =V

dx dx xy

dy dy

19. x— = 20, ——y=

o dx Y dx y=x
21. (4 — yz)y’ = x2 22, (1 + y3)y’ = x?
23. (x2 4+ y?)y’ =y? 24. (y —x)y' =y +x

In Problems 25-28 determine whether Theorem 1.2.1 guar-
antees that the differential equation y' = V)? — 9 pos-
sesses a unique solution through the given point.

25. (1,4)
27. (2, -3)

26. (5,3)
28. (—1,1)

29. (a) By inspection find a one-parameter family of solu-
tions of the differential equation xy" = y. Verify that
each member of the family is a solution of the
initial-value problem xy’" = y, y(0) = 0.

(b) Explain part (a) by determining a region R in the
xy-plane for which the differential equation xy" = y
would have a unique solution through a point (x¢, vo)
inR.

CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

(c) Verify that the piecewise-defined functio

0, x<0
Y x, x=0

satisfies the condition y(0) = 0. Determine whether
this function is also a solution of the initial-value
problem in part (a).

30. (a) Verify that y = tan (x + ¢) is a one-parameter family
of solutions of the differential equation y' = 1 + y*.
(b) Since f(x,y) = 1 + y* and 9f/dy = 2y are continu-
ous everywhere, the region R in Theorem 1.2.1 can
be taken to be the entire xy-plane. Use the family of
solutions in part (a) to find an explicit solution of
the first-order initial-value problem y’' =1 + 2,
y(0) = 0. Even though xo = 0 is in the interval
(—2, 2), explain why the solution is not defined on
this interval.

(¢) Determine the largest interval / of definition for the
solution of the initial-value problem in part (b).

31. (a) Verify that y = —1/(x + ¢) is a one-parameter
family of solutions of the differential equation
y/ — y2.

(b) Since f(x, ¥) = »*> and 9f/dy = 2y are continuous
everywhere, the region R in Theorem 1.2.1 can be
taken to be the entire xy-plane. Find a solution from
the family in part (a) that satisfies y(0) = 1. Then
find a solution from the family in part (a) that

satisfies y(0) = —1. Determine the largest interval /
of definition for the solution of each initial-value
problem.

(¢) Determine the largest interval / of definition for the
solution of the first-order initial-value problem
y" =32,y(0) = 0. [Hint: The solution is not a mem-
ber of the family of solutions in part (a).]

32. (a) Show that a solution from the family in part (a)
of Problem 31 that satisfies y' = %, y(1) = 1, is
y=1/2 ).

(b) Then show that a solution from the family in part (a)
of Problem 31 that satisfies y’ = 32, y(3) = —1, is
y=1/2~-x).

(¢) Are the solutions in parts (a) and (b) the same?

33. (a) Verify that 3x> — y%> = ¢ is a one-parameter fam-
ily of solutions of the differential equation
ydy/dx = 3x.

(b) By hand, sketch the graph of the implicit solution
3x2 — y* = 3. Find all explicit solutions y = ¢ (x) of
the DE in part (a) defined by this relation. Give the
interval / of definition of each explicit solution

(c) The point (—2, 3) is on the graph of 3x*> — y? = 3,
but which of the explicit solutions in part (b) satis-
fies y(—2) = 3?

34. (a) Use the family of solutions in part (a) of Problem 33
to find an implicit solution of the initial-value
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problem y dy/dx = 3x, y(2) = —4. Then, by hand,
sketch the graph of the explicit solution of this
problem and give its interval / of definition

(b) Are there any explicit solutions of y dy/dx = 3x that
pass through the origin?

In Problems 35-38 the graph of a member of a family
of solutions of a second-order differential equation
d*y/dx* = f(x,y,y") is given. Match the solution curve with
at least one pair of the following initial conditions.

@ yM=1, y'()=-2

() y(—=1) =0, y'(-1)=—4

© y=1 y1)=2

@ y(0)= -1, y'(0)=2

(e y0)=-1, y'(0)=0

®) y(0)=—4, y'(0)=-2

3s. Y

36. y

37. )

FIGURE 1.2.9 Graph for Problem 37

1.2 INITIAL-VALUE PROBLEMS ° 19

38. y

FIGURE 1.2.10 Graph for Problem 38

In Problems 39-44, y = ¢, cos2x + c,sin2x is a two-
parameter family of solutions of the second-order DE
V" + 4y = 0. If possible, find a solution of the differential
equation that satisfies the given side conditions. The condi-
tions specified at two different points are called boundary
conditions.

39. y(0) = 0, (7/4) =3
41. y'(0) = 0, y'(w/6) = 0
43. y(0) = 0, y(m) =2

40. y(0) = 0,y(7) =0
42. y(0) =1,y (m) =5
4. y'(w/2) = 1,y'(m) =0

Discussion Problems

In Problems 45 and 46 use Problem 51 in Exercises 1.1 and
(2) and (3) of this section.

45. Find a function y = f(x) whose graph at each point (x, y)
has the slope given by 8e?* + 6x and has the
y-intercept (0, 9).

46. Find a function y = f(x) whose second derivative is
y" = 12x — 2 at each point (x, y) on its graph and
y = —x + 5 is tangent to the graph at the point corre-
sponding to x = 1.

47. Consider the initial-value problem y' =x — 2y,
y(0) = % Determine which of the two curves shown
in Figure 1.2.11 is the only plausible solution curve.
Explain your reasoning.

FIGURE 1.2.11 Graphs for Problem 47

48. Determine a plausible value of x, for which the
graph of the solution of the initial-value problem
y' + 2y =3x — 6, y(xo) = 0 is tangent to the x-axis at
(x0, 0). Explain your reasoning.
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49.

50.

° CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

Suppose that the first-order differential equation
dy/dx = f(x, y) possesses a one-parameter family of
solutions and that f(x, y) satisfies the hypotheses of
Theorem 1.2.1 in some rectangular region R of the
xy-plane. Explain why two different solution curves
cannot intersect or be tangent to each other at a point
(x0, o) In R.
1

The functions y(x) = j¢x*, —0 < x < ®and
0, x <0
x =
y( ) {116)(:4, x = O

have the same domain but are clearly different. See
Figures 1.2.12(a) and 1.2.12(b), respectively. Show that
both functions are solutions of the initial-value problem
dy/dx = xy"?, y(2) =1 on the interval (—%, o).
Resolve the apparent contradiction between this fact
and the last sentence in Example 5.

y y

(a) (b)
FIGURE 1.2.12 Two solutions of the IVP in Problem 50

Mathematical Model

51. Population Growth Beginning in the next section

we will see that differential equations can be used to
describe or model many different physical systems. In
this problem suppose that a model of the growing popu-
lation of a small community is given by the initial-value
problem

dpP

o 0.15P(¢) + 20, P(0) = 100,
where P is the number of individuals in the community
and time ¢ is measured in years. How fast—that is, at
what rate—is the population increasing at t = 0? How
fast is the population increasing when the population
is 500?

1.3 DIFFERENTIAL EQUATIONS AS MATHEMATICAL MODELS

REVIEW MATERIAL

Newton’s second law of motion
Hooke’s law

Kirchhoff’s laws

Archimedes’ principle

INTRODUCTION

Units of measurement for weight, mass, and density

In this section we introduce the notion of a differential equation as a

mathematical model and discuss some specific models in biology, chemistry, and physics. Once we
have studied some methods for solving DEs in Chapters 2 and 4, we return to, and solve, some of

these models in Chapters 3 and 5.

= Mathematical Models It is often desirable to describe the behavior of some
real-life system or phenomenon, whether physical, sociological, or even economic,
in mathematical terms. The mathematical description of a system of phenomenon is
called a mathematical model and is constructed with certain goals in mind. For ex-
ample, we may wish to understand the mechanisms of a certain ecosystem by study-
ing the growth of animal populations in that system, or we may wish to date fossils
by analyzing the decay of a radioactive substance, either in the fossil or in the stra-
tum in which it was discovered.
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1.3 DIFFERENTIAL EQUATIONS AS MATHEMATICAL MODELS ° 21

Construction of a mathematical model of a system starts with

(/)  identification of the variables that are responsible for changing the
system. We may choose not to incorporate all these variables into the
model at first. In this step we are specifying the level of resolution of
the model.

Next

(if) we make a set of reasonable assumptions, or hypotheses, about the
system we are trying to describe. These assumptions will also include
any empirical laws that may be applicable to the system.

For some purposes it may be perfectly within reason to be content with low-
resolution models. For example, you may already be aware that in beginning
physics courses, the retarding force of air friction is sometimes ignored in modeling
the motion of a body falling near the surface of the Earth, but if you are a scientist
whose job it is to accurately predict the flight path of a long-range projectile,
you have to take into account air resistance and other factors such as the curvature
of the Earth.

Since the assumptions made about a system frequently involve a rate of change
of one or more of the variables, the mathematical depiction of all these assumptions
may be one or more equations involving derivatives. In other words, the mathemat-
ical model may be a differential equation or a system of differential equations.

Once we have formulated a mathematical model that is either a differential
equation or a system of differential equations, we are faced with the not insignifican
problem of trying to solve it. [/ we can solve it, then we deem the model to be reason-
able if its solution is consistent with either experimental data or known facts about
the behavior of the system. But if the predictions produced by the solution are poor,
we can either increase the level of resolution of the model or make alternative as-
sumptions about the mechanisms for change in the system. The steps of the model-
ing process are then repeated, as shown in the diagram in Figure 1.3.1.

Assumptions Express assumptions Mathematical
—_— .
and hypotheses in terms of DEs formulation
If necessary,

alter assumptions

. . Solve the DEs
or increase resolution
of model
Check model Display predictions .
er - Obtain
predictions with ~<«——— of model e X
. solutions
known facts (e.g., graphically)

FIGURE 1.3.1 Steps in the modeling process with differential equations

Of course, by increasing the resolution, we add to the complexity of the mathemati-
cal model and increase the likelihood that we cannot obtain an explicit solution.

A mathematical model of a physical system will often involve the variable time ¢.
A solution of the model then gives the state of the system; in other words, the values
of the dependent variable (or variables) for appropriate values of 7 describe the system
in the past, present, and future.

= Population Dynamics One of the earliest attempts to model human pop-
ulation growth by means of mathematics was by the English clergyman and econo-
mist Thomas Malthus in 1798. Basically, the idea behind the Malthusian model is the
assumption that the rate at which the population of a country grows at a certain time is
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proportional” to the total population of the country at that time. In other words, the more
people there are at time #, the more there are going to be in the future. In mathematical
terms, if P(f) denotes the total population at time ¢#, then this assumption can be
expressed as

d—P o P or di) = kP )

dt dt ’
where £ is a constant of proportionality. This simple model, which fails to take into
account many factors that can influence human populations to either grow or decline
(immigration and emigration, for example), nevertheless turned out to be fairly accu-
rate in predicting the population of the United States during the years 1790—1860.
Populations that grow at a rate described by (1) are rare; nevertheless, (1) is still used
to model growth of small populations over short intervals of time (bacteria growing
in a petri dish, for example).

— Radioactive Decay The nucleus of an atom consists of combinations of protons
and neutrons. Many of these combinations of protons and neutrons are unstable—that
is, the atoms decay or transmute into atoms of another substance. Such nuclei are
said to be radioactive. For example, over time the highly radioactive radium, Ra-226,
transmutes into the radioactive gas radon, Rn-222. To model the phenomenon of
radioactive decay, it is assumed that the rate d4/dt at which the nuclei of a sub-
stance decay is proportional to the amount (more precisely, the number of nuclei)
A(?) of the substance remaining at time ¢:

dA dA

p x A or ” kA. 2)
Of course, equations (1) and (2) are exactly the same; the difference is only in the in-
terpretation of the symbols and the constants of proportionality. For growth, as we
expect in (1), £ > 0, and for decay, as in (2), £ < 0.

The model (1) for growth can also be seen as the equation dS/dt = rS, which
describes the growth of capital S when an annual rate of interest 7 is compounded
continuously. The model (2) for decay also occurs in biological applications such as
determining the half-life of a drug—the time that it takes for 50% of a drug to be
eliminated from a body by excretion or metabolism. In chemistry the decay model
(2) appears in the mathematical description of a first-order chemical reaction. The
point is this:

A single differential equation can serve as a mathematical model for many
different phenomena.

Mathematical models are often accompanied by certain side conditions. For ex-
ample, in (1) and (2) we would expect to know, in turn, the initial population Py and
the initial amount of radioactive substance 4, on hand. If the initial point in time is
taken to be ¢ = 0, then we know that P(0) = Py and 4(0) = 4. In other words, a
mathematical model can consist of either an initial-value problem or, as we shall see
later on in Section 5.2, a boundary-value problem.

— Newton’s Law of Cooling/Warming According to Newton’s empirical
law of cooling/warming, the rate at which the temperature of a body changes is
proportional to the difference between the temperature of the body and the temper-
ature of the surrounding medium, the so-called ambient temperature. If 7(¢) repre-
sents the temperature of a body at time #, 7, the temperature of the surrounding

“If two quantities u and v are proportional, we write u o v. This means that one quantity is a constant
multiple of the other: u = kv.
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medium, and dT/dt the rate at which the temperature of the body changes, then
Newton’s law of cooling/warming translates into the mathematical statement
a . r_r aT_wr-r) 3)
5 - or -, T K - mls
dt " dt
where £ is a constant of proportionality. In either case, cooling or warming, if 7, is a
constant, it stands to reason that £ < 0.

= Spread of a Disease A contagious discase—for example, a flu virus—is
spread throughout a community by people coming into contact with other people. Let
x(f) denote the number of people who have contracted the disease and y(¢) denote the
number of people who have not yet been exposed. It seems reasonable to assume that
the rate dx/dt at which the disease spreads is proportional to the number of encoun-
ters, or interactions, between these two groups of people. If we assume that the num-
ber of interactions is jointly proportional to x(¢) and y(f)—that is, proportional to the
product xy—then

— =k 4
2 e 4)

where £ is the usual constant of proportionality. Suppose a small community has a
fixed population of n people. If one infected person is introduced into this commu-
nity, then it could be argued that x(¢) and y(¢) are related by x + y = n + 1. Using
this last equation to eliminate y in (4) gives us the model

dx

i kx(n + 1 — x). 5)

An obvious initial condition accompanying equation (5) is x(0) = 1.

=— Chemical Reactions The disintegration of a radioactive substance, governed
by the differential equation (1), is said to be a first-orde reaction. In chemistry
a few reactions follow this same empirical law: If the molecules of substance A
decompose into smaller molecules, it is a natural assumption that the rate at which
this decomposition takes place is proportional to the amount of the first substance
that has not undergone conversion; that is, if X(¢) is the amount of substance 4
remaining at any time, then dX/dt = kX, where k is a negative constant since X is
decreasing. An example of a first-order chemical reaction is the conversion of #-butyl
chloride, (CH;3);CCl, into #-butyl alcohol, (CH3);COH:

(CH,);CCl + NaOH — (CH,);COH + NaCl.

Only the concentration of the #-butyl chloride controls the rate of reaction. But in the
reaction

CH;Cl + NaOH — CH;0H + NaCl

one molecule of sodium hydroxide, NaOH, is consumed for every molecule of
methyl chloride, CH3Cl, thus forming one molecule of methyl alcohol, CH;0H, and
one molecule of sodium chloride, NaCl. In this case the rate at which the reaction
proceeds is proportional to the product of the remaining concentrations of CH;Cl and
NaOH. To describe this second reaction in general, let us suppose one molecule of a
substance 4 combines with one molecule of a substance B to form one molecule of a
substance C. If X denotes the amount of chemical C formed at time ¢ and if & and 8
are, in turn, the amounts of the two chemicals 4 and B at t = 0 (the initial amounts),
then the instantaneous amounts of 4 and B not converted to chemical C are &« — X
and B — X, respectively. Hence the rate of formation of C is given by

dX

— = k(e — X)(B — X), (6)

dt
where £ is a constant of proportionality. A reaction whose model is equation (6) is
said to be a second-order reaction.
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input rate of brine
3 gal/min

VLS
constant |\ \'7::/, v )
300 gal “*-—Ir -

3 gal/min )
FIGURE 1.3.2 Mixing tank

FIGURE 1.3.3 Draining tank

— Mixtures The mixing of two salt solutions of differing concentrations gives
rise to a first-order differential equation for the amount of salt contained in the mix-
ture. Let us suppose that a large mixing tank initially holds 300 gallons of brine (that
is, water in which a certain number of pounds of salt has been dissolved). Another
brine solution is pumped into the large tank at a rate of 3 gallons per minute; the
concentration of the salt in this inflow is 2 pounds per gallon. When the solution in
the tank is well stirred, it is pumped out at the same rate as the entering solution. See
Figure 1.3.2. If A(¢) denotes the amount of salt (measured in pounds) in the tank at
time 7, then the rate at which A(7) changes is a net rate:

dA input rate output rate
= < p . €> o ( p ) = R[n o R(m/' (7)
dt of salt of salt

The input rate R;, at which salt enters the tank is the product of the inflow concentra-
tion of salt and the inflow rate of fluid. Note that R;, is measured in pounds per
minute:

concentration

of salt input rate input rate
in inflo of brine of salt

R, = (2 1b/gal) - (3 gal/min) = (6 Ib/min).

Now, since the solution is being pumped out of the tank at the same rate that it is
pumped in, the number of gallons of brine in the tank at time ¢ is a constant 300 gal-
lons. Hence the concentration of the salt in the tank as well as in the outflow is
c(t) = A(1)/300 Ib/gal, so the output rate R, of salt is

concentration

of salt output rate  output rate
in outflo of brine of salt
l l l
(A ) . A@) .
R, = (‘3 00 1b/ga1) (3 gal/min) = 100 Ib/min.
The net rate (7) then becomes
dt 00 > ar 100”7

If 7, and r,,, denote general input and output rates of the brine solutions,” then
there are three possibilities: 7y, = Fous, Fin = Tour, and 7y, < 1. In the analysis lead-
ing to (8) we have assumed that r;,, = r,,,. In the latter two cases the number of gal-
lons of brine in the tank is either increasing (r;, > r,,,) or decreasing (r;, < r,) at
the net rate r;, — 7y, See Problems 10—12 in Exercises 1.3.

= Draining a Tank In hydrodynamics, Torricelli’s law states that the speed v of
efflux of water though a sharp-edged hole at the bottom of a tank filled to a depth %
is the same as the speed that a body (in this case a drop of water) would acquire in
falling freely from a height #—that is, v = \V2gh, where g is the acceleration due to
gravity. This last expression comes from equating the kinetic energy %mv2 with the
potential energy mgh and solving for v. Suppose a tank filled with water is allowed to
drain through a hole under the influence of gravity. We would like to fin the depth £
of water remaining in the tank at time 7. Consider the tank shown in Figure 1.3.3. If
the area of the hole is 4, (in ft?) and the speed of the water leaving the tank is
v = V2gh (in ft/s), then the volume of water leaving the tank per second is 4,V 2gh
(in ft*/s). Thus if ¥(¢) denotes the volume of water in the tank at time ¢, then

dv

= —AN2gh, ©)

“Don’t confuse these symbols with R;, and R,,,, which are input and output rates of salt.
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(a) LRC-series circuit

Inductor

inductance L: henries (h)
di

dt

0000 ——

L

voltage drop across: L

Resistor
resistance R: ohms (£2)
voltage drop across: iR

Capacitor
capacitance C: farads (f)

voltage drop across: IEq

\

\

C
(b)

FIGURE 1.3.4 Symbols, units, and

voltages. Current i(¢) and charge ¢(f) are

measured in amperes (A) and coulombs
(C), respectively

FIGURE 1.3.5 Position of rock

measured from ground level
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where the minus sign indicates that /' is decreasing. Note here that we are ignoring
the possibility of friction at the hole that might cause a reduction of the rate of flo
there. Now if the tank is such that the volume of water in it at time ¢ can be written
V(f) = A,h, where 4,, (in ft?) is the constant area of the upper surface of the water
(see Figure 1.3.3), then dV/dt = A,, dh/dt. Substituting this last expression into (9)
gives us the desired differential equation for the height of the water at time ¢:

dh A,
— = —— V2gh. 10

dt A, ° (10)
It is interesting to note that (10) remains valid even when A4,, is not constant. In this
case we must express the upper surface area of the water as a function of #—that is,

A,, = A(h). See Problem 14 in Exercises 1.3.

— Series Circuits Consider the single-loop LRC-series circuit shown in Fig-
ure 1.3.4(a), containing an inductor, resistor, and capacitor. The current in a circuit
after a switch is closed is denoted by i(?); the charge on a capacitor at time ¢ is de-
noted by ¢(?). The letters L, R, and C are known as inductance, resistance, and capac-
itance, respectively, and are generally constants. Now according to Kirchhoff’s
second law, the impressed voltage £(¢) on a closed loop must equal the sum of the
voltage drops in the loop. Figure 1.3.4(b) shows the symbols and the formulas for the
respective voltage drops across an inductor, a capacitor, and a resistor. Since current
i(?) is related to charge ¢(¢) on the capacitor by i = dg/dt, adding the three voltages

inductor resistor capacitor
di d*q dq 1
—=L—, iR=R—, and —
dt dr dt c!

and equating the sum to the impressed voltage yields a second-order differential
equation

12 /]

dq n dq

1
L RY 1~ 4 = E). 1
a2 TRy Tl EO (b

We will examine a differential equation analogous to (11) in great detail in
Section 5.1.

= Falling Bodies To construct a mathematical model of the motion of a body
moving in a force field, one often starts with the laws of motion formulated by the
English mathematician Isaac Newton (1643—1727). Recall from elementary physics
that Newton’s first law of motion states that a body either will remain at rest or will
continue to move with a constant velocity unless acted on by an external force. In
each case this is equivalent to saying that when the sum of the forces F = », F,—
that is, the net or resultant force—acting on the body is zero, then the acceleration
a of the body is zero. Newton’s second law of motion indicates that when the net
force acting on a body is not zero, then the net force is proportional to its accelera-
tion a or, more precisely, F = ma, where m is the mass of the body.

Now suppose a rock is tossed upward from the roof of a building as illustrated
in Figure 1.3.5. What is the position s(7) of the rock relative to the ground at time #?
The acceleration of the rock is the second derivative d%s/d¢>. If we assume that the
upward direction is positive and that no force acts on the rock other than the force of
gravity, then Newton’s second law gives

d%s d’s

m% = —mg or 7 = —g. (12)

In other words, the net force is simply the weight F = F; = — W of the rock near the
surface of the Earth. Recall that the magnitude of the weight is W = mg, where m is
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kv
positive air resistance
direction O
j gravity
mg

FIGURE 1.3.6 Falling body of mass m

] I I

(a) suspension bridge cable

(b) telephone wires

FIGURE 1.3.7 Cables suspended
between vertical supports

W
0 ¥

FIGURE 1.3.8 Element of cable

the mass of the body and g is the acceleration due to gravity. The minus sign in (12) is
used because the weight of the rock is a force directed downward, which is opposite
to the positive direction. If the height of the building is s and the initial velocity of the
rock is v, then s is determined from the second-order initial-value problem

d’s ,
=78 s$(0) =1y s(0)=w, (13)
dt

Although we have not been stressing solutions of the equations we have con-
structed, note that (13) can be solved by integrating the constant —g twice with
respect to . The initial conditions determine the two constants of integration.
From elementary physics you might recognize the solution of (13) as the formula
s(f) = —3gf + vt + ;.

= Falling Bodies and Air Resistance Before the famous experiment by the
Italian mathematician and physicist Galileo Galilei (1564—1642) from the leaning
tower of Pisa, it was generally believed that heavier objects in free fall, such as a can-
nonball, fell with a greater acceleration than lighter objects, such as a feather.
Obviously, a cannonball and a feather when dropped simultaneously from the same
height do fall at different rates, but it is not because a cannonball is heavier. The dif-
ference in rates is due to air resistance. The resistive force of air was ignored in the
model given in (13). Under some circumstances a falling body of mass m, such as a
feather with low density and irregular shape, encounters air resistance proportional
to its instantaneous velocity v. If we take, in this circumstance, the positive direction
to be oriented downward, then the net force acting on the mass is given by F' = F| +
F, = mg — kv, where the weight '} = mg of the body is force acting in the positive
direction and air resistance F>, = —kv is a force, called viscous damping, acting in the
opposite or upward direction. See Figure 1.3.6. Now since v is related to acceleration
a by a = dv/dt, Newton’s second law becomes F = ma = m dv/dt. By equating the
net force to this form of Newton’s second law, we obtain a first-order differential
equation for the velocity v(¢) of the body at time ¢,

dv
= = mo — kv. 14
m o mg v (14)
Here £ is a positive constant of proportionality. If s(7) is the distance the body falls in
time ¢ from its initial point of release, then v = ds/dt and a = dv/dt = d°s/dt*. In
terms of s, (14) is a second-order differential equation

d_zs _ B kd_s ) d?s N kds
M~ e T Ry 0 e T

= mg. (15)

= Suspended Cables Suppose a flexible cable, wire, or heavy rope is sus-
pended between two vertical supports. Physical examples of this could be one of the
two cables supporting the roadbed of a suspension bridge as shown in Figure 1.3.7(a)
or a long telephone wire strung between two posts as shown in Figure 1.3.7(b). Our
goal is to construct a mathematical model that describes the shape that such a cable
assumes.

To begin, let’s agree to examine only a portion or element of the cable between
its lowest point P and any arbitrary point P,. As drawn in blue in Figure 1.3.8, this
element of the cable is the curve in a rectangular coordinate system with y-axis cho-
sen to pass through the lowest point P on the curve and the x-axis chosen a units
below P;. Three forces are acting on the cable: the tensions T, and T, in the cable
that are tangent to the cable at P, and P», respectively, and the portion W of the total
vertical load between the points P; and P,. Let T, =|Ty|, 7> =|T,|, and
W = |W| denote the magnitudes of these vectors. Now the tension T, resolves
into horizontal and vertical components (scalar quantities) 75 cos # and 75 sin 6.
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Because of static equilibrium we can write
T, =T,cos 0 and W = T, sin 6.

By dividing the last equation by the first, we eliminate 7 and get tan § = W/T). But
because dy/dx = tan 6, we arrive at

dy W
- =— 16
dx T, (16)

This simple first-order differential equation serves as a model for both the shape of a
flexible wire such as a telephone wire hanging under its own weight and the shape of
the cables that support the roadbed of a suspension bridge. We will come back to
equation (16) in Exercises 2.2 and Section 5.3.

= What Lies Ahead Throughout this text you will see three different types of
approaches to, or analyses of, differential equations. Over the centuries differential
equations would often spring from the efforts of a scientist or engineer to describe
some physical phenomenon or to translate an empirical or experimental law into
mathematical terms. As a consequence, a scientist, engineer, or mathematician
would often spend many years of his or her life trying to fin the solutions of a DE.
With a solution in hand, the study of its properties then followed. This quest for so-
lutions is called by some the analytical approach to differential equations. Once they
realized that explicit solutions are at best difficul to obtain and at worst impossible
to obtain, mathematicians learned that a differential equation itself could be a font of
valuable information. It is possible, in some instances, to glean directly from the dif-
ferential equation answers to questions such as Does the DE actually have solutions?
If a solution of the DE exists and satisfie an initial condition, is it the only such so-
lution? What are some of the properties of the unknown solutions? What can we say
about the geometry of the solution curves? Such an approach is qualitative analysis.
Finally, if a differential equation cannot be solved by analytical methods, yet we
can prove that a solution exists, the next logical query is Can we somehow approxi-
mate the values of an unknown solution? Here we enter the realm of numerical
analysis. An affirmativ answer to the last question stems from the fact that a differ-
ential equation can be used as a cornerstone for constructing very accurate approxi-
mation algorithms. In Chapter 2 we start with qualitative considerations of first

order ODEs, then examine analytical stratagems for solving some special first-orde

equations, and conclude with an introduction to an elementary numerical method.
See Figure 1.3.9.

2
Lcty-f;;"=y [ N W)

but wp "%l x?) = 2%+ xw 4+t - gw=0
= w=Culig )+ gl yy(x). From
T =Ld,m-d,,)
x
and J(x)—--J )+ d, (0=

e g G )+ eplpr (31
T e 0y RD

% if('(‘ft’(
‘éf's,;?y

(a) analytical (b) qualitative (¢) numerical

FIGURE 1.3.9 Different approaches to the study of differential equations
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REMARKS

Each example in this section has described a dynamical system—a system that
changes or evolves with the flow of time # Since the study of dynamical
systems is a branch of mathematics currently in vogue, we shall occasionally
relate the terminology of that field to the discussion at hand

In more precise terms, a dynamical system consists of a set of time-
dependent variables, called state variables, together with a rule that enables
us to determine (without ambiguity) the state of the system (this may be a past,
present, or future state) in terms of a state prescribed at some time #y. Dynamical
systems are classifie as either discrete-time systems or continuous-time systems.
In this course we shall be concerned only with continuous-time systems—
systems in which a// variables are defined over a continuous range of time. The
rule, or mathematical model, in a continuous-time dynamical system is a differ-
ential equation or a system of differential equations. The state of the system
at a time 7 is the value of the state variables at that time; the specified state of
the system at a time 7, is simply the initial conditions that accompany the math-
ematical model. The solution of the initial-value problem is referred to as the
response of the system. For example, in the case of radioactive decay, the rule
is d4/dt = kA. Now if the quantity of a radioactive substance at some time 7 is
known, say A(ty) = Ao, then by solving the rule we find that the response of the
system for ¢ = ¢ is A(f) = A,e~ ) (see Section 3.1). The response A(?) is the
single state variable for this system. In the case of the rock tossed from the roof
of a building, the response of the system—the solution of the differential
equation d’s/dt*> = —g, subject to the initial state s(0) = so, s'(0) = vy, is the
function s(f) = —%gt2 + vyt + 50,0 =t = T, where T represents the time
when the rock hits the ground. The state variables are s(¢) and s'(¢), which
are the vertical position of the rock above ground and its velocity at time ¢,
respectively. The acceleration s"(7) is not a state variable, since we have to know
only any initial position and initial velocity at a time # to uniquely determine
the rock’s position s(f) and velocity s'(f) = v(f) for any time in the interval
to =t = T The acceleration s"(f) = a(?) is, of course, given by the differential
equations"(r) = —g, 0<t<T

One last point: Not every system studied in this text is a dynamical system.
We shall also examine some static systems in which the model is a differential
equation.

EXERCISES 1.3

Answers to selected odd-numbered problems begin on page ANS-1.

Population Dynamics

1.

Under the same assumptions that underlie the model in
(1), determine a differential equation for the population
P(f) of a country when individuals are allowed to
immigrate into the country at a constant rate » > 0.
What is the differential equation for the population P(¢)
of the country when individuals are allowed to emigrate
from the country at a constant rate » > 0?

The population model given in (1) fails to take death
into consideration; the growth rate equals the birth rate.
In another model of a changing population of a commu-
nity it is assumed that the rate at which the population
changes is a net rate—that is, the difference between

the rate of births and the rate of deaths in the commu-
nity. Determine a model for the population P(7) if both
the birth rate and the death rate are proportional to the
population present at time ¢ > 0.

. Using the concept of net rate introduced in Problem 2,

determine a model for a population P(?) if the birth rate
is proportional to the population present at time ¢ but the
death rate is proportional to the square of the population
present at time ¢.

. Modify the model in Problem 3 for net rate at which

the population P(¢) of a certain kind of fish changes by
also assuming that the fish are harvested at a constant
rate & > 0.
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Newton’s Law of Cooling/Warming number of people x(¢) who have adopted the innovation
at time ¢ if it is assumed that the rate at which the innova-
tions spread through the community is jointly propor-
tional to the number of people who have adopted it and
the number of people who have not adopted it.

5. A cup of coffee cools according to Newton’s law of
cooling (3). Use data from the graph of the temperature
7(¢) in Figure 1.3.10 to estimate the constants 7),, Ty,
and & in a model of the form of a first-order initial-value
problem: dT/dt = k(T — T,,), T(0) = T,.

Mixtures
T 9. Suppose that a large mixing tank initially holds 300 gal-
lons of water in which 50 pounds of salt have been dis-
2007 solved. Pure water is pumped into the tank at a rate of
1501 3 gal/min, and when the solution is well stirred, it is

then pumped out at the same rate. Determine a differen-
100+ tial equation for the amount of salt A(¢) in the tank at
time ¢ > 0. What is 4(0)?

07 10. Suppose that a large mixing tank initially holds 300 gal-
} } } } lons of water is which 50 pounds of salt have been

0 25 50 75 100 ! dissolved. Another brine solution is pumped into the tank
minutes at a rate of 3 gal/min, and when the solution is well

stirred, it is then pumped out at a slower rate of 2 gal/min.

If the concentration of the solution entering is 2 Ib/gal,

determine a differential equation for the amount of salt
6. The ambient temperature 7, in (3) could be a function A(?) in the tank at time ¢ > 0.

of time 7 Suppose that in an artificially controlled

environment, 7,,(f) is periodic with a 24-hour period,

as illustrated in Figure 1.3.11. Devise a mathematical

model for the temperature 7(¢) of a body within this

environment. 12. Generalize the model given in equation (8) on page 24

by assuming that the large tank initially contains Ny

number of gallons of brine, r;, and r,,, are the input and

Tn(0) 4 output rates of the brine, respectively (measured in gal-

FIGURE 1.3.10 Cooling curve in Problem 5

11. What is the differential equation in Problem 10, if the
well-stirred solution is pumped out at a faster rate of
3.5 gal/min?

1201 lons per minute), ¢;, is the concentration of the salt in
100 the inflo , ¢(#) the concentration of the salt in the tank
80 1 as well as in the outflow at time ¢ (measured in pounds
1 of salt per gallon), and A4(¢) is the amount of salt in the
601 tank at time ¢ > 0.
401
201 Draining a Tank

0 1}2 2 4 3}6 48 i 13. Suppose water is leaking from a tank through a circular
midnight noon midnight noon midnight hole of area 4, at its bottom. When water leaks through a

hole, friction and contraction of the stream near the hole
reduce the volume of water leaving the tank per second to
cA; N 2gh, where ¢ (0 < ¢ < 1) is an empirical constant.
Determine a differential equation for the height / of water
at time ¢ for the cubical tank shown in Figure 1.3.12. The
7. Suppose a student carrying a fl virus returns to an iso- radius of the hole is 2 in., and g = 32 ft/s’.

lated college campus of 1000 students. Determine a dif-

ferential equation for the number of people x(7) who have

contracted the fl if the rate at which the disease spreads

is proportional to the number of interactions between the T

number of students who have the fl and the number of h

students who have not yet been exposed to it. JL

FIGURE 1.3.11 Ambient temperature in Problem 6

Spread of a Disease/Technology

8. Ata time denoted as ¢ = 0 a technological innovation is circular
introduced into a community that has a fixed population hole
of n people. Determine a differential equation for the FIGURE 1.3.12 Cubical tank in Problem 13
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30 °

14. The right-circular conical tank shown in Figure 1.3.13
loses water out of a circular hole at its bottom. Determine
a differential equation for the height of the water / at
time ¢ > 0. The radius of the hole is 2 in., g = 32 ft/s?,
and the friction/contraction factor introduced in Problem
13isc = 0.6.

ﬁ\ circular hole

FIGURE 1.3.13 Conical tank in Problem 14

Series Circuits

15. A series circuit contains a resistor and an inductor as
shown in Figure 1.3.14. Determine a differential equa-
tion for the current i(?) if the resistance is R, the induc-
tance is L, and the impressed voltage is E(¥).

R
FIGURE 1.3.14 LR-series circuit in Problem 15

16. A series circuit contains a resistor and a capacitor as
shown in Figure 1.3.15. Determine a differential equa-
tion for the charge ¢(¢) on the capacitor if the resis-
tance is R, the capacitance is C, and the impressed
voltage is E().

FIGURE 1.3.15 RC-series circuit in Problem 16

Falling Bodies and Air Resistance

17. For high-speed motion through the air—such as the
skydiver shown in Figure 1.3.16, falling before the
parachute is opened —air resistance is closer to a power
of the instantaneous velocity v(¢). Determine a differen-
tial equation for the velocity v(f) of a falling body of
mass m if air resistance is proportional to the square of
the instantaneous velocity.

CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

FIGURE 1.3.16 Air resistance proportional to square of
velocity in Problem 17

Newton’s Second Law and Archimedes’ Principle

18. A cylindrical barrel s feet in diameter of weight w 1b
is floating in water as shown in Figure 1.3.17(a). After
an initial depression the barrel exhibits an up-and-
down bobbing motion along a vertical line. Using
Figure 1.3.17(b), determine a differential equation for
the vertical displacement y(¢) if the origin is taken to be
on the vertical axis at the surface of the water when the
barrel is at rest. Use Archimedes’ principle: Buoyancy,
or upward force of the water on the barrel, is equal to
the weight of the water displaced. Assume that the
downward direction is positive, that the weight density
of water is 62.4 1b/ft3, and that there is no resistance
between the barrel and the water.

s/2
W s/2
surface_ Tl _: 0

]

S [ R
\ !

(a) (b)
FIGURE 1.3.17 Bobbing motion of floating barrel i

Problem 18

Newton'’s Second Law and Hooke’s Law

19. After a mass m is attached to a spring, it stretches it
s units and then hangs at rest in the equilibrium position
as shown in Figure 1.3.18(b). After the spring/mass

t
unstretched T x()<0
spring . __1_x=o0
equilibrium x>0
position T
@ O (o

FIGURE 1.3.18 Spring/mass system in Problem 19
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system has been set in motion, let x(f) denote the di-
rected distance of the mass beyond the equilibrium po-
sition. As indicated in Figure 1.3.17(c), assume that the
downward direction is positive, that the motion takes
place in a vertical straight line through the center of
gravity of the mass, and that the only forces acting on
the system are the weight of the mass and the restoring
force of the stretched spring. Use Hooke’s law: The
restoring force of a spring is proportional to its total
elongation. Determine a differential equation for the
displacement x() at time ¢ > 0.

20. In Problem 19, what is a differential equation for the
displacement x(f) if the motion takes place in a
medium that imparts a damping force on the spring/
mass system that is proportional to the instantaneous
velocity of the mass and acts in a direction opposite to
that of motion?

Newton’s Second Law and Rocket Motion

When the mass m of a body is changing with time, Newton’s
second law of motion becomes

1
F= ;7(/111/'), (17)
where F' is the net force acting on the body and mv is its
momentum. Use (17) in Problems 21 and 22.

21. A small single-stage rocket is launched vertically as
shown in Figure 1.3.19. Once launched, the rocket con-
sumes its fuel, and so its total mass m(¢) varies with time
¢t > 0. If it is assumed that the positive direction is up-
ward, air resistance is proportional to the instantaneous
velocity v of the rocket, and R is the upward thrust or
force generated by the propulsion system, then con-
struct a mathematical model for the velocity v(7) of the
rocket. [Hint: See (14) in Section 1.3.]

James L. Davidson/Shutterstock.com

FIGURE 1.3.19 Single-stage rocket in Problem 21

22. In Problem 21, the mass m(¢) is the sum of three differ-
ent masses: m(f) = m, + m, + m(f), where m, is the
constant mass of the payload, m, is the constant mass of
the vehicle, and my(f) is the variable amount of fuel.

(a) Show that the rate at which the total mass m(#) of the
rocket changes is the same as the rate at which the
mass my(t) of the fuel changes.

(b) If the rocket consumes its fuel at a constant rate A,
find m(¢). Then rewrite the differential equation in
Problem 21 in terms of A and the initial total mass
m(0) = my.

(¢) Under the assumption in part (b), show that the
burnout time #, > 0 of the rocket, or the time at
which all the fuel is consumed, is 7, = m,(0)/A,
where m(0) is the initial mass of the fuel.

Newton’s Second Law and the Law
of Universal Gravitation

23. By Newton’s universal law of gravitation the free-fall
acceleration a of a body, such as the satellite shown in
Figure 1.3.20, falling a great distance to the surface is not
the constant g. Rather, the acceleration a is inversely pro-
portional to the square of the distance from the center of
the Earth, a = k/r?, where k is the constant of proportion-
ality. Use the fact that at the surface of the Earth » = R and
a = g to determine k. If the positive direction is upward,
use Newton’s second law and his universal law of gravita-
tion to find a di ferential equation for the distance .

satellite of
mass m 535

s\x‘ﬁ“ce

FIGURE 1.3.20 Satellite l
in Problem 23 Earth of mass M

24, Suppose a hole is drilled through the center of the Earth
and a bowling ball of mass m is dropped into the hole, as
shown in Figure 1.3.21. Construct a mathematical model
that describes the motion of the ball. At time # let » de-
note the distance from the center of the Earth to the mass
m, M denote the mass of the Earth, M, denote the mass of
that portion of the Earth within a sphere of radius 7, and
6 denote the constant density of the Earth.

surface

FIGURE 1.3.21
Earth in Problem 24

Hole through
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Additional Mathematical Models

25.

26.

27.

28.

29.

Learning Theory In the theory of learning, the rate at
which a subject is memorized is assumed to be pro-
portional to the amount that is left to be memorized.
Suppose M denotes the total amount of a subject to be
memorized and A(f) is the amount memorized in time
t > 0. Determine a differential equation for the amount
A().

Forgetfulness In Problem 25 assume that the rate at
which material is forgotten is proportional to the amount
memorized in time ¢ > 0. Determine a differential equa-
tion for the amount 4(7) when forgetfulness is taken into
account.

Infusion of a Drug A drug is infused into a patient’s
bloodstream at a constant rate of » grams per second.
Simultaneously, the drug is removed at a rate proportional
to the amount x(?) of the drug present at time 7. Determine
a differential equation for the amount x(z).

Tractrix A person P, starting at the origin, moves in the
direction of the positive x-axis, pulling a weight along
the curve C, called a tractrix, as shown in Figure 1.3.22.
The weight, initially located on the y-axis at (0, s), is
pulled by a rope of constant length s, which is kept taut
throughout the motion. Determine a differential equation
for the path C of motion. Assume that the rope is always
tangent to C.

FIGURE 1.3.22 Tractrix curve in Problem 28

Reflecting Surface Assume that when the plane
curve C shown in Figure 1.3.23 is revolved about the
x-axis, it generates a surface of revolution with the
property that all light rays L parallel to the x-axis strik-
ing the surface are reflected to a single point O (the
origin). Use the fact that the angle of incidence is equal
to the angle of reflection to determine a differential

tangent

"

\d’
O X

FIGURE 1.3.23 Reflecting surface in Problem 2

INTRODUCTION TO DIFFERENTIAL EQUATIONS

equation that describes the shape of the curve C. Such a
curve C is important in applications ranging from con-
struction of telescopes to satellite antennas, automobile
headlights, and solar collectors. [Hint: Inspection of the
figure shows that we can write ¢ = 26. Why? Now use
an appropriate trigonometric identity. |

Discussion Problems

30.

31.

32.

33.

34.

Reread Problem 41 in Exercises 1.1 and then give an
explicit solution P(f) for equation (1). Find a one-
parameter family of solutions of (1).

Reread the sentence following equation (3) and assume
that 7}, is a positive constant. Discuss why we would ex-
pect £ < 0 in (3) in both cases of cooling and warming.
You might start by interpreting, say, 7(f) > T,, in a
graphical manner.

Reread the discussion leading up to equation (8). If we
assume that initially the tank holds, say, 50 Ib of salt, it
stands to reason that because salt is being added to the
tank continuously for ¢t > 0, 4(¢) should be an increas-
ing function. Discuss how you might determine from
the DE, without actually solving it, the number of
pounds of salt in the tank after a long period of time.

Population = Model The differential equation

dp . o .
ar = (k cos f)P, where k is a positive constant, is a
model of human population P(7) of a certain commu-
nity. Discuss an interpretation for the solution of this
equation. In other words, what kind of population do
you think the differential equation describes?

Rotating Fluid As shown in Figure 1.3.24(a), a right-
circular cylinder partially filled with fluid is rotated
with a constant angular velocity w about a vertical y-axis
through its center. The rotating fluid forms a surface of
revolution S. To identify S, we first establish a coordinate
system consisting of a vertical plane determined by the
y-axis and an x-axis drawn perpendicular to the y-axis
such that the point of intersection of the axes (the origin)
is located at the lowest point on the surface S. We then
seek a function y = f{(x) that represents the curve C of in-
tersection of the surface S and the vertical coordinate
plane. Let the point P(x, y) denote the position of a parti-
cle of the rotating fluid of mass m in the coordinate
plane. See Figure 1.3.23(b).

(a) At P there is a reaction force of magnitude F due to
the other particles of the fluid which is normal to the
surface S. By Newton’s second law the magnitude
of the net force acting on the particle is mw?x. What
is this force? Use Figure 1.3.24(b) to discuss the na-
ture and origin of the equations

2

F cos 0 = mg, Fsin 6 = mow°x.

(b) Use part (a) to find a first-order differential equation
that defines the functiony = f(x).
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(b)
FIGURE 1.3.24 Rotating fluid in Problem 3

35. Falling Body In Problem 23, suppose r =R + s,
where s is the distance from the surface of the Earth to
the falling body. What does the differential equation
obtained in Problem 23 become when s is very small in
comparison to R? [Hint: Think binomial series for

(R+5)2=R2( +s/R)%]

CHAPTER 1IN REVIEW ° 33

36. Raindrops Keep Falling In meteorology the term
virga refers to falling raindrops or ice particles that
evaporate before they reach the ground. Assume that a
typical raindrop is spherical. Starting at some time,
which we can designate as ¢ = 0, the raindrop of radius
ro falls from rest from a cloud and begins to evaporate.

(a) If it is assumed that a raindrop evaporates in such a
manner that its shape remains spherical, then it also
makes sense to assume that the rate at which the rain-
drop evaporates—that is, the rate at which it loses
mass—is proportional to its surface area. Show that
this latter assumption implies that the rate at which
the radius  of the raindrop decreases is a constant.
Find r(f). [Hint: See Problem 51 in Exercises 1.1.]

(b) If the positive direction is downward, construct a
mathematical model for the velocity v of the falling
raindrop at time ¢ > 0. Ignore air resistance. [Hint:
Use the form of Newton’s second law given in
17).]

37. Let It Snow The “snowplow problem” is a classic
and appears in many differential equations texts, but it
was probably made famous by Ralph Palmer Agnew:

One day it started snowing at a heavy and steady
rate. A snowplow started out at noon, going 2 miles
the first hour and 1 mile the second hour. What time
did it start snowing?

Find the textbook Differential Equations, Ralph Palmer
Agnew, McGraw-Hill Book Co., and then discuss the
construction and solution of the mathematical model.

38. Reread this section and classify each mathematical
model as linear or nonlinear.

CHAPTER 1 IN REVIEW

Answers to selected odd-numbered problems begin on page ANS-1.

In Problems 1 and 2 fill in the blank and then write this result
as a linear first-order differential equation that is free of the
symbol ¢| and has the form dy/dx = f(x, y). The symbol ¢,
represents a constant.

_ 10x —
1. ce” =

dx

d
2. EC(S + cle”¥) =

In Problems 3 and 4 fill in the blank and then write this result
as a linear second-order differential equation that is free of
the symbols ¢; and ¢, and has the form F(y, ") = 0. The
symbols ¢y, ¢;, and k represent constants.

2

3. cos kx + ¢, sin kx) =

ﬁ(cl

d2
4. 2 (c; cosh kx + ¢, sinh kx) =

In Problems 5 and 6 compute y’ and y” and then combine
these derivatives with y as a linear second-order differential
equation that is free of the symbols c; and ¢, and has the form
F(y, y" y") = 0. The symbols ¢; and ¢, represent constants.

5. y =cie* + crxe® 6. y = cie* cosx + cretsinx

In Problems 7—12 match each of the given differential equa-
tions with one or more of these solutions:

@y=0, ®y=2 ()y=2x (dy=2x"
7. xy' =2y 8.y =2
9.y =2y—4 10. xy' =y

11. y" + 9y =18 12. xy" —y"' =0

In Problems 13 and 14 determine by inspection at least one
solution of the given differential equation.

13. y" =y’ 14. y' = y(y — 3)
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In Problems 15 and 16 interpret each statement as a differen-
tial equation.

15. On the graph of y = ¢(x) the slope of the tangent line at
apoint P(x, y) is the square of the distance from P(x, y) to
the origin.

16. On the graph of y = ¢(x) the rate at which the slope
changes with respect to x at a point P(x, y) is the nega-
tive of the slope of the tangent line at P(x, y).

17. (a) Give the domain of the function y = x%?3.

(b) Give the largest interval / of definition over which
y =x?3 is solution of the differential equation
3xy' =2y =0.
18. (a) Verify that the one-parameter family y? — 2y =
x? — x + cis an implicit solution of the differential
equation (2y — 2)y’ =2x — 1.
(b) Find a member of the one-parameter family in
part (a) that satisfies the initial condition y(0) = 1.

(¢) Use your result in part (b) to find an explicit
function y = ¢(x) that satisfies y(0) = 1. Give the
domain of the function ¢. Is y = ¢(x) a solution of
the initial-value problem? If so, give its interval / of
definition; if not, explain

19. Given that y = x — 2/x is a solution of the DE x)’ +
y = 2x. Find x¢ and the largest interval / for which y(x) is
a solution of the first-order IVP xy" + y = 2x, y(xo) = 1.

20. Suppose that y(x) denotes a solution of the first-order
IVPy = x> + y%, y(1) = —1 and that y(x) possesses
at least a second derivative at x = 1. In some neigh-
borhood of x = 1 use the DE to determine whether
y(x) is increasing or decreasing and whether the graph
y(x) is concave up or concave down.

21. A differential equation may possess more than one fam-
ily of solutions.

(a) Plot different members of the families
y=¢ix) =x*+c; and y = dr(x) = —x> + co.

(b) Verify that y = ¢(x) and y = ¢(x) are two
solutions of the nonlinear first-order differential
equation (y')? = 4x2.

(¢) Construct a piecewise-defined function that is a
solution of the nonlinear DE in part (b) but is not a
member of either family of solutions in part (a).

22. What is the slope of the tangent line to the graph of a
solution of y’ = 6V/y + 5x° that passes through (—1, 4)?

In Problems 23-26 verify that the indicated function is an
explicit solution of the given differential equation. Give an
interval of definition / for each solution.

23. y"+y=2cosx —2sinx; y=xsinx+ xcosx
24, y" + y=secx; y =xsinx + (cosx)ln(cos x)
25. x3" +xy' +y=0; y=sin(lnx)

26. x*" + xy’ + y = sec(In x);
y = cos(In x) In(cos(In x)) + (In x) sin(In x)

CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

In Problems 27—30 verify that the indicated expression is an
implicit solution of the given differential equation.

d 1
27. x—y—i-y:—' ¥y =x+1
x

d e
dy\? 1

28. (—y> tl=—5 (@—5P+)2=1
dx y

29. V' =290 V¥ +3y=1-3x

30. (1 —xy)y' =y y=e

In Problems 31-34, y = cje® + coe™™ — 2x is a two-
parameter family of the second-order DE y” — 2y’ — 3y =
6x + 4. Find a solution of the second-order IVP consisting
of this differential equation and the given initial conditions.

31. y(0)=0,»(0)=0 32. y(0)=1,y'(0) = -3
B.oy)=4,y'(1)=-2 M. y(-D)=0,y'(-1) =1
35. The graph of a solution of a second-order initial-value

problem dy/dx* = f(x, y, »"), y(2) = yo, ¥'(2) = y1, is
given in Figure 1.R.1. Use the graph to estimate the val-
ues of yg and y;.

FIGURE 1.R.1 Graph for Problem 35

36. A tank in the form of a right-circular cylinder of radius
2 feet and height 10 feet is standing on end. If the tank
is initially full of water and water leaks from a circular
hole of radius % inch at its bottom, determine a differen-
tial equation for the height / of the water at time ¢ > 0.
Ignore friction and contraction of water at the hole.

37. The number of field mice in a certain pasture is given by
the function 200 — 10¢, where time ¢ is measured in
years. Determine a differential equation governing a
population of owls that feed on the mice if the rate at
which the owl population grows is proportional to the
difference between the number of owls at time ¢ and
number of field mice at time z > 0.

38. Suppose that dA/dt = —0.0004332 A(¢) represents a
mathematical model for the radioactive decay of radium-
226, where A(?) is the amount of radium (measured in
grams) remaining at time ¢ (measured in years). How
much of the radium sample remains at the time ¢ when
the sample is decaying at a rate of 0.002 gram per year?
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First-Order Differential Equations

2.1 Solution Curves Without a Solution
2.1.1 Direction Fields
2.1.2 Autonomous First-Order DEs

2.2 Separable Equations

2.3 Linear Equations

2.4 Exact Equations

2.5 Solutions by Substitutions

2.6 A Numerical Method

Chapter 2 in Review

The history of mathematics is rife with stories of people who devoted much of
their lives to solving equations—algebraic equations at first and then eventuall
differential equations. In Sections 2.2-2.5 we will study some of the more
important analytical methods for solving first-order DEs. Howeve , before we start
solving anything, you should be aware of two facts: It is possible for a differential
equation to have no solutions, and a differential equation can possess solutions, yet
\_/ there might not exist any analytical method for solving it. In Sections 2.1 and 2.6
we do not solve any DEs but show how to glean information about solutions

directly from the equation itself. In Section 2.1 we see how the DE yields
qualitative information about graphs that enables us to sketch renditions of solution

curves. In Section 2.6 we use the differential equation to construct a procedure,

called a numerical method, for approximating solutions.

35
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FIGURE 2.1.1

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

2.1

SOLUTION CURVES WITHOUT A SOLUTION

REVIEW MATERIAL

e The first derivative as slope of a tangent lin
e The algebraic sign of the first derivative indicates increasing or decreasin

INTRODUCTION Let us imagine for the moment that we have in front of us a first-order differ-
ential equation dy/dx = f(x, y), and let us further imagine that we can neither find nor invent a
method for solving it analytically. This is not as bad a predicament as one might think, since the dif-
ferential equation itself can sometimes “tell” us specifics about how its solutions “behave.

We begin our study of first-order differential equations with two ways of analyzing a DE qual-
itatively. Both these ways enable us to determine, in an approximate sense, what a solution curve
must look like without actually solving the equation.

slope=1.2

(a) lineal element at a point

Y

solution

(b) lineal element is tangent to
solution curve that passes

thro

ugh the point

A solution curve is

tangent to lineal element at (2, 3)

2.1.1 DIRECTION FIELDS

— Some Fundamental Questions We saw in Section 1.2 that whenever f(x, )
and 9f/dy satisfy certain continuity conditions, qualitative questions about existence
and uniqueness of solutions can be answered. In this section we shall see that other
qualitative questions about properties of solutions—How does a solution behave
near a certain point? How does a solution behave as x — %?—can often be an-
swered when the function f'depends solely on the variable y. We begin, however, with
a simple concept from calculus:

A derivative dy/dx of a differentiable function y = y(x) gives slopes of tangent
lines at points on its graph.

= Slope Because a solution y = y(x) of a first-order di ferential equation

dy

FRPACRY)

(M
is necessarily a differentiable function on its interval / of definition, it must also be con-
tinuous on /. Thus the corresponding solution curve on / must have no breaks and must
possess a tangent line at each point (x, y(x)). The function f'in the normal form (1) is
called the slope function or rate function. The slope of the tangent line at (x, y(x)) on
a solution curve is the value of the first derivative dy/dx at this point, and we know
from (1) that this is the value of the slope function f(x, y(x)). Now suppose that (x, y)
represents any point in a region of the xy-plane over which the function fis defined. The
value f{(x, y) that the function f assigns to the point represents the slope of a line or, as
we shall envision it, a line segment called a lineal element. For example, consider the
equation dy/dx = 0.2xy, where f(x, y) = 0.2x). At, say, the point (2, 3) the slope of a
lineal element is f(2, 3) = 0.2(2)(3) = 1.2. Figure 2.1.1(a) shows a line segment with
slope 1.2 passing though (2, 3). As shown in Figure 2.1.1(b), if'a solution curve also
passes through the point (2, 3), it does so tangent to this line segment; in other words,
the lineal element is a miniature tangent line at that point.

— Direction Field If we systematically evaluate f over a rectangular grid of
points in the xy-plane and draw a line element at each point (x, y) of the grid with
slope f(x, y), then the collection of all these line elements is called a direction fiel

or a slope fiel of the differential equation dy/dx = f(x, y). Visually, the direction
field suggests the appearance or shape of a family of solution curves of the
differential equation, and consequently, it may be possible to see at a glance certain
qualitative aspects of the solutions—regions in the plane, for example, in which a
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FIGURE 2.1.2 Solution curves

following flow of a direction fie
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solution exhibits an unusual behavior. A single solution curve that passes through a
direction field must follow the flow pattern of the field; it is tangent to a lineal element
when it intersects a point in the grid. Figure 2.1.2 shows a computer-generated direc-
tion field of the differential equation dy/dx = sin(x + y) over a region of the xy-plane.
Note how the three solution curves shown in color follow the flow of the fiel

DVN\YIHANINE Direction Field

The direction fiel for the differential equation dy/dx = 0.2xy shown in Figure 2.1.3(a)
was obtained by using computer software in which a 5 X 5 grid of points (mh, nh),
m and n integers, was defined by letting —5=m =5, —=5=n=5,and & = 1.
Notice in Figure 2.1.3(a) that at any point along the x-axis (y = 0) and the
y-axis (x = 0), the slopes are f(x, 0) = 0 and f(0, y) = 0, respectively, so the lineal
elements are horizontal. Moreover, observe in the first quadrant that for a fixed value
of x the values of f(x, y) = 0.2xy increase as y increases; similarly, for a fixed y the
values of f(x, y) = 0.2xy increase as x increases. This means that as both x and y
increase, the lineal elements almost become vertical and have positive slope ( f(x,y) =
0.2xy > 0 for x > 0, y > 0). In the second quadrant, |f(x, y)| increases as |x| and y
increase, so the lineal elements again become almost vertical but this time have
negative slope ( f(x, y) = 0.2xy <0 for x < 0, y > 0). Reading from left to right,
imagine a solution curve that starts at a point in the second quadrant, moves steeply
downward, becomes flat as it passes through the y-axis, and then, as it enters the firs
quadrant, moves steeply upward—in other words, its shape would be concave
upward and similar to a horseshoe. From this it could be surmised that y — oo
as x — *oo. Now in the third and fourth quadrants, since f(x, y) = 0.2xy > 0 and
f(x,y) = 0.2xy < 0, respectively, the situation is reversed: A solution curve increases
and then decreases as we move from left to right. We saw in (1) of Section 1.1 that
y = %" is an explicit solution of the differential equation dy/dx = 0.2xy; you
should verify that a one-parameter family of solutions of the same equation is given
byy = ce®™’. For purposes of comparison with Figure 2.1.3(a) some representative

graphs of members of this family are shown in Figure 2.1.3(b). =

DVN\WYIHANIPE Direction Field

Use a direction field to sketch an approximate solution curve for the initial-value
problem dy/dx = sin y, y(0) = _%_

SOLUTION Before proceeding, recall that from the continuity of f(x, y) = sin y and
df/dy = cos y, Theorem 1.2.1 guarantees the existence of a unique solution curve
passing through any specifie point (x¢, o) in the plane. Now we set our computer soft-
ware again fora5 X 5 rectangular region and specify (because of the initial condition)
points in that region with vertical and horizontal separation of % unit—that is, at
points (mh, nh), h = %, m and n integers such that —10 = m = 10, —10 = n = 10.
The result is shown in Figure 2.1.4. Because the right-hand side of dy/dx = sinyis 0
aty = 0,and at y = —r, the lineal elements are horizontal at all points whose second
coordinates are y = 0 or y = —r. It makes sense then that a solution curve passing

through the initial point (0,—%) has the shape shown in the figure =

= Increasing/Decreasing Interpretation of the derivative dy/dx as a function
that gives slope plays the key role in the construction of a direction field. Another
telling property of the first derivative will be used next, namely, if dy/dx > 0 (or
dy/dx < 0) for all x in an interval I, then a differentiable function y = y(x) is
increasing (or decreasing) on /.
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FIGURE 2.1.4 Direction field i
Example 2 on page 37

REMARKS

Sketching a direction fiel by hand is straightforward but time consuming; it is
probably one of those tasks about which an argument can be made for doing it
once or twice in a lifetime, but it is overall most efficient]l carried out by means
of computer software. Before calculators, PCs, and software the method of
isoclines was used to facilitate sketching a direction fiel by hand. For the DE
dy/dx = f(x, y), any member of the family of curves f(x, y) = ¢, ¢ a constant,
is called an isocline. Lineal elements drawn through points on a specifi iso-
cline, say, f(x, y) = ¢ all have the same slope c;. In Problem 15 in Exercises 2.1
you have your two opportunities to sketch a direction fiel by hand.

2.1.2 AUTONOMOUS FIRST-ORDER DEs

= Autonomous First-Order DEs In Section 1.1 we divided the class of ordi-
nary differential equations into two types: linear and nonlinear. We now consider
briefly another kind of classification of ordinary differential equations, a classifica
tion that is of particular importance in the qualitative investigation of differential
equations. An ordinary differential equation in which the independent variable does
not appear explicitly is said to be autonomous. If the symbol x denotes the indepen-
dent variable, then an autonomous first-order differential equation can be written as

f(»,¥") = 0 or in normal form as

== o, @

We shall assume throughout that the function f'in (2) and its derivative f” are contin-
uous functions of y on some interval /. The first-order equation

S S(x,y)
! !
dy dy
— =1+ d — =02
dx Y an dx xy

are autonomous and nonautonomous, respectively.

Many differential equations encountered in applications or equations that are
models of physical laws that do not change over time are autonomous. As we have
already seen in Section 1.3, in an applied context, symbols other than y and x are rou-
tinely used to represent the dependent and independent variables. For example, if ¢
represents time then inspection of

d_A_ dx

dA 1
=kd, — = +1- =
p kA, p kx(n X),

dT
—=KT-T, =6 —
dt ( n; dt 100

4,
where k, n, and T, are constants, shows that each equation is time independent.
Indeed, all of the first-order differential equations introduced in Section 1.3 are time
independent and so are autonomous.

— Critical Points The zeros of the function f'in (2) are of special importance. We
say that a real number c is a critical point of the autonomous differential equation (2)
if it is a zero of f—that is, f(c) = 0. A critical point is also called an equilibrium
point or stationary point. Now observe that if we substitute the constant function
y(x) = cinto (2), then both sides of the equation are zero. This means:

If ¢ is a critical point of (2), then y(x) = c is a constant solution of the
autonomous differential equation.

A constant solution y(x) = ¢ of (2) is called an equilibrium solution; equilibria are
the only constant solutions of (2).
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As was already mentioned, we can tell when a nonconstant solution y = y(x) of
(2) is increasing or decreasing by determining the algebraic sign of the derivative
dy/dx; in the case of (2) we do this by identifying intervals on the y-axis over which
the function f(y) is positive or negative.

DVN\YIHANIEN An Autonomous DE

The differential equation

P _ pla - bp)
dt a ’

where a and b are positive constants, has the normal form dP/dt = f(P), which is (2)
with ¢ and P playing the parts of x and y, respectively, and hence is autonomous.
From f(P) = P(a — bP) = 0 we see that 0 and a/b are critical points of the equation,
so the equilibrium solutions are P(f) = 0 and P(f) = a/b. By putting the critical points
on a vertical line, we divide the line into three intervals defined by —oo < P <0,
0 < P<a/b,a/b<P <, The arrows on the line shown in Figure 2.1.5 indicate
the algebraic sign of f(P) = P(a — bP) on these intervals and whether a nonconstant
solution P(?) is increasing or decreasing on an interval. The following table explains
the figure

Interval Sign of f(P) P(t) Arrow
(=2, 0) minus decreasing points down
0, a/b) plus increasing points up
(a/b, ») minus decreasing points down

Figure 2.1.5 is called a one-dimensional phase portrait, or simply phase
portrait, of the differential equation dP/dt = P(a — bP). The vertical line is called a
phase line.

=— Solution Curves Without solving an autonomous differential equation, we
can usually say a great deal about its solution curves. Since the function f'in (2) is
independent of the variable x, we may consider f defined for —o < x < o or for
0 = x < =, Also, since f'and its derivative /" are continuous functions of y on some
interval 7 of the y-axis, the fundamental results of Theorem 1.2.1 hold in some hori-
zontal strip or region R in the xy-plane corresponding to /, and so through any point
(x0, ¥0) in R there passes only one solution curve of (2). See Figure 2.1.6(a). For the
sake of discussion, let us suppose that (2) possesses exactly two critical points ¢; and
¢ and that ¢; < ¢;. The graphs of the equilibrium solutions y(x) = ¢ and y(x) = ¢,
are horizontal lines, and these lines partition the region R into three subregions R,
R,, and R3, as illustrated in Figure 2.1.6(b). Without proof here are some conclusions
that we can draw about a nonconstant solution y(x) of (2):

o If (xg, yo) is in a subregion R;, i = 1, 2, 3, and y(x) is a solution whose
graph passes through this point, then y(x) remains in the subregion R; for all
x. As illustrated in Figure 2.1.6(b), the solution y(x) in R, is bounded below
by ¢; and above by c¢», that is, ¢; < y(x) < ¢; for all x. The solution curve
stays within R; for all x because the graph of a nonconstant solution of (2)
cannot cross the graph of either equilibrium solution y(x) = ¢ or y(x) = c;.
See Problem 33 in Exercises 2.1.

* By continuity of fwe must then have either f(y) > 0 or f(y) < 0 for all x in
a subregion R;, i = 1, 2, 3. In other words, f(y) cannot change signs in a
subregion. See Problem 33 in Exercises 2.1.
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FIGURE 2.1.7 Phase portrait and
solution curves in Example 4

» Since dy/dx = f(y(x)) is either positive or negative in a subregion R, i = 1,
2, 3, a solution y(x) is strictly monotonic—that is, y(x) is either increasing
or decreasing in the subregion R;. Therefore y(x) cannot be oscillatory, nor
can it have a relative extremum (maximum or minimum). See Problem 33
in Exercises 2.1.

* If y(x) is bounded above by a critical point ¢; (as in subregion R; where
y(x) < ¢ for all x), then the graph of y(x) must approach the graph of the
equilibrium solution y(x) = ¢ either as x — % or as x — —o. If y(x) is
bounded—that is, bounded above and below by two consecutive critical
points (as in subregion R, where ¢; < y(x) < ¢; for all x)—then the graph
of y(x) must approach the graphs of the equilibrium solutions y(x) = ¢; and
y(x) = ¢,, one as x — o0 and the other as x — —. If y(x) is bounded below
by a critical point (as in subregion R3 where c¢; < y(x) for all x), then the
graph of y(x) must approach the graph of the equilibrium solution y(x) = ¢,
either as x — % or as x — —. See Problem 34 in Exercises 2.1.

With the foregoing facts in mind, let us reexamine the differential equation in
Example 3.

DN\ IMNE Example 3 Revisited

The three intervals determined on the P-axis or phase line by the critical points 0 and
a /b now correspond in the tP-plane to three subregions defined by:

Ri: — <P <0, Ry:0<P<al/b, and Ry:a/b<P<cx,

where —o < ¢ < . The phase portrait in Figure 2.1.7 tells us that P(¢) is decreasing
in Ry, increasing in R;, and decreasing in R3. If P(0) = Py is an initial value, then in
Ry, Ry, and R; we have, respectively, the following:

(i)  For Py < 0, P(¢) is bounded above. Since P(f) is decreasing, P(t)
decreases without bound for increasing ¢, and so P(f) — 0 as t — —x.
This means that the negative #-axis, the graph of the equilibrium solution
P(f) = 0, is a horizontal asymptote for a solution curve.

(ii)y For 0 < Py < a/b, P(f) is bounded. Since P(¢) is increasing, P(f) —>a /b
as t — o and P(f) — 0 as t — —oo. The graphs of the two equilibrium
solutions, P(f) = 0 and P(f) = a /b, are horizontal lines that are horizontal
asymptotes for any solution curve starting in this subregion.

(iif)y For Py > a /b, P(f) is bounded below. Since P(7) is decreasing, P(f)—>a /b
as 1 — oo, The graph of the equilibrium solution P(f) = a /b is a horizontal
asymptote for a solution curve.

In Figure 2.1.7 the phase line is the P-axis in the tP-plane. For clarity the origi-
nal phase line from Figure 2.1.5 is reproduced to the left of the plane in which
the subregions R;, R,, and R3 are shaded. The graphs of the equilibrium solutions
P(f) = a/b and P(f) = 0 (the t-axis) are shown in the figure as blue dashed lines;
the solid graphs represent typical graphs of P(¢) illustrating the three cases just

discussed. =

In a subregion such as R in Example 4, where P(¢) is decreasing and unbounded
below, we must necessarily have P(f) — —o. Do not interpret this last statement to
mean P(f) — —« as t — ; we could have P(f) — —x as t— T, where T> 0 is a
finite number that depends on the initial condition P(¢y) = Py. Thinking in dynamic
terms, P(f) could “blow up” in finite time; thinking graphically, P(f) could have a
vertical asymptote at = 7 > 0. A similar remark holds for the subregion R;.

The differential equation dy/dx = sin y in Example 2 is autonomous and has an
infinite number of critical points, since sin y = 0 at y = n7r, n an integg:r. Moreover,

we now know that because the solution y(x) that passes through (0, —3) is bounded

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Yo
Yo
(a) (b)
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2.1 SOLUTION CURVES WITHOUT A SOLUTION ° 1

above and below by two consecutive critical points (—7 < y(x) <0) and is
decreasing (sin y < 0 for —7 < y < 0), the graph of y(x) must approach the graphs
of the equilibrium solutions as horizontal asymptotes: y(x) — —a as x — % and
y(x)—0asx— —ox.

DV\YIHANIW Solution Curves of an Autonomous DE

The autonomous equation dy/dx = (y — 1)* possesses the single critical point 1.
From the phase portrait in Figure 2.1.8(a) we conclude that a solution y(x) is an
increasing function in the subregions defined by —» <y < 1and | <y < o, where
—o < x < . For an initial condition y(0) = yy < 1, a solution y(x) is increasing and
bounded above by 1, and so y(x) — 1 as x — oo; for y(0) = yy > 1 a solution y(x) is
increasing and unbounded.

Now y(x) = 1 — 1/(x + ¢) is a one-parameter family of solutions of the differ-
ential equation. (See Problem 4 in Exercises 2.2.) A given initial condition deter-
mines a value for ¢. For the initial conditions, say, »(0) = —1 < l and y(0) = 2 > 1,
we find, in turn, that y(x) = 1 — 1/(x + %), and y(x) = 1 — 1/(x — 1). As shown in
Figures 2.1.8(b) and 2.1.8(c), the graph of each of these rational functions possesses

y v y }
|
[ 4 }x=1
increasing } 0,2) !
I T _/ [
| = | —
41 e L,,,,,X,,l ,,,,,,,,,,,,,,,,,, L,,,y,_,l,,
} } } ! I I I I I K
X

I
I
f
I
I
. . I
ncreasing }
I
I
I
I
I

(¢) xy-plane
y(0) > 1

(a) phase line (b) xy-plane

y(0) <1
FIGURE 2.1.8 Behavior of solutions near y = 1 in Example 5

a vertical asymptote. But bear in mind that the solutions of the [VPs

dy dy
il D% »0)=-1 and —=(-1% »0)=2
X dx
are defined on special intervals. They are, respectively,
1 | 1
S e S d =] - —) —o<x<Il.
yo) =1 =7 Lo x and  y(x) po—

The solution curves are the portions of the graphs in Figures 2.1.8(b) and
2.1.8(c) shown in blue. As predicted by the phase portrait, for the solution curve
in Figure 2.1.8(b), y(x) — 1 as x —o¢; for the solution curve in Figure 2.1.8(c),

y(x) = as x — 1 from the left. =

= Attractors and Repellers Suppose that y(x) is a nonconstant solution of the
autonomous differential equation given in (1) and that c is a critical point of the DE.
There are basically three types of behavior that y(x) can exhibit near c¢. In
Figure 2.1.9 we have placed ¢ on four vertical phase lines. When both arrowheads on
either side of the dot labeled ¢ point foward c, as in Figure 2.1.9(a), all solutions y(x)
of (1) that start from an initial point (xo, yo) sufficiently near ¢ exhibit the asymp-
totic behavior lim, .., y(x) = c¢. For this reason the critical point ¢ is said to be
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Translated solution

curves of an autonomous DE

Direction field for a

asymptotically stable. Using a physical analogy, a solution that starts near c is like a
charged particle that, over time, is drawn to a particle of opposite charge, and so c is
also referred to as an attractor. When both arrowheads on either side of the dot
labeled ¢ point away from c, as in Figure 2.1.9(b), all solutions y(x) of (1) that start
from an initial point (x¢, yo) move away from c as x increases. In this case the critical
point ¢ is said to be unstable. An unstable critical point is also called a repeller, for
obvious reasons. The critical point ¢ illustrated in Figures 2.1.9(c) and 2.1.9(d) is
neither an attractor nor a repeller. But since ¢ exhibits characteristics of both an
attractor and a repeller—that is, a solution starting from an initial point (xo, o) suffi
ciently near c is attracted to ¢ from one side and repelled from the other side—we say
that the critical point ¢ is semi-stable. In Example 3 the critical point a/b is
asymptotically stable (an attractor) and the critical point 0 is unstable (a repeller).
The critical point 1 in Example 5 is semi-stable.

— Autonomous DEs and Direction Fields If a first-order differential equa-
tion is autonomous, then we see from the right-hand side of its normal form dy/dx =
f(y) that slopes of lineal elements through points in the rectangular grid used to con-
struct a direction field for the DE depend solely on the y-coordinate of the points.
Put another way, lineal elements passing through points on any horizontal line must
all have the same slope and therefore are parallel; slopes of lineal elements along any
vertical line will, of course, vary. These facts are apparent from inspection of the hor-
izontal yellow strip and vertical blue strip in Figure 2.1.10. The figure exhibits a di-
rection field for the autonomous equation dy/dx = 2(y — 1). The red lineal elements
in Figure 2.1.10 have zero slope because they lie along the graph of the equilibrium
solution y = 1.

= Translation Property You may recall from precalculus mathematics that the
graph of a function y = f(x — k), where k is a constant, is the graph of y = f{x)
rigidly translated or shifted horizontally along the x-axis by an amount ||; the trans-
lation is to the right if £ > 0 and to the left if £ < 0. It turns out that under the condi-
tions stipulated for (2), solution curves of an autonomous first-order DE are related
by the concept of translation. To see this, let’s consider the differential equation
dy/dx = y(3 — y), which is a special case of the autonomous equation considered in
Examples 3 and 4. Because y = 0 and y = 3 are equilibrium solutions of the DE,
their graphs divide the xy-plane into three subregions R;, R,, and Rj:

Ri:—0o<y<0, Ry0<ypy<3, and Ru3<y< oo,

In Figure 2.1.11 we have superimposed on a direction field of the DE six solutions
curves. The figure illustrates that all solution curves of the same color, that is, solu-
tion curves lying within a particular subregion R;, all look alike. This is no coinci-
dence but is a natural consequence of the fact that lineal elements passing through
points on any horizontal line are parallel. That said, the following translation prop-
erty of an automonous DE should make sense:

If y(x) is a solution of an autonomous differential equation dy/dx = f(y), then
vi(x) = y(x — k), k a constant, is also a solution.

Thus, if y(x) is a solution of the initial-value problem dy/dx = f(y), ¥(0) = yy, then
y1(x) = y(x — xp) is a solution of the IVP dy/dx = f(¥), ¥(x0) = yo. For example, it is easy
to verify that y(x) = ¢*, —o0 < x < =, is a solution of the IVP dy/dx = y, y(0) = 1
and so a solution y;(x) of, say, dy/dx = y, y(5) = 1 is y(x) = ¢" translated 5 units to
the right:

»x) =yx —5) = e, —o<x <
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. EXERCISES 2.1

Answers to selected odd-numbered problems begin on page ANS-1.

2.1.1

DIRECTION FIELDS

In Problems 1—4 reproduce the given computer-generated
direction field. Then sketch, by hand, an approximate solu-
tion curve that passes through each of the indicated points.
Use different colored pencils for each solution curve.

dy
1. —=x2—)?
dx
(@ y(=2)=1 (b) y(3) =0
(c) ¥(0)=2 (@) »(0)=0
y
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FIGURE 2.1.12 Direction field for Problem
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dx
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FIGURE 2.1.13 Direction field for Problem
dy
3. —=1-—-xy
dx
(@) y(0)=0 (b) y(=1)=0
(¢) ¥2)=2 (d) ¥(0) = —4
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FIGURE 2.1.14 Direction field for Problem
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FIGURE 2.1.15 Direction field for Problem

In Problems 5—12 use computer software to obtain a direc-
tion field for the given differential equation. By hand, sketch
an approximate solution curve passing through each of the
given points.

5y =x 6.y =x+y
(@ y(0)=0 (@) y(—-2)=2
(b) ¥(0) = -3 (b) y(1) = -3

_ dy _ 1

7. ydx = —x 8. Ay
@ y()=1 (@) »(0)=1
(b) y(0) =4 (b) y(—2) = —1
d d

9. d—i —02+y 10 d—z = xe’
(@) »(0) =5 (a) »(0) = —2
(b) y(2) = —1 (b) y(1) =25
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=y~ cos T dy _
11. y' ' =y coszx 12.dx 1 N

@) y(2) =2 @ y(—3) =2

(b) y(=1) =0 ® (3 =0

In Problems 13 and 14 the given figure represents the graph
of f(») and f(x), respectively. By hand, sketch a direction
field over an appropriate grid for dy/dx = f(y) (Problem 13)
and then for dy/dx = f(x) (Problem 14).

13. S

FIGURE 2.1.16 Graph for Problem 13

14.

FIGURE 2.1.17 Graph for Problem 14

15. In parts (a) and (b) sketch isoclines f(x, y) = ¢ (see the
Remarks on page 38) for the given differential equation
using the indicated values of c¢. Construct a direction fiel
over a grid by carefully drawing lineal elements with the
appropriate slope at chosen points on each isocline. In
each case, use this rough direction field to sketch an ap-
proximate solution curve for the IVP consisting of the DE
and the initial condition y(0) = 1.

(a) dy/dx = x + y; c an integer satisfying —5=c =5
(b) dy/dx = x* + y* ¢ Z%,c =1,c Z%,c =4

Discussion Problems

16. (a) Consider the direction fiel of the differential equa-
tion dy/dx = x(y — 4)> — 2, but do not use tech-
nology to obtain it. Describe the slopes of the lineal
elements onthelinesx = 0,y = 3,y = 4,andy = 5.

(b) Consider the IVP dy/dx = x(y — 4)> — 2, y(0) = yo,
where yy < 4. Can a solution y(x) — % as x —> ?
Based on the information in part (a), discuss.

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

17. For a first-orde DE dy/dx = f(x, y) a curve in the plane
define by f(x, y) = 0 is called a nullcline of the equa-
tion, since a lineal element at a point on the curve has zero
slope. Use computer software to obtain a direction fiel
over a rectangular grid of points for dy/dx = x> — 2y,
and then superimpose the graph of the nullcline y = %xz
over the direction field. Discuss the behavior of solution
curves in regions of the plane defined by y < %xz and by
y > %xz. Sketch some approximate solution curves. Try
to generalize your observations.

18. (a) Identify the nullclines (see Problem 17) in
Problems 1, 3, and 4. With a colored pencil, circle
any lineal elements in Figures 2.1.12, 2.1.14, and
2.1.15 that you think may be a lineal element at a
point on a nullcline.

(b) What are the nullclines of an autonomous first-orde
DE?

2.1.2 AUTONOMOUS FIRST-ORDER DEs

19. Consider the autonomous first-order differential equa-
tion dy/dx = y — y* and the initial condition y(0) = y,.
By hand, sketch the graph of a typical solution y(x)
when y has the given values.

(a)y0>1 (b)0<y0<1
©) —1<y,<0 (d) yo< —1

20. Consider the autonomous first-orde differential equation
dy/dx = y*> — y* and the initial condition y(0) = yo. By
hand, sketch the graph of a typical solution y(x) when yg
has the given values.
(@) yo>1
(C) 1< Yo < 0

(b) 0 <y, <1
d) yo<-—1

In Problems 21-28 find the critical points and phase portrait
of the given autonomous first-order differential equation.
Classify each critical point as asymptotically stable, unstable,
or semi-stable. By hand, sketch typical solution curves in the
regions in the xy-plane determined by the graphs of the
equilibrium solutions.

dy dy
21. = =)? -3 22. = =) -
dx y 34 dx Yy Yy
d d
3. %=y -2y 2450 =10 + 3y -y
dx dx
dy dy
25, = = y2(4 — y2) 26 —=y2 -4 -y
dx dx
dy dy yey - 9)/
27. — =yl + 2 28, — =——
dx yIn(y ) dx &

In Problems 29 and 30 consider the autonomous differential
equation dy/dx = f(v), where the graph of f is given. Use
the graph to locate the critical points of each differential
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equation. Sketch a phase portrait of each differential equa-
tion. By hand, sketch typical solution curves in the subre-
gions in the xy-plane determined by the graphs of the equi-
librium solutions.

29.

30.

FIGURE 2.1.18 Graph for Problem 29

FIGURE 2.1.19 Graph for Problem 30

Discussion Problems

31.

32.

33.

34.

Consider the autonomous DE dy/dx = (2/7)y — sin y.
Determine the critical points of the equation. Discuss
a way of obtaining a phase portrait of the equation.
Classify the critical points as asymptotically stable,
unstable, or semi-stable.

A critical point ¢ of an autonomous first-order DE is
said to be isolated if there exists some open interval that
contains ¢ but no other critical point. Can there exist an
autonomous DE of the form given in (2) for which
every critical point is nonisolated? Discuss; do not think
profound thoughts.

Suppose that y(x) is a nonconstant solution of the
autonomous equation dy/dx = f(y) and that ¢ is a
critical point of the DE. Discuss: Why can’t the graph
of y(x) cross the graph of the equilibrium solution
y = ¢? Why can’t f(y) change signs in one of the
subregions discussed on page 39?7 Why can’t y(x) be
oscillatory or have a relative extremum (maximum or
minimum)?

Suppose that y(x) is a solution of the autonomous equa-
tion dy/dx = f(y) and is bounded above and below by
two consecutive critical points ¢; < ¢;, as in subregion
R, of Figure 2.1.6(b). If f(y) >0 in the region, then
lim,— y(x) = ¢;. Discuss why there cannot exist a num-
ber L < ¢; such that lim,—« y(x) = L. As part of your
discussion, consider what happens to y'(x) as x — o,

2.1

35.

36.

37.

SOLUTION CURVES WITHOUT A SOLUTION ° 45

Using the autonomous equation (2), discuss how it is
possible to obtain information about the location of
points of inflection of a solution curve

Consider the autonomous DE dy/dx = y* — y — 6. Use
your ideas from Problem 35 to find intervals on the
y-axis for which solution curves are concave up and
intervals for which solution curves are concave down.
Discuss why each solution curve of an initial-value
problem of the form dy/dx = y*> —y — 6, y(0) = y,
where —2 <y < 3, has a point of inflection with the
same y-coordinate. What is that y-coordinate? Carefully
sketch the solution curve for which y(0) = —1. Repeat
for y(2) = 2.

Suppose the autonomous DE in (2) has no critical
points. Discuss the behavior of the solutions.

Mathematical Models

38.

39.

40.

41.

Population Model The differential equation in Exam-
ple 3 is a well-known population model. Suppose the DE
is changed to

ar P(aP — b)
= = PP - b),
dt
where ¢ and b are positive constants. Discuss what
happens to the population P as time ¢ increases.

Population Model Another population model is given
by

dpP

— = kP — h,

dt
where 4 and k are positive constants. For what initial
values P(0) = Py does this model predict that the popu-
lation will go extinct?

Terminal Velocity In Section 1.3 we saw that the auto-
nomous differential equation
dv
m E = mg — kv,

where k is a positive constant and g is the acceleration
due to gravity, is a model for the velocity v of a body of
mass m that is falling under the influenc of gravity.
Because the term —kv represents air resistance, the
velocity of a body falling from a great height does not in-
crease without bound as time ¢ increases. Use a phase
portrait of the differential equation to fin the limiting, or
terminal, velocity of the body. Explain your reasoning.

Suppose the model in Problem 40 is modified so
that air resistance is proportional to V2, that is,

dv
— = — kv
m_ = mg
See Problem 17 in Exercises 1.3. Use a phase portrait
to find the terminal velocity of the body. Explain your
reasoning.
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42. Chemical Reactions When certain kinds of chemicals (b) Consider the case when @ = . Use a phase portrait
are combined, the rate at which the new compound is of the differential equation to predict the behavior
formed is modeled by the autonomous differential of X(¢) as t — % when X(0) < a. When X(0) > a.
equation (¢) Verify that an explicit solution of the DE in the case

X = X0)B - ), when k=1 and a =8 is X(t) =a — 1/t + o).

dt Find a solution that satisfies X(0) = « /2. Then fin
where k>0 is a constant of proportionality and a solution that satisfies X(0) = 2a. Graph these
B > a > 0. Here X(¢) denotes the number of grams of two solutions. Does the behavior of the solutions as
the new compound formed in time . t — o0 agree with your answers to part (b)?

(a) Use a phase portrait of the differential equation to
predict the behavior of X(f) as t — o°.

2.2 SEPARABLE EQUATIONS

REVIEW MATERIAL

e Basic integration formulas (See inside front cover)
e Techniques of integration: integration by parts and partial fraction decomposition
e See also the Student Resource Manual.

INTRODUCTION We begin our study of how to solve differential equations with the simplest
of all differential equations: first-order equations with separable variables. Because the method in
this section and many techniques for solving differential equations involve integration, you are
urged to refresh your memory on important formulas (such as [du/u) and techniques (such as
integration by parts) by consulting a calculus text.

= Solution by Integration Consider the first-order differential equation dy/dx =
f(x,y). When f does not depend on the variable y, that is, f(x, y) = g(x), the differen-
tial equation

dy _
=g M

can be solved by integration. If g(x) is a continuous function, then integrating both
sides of (1) gives y = [g(x) dx = G(x) + ¢, where G(x) is an antiderivative (indefi
nite integral) of g(x). For example, if dy/dx =1+ e**, then its solution is
y=J(1+ e dxory =x + %el" + c.

— A Definition Equation (1), as well as its method of solution, is just a special
case when the function f'in the normal form dy/dx = f(x, y) can be factored into a
function of x times a function of y.

DEFINITION 2.2.1 Separable Equation

A first-order di ferential equation of the form
1y
=7 = gh(y)
dx

is said to be separable or to have separable variables.

For example, the equations

d d
d_y = y2xe¥ Y and d_y =y + sinx
X X
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are separable and nonseparable, respectively. In the first equation we can factor
[, y) = y’xe> Has

gx) h(y)
Voo
f,p) = Yxe?™ = (xe™) (%),

but in the second equation there is no way of expressing y + sin x as a product of a
function of x times a function of y.
Observe that by dividing by the function /(y), we can write a separable equation

dy/dx = g(x)h(y) as
d
PO = g, @
X

where, for convenience, we have denoted 1/4(y) by p(y). From this last form we can
see immediately that (2) reduces to (1) when 4(y) = 1.

Now if y = ¢(x) represents a solution of (2), we must have p(¢ (x))d'(x) = g(x),
and therefore

Jp(¢(X))¢’(X) dx = fg(X) dx. )

But dy = ¢'(x) dx, and so (3) is the same as

f p(y)dy = f gx)ydx or  H(y) = G(x) + ¢, 4)

where H(y) and G(x) are antiderivatives of p(y) = 1/h(y) and g(x), respectively.

— Method of Solution Equation (4) indicates the procedure for solving separable
equations. A one-parameter family of solutions, usually given implicitly, is obtained
by integrating both sides of p(y) dy = g(x) dx.

— Note There is no need to use two constants in the integration of a separable
equation, because if we write H(y) + ¢; = G(x) + ¢, then the difference ¢; — ¢ can
be replaced by a single constant ¢, as in (4). In many instances throughout the chap-
ters that follow, we will relabel constants in a manner convenient to a given equation.
For example, multiples of constants or combinations of constants can sometimes be
replaced by a single constant.

DN\ IJNINE Solving a Separable DE

Solve (1 + x)dy — ydx = 0.

SOLUTION Dividing by (1 + x)y, we can write dy/y = dx/(1 + x), from which it

follows that
Jo- ]t
y 1 +x

In|y| =1n|1 + x| + ¢

y = ehliFslrer = ohll+xl . ger jay5 of exponents
=11+ x|em 1 +x|=1+x, x=—1
- [1+ x| (1 + x) —1
x| = - x),  x<—
= +e9(1 + x). ’

Relabeling *e“ as ¢ then gives y = ¢(1 + x).
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FIGURE 2.2.1
IVP in Example 2

Solution curve for the

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

ALTERNATIVE SOLUTION Because each integral results in a logarithm, a judicious
choice for the constant of integration is In|c| rather than c¢. Rewriting the second
line of the solution as In|y| = In|1 + x| + In|c| enables us to combine the terms on
the right-hand side by the properties of logarithms. From In|y| = In|c(1 + x)| we
immediately get y = ¢(1 + x). Even if the indefinite integrals are not a/l logarithms,
it may still be advantageous to use In|c|. However, no firm rule can be given.

In Section 1.1 we saw that a solution curve may be only a segment or an arc of
the graph of an implicit solution G(x, y) = 0.

DVNWYIHANIPE Solution Curve

d
Solve the initial-value problem 2 -,
dx y

y(4) = —3.

SOLUTION Rewriting the equation as y dy = —x dx, we get

2 2
y X
fydy = —fxdx and 5= + ¢

We can write the result of the integration as x” + 1> = ¢” by replacing the constant
2¢; by ¢?. This solution of the differential equation represents a family of concentric
circles centered at the origin.

Now whenx =4,y = —3,s016 + 9 =25 = ¢?. Thus the initial-value problem
determines the circle x” + y” = 25 with radius 5. Because of its simplicity we can
solve this implicit solution for an explicit solution that satisfies the initial condition.
We saw this solution as y = ¢y(x) ory = —\V25 — x?, —5 < x < 5 in Example 3 of
Section 1.1. A solution curve is the graph of a differentiable function. In this case the
solution curve is the lower semicircle, shown in dark blue in Figure 2.2.1 containing
the point (4, —3).

— Losing a Solution Some care should be exercised in separating variables, since
the variable divisors could be zero at a point. Specificall , if r is a zero
of the function /(y), then substituting y = r into dy/dx = g(x)h(y) makes both sides
zero;, in other words, y =r is a constant solution of the differential equation.
dy
h(y)
As a consequence, y = r might not show up in the family of solutions that are obtained
after integration and simplification. Recall that such a solution is called a singular
solution.

D VNVINNEN 1osing a Solution

d
Solve = = y* — 4.
dx

SOLUTION We put the equation in the form

dy 1 1
P = dx or —4 4
- —4 y—2 y+2

But after variables are separated, the left-hand side of = g(x) dx is undefined at .

} dy = dx. &)

The second equation in (5) is the result of using partial fractions on the left-hand side
of the first equation. Integrating and using the laws of logarithms give

1 1
Zln|y— 2| —Zln|y+2| =x+¢

y-2

22| = 4 +
ny_l_2 x + ¢, or
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Here we have replaced 4¢; by c;. Finally, after replacing =e“ by ¢ and solving the
last equation for y, we get the one-parameter family of solutions

1 + ce®™

) (©)

y=2 1 — ce*

Now if we factor the right-hand side of the differential equation as
dy/dx = (y — 2)(y + 2), we know from the discussion of critical points in Section 2.1
that y = 2 and y = —2 are two constant (equilibrium) solutions. The solutiony = 2 is a
member of the family of solutions defined by (6) corresponding to the value ¢ = 0.
However, y = —2 is a singular solution; it cannot be obtained from (6) for any choice of
the parameter ¢. This latter solution was lost early on in the solution process. Inspection

of (§) clearly indicates that we must preclude y = %2 in these steps. =

DO\ IHANW An Initial-Value Problem

d
Solve (e¥ — y) cosxd—y = ¢’sin2x, y(0) = 0.
x

SOLUTION Dividing the equation by e” cos x gives

¥ —y sin 2x
dy =
e coSs X

dx.

Before integrating, we use termwise division on the left-hand side and the trigono-
metric identity sin 2x = 2 sin x cos x on the right-hand side. Then

integration by parts — f (@ —yedy=2 f sin x dx
yields e+ye’+er=—2cosx +c 7

The initial condition y = 0 when x = 0 implies ¢ = 4. Thus a solution of the initial-
value problem is

e+yeV+eV=4—2cosx. 8 =

= Use of Computers The Remarks at the end of Section 1.1 mentioned
that it may be difficult to use an implicit solution G(x, y) = 0 to find an explicit
solution y = ¢ (x). Equation (8) shows that the task of solving for y in terms of x may
present more problems than just the drudgery of symbol pushing—sometimes it
simply cannot be done! Implicit solutions such as (8) are somewhat frustrating; nei-
ther the graph of the equation nor an interval over which a solution satisfying y(0) =
0 is defined is apparent. The problem of “seeing” what an implicit solution looks like
can be overcome in some cases by means of technology. One way" of proceeding is
to use the contour plot application of a computer algebra system (CAS). Recall from
multivariate calculus that for a function of two variables z = G(x, y) the two-
dimensional curves defined by G(x, y) = ¢, where c is constant, are called the level
curves of the function. With the aid of a CAS, some of the level curves of the func-
tion G(x, y) = ¢’ + ye™” + eV + 2 cos x have been reproduced in Figure 2.2.2. The
family of solutions defined by (7) is the level curves G(x, y) = c¢. Figure 2.2.3 illus-
trates the level curve G(x, y) = 4, which is the particular solution (8), in blue color.
The other curve in Figure 2.2.3 is the level curve G(x, y) = 2, which is the member
of the family G(x, y) = c that satisfies y(7/2) = 0.

If an initial condition leads to a particular solution by yielding a specific value of
the parameter c in a family of solutions for a first-order differential equation, there is

“In Section 2.6 we will discuss several other ways of proceeding that are based on the concept of a

numerical solver.
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(0,0 *

FIGURE 2.2.4 Piecewise-define

solutions of (9)

a natural inclination for most students (and instructors) to relax and be content.
However, a solution of an initial-value problem might not be unique. We saw in
Example 4 of Section 1.2 that the initial-value problem

dy

o Xy, y(0) =0 (€]
X

has at least two solutions, y = 0 and y = %x“. We are now in a position to solve the

equation. Separating variables and integrating y /% dy = x dx gives

2 2 2
2y”2=x5+c1 or y=(%+c>, c=0.
When x = 0, then y = 0, so necessarily, ¢ = 0. Therefore y = %x“. The trivial solution
y = 0 was lost by dividing by y"/2. In addition, the initial-value problem (9) possesses
infinitely many more solutions, since for any choice of the parameter ¢ = 0 the
piecewise-defined functio
0, x<a
y =

%(x2 -d®)? x=a

satisfies both the di ferential equation and the initial condition. See Figure 2.2.4.

= Solutions Defined by Integrals If g is a function continuous on an open in-
terval / containing a, then for every x in /,

d P
e f g dt = g(x).

You might recall that the foregoing result is one of the two forms of the fundamental
theorem of calculus. In other words, f ~ () dt is an antiderivative of the function g.
There are times when this form is convenient in solving DEs. For example, if g is
continuous on an interval / containing xy and x, then a solution of the simple initial-
value problem dy/dx = g(x), ¥(xo) = yq, that is defined on 7 is given by

X
yx) =y + f g(0) dt
Xo
You should verify that y(x) defined in this manner satisfies the initial condition. Since
an antiderivative of a continuous function g cannot always be expressed in terms of
elementary functions, this might be the best we can do in obtaining an explicit
solution of an IVP. The next example illustrates this idea.

DV\YIHANIEW An Initial-Value Problem

d
Solve Y- e, y(3)=5.
dx

SOLUTION The function g(x) = e is continuous on (—%, %), but its antideriva-
tive is not an elementary function. Using ¢ as dummy variable of integration, we can

write
x dy fx
—dt= | e "dt
J; dt 3 ¢

y(t)]f = fxe’zdt
3

X

yx) — ¥y3) = f e~"dt

3

y(x) = y(3) + f et
3
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Using the initial condition y(3) = 5, we obtain the solution

yx) =15+ f e " dt.

3

51

The procedure demonstrated in Example 5 works equally well on separable
equations dy/dx = g(x) f(v) where, say, f(v) possesses an elementary antiderivative
but g(x) does not possess an elementary antiderivative. See Problems 29 and 30 in

Exercises 2.2.

REMARKS

(i) As we have just seen in Example 5, some simple functions do not possess
an antiderivative that is an elementary function. Integrals of these kinds of
functions are called nonelementary. For example, [§ e~ dt and [sin x dx are
nonelementary integrals. We will run into this concept again in Section 2.3.

(7i) In some of the preceding examples we saw that the constant in the one-
parameter family of solutions for a first-order differential equation can be rela-
beled when convenient. Also, it can easily happen that two individuals solving the
same equation correctly arrive at dissimilar expressions for their answers. For
example, by separation of variables we can show that one-parameter families of
solutions for the DE (1 + »?) dx + (1 + x?) dy = 0 are

arctan x + arctany = ¢ or

As you work your way through the next several sections, bear in mind that fami-
lies of solutions may be equivalent in the sense that one family may be obtained
from another by either relabeling the constant or applying algebra and trigonom-
etry. See Problems 27 and 28 in Exercises 2.2.

EXERCISES 2.2

Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1-22 solve the given differential equation by das i dQ i
separation of variables. 15. ar s 16. dr (© —70)
dy _ dy _ > L _pop 18. W4 N = N
l.a—sm5x 2.;—(x+1) At Tt €
3. dx + e¥dy =0 4. dy— (y— 1)%dx =0 lggzxy+3x—y—3 20 dy xy+2y—x—2
“dx xy—2x+4y -8 dx xy—-3y+x-3
dy dy >
5. x— =4y 6. —+2xy°=0
dx dx dy dy
2. = =xV1—)? 22. (ef+e )= =)?
dy ly dx dx
7. e 2y 8. e"yd— =V + e Y
x In Problems 23-28 find an explicit solution of the given
dx y + 1) dy 2y + 3\? initial-value problem.
9. ylnx— = 10. — =
dy b dx 4x + 5 dx ,
23, — =4@x* + 1 4) =1
11. cscydx + sec’xdy =0 dt S ) x(wf4)
. 2
12. sin 3x dx + 2y cos®3xdy = 0 24. % = i/z - 1, y(2) =2
13. (¥ + D2 7Vdx+ (e + 1)e*dy=0
25 xzd—y= - X (=)= -1
14. x(1 + )2 dx = y(1 + %) dy Tax Y
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52 o
dy
dt
27. V1 —y*dx — V1 —x*dy =0, y(0) =

28. (1 +xHdy+x(1 +42)dx=0, y()=

26. = +2y=1, p0)=3

V3
2
0

In Problems 29 and 30 proceed as in Example 5 and find an
explicit solution of the given initial-value problem.
dy o

29. —=ye ™, y4) =1
dx

d
30. L= y2sin?, p(-2)=1!
dx

In Problems 31-34 find an explicit solution of the given
initial-value problem. Determine the exact interval / of defi
nition by analytical methods. Use a graphing utility to plot
the graph of the solution.

@_2}(4—1

31. ,
dx 2y

H-2) = -1

d
32. 2y — 2)d—i =32+ 4x+2, yl)= -2

33. &dx —e*dy =0, y(0)=0
34. sinxdx + ydy =0, y(0) =1

35. (a) Find a solution of the initial-value problem consist-
ing of the differential equation in Example 3 and
each of the initial-conditions: y(0) = 2, y(0) = —2,
and y(i) = 1.

(b) Find the solution of the differential equation in
Example 4 when In c¢; is used as the constant of
integration on the left-hand side in the solution and
4 In ¢ is replaced by In ¢. Then solve the same
initial-value problems in part (a).

d
36. Find a solution of xd—y = y? — y that passes through
X

the indicated points.
@ O  ®©00 ©G) @ (@2}
37. Find a singular solution of Problem 21. Of Problem 22.

38. Show that an implicit solution of
2x sin?y dx — (x2 + 10)cosy dy = 0

is given by In(x?> + 10) + csc y = c. Find the constant
solutions, if any, that were lost in the solution of the dif-
ferential equation.

Often a radical change in the form of the solution of a differen-
tial equation corresponds to a very small change in either the
initial condition or the equation itself. In Problems 39-42 fin
an explicit solution of the given initial-value problem. Use a
graphing utility to plot the graph of each solution. Compare
each solution curve in a neighborhood of (0, 1).

d
9. 0= (- DA MO =1
X

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

dy _

40. L= - 12 30 =101
dx
dy

4. L= (- 12+ 001, 30) =1
dx
d

2.2 =0 -1 =001, y0)=1
dx

43. Every autonomous first-orde equation dy/dx = f(y)
is separable. Find explicit solutions y;(x), y2(x), y3(x),
and y4(x) of the differential equation dy/dx =y — y?
that satisfy, in turn, the initial conditions y;(0) = 2,
1,(0) = 1, »3(0) = —1, and y4(0) = —2. Use a graphing
utility to plot the graphs of each solution. Compare these
graphs with those predicted in Problem 19 of Exercises 2.1.
Give the exact interval of definitio for each solution.

44. (a) The autonomous first-order differential equation
dy/dx =1/(y —3) has no critical points.
Nevertheless, place 3 on the phase line and obtain
a phase portrait of the equation. Compute d’y/dx>
to determine where solution curves are concave up
and where they are concave down (see Problems
35 and 36 in Exercises 2.1). Use the phase portrait
and concavity to sketch, by hand, some typical
solution curves.

(b) Find explicit solutions y;(x), ya2(x), y3(x), and y4(x)
of the differential equation in part (a) that satisfy,
in turn, the initial conditions y;(0) = 4, y,(0) = 2,
y3(1) = 2, and y4(—1) = 4. Graph each solution
and compare with your sketches in part (a). Give
the exact interval of definition for each solution.

In Problems 45-50 use a technique of integration or a substi-
tution to find an explicit solution of the given differential
equation or initial-value problem.

| .
s oL 46, & sV

dx 1+ sinx dx

d d
47. (\/)E—l—x)—y:\/);—l—y 48-—)}=y2/3—y
dx dx

d Vx
9. 2= ,1)=4  s0.
y

dx

dy xtan"'x

0)=3
T ) , ¥(0)

Discussion Problems

51. (a) Explain why the interval of definition of the explicit
solution y = ¢,(x) of the initial-value problem in
Example 2 is the open interval (=35, 5).

(b) Can any solution of the differential equation cross
the x-axis? Do you think that x> + y*> =1 is an
implicit solution of the initial-value problem

dy/dx = —x/y, y(1) = 0?

52. (a) If a > 0, discuss the differences, if any, between
the solutions of the initial-value problems consist-
ing of the differential equation dy/dx = x/y and
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each of the initial conditions y(a) = a, y(a) = —a,
y(—a) = a,and y(—a) = —a.

(b) Does the initial-value problem dy/dx = x/y,
¥(0) = 0 have a solution?

(¢) Solve dy/dx = x/y, y(1) = 2 and give the exact
interval / of definition of its solution

53. In Problems 43 and 44 we saw that every autonomous
first-order differential equation dy/dx = f(y) is
separable. Does this fact help in the solution of the

d
initial-value problemd—y = VI + ysin’y, p(0) =12
X
Discuss. Sketch, by hand, a plausible solution curve of
the problem.

54. (a) Solve the two initial-value problems:

dy
— T N O = 1
n Y »(0)
and
dy Yy
2+ =1.
dx Y xInx’ e

(b) Show that there are more than 1.65 million digits in
the y-coordinate of the point of intersection of the
two solution curves in part (a).

55. Find a function whose square plus the square of its
derivative is 1.

56. (a) The differential equation in Problem 27 is equiva-
lent to the normal form

dy \/ 1 —y?

dx 1 —x?
in the square region in the xy-plane defined by
|x| <1, |y| < 1. But the quantity under the radical is
nonnegative also in the regions defined by |x| > 1,
|y| > 1. Sketch all regions in the xy-plane for

which this differential equation possesses real
solutions.

(b) Solve the DE in part (a) in the regions defined by
|x| >1,|y| > 1. Then find an implicit and an

explicit solution of the differential equation subject
to y(2) = 2.

Mathematical Model

57. Suspension Bridge In (16) of Section 1.3 we saw that
a mathematical model for the shape of a flexible cable
strung between two vertical supports is

dy W

=— 10
dx T (10)

where W denotes the portion of the total vertical load
between the points Py and P, shown in Figure 1.3.7. The

2.2 SEPARABLE EQUATIONS ° 53

DE (10) is separable under the following conditions that
describe a suspension bridge.

Let us assume that the x- and y-axes are as shown in
Figure 2.2.5—that is, the x-axis runs along the horizon-
tal roadbed, and the y-axis passes through (0, ), which
is the lowest point on one cable over the span of the
bridge, coinciding with the interval [—L /2, L /2]. In the
case of a suspension bridge, the usual assumption is that
the vertical load in (10) is only a uniform roadbed dis-
tributed along the horizontal axis. In other words, it is
assumed that the weight of all cables is negligible in
comparison to the weight of the roadbed and that the
weight per unit length of the roadbed (say, pounds per
horizontal foot) is a constant p. Use this information to
set up and solve an appropriate initial-value problem
from which the shape (a curve with equation y = ¢(x))
of each of the two cables in a suspension bridge is
determined. Express your solution of the IVP in terms
of the sag /2 and span L. See Figure 2.2.5.

— y L
cable (
'/ h (sag)
(0. a) J
W L
L/2 L/2 X
k———L (span)

roadbed (load)

FIGURE 2.2.5 Shape of a cable in Problem 57

Computer Lab Assignments

58. (a) Use a CAS and the concept of level curves to
plot representative graphs of members of the
family of solutions of the differential equation
dy  8&+5
dx 32+ 1
of level curves as well as various rectangular
regions definedbya =x=b,c=y=d

Experiment with different numbers

(b) On separate coordinate axes plot the graphs of the
particular solutions corresponding to the initial
conditions: y(0) = —1; y(0)=2; y(—1)=4;
=1 = -3,

59. (a) Find an implicit solution of the IVP
2y +2)dy — (4> + 6x)dx = 0, y(0) = —3.

(b) Use part (a) to find an explicit solution y = ¢(x) of

the IVP.

(¢) Consider your answer to part (b) as a function only.
Use a graphing utility or a CAS to graph this func-
tion, and then use the graph to estimate its domain.

(d) With the aid of a root-finding application of a CAS,
determine the approximate largest interval / of
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54 ° CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

definition of the solution y = ¢(x) in part (b). Use a condition. With thg aid of a root-ﬁnding applic.ation
graphing utility or a CAS to graph the solution of a CAS, determine the approximate largest inter-
curve for the IVP on this interval. val I of definition of the solution ¢. [Hint: First fin

the points on the curve in part (a) where the tangent
is vertical.]

(¢) Repeat part (b) for the initial condition y(0) = —2.

60. (a) Use a CAS and the concept of level curves to
plot representative graphs of members of the
family of solutions of the differential equation
dy  x(1 —x)
dx  y(=2+y)
numbers of level curves as well as various rectan-
gular regions in the xy-plane until your result
resembles Figure 2.2.6.

Experiment with different

(b) On separate coordinate axes, plot the graph of the
implicit solution corresponding to the initial condi-
tion y(0) = % Use a colored pencil to mark off that
segment of the graph that corresponds to the solu-
tion curve of a solution ¢ that satisfies the initial FIGURE 2.2.6 Level curves in Problem 60

2.3 LINEAR EQUATIONS

REVIEW MATERIAL
e Review the definitions of linear DEs in (6) and (7) of Section 1.1

INTRODUCTION We continue our quest for solutions of first-order differential equations by
next examining linear equations. Linear differential equations are an especially “friendly” family
of differential equations, in that, given a linear equation, whether first order or a higher-order kin,
there is always a good possibility that we can find some sort of solution of the equation that we can
examine.

=— A Definition The form of a linear first-order DE was given in (7) of Sec-
tion 1.1. This form, the case when n = 1 in (6) of that section, is reproduced here for
convenience.

DEFINITION 2.3.1 Linear Equation

A first-order di ferential equation of the form
o ody
@)+ ax)y = g, (1)
X

is said to be a linear equation in the variable y.

— Standard Form By dividing both sides of (1) by the lead coefficient a,(x), we
obtain a more useful form, the standard form, of a linear equation:

Iy
o Py = ). 2)
X

We seek a solution of (2) on an interval / for which both coefficient functions P and
fare continuous.
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Before we examine a general procedure for solving equations of form (2) we
note that in some instances (2) can be solved by separation of variables. For exam-
ple, you should verify that the equations

We match each equation with (2). In the dy dy
first equation P(x) = 2x, f(x) = 0 and in » — + 2xy =0 and —=y+ 5
the second P(x) = —1, f(x) = 5. dx dx

are both linear and separable, but that the linear equation

= 4+ =x
dx Y

is not separable.

= Method of Solution The method for solving (2) hinges on a remarkable fact
that the lefi-hand side of the equation can be recast into the form of the exact deriva-
tive of a product by multiplying the both sides of (2) by a special function u(x). It is
relatively easy to find the function w(x) because we want

left hand side of

product product rule  (2) multipled by w(x)
d dy du dy
— [ (x =u—+—y=u—+ uPy.
g M) = ooy = s Py

these must be equal

The equality is true provided that

du
dx_MP'

The last equation can be solved by separation of variables. Integrating

d
L~ pax  and solving  Inju(x)| = f P(x)dx + ¢,

u

See Problem 50 gives u(x) = c,e/’% Even though there are an infinite choices of u(x) (all constant
in Exercises 2.3 p» multiples of e/P®%) all produce the same desired result. Hence we can simplify life
and choose ¢, = 1. The function

() = el 3)

is called an integrating factor for equation (2).

Here is what we have so far: We multiplied both sides of (2) by (3) and, by
construction, the left-hand side is the derivative of a product of the integrating factor
and y:

ps D [P0 ), — P
e x’(a-FP(x)e R N (69

di [ P y] = olPedx 1)
x

Finally, we discover why (3) is called an integrating factor. We can integrate both
sides of the last equation,

efP(x)tLr y = f efP(x)dx f(x) + ¢
and solve for y. The result is a one-parameter family of solutions of (2):
y = e*fP(x)dx fefP(x)dxﬂx)dx + Ce*fP(x)dx. (4)

We emphasize that you should not memorize formula (4). The following proce-
dure should be worked through each time.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

SOLVING A LINEAR FIRST-ORDER EQUATION

(i) Remember to put a linear equation into the standard form (2).

(if) From the standard form of the equation identify P(x) and then find th
integrating factor ¢/”)** No constant need be used in evaluating the
indefinite integral [ P(x)dx.

@iy Multiply the both sides of the standard form equation by the integrating
factor. The left-hand side of the resulting equation is automatically the
derivative of the product of the integrating factor e/"®4* and y:

B ef/’(,\')d,\:y] — ef[)(\')(/\:}(‘(x).
dx

(iv) Integrate both sides of the last equation and solve for y.

DVNVIJNNE Solving a Linear Equation

d
Solve & 3y =0.
dx

SOLUTION This linear equation can be solved by separation of variables.
Alternatively, since the differential equation is already in standard form (2), we iden-
tify P(x) = —3, and so the integrating factor is e/("3% = ¢73*, We then multiply the
given equation by this factor and recognize that

d d
Y 3e ¥y =e . is the same as — eyl =0.
dx dx

Integration of the last equation,

fdi [e 3yl dx = fO dx
X

then yields e ™y = cory = ce™, —0 < x < o,

D VNVINIPE Solving a Linear Equation

d
Solve 2 — 3y = 6,
dx

SOLUTION This linear equation, like the one in Example 1, is already in standard
form with P(x) = —3. Thus the integrating factor is again ¢~ . This time multiply-
ing the given equation by this factor gives
d
e—3x Ly —3x

d
o 3¢y = e and so % [e 3 y] = 6™,

Integrating the last equation,

d —3x
= [e ¥yl dx = 6[6‘3)‘ dx gives ey = —6(63 ) + ¢,
X
ory = —2 + ce¥, —oo < x < oo, =

When a4, a, and g in (1) are constants, the differential equation is autonomous.
In Example 2 you can verify from the normal form dy/dx = 3(y + 2) that —2 is a
critical point and that it is unstable (a repeller). Thus a solution curve with an
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FIGURE 2.3.1 Solution curves of DE

in Example 2

In case you are wondering why the
interval (0, =) is important in Example 3,
read this paragraph and the paragraph
following Example 4.

| 2
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initial point either above or below the graph of the equilibrium solution
y = —2 pushes away from this horizontal line as x increases. Figure 2.3.1, obtained
with the aid of a graphing utility, shows the graph of y = —2 along with some addi-
tional solution curves.

=— General Solution Suppose again that the functions P and f'in (2) are con-
tinuous on a common interval /. In the steps leading to (4) we showed that if (2) has
a solution on 7/, then it must be of the form given in (4). Conversely, it is a straight-
forward exercise in differentiation to verify that any function of the form given in
(4) is a solution of the differential equation (2) on /. In other words, (4) is a one-
parameter family of solutions of equation (2) and every solution of (2) defined on 1
is a member of this family. Therefore we call (4) the general solution of the
differential equation on the interval /. (See the Remarks at the end of Section 1.1.)
Now by writing (2) in the normal form y’' = F(x,y), we can identify
F(x,y) = —P(x)y + f(x) and 9F /9y = —P(x). From the continuity of P and fon the
interval 7 we see that F and dF/dy are also continuous on /. With Theorem 1.2.1 as
our justification, we conclude that there exists one and only one solution of the
initial-value problem

dy

e TPy =00, yo) = v ®)
defined on some interval I containing x(. But when x is in /, finding a solution of (5)
is just a matter of finding an appropriate value of ¢ in (4)—that is, to each x( in / there
corresponds a distinct c. In other words, the interval /) of existence and uniqueness
in Theorem 1.2.1 for the initial-value problem (5) is the entire interval /.

DVN\IHANIEE General Solution

d
Solve x 2 — 4y = x%*.
dx

SOLUTION Dividing by x, the standard form of the given DE is

L, = S X 6

dx x v ©
From this form we identify P(x) = —4/x and f(x) = x’e* and further observe that P
and f'are continuous on (0, ). Hence the integrating factor is

we can use In x instead of In x| since x > 0

e*4fdx/x — e*4lnx — eln)c’4 = x4,

Here we have used the basic identity 52" = N, N > 0. Now we multiply (6) by x*
and rewrite

d d
2 4x7%y = xe* as  — [x %] = xe.
dx dx

It follows from integration by parts that the general solution defined on the interval

(0, ) isx *y = xe* — e* + cory = x’e" — x*e’ + ox. =

Except in the case in which the lead coefficient is 1, the recasting of equation
(1) into the standard form (2) requires division by a;(x). Values of x for which
ai(x) = 0 are called singular points of the equation. Singular points are poten-
tially troublesome. Specifically, in (2), if P(x) (formed by dividing ay(x) by a;(x))
is discontinuous at a point, the discontinuity may carry over to solutions of the
differential equation.
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p
4
2 c>0
—2 c<0
4l c=0
. J
-4 =2 2 4

FIGURE 2.3.2 Solution curves of DE
in Example 5

DVN\INAN:N General Solution

d
Find the general solution of (x? — 9) d_y +xy =0.
X

SOLUTION We write the differential equation in standard form

b, X
dx x*—9

y=0 (7

and identify P(x) = x/(x*> — 9). Although P is continuous on (—, —3), (-3, 3), and
(3, ), we shall solve the equation on the first and third intervals. On these intervals
the integrating factor is

efxdx/(x2—9) — e;fzxdx/(xz—% — e% In[x*—-9] — 2 — 9.

After multiplying the standard form (7) by this factor, we get
d
LIvim=35,|=o.
dx

Integrating both sides of the last equation gives Vx?> — 9.y = c. Thus for either

c

x >3 or x < —3 the general solution of the equation is y = ————. =
£ a SRV

Notice in Example 4 that x = 3 and x = —3 are singular points of the equation

and that every function in the general solution y = ¢/Vx? — 9 is discontinuous at
these points. On the other hand, x = 0 is a singular point of the differential equation
in Example 3, but the general solution y = x’e* — x*¢* + cx* is noteworthy in that
every function in this one-parameter family is continuous at x = 0 and is define

on the interval (—, %) and not just on (0, ), as stated in the solution. However,
the family y = x’¢* — x*¢* + cx* defined on (—2°, %) cannot be considered the gen-
eral solution of the DE, since the singular point x = 0 still causes a problem. See

Problems 45 and 46 in Exercises 2.3.

DV\YIHANIEW An Initial-Value Problem

d
Solve L +y=1x y(0) = 4.
dx

SOLUTION The equation is in standard form, and P(x) = 1 and f(x) = x are contin-
uous on (—o, ). The integrating factor is e/%* = ¢*, so integrating

d eyl = xe'

o levl=x

gives e*y = xe* — e¢* + c. Solving this last equation for y yields the general solution
y=2x— 1+ ce ". But from the initial condition we know that y = 4 when x = 0.
Substituting these values into the general solution implies that ¢ = 5. Hence the
solution of the problem is

y=x—14+5" —-owolx<ox ®) =

Figure 2.3.2, obtained with the aid of a graphing utility, shows the graph of
the solution (8) in dark blue along with the graphs of other members of the one-
parameter family of solutions y = x — 1 + ce . It is interesting to observe that as x
increases, the graphs of a// members of this family are close to the graph of the solu-
tiony = x — 1. The last solution corresponds to ¢ = 0 in the family and is shown in
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dark green in Figure 2.3.2. This asymptotic behavior of solutions is due to the fact
that the contribution of ce™™, ¢ # 0, becomes negligible for increasing values of x.
We say that ce™ ™ is a transient term, since e * — 0 as x — . While this behavior
is not characteristic of all general solutions of linear equations (see Example 2), the
notion of a transient is often important in applied problems.

=— Discontinuous Coefficients In applications, the coefficients P(x) and f(x) in
(2) may be piecewise continuous. In the next example f(x) is piecewise continuous
on [0, ©) with a single discontinuity, namely, a (finite) jump discontinuity at x = 1.
We solve the problem in two parts corresponding to the two intervals over which f'is
defined. It is then possible to piece together the two solutions at x = 1 so that y(x) is
continuous on [0, ).

DV WYIHANE An Initial-Value Problem

dy
Solve —
olve dx

I, 0=x=1,

0, x> 1.

+y=f(x), y0)=0 where f(x)= {

y SOLUTION The graph of the discontinuous function f'is shown in Figure 2.3.3. We
T solve the DE for y(x) first on the interval [0, 1] and then on the interval (1, ). For
s 0 =x =1 we have

1—e dy . d
—+y=1 or, equivalently, — [e'y] = e.
—t—t— ~ dx dx
Integrating this last equation and solving for y gives y = 1 + cje™". Since y(0) = 0,
FIGURE 2.3.3 Discontinuous f{x) in we must have ¢; = —1, and therefore y =1 — e™¥, 0 = x = 1. Then for x > 1 the
Example 6 equation
dy
—+y=0
dx Y
leads to y = c,e™ . Hence we can write
1 —e* 0=x=1,
y= —x
e, x> 1.
y
1 By appealing to the definition of continuity at a point, it is possible to determine
¢y so that the foregoing function is continuous at x = 1. The requirement that
1 lim,_,+ y(x) = y(1) implies that ce™' =1 —e"! or ¢c;=e— 1. As seen in
T Figure 2.3.4, the function
i x 1 —e™, 0=x=1,
i . ©
(e — e, x>1

FIGURE 2.3.4 Graph of (9) in
Example 6 is continuous on (0, ). =

It is worthwhile to think about (9) and Figure 2.3.4 a little bit; you are urged to
read and answer Problem 48 in Exercises 2.3.

= Functions Defined by Integrals At the end of Section 2.2 we discussed
the fact that some simple continuous functions do not possess antiderivatives that
are elementary functions and that integrals of these kinds of functions are called
nonelementary. For example, you may have seen in calculus that [e™ dx and
[sin x? dx are nonelementary integrals. In applied mathematics some important func-
tions are define in terms of nonelementary integrals. Two such special functions are
the error function and complementary error function:

N 2 (7 .
erf(x) = \/%f e "dt and erfc(x) = \/%f e " dt. (10)
0 X

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



60 ° CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

y

. J/

FIGURE 2.3.5 Solution curves of DE
in Example 7

From the known result [y e " dt = V/@/2" we can write (2/V7) [{e " dt = 1.
Then from [, = [, + [ itis seen from (10) that the complementary error func-
tion erfc(x) is related to erf(x) by erf(x) + erfc(x) = 1. Because of its importance
in probability, statistics, and applied partial differential equations, the error func-
tion has been extensively tabulated. Note that erf(0) = 0 is one obvious function
value. Values of erf(x) can also be found by using a CAS.

DVN\YIHANIWE The Error Function

d
Solve the initial-value problem d_y —2xy =2, y0)=1.
X

SOLUTION Since the equation is already in standard form, we see that the integrat-
ing factor is e, so from

d 2 2 2 ! 2 2
— eyl = 2e7F weget y=2¢ J e "dt + ce. (11)
dx 0

Applying y(0) = 1 to the last expression then gives ¢ = 1. Hence the solution of the
problem is

y = 2e*2f e dt+e”  or y=e"[l + Vaerfx)]
0
The graph of this solution on the interval (—, ), shown in dark blue in Figure 2.3.5
among other members of the family defined in (11), was obtained with the aid of a

computer algebra system. =

= Use of Computers The computer algebra systems Mathematica and Maple
are capable of producing implicit or explicit solutions for some kinds of differential
equations using their dso/ve commands.’

REMARKS

(7) A linear first-order di ferential equation

dy
() S+ ax)y = 0
/X
is said to be homogeneous, whereas the equation

d
@) o + a9y = g

with g(x) not identically zero is said to be nonhomogeneous. For example, the
linear equations xy’ + y = 0 and xy" + y = " are, in turn, homogeneous and
nonhomogeneous. As can be seen in this example the trivial solution y = 0 is
always a solution of a homogeneous linear DE. Store this terminology in the
back of your mind because it becomes important when we study linear higher-
order ordinary differential equations in Chapter 4.

“This result is usually proved in the third semester of calculus.

fCertain commands have the same spelling, but in Mathematica commands begin with a capital letter
(DSolve), whereas in Maple the same command begins with a lower case letter (dsolve). When
discussing such common syntax, we compromise and write, for example, dsolve. See the Student
Resource Manual for the complete input commands used to solve a linear first-order DE
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(if) Occasionally, a first-order differential equation is not linear in one variable
but in linear in the other variable. For example, the differential equation

G/
dx  x +)?
is not linear in the variable y. But its reciprocal
X
—=x+)> or —-—x=)~
dy Y & Y
is recognized as linear in the variable x. You should verify that the integrating
factor /"% = ¢ and integration by parts yield the explicit solution
x = —y> — 2y — 2 + ce’ for the second equation. This expression is then an
implicit solution of the first equation

(éii) Mathematicians have adopted as their own certain words from engineer-
ing, which they found appropriately descriptive. The word transient, used ear-
lier, is one of these terms. In future discussions the words input and output will
occasionally pop up. The function f'in (2) is called the input or driving func-
tion; a solution y(x) of the differential equation for a given input is called the
output or response.

(iv) The term special functions mentioned in conjunction with the error func-
tion also applies to the sine integral function and the Fresnel sine integral
introduced in Problems 55 and 56 in Exercises 2.3. “Special Functions” is
actually a well-defined branch of mathematics. More special functions are
studied in Section 6.4.

EXERCISES 2.3

Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1-24 find the general solution of the given dif-
ferential equation. Give the largest interval / over which the
general solution is defined. Determine whether there are any
transient terms in the general solution.

1.

11.

13.
14.
15.
16.

17.

8.y =2+x>+5

d
10. xZ 42y =3
dx

X+ x(x + 2y = e

xy" + (1 +x)y = e *sin 2x
ydx —4(x+y%)dy =0
ydx = (ye¥ — 2x) dy

d
cosx—y + (sinx)y =1
X

d
18. cosx sinx = + (cos’x)y =1
dx

d
19. (x + 1)d—y +(x + 2y = 2xe ™
X

d
R S 20. (x + 22 =5 -8y — 4ny
X dx
dy 21 @+ 6 = cos 6
4.32 4+ 12y=4 « g+ rsec 6= cos
dx
, \ dP
6.y +2xy=x 22. -+ AP =P+ 41 -2

d
2. x4 B+ )y = e
dx

24, (x> — 1)9 +2y=(x+1)
dx

d
L+ Ly =2
dx

In Problems 25-36 solve the given initial-value problem.
Give the largest interval / over which the solution is defined

d
5. L =+ 5, 90)=3
dx

dy
26. o 2x — 3y, »(0) =1

27. xy" +y=¢€, pl)=2
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dx
28. y——x=27 yl)=5
dy

di
29. Ld_:,‘ + Ri=E, i0)=1i, L,R,E,ij,constants

dT
30- E = k(T - Tm)7 T(O) = T07 k’ Tm, TO constants

d
2y =4+ 1, y1)=38
dx
32. ) + dxy = X%, p(0) = —1

d
34x+uf+y:mm (1) = 10
X

d
34W+D§+w=Ly@=l
X

35. )" — (sinx)y = 2sinx, W(w/2) =1

36. y' + (tanx)y = cos’x, p(0) = —1

In Problems 37-40 proceed as in Example 6 to solve the
given initial-value problem. Use a graphing utility to graph

the continuous function y(x).

d
3mf+@;mm@=QMm
X

I, 0=x=3
f(x)—{O’ >3
dy
38.d—+y=f(x),y(0)=l,where
X
L. JL 0=x=1
=it "
dy
39. d—+2xy=f(x),y(0)=2,where
X
x, 0=x<1
f(x)—{O’ =1

d
40. (1 + xz)d—;j + 2xy = f(x), y(0) = 0, where

X, 0=x<1

f(X)={

41. Proceed in a manner analogous to Example 6 to solve the
initial-value problem y’ + P(x)y = 4x, y(0) = 3, where

—X, x=1

2, 0=x=1,
—2/x, x>1.

P(x) = {

Use a graphing utility to graph the continuous function
y().

42. Consider the initial-value problem y' + e*y = f(x),
y(0) = 1. Express the solution of the IVP forx > 0 asa
nonelementary integral when f(x) = 1. What is the so-
lution when f(x) = 0? When f(x) = ¢*?

43. Express the solution of the initial-value problem
y' —2xy = 1,y(1) = 1, in terms of erf(x).

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

Discussion Problems

44. Reread the discussion following Example 2. Construct a
linear first-order differential equation for which all
nonconstant solutions approach the horizontal asymp-
totey = 4asx — oo,

45. Reread Example 3 and then discuss, with reference
to Theorem 1.2.1, the existence and uniqueness of a
solution of the initial-value problem consisting of
xy" — 4y = x%* and the given initial condition.

@ »©0)=0  (b) ¥(0) =yo,y0>0
(C) y(xo) = Yo, Xo > 0:}’0 >0

46. Reread Example 4 and then find the general solution of
the differential equation on the interval (—3, 3).

47. Reread the discussion following Example 5. Construct a
linear first-order differential equation for which all solu-
tions are asymptotic to the line y = 3x — 5 as x —> o,

48. Reread Example 6 and then discuss why it is technically
incorrect to say that the function in (9) is a “solution” of
the IVP on the interval [0, ).

49. (a) Construct a linear first-order differential equation of
the form xy’ + ao(x)y = g(x) for which y. = ¢/x*
and y,=x’. Give an interval on which
y = x3 + ¢/x? is the general solution of the DE.

(b) Give an initial condition y(xo) =y for the DE
found in part (a) so that the solution of the IVP
is y=x>—1/x3. Repeat if the solution is
y =x>+ 2/x3. Give an interval I of definition of
each of these solutions. Graph the solution curves. Is
there an initial-value problem whose solution is
defined on —o0, ©0)?

(¢) Is each IVP found in part (b) unique? That is, can
there be more than one IVP for which, say,
y =x* — 1/x*, x in some interval /, is the solution?

50. In determining the integrating factor (3), we did not use
a constant of integration in the evaluation of [P(x) dx.
Explain why using [P(x) dx + ¢| has no effect on the
solution of (2).

51. Suppose P(x) is continuous on some interval / and a is a
number in /. What can be said about the solution of the
initial-value problem y’ + P(x)y = 0, y(a) = 0?

Mathematical Models

52. Radioactive Decay Series The following system
of differential equations is encountered in the study of the
decay of a special type of radioactive series of elements:

dx

ar - M

dy

E = Ax = Ay,

where A1 and A, are constants. Discuss how to solve this
system subject to x(0) = x, ¥(0) = y¢. Carry out your
ideas.
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53. Heart Pacemaker A heart pacemaker consists of a
switch, a battery of constant voltage E, a capacitor with
constant capacitance C, and the heart as a resistor with
constant resistance R. When the switch is closed, the
capacitor charges; when the switch is open, the capacitor
discharges, sending an electrical stimulus to the heart.
During the time the heart is being stimulated, the voltage
E across the heart satisfies the linear differential equation

(b)

(©
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definedto be 1 at # = 0. Express the solution y(x) of
the initial-value problem x%y’ + 2x2y = 10 sin x,
y(1) = 0 in terms of Si(x).

Use a CAS to graph the solution curve for the [IVP
forx > 0.

Use a CAS to find the value of the absolute maxi-
mum of the solution y(x) for x > 0.

dE 1 56. (a) The Fresnel sine integral is defined by
7 RrC S(x) = [},sin(#?/2) dt. Express the solution y(x)
. of the initial-value problem y'— (sinx?)y =0,
Solve the DE, subject to E(4) = E). 1(0) = 5, in terms of S(x).
. (b) Use a CAS to graph the solution curve for the IVP
Computer Lab Assignments on (—o0, ).
54. (a) Express the solution of the initial-value problem (c¢) It is known that S(x) —>% as x —> o and S(x) — —%
y' = 2xy = —1,»(0) = Vr /2, in terms of erfc(x). as x — —oo . What does the solution y(x) approach
(b) Use tables or a CAS to find the value of y(2). Use a asx —> %7 Asx — —?
CAS to graph the solution curve for the IVP on (d) Use a CAS to find the values of the absolute

(=, ®).
55. (a) The sine integral function is defined by
Si(x) = [,(sint/f)dt, where the integrand is

maximum and the absolute minimum of the
solution y(x).

2.4

EXACT EQUATIONS

REVIEW MATERIAL

e Multivariate calculus
e Partial differentiation and partial integration
e Differential of a function of two variables

INTRODUCTION Although the simple first-order equation
ydx +xdy =10

is separable, we can solve the equation in an alternative manner by recognizing that the expression
on the left-hand side of the equality is the differential of the function f(x, y) = xy; that is,

d(xy) =y dx + x dy.

In this section we examine first-order equations in differential form M(x, y) dx + N(x,y) dy = 0. By
applying a simple test to M and &, we can determine whether M(x, y) dx + N(x, y) dy is a differen-
tial of a function f(x, y). If the answer is yes, we can construct /by partial integration.

— Differential of a Function of Two Variables Ifz = f(x, y) is a function of
two variables with continuous first partial derivatives in a region R of the xy-plane,
then its differential is

ad ad
dz = ;fdx + ‘—fdy. )
0x Jdy

In the special case when f(x, y) = ¢, where c is a constant, then (1) implies

ad )
—fdx + —fdy = 0. 2)
0x ay
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In other words, given a one-parameter family of functions f(x, y) = ¢, we can generate
a first-order differential equation by computing the differential of both sides of the
equality. For example, if x> — 5xy + y* = c, then (2) gives the first-order D

(2x — 5y)dx + (=5x + 3y*) dy = 0. (3)

— A Definition Of course, not every first-order DE written in differential form
M(x, y) dx + N(x, y) dy = 0 corresponds to a differential of f(x, y) = ¢. So for our
purposes it is more important to turn the foregoing example around; namely, if
we are given a first-order DE such as (3), is there some way we can recognize
that the differential expression (2x — 5y) dx + (—5x + 3y?) dy is the differential
d(x*> — 5xy + y*)? If there is, then an implicit solution of (3) is x> — 5xy + 3 = .
We answer this question after the next definition

DEFINITION 2.4.1 Exact Equation

A differential expression M(x, y) dx + N(x, y) dy is an exact differential in a
region R of the xy-plane if it corresponds to the differential of some function
f(x, y) defined in R. A first-order di ferential equation of the form

M(x, y) dx + N(x, y) d}’ =0

is said to be an exact equation if the expression on the left-hand side is an
exact differential.

For example, x?)* dx + x*y? dy = 0 is an exact equation, because its left-hand
side is an exact differential:

d (% ¥y?) = x3 dx + ¥y dy.
Notice that if we make the identifications M(x, y) = x?y> and M(x, y) = x>)?, then

M /dy = 3x%y* = 9N/ox. Theorem 2.4.1, given next, shows that the equality of the
partial derivatives dM/dy and dN/dx is no coincidence.

THEOREM 2.4.1 Criterion for an Exact Differential

Let M(x, y) and N(x, y) be continuous and have continuous first partial
derivatives in a rectangular region R defined by a <x < b, ¢ <y <d. Then a
necessary and sufficient condition that M(x, y) dx + N(x, y) dy be an exact
differential is

oM _ N

. 4
ay ox @

PROOF OF THE NECESSITY For simplicity let us assume that M(x, y) and
N(x, y) have continuous first partial derivatives for all (x, ). Now if the expression
M(x, y) dx + N(x, y) dy is exact, there exists some function f'such that for all x in R,

Jd Jd
MG,y dx + N dy = Lav + L gy,
ax ay
Jd J
Therefore M(x,y) = _f’ N(x,y) = —f,
ax dy
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and

%Ai(a_f)_ﬁ_i(g)_ﬂv
dy  dy\ax) ayox  ox \dy ox’

The equality of the mixed partials is a consequence of the continuity of the first par-
tial derivatives of M(x, y) and N(x, y). =

The sufficiency part of Theorem 2.4.1 consists of showing that there exists a
function f for which 9f/dx = M(x, y) and 9f /dy = N(x, y) whenever (4) holds. The
construction of the function f actually reflects a basic procedure for solving exact
equations.

=— Method of Solution Given an equation in the differential form
M(x, y) dx + N(x, y) dy = 0, determine whether the equality in (4) holds. If it does,
then there exists a function ffor which

;lf = M(x, y).
X

We can find f by integrating M(x, y) with respect to x while holding y constant:

S, y) = f M(x, y) dx + g(), Q)

where the arbitrary function g(») is the “constant” of integration. Now differentiate
(5) with respect to y and assume that 9f/dy = N(x, y):

o = ifM(x,y) dx + g'(y) = N(x, ).
day Iy

This gives 2'(y) = Nix,y) — a%fM(x, y) dx. (6)

Finally, integrate (6) with respect to y and substitute the result in (5). The implicit
solution of the equation is f(x, y) = c.

Some observations are in order. First, it is important to realize that the expres-
sion N(x, y) — (8/0y) | M(x, y) dx in (6) is independent of x, because

0 9 ON oo ON oM
_[N(x,y) - —fM(x,y) dX] == —(—fM(x,J/) dx) =—-—=0
ox ay dx  dy \ox o0x Ay

Second, we could just as well start the foregoing procedure with the assumption that
df /dy = N(x, y). After integrating N with respect to y and then differentiating that
result, we would find the analogues of (5) and (6) to be, respectivel ,

S,y = f N(x,y)dy + h(x)  and  A'(x) = M(x,y) — % f N(x,y) dy.

In either case none of these formulas should be memorized.

DN\ IZNINE Solving an Exact DE

Solve 2xy dx + (x> — 1) dy = 0.

SOLUTION  With M(x, y) = 2xy and N(x, y) = x> — 1 we have
aM_, N
ay ax’
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Thus the equation is exact, and so by Theorem 2.4.1 there exists a function f(x, y)
such that

- = 2xy and S =x*-1.
0x ay

From the first of these equations we obtain, after integrating

fx,y) =¥y + gy).

Taking the partial derivative of the last expression with respect to y and setting the
result equal to N(x, y) gives

d

_f =x+ g’()/) =x* -1 <~ N(x, y)

ay
It follows that g’(y) = —1 and g(y) = —y. Hence f(x, y) = x?y — ¥, so the solution
of the equation in implicit form is x*y — v = c. The explicit form of the solution is
easily seen to be y = ¢/(1 — x”) and is defined on any interval not containing either

x=1lorx=—1. =

— Note The solution of the DE in Example 1 is not f(x, y) = x*y — y. Rather, it
is f(x, y) = ¢; if a constant is used in the integration of g'(y), we can then write the
solution as f(x, y) = 0. Note, too, that the equation could be solved by separation of
variables.

DN\ IJNIPE Solving an Exact DE

Solve (e — y cos xy) dx + (2xe? — x cos xy + 2y) dy = 0.

SOLUTION The equation is exact because

oM ) . oN
— = 2¢?¥ + xysinxy — cosxy = —.
ady 0x

Hence a function f(x, y) exists for which

M(x,y) = g—ip and N(x,y) = %

Now, for variety, we shall start with the assumption that 9f//dy = N(x, y); that is,

dJ
¥_ 2xe¥ — xcosxy + 2y
dy

flx,y) = foezydy —xfcosxydy+ ZJ’ydy.

Remember, the reason x can come out in front of the symbol [ is that in the integra-
tion with respect to y, x is treated as an ordinary constant. It follows that

fx,y) = xe¥ — sinxy + y* + h(x)

I _

p e? —ycosxy + h'(x) = e® — ycosxy, <My, )
x

and so /'(x) = 0 or i(x) = c. Hence a family of solutions is

xe? — sinxy + 2+ ¢ = 0.
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DV\YIHANIEW An Initial-Value Problem

dy xy* — cosxsinx
Solve — = ————5—
dx y(1 —x?)

., »(0) = 2.

SOLUTION By writing the differential equation in the form
(cosx sinx — xy?) dx + y(1 — x?)dy = 0,

we recognize that the equation is exact because

oM aN
— = —2xy = —.
ady 0x
)
Now g _ y(1 = x?)
dy

y2
foey) =2 =) + he

Pl —x)? + h'(x) = cosxsinx — x)?.
x

The last equation implies that 4’ (x) = cos x sin x. Integrating gives

h(x) = —J(cos x)(—sin x dx) = —%cos2 X.

2 1
Thus %(1 - x%) - Ecoszx = ¢ or V(1 —x?) —cos’x =g, (7)

where 2¢; has been replaced by c. The initial condition y = 2 when x = 0 demands
that 4(1) — cos? (0) = ¢, and so ¢ = 3. An implicit solution of the problem is then
y2(1 — x?) — cos?x = 3.

The solution curve of the IVP is the curve drawn in blue in Figure 2.4.1;
it is part of an interesting family of curves. The graphs of the members of the one-
parameter family of solutions given in (7) can be obtained in several ways, two of
which are using software to graph level curves (as discussed in Section 2.2) and
using a graphing utility to carefully graph the explicit functions obtained for var-

ious values of ¢ by solving y> = (¢ + cos? x)/(1 — x?) for y. =

= Integrating Factors Recall from Section 2.3 that the left-hand side of the lin-
ear equation y' + P(x)y = f(x) can be transformed into a derivative when we multi-
ply the equation by an integrating factor. The same basic idea sometimes works for a
nonexact differential equation M(x, y) dx + N(x, y) dy = 0. That is, it is sometimes
possible to find an integrating factor w(x, y) so that after multiplying, the left-hand
side of

w(x, Y)M(x, y) dx + p(x, y)N(x, y) dy = 0 (3

is an exact differential. In an attempt to find u, we turn to the criterion (4) for exact-
ness. Equation (8) is exact if and only if (uM), = (wN),, where the subscripts
denote partial derivatives. By the Product Rule of differentiation the last equation is
the same as M, + u,M = wN, + u,N or

MmN — /“LyM = (My — Nop. (9)

Although M, N, M,, and N, are known functions of x and y, the difficulty here in
determining the unknown w(x, y) from (9) is that we must solve a partial differential
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equation. Since we are not prepared to do that, we make a simplifying assumption.
Suppose w is a function of one variable; for example, say that u depends only on x. In
this case, w, = du/dx and p,, = 0, so (9) can be written as

dun M, — N,
—_— = 10
dx N (10)

We are still at an impasse if the quotient (M, — N,)/N depends on both x and y.
However, if after all obvious algebraic simplifications are made, the quotient
(M, — Ny)/N turns out to depend solely on the variable x, then (10) is a first-orde
ordinary differential equation. We can finally determine u because (10) is separa-
ble as well as linear. It follows from either Section 2.2 or Section 2.3 that
w(x) = eJM=NI/N)dx 1p Jike manner, it follows from (9) that if u depends only on
the variable y, then

du N, — Mv

. 11
dy v M (11)

In this case, if (N, — M,)/M is a function of y only, then we can solve (11) for .
We summarize the results for the differential equation

M(x,y) dx + N(x,y)dy = 0. (12)
« If (M, — Ny)/Nis a function of x alone, then an integrating factor for (12) is
(M—N,
dx
w(x) = eJ N (13)

« If (N, — M,)/M is a function of y alone, then an integrating factor for (12) is

Ni—M,
I dy

p) =e 7 (14)

DVWINNN A Nonexact DE Made Exact

The nonlinear first-order di ferential equation
xydx + (2x% + 3y = 20)dy =0
is not exact. With the identifications M = xy, N = 2x* + 3y? — 20, we find the partial
derivatives M, = x and N, = 4x. The first quotient from (13) gets us nowhere, since
M, — N, x — 4x _ —3x
N 2x* + 32 — 20 2x2 + 3y* — 20

depends on x and y. However, (14) yields a quotient that depends only on y:
Ne—M, 4x—x 3x 3

M o oxy Y
The integrating factor is then e/347 = 3 = v’ = 33 After we multiply the given
DE by u(y) = 3, the resulting equation is

xytdx + (2x2y3 + 3y° — 20p%) dy = 0.

You should verify that the last equation is now exact as well as show, using the

1 —_—

method of this section, that a family of solutions is }x*y* + 100 — 5% = ¢, =

REMARKS

(i) When testing an equation for exactness, make sure it is of the precise
form M(x,y) dx + N(x,y) dy =0. Sometimes a differential equation
is written G(x,y) dx = H(x,y) dy. In this case, first rewrite it as
G(x,y) dx — H(x,y) dy =0 and then identify M(x,y) = G(x,y) and
N(x,y) = —H(x, y) before using (4).
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(i) In some texts on differential equations the study of exact equations
precedes that of linear DEs. Then the method for finding integrating factors
just discussed can be used to derive an integrating factor for
y' + P(x)y = f(x). By rewriting the last equation in the differential form
(P(x)y — f(x)) dx + dy = 0, we see that

From (13) we arrive at the already familiar integrating factor e

Section 2.3.

My_Nx—P
= PO,

JP@dx yged in

EXERCISES 2.4

Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1-20 determine whether the given differential

equation is exact. If it is exact, solve it.

1. @Qx— Ddx+@y+T)dy=0

2. 2x+y)dx—(x+6y)dy =0

3. Sx+4y)dx + (4x — 8Y)dy =10

4. (siny —ysinx)dx + (cosx +xcosy —y)dy =0
5. 20 —Ndx+ 2y +4)dy=0

6. (2y—i+cos3x>%+%—4x3+3ysin3x=0

7. ¢ —y?)dx + (x* — 2xy)dy =0
Yy _

8. (1 + Inx +—>dx = (1 —lnx)dy
X

9. (x — > + y?sinx) dx = 3xy* + 2y cos x) dy

10. (x* + %) dx + 3xp*°dy =0

1
11. (yIny — e ™) dx + <—+xlny>dy= 0
y

12. Gx%y + &) dx + (x* + xe¥ —2y)dy =0

d
13. x—y=2xe"—y-i-6x2

dx
3 d 3
14. (1——+x>—y+y=——l
y dx X
1 dx
15. 23——>—+3 =0
(xy 1 + 9x%) dy *y

16. 5y —2x)y' —2y =0
17. (tanx — sinx siny) dx + cosxcosydy =0

18. (2ysinxcosx — y + 2y%e’) dx

= (x — sin’x — 4xye™’) dy

19. @8y — 152 —y)dt + (t* + 39> — 1) dy =0

20 (1+1— Y >dt+<y+ ! )d—O
\t 2 £+ T )Y

In Problems 21-26 solve the given initial-value problem.
21, (x + ) dx+ ey +x2— 1)dy =0, y1)=1

22. (e +y)dx+ Q2 +x+ye¥)dy =0, y0)=1

23. 4y +2t—=5)dt+ (6y +4t—1)dy =0, y(—1)=2

33— 2\dy  t
24. (T E+2_y4:0’ y(1) =1

25. (y* cos x — 3x%y — 2x) dx
+ Qysinx — x>+ Iny)dy =0, y(0)=e

1 d
26. (1 : + cosx — 2xy>d—); = y(y + sinx), y(0) =1

In Problems 27 and 28 find the value of & so that the given
differential equation is exact.

27. (3 + kxy* — 2x) dx + (3xy? + 20x%%) dy = 0

28. (6xy° + cos y) dx + (2kx*y* — xsiny)dy = 0

In Problems 29 and 30 verify that the given differential
equation is not exact. Multiply the given differential equa-

tion by the indicated integrating factor w(x, y) and verify that
the new equation is exact. Solve.

29. (—xysinx + 2y cosx)dx + 2xcosx dy = 0;
u(x,y) = xy

30. (x2 4 2xy — ¥ dx + (v + 2xy — xH) dy = 0;
px,y) = (x+ )2

In Problems 31-36 solve the given differential equation by
finding, as in Example 4, an appropriate integrating factor.

31. (*+3x)dx + 2xydy =0
2. yx+y+ Ddx + (x +2y)dy =0
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70 ° CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

33. 6xydx + 4y +9x*) dy =0
2

34. cosxdx + <1 + —) sinxdy =0
y

35. (10— 6y + e %) dx—2dy =0
36. (2 +xp7)dx+ (52 —xy + > siny)dy =0

In Problems 37 and 38 solve the given initial-value problem
by finding as in Example 4, an appropriate integrating factor.

37. xdx + (X?y +4)dy =0, y4)=0
38. (x> +y* = 5)dx=(y +xy)dy, y0)=1

39. (a) Show that a one-parameter family of solutions of
the equation

(4xy +3xH) dx + 2y + 2xH) dy =0
isx3+2x%y +y? =c

(b) Show that the initial conditions »(0) = —2 and
y(1) = 1 determine the same implicit solution.

(¢) Find explicit solutions y;(x) and y,(x) of the dif-
ferential equation in part (a) such that y;(0) = —2
and y,(1) = 1. Use a graphing utility to graph y;(x)
and y,(x).

Discussion Problems

40. Consider the concept of an integrating factor used in
Problems 29—38. Are the two equations M dx + Ndy = 0
and uM dx + uN dy = 0 necessarily equivalent in the
sense that a solution of one is also a solution of the other?
Discuss.

41. Reread Example 3 and then discuss why we can con-
clude that the interval of definition of the explicit
solution of the IVP (the blue curve in Figure 2.4.1) is

(-1, 1).

42. Discuss how the functions M(x, y) and N(x, y) can be
found so that each differential equation is exact. Carry
out your ideas.

1
(a) M(x,y)dx + (xe"y + 2xy + —) dy =0
X

(b) (x”zy”2 + 5 )dx + N(x,y)dy =0

X

x*+y

43. Differential equations are sometimes solved by
having a clever idea. Here is a little exercise in
cleverness: Although the differential equation
(x — Vx? + y*)dx + y dy = 0 is not exact, show how
the rearrangement (x dx + y dy) / Vx> + > = dx and
the observation %a’()c2 + y?) = x dx + y dy can lead to
a solution.

44. True or False: Every separable first-order equation
dy/dx = g(x)h(y) is exact.

Mathematical Model
45. Falling Chain A portion of a uniform chain of length

8 ft is loosely coiled around a peg at the edge of a high
horizontal platform, and the remaining portion of the
chain hangs at rest over the edge of the platform. See
Figure 2.4.2. Suppose that the length of the overhang-
ing chain is 3 ft, that the chain weighs 2 1b/ft, and that
the positive direction is downward. Starting at ¢ = 0
seconds, the weight of the overhanging portion causes
the chain on the table to uncoil smoothly and to fall to
the floo . If x(¢) denotes the length of the chain over-
hanging the table at time ¢ > 0, then v = dx/dt is its
velocity. When all resistive forces are ignored, it can
be shown that a mathematical model relating v to x is
given by

d
o2 =30k
dx

(a) Rewrite this model in differential form. Proceed as
in Problems 31-36 and solve the DE for v in terms
of x by finding an appropriate integrating factor.
Find an explicit solution v(x).

(b) Determine the velocity with which the chain leaves
the platform.

platform edge

FIGURE 2.4.2 Uncoiling chain in Problem 45

Computer Lab Assignments

46. Streamlines

(a) The solution of the differential equation

2xy ¥ =X
2 v |1+ 22— @y =0
@+ [ @+ ]

is a family of curves that can be interpreted as
streamlines of a fluid flow around a circular object
whose boundary is described by the equation
x> + y? = 1. Solve this DE and note the solution
fGx,y)=cforc=0.

(b) Use a CAS to plot the streamlines for
c=0, *0.2, £04, *0.6, and *+0.8 in three
different ways. First, use the contourplot of a CAS.
Second, solve for x in terms of the variable y. Plot
the resulting two functions of y for the given values
of ¢, and then combine the graphs. Third, use the
CAS to solve a cubic equation for y in terms of x.
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2.5 SOLUTIONS BY SUBSTITUTIONS ° 71

2.5 SOLUTIONS BY SUBSTITUTIONS

REVIEW MATERIAL

e Techniques of integration
e Separation of variables
e Solution of linear DEs

INTRODUCTION We usually solve a differential equation by recognizing it as a certain kind of
equation (say, separable, linear, or exact) and then carrying out a procedure, consisting of equation-
specific mathematical steps, that yields a solution of the equation. But it is not uncommon to be
stumped by a differential equation because it does not fall into one of the classes of equations that
we know how to solve. The procedures that are discussed in this section may be helpful in this
situation.

— Substitutions Often the first step in solving a differential equation consists
of transforming it into another differential equation by means of a substitution.
For example, suppose we wish to transform the first-order differential equation
dy/dx = f(x, y) by the substitution y = g(x, «), where u is regarded as a function of
the variable x. If g possesses first-partial derivatives, then the Chain Rul

dy dgdx dgdu . dy du

=2 4 S et + iy

dx oxdx oudx gives dx &low) + gx, 1) dx
If we replace dy/dx by the foregoing derivative and replace y in f(x, y) by g(x, u), then

d
the DE dy/dx = f(x, y) becomes g.(x, u) + g,(x, u) d_u = f(x, g(x, u)), which, solved
X
d
for du/dx, has the form d_u = F(x, u). If we can determine a solution u = ¢(x) of this
X

last equation, then a solution of the original differential equation is y = g(x, ¢(x)).
In the discussion that follows we examine three different kinds of first-orde
differential equations that are solvable by means of a substitution.

= Homogeneous Equations If a function f possesses the property f(zx, 1)) =
1“f(x, y) for some real number «, then f'is said to be a homogeneous function of

degree a. For example, f(x, y) = x> + y* is a homogeneous function of degree 3,
since

flx, ty) = (1x)* + (ty)* = £ + %) = £f(x, p),

whereas f(x, y) = x> + > + 1 is not homogeneous. A first-order DE in differential
form

M(x, y) dx + N(x,y)dy = 0 (1)

is said to be homogeneous” if both coefficient functions M and N are homogeneous
functions of the same degree. In other words, (1) is homogeneous if

M(tx, ty) = t*M(x, y) and N(tx, ty) = t*N(x, y).
In addition, if M and N are homogeneous functions of degree «, we can also write

M(x,y) = x*M(1, u) and N(x,y) = x*N(1, u), whereu = y/x, (2)

“Here the word homogeneous does not mean the same as it did in the Remarks at the end of Section 2.3.
Recall that a linear first-order equation a;(x)y" + ao(x)y = g(x) is homogeneous when g(x) = 0.
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CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

and
M(x,y) = y*M(v, 1) and N(x,y) = y*N(v, 1), wherev = x/y. (3)

See Problem 31 in Exercises 2.5. Properties (2) and (3) suggest the substitutions that can
be used to solve a homogeneous differential equation. Specificall , either of the substi-
tutions y = ux or x = vy, where u and v are new dependent variables, will reduce a
homogeneous equation to a separable first-orde differential equation. To show this, ob-
serve that as a consequence of (2) a homogeneous equation M(x, y) dx + N(x,y)dy = 0
can be rewritten as

x*M(1, u) dx + x*N(1,u)dy = 0 or M, u)dx + N(1,u) dy = 0,

where u = y/x or y = ux. By substituting the differential dy = u dx + x du into the
last equation and gathering terms, we obtain a separable DE in the variables v and x:

M, u)dx + N1, u)[udx + xdu] = 0
[M(1, u) + uN(1, u)] dx + xN(1, u) du = 0

dx N(1, u) du .
x  M(1,u) + uN(, u)

or

At this point we offer the same advice as in the preceding sections: Do not memorize
anything here (especially the last formula); rather, work through the procedure each
time. The proof that the substitutions x = vy and dx = v dy + y dv also lead to a
separable equation follows in an analogous manner from (3).

DUNVIZNINE Solving a Homogeneous DE

Solve (x* + y?) dx + (x> — xy) dy = 0.

SOLUTION Inspection of M(x, y) = x> + y* and N(x, y) = x> — xy shows that
these coefficients are homogeneous functions of degree 2. If we let y = ux, then
dy = u dx + x du, so after substituting, the given equation becomes

o+ urxd) dx + (X — uxH)[udx + xdu] =0
(1 +wdx +xX(1 —u)du=0

1_
udu-i—@:O

X

1 +u
-1 + 2 du + @ = (). < longdivision
1 +u X
After integration the last line gives
—u + 21In|1 + u| + In|x| = In|c]|
2z + 2 11’1‘1 + X‘ + ln|x| = 1n|c|. < resubstituting u = y/x
X x

Using the properties of logarithms, we can write the preceding solution as

(x +)°*
CcX

Y

In == or (x + »)? = cxe’™ =
x

Although either of the indicated substitutions can be used for every homoge-
neous differential equation, in practice we try x = vy whenever the function M(x, y)
is simpler than N(x, y). Also it could happen that after using one substitution, we may
encounter integrals that are difficult or impossible to evaluate in closed form; switch-
ing substitutions may result in an easier problem.
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2.5 SOLUTIONS BY SUBSTITUTIONS ° 73

= Bernoulli’s Equation The differential equation

Yt P = o, ”
dx

where 7 is any real number, is called Bernoulli’s equation. Note that for » = 0 and
n = 1, equation (4) is linear. For n # 0 and n # 1 the substitution z = »' " reduces
any equation of form (4) to a linear equation.

DN\ IZNIPR Solving a Bernoulli DE

d
Solve x X + y = x272
dx

SOLUTION  We first rewrite the equation a

by dividing by x. With n = 2 we have u = y~ ! or y = u~!. We then substitute

dy _dydu_ _ ,du

dx  dudx " E

<« Chain Rule

into the given equation and simplify. The result is

du 1

— — —y = —x

dx x

The integrating factor for this linear equation on, say, (0, ®) is

e—fdx/x — e—lnx — elnx" =y !
. d
Integrating —[x ] = -1
dx
givesx 'u = —x + coru = —x? + cx. Since u = y~!, we have y = 1/u, so a solu-

tion of the given equation is y = 1/(—x> + cx). =

Note that we have not obtained the general solution of the original nonlinear dif-
ferential equation in Example 2, since y = 0 is a singular solution of the equation.

= Reduction to Separation of Variables A differential equation of the form

dy . .
— = f(Ax + By + C) (5)
dx

can always be reduced to an equation with separable variables by means of the sub-
stitution # = Ax + By + C, B # 0. Example 3 illustrates the technique.

DVN\YIHANIEW An Initial-Value Problem

d
Solve d—y = (=2x+ 1)’ =7, »(0)=0.
X

SOLUTION If we let u = —2x + y, then du/dx = —2 + dy/dx, so the differential
equation is transformed into

d d
Lio=w-7 o Z=

—w2—9
dx dx '
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FIGURE 2.5.1 Solutions of DE in
Example 3
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The last equation is separable. Using partial fractions

du 1 1 1
————— =dx or = - du = dx
(u—3)u + 3) 6lu—3 u+3
and then integrating yields
1 -3 -3
g In Z n 3‘ =x+ ¢ or Z T3 = fxtoc = pbx, < replace €% by ¢

Solving the last equation for u and then resubstituting gives the solution

_3(1 + ce™)
- 6x

3(1 + ce®)

u or y =2+ . (6)

1 — ce 1 — ce

Finally, applying the initial condition y(0) = 0 to the last equation in (6) gives
¢ = —1. Figure 2.5.1, obtained with the aid of a graphing utility, shows the graph of

3(1 — 50X
the particular solution y = 2x + % in dark blue, along with the graphs of
&

some other members of the family of solutions (6). =

EXERCISES 2.5

Answers to selected odd-numbered problems begin on page ANS-2.

Each DE in Problems 1—14 is homogeneous.

Each DE in Problems 15—22 is a Bernoulli equation.

In Problems 1-10 solve the given differential equation by In Problems 15—-20 solve the given differential equation by
using an appropriate substitution.

using an appropriate substitution.

1. x—y)dx+xdy=20 2. (x+y)dx +xdy=0 dy 1 dy 5
15.xd—-l-y=—2 16.d——y=e‘y
.xdx+(y—2x)dy=0 4. ydx =2(x +y)dy o Y *
d d
5. (0 +yx)dx —x*>dy =0 17. d—);zy(xy3— 1) 18. xd—i—(l + x)y = x)?
6. > +yx)dx +x*dy =0 d d
19. 2% 1y = 2030+ AL = 2007 - 1)
dy y—Xx dt dt
7. d_ = T
oy In Problems 21 and 22 solve the given initial-value problem.
dy x+ 3y
8 —=—— dy ;
dx 3x+y 21. xzd— —2xy = 3", y() =,
X
9. —ydx + (x + Vay)dy =0
yax ()C )Cy) Y 22. yl/ZZI_y + y3/2 — 1’ y(o) =4
X
d
10.x—y=y+ VX2 =%, x>0
dx Each DE in Problems 23—30 is of the form given in (95).
In Problems 11—14 solve the given initial-value problem. In Problems 2328 solve the given differential equation by

d
11. xyzd—y =y =% p) =2
X

d
12, (x* + 2y2)d—x =xy, y(—-1)=1
Y

13. (x + ye"¥) dx — xe’*dy =0, y(1)=0

using an appropriate substitution.

dy dy 1—x—y
23 = (x +y+ 1) 24, 2= —— 2
dx oty ) dx x+y
d d
25 2= tan’(x + y) 26. 2 = sin(x + y)
dx dx

d d
7.2 0 Vi +3 28 o e

14. ydx + x(Inx —Iny — 1)dy =0, y(l)=e dx dx
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In Problems 29 and 30 solve the given initial-value problem.
d
29. % = cos(x + ). »(0) = m/4
X

dy  3x+1y

30. = ,
dx 3x+2y+2

(1) =

Discussion Problems

31. Explain why it is always possible to express any homoge-
neous differential equation M(x, y) dx + N(x,y)dy = 0in

the form
d
el
You might start by proving that
M(x,y) = x*M(1, y/x) and N(x,») = x*N(1, y/x).
32. Put the homogeneous differential equation
(5x*> = 2y¥) dx — xydy =0
into the form given in Problem 31.

33. (a) Determine two singular solutions of the DE in
Problem 10.

(b) If the initial condition y(5) = 0 is as prescribed in
Problem 10, then what is the largest interval / over
which the solution is defined? Use a graphing util-
ity to graph the solution curve for the IVP.

34. In Example 3 the solution y(x) becomes unbounded as
x — o, Nevertheless, y(x) is asymptotic to a curve as
x — —oo and to a different curve as x — . What are the
equations of these curves?

35. The differential equation dy/dx = P(x) + O(x)y + R(x)y?
is known as Riccati’s equation.

(a) A Riccati equation can be solved by a succession
of two substitutions provided that we know a

2.6 A NUMERICAL METHOD

2.6 A NUMERICAL METHOD ° 75

particular solution y; of the equation. Show that the
substitution y = y; + u reduces Riccati’s equation
to a Bernoulli equation (4) with n =2. The
Bernoulli equation can then be reduced to a linear

equation by the substitution w = ™.

(b) Find a one-parameter family of solutions for the
differential equation
dy 4 1
- = —— — —y 4+ 2
dx 2 77
where y; = 2 /x is a known solution of the equation.

36. Determine an appropriate substitution to solve

xy" =y In(xy).

Mathematical Models

37. Falling Chain In Problem 45 in Exercises 2.4 we saw
that a mathematical model for the velocity v of a chain
slipping off the edge of a high horizontal platform is

1%
— + v = 32x.
xvdx 14 X

In that problem you were asked to solve the DE by con-
verting it into an exact equation using an integrating
factor. This time solve the DE using the fact that it is a
Bernoulli equation.

38. Population Growth In the study of population dy-
namics one of the most famous models for a growing
but bounded population is the logistic equation

ar P( bP)

= Pa - ,

dt
where a and b are positive constants. Although we
will come back to this equation and solve it by an
alternative method in Section 3.2, solve the DE this
first time using the fact that it is a Bernoulli equation.

INTRODUCTION A first-order differential equation dy/dx = f(x, y) is a source of information.
We started this chapter by observing that we could garner qualitative information from a first-orde

DE about its solutions even before we attempted to solve the equation. Then in Sections 2.2—2.5 we
examined first-order DEs analytically—that is, we developed some procedures for obtaining explicit
and implicit solutions. But a differential equation can a possess a solution, yet we may not be able
to obtain it analytically. So to round out the picture of the different types of analyses of differential
equations, we conclude this chapter with a method by which we can “solve” the differential equa-
tion numerically—this means that the DE is used as the cornerstone of an algorithm for approximat-

ing the unknown solution.

In this section we are going to develop only the simplest of numerical methods—a method that
utilizes the idea that a tangent line can be used to approximate the values of a function in a small
neighborhood of the point of tangency. A more extensive treatment of numerical methods for ordi-
nary differential equations is given in Chapter 9.
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solution curve

(1, y(x1))

} €rror

G )
(X0, ¥0) |
sl?pe = f(x0, Y0)
(R }
?‘71’14’1‘
|

L(x)

|

|

|

|

1 \

X0 x1=x0+h X

FIGURE 2.6.2 Approximating y(x;)

using a tangent line

= Using the Tangent Line Let us assume that the first-order initial-value
problem

Y= f(y), yx) = v (D

possesses a solution. One way of approximating this solution is to use tangent lines.
For example, let y(x) denote the unknown solution of the first-order initial-value
problem ' = 0.1Vy + 0.4x%,  y(2) = 4. The nonlinear differential equation in
this IVP cannot be solved directly by any of the methods considered in Sections 2.2,
2.4, and 2.5; nevertheless, we can still find approximate numerical values of the
unknown y(x). Specificall , suppose we wish to know the value of y(2.5). The IVP
has a solution, and as the flow of the direction field of the DE in Figure 2.6.1(a) sug-
gests, a solution curve must have a shape similar to the curve shown in blue.

The direction field in Figure 2.6.1(a) was generated with lineal elements passing
through points in a grid with integer coordinates. As the solution curve passes
through the initial point (2, 4), the lineal element at this point is a tangent line with
slope given by £(2,4) = 0.1V4 + 0.4(2)> = 1.8. As is apparent in Figure 2.6.1(a)
and the “zoom in” in Figure 2.6.1(b), when x is close to 2, the points on the solution
curve are close to the points on the tangent line (the lineal element). Using the point
(2,4), the slope f(2,4) = 1.8, and the point-slope form of a line, we find that an equa-
tion of the tangent line is y = L(x), where L(x) = 1.8x + 0.4. This last equation,
called a linearization of y(x) at x = 2, can be used to approximate values of y(x)
within a small neighborhood of x = 2. If y; = L(x) denotes the y-coordinate on the
tangent line and y(x) is the y-coordinate on the solution curve corresponding to an
x-coordinate x| that is close to x = 2, then y(x;) = y;. If we choose, say, x; = 2.1,
theny, = L(2.1) = 1.8(2.1) + 0.4 = 4.18, so y(2.1) = 4.18.

— :
N e
solution \\\
4+ / -~ curve \\
\
s \
slope |
- |
2t Yy m=18 y:
po-
. B -
NS
-2
(a) direction field for y = 0 (b) lineal element

at (2, 4)
FIGURE 2.6.1 Magnification of a neighborhood about the point (2, 4

— Euler’s Method To generalize the procedure just illustrated, we use the lin-
earization of the unknown solution y(x) of (1) at x = xy:

L(x) = yo + f(x0, yo)(x — Xo). 2

The graph of this linearization is a straight line tangent to the graph of y = y(x) at
the point (xg, yo). We now let 4 be a positive increment of the x-axis, as shown in
Figure 2.6.2. Then by replacing x by x; = x¢ + 4 in (2), we get

L(x)) = yo + f(xo, yo)(xo + 7 — xo) or yi=yo + hf(x;, »1),

where y; = L(x;). The point (x;, y1) on the tangent line is an approximation to the
point (x1, y(x1)) on the solution curve. Of course, the accuracy of the approxima-
tion L(x;) = y(x;) or y; = y(x;) depends heavily on the size of the increment /.
Usually, we must choose this step size to be “reasonably small.” We now repeat the
process using a second “tangent line” at (x;, y).” By identifying the new starting

“This is not an actual tangent line, since (x;, y1) lies on the first tangent and not on the solution curve
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TABLE 2.6.1 /1 =0.1
x" y"
2.00 4.0000
2.10 4.1800
2.20 4.3768
2.30 4.5914
2.40 4.8244
2.50 5.0768
TABLE 2.6.2 / = 0.05
Xn Yn
2.00 4.0000
2.05 4.0900
2.10 4.1842
2.15 4.2826
2.20 4.3854
2.25 4.4927
2.30 4.6045
2.35 4.7210
2.40 4.8423
2.45 4.9686
2.50 5.0997

2.6 A NUMERICAL METHOD ° 77

point as (x;, y1) with (xg, yo) in the above discussion, we obtain an approximation
V2 = y(x7) corresponding to two steps of length 4 from x, that is, x, = x| + h =
xo + 2h, and

yx) = ylxo + 2h) = y(x; + h) =y, = yi + hf (x1, ).

Continuing in this manner, we see that yy, 2, y3, . . . , can be defined recursively by
the general formula

Yu+1 = I + h./l(xm yn)’ (3)

where x, = xo + nh,n =0, 1, 2, .. .. This procedure of using successive “tangent
lines” is called Euler’s method.

DVNWYIHMNINE FEuler’s Method

Consider the initial-value problem y’' = 0.1Vy + 0.4x%, y(2) = 4. Use Euler’s
method to obtain an approximation of y(2.5) using first # = 0.1 and then # = 0.05.

SOLUTION With the identification f(x, y) = 0.1Vy + 0.4x%, (3) becomes

Vos1 = Vo + h(O.l\/y: + O.4xﬁ).
Then for 2 = 0.1, x9 = 2,y = 4, and n = 0 we fin
w1 =vo + h0.1Vy, + 0.433) = 4 + 0.1(0.1V4 + 0.42)?) = 4.18,

which, as we have already seen, is an estimate to the value of y(2.1). However, if we
use the smaller step size & = 0.05, it takes two steps to reach x = 2.1. From

v =4+ 0.05(0.1V4 + 0.4(2)) = 4.09

y2 = 4.09 + 0.05(0.1V4.09 + 0.4(2.05)2) = 4.18416187

we have y; = y(2.05) and y; = y(2.1). The remainder of the calculations were
carried out by using software. The results are summarized in Tables 2.6.1 and 2.6.2,
where each entry has been rounded to four decimal places. We see in Tables 2.6.1 and
2.6.2 that it takes five steps with 2 = 0.1 and 10 steps with # = 0.05, respectively, to
get to x = 2.5. Intuitively, we would expect that y;o = 5.0997 corresponding to
h = 0.05 is the better approximation of y(2.5) than the value ys = 5.0768 corre-

sponding to # = 0.1. =

In Example 2 we apply Euler’s method to a differential equation for which we
have already found a solution. We do this to compare the values of the approxima-
tions y, at each step with the true or actual values of the solution y(x,) of the initial-
value problem.

D VNVINNIPE Comparison of Approximate and Actual Values

Consider the initial-value problem y’ = 0.2xy, y(1) = 1. Use Euler’s method to
obtain an approximation of y(1.5) using first 27 = 0.1 and then 2 = 0.05.

SOLUTION  With the identification f(x, y) = 0.2xy, (3) becomes

Yn+t1 = I + h(o'zxnyn)

where xo = 1 and yy = 1. Again with the aid of computer software we obtain the
values in Tables 2.6.3 and 2.6.4 on page 78.
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TABLE 2.6.4 h = 0.05

Xn Vn Actual value Abs. error % Rel. error
1.00 1.0000 1.0000 0.0000 0.00
1.05 1.0100 1.0103 0.0003 0.03
TABLE 2.6.3 h=0.1 110 1.0206 1.0212 0.0006 0.06
Xn Y Actual value Abs. error % Rel. error 115 1.0318 1.0328 0.0009 0.09
1.20 1.0437 1.0450 0.0013 0.12
1.00 1.0000 1.0000 0.0000 0.00 1.25 1.0562 1.0579 0.0016 0.16
1.10 1.0200 1.0212 0.0012 0.12 1.30 1.0694 1.0714 0.0020 0.19
1.20 1.0424 1.0450 0.0025 0.24 1.35 1.0833 1.0857 0.0024 0.22
1.30 1.0675 1.0714 0.0040 0.37 1.40 1.0980 1.1008 0.0028 0.25
1.40 1.0952 1.1008 0.0055 0.50 1.45 1.1133 1.1166 0.0032 0.29
1.50 1.1259 1.1331 0.0073 0.64 1.50 1.1295 1.1331 0.0037 0.32

In Example 1 the true or actual values were calculated from the known solution
y = "1~ (Verify.) The absolute error is defined to b

| actual value — approximation|.

The relative error and percentage relative error are, in turn,

absolute error absolute error
—_— —F X 100.

|actual value |actual value

It is apparent from Tables 2.6.3 and 2.6.4 that the accuracy of the approximations
improves as the step size / decreases. Also, we see that even though the percentage
relative error is growing with each step, it does not appear to be that bad. But you
should not be deceived by one example. If we simply change the coefficient of the
right side of the DE in Example 2 from 0.2 to 2, then at x, = 1.5 the percentage
relative errors increase dramatically. See Problem 4 in Exercises 2.6.

— A Caveat Euler’s method is just one of many different ways in which a solu-
tion of a differential equation can be approximated. Although attractive for its sim-
plicity, Euler’s method is seldom used in serious calculations. It was introduced
here simply to give you a first taste of numerical methods. We will go into greater
detail in discussing numerical methods that give significantly greater accuracy, no-
tably the fourth order Runge-Kutta method, referred to as the RK4 method, in
Chapter 9.

=— Numerical Solvers Regardless of whether we can actually fin an explicit
or implicit solution, if a solution of a differential equation exists, it represents a
smooth curve in the Cartesian plane. The basic idea behind any numerical method
for first-orde ordinary differential equations is to somehow approximate the
y-values of a solution for preselected values of x. We start at a specifie initial point
(x0, ¥0) on a solution curve and proceed to calculate in a step-by-step fashion a
sequence of points (x1, y1), (x2, V2), . . ., (X, ¥») Whose y-coordinates y; approxi-
mate the y-coordinates y(x;) of points (x1, y(x1)), (x2, y(x2)), . . . , (xu, y(x,)) that lie
on the graph of the usually unknown solution y(x). By taking the x-coordinates
close together (that is, for small values of /) and by joining the points (x1, y1),
(x2,¥2), - . ., (x, yn) with short line segments, we obtain a polygonal curve whose
qualitative characteristics we hope are close to those of an actual solution curve.
Drawing curves is something that is well suited to a computer. A computer program
written to either implement a numerical method or render a visual representation of
an approximate solution curve fittin the numerical data produced by this method
is referred to as a numerical solver. Many different numerical solvers are commer-
cially available, either embedded in a larger software package, such as a computer
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algebra system, or provided as a stand-alone package. Some software packages
simply plot the generated numerical approximations, whereas others generate hard
numerical data as well as the corresponding approximate or numerical solution
curves. By way of illustration of the connect-the-dots nature of the graphs pro-
duced by a numerical solver, the two colored polygonal graphs in Figure 2.6.3 are
the numerical solution curves for the initial-value problem y’ = 0.2xy, y(0) = 1 on
the interval [0, 4] obtained from Euler’s method and the RK4 method using the
step size & = 1. The blue smooth curve is the graph of the exact solution y = €%*°
of the IVP. Notice in Figure 2.6.3 that, even with the ridiculously large step size of
h = 1, the RK4 method produces the more believable “solution curve.” The numer-
ical solution curve obtained from the RK4 method is indistinguishable from the
actual solution curve on the interval [0, 4] when a more typical step size of # = 0.1
is used.

= Using a Numerical Solver Knowledge of the various numerical methods is
not necessary in order to use a numerical solver. A solver usually requires that the dif-
ferential equation be expressed in normal form dy/dx = f(x, y). Numerical solvers
that generate only curves usually require that you supply f(x, ) and the initial data x
and y( and specify the desired numerical method. If the idea is to approximate the nu-
merical value of y(a), then a solver may additionally require that you state a value for
h or, equivalently, give the number of steps that you want to take to get from x = x
to x = a. For example, if we wanted to approximate y(4) for the IVP illustrated in
Figure 2.6.3, then, starting atx = 0 it would take four steps to reach x = 4 with a step
size of h = 1; 40 steps is equivalent to a step size of # = 0.1. Although we will not
delve here into the many problems that one can encounter when attempting to ap-
proximate mathematical quantities, you should at least be aware of the fact that a nu-
merical solver may break down near certain points or give an incomplete or mislead-
ing picture when applied to some first-order differential equations in the normal
form. Figure 2.6.4 illustrates the graph obtained by applying Euler’s method to a cer-
tain first-order initial-value problem dy/dx = f(x, y), y(0) = 1. Equivalent results
were obtained using three different commercial numerical solvers, yet the graph is
hardly a plausible solution curve. (Why?) There are several avenues of recourse
when a numerical solver has difficulties; three of the more obvious are decrease the
step size, use another numerical method, and try a different numerical solver.

EXERCISES 2.6

Answers to selected odd-numbered problems begin on page ANS-3.

In Problems 1 and 2 use Euler’s method to obtain a four-
decimal approximation of the indicated value. Carry out the
recursion of (3) by hand, first using # = 0.1 and then using
h = 0.05.

1.y =2x—-3y+ Ly(l)=5, y(1.2)

2.y =x+y%1(0)=0; 102
In Problems 3 and 4 use Euler’s method to obtain a four-
decimal approximation of the indicated value. First use
h = 0.1 and then use 4 = 0.05. Find an explicit solution for

each initial-value problem and then construct tables similar to
Tables 2.6.3 and 2.6.4.

3.y =y, »0)=1; y(1.0)
4. y' =2xy,y(1)=1; »(1.5)

In Problems 5-10 use a numerical solver and Euler’s
method to obtain a four-decimal approximation of the indi-

cated value. First use 4 = 0.1 and then use 2 = 0.05.
5. =e7y0)=0; »0.5)

6. y' =x>+y%y0)=1; y(0.5)
7.y = (x — )% p(0)=0.5; »0.5)
8.y =xy+ Vy,y0) =1 »0.5)

, y
9.y =xy? =) =1 y(3)
10. y' =y — % y(0) = 0.5; »(0.5)

In Problems 11 and 12 use a numerical solver to obtain a nu-
merical solution curve for the given initial-value problem.
First use Euler’s method and then the RK4 method. Use
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h = 0.25 in each case. Superimpose both solution curves on
the same coordinate axes. If possible, use a different color
for each curve. Repeat, using # = 0.1 and # = 0.05.

11. ' = 2(cosx)y, y(0)=1
12. y' = (10 = 2y), y(0) =1

Discussion Problems

13. Use a numerical solver and Euler’s method to
approximate y(1.0), where y(x) is the solution to
y' = 2xy?%, »(0) = 1. First use &~ = 0.1 and then use
h = 0.05. Repeat, using the RK4 method. Discuss
what might cause the approximations to y(1.0) to
differ so greatly.

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

Computer Lab Assignments

14. (a) Use a numerical solver and the RK4 method to
graph the solution of the initial-value problem
y' = =2xy + 1,y(0) = 0.
(b) Solve the initial-value problem by one of the
analytic procedures developed earlier in this
chapter.

(¢) Use the analytic solution y(x) found in part (b)
and a CAS to find the coordinates of all relative
extrema.

CHAPTER 2 IN REVIEW

Answers to selected odd-numbered problems begin on page ANS-3.

Answer Problems 1-12 without referring back to the text.
Fill in the blanks or answer true or false.

1. The linear DE, y" — ky = A4, where k and A4 are constants,
is autonomous. The critical point of the equa-
tion is a(n) (attractor or repeller) for &> 0
and a(n) (attractor or repeller) for £ < 0.

d
2. The initial-value problem x d_y — 4y =0, y(0) = k, has
X

an infinite number of solutions fork=___ and
no solution for k =

3. The linear DE, y' + k\y = kp, where k; and k, are
nonzero constants, always possesses a constant
solution.

4. The linear DE, a;(x)y’ + ao(x)y = 0 is also separable.

5. An example of a nonlinear third-order differential equa-
tion in normal form is

d
6. The first-order DE d—; =70 + r + 0 + 1is not separa-
ble.

7. Every autonomous DE dy/dx = f(y) is separable.

8. By inspection, two solutions of the differential equation
Y + |y| =2 are

9. Ify’ = e, theny =

10. If a differentiable function y(x) satisfies y' = |x
¥(—1) = 2, then y(x) =

>

X
11. y = e~ f te” ' dt is a solution of the linear first-orde
0

differential equation

12. Anexample of an autonomous linear first-order DE with
a single critical point —3 is , whereas an
autonomous nonlinear first-order DE with a single criti-
cal point —3 is

In Problems 13 and 14 construct an autonomous first-orde
differential equation dy/dx = f(y) whose phase portrait is
consistent with the given figure

13. y

FIGURE 2.R.1 Graph for Problem 13

14. »

FIGURE 2.R.2 Graph for Problem 14
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15.

16.

17.

18.

The number 0 is a critical point of the autonomous dif-
ferential equation dx/dt = x", where n is a positive in-
teger. For what values of n is 0 asymptotically stable?
Semi-stable? Unstable? Repeat for the differential equa-
tion dx/dt = —x".

Consider the differential equation dP/dt = f(P), where
f(P) = —0.5P> — 1.7P + 3.4.

The function f(P) has one real zero, as shown in
Figure 2.R.3. Without attempting to solve the differen-
tial equation, estimate the value of lim,_,.. P(f).

FIGURE 2.R.3 Graph for Problem 16

Figure 2.R.4 is a portion of a direction field of a differ-
ential equation dy/dx = f(x, y). By hand, sketch two
different solution curves—one that is tangent to the lin-
eal element shown in black and one that is tangent to the
lineal element shown in red.
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FIGURE 2.R.4 Portion of a direction field for Problem 1

Classify each differential equation as separable, exact,
linear, homogeneous, or Bernoulli. Some equations may
be more than one kind. Do not solve.

dy_x=vy dy_ 1
(@) dx  x (b)dx_y—x
dy dy |
+1)—=—-y+10 —=—
© (D= @y

dy _y*+y

dy
= f) — =5y +)?
dx x>+ x ()dx vy

(e)

CHAPTER 2 IN REVIEW (] 81
2 dy x/
(8 ydx=(y—xy°)dy (h)xazyey—x
(M xyy' +y*=2x () 2xpy' +y? =222
k) ydx+xdy=0

2
) <x2+—y>dx=(3—lnx2)dy
X
d d .
m L2424 m =2 =g
dx 'y «x x*dx

In Problems 19—-26 solve the given differential equation.

19.
20.

21.

22.

23.

24.
25.
26.

(* + 1) dx = ysec’ x dy
y(lnx —Iny)dx =(xInx —xlny —y)dy

d
(6x + l)yzd—i +3x2 27 =0

dx _ 4y’ + 6xy

dy 3y + 2x
Y

t— 4+ 0=t"Int
a e t

2x+y+ 1)y =1
(%> + 4)dy = (2x — 8xy) dx

(21 cos 0 sin 6 + r cos ) db
+ (4r + sin§ — 2r cos® O) dr = 0

In Problems 27 and 28 solve the given initial-value problem
and give the largest interval / on which the solution is defined

27.

28.

29.

30.

d
sinxd—y + (cosx)y = 0, y(7m/6) = —2
X

d
DA DR =0, y(0) =

(a) Without solving, explain why the initial-value
problem
dy
a = \fy, Y(x0) = yo
has no solution for yy < 0.
(b) Solve the initial-value problem in part (a) for
yo > 0 and find the largest interval / on which the
solution is defined

(a) Find an implicit solution of the initial-value problem
d 2 42
Lol ) =-Va2
dx Xy

(b) Find an explicit solution of the problem in part (a) and
give the largest interval / over which the solution is
defined. A graphing utility may be helpful here.
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31. Graphs of some members of a family of solutions for a
first-orde differential equation dy/dx = f(x, y) are
shown in Figure 2.R.5. The graphs of two implicit
solutions, one that passes through the point (1, —1) and
one that passes through (—1, 3), are shown in blue.
Reproduce the figur on a piece of paper. With colored
pencils trace out the solution curves for the solutions
¥ = yi1(x) and y = yo(x) define by the implicit solu-
tions such that y;(1) = —1 and y,(—1) = 3, respectively.
Estimate the intervals on which the solutions y = y;(x)
and y = y,(x) are defined

y

FIGURE 2.R.5 Graph for Problem 31

32. Use Euler’s method with step size # = 0.1 to approxi-
mate y(1.2), where y(x) is a solution of the initial-value
problem y’ =1 + xVy, y(1) = 9.

In Problems 33 and 34 each figure represents a portion of a
direction field of an autonomous first-order differential equa-
tion dy/dx = f(y). Reproduce the figure on a separate piece
of paper and then complete the direction field over the grid.
The points of the grid are (mh, nh), where h = %, m and n

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

integers, =7 =m =7, —7 =n = 7. In each direction field
sketch by hand an approximate solution curve that passes
through each of the solid points shown in red. Discuss: Does
it appear that the DE possesses critical points in the interval
—3.5 =y = 3.5? If so, classify the critical points as asymp-
totically stable, unstable, or semi-stable.

33. y
Ve 1 N\
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FIGURE 2.R.6 Portion of a direction field for Problem 3

34. Yy
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FIGURE 2.R.7 Portion of a direction field for Problem 3
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Modeling with First-Order

Differential Equations

3.1 Linear Models
3.2 Nonlinear Models
3.3 Modeling with Systems of First-Order DEs

Chapter 3 in Review

In Section 1.3 we saw how a first-order di ferential equation could be used as a
mathematical model in the study of population growth, radioactive decay,
continuous compound interest, cooling of bodies, mixtures, chemical reactions,
fluid draining from a tank, velocity of a falling bod , and current in a series circuit.
Using the methods of Chapter 2, we are now able to solve some of the linear DEs in
Section 3.1 and nonlinear DEs in Section 3.2 that commonly appear in applications.

The chapter concludes with the natural next step. In Section 3.3 we examine how

systems of first-order di ferential equations can arise as mathematical models in

coupled physical systems (for example, electrical networks, and a population of

predators such as foxes interacting with a population of prey such as rabbits).

83
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3.1 LINEAR MODELS

REVIEW MATERIAL

o A differential equation as a mathematical model in Section 1.3
e Reread “Solving a Linear First-Order Equation” on page 56 in Section 2.3

INTRODUCTION

In this section we solve some of the linear first-order models that were

introduced in Section 1.3.

P(t) = P0€O‘4055[

71

N

|
T
=

FIGURE 3.1.1 Time in which

population triples in Example 1

= Growth and Decay The initial-value problem

& = kx, x(t) = xo (1)
dt

where £ is a constant of proportionality, serves as a model for diverse phenomena
involving either growth or decay. We saw in Section 1.3 that in biological applica-
tions the rate of growth of certain populations (bacteria, small animals) over short
periods of time is proportional to the population present at time . Knowing the pop-
ulation at some arbitrary initial time #9, we can then use the solution of (1) to predict
the population in the future—that is, at times # > #(. The constant of proportional-
ity kin (1) can be determined from the solution of the initial-value problem, using a
subsequent measurement of x at a time #; > #,. In physics and chemistry (1) is seen
in the form of a first-o der reaction—that is, a reaction whose rate, or velocity,
dx/dt is directly proportional to the amount x of a substance that is unconverted
or remaining at time ¢. The decomposition, or decay, of U-238 (uranium) by
radioactivity into Th-234 (thorium) is a first-order reaction

DVN\YINNINE Bacterial Growth

A culture initially has Pp number of bacteria. At # = 1 h the number of bacteria is mea-
sured to be %PO. If the rate of growth is proportional to the number of bacteria P(f) pre-
sent at time #, determine the time necessary for the number of bacteria to triple.

SOLUTION We first solve the differential equation in (1), with the symbol x replaced
by P. With ¢, = 0 the initial condition is P(0) = Py. We then use the empirical obser-
vation that P(1) = %PO to determine the constant of proportionality £.
Notice that the differential equation dP/dt = kP is both separable and linear.

When it is put in the standard form of a linear first-order DE

dP

— — kP =0,

dt
we can see by inspection that the integrating factor is e ~¥. Multiplying both sides of
the equation by this term and integrating gives, in turn,

d
" [e"P] =0 and e Mp = c.

Therefore P(f) = ce. At t =0 it follows that Py = ce® = ¢, so P(f) = Pye*’. At
t=1 we have iP)= Pye* or e =3 From the last equation we get
k =1In3 = 0.4055, so P(1) = Py To find the time at which the number of bac-

teria has tripled, we solve 3Py = Pye’4%% for ¢. It follows that 0.4055¢ = In 3, or

In3

t=——=27lh
0.4055

See Figure 3.1.1.
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Notice in Example 1 that the actual number Py of bacteria present at time = 0
played no part in determining the time required for the number in the culture to triple.
The time necessary for an initial population of, say, 100 or 1,000,000 bacteria to
triple is still approximately 2.71 hours.
As shown in Figure 3.1.2, the exponential function e increases as ¢ increases
for £ > 0 and decreases as ¢ increases for £ < 0. Thus problems describing growth
(whether of populations, bacteria, or even capital) are characterized by a positive
t value of k, whereas problems involving decay (as in radioactive disintegration) yield
a negative k value. Accordingly, we say that £ is either a growth constant (k > 0) or

FIGURE 3.1.2 Growth (k > 0) and a decay constant (k < 0).
decay (k < 0)

k

=— Half-Life 1In physics the half-life is a measure of the stability of a radioactive
substance. The half-life is simply the time it takes for one-half of the atoms in an
initial amount 4 to disintegrate, or transmute, into the atoms of another element.
The longer the half-life of a substance, the more stable it is. For example, the half-
life of highly radioactive radium, Ra-226, is about 1700 years. In 1700 years one-
half of a given quantity of Ra-226 is transmuted into radon, Rn-222. The most
commonly occurring uranium isotope, U-238, has a half-life of approximately
4,500,000,000 years. In about 4.5 billion years, one-half of a quantity of U-238 is
transmuted into lead, Pb-206.

DON\WYIHANIPE Half-Life of Plutonium

A breeder reactor converts relatively stable uranium-238 into the isotope plutonium-
239. After 15 years it is determined that 0.043% of the initial amount A4 of plutonium
has disintegrated. Find the half-life of this isotope if the rate of disintegration is pro-
portional to the amount remaining.

SOLUTION Let A(#) denote the amount of plutonium remaining at time ¢ As in
Example 1 the solution of the initial-value problem

dA
— =kAd, A0)=A4
dt H () 0

is A(f) = Age*". If 0.043% of the atoms of 4 have disintegrated, then 99.957% of the
substance remains. To find the decay constant k, we use 0.999574( = A(15)—that is,
0.999574 = Age'**. Solving for k then gives k = % In 0.99957 = —0.00002867.
Hence A(1) = Age ""902867 Now the half-life is the corresponding value of time at
which A(f) = 3 4,. Solving for  gives 3 4, = Age *00002867 o 1 = o= 000002867 The
last equation yields

In2

"~ Doooozse7 ~ 2H1SOYT =
— Carbon Dating About 1950, a team of scientists at the University of Chicago
led by the chemist Willard Libby devised a method using a radioactive isotope of car-
bon as a means of determining the approximate ages of carbonaceous fossilized mat-
ter. The theory of carbon dating is based on the fact that the radioisotope carbon-14
is produced in the atmosphere by the action of cosmic radiation on nitrogen-14. The
ratio of the amount of C-14 to the stable C-12 in the atmosphere appears to be a con-
stant, and as a consequence the proportionate amount of the isotope present in all liv-
ing organisms is the same as that in the atmosphere. When a living organism dies, the
absorption of C-14, by breathing, eating, or photosynthesis, ceases. By comparing
the proportionate amount of C-14, say, in a fossil with the constant amount ratio
found in the atmosphere, it is possible to obtain a reasonable estimation of its age.
The method is based on the knowledge of the half-life of C-14. Libby’s calculated
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NGS Image Collection

FIGURE 3.1.3 A page of the Gnostic
Gospel of Judas

value of the half-life of C-14 was approximately 5600 years, but today the commonly
accepted value of the half-life is approximately 5730 years. For his work, Libby was
awarded the Nobel Prize for chemistry in 1960. Libby’s method has been used to date
wooden furniture found in Egyptian tombs, the woven flax wrappings of the Dead
Sea Scrolls, a recently discovered copy of the Gnostic Gospel of Judas written on
papyrus, and the cloth of the enigmatic Shroud of Turin. See Figure 3.1.3 and
Problem 12 in Exercises 3.1.

DVNVINEN Age of a Fossil

A fossilized bone is found to contain 0.1% of its original amount of C-14. Determine
the age of the fossil.

SOLUTION The starting point is again A(f) = Agpe’’. To determine the value of
the decay constant k we use the fact that 4o = A(5730) or 4o = Age>’3%. The
last equation implies 5730k = 1n% = —In2 and so we get k = —(In2)/5730 =
—0.00012097. Therefore A(7) = Age 0012097 With A(f) = 0.0014, we have
0.0014¢ = Age 00012097 and —0.00012097¢ = In(0.001) = —In 1000. Thus

In 1000

t 0.00012097 57,100 years. =

The date found in Example 3 is really at the border of accuracy for this method.
The usual carbon-14 technique is limited to about 10 half-lives of the isotope, or
roughly 60,000 years. One reason for this limitation is that the chemical analysis
needed to obtain an accurate measurement of the remaining C-14 becomes somewhat
formidable around the point 0.0014,. Also, this analysis demands the destruction of
a rather large sample of the specimen. If this measurement is accomplished indi-
rectly, based on the actual radioactivity of the specimen, then it is very difficult to
distinguish between the radiation from the specimen and the normal background
radiation.” But recently the use of a particle accelerator has enabled scientists to
separate the C-14 from the stable C-12 directly. When the precise value of the ratio
of C-14 to C-12 is computed, the accuracy can be extended to 70,000 to 100,000
years. Other isotopic techniques, such as using potassium-40 and argon-40, can give
dates of several million years. Nonisotopic methods based on the use of amino acids
are also sometimes possible.

= Newton’s Law of Cooling/Warming In equation (3) of Section 1.3 we saw
that the mathematical formulation of Newton’s empirical law of cooling/warming of
an object is given by the linear first-order di ferential equation

dT

— = KT —T,), 2
dt

where k is a constant of proportionality, 7(¢) is the temperature of the object for z > 0,

and 7, is the ambient temperature—that is, the temperature of the medium around the

object. In Example 4 we assume that 7}, is constant.

D VNVILANE Cooling of a Cake

When a cake is removed from an oven, its temperature is measured at 300° F. Three
minutes later its temperature is 200° F. How long will it take for the cake to cool off
to a room temperature of 70° F?

“The number of disintegrations per minute per gram of carbon is recorded by using a Geiger counter.
The lower level of detectability is about 0.1 disintegrations per minute per gram.

Copyright 2012 Cengage Learning, All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the ¢Book and/or eChapter(s).

Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



300 1
150 \\ =70

15

(a)
T(r) t (min)
75° 20.1
74° 21.3
73° 22.8
72° 24.9
71° 28.6
70.5° 32.3

(b)

FIGURE 3.1.4 Temperature of cooling

cake in Example 4
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SOLUTION 1In (2) we make the identification 7,, = 70. We must then solve the
initial-value problem

‘2—? = k(T — 70), T(0) = 300 3)

and determine the value of & so that 7'(3) = 200.
Equation (3) is both linear and separable. If we separate variables,

dr
T—-170
yields In |7 — 70| = kt + ¢;, and so T =70 + coek’. When ¢t =0, T =300, so
300 = 70 + ¢, gives ¢; = 230; therefore T'= 70 + 230e", Finally, the measurement
T(3) = 200 leads to & = B, or k = 1 In 22 = —0.19018. Thus

23

T(f) = 70 + 230 01018, )

= kdt,

We note that (4) furnishes no finite solution to 7(¢) = 70, since lim,_,, T(f) = 70.
Yet we intuitively expect the cake to reach room temperature after a reasonably long
period of time. How long is “long”? Of course, we should not be disturbed by the fact
that the model (3) does not quite live up to our physical intuition. Parts (a) and (b) of
Figure 3.1.4 clearly show that the cake will be approximately at room temperature in

about one-half hour. =

The ambient temperature in (2) need not be a constant but could be a function
T(?) of time . See Problem 18 in Exercises 3.1.

=— Mixtures The mixing of two fluids sometimes gives rise to a linear first-orde
differential equation. When we discussed the mixing of two brine solutions in
Section 1.3, we assumed that the rate A'(¢) at which the amount of salt in the mixing
tank changes was a net rate:

dA
T = (input rate of salt) — (output rate of salt) = R,, — R,,,,. &)

In Example 5 we solve equation (8) of Section 1.3.

DWW Mixture of Two Salt Solutions

Recall that the large tank considered in Section 1.3 held 300 gallons of a brine
solution. Salt was entering and leaving the tank; a brine solution was being pumped
into the tank at the rate of 3 gal/min; it mixed with the solution there, and then the
mixture was pumped out at the rate of 3 gal/min. The concentration of the salt
in the inflo , or solution entering, was 2 Ib/gal, so salt was entering the tank at the
rate R;, = (2 Ib/gal) - (3 gal/min) = 6 Ib/min and leaving the tank at the rate R,,, =
(4/300 Ib/gal) - (3 gal/min) = 4/100 1b/min. From this data and (5) we get equa-
tion (8) of Section 1.3. Let us pose the question: If 50 pounds of salt were dissolved
initially in the 300 gallons, how much salt is in the tank after a long time?

SOLUTION To find the amount of salt A(¢) in the tank at time ¢, we solve the initial-
value problem

dA 1

—+—4=6, A(0)=50.

dt 100 ©
Note here that the side condition is the initial amount of salt 4(0) = 50 in the tank
and not the initial amount of liquid in the tank. Now since the integrating factor of the
linear differential equation is e//'%°, we can write the equation as

d
— [et/IOOA] — 66”100.
dt
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(a)
¢ (min) A (Ib)
50 266.41
100 397.67
150 477.27
200 525.57
300 572.62
400 589.93

(b)

FIGURE 3.1.5 Pounds of salt in the

tank in Example 5

500 +

250 +

50

100

FIGURE 3.1.6 Graph of 4(¢) in

Example 6

R

FIGURE 3.1.7 LR-series circuit

t

Integrating the last equation and solving for A4 gives the general solution
A() = 600 + ce 1% When t = 0, A = 50, so we find that ¢ = —550. Thus the
amount of salt in the tank at time ¢ is given by

A(f) = 600 — 550710, ()

The solution (6) was used to construct the table in Figure 3.1.5(b). Also, it can be
seen from (6) and Figure 3.1.5(a) that A(¥) — 600 as ¢ — . Of course, this is what
we would intuitively expect; over a long time the number of pounds of salt in the
solution must be (300 gal)(2 1b/gal) = 600 Ib. =

In Example 5 we assumed that the rate at which the solution was pumped in was
the same as the rate at which the solution was pumped out. However, this need not be
the case; the mixed brine solution could be pumped out at a rate r,,, that is faster
or slower than the rate r;, at which the other brine solution is pumped in. The next
example illustrates the case when the mixture is pumped out at rate that is slower
than the rate at which the brine solution is being pumped into the tank.

DUNVILNNE Example 5 Revisited

If the well-stirred solution in Example 5 is pumped out at a slower rate of, say,
Four = 2 gal/min, then liquid will accumulate in the tank at the rate of r;, — ryy =
(3 — 2) gal/min = 1 gal/min. After # minutes,

(1 gal/min) - (t min) = ¢ gal

will accumulate, so the tank will contain 300 + ¢ gallons of brine. The concentration
of the outflow is then ¢(¢) = 4/(300 + £) Ib/gal, and the output rate of salt is R,,, =
C(t) * Vout, OF

R,, = (300 n tlb/gal) + (2 gal/min) = 300 F tlb/mln.
Hence equation (5) becomes
dA 24 dA 2
—=6— or — + A=
dt 300 + ¢ dt 300 + ¢

The integrating factor for the last equation is
ef 24300+ 1) = 2NB00+) = MG+ = (300 + 7)2
and so after multiplying by the factor the equation is cast into the form
%Mm+y4=wm+m

Integrating the last equation gives (300 + #)?’4 = 2(300 + £)* + c. By applying the
initial condition 4(0) = 50 and solving for 4 yields the solution A(7) = 600 + 2¢ —
(4.95 X 107)(300 + )2, As Figure 3.1.6 shows, not unexpectedly, salt builds up in

the tank over time, that is, 4 — © as ¢ —> oo, =

= Series Circuits For a series circuit containing only a resistor and an inductor,
Kirchhoff’s second law states that the sum of the voltage drop across the inductor
(L(di /dt)) and the voltage drop across the resistor (iR) is the same as the impressed
voltage (£(f)) on the circuit. See Figure 3.1.7.
Thus we obtain the linear differential equation for the current i(7),
Ly Rk 7
o TR (0, (7

where L and R are constants known as the inductance and the resistance, respectively.
The current i(7) is also called the response of the system.
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FIGURE 3.1.8 RC-series circuit
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FIGURE 3.1.9 Population growth is a
discrete process
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The voltage drop across a capacitor with capacitance C is given by ¢(7)/C,
where ¢ is the charge on the capacitor. Hence, for the series circuit shown in
Figure 3.1.8, Kirchhoff’s second law gives

Ri + éq = EQ). (8)

But current i and charge g are related by i = dg/dt, so (8) becomes the linear differ-
ential equation

dg 1
R— + —q = E(©).
2 T4 = EO ©

DV E Series Circuit

A 12-volt battery is connected to a series circuit in which the inductance is % henry
and the resistance is 10 ohms. Determine the current i if the initial current is zero.

SOLUTION From (7) we see that we must solve
1 di
- — +10i = 12,
2dr

subject to i(0) = 0. First, we multiply the differential equation by 2 and read off the
integrating factor e>. We then obtain

d

_ eZOt' — 24620t.

e
Integrating each side of the last equation and solving for i gives i(f) = ¢ + ce 2"
Now i(0) = 0 implies that 0 =2+ ¢ or ¢ = —2. Therefore the response is
i) =5 —Se =

From (4) of Section 2.3 we can write a general solution of (7):
—(RIL)

L

i(f) = fe(R/L)tE(t) dt + ce” "L, (10)

In particular, when E(f) = E is a constant, (10) becomes
E
i(f) = EO + ce ®LN, (11)

Note that as t — o, the second term in equation (11) approaches zero. Such a term is usu-
ally called a transient term; any remaining terms are called the steady-state part of the
solution. In this case E /R is also called the steady-state current; for large values of time
it appears that the current in the circuit is simply governed by Ohm’s law (E = iR).

REMARKS

The solution P(f) = Pye®4%%" of the initial-value problem in Example 1
described the population of a colony of bacteria at any time ¢ > 0. Of course,
P(?) is a continuous function that takes on all real numbers in the interval
Py = P <. But since we are talking about a population, common sense
dictates that P can take on only positive integer values. Moreover, we would
not expect the population to grow continuously —that is, every second, every
microsecond, and so on—as predicted by our solution; there may be intervals
of time [#, t>] over which there is no growth at all. Perhaps, then, the graph
shown in Figure 3.1.9(a) is a more realistic description of P than is the graph
of an exponential function. Using a continuous function to describe a discrete
phenomenon is often more a matter of convenience than of accuracy. However,
for some purposes we may be satisfie if our model describes the system
fairly closely when viewed macroscopically in time, as in Figures 3.1.9(b)
and 3.1.9(c), rather than microscopically, as in Figure 3.1.9(a).
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EXERCISES 3.1

Answers to selected odd-numbered problems begin on page ANS-3.

Growth and Decay

1.

10.

The population of a community is known to increase at
a rate proportional to the number of people present
at time ¢. If an initial population Py has doubled in
5 years, how long will it take to triple? To quadruple?

Suppose it is known that the population of the commu-
nity in Problem 1 is 10,000 after 3 years. What was the
initial population Py? What will be the population in
10 years? How fast is the population growing at = 10?

The population of a town grows at a rate proportional to
the population present at time £ The initial population of
500 increases by 15% in 10 years. What will be the pop-
ulation in 30 years? How fast is the population growing
att = 307

The population of bacteria in a culture grows at a rate
proportional to the number of bacteria present at time .
After 3 hours it is observed that 400 bacteria are present.
After 10 hours 2000 bacteria are present. What was the
initial number of bacteria?

The radioactive isotope of lead, Pb-209, decays at a rate
proportional to the amount present at time ¢ and has a half-
life of 3.3 hours. If 1 gram of this isotope is present ini-
tially, how long will it take for 90% of the lead to decay?

Initially 100 milligrams of a radioactive substance was
present. After 6 hours the mass had decreased by 3%. If
the rate of decay is proportional to the amount of the
substance present at time ¢, find the amount remaining
after 24 hours.

Determine the half-life of the radioactive substance
described in Problem 6.

(a) Consider the initial-value problem dA4/dt = kA,
A(0) = A as the model for the decay of a radioac-
tive substance. Show that, in general, the half-life 7
of the substance is T = —(In 2) /k.

(b) Show that the solution of the initial-value problem
in part (a) can be written A(f) = 4,2 ",

(¢) If a radioactive substance has the half-life 7 given
in part (a), how long will it take an initial amount 4
of the substance to decay to %AO?

When a vertical beam of light passes through a trans-
parent medium, the rate at which its intensity 7
decreases is proportional to /(f), where ¢ represents the
thickness of the medium (in feet). In clear seawater,
the intensity 3 feet below the surface is 25% of the initial
intensity /o of the incident beam. What is the intensity of
the beam 15 feet below the surface?

When interest is compounded continuously, the amount
of money increases at a rate proportional to the amount

S present at time ¢, that is, dS/dt = rS, where r is the
annual rate of interest.

(a) Find the amount of money accrued at the end of
5 years when $5000 is deposited in a savings
account drawing 5%% annual interest compounded
continuously.

(b) In how many years will the initial sum deposited
have doubled?

(¢) Use a calculator to compare the amount obtained in
part (a) with the amount § = 5000(1 + 3(0.0575))°®
that is accrued when interest is compounded
quarterly.

Carbon Dating

11.

12.

Archaeologists used pieces of burned wood, or char-
coal, found at the site to date prehistoric paintings and
drawings on walls and ceilings of a cave in Lascaux,
France. See Figure 3.1.10. Use the information on page 86
to determine the approximate age of a piece of burned
wood, if it was found that 85.5% of the C-14 found in
living trees of the same type had decayed.

Prehistoric/Getty Images

FIGURE 3.1.10 Cave wall painting in Problem 11

The Shroud of Turin, which shows the negative image of
the body of a man who appears to have been crucified, is
believed by many to be the burial shroud of Jesus of
Nazareth. See Figure 3.1.11. In 1988 the Vatican granted
permission to have the shroud carbon-dated. Three inde-
pendent scientific laboratories analyzed the cloth and
concluded that the shroud was approximately 660 years
old,” an age consistent with its historical appearance.

© Bettmann/CORBIS

FIGURE 3.1.11 Shroud image in Problem 12

"Some scholars have disagreed with this finding. For more information o
this fascinating mystery see the Shroud of Turin home page at
http://www.shroud.com/.
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Using this age, determine what percentage of the origi-
nal amount of C-14 remained in the cloth as of 1988.

Newton’s Law of Cooling/Warming

13. A thermometer is removed from a room where the
temperature is 70° F and is taken outside, where the air
temperature is 10° F. After one-half minute the ther-
mometer reads 50° F. What is the reading of the ther-
mometer at # = 1 min? How long will it take for the
thermometer to reach 15° F?

14. A thermometer is taken from an inside room to the out-
side, where the air temperature is 5° F. After 1 minute
the thermometer reads 55° F, and after 5 minutes it
reads 30° F. What is the initial temperature of the inside
room?

15. A small metal bar, whose initial temperature was 20° C,
is dropped into a large container of boiling water. How
long will it take the bar to reach 90° C if it is known that
its temperature increases 2° in 1 second? How long will it
take the bar to reach 98° C?

16. Two large containers 4 and B of the same size are fille
with different fluids. The fluids in containers 4 and B
are maintained at 0° C and 100° C, respectively. A small
metal bar, whose initial temperature is 100° C, is low-
ered into container 4. After 1 minute the temperature
of the bar is 90° C. After 2 minutes the bar is removed
and instantly transferred to the other container. After
1 minute in container B the temperature of the bar rises
10°. How long, measured from the start of the entire
process, will it take the bar to reach 99.9° C?

17. A thermometer reading 70° F is placed in an oven
preheated to a constant temperature. Through a glass
window in the oven door, an observer records that the
thermometer reads 110° F after % minute and 145° F
after 1 minute. How hot is the oven?

18. At t =0 a secaled test tube containing a chemical is
immersed in a liquid bath. The initial temperature of
the chemical in the test tube is 80° F. The liquid bath
has a controlled temperature (measured in degrees
Fahrenheit) given by 7,,(f) = 100 — 40e %! =0,
where 7 is measured in minutes.

(a) Assume that £k = —0.1 in (2). Before solving the
IVP, describe in words what you expect the temper-
ature 7(z) of the chemical to be like in the short
term. In the long term.

(b) Solve the initial-value problem. Use a graphing util-
ity to plot the graph of 7(¢) on time intervals of var-
ious lengths. Do the graphs agree with your
predictions in part (a)?

19. A dead body was found within a closed room of a house
where the temperature was a constant 70° F. At the time
of discovery the core temperature of the body was
determined to be 85° F. One hour later a second mea-

20.

3.1 LINEAR MODELS ° 91

surement showed that the core temperature of the body
was 80° F. Assume that the time of death corresponds to
t = 0 and that the core temperature at that time was
98.6° F. Determine how many hours elapsed before the
body was found. [Hint: Let t; > 0 denote the time that
the body was discovered.]

The rate at which a body cools also depends on its
exposed surface area S. If S is a constant, then a modifi
cation of (2) is

dT
— =kS(T — T,
dt ( m)s

where k£ < 0 and 7, is a constant. Suppose that two cups
A and B are filled with coffee at the same time. Initially,
the temperature of the coffee is 150° F. The exposed
surface area of the coffee in cup B is twice the surface
area of the coffee in cup 4. After 30 min the temperature
of the coffee in cup 4 is 100° F. If T, = 70° F, then what
is the temperature of the coffee in cup B after 30 min?

Mixtures

21.

22.

23.

24.

25.

26.

27.

A tank contains 200 liters of fluid in which 30 grams of
salt is dissolved. Brine containing 1 gram of salt per liter
is then pumped into the tank at a rate of 4 L/min; the
well-mixed solution is pumped out at the same rate. Find
the number A(7) of grams of salt in the tank at time .

Solve Problem 21 assuming that pure water is pumped
into the tank.

A large tank is filled to capacity with 500 gallons of pure
water. Brine containing 2 pounds of salt per gallon is
pumped into the tank at a rate of 5 gal/min. The well-
mixed solution is pumped out at the same rate. Find the
number A(f) of pounds of salt in the tank at time .

In Problem 23, what is the concentration c(¢) of the salt
in the tank at time #? At # = 5 min? What is the concen-
tration of the salt in the tank after a long time, that is, as
t — ©? At what time is the concentration of the salt in
the tank equal to one-half this limiting value?

Solve Problem 23 under the assumption that the solu-
tion is pumped out at a faster rate of 10 gal/min. When
is the tank empty?

Determine the amount of salt in the tank at time ¢ in
Example 5 if the concentration of salt in the inflow is
variable and given by c;,(f) = 2 + sin(¢/4) Ib/gal.
Without actually graphing, conjecture what the solution
curve of the IVP should look like. Then use a graphing
utility to plot the graph of the solution on the interval
[0, 300]. Repeat for the interval [0, 600] and compare
your graph with that in Figure 3.1.5(a).

A large tank is partially filled with 100 gallons of flui
in which 10 pounds of salt is dissolved. Brine containing
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% pound of salt per gallon is pumped into the tank at a
rate of 6 gal/min. The well-mixed solution is then
pumped out at a slower rate of 4 gal/min. Find the num-
ber of pounds of salt in the tank after 30 minutes.

In Example 5 the size of the tank containing the salt
mixture was not given. Suppose, as in the discussion
following Example 5, that the rate at which brine is
pumped into the tank is 3 gal/min but that the well-
stirred solution is pumped out at a rate of 2 gal/min. It
stands to reason that since brine is accumulating in the
tank at the rate of 1 gal/min, any finite tank must even-
tually overflo . Now suppose that the tank has an open
top and has a total capacity of 400 gallons.

(a) When will the tank overflow

(b) What will be the number of pounds of salt in the
tank at the instant it overflows

(c) Assume that although the tank is overflowing, brine
solution continues to be pumped in at a rate of
3 gal/min and the well-stirred solution continues to
be pumped out at a rate of 2 gal/min. Devise a
method for determining the number of pounds of
salt in the tank at # = 150 minutes.

(d) Determine the number of pounds of salt in the tank as
t— o, Does your answer agree with your intuition?

(e) Use a graphing utility to plot the graph of A(¢) on
the interval [0, 500).

Series Circuits

29.

30.

31.

32.

33.

A 30-volt electromotive force is applied to an LR-series
circuit in which the inductance is 0.1 henry and the
resistance is 50 ohms. Find the current i(¢) if i(0) = 0.
Determine the current as # — oo.

Solve equation (7) under
E(t) = E, sin wt and i(0) = iy.

the assumption that

A 100-volt electromotive force is applied to an RC-
series circuit in which the resistance is 200 ohms and
the capacitance is 10~* farad. Find the charge ¢(¢) on
the capacitor if ¢(0) = 0. Find the current i(?).

A 200-volt electromotive force is applied to an RC-series
circuit in which the resistance is 1000 ohms and the
capacitance is 5 X 10~° farad. Find the charge ¢(#) on the
capacitor if i(0) = 0.4. Determine the charge and current
att = 0.005 s. Determine the charge as t — .

An electromotive force

120, 0=¢=20
E@) =
0, > 20

is applied to an LR-series circuit in which the inductance
is 20 henries and the resistance is 2 ohms. Find the
current i(¢) if i(0) = 0.

34.

Suppose an RC-series circuit has a variable resistor. If the
resistance at time ¢ is given by R = k| + k»t, where k| and
k, are known positive constants, then (9) becomes

dg 1
k, + kh)— + =g = E().
R ()

If E(f)=Eo and ¢(0) = qo, where Eo and go are
constants, show that

kl 1/Chk,
1) = E,C + - E,C)| ——— .
q(®) 0 (90 0 )<kl i k2t>

Additional Linear Models

35.

36.

maximum height of the cannonball

Air Resistance In (14) of Section 1.3 we saw that
a differential equation describing the velocity v of a
falling mass subject to air resistance proportional to the
instantaneous velocity is

dv

m— = mg — kv,

a8
where k£ > 0 is a constant of proportionality. The positive
direction is downward.

(a) Solve the equation subject to the initial condition
v(0) = vy.

(b) Use the solution in part (a) to determine the limit-
ing, or terminal, velocity of the mass. We saw how
to determine the terminal velocity without solving
the DE in Problem 40 in Exercises 2.1.

(¢) Ifthe distance s, measured from the point where the
mass was released above ground, is related to ve-
locity v by ds/dt = v(f), find an explicit expression
for s(z) if s(0) = 0.

How High? —No Air Resistance Suppose a small
cannonball weighing 16 pounds is shot vertically
upward, as shown in Figure 3.1.12, with an initial veloc-
ity vo = 300 ft/s. The answer to the question “How high
does the cannonball go?” depends on whether we take
air resistance into account.

(a) Suppose air resistance is ignored. If the positive
direction is upward, then a model for the state of
the cannonball is given by ds/dt> = —g (equation
(12) of Section 1.3). Since ds/dt = v(f) the last

FIGURE 3.1.12 Find the

in Problem 36
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37.

38.

39.

differential equation is the same as dv/di = —g,
where we take g = 32 ft/s?. Find the velocity v(?)
of the cannonball at time .

(b) Use the result obtained in part (a) to determine the
height s(¢) of the cannonball measured from ground
level. Find the maximum height attained by the
cannonball.

How High? —Linear Air Resistance Repeat Prob-
lem 36, but this time assume that air resistance is
proportional to instantaneous velocity. It stands to
reason that the maximum height attained by the cannon-
ball must be /ess than that in part (b) of Problem 36.
Show this by supposing that the constant of proportion-
ality is k£ = 0.0025. [Hint: Slightly modify the DE in
Problem 35.]

Skydiving A skydiver weighs 125 pounds, and her
parachute and equipment combined weigh another 35
pounds. After exiting from a plane at an altitude of
15,000 feet, she waits 15 seconds and opens her para-
chute. Assume that the constant of proportionality in
the model in Problem 35 has the value £ = 0.5 during
free fall and k& = 10 after the parachute is opened.
Assume that her initial velocity on leaving the plane is
zero. What is her velocity and how far has she traveled
20 seconds after leaving the plane? See Figure 3.1.13.
How does her velocity at 20 seconds compare with her
terminal velocity? How long does it take her to reach the
ground? [Hint: Think in terms of two distinct IVPs.]

free fall

air resistance is 0.5v

parachute opens
air resistance is 10v Y

FIGURE 3.1.13
Find the time to
reach the ground in
Problem 38

Evaporating Raindrop As a raindrop falls, it evapo-
rates while retaining its spherical shape. If we make the
further assumptions that the rate at which the raindrop
evaporates is proportional to its surface area and that air
resistance is negligible, then a model for the velocity
v(¢) of the raindrop is

dv 3(k/p)
—
dt  (kip)t + r,

Here p is the density of water, 7y is the radius of the rain-
drop at t = 0, k£ < 0 is the constant of proportionality,

40.

41.

42.

43.
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and the downward direction is taken to be the positive
direction.

(a) Solve for v(¢) if the raindrop falls from rest.

(b) Rerecad Problem 36 of Exercises 1.3 and then
show that the radius of the raindrop at time ¢ is
r(t) = (k/p)t + ro.

(c) If o = 0.01 ft and » = 0.007 ft 10 seconds after the
raindrop falls from a cloud, determine the time at
which the raindrop has evaporated completely.

Fluctuating Population The differential equation
dP/dt = (k cos t)P, where k is a positive constant, is a
mathematical model for a population P(f) that under-
goes yearly seasonal fluctuations. Solve the equation
subject to P(0) = Py. Use a graphing utility to graph the
solution for different choices of Py.

Population Model In one model of the changing
population P(f) of a community, it is assumed that

dP _dB dD

dr dt v
where dB/dt and dD/dt are the birth and death rates,
respectively.
(a) Solve for P(f) if dB/dt = kP and dD/dt = k,P.
(b) Analyze the cases k| > kj, k| = ky, and k| < k».

Constant-Harvest Model A model that describes the
population of a fishery in which harvesting takes place at
a constant rate is given by

dpP

—=kP—h
dt ’

where k and 4 are positive constants.
(a) Solve the DE subject to P(0) = P,.

(b) Describe the behavior of the population P(¢) for in-
creasing time in the three cases Py >h/k, Py = h/k,
and 0 < Py <h/k.

(¢) Use the results from part (b) to determine whether
the fish population will ever go extinct in finit
time, that is, whether there exists a time 7 > 0
such that P(T') = 0. If the population goes extinct,
then find 7.

Drug Dissemination A mathematical model for the
rate at which a drug disseminates into the bloodstream
is given by
dx
— =r — kx,
dt
where r and k are positive constants. The function x()
describes the concentration of the drug in the blood-
stream at time ¢.
(a) Since the DE is autonomous, use the phase portrait
concept of Section 2.1 to find the limiting value of
x(f)ast— oo,
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(b) Solve the DE subject to x(0) = 0. Sketch the graph
of x(¢) and verify your prediction in part (a). At
what time is the concentration one-half this limiting
value?

Memorization When forgetfulness is taken into
account, the rate of memorization of a subject is given by
dA
— =k(M — A) — kA,
p i )~k
where k; > 0, ky > 0, A(¢) is the amount memorized
in time ¢, M is the total amount to be memorized, and
M — A is the amount remaining to be memorized.

(a) Since the DE is autonomous, use the phase portrait
concept of Section 2.1 to find the limiting value of
A(t) as t — . Interpret the result.

(b) Solve the DE subject to 4(0) = 0. Sketch the graph
of A(¢) and verify your prediction in part (a).

Heart Pacemaker A heart pacemaker, shown in
Figure 3.1.14, consists of a switch, a battery, a capacitor,
and the heart as a resistor. When the switch S'is at P, the
capacitor charges; when S is at O, the capacitor dis-
charges, sending an electrical stimulus to the heart. In
Problem 53 in Exercises 2.3 we saw that during this
time the electrical stimulus is being applied to the heart,
the voltage E across the heart satisfies the linear D
dE. 1 £
dt RC
(a) Letus assume that over the time interval of length
t1, 0 <t < t, the switch S is at position P shown
in Figure 3.1.14 and the capacitor is being
charged. When the switch is moved to position
0 at time ¢; the capacitor discharges, sending an
impulse to the heart over the time interval of
length f,: t; =t <1t + t,. Thus over the initial
charging/discharging interval 0 < ¢ < ¢; + ¢, the
voltage to the heart is actually modeled by the
piecewise-defined differential equation

dE 0, 0=r<yg
e 1
dt —2cE n=t<ntin
heaﬁ
switch

}7
P N c

FIGURE 3.1.14 Model of a pacemaker in
Problem 45

By moving S between P and Q, the charging and
discharging over time intervals of lengths #; and 7,
is repeated indefinitel . Suppose ¢t = 45, t, =2's,
Eo=12V, and E0) =0, E4) =12, E6) =0,
E(10) =12, E(12) = 0, and so on. Solve for E(?)
for0 =t =24

(b) Suppose for the sake of illustration that R = C = 1.
Use a graphing utility to graph the solution for the
IVP in part (a) for 0 = ¢ = 24.

46. Sliding Box (a) A box of mass m slides down an
inclined plane that makes an angle 6 with the hori-
zontal as shown in Figure 3.1.15. Find a differential
equation for the velocity v(7) of the box at time ¢ in
each of the following three cases:

(/) No sliding friction and no air resistance
(i) With sliding friction and no air resistance
(7if) With sliding friction and air resistance

In cases (ii) and (ii7), use the fact that the force of
friction opposing the motion of the box is uN,
where u is the coefficient of sliding friction and N
is the normal component of the weight of the box.
In case (iii) assume that air resistance is propor-
tional to the instantaneous velocity.

(b) In part (a), suppose that the box weighs 96 pounds,
that the angle of inclination of the plane is 6 = 30°,
that the coefficient of sliding friction is u = \V/3/4,
and that the additional retarding force due to air
resistance is numerically equal to iv. Solve the dif-
ferential equation in each of the three cases, assum-
ing that the box starts from rest from the highest
point 50 ft above ground.

friction

motion 50 ft

FIGURE 3.1.15 Box sliding down inclined plane in
Problem 46

47. Sliding Box— Continued (a) In Problem 46 let s(¢) be
the distance measured down the inclined plane
from the highest point. Use ds/dt = v(f) and the
solution for each of the three cases in part (b) of
Problem 46 to find the time that it takes the box to
slide completely down the inclined plane. A root-
finding application of a CAS may be useful here.

(b) In the case in which there is friction (u # 0) but no
air resistance, explain why the box will not slide
down the plane starting from rest from the highest
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point above ground when the inclination angle 6 48. What Goes Up...(a) It is well known that the
satisfies tan 6 = p. model in which air resistance is ignored, part (a) of
Problem 36, predicts that the time 7, it takes the
cannonball to attain its maximum height is the
same as the time ¢, it takes the cannonball to fall
from the maximum height to the ground. Moreover,
the magnitude of the impact velocity v; will be the
same as the initial velocity vy of the cannonball.
(d) Using the values u = V/3/4 and 6 = 23°, approxi- Verify both of these results.

mate the smallest initial velocity v, that can be given (b)

to the box so that, starting at the highest point 50 ft

above ground, it will slide completely down the in-

clined plane. Then find the corresponding time it

takes to slide down the plane.

(¢) The box will slide downward on the plane when
tan # = p if it is given an initial velocity
v(0) = vo > 0. Suppose that w = V3/4 and
0 = 23°. Verify that tan 6 = u. How far will the
box slide down the plane if vy = 1 ft/s?

Then, using the model in Problem 37 that takes air
resistance into account, compare the value of 7,
with 7, and the value of the magnitude of v; with vy.
A root-finding application of a CAS (or graphic cal-
culator) may be useful here.

3.2 NONLINEAR MODELS

REVIEW MATERIAL

e Equations (5), (6), and (10) of Section 1.3 and Problems 7, 8, 13, 14, and 17 of Exercises 1.3
e Separation of variables in Section 2.2

INTRODUCTION  We finish our study of single first-order differential equations with an exam-
ination of some nonlinear models.

= Population Dynamics If P(¢) denotes the size of a population at time ¢, the
model for exponential growth begins with the assumption that dP/dt = kP for some
k > 0. In this model, the relative, or specific, g owth rate defined b

dP/dt 1
- M
is a constant k. True cases of exponential growth over long periods of time are hard
to find because the limited resources of the environment will at some time exert
restrictions on the growth of a population. Thus for other models, (1) can be expected
to decrease as the population P increases in size.
The assumption that the rate at which a population grows (or decreases) is
dependent only on the number P present and not on any time-dependent mechanisms
such as seasonal phenomena (see Problem 33 in Exercises 1.3) can be stated as

dP/dt dpP
S dr/at = f(P) or — = Pf(P). )
P dt
The differential equation in (2), which is widely assumed in models of animal
populations, is called the density-dependent hypothesis.

= Logistic Equation Suppose an environment is capable of sustaining no more
than a fixed number K of individuals in its population. The quantity K is called the
P carrying capacity of the environment. Hence for the function f'in (2) we have
f(K) = 0, and we simply let f(0) = r. Figure 3.2.1 shows three functions f that sat-
FIGURE 3.2.1 Simplest assumption isfy these two conditions. The simplest assumption that we can make is that f(P)
for f(P) is a straight line (blue color) is linear—that is, f(P) = ¢;P + c». If we use the conditions f(0) = r and f(K) = 0,
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we find, in turn, ¢; = rand ¢; = —r/K, and so f takes on the form f(P) = r — (r/K)P.
Equation (2) becomes

ar P( rP) 3)
- = r— — .
dt K

With constants relabeled, the nonlinear equation (3) is the same as
dpP
— = P(a — bP). @)
dt

Around 1840 the Belgian mathematician-biologist P. F. Verhulst (1804—1849)
was concerned with mathematical models for predicting the human populations of
various countries. One of the equations he studied was (4), where a > 0 and b > 0.
Equation (4) came to be known as the logistic equation, and its solution is called the
logistic function. The graph of a logistic function is called a logistic curve.

The linear differential equation dP/dt = kP does not provide a very accurate
model for population when the population itself is very large. Overcrowded condi-
tions, with the resulting detrimental effects on the environment such as pollution and
excessive and competitive demands for food and fuel, can have an inhibiting effect
on population growth. As we shall now see, the solution of (4) is bounded as  — <.
If we rewrite (4) as dP/dt = aP — bP2, the nonlinear term —bP2, b > 0, can be in-
terpreted as an “inhibition” or “competition” term. Also, in most applications the
positive constant a is much larger than the constant b.

Logistic curves have proved to be quite accurate in predicting the growth
patterns, in a limited space, of certain types of bacteria, protozoa, water flea
(Daphnia), and fruit flies Drosophila).

= Solution of the Logistic Equation One method of solving (4) is separation
of variables. Decomposing the left side of dP/P(a — bP) = dt into partial fractions
and integrating gives

1 b
(ﬁ + i) dP = dt
P a — bP
1 1
—In|P| — —Injla — bP| =t + ¢
a a
lna—bP‘ = at + ac
P at
T—p O
It follows from the last equation that
acie” ac,

P(t) =

1 + bee™  be, + e

If P(0) = Py, Py # a/b, we find ¢; = Py/(a — bPy), and so after substituting and
simplifying, the solution becomes

aP,

P(t) = .
O = P+ (a = bPye ™

©)

= Graphs of P(t) The basic shape of the graph of the logistic function P(¢) can be
obtained without too much effort. Although the variable ¢ usually represents time and
we are seldom concerned with applications in which # < 0, it is nonetheless of some in-
terest to include this interval in displaying the various graphs of P. From (5) we see that

aPy _

a
PG a
D= %p, = b

as t—® and P(t)—0 as t——x,
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(b)
FIGURE 3.2.2 Logistic curves for

different initial conditions

=

500

t (days) x (number infected)

50 (observed)
124
276
507
735
882
953

(e RN RNe R e R

(b)

FIGURE 3.2.3 Number of infected
students in Example 1
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The dashed line P = a/2b shown in Figure 3.2.2 corresponds to the ordinate of a
point of inflection of the logistic curve. To show this, we differentiate (4) by the
Product Rule:

d*P ( dP) dP _ dP

—=P|-b—)+ (a —bP)— =—(a — 2bP

der dt (@ ) dt  dt (@ )

= P(a — bP)(a — 2bP)

-wr(r-g)r- )

From calculus recall that the points where d>P/dt*> = 0 are possible points of inflec

tion, but P = 0 and P = a/b can obviously be ruled out. Hence P = a /2b is the only
possible ordinate value at which the concavity of the graph can change. For
0 <P <a/2b it follows that P” > 0, and a/2b < P < a/b implies that P" < 0.
Thus, as we read from left to right, the graph changes from concave up to concave
down at the point corresponding to P = a/2b. When the initial value satisfies
0 < Py<a/2b, the graph of P(z) assumes the shape of an S, as we see in
Figure 3.2.2(a). For a/2b < Py < a /b the graph is still S-shaped, but the point of
inflection occurs at a negative value of ¢, as shown in Figure 3.2.2(b).

We have already seen equation (4) in (5) of Section 1.3 in the form
dx/dt = kx(n + 1 — x), k> 0. This differential equation provides a reasonable
model for describing the spread of an epidemic brought about initially by introduc-
ing an infected individual into a static population. The solution x(#) represents the
number of individuals infected with the disease at time ¢.

DN IZNINE ogistic Growth

Suppose a student carrying a flu virus returns to an isolated college campus of 1000
students. If it is assumed that the rate at which the virus spreads is proportional not
only to the number x of infected students but also to the number of students not
infected, determine the number of infected students after 6 days if it is further
observed that after 4 days x(4) = 50.

SOLUTION Assuming that no one leaves the campus throughout the duration of the
disease, we must solve the initial-value problem

d
d—f = kx(1000 — x), x(0) = 1.
By making the identification ¢ = 1000k and b = k, we have immediately from

(5) that

1000k 1000

X0 = T 999ke 1000 1+ 999 000k

Now, using the information x(4) = 50, we determine & from

_ 1000
1+ 999400

We find — 1000k = § In go5 = —0.9906. Thus

1000

x() = 1 + 99909906

. 1000
Finally, x(6) = T+ 9990-594% = 276 students.

Additional calculated values of x(#) are given in the table in Figure 3.2.3(b). Note that

the number of infected students x(¢) approaches 1000 as ¢ increases. =
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= Modifications of the Logistic Equation There are many variations of the
logistic equation. For example, the differential equations

dpP , dP

— =Pla — bP) — h and — =Pla—bP)+ h (6)

dt dt
could serve, in turn, as models for the population in a fisher where fis are harvested
or are restocked at rate 7. When /4 > 0 is a constant, the DEs in (6) can be readily an-
alyzed qualitatively or solved analytically by separation of variables. The equations
in (6) could also serve as models of the human population decreased by emigration
or increased by immigration, respectively. The rate / in (6) could be a function of
time ¢ or could be population dependent; for example, harvesting might be done peri-
odically over time or might be done at a rate proportional to the population P at time
t. In the latter instance, the model would look like " = P(a — bP) — ¢P, ¢ > 0. The
human population of a community might change because of immigration in such a
manner that the contribution due to immigration was large when the population P of
the community was itself small but small when P was large; a reasonable model for
the population of the community would thenbe P’ = P(a — hP) + ce ¢ > 0,k > 0.
See Problem 24 in Exercises 3.2. Another equation of the form given in (2),

dpP

— = P(la — bInP), @)

dt
is a modification of the logistic equation known as the Gompertz differential equa-
tion named after the English mathematician Benjamin Gompertz (1779-1865).
This DE is sometimes used as a model in the study of the growth or decline of pop-
ulations, the growth of solid tumors, and certain kinds of actuarial predictions. See
Problem 8 in Exercises 3.2.

=— Chemical Reactions Suppose that a grams of chemical 4 are combined with
b grams of chemical B. If there are M parts of 4 and N parts of B formed in the com-
pound and X(7) is the number of grams of chemical C formed, then the number of
grams of chemical 4 and the number of grams of chemical B remaining at time ¢ are,
respectively,

X.

and b

a

M+ N M+ N

The law of mass action states that when no temperature change is involved, the rate
at which the two substances react is proportional to the product of the amounts of 4
and B that are untransformed (remaining) at time ¢:

dXx M N
—xla— X|\b— X ®)
dt M+ N M+ N
If we factor out M/(M + N) from the first factor and N/(M + N) from the second
and introduce a constant of proportionality £ > 0, (8) has the form

dX
— = k(a — X)(B — X), ©)

dt
where o = a(M + N)/M and B = b(M + N)/N. Recall from (6) of Section 1.3 that
a chemical reaction governed by the nonlinear differential equation (9) is said to be a
second-order reaction.

DN ANIPE Second-Order Chemical Reaction

A compound C is formed when two chemicals 4 and B are combined. The resulting
reaction between the two chemicals is such that for each gram of 4, 4 grams of B is
used. It is observed that 30 grams of the compound C is formed in 10 minutes.
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N X=40
10 20 30 40 !
(a)
t (min) X (g)
10 30 (measured)
15 34.78
20 37.25
25 38.54
30 39.22
35 39.59
(b)

FIGURE 3.2.4 Number of grams of

compound C in Example 2
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Determine the amount of C at time ¢ if the rate of the reaction is proportional to the
amounts of 4 and B remaining and if initially there are 50 grams of 4 and 32 grams
of B. How much of the compound C is present at 15 minutes? Interpret the solution
ast— o,

SOLUTION Let X(#) denote the number of grams of the compound C present at
time ¢. Clearly, X(0) = 0 g and X(10) = 30 g.

If, for example, 2 grams of compound C is present, we must have used,
say, a grams of 4 and b grams of B, so a + b = 2 and b = 4a. Thus we must use
a= % = 2(% g of chemical 4 and b = % = 2(%) g of B. In general, for X grams of

C we must use

1 4
EX grams of 4 and 3 X grams of B.

The amounts of 4 and B remaining at time ¢ are then

1 4
50 —=-X and 32 — =X,
5 5

respectively.
Now we know that the rate at which compound C is formed satisfie

—x {50 —-X){32 —-X|.
dt 5 5

To simplify the subsequent algebra, we factor é from the first term and § from the
second and then introduce the constant of proportionality:

ax

— = k250 = X)(40 - X).

By separation of variables and partial fractions we can write

1 1

210 210
- dX + dX = kdt.
250 - X 40 - X
Integrating gives
250 - X 250 - X
In——— = 210kt + ¢, or —— = e?l, (10)
40 — X 40 — X

When ¢ = 0, X = 0, so it follows at this point that ¢, = 275. Using X =30gat¢ = 10,
we find 210k = 117) In % = 0.1258. With this information we solve the last equation
in (10) for X:

— ,—0.1258¢

1 —e
X(0) = 1000 - s (11)

From (11) we find X(15) = 34.78 grams. The behavior of X as a function of time
is displayed in Figure 3.2.4. It is clear from the accompanying table and (11) that
X — 40 as t — . This means that 40 grams of compound C is formed, leaving

] 4
50 - 5(40) = 42gofd  and 32— <(40) = Ogof B.
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REMARKS

The indefinite integral [ du/(a> — u?) can be evaluated in terms of logarithms,
the inverse hyperbolic tangent, or the inverse hyperbolic cotangent. For example,
of the two results

d 1
J%=—tanh_1z+c, lu| <a (12)
a’—u* a a

du 1 a+tu
5 55 In
a—u 2a a—
(12) may be convenient in Problems 15 and 26 in Exercises 3.2, whereas (13)
may be preferable in Problem 27.

i @, \u|¢a, (13)

Answers to selected odd-numbered problems begin on page ANS-3.

EXERCISES 3.2

Logistic Equation

1.

4.

The number N(¥) of supermarkets throughout the country
that are using a computerized checkout system is
described by the initial-value problem

dN
I N(1 — 0.0005N), N(0) = 1.

(a) Use the phase portrait concept of Section 2.1 to pre-
dict how many supermarkets are expected to adopt
the new procedure over a long period of time. By
hand, sketch a solution curve of the given initial-
value problem.

(b) Solve the initial-value problem and then use a graph-
ing utility to verify the solution curve in part (a).
How many companies are expected to adopt the new
technology when ¢ = 10?

The number N(f) of people in a community who are
exposed to a particular advertisement is governed by
the logistic equation. Initially, N(0) = 500, and it is
observed that N(1) = 1000. Solve for N(?) if it is pre-
dicted that the limiting number of people in the commu-
nity who will see the advertisement is 50,000.

A model for the population P(¢) in a suburb of a large
city is given by the initial-value problem

dpP
o P(107' = 1077P), P(0) = 5000,
where ¢ is measured in months. What is the limiting
value of the population? At what time will the popula-
tion be equal to one-half of this limiting value?

(a) Census data for the United States between 1790 and
1950 are given in Table 3.2.1. Construct a logistic
population model using the data from 1790, 1850,
and 1910.

(b) Construct a table comparing actual census popula-
tion with the population predicted by the model in
part (a). Compute the error and the percentage error
for each entry pair.

TABLE 3.2.1
Year Population (in millions)
1790 3.929
1800 5.308
1810 7.240
1820 9.638
1830 12.866
1840 17.069
1850 23.192
1860 31.433
1870 38.558
1880 50.156
1890 62.948
1900 75.996
1910 91.972
1920 105.711
1930 122.775
1940 131.669
1950 150.697

Modifications of the Logistic Model

5. (a) If a constant number % of fish are harvested from a

fishery per unit time, then a model for the popula-
tion P(¢) of the fishery at time # is given by

ap = P(a — bP) — h, P(0) = Py,

dt
where a, b, h, and P, are positive constants.
Suppose a = 5, b = 1, and & = 4. Since the DE is
autonomous, use the phase portrait concept of
Section 2.1 to sketch representative solution curves
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corresponding to the cases Py > 4, 1 < Py < 4, and
0 < Py < 1. Determine the long-term behavior of
the population in each case.

(b) Solve the IVP in part (a). Verify the results of your
phase portrait in part (a) by using a graphing utility
to plot the graph of P(f) with an initial condition
taken from each of the three intervals given.

(¢) Use the information in parts (a) and (b) to determine
whether the fishery population becomes extinct in
finite time. If so, find that tim

Investigate the harvesting model in Problem 5 both
qualitatively and analytically in the case @ = 5, b = 1,
h = %75. Determine whether the population becomes
extinct in finite time. If so, find that tim

Repeat Problem 6 inthe casea = 5,b =1, h = 7.

(a) Suppose @ = b =1 in the Gompertz differential
equation (7). Since the DE is autonomous, use the
phase portrait concept of Section 2.1 to sketch rep-
resentative solution curves corresponding to the
cases Pp > eand 0 < Py < e.

(b) Supposea = 1,b = —1in (7). Use a new phase por-
trait to sketch representative solution curves corre-
sponding to the cases Py > e ! and 0 < Py <e .

(¢) Find an explicit solution of (7) subject to P(0) = P.

Chemical Reactions

9.

10.

Two chemicals 4 and B are combined to form a chemical
C. The rate, or velocity, of the reaction is proportional to
the product of the instantaneous amounts of A and B not
converted to chemical C. Initially, there are 40 grams of
A and 50 grams of B, and for each gram of B, 2 grams of
A is used. It is observed that 10 grams of C is formed in
5 minutes. How much is formed in 20 minutes? What is
the limiting amount of C after a long time? How much of
chemicals 4 and B remains after a long time?

Solve Problem 9 if 100 grams of chemical 4 is present
initially. At what time is chemical C half-formed?

Additional Nonlinear Models

11.

Leaking Cylindrical Tank A tank in the form of a
right-circular cylinder standing on end is leaking water
through a circular hole in its bottom. As we saw in (10)
of Section 1.3, when friction and contraction of water at
the hole are ignored, the height 4 of water in the tank is
described by

dh A,

— = —— \V2gh,

a4,
where A,, and A4, are the cross-sectional areas of the
water and the hole, respectively.

(a) Solve the DE if the initial height of the water is H.
By hand, sketch the graph of 4(7) and give its interval

12.

13.

14.
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1 of definition in terms of the symbols 4,,, 4;, and H.
Use g = 32 ft/s”.

(b) Suppose the tank is 10 feet high and has radius
2 feet and the circular hole has radius % inch. If the
tank is initially full, how long will it take to empty?

Leaking Cylindrical Tank—Continued When fric-
tion and contraction of the water at the hole are taken
into account, the model in Problem 11 becomes

dh A,
— = —c~1\2gh
dt cAt &

w

where 0 < ¢ <1. How long will it take the tank in
Problem 11(b) to empty if ¢ = 0.6? See Problem 13 in
Exercises 1.3.

Leaking Conical Tank A tank in the form of a right-
circular cone standing on end, vertex down, is leaking
water through a circular hole in its bottom.

(a) Suppose the tank is 20 feet high and has radius
8 feet and the circular hole has radius 2 inches. In
Problem 14 in Exercises 1.3 you were asked to
show that the differential equation governing the
height / of water leaking from a tank is

dh 5
e~ 6h

In this model, friction and contraction of the water
at the hole were taken into account with ¢ = 0.6,
and g was taken to be 32 ft/s2. See Figure 1.3.12. If
the tank is initially full, how long will it take the
tank to empty?

(b) Suppose the tank has a vertex angle of 60° and the
circular hole has radius 2 inches. Determine the dif-
ferential equation governing the height / of water.
Use ¢ = 0.6 and g = 32 ft/s%. If the height of the
water is initially 9 feet, how long will it take the
tank to empty?

Inverted Conical Tank Suppose that the conical tank
in Problem 13(a) is inverted, as shown in Figure 3.2.5,
and that water leaks out a circular hole of radius 2 inches
in the center of its circular base. Is the time it takes to
empty a full tank the same as for the tank with vertex
down in Problem 13? Take the friction/contraction coef-
ficient to be ¢ = 0.6 and g = 32 ft/s>.

FIGURE 3.2.5

Inverted conical tank in Problem 14
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15.

16.

17.

18.
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Air Resistance A differential equation for the veloc-
ity v of a falling mass m subjected to air resistance pro-
portional to the square of the instantaneous velocity is

dv
m— = mg — kv?,
a "
where k£ > 0 is a constant of proportionality. The posi-
tive direction is downward.

(a) Solve the equation subject to the initial condition
v(0) = v.

(b) Use the solution in part (a) to determine the limit-
ing, or terminal, velocity of the mass. We saw how

to determine the terminal velocity without solving
the DE in Problem 41 in Exercises 2.1.

(c) If the distance s, measured from the point where
the mass was released above ground, is related to
velocity v by ds/dt = v(f), find an explicit expres-
sion for s(¢) if s(0) = 0.

How High? —Nonlinear Air Resistance Consider the
16-pound cannonball shot vertically upward in Prob-
lems 36 and 37 in Exercises 3.1 with an initial velocity
vo = 300 ft/s. Determine the maximum height attained by
the cannonball if air resistance is assumed to be propor-
tional to the square of the instantaneous velocity. Assume
that the positive direction is upward and take £ = 0.0003.
[Hint: Slightly modify the DE in Problem 15.]

That Sinking Feeling (a) Determine a differential
equation for the velocity v(f) of a mass m sinking
in water that imparts a resistance proportional to
the square of the instantaneous velocity and also
exerts an upward buoyant force whose magnitude is
given by Archimedes’ principle. See Problem 18 in
Exercises 1.3. Assume that the positive direction is
downward.

(b) Solve the differential equation in part (a).

(¢) Determine the limiting, or terminal, velocity of the
sinking mass.

Solar Collector The differential equation

dy  —x+Vx'+)*

dx y

describes the shape of a plane curve C that will reflect all
incoming light beams to the same point and could be a
model for the mirror of a reflecting telescope, a satellite
antenna, or a solar collector. See Problem 29 in
Exercises 1.3. There are several ways of solving this DE.

(a) Verify that the differential equation is homogeneous
(see Section 2.5). Show that the substitution y = ux
yields

udu dx

\/1+u2(1—\/1+u2) x

19.

20.

Use a CAS (or another judicious substitution) to
integrate the left-hand side of the equation. Show that
the curve C must be a parabola with focus at the ori-
gin and is symmetric with respect to the x-axis.

(b) Show that the first differential equation can also be
solved by means of the substitution # = x? + 2.

Tsunami (a) A simple model for the shape of a
tsunami is given by

W _ g =am,

dx
where W(x) > 0 is the height of the wave expressed
as a function of its position relative to a point oft-
shore. By inspection, find all constant solutions of
the DE.

(b) Solve the differential equation in part (a). A CAS
may be useful for integration.

(¢) Use a graphing utility to obtain the graphs of all
solutions that satisfy the initial condition W(0) = 2.

Evaporation An outdoor decorative pond in the shape
of a hemispherical tank is to be filled with water pumped
into the tank through an inlet in its bottom. Suppose that
the radius of the tank is R = 10 ft, that water is pumped
in at a rate of 7 ft3/min, and that the tank is initially
empty. See Figure 3.2.6. As the tank fills, it loses water
through evaporation. Assume that the rate of evaporation
is proportional to the area A4 of the surface of the water
and that the constant of proportionality is £ = 0.01.

(a) The rate of change dV/dt of the volume of the water
at time ¢ is a net rate. Use this net rate to determine a
differential equation for the height % of the water at
time z. The volume of the water shown in the figure is
V = mRh* — %wh3, where R = 10. Express the area
of the surface of the water 4 = 77 in terms of .

(b) Solve the differential equation in part (a). Graph the
solution.

(¢) Ifthere were no evaporation, how long would it take
the tank to fill

(d) With evaporation, what is the depth of the water at
the time found in part (¢)? Will the tank ever be
filled? Prove your assertion

Output: water evaporates
at rate proportional
to area A of surface

—R—
’%r- <

Input: water pumped in
at rate 77 ft/min
(a) hemispherical tank (b) cross-section of tank

FIGURE 3.2.6 Decorative pond in Problem 20
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22.

Doomsday Equation Consider the differential equation
dpP
P kPl +c’
dt

where £ > 0 and ¢ = 0. In Section 3.1 we saw that in
the case ¢ =0 the linear differential equation
dP/dt = kP is a mathematical model of a population
P(#) that exhibits unbounded growth over the infinit
time interval [0, «), that is, P(f) — ® ast—> . See
Example 1 on page 84.

(a) Suppose for ¢ = 0.01 that the nonlinear differential
equation

d_P — kPl‘Ol, k> 0,
dt

is a mathematical model for a population of small
animals, where time ¢ is measured in months. Solve
the differential equation subject to the initial condi-
tion P(0) = 10 and the fact that the animal popula-
tion has doubled in 5 months.

(b) The differential equation in part (a) is called a
doomsday equation because the population P(r)
exhibits unbounded growth over a finite time
interval (0, 7), that is, there is some time 7 such
P(f) > oast— T .Find T.

(¢) From part (a), what is P(50)? P(100)?

Doomsday or Extinction
model (4) is modified to b

Suppose the population

d—P—P(bP— )
dt a).

(a) If @ > 0, b > 0 show by means of a phase portrait
(see page 39) that, depending on the initial condi-
tion P(0) = P,, the mathematical model could in-
clude a doomsday scenario (P(f) — ) or an extinc-
tion scenario (P(f) — 0).

(b) Solve the initial-value problem

dP
—- = P(0.0005P = 0.1, P(0) = 300.

Show that this model predicts a doomsday for the
population in a finite time 7.
(¢) Solve the differential equation in part (b) subject to

the initial condition P(0) = 100. Show that this

model predicts extinction for the population as
t—> oo,

Project Problems

23.

Regression Line Read the documentation for your
CAS on scatter plots (or scatter diagrams) and least-
squares linear fit The straight line that best fits a set of
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data points is called a regression line or a least
squares line. Your task is to construct a logistic model
for the population of the United States, defining f(P)
in (2) as an equation of a regression line based on the
population data in the table in Problem 4. One way of

1 dP
doing this is to approximate the left-hand side P of

the first equation in (2), using the forward difference
quotient in place of dP/dt:

1 P(t+h) — P(0)

o0 = P I

(a) Make a table of the values 7, P(¢), and O(f) using
t=0,10,20,...,160and 2 = 10. For example, the
first line of the table should contain ¢ = 0, P(0), and
0(0). With P(0) = 3.929 and P(10) = 5.308,

1 P(10) — P(0)
P(0) 10

0(0) = = 0.035.

Note that Q(160) depends on the 1960 census popu-
lation P(170). Look up this value.

(b) Use a CAS to obtain a scatter plot of the data
(P(1), O(t)) computed in part (a). Also use a CAS to
find an equation of the regression line and to
superimpose its graph on the scatter plot.

(c) Construct a logistic model dP/dt = Pf(P), where f(P)
is the equation of the regression line found in part (b).

(d) Solve the model in part (c) using the initial condi-
tion P(0) = 3.9209.

(e) Use a CAS to obtain another scatter plot, this time
of the ordered pairs (¢, P(t)) from your table in
part (a). Use your CAS to superimpose the graph of
the solution in part (d) on the scatter plot.

(f) Look up the U.S. census data for 1970, 1980, and
1990. What population does the logistic model in part
(c) predict for these years? What does the model pre-
dict for the U.S. population P(f) as t — »?

24. Immigration Model (a) In Examples 3 and 4 of

Section 2.1 we saw that any solution P(7) of (4)
possesses the asymptotic behavior P(f) — a /b as
t— o for Py > a/b and for 0 < Py <a/b; as a
consequence the equilibrium solution P = a /b is
called an attractor. Use a root-finding application of
a CAS (or a graphic calculator) to approximate the
equilibrium solution of the immigration model

dP
P — P) + 03¢
FraRACIEE) ¢

(b) Use a graphing utility to graph the function
F(P) = P(1 — P) + 0.3¢"". Explain how this graph
can be used to determine whether the number found
in part (a) is an attractor.
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25.

26.
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(¢) Use a numerical solver to compare the solution
curves for the IVPs

dpP
—=P1-P
= PP

P(0) = P,
for Py = 0.2 and Py = 1.2 with the solution curves
for the IVPs

d—P—P(l—P)+03 P
dt e

P(0) = Py

for Py = 0.2 and Py = 1.2. Superimpose all curves on
the same coordinate axes but, if possible, use a differ-
ent color for the curves of the second initial-value
problem. Over a long period of time, what percentage
increase does the immigration model predict in the
population compared to the logistic model?

What Goes Up ... In Problem 16 let ¢, be the time it
takes the cannonball to attain its maximum height and
let 7, be the time it takes the cannonball to fall from the
maximum height to the ground. Compare the value of
t, with the value of ¢, and compare the magnitude of
the impact velocity v; with the initial velocity vo. See
Problem 48 in Exercises 3.1. A root-finding application
of a CAS might be useful here. [Hint: Use the model in
Problem 15 when the cannonball is falling.]

Skydiving A skydiver is equipped with a stopwatch
and an altimeter. As shown in Figure 3.2.7, he opens his
parachute 25 seconds after exiting a plane flying at an
altitude of 20,000 feet and observes that his altitude is
14,800 feet. Assume that air resistance is proportional to
the square of the instantaneous velocity, his initial ve-
locity on leaving the plane is zero, and g = 32 ft/s>.

(a) Find the distance s(f), measured from the plane, the
skydiver has traveled during freefall in time ¢
[Hint: The constant of proportionality £ in the
model given in Problem 15 is not specified. Use the
expression for terminal velocity v, obtained in part
(b) of Problem 15 to eliminate k from the IVP. Then
eventually solve for v;.]

(b) How far does the skydiver fall and what is his

velocity at 1 = 15 s?

0
— [

T
s jt)

\,, v~ _

FIGURE 3.2.7 Skydiver in Problem 26

27.

28.

Hitting Bottom A helicopter hovers 500 feet above a
large open tank full of liquid (not water). A dense com-
pact object weighing 160 pounds is dropped (released
from rest) from the helicopter into the liquid. Assume
that air resistance is proportional to instantancous ve-
locity v while the object is in the air and that viscous
damping is proportional to v? after the object has en-
tered the liquid. For air take &k = %, and for the liquid
take k= 0.1. Assume that the positive direction is
downward. If the tank is 75 feet high, determine the
time and the impact velocity when the object hits the
bottom of the tank. [Hint: Think in terms of two distinct
IVPs. If you use (13), be careful in removing the ab-
solute value sign. You might compare the velocity when
the object hits the liquid—the initial velocity for the
second problem—with the terminal velocity v, of the
object falling through the liquid.]

Old Man River ... InFigure 3.2.8(a) suppose that the
y-axis and the dashed vertical line x = 1 represent, re-
spectively, the straight west and east beaches of a river
that is 1 mile wide. The river flows northward with a
velocity v,, where |v,| = v, mi/h is a constant. A man
enters the current at the point (1, 0) on the east shore and
swims in a direction and rate relative to the river given by
the vector v, where the speed |v| = v, mi/h is a constant.
The man wants to reach the west beach exactly at (0, 0)
and so swims in such a manner that keeps his velocity
vector vy always directed toward the point (0, 0). Use
Figure 3.2.8(b) as an aid in showing that a mathematical
model for the path of the swimmer in the river is

dy vy — v VX + )y’
dx VX '
[Hint: The velocity v of the swimmer along the path or

curve shown in Figure 3.2.8 is the resultant v = v, + v,.
Resolve vy and v, into components in the x- and

y |
swimmer :
west east
beach beach
|
|
current |
(R |
(0,0) (1.0) ¥
(a)
y |
vrT :
o X0, y(®) !
A !
7 $L0 :
| |
1
(0, 0) x(1) (1,0) *
(b)

FIGURE 3.2.8 Path of swimmer in Problem 28
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30.

31.

32.

33.

y-directions. If x = x(¢), y = y(f) are parametric equa-
tions of the swimmer’s path, then v = (dx/dt, dy/dr).]

(a) Solve the DE in Problem 28 subject to y(1) = 0. For
convenience let k = v,/v,.

(b) Determine the values of v, for which the swimmer
will reach the point (0, 0) by examining lin&y(x) in
thecasesk=1,k>1,and 0 < k< 1.

Old Man River Keeps Moving . . . Suppose the man in
Problem 28 again enters the current at (1, 0) but this
time decides to swim so that his velocity vector v is
always directed toward the west beach. Assume that the
speed |v| = v, mi/h is a constant. Show that a mathe-
matical model for the path of the swimmer in the river
is now

& _ v

dx vy

The current speed v, of a straight river such as that in
Problem 28 is usually not a constant. Rather, an approxi-
mation to the current speed (measured in miles per hour)
could be a function such as v.(x) = 30x(1 — x),
0 = x = 1, whose values are small at the shores (in this
case, v,(0) = 0 and v,(1) = 0) and largest in the middle of
the river. Solve the DE in Problem 30 subject to y(1) = 0,
where vy = 2 mi/h and v,(x) is as given. When the swim-
mer makes it across the river, how far will he have to
walk along the beach to reach the point (0, 0)?

Raindrops Keep Falling... When a bottle of liquid
refreshment was opened recently, the following factoid
was found inside the bottle cap:

The average velocity of a falling raindrop is 7 miles/hour.

A quick search of the Internet found that meteorologist
Jeff Haby offers the additional information that an
“average” spherical raindrop has a radius of 0.04 in. and
an approximate volume of 0.000000155 ft>. Use this data
and, if need be, dig up other data and make other reason-
able assumptions to determine whether “average velocity
of ... 7 mi/h” is consistent with the models in Problems
35 and 36 in Exercises 3.1 and Problem 15 in this exer-
cise set. Also see Problem 36 in Exercises 1.3.

Time Drips By The clepsydra, or water clock, was a
device that the ancient Egyptians, Greeks, Romans, and
Chinese used to measure the passage of time by observ-
ing the change in the height of water that was permitted
to flow out of a small hole in the bottom of a container
or tank.

(a) Suppose a tank is made of glass and has the shape of
a right-circular cylinder of radius 1 ft. Assume that
h(0) = 2 ft corresponds to water filled to the top of
the tank, a hole in the bottom is circular with radius
3% in., g = 32 ft/s?, and ¢ = 0.6. Use the differential
equation in Problem 12 to find the height /(¢) of the
water.

34.

35.
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(b) For the tank in part (a), how far up from its bottom
should a mark be made on its side, as shown in
Figure 3.2.9, that corresponds to the passage of one
hour? Next determine where to place the marks
corresponding to the passage of 2 hr, 3 hr, . .., 12 hr.
Explain why these marks are not evenly spaced.

1 hour

2 hours

bk

FIGURE 3.2.9 Clepsydra in Problem 33

(a) Suppose that a glass tank has the shape of a cone with
circular cross section as shown in Figure 3.2.10. As
in part (a) of Problem 33, assume that 2(0) = 2 ft
corresponds to water filled to the top of the tank,
a hole in the bottom is circular with radius é in.,
g = 32 ft/s?, and ¢ = 0.6. Use the differential equa-
tion in Problem 12 to find the height A(¢) of the
water.

(b) Can this water clock measure 12 time intervals
of length equal to 1 hour? Explain using sound
mathematics.

FIGURE 3.2.10 Clepsydra in Problem 34

Suppose that » = f(h) defines the shape of a water clock
for which the time marks are equally spaced. Use the
differential equation in Problem 12 to find f(/#) and
sketch a typical graph of 4 as a function of 7. Assume
that the cross-sectional area 4, of the hole is constant.
[Hint: In this situation dh/dt = —a, where a > 0 is a
constant. |
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CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

3.3 MODELING WITH SYSTEMS OF FIRST-ORDER DEs

REVIEW MATERIAL

e Section 1.3

INTRODUCTION This section is similar to Section 1.3 in that we are just going to discuss cer-
tain mathematical models, but instead of a single differential equation the models will be systems of
first-order differential equations. Although some of the models will be based on topics that we
explored in the preceding two sections, we are not going to develop any general methods for solv-
ing these systems. There are reasons for this: First, we do not possess the necessary mathematical
tools for solving systems at this point. Second, some of the systems that we discuss—notably the
systems of nonlinear first-order DEs—simply cannot be solved analytically. We shall examine
solution methods for systems of /inear DEs in Chapters 4, 7, and 8.

= Linear/Nonlinear Systems We have seen that a single differential equation
can serve as a mathematical model for a single population in an environment. But if
there are, say, two interacting and perhaps competing species living in the same
environment (for example, rabbits and foxes), then a model for their populations x(7)
and y(7) might be a system of two first-order di ferential equations such as

dx

- = t

dt gl(a%)’)

J M
d_J; = g2(t’ X:J’)-

When g; and g; are linear in the variables x and y—that is, g; and g, have the forms
gtx,y) =cix oyt it and &t x,y) = ax eyt A0,

where the coefficients ¢; could depend on z—then (1) is said to be a linear system.
A system of differential equations that is not linear is said to be nonlinear.

— Radioactive Series In the discussion of radioactive decay in Sections 1.3
and 3.1 we assumed that the rate of decay was proportional to the number A(#) of
nuclei of the substance present at time #. When a substance decays by radioactivity,
it usually doesn’t just transmute in one step into a stable substance; rather, the firs
substance decays into another radioactive substance, which in turn decays into a
third substance, and so on. This process, called a radioactive decay series, con-
tinues until a stable element is reached. For example, the uranium decay series is
U-238 — Th-234 — - - - — Pb-206, where Pb-206 is a stable isotope of lead.
The half-lives of the various elements in a radioactive series can range from
billions of years (4.5 X 10° years for U-238) to a fraction of a second. Suppose a

radioactive series is described schematically by X_A Y_A—Z> Z,wherek; = —A <0
and k, = —A, < 0 are the decay constants for substances X and Y, respectively,

and Z is a stable element. Suppose, too, that x(¢), y(¢), and z(#) denote amounts of
substances X, Y, and Z, respectively, remaining at time 7. The decay of element X is
described by

dx

— = -,
dt *

whereas the rate at which the second element Y decays is the net rate
dy

E = Ax = Ay,
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since Y is gaining atoms from the decay of X and at the same time /osing atoms
because of its own decay. Since Z is a stable element, it is simply gaining atoms from
the decay of element Y-

dz
— = ).
di 2y

In other words, a model of the radioactive decay series for three elements is the linear
system of three first-order di ferential equations

dt

dy
dt

|
=
=
>
[ e}

=

@)

dz Ay
dt o

— Mixtures Consider the two tanks shown in Figure 3.3.1. Let us suppose for the
sake of discussion that tank 4 contains 50 gallons of water in which 25 pounds of salt
is dissolved. Suppose tank B contains 50 gallons of pure water. Liquid is pumped
into and out of the tanks as indicated in the figure; the mixture exchanged between
the two tanks and the liquid pumped out of tank B are assumed to be well stirred.
We wish to construct a mathematical model that describes the number of pounds x(7)
and x,(¢) of salt in tanks 4 and B, respectively, at time ¢.

pure water mixture
3 gal/min 1 gal/min

mixture mixture
4 gal/min 3 gal/min

FIGURE 3.3.1 Connected mixing tanks

By an analysis similar to that on page 24 in Section 1.3 and Example 5 of
Section 3.1 we see that the net rate of change of x(#) for tank 4 is

input rate output rate
of salt of salt
A A
dx, . . X, . X
7 (3 gal/min) - (0 Ib/gal) + (1 gal/min) - 30 Ib/gal | — (4 gal/min) - 30 1b/gal
2 1
T st T 50

Similarly, for tank B the net rate of change of x5(¢) is

e T B -1

dt 50 50 50
2 2
—gxl—gxz.
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Thus we obtain the linear system

H’xl 2 1

— = ——=xt =X

dt 25 50 °

dx, 2 2 3)
- = X1 T - X.

dt 25 25

Observe that the foregoing system is accompanied by the initial conditions x(0) = 25,
x2(0) = 0.

= A Predator-Prey Model Suppose that two different species of animals interact
within the same environment or ecosystem, and suppose further that the firs species
eats only vegetation and the second eats only the first species. In other words, one
species is a predator, and the other is a prey. For example, wolves hunt grass-eating
caribou, sharks devour little fish, and the snowy owl pursues an arctic rodent called
the lemming. For the sake of discussion, let us imagine that the predators are foxes
and the prey are rabbits.

Let x(#) and y(¢) denote the fox and rabbit populations, respectively, at time ¢.
If there were no rabbits, then one might expect that the foxes, lacking an adequate
food supply, would decline in number according to

dx

dt
When rabbits are present in the environment, however, it seems reasonable that the
number of encounters or interactions between these two species per unit time is jointly
proportional to their populations x and y—that is, proportional to the product xy. Thus
when rabbits are present, there is a supply of food, so foxes are added to the system at
arate bxy, b > 0. Adding this last rate to (4) gives a model for the fox population:

—ax, a>0. 4

dx
— = —ax + bxy. 5
7 ax + bxy 6))
On the other hand, if there were no foxes, then the rabbits would, with an added
assumption of unlimited food supply, grow at a rate that is proportional to the num-
ber of rabbits present at time ¢:

dy

— =dy, d> 0. 6

e (6)
But when foxes are present, a model for the rabbit population is (6) decreased by
cxy, ¢ > 0—that is, decreased by the rate at which the rabbits are eaten during their
encounters with the foxes:

d
zJ; =dy — cxy. @)
Equations (5) and (7) constitute a system of nonlinear differential equations
E s by = sa b iy
7 ax + bxy = x(—a + by)
, ®)
dy =dy — cxy = y(d — cx)
d[ (/\, Xy } °X),

where a, b, ¢, and d are positive constants. This famous system of equations is known
as the Lotka-Volterra predator-prey model.

Except for two constant solutions, x(¢) = 0, y(¢) = 0 and x(t) = d/c, y(t) = a /b,
the nonlinear system (8) cannot be solved in terms of elementary functions. However,
we can analyze such systems quantitatively and qualitatively. See Chapter 9,
“Numerical Solutions of Ordinary Differential Equations,” and Chapter 10, “Plane
Autonomous Systems.””

“Chapters 1015 are in the expanded version of this text, Differential Equations with Boundary-Value
Problems.
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DVNVILINNE Predator-Prey Model

Suppose
d
ﬁ = —0.16x + 0.08xy
dy
=45y - 09
i y Xy

represents a predator-prey model. Because we are dealing with populations, we
have x(7) = 0, y(¢) = 0. Figure 3.3.2, obtained with the aid of a numerical solver,
shows typical population curves of the predators and prey for this model superim-
posed on the same coordinate axes. The initial conditions used were x(0) = 4, y(0) = 4.
The curve in red represents the population x(¢) of the predators (foxes), and the blue
curve is the population y(7) of the prey (rabbits). Observe that the model seems to
predict that both populations x(#) and y(¢) are periodic in time. This makes intuitive

population

FIGURE 3.3.2 Populations of sense because as the number of prey decreases, the predator population eventually
predators (red) and prey (blue) in decreases because of a diminished food supply; but attendant to a decrease in the
Example 1 number of predators is an increase in the number of prey; this in turn gives rise to an

increased number of predators, which ultimately brings about another decrease in

the number of prey. =

= Competition Models Now suppose two different species of animals occupy
the same ecosystem, not as predator and prey but rather as competitors for the same
resources (such as food and living space) in the system. In the absence of the other,
let us assume that the rate at which each population grows is given by

dx dy

— =ax and - = ¢y, 9

dt a7 ©
respectively.

Since the two species compete, another assumption might be that each of these

rates is diminished simply by the influence, or existence, of the other population.
Thus a model for the two populations is given by the linear system

dx
— =ax — by
dt ’
(10)
dy Y — dx
dt @ a5

where a, b, ¢, and d are positive constants.

On the other hand, we might assume, as we did in (5), that each growth rate in
(9) should be reduced by a rate proportional to the number of interactions between
the two species:

dx b

— = ax — bxy

dt !

dy (11)
— = cy — dxy.

dt ’

Inspection shows that this nonlinear system is similar to the Lotka-Volterra predator-
prey model. Finally, it might be more realistic to replace the rates in (9), which
indicate that the population of each species in isolation grows exponentially, with
rates indicating that each population grows logistically (that is, over a long time the
population is bounded):

dx dy

prinE b, x? and ik byy2. (12)
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When these new rates are decreased by rates proportional to the number of interac-
tions, we obtain another nonlinear model:

dx

=ax — bx* — cxy = x(a, — bix — ¢)

(13)

— axy = y(ay — by — ¢;x),

where all coefficients are positive. The linear system (10) and the nonlinear systems
(11) and (13) are, of course, called competition models.

= Networks An electrical network having more than one loop also gives rise to
simultaneous differential equations. As shown in Figure 3.3.3, the current 7;(¢) splits
in the directions shown at point Bj, called a branch point of the network. By

00000
00000

Kirchhoff’s first la we can write

i(1) = i(1) + i5(0). (14)

We can also apply Kirchhoff’s second law to each loop. For loop 4,B1B,4,4,,
summing the voltage drops across each part of the loop gives

A4, B, G

FIGURE 3.3.3 Network whose model

is given in (17)

Similarly, for loop 4,B,C,C,B,A,A; we fin

i

E(t) = iR, + L,ﬁ + iR, (15)
di

EG) = iR, + L, 2. 16

) = iRy 2 (16)

Using (14) to eliminate #; in (15) and (16) yields two linear first-order equations for

the currents i,(¢) and i5(7):

FIGURE 3.3.4 Network whose

model is given in (18)

di, ) )
L, I + (R, + Ryi, + Rji3 = E(?)
¢

amn

C/i}
L,— +
©dt

Ryiy + Ryiy = E(2).

We leave it as an exercise (see Problem 14 in Exercises 3.3) to show that the sys-
tem of differential equations describing the currents 7;(f) and i,(7) in the network con-
taining a resistor, an inductor, and a capacitor shown in Figure 3.3.4 is

(iil .
L=+ Ri, = E()
dt
(18)
RC diy + =i =0
- Iy — 17 = U,
dt : :

EXERCISES 3.3

Answers to selected odd-numbered problems begin on page ANS-4.

Radioactive Series

1.

We have not discussed methods by which systems
of first-order differential equations can be solved.
Nevertheless, systems such as (2) can be solved with no
knowledge other than how to solve a single linear first
order equation. Find a solution of (2) subject to the
initial conditions x(0) = x¢, ¥(0) = 0, z(0) = 0.

In Problem 1 suppose that time is measured in days,
that the decay constants are k; = —0.138629 and
ky = —0.004951, and that xo = 20. Use a graphing utility
to obtain the graphs of the solutions x(¢), y(¢), and z(¥)

on the same set of coordinate axes. Use the graphs to
approximate the half-lives of substances X and Y.

. Use the graphs in Problem 2 to approximate the times

when the amounts x(f) and y(¢) are the same, the
times when the amounts x(¢) and z(7) are the same, and
the times when the amounts y(¢) and z(¢) are the same.
Why does the time that is determined when the amounts
y(t) and z(¢) are the same make intuitive sense?

. Construct a mathematical model for a radioactive series

of four elements W, X, Y, and Z, where Z is a stable
element.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



3.3 MODELING WITH SYSTEMS OF FIRST-ORDER DEs °

Mixtures

5. Consider two tanks A4 and B, with liquid being pumped in
and out at the same rates, as described by the system of
equations (3). What is the system of differential equations
if, instead of pure water, a brine solution containing
2 pounds of salt per gallon is pumped into tank A4?

6. Use the information given in Figure 3.3.5 to construct a
mathematical model for the number of pounds of salt
x1(¢), x2(¢), and x3(¢) at time ¢ in tanks 4, B, and C,

respectively.
pure water mixture mixture
4 gal/min 2 gal/min 1 gal/min

mixture
4 gal/min

mixture
S gal/min

mixture
6 gal/min

FIGURE 3.3.5 Mixing tanks in Problem 6

7. Two very large tanks 4 and B are each partially filled
with 100 gallons of brine. Initially, 100 pounds of salt
is dissolved in the solution in tank 4 and 50 pounds of
salt is dissolved in the solution in tank B. The system
is closed in that the well-stirred liquid is pumped only
between the tanks, as shown in Figure 3.3.6.

mixture
3 gal/min

mixture
2 gal/min

FIGURE 3.3.6 Mixing tanks in Problem 7

(a) Use the information given in the figure to construct
a mathematical model for the number of pounds
of salt x(f) and xx(¢) at time ¢ in tanks 4 and B,
respectively.

(b) Find a relationship between the variables x;(?)
and x,(7) that holds at time ¢ Explain why this
relationship makes intuitive sense. Use this rela-
tionship to help find the amount of salt in tank B at
t = 30 min.

8. Three large tanks contain brine, as shown in Figure 3.3.7.
Use the information in the figure to construct a mathe-
matical model for the number of pounds of salt x(?),

111

x5(?), and x5(f) at time ¢ in tanks A, B, and C, respectively.
Without solving the system, predict limiting values of
x1(?), x2(2), and x3(¢) as t — o,

pure water
4 gal/min

mixture
4 gal/min

mixture
4 gal/min

mixture
4 gal/min

FIGURE 3.3.7 Mixing tanks in Problem 8

Predator-Prey Models

9. Consider the Lotka-Volterra predator-prey model
defined b

dx
— = —0.1x + 0.02
” X Xy
dy

—=0.2y — 0.025xy,
dt y Xy
where the populations x(f) (predators) and y(¢) (prey)
are measured in thousands. Suppose x(0) = 6 and
y(0) = 6. Use a numerical solver to graph x(¢) and y(¢).
Use the graphs to approximate the time ¢ > 0 when
the two populations are first equal. Use the graphs to
approximate the period of each population.

Competition Models

10. Consider the competition model defined by

9X _ 2 — 04x — 0.3y)
— =X — V.ax — U,
dt %
dy

1 = 0.1y — 03x),
I W y x)

where the populations x(#) and y(f) are measured in
thousands and ¢ in years. Use a numerical solver to
analyze the populations over a long period of time for
each of the following cases:

@ x(0)=15, y0)=35

) xO) =1, y(0)=1

© x(0) =2, y(0)=7

(d) x(0) =45, y(0)=05

11. Consider the competition model defined by
— =x(1 — 0.1x — 0.05
7 x( x )
dy

= = (1.7 — 0.1y — 0.15x),
r »( y X)

where the populations x(f) and y(¢f) are measured in
thousands and ¢ in years. Use a numerical solver to
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analyze the populations over a long period of time for
each of the following cases:

(@ x(0)=1, y0)=1

(b) x(0) =4, y(0)=10

(©) x(0)=9, »(0)=4

(d) x(0)=5.5, y(0)=3.5

Networks

12. Show that a system of differential equations that
describes the currents i(f) and i3(¢) in the electrical
network shown in Figure 3.3.8 is

di,  dis
L2 19 R = B
di di 12 (®)
di diy, 1
S R Y
Var g T eh

FIGURE 3.3.8 Network in Problem 12

13. Determine a system of first-order differential equations
that describes the currents i,(7) and i3(7) in the electrical
network shown in Figure 3.3.9.

A 4

FIGURE 3.3.9 Network in Problem 13

14. Show that the linear system given in (18) describes
the currents i;(f) and i>(¢) in the network shown in
Figure 3.3.4. [Hint: dgq/dt = i3.]

Additional Nonlinear Models

15. SIR Model A communicable disease is spread through-
out a small community, with a fixe population of n peo-
ple, by contact between infected individuals and people
who are susceptible to the disease. Suppose that everyone
is initially susceptible to the disease and that no one leaves
the community while the epidemic is spreading. At time ¢,

CHAPTER 3 MODELING WITH FIRST-ORDER DIFFERENTIAL EQUATIONS

let s(¢), i(¢), and r(¢) denote, in turn, the number of peo-
ple in the community (measured in hundreds) who are
susceptible to the disease but not yet infected with it,
the number of people who are infected with the dis-
ease, and the number of people who have recovered
from the disease. Explain why the system of differen-
tial equations

d:

d_j = —kISl'

di . .
o = —kyi + kysi
dr

— = kyi,

a

where k) (called the infection rate) and k, (called the
removal rate) are positive constants, is a reasonable
mathematical model, commonly called a SIR model,
for the spread of the epidemic throughout the commu-
nity. Give plausible initial conditions associated with
this system of equations.

16. (a) In Problem 15, explain why it is sufficient to
analyze only

d

d_j = —kISl'

di . .
" = —ky + kysi.

(b) Suppose k; = 0.2, kp = 0.7, and n = 10. Choose
various values of i(0) =iy, 0<<ip<10. Use a
numerical solver to determine what the model pre-
dicts about the epidemic in the two cases s > k»/k;
and so =< k,/k,. In the case of an epidemic, estimate
the number of people who are eventually infected.

Project Problems

17. Concentration of a Nutrient Suppose compartments
A and B shown in Figure 3.3.10 are filled with fluids and
are separated by a permeable membrane. The figure is
a compartmental representation of the exterior and
interior of a cell. Suppose, too, that a nutrient necessary
for cell growth passes through the membrane. A model

fluid at fluid at
concentration concentration
x(?) (o)
\ 4 7
A 1 B
—_—
membrane

FIGURE 3.3.10 Nutrient flow through a membrane i
Problem 17
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18.

19.

for the concentrations x(¢) and y(¢) of the nutrient in
compartments 4 and B, respectively, at time ¢ is given
by the linear system of differential equations

dx «k
7 VA(y —x)
dy K
dl - VB(x y)a

where V4 and Vg are the volumes of the compartments,
and k > 0 is a permeability factor. Let x(0) = x¢ and
v(0) = yo denote the initial concentrations of the nutri-
ent. Solely on the basis of the equations in the system
and the assumption xo > y¢ > 0, sketch, on the same set
of coordinate axes, possible solution curves of the sys-
tem. Explain your reasoning. Discuss the behavior of
the solutions over a long period of time.

The system in Problem 17, like the system in (2), can be
solved with no advanced knowledge. Solve for x(#) and
y(t) and compare their graphs with your sketches in
Problem 17. Determine the limiting values of x(¢) and
y(t) as t — 0. Explain why the answer to the last ques-
tion makes intuitive sense.

Mixtures Solely on the basis of the physical descrip-
tion of the mixture problem on page 107 and in
Figure 3.3.1, discuss the nature of the functions x(7)
and x,(7). What is the behavior of each function over a
long period of time? Sketch possible graphs of x(¢) and
x2(?). Check your conjectures by using a numerical

CHAPTER 3 IN REVIEW ° 113

solver to obtain numerical solution curves of (3) subject
to the initial conditions x;(0) = 25, x,(0) = 0.

. Newton’s Law of Cooling/Warming As shown in

Figure 3.3.11, a small metal bar is placed inside con-
tainer 4, and container 4 then is placed within a much
larger container B. As the metal bar cools, the ambient
temperature 74(f) of the medium within container 4
changes according to Newton’s law of cooling. As
container 4 cools, the temperature of the medium in-
side container B does not change significantly and can
be considered to be a constant 7. Construct a mathe-
matical model for the temperatures 7(¢) and T4(¢),
where 7(¢) is the temperature of the metal bar inside
container 4. As in Problems 1 and 18, this model can
be solved by using prior knowledge. Find a solution of
the system subject to the initial conditions 7(0) = Ty,
T4(0) = T.

container B

container 4

metal
bar

T, (1)

Ty = constant

FIGURE 3.3.11 Container within a container in
Problem 20

CHAPTER 3 IN REVIEW

Answers to selected odd-numbered problems begin on page ANS-4.

Answer Problems 1 and 2 without referring back to the text.
Fill in the blank or answer true or false.

1.

If P(f) = Pye”'¥ gives the population in an environment
at time ¢, then a differential equation satisfied by P(?)
is

If the rate of decay of a radioactive substance is
proportional to the amount 4(¢) remaining at time ¢, then
the half-life of the substance is necessarily 7' = —(In 2)/k.
The rate of decay of the substance at time ¢ = T is one-
half the rate of decay at r = 0.

. In March 1976 the world population reached 4 billion.

At that time, a popular news magazine predicted that
with an average yearly growth rate of 1.8%, the world
population would be 8 billion in 45 years. How does this
value compare with the value predicted by the model
that assumes that the rate of increase in population is
proportional to the population present at time ¢?

4. Air containing 0.06% carbon dioxide is pumped into a

room whose volume is 8000 ft*. The air is pumped in at
a rate of 2000 ft3/min, and the circulated air is then
pumped out at the same rate. If there is an initial con-
centration of 0.2% carbon dioxide in the room, deter-
mine the subsequent amount in the room at time . What
is the concentration of carbon dioxide at 10 minutes?
What is the steady-state, or equilibrium, concentration
of carbon dioxide?

. Solve the differential equation

a _ y
dx SZ_yZ

of the tractrix. See Problem 28 in Exercises 1.3. Assume
that the initial point on the y-axis in (0, 10) and that the
length of the rope is x = 10 ft.
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6. Suppose a cell is suspended in a solution containing a

solute of constant concentration Cs. Suppose further
that the cell has constant volume V and that the area of
its permeable membrane is the constant 4. By Fick’s law the
rate of change of its mass m is directly proportional to the
area 4 and the difference C; — C(¥), where C(¢) is the con-
centration of the solute inside the cell at time # Find C(?) if
m = V- C(f) and C(0) = Cy. See Figure 3.R.1.

concentration
G

molecules of solute
- diffusing through
—<. cell membrane

FIGURE 3.R.1 Cell in Problem 6

. Suppose that as a body cools, the temperature of the
surrounding medium increases because it completely
absorbs the heat being lost by the body. Let 7(¢) and
T,(¢) be the temperatures of the body and the medium
at time ¢, respectively. If the initial temperature of the
body is 77 and the initial temperature of the medium
is T, then it can be shown in this case that Newton’s
law of cooling is dT/dt = k(T — T},), k <0, where
T, =T, + B(T) — T), B> 01is a constant.

(a) The foregoing DE is autonomous. Use the phase
portrait concept of Section 2.1 to determine the
limiting value of the temperature 7'(f) as ¢ — oo.
What is the limiting value of 7),(¢) as t — o0?

(b) Verify your answers in part (a) by actually solving
the differential equation.

(¢) Discuss a physical interpretation of your answers in
part (a).

. According to Stefan’s law of radiation the absolute
temperature 7 of a body cooling in a medium at constant
absolute temperature 7, is given by

dT
— =K(T* - T}
dt ( m)a

where k£ is a constant. Stefan’s law can be used over a
greater temperature range than Newton’s law of cooling.

(a) Solve the differential equation.

(b) Show that when T — T, is small in comparison to
T,, then Newton’s law of cooling approximates
Stefan’s law. [Hint: Think binomial series of the
right-hand side of the DE.]

. An LR-series circuit has a variable inductor with the

inductance defined by

1 _
L(t) = 10
0, t=10.

Find the current i(¢) if the resistance is 0.2 ohm, the
impressed voltage is £(f) = 4, and i(0) = 0. Graph i(¢).

10. A classical problem in the calculus of variations is to
find the shape of a curve € such that a bead, under the
influence of gravity, will slide from point 4(0, 0) to
point B(x1, y;) in the least time. See Figure 3.R.2. It can
be shown that a nonlinear differential for the shape y(x)
of the path is y[1 + (")?] = k, where k is a constant.
First solve for dx in terms of y and dy, and then use the
substitution y = k sin%f to obtain a parametric form of
the solution. The curve % turns out to be a cycloid.

A(0, 0)
X
bead
4
mg B(xp, y1)
y

FIGURE 3.R.2 Sliding bead in Problem 10

11. A model for the populations of two interacting species
of animals is

d
;); = kx(a — x)
dy

o koxy.
Solve for x and y in terms of .

12. Initially, two large tanks 4 and B each hold 100 gallons
of brine. The well-stirred liquid is pumped between the
tanks as shown in Figure 3.R.3. Use the information
given in the figure to construct a mathematical model
for the number of pounds of salt x;(¢) and x,(?) at time ¢
in tanks 4 and B, respectively.

2 Ib/gal mixture
7 gal/min 5 gal/min
& 5 S
A B
100 gal 100 gal
mixture mixture mixture
3 gal/min 1 gal/min 4 gal/min

FIGURE 3.R.3 Mixing tanks in Problem 12

When all the curves in a family G(x, y, ¢;) = 0 intersect
orthogonally all the curves in another family H(x, y, ¢;) = 0,
the families are said to be orthogonal trajectories of each
other. See Figure 3.R.4. If dy/dx = f(x, y) is the differential
equation of one family, then the differential equation for the
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orthogonal trajectories of this family is dy/dx = —1/f(x, ).
In Problems 13 and 14 find the differential equation of the
given family. Find the orthogonal trajectories of this family.
Use a graphing utility to graph both families on the same set
of coordinate axes.

G(x,y,¢1)=0

tangents

H(x,y,¢3)=0
FIGURE 3.R.4 Orthogonal trajectories

13. y=—x—1+ce* 14. y =

x+

15. Potassium-40 Decay One of the most abundant metals
found throughout the Earth’s crust and oceans is potas-
sium. Although potassium occurs naturally in the form
of three isotopes, only the isotope potassium-40 (K-40)
is radioactive. This isotope is a bit unusual in that it
decays by two different nuclear reactions. Over time,
by emitting a beta particle, a great percentage of an ini-

CHAPTER 3 IN REVIEW ° 115

argon-40 (Ar-40).” Because the rates at which the amounts
C(?) of Ca-40 and A(f) of Ar-40 increase are proportional
to the amount K(#) of potassium present, and the rate at
which potassium decreases is also proportional to K(¢) we
obtain the system of linear first-order equation

@ = MK

dt !

4

E = MK
K+ MK
dt ’

where A, and A, are positive constants of proportionality.

(a) From the foregoing system of differential equations
find K(¢) if K(0) = K. Then find C(¢) and A(¢) if
C(0) = 0and A(0) = 0.

(b) It is known that A, = 4.7526 X 107 and
A, = 0.5874 X 107'°. Find the half-life of K-40.

(¢) Use your solutions for C(¢) and A(f) to determine the
percentage of an initial amount K, of K-40 that de-
cays into Ca-40 and the percentage that decays into
Ar-40 over a very long period of time.

tial amount of K-40 decays into the stable isotope cal-
cium-40 (Ca-40), whereas by electron capture a smaller
percentage of K-40 decays into the stable isotope

" The knowledge of how K-40 decays is the basis for the potassium-
argon dating method. This method can be used to find the age of very ol

igneous rocks. Fossils can sometimes be dated indirectly by dating the
igneous rocks in the substrata in which the fossils are found.

Copyright 2012 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



Higher-Order Differential Equations

116

4.1 Preliminary Theory—Linear Equations
4.1.1 Initial-Value and Boundary-Value Problems
4.1.2 Homogeneous Equations
4.1.3 Nonhomogeneous Equations
4.2 Reduction of Order
4.3 Homogeneous Linear Equations with Constant Coefficients
4.4 Undetermined Coefficients—Superposition Approach
4.5 Undetermined Coefficients—Annihilator Approach
4.6 Variation of Parameters
4.7 Cauchy-Euler Equation
4.8 Green’s Functions
4.8.1 Initial-Value Problems
4.8.2 Boundary-Value Problems
4.9 Solving Systems of Linear DEs by Elimination
4.10 Nonlinear Differential Equations

Chapter 4 in Review

We turn now to the solution of ordinary differential equation of order two or higher.
In the first seven sections of this chapter we examine the underlying theory an
solution methods for certain kinds of linear equations. In the new, but optional,
Section 4.8 we build on the material of Section 4.6 to construct Green’s functions
for solving linear initial-value and boundary-value problems. The elimination
method of solving systems of linear equations is introduced in Section 4.9 because
this method simply uncouples a system into individual linear equations in each
dependent variable. The chapter concludes with a brief examination of nonlinear

higher-order equations in Section 4.10.
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4.1 PRELIMINARY THEORY—LINEAR EQUATIONS

REVIEW MATERIAL

e Reread the Remarks at the end of Section 1.1
e Section 2.3 (especially page 57)

INTRODUCTION In Chapter 2 we saw that we could solve a few first-order differential equa-
tions by recognizing them as separable, linear, exact, homogeneous, or perhaps Bernoulli equations.
Even though the solutions of these equations were in the form of a one-parameter family, this
family, with one exception, did not represent the general solution of the differential equation. Only
in the case of /inear first-order differential equations were we able to obtain general solutions, by
paying attention to certain continuity conditions imposed on the coefficients. Recall that a general
solution is a family of solutions defined on some interval / that contains a// solutions of the DE that
are defined on /. Because our primary goal in this chapter is to find general solutions of linear higher-
order DEs, we first need to examine some of the theory of linear equations

4.1.1 INITIAL-VALUE AND BOUNDARY-VALUE
PROBLEMS

= Initial-Value Problem In Section 1.2 we defined an initial-value problem for
a general nth-order differential equation. For a linear differential equation an
nth-order initial-value problem is

d"y dly

Solve: a,(x) W + a,_(x) o

dy
ot () a0y = gv)
dx (1)
Subject to: yxo) =yo, Y (xo)=yi,..., W D(xg) = Yn—1.

Recall that for a problem such as this one we seek a function defined on some interval
1, containing x, that satisfies the differential equation and the » initial conditions
specified at xo: y(xo) = yo, ¥ (x0) = y1, . . ., ¥ D(xg) = y,—1. We have already seen
that in the case of a second-order initial-value problem a solution curve must pass
through the point (xg, yo) and have slope y; at this point.

= Existence and Uniqueness In Section 1.2 we stated a theorem that gave
conditions under which the existence and uniqueness of a solution of a first-orde
initial-value problem were guaranteed. The theorem that follows gives sufficien
conditions for the existence of a unique solution of the problem in (1).

THEOREM 4.1.1 Existence of a Unique Solution

Let a,(x), a,—1(x), . . ., ai(x), ap(x) and g(x) be continuous on an interval / and
let a,(x) # 0 for every x in this interval. If x = x is any point in this interval,
then a solution y(x) of the initial-value problem (1) exists on the interval and is
unique.

DNV ILNZNE Unique Solution of an IVP

The initial-value problem

3y + Sy =y + 7y =0, y(1)=0, y'(1)=0, y"(1)=0
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solutions of the DE
|

N

| (b, yl)
| |
|

71— ¥

FIGURE 4.1.1 Solution curves of a
BVP that pass through two points

possesses the trivial solution y = 0. Because the third-order equation is linear with
constant coefficients, it follows that all the conditions of Theorem 4.1.1 are fulfilled

Hence y = 0 is the only solution on any interval containing x = 1. =

D VNVIJNIPE Unique Solution of an IVP

You should verify that the function y = 3¢”* + ¢ >* — 3x is a solution of the initial-
value problem

y' =4y =12x, y(0) =4, y'(0) =1

Now the differential equation is linear, the coefficients as well as g(x) = 12x are
continuous, and a;(x) = 1 # 0 on any interval / containing x = 0. We conclude from

Theorem 4.1.1 that the given function is the unique solution on /. =

The requirements in Theorem 4.1.1 that a;(x), i = 0, 1, 2, ..., n be continuous
and a,(x) # 0 for every x in / are both important. Specificall , if @,(x) = 0 for some x
in the interval, then the solution of a linear initial-value problem may not be unique
or even exist. For example, you should verify that the function y = cx? + x + 3isa
solution of the initial-value problem

X" = 2xy' +2p =6, y0) =3, y(0)=1

on the interval (—, %) for any choice of the parameter c. In other words, there is no
unique solution of the problem. Although most of the conditions of Theorem 4.1.1
are satisfied, the obvious difficulties are that a»(x) = x? is zero at x = 0 and that the
initial conditions are also imposed at x = 0.

= Boundary-Value Problem Another type of problem consists of solving a lin-
ear differential equation of order two or greater in which the dependent variable y or
its derivatives are specified at different points. A problem such as

1’y 1y

Solve: a,(x) % + a,(x) Yy ay(x)y = g(x)
dx dx

Subject to: y(a) =y, y(b) =y

is called a boundary-value problem (BVP). The prescribed values y(a) = y, and
y(b) = y are called boundary conditions. A solution of the foregoing problem is a
function satisfying the differential equation on some interval /, containing a and b,
whose graph passes through the two points (a, yo) and (b, y;). See Figure 4.1.1.

For a second-order differential equation other pairs of boundary conditions
could be

yi@ =y,  yb)=n
y(@ =y, Y=y
Vi@ =y,  y(b) =y,
where yg and y; denote arbitrary constants. These three pairs of conditions are just
special cases of the general boundary conditions
ay(a) + By'(a) = v
ay(b) + Byy'(b) = v,
The next example shows that even when the conditions of Theorem 4.1.1 are

fulfilled, a boundary-value problem may have several solutions (as suggested in
Figure 4.1.1), a unique solution, or no solution at all.
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FIGURE 4.1.2 Solution curves for
BVP in part (a) of Example 3
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DYNVIANEEN A BVP Can Have Many, One, or No Solutions

In Example 7 of Section 1.1 we saw that the two-parameter family of solutions of the
differential equation x” + 16x = 0 is

X = ¢, cos 4t + ¢, sin 4¢. 2)

(a) Suppose we now wish to determine the solution of the equation that further
satisfies the boundary conditions x(0) = 0, x(7/2) = 0. Observe that the firs
condition 0 = ¢ cos 0 + ¢; sin 0 implies that ¢; = 0, so x = ¢; sin 4¢. But when ¢ =
/2, 0 = ¢y sin 27 is satisfied for any choice of c,, since sin 27 = 0. Hence the
boundary-value problem

X'+ 16x =0, x(0) =0, x<g> —0 3)

has infinitely many solutions. Figure 4.1.2 shows the graphs of some of the
members of the one-parameter family x = ¢, sin 47 that pass through the two points
(0, 0) and (77 /2, 0).

(b) If the boundary-value problem in (3) is changed to
T
x"+ 16x =0, x(0)=0, x (g) =0, 4)

then x(0) = 0 still requires ¢; = 0 in the solution (2). But applying x(7/8) = 0 to
X = ¢ sin 4¢ demands that 0 = ¢; sin(7/2) = ¢, 1. Hence x = 0 is a solution of this
new boundary-value problem. Indeed, it can be proved that x = 0 is the only solution
of (4).

(c) Finally, if we change the problem to

X+ 16x =0, x(0)=0, x<§> =1, (5)
we find again from x(0) = 0 that ¢; = 0, but applying x(7/2) = 1tox = ¢; sin 4¢ leads

to the contradiction 1 = ¢, sin 27 = ¢; + 0 = 0. Hence the boundary-value problem (5)
has no solution. =

4.1.2 HOMOGENEOUS EQUATIONS

A linear nth-order differential equation of the form

dny dnfly
+ a,_
X" ay l(x) dx”ﬂ

d
a,(x) B b)) D ax)y = 0 ©6)

is said to be homogeneous, whereas an equation

a,(x)

d" d! d
it St e Fay =g, ()
with g(x) not identically zero, is said to be nonhomogeneous. For example,
2y" + 3y" — 5y = 0 is a homogeneous linear second-order differential equation,
whereas x3"” + 6y’ + 10y = ¢* is a nonhomogeneous linear third-order differen-
tial equation. The word homogeneous in this context does not refer to coefficient
that are homogeneous functions, as in Section 2.5.

We shall see that to solve a nonhomogeneous linear equation (7), we must firs
be able to solve the associated homogeneous equation (6).

To avoid needless repetition throughout the remainder of this text, we
shall, as a matter of course, make the following important assumptions when
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stating definitions and theorems about linear equations (1). On some common

interval 7,
Please remember . . i
these two > ¢ the coefficient functions a;(x),i = 0, 1, 2, . . ., n and g(x) are continuous;

assumptions. * a,(x) # 0 for every x in the interval.

= Differential Operators In calculus differentiation is often denoted by the cap-
ital letter D—that is, dy/dx = Dy. The symbol D is called a differential operator
because it transforms a differentiable function into another function. For example,
D(cos 4x) = —4 sin 4x and D(5x> — 6x?) = 15x> — 12x. Higher-order derivatives
can be expressed in terms of D in a natural manner:

d(d d? da"
o (d_§> = d_x); = D(Dy) = D% and, in general, dx)'j = D"y,

where y represents a sufficiently differentiable function. Polynomial expressions
involving D, such as D + 3, D> + 3D — 4, and 5x3D? — 6x2D? + 4xD + 9, are
also differential operators. In general, we define an nth-order differential opera-
tor or polynomial operator to be

L = a,(x)D" + a,_1(x)D""" + - - - + a1(x)D + ao(x). ®)

As a consequence of two basic properties of differentiation, D(cf(x)) = ¢Df(x), cis a
constant, and D{f(x) + g(x)} = Df(x) + Dg(x), the differential operator L possesses
a linearity property; that is, L operating on a linear combination of two differentiable
functions is the same as the linear combination of L operating on the individual func-
tions. In symbols this means that

Liaf(x) + Bg()} = aL(f(x)) + BL(g(X)), (€))

where o and 3 are constants. Because of (9) we say that the nth-order differential
operator L is a linear operator.

= Differential Equations Any linear differential equation can be expressed in
terms of the D notation. For example, the differential equation y” + 5y" + 6y = 5x — 3
can be written as D%y + 5Dy + 6y = 5x — 3 or (D> + 5D + 6)y = 5x — 3. Using (8),
we can write the linear nth-order differential equations (6) and (7) compactly as

L(y)y=0 and  L(y) = gx),
respectively.
= Superposition Principle In the next theorem we see that the sum, or super-

position, of two or more solutions of a homogeneous linear differential equation is
also a solution.

THEOREM 4.1.2 Superposition Principle—Homogeneous Equations

Letyy, »2, . . ., yi be solutions of the homogeneous nth-order differential equation
(6) on an interval /. Then the linear combination

Y= onx) + epax) + 0+ gnd),

where the ¢;, i = 1, 2, ..., k are arbitrary constants, is also a solution on the
interval.

PROOF We prove the case k£ = 2. Let L be the differential operator defined in
(8), and let y;(x) and y»(x) be solutions of the homogeneous equation L(y) = 0. If
we define y = c1y1(x) + c2y2(x), then by linearity of L we have

L(y) = Licyyi(x) + ()} = ¢ L(y) + e L) = ¢+ 0+ ¢, 0=0. =
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FIGURE 4.1.3  Set consisting of f; and

/> is linearly independent on (—2, %)

4.1 PRELIMINARY THEORY—LINEAR EQUATIONS ° 121

COROLLARIES TO THEOREM 4.1.2

(A) A constant multiple y = ¢;y;(x) of a solution y;(x) of a homogeneous
linear differential equation is also a solution.

(B) A homogeneous linear differential equation always possesses the trivial
solution y = 0.

DVNVILNEN  Superposition—Homogeneous DE

The functions y; = x* and y, = x? In x are both solutions of the homogeneous linear
equation x3y” — 2xy’ + 4y = 0 on the interval (0, ). By the superposition principle
the linear combination

y=cx*+ cx*Inx

is also a solution of the equation on the interval. =

The function y = e is a solution of y” — 9y’ + 14y = 0. Because the differen-
tial equation is linear and homogeneous, the constant multiple y = ce’™™ is also a
solution. For various values of ¢ we see that y = 9¢7™,y = 0,y = —V/5¢e™, .. . are all
solutions of the equation.

= Linear Dependence and Linear Independence The next two concepts
are basic to the study of linear differential equations.

DEFINITION 4.1.1 Linear Dependence/Independence

A set of functions fi(x), f2(x), . . ., fx(x) is said to be linearly dependent on an
interval [ if there exist constants ¢y, ¢a, . . . , ¢, not all zero, such that

afid) + efx) + -0+ e filx) =0

for every x in the interval. If the set of functions is not linearly dependent on
the interval, it is said to be linearly independent.

In other words, a set of functions is linearly independent on an interval / if the only
constants for which

afild) + e folx) + -0+ e fulx) =0

for every x in the intervalare ¢, = ¢, = - - - = ¢, = 0.

It is easy to understand these definitions for a set consisting of two functions
fi(x) and f>(x). If the set of functions is linearly dependent on an interval, then
there exist constants ¢; and c¢; that are not both zero such that for every x in the
interval, c¢) fi(x) + ¢ f2(x) = 0. Therefore if we assume that ¢; # 0, it follows that
f1(x) = (—c2/c1) f>(x); that is, if a set of two functions is linearly dependent, then one
function is simply a constant multiple of the other. Conversely, if fi(x) = ¢, f2(x)
for some constant ¢, then (—1) - fi(x) + ¢ f2(x) = 0 for every x in the interval.
Hence the set of functions is linearly dependent because at least one of the constants
(namely, ¢; = —1) is not zero. We conclude that a set of two functions fi(x) and f5(x)
is linearly independent when neither function is a constant multiple of the other on
the interval. For example, the set of functions fi(x) = sin 2x, f>(x) = sin x cos x is
linearly dependent on (—o%, ) because fi(x) is a constant multiple of f3(x). Recall
from the double-angle formula for the sine that sin 2x = 2 sin x cos x. On the other
hand, the set of functions fi(x) = x, £,(x) = | x| is linearly independent on (—oe, ).
Inspection of Figure 4.1.3 should convince you that neither function is a constant
multiple of the other on the interval.
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It follows from the preceding discussion that the quotient f3(x) /f1(x) is not a con-
stant on an interval on which the set f;(x), f>(x) is linearly independent. This little fact
will be used in the next section.

DN\ IMNIE Linearly Dependent Set of Functions

The set of functions f(x) = cos’x, f>(x) = sin’x, f3(x) = sec’x, fi(x) = tan’x is
linearly dependent on the interval (— /2, 7 /2) because

¢ cos’x + ¢, sin’x + ¢; sec’x + ¢, tan’x = 0

when ¢;=c¢, =1, ¢c3=—1, c4=1. We used here cos?x + sin>x = 1 and

1 + tan%x = sec’x.

A set of functions fi(x), f2(x), . . ., fu(x) is linearly dependent on an interval if
at least one function can be expressed as a linear combination of the remaining
functions.

DNV Linearly Dependent Set of Functions

The set of functions £;(x) = Vx + 5, /4(x) = Vx + 5x, (x) = x — 1, fa(x) = x%is
linearly dependent on the interval (0, %) because f; can be written as a linear combi-
nation of f}, f3, and f4. Observe that

f) =1+ £(x) + 5 fx) + 0 f4x)

for every x in the interval (0, o). =

= Solutions of Differential Equations We are primarily interested in linearly
independent functions or, more to the point, linearly independent solutions of a lin-
car differential equation. Although we could always appeal directly to Definition 4.1.1,
it turns out that the question of whether the set of n solutions yy, y,, ..., y, of a
homogeneous linear nth-order differential equation (6) is linearly independent can be
settled somewhat mechanically by using a determinant.

DEFINITION 4.1.2 Wronskian

Suppose each of the functions fi(x), f5(x), . . ., fu(x) possesses at least n — 1
derivatives. The determinant

_ : i fnoee

W(,fl7,f27 R V.fll) - 1

(n—1) n—1) . .. (n—1)
N A bA

where the primes denote derivatives, is called the Wronskian of the
functions.

THEOREM 4.1.3 Criterion for Linearly Independent Solutions

Let y1, v2,..., ¥, be n solutions of the homogeneous linear nth-order
differential equation (6) on an interval /. Then the set of solutions is linearly
independent on / if and only if W(y1, y2,..., yy) # 0 for every x in the
interval.
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It follows from Theorem 4.1.3 that when yy, y», . . . , y,, are n solutions of (6) on
an interval /, the Wronskian W(yy, y2, . . ., y,) is either identically zero or never zero
on the interval.

A set of n linearly independent solutions of a homogeneous linear nth-order
differential equation is given a special name.

DEFINITION 4.1.3 Fundamental Set of Solutions

Any setyy, y2, . . ., v, of n linearly independent solutions of the homogeneous
linear nth-order differential equation (6) on an interval / is said to be a funda-
mental set of solutions on the interval.

The basic question of whether a fundamental set of solutions exists for a linear
equation is answered in the next theorem.

THEOREM 4.1.4 Existence of a Fundamental Set

There exists a fundamental set of solutions for the homogeneous linear nth-order
differential equation (6) on an interval /.

Analogous to the fact that any vector in three dimensions can be expressed as a
linear combination of the linearly independent vectors i, j, kK, any solution of an nth-
order homogeneous linear differential equation on an interval / can be expressed as a
linear combination of » linearly independent solutions on /. In other words, 7 linearly
independent solutions yy, ya, ..., ¥, are the basic building blocks for the general
solution of the equation.

THEOREM 4.1.5 General Solution— Homogeneous Equations

Letyy,vo, . . ., y, be a fundamental set of solutions of the homogeneous linear nth-
order differential equation (6) on an interval /. Then the general solution of the
equation on the interval is

Y= o) T opyx) + -+ o),

where ¢;, i = 1, 2, ..., n are arbitrary constants.

Theorem 4.1.5 states that if Y(x) is any solution of (6) on the interval, then con-
stants Cy, Cy, . . ., C, can always be found so that

Y(x) = Ciyi(x) + Coyr(x) + -+ - + C,py(0).

We will prove the case when n = 2.

PROOF Let Y be a solution and let y; and y, be linearly independent solutions of
ay" + a1y’ + agy = 0 on an interval /. Suppose that x = ¢ is a point in / for which
W(y1(1), y2(£)) # 0. Suppose also that Y(¢) = ky and Y'(¢) = ky. If we now examine
the equations

Cn@) + Cot) = ky
Ci(@) + Coya(t) = ky,
it follows that we can determine C; and C; uniquely, provided that the determinant of
the coefficients satisfi
(@) ya0)
yi(n ()
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But this determinant is simply the Wronskian evaluated at x = ¢, and by assumption,
W # 0. If we define G(x) = Cyyi(x) + Coya(x), we observe that G(x) satisfies the
differential equation since it is a superposition of two known solutions; G(x) satisfie
the initial conditions

GO = Ciyn() + Oy =k and  G'()) = Ciyi() + Coya(d) = k3

and Y(x) satisfies the same linear equation and the same initial conditions.
Because the solution of this linear initial-value problem is unique (Theorem 4.1.1),
we have Y(x) = G(x) or Y(x) = Ciyi1(x) + Coya(x). =

DYNVILNA General Solution of a Homogeneous DE

The functions y; = e>* and y, = e~ are both solutions of the homogeneous linear
equation y” — 9y = 0 on the interval (—, o). By inspection the solutions are lin-
early independent on the x-axis. This fact can be corroborated by observing that the
Wronskian

e3x e~ 3x

W(eS)c’ eih) = 3e3x _3673)(

=—6+#0

for every x. We conclude that y; and y, form a fundamental set of solutions, and
consequently, y = ¢;e* + c,e ¥ is the general solution of the equation on the
interval.

DVWIHANIE A Solution Obtained from a General Solution

—3x

The function y = 4sinh 3x — 5¢™>* is a solution of the differential equation in
Example 7. (Verify this.) In view of Theorem 4.1.5 we must be able to obtain this
solution from the general solution y = c1e* + c,e”*. Observe that if we choose
c; =2and c, = —7, then y = 2e3* — 7e™3* can be rewritten as

3x _ ,—3x
y =2&% — 2 — 5¢ ¥ = 4<—e 2e > — Se73x,

X

The last expression is recognized as y = 4 sinh 3x — 5¢ .

DYNVILNR B General Solution of a Homogeneous DE

3x

The functions y; = e*, y, = €%, and y; = e
y" —6y" + 11y" — 6y = 0. Since

satisfy the third-order equation

& er e3x
W(e*, e, &) = |eF 2e* 33| = 2e # 0
e 4e¥ 9

for every real value of x, the functions yy, y,, and y; form a fundamental set of solu-
tions on (—, ). We conclude that y = ¢ e + c,¢”* + c3¢°" is the general solution

of the differential equation on the interval. =

4.1.3 NONHOMOGENEOUS EQUATIONS

Any function y,, free of arbitrary parameters, that satisfies (7) is said to be a particular
solution or particular integral of the equation. For example, it is a straightforward
task to show that the constant function y, =3 is a particular solution of the
nonhomogeneous equation y” + 9y = 27.
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Now if y1, 32, . . ., yx are solutions of (6) on an interval / and y, is any particular
solution of (7) on /, then the linear combination

y=cnx) Fopx) + s+ o) + Y (10)

is also a solution of the nonhomogeneous equation (7). If you think about it, this makes
sense, because the linear combination c;yi(x) + coya(x) + -+ -+ cxyi(x) is trans-
formed into 0 by the operator L = a,D" + ap D" '+ -+ a D+ ay, whereas Vp
is transformed into g(x). If we use £ = n linearly independent solutions of the nth-order
equation (6), then the expression in (10) becomes the general solution of (7).

THEOREM 4.1.6 General Solution—Nonhomogeneous Equations

Let y, be any particular solution of the nonhomogeneous linear nth-order differen-
tial equation (7) on an interval 7, and let yy, y», . . ., y, be a fundamental set of so-
lutions of the associated homogeneous differential equation (6) on /. Then the
general solution of the equation on the interval is

y =)+ oy) o+ e (x) oy,

where the ¢;, i = 1, 2, . . ., n are arbitrary constants.

PROOF Let L be the differential operator defined in (8) and let Y(x) and y,(x)
be particular solutions of the nonhomogeneous equation L(y) = g(x). If we defin
u(x) = Y(x) — yp(x), then by linearity of L we have

L) = L{Y(x) = yp(0)} = L(Y(x)) = L(yp(x)) = glx) — glx) = 0.

This shows that u(x) is a solution of the homogeneous equation L(y) = 0. Hence by
Theorem 4.1.5, u(x) = ¢, y,(x) + c,»(x) + - - - + ¢,y,(x), and so

Y(x) = y,(0) = cy1(x) + coa(x) + - 0 F ep(x)
or Y(x) = cpi) + epax) + -0 ep(x) + ).

= Complementary Function We seec in Theorem 4.1.6 that the general solu-
tion of a nonhomogeneous linear equation consists of the sum of two functions:

Y =) + opp) + s+ ep(x) 00 = ylx) F y,H).

The linear combination y.(x) = ¢ y,(x) + c,0(x) + -+ + ¢,y,(x), which is the
general solution of (6), is called the complementary function for equation (7). In
other words, to solve a nonhomogeneous linear differential equation, we first solve
the associated homogeneous equation and then find any particular solution of the
nonhomogeneous equation. The general solution of the nonhomogeneous equation
is then

v = complementary function + any particular solution
= Ve + )"’/1-

DN\ IZNZMEIN General Solution of a Nonhomogeneous DE

By substitution the function y, = —% — %x is readily shown to be a particular solu-

tion of the nonhomogeneous equation

y" = 6y" + 11y" — 6y = 3x. (11)
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To write the general solution of (11), we must also be able to solve the associated
homogenecous equation

Yy —=6y" + 11y’ — 6y = 0.
But in Example 9 we saw that the general solution of this latter equation on the in-

terval (—o, ) was y. = cje* + c2e** + c3e**. Hence the general solution of (11)
on the interval is

y=y.ty, = e+ et e — — — —x =

= Another Superposition Principle The last theorem of this discussion will
be useful in Section 4.4 when we consider a method for finding particular solutions
of nonhomogeneous equations.

THEOREM 4.1.7 Superposition Principle—Nonhomogeneous Equations

Lety,, ¥, ...V, be k particular solutions of the nonhomogeneous linear nth-
order differential equation (7) on an interval / corresponding, in turn, to k dis-
tinct functions g1, g2, . . . , g That is, suppose y,, denotes a particular solution
of the corresponding differential equation

a,p" + @, YD+ @)y + )y = g, (12)
wherei=1,2,...,k Then
Vo = Vp(X) F 3,0 + 0+ y,(0) 13)
is a particular solution of
a,(W" + a, (YD A+ @)y + ag(x)y
=gi(¥) + &) + - -+ gix). (14)

PROOF We prove the case k£ = 2. Let L be the differential operator defined in (8)
and let y, (x) and y, (x) be particular solutions of the nonhomogeneous equations
L(y) = gi(x) and L(y) = g2(x), respectively. If we define y, = y, (x) + y,(x), we
want to show that y, is a particular solution of L(y) = gi(x) + g2(x). The result
follows again by the linearity of the operator L:

L(y,) = L{y,(0) + 3,0} = L(3,,(0) + L(3,,(x)) = 1(x) + ().

DN IZNZNRE Superposition—Nonhomogeneous DE

You should verify that

v, = —4x? isaparticular solution of y” — 3y’ + 4y = —16x> + 24x — 8,
V,, = e is a particular solution of y” — 3y" + 4y = 2%,
Vp, = x€* is a particular solution of y"” — 3y’ + 4y = 2xe* — €.
It follows from (13) of Theorem 4.1.7 that the superposition ofy, , y,,, and y,,,
Y=y, Ty, ty, = —4x7 + & + xe,

is a solution of

y' =3y + 4y = —16x2 + 24x — 8 + 2> + 2xe* — €.

g1(x) 27(x) g3(x)
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— Note Ifthey, are particular solutions of (12) fori = 1,2, . . ., k, then the linear
combination

Vp = Cp, TGy, T G

where the ¢; are constants, is also a particular solution of (14) when the right-hand
member of the equation is the linear combination

agi(x) + agX) + -+ ggx).
Before we actually start solving homogeneous and nonhomogeneous linear

differential equations, we need one additional bit of theory, which is presented in the
next section.

REMARKS

This remark is a continuation of the brief discussion of dynamical systems
given at the end of Section 1.3.

A dynamical system whose rule or mathematical model is a linear nth-order
differential equation

a,(Oy" + a, ()" + -+ a0y + al)y = g(0)

is said to be an nth-order linear system. The » time-dependent functions y(7),
Y'(1), . ..,y I(¢) are the state variables of the system. Recall that their val-
ues at some time ¢ give the state of the system. The function g is variously
called the input function, forcing function, or excitation function. A solu-
tion y(7) of the differential equation is said to be the output or response of the
system. Under the conditions stated in Theorem 4.1.1, the output or response
(?) is uniquely determined by the input and the state of the system prescribed
at a time #p—that is, by the initial conditions y(ty), ' (to), . . . , ¥~ D(to).

For a dynamical system to be a linear system, it is necessary that the super-
position principle (Theorem 4.1.7) holds in the system; that is, the response of
the system to a superposition of inputs is a superposition of outputs. We have
already examined some simple linear systems in Section 3.1 (linear first-orde
equations); in Section 5.1 we examine linear systems in which the mathe-
matical models are second-order differential equations.

EX E R C | S E S 4 . 1 Answers to selected odd-numbered problems begin on page ANS-4.

4.1.1 INITIAL-VALUE AND BOUNDARY-VALUE 5. Given that y = ¢| + c,x? is a two-parameter family of

PROBLEMS solutions of xy” —3’ = 0 on the interval (—c, ),

show that constants ¢; and ¢, cannot be found so that a

In Problems 1—4 the given family of functions is the general member of the family satisfies the initial conditions

solution of the differential equation on the indicated interval. y(0) = 0, y'(0) = 1. Explain why this does not violate
Find a member of the family that is a solution of the initial- Theorem 4.1.1.

alue problem.
vaep 6. Find two members of the family of solutions in

1. y = cie" + e, (—, ©); Problem 5 that satisfy the initial conditions y(0) = 0,
y'=y=0, y0)=0, »(0)=1 »'(0) = 0.

2. y= c1e® + e, (—o0, ®); 7. Given that x(f) = ¢; cos wt + ¢; sin wt is the general
Y =3y —4y=0, y0)=1, y0)=2 solution of x” + w’x = 0 on the interval (—, «),

3. y=cix + ex Inx, (0, %) show that a solution satisfying the initial conditions

R =y =0,y =3, y()=-1 X(0) = 3. (0) = x, s given by

4. y =c; t+ cpcosx + c3sinx, (—, ©);

X1 .
V4 =0, wm) =0, y(m) =2 y(w)=—1 x(t) = x, cos wt wsmwt
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8. Use the general solution of x” + w?x = 0 given in
Problem 7 to show that a solution satisfying the initial
conditions x(zo) = x¢, x'(z) = x is the solution given in
Problem 7 shifted by an amount #:

Xy .
x(f) = xocos (t — £y) + = sin w(t — ).
w

In Problems 9 and 10 find an interval centered about x = 0 for
which the given initial-value problem has a unique solution.

9. (x— 2" +3y=x, y(0)=0, y(©0) =1
10. y" + (tanx)y =¢*, y(0)=1, y'(0)=0

11. (a) Use the family in Problem 1 to find a solution of
y" — y = 0 that satisfies the boundary conditions
y(0)=0,y(1) = 1.

(b) The DE in part (a) has the alternative general solu-
tion y = c¢3 cosh x + ¢4 sinh x on (—%, o). Use this
family to find a solution that satisfies the boundary
conditions in part (a).

(c) Show that the solutions in parts (a) and (b) are
equivalent

12. Use the family in Problem 5 to find a solution of
xy" — y" = 0 that satisfies the boundary conditions

y(0) =1,y'(1) = 6.

In Problems 13 and 14 the given two-parameter family is a
solution of the indicated differential equation on the interval
(—o°, ®). Determine whether a member of the family can be
found that satisfies the boundary conditions

13. y =crefcosx + ce*sinx; y' =2y +2y=0
@ »0)=1, y(m)=0
®) y(0) =1, ym)=-1
(© ¥0)=1, ¥(mw/2)=1
(@) y(0) =0, y(m)=0.
14. y =cx? + eox* +3; x%" — Sxy’ + 8y =24
@ y(—1)=0, y(1)=4
(b) »0)=1, y(1)=2
(¢) y(0)=3, y(1)=0
@ y(1)=3, »2)=15

4.1.2 HOMOGENEOUS EQUATIONS

In Problems 15—22 determine whether the given set of func-
tions is linearly independent on the interval (—oo, o).

15. filx) =x, folx) =x% fi(x) = 4x — 3x?
16. fi(x) =0, folx) =x, f(x)=¢€"

17. filx) =5, fo(x) = cos’x, f3(x) = sin’x

18. fi(x) = cos2x, fr(x) =1, fi(x) = cos’x
19. fix)=x, fHL(x)=x—1, fx)=x+3
20. fi(x) =2+x, falx) =2+ |x]|

CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

21, i) =1+x, ) =x fAx)=x?

22. filx) = €%, falx) =e ¥, fi(x) =sinhx

In Problems 23-30 verify that the given functions form a
fundamental set of solutions of the differential equation on
the indicated interval. Form the general solution.

23. "=y — 12y =0; e ¥, e, (—, x)

24. y" — 4y = 0; cosh 2x, sinh 2x, (—0o°, ©)

25. y" = 2y" + 5y =0; e*cos2x, e’ sin2x, (—», ®)

26. 4" — 4y +y=0; e xe’?, (—o%,x)

27. x2y" —6xy’ + 12y = 0; x3, x%, (0, )

28. x3" +xy' +y=0; cos(Inx), sin(In x), (0, )

29. x*y" + 6x%y" + 4xy' —4y=0; x,x % x ?Inx, (0,%)

30. y(4) +y"=0; 1,x,cosux,sinx, (—%, ®)

4.1.3 NONHOMOGENEOUS EQUATIONS

In Problems 31—34 verify that the given two-parameter fam-
ily of functions is the general solution of the nonhomoge-
neous differential equation on the indicated interval.

31. y" =Ty + 10y = 24e%;
y= c1e®* + cre>* + 6e*, (—, )

32. y" +y =secx;
Yy =rcjcosx + ¢;sinx + xsinx + (cos x) In(cos x),

(=m/2,m/2)

33. y' — 4y + 4y = 2% + 4x — 12;
y = c1e®* + cpxe® + x%* + x — 2, (—», ®)

34. 2x%" +5xy' +y=x*—x;
y=cx 2+ ox !+ La? — 1x, (0, %)
35. (a) Verify thaty, = 3e**andy, = x* + 3x are, respec-
tively, particular solutions of
y' =6y + 5y = —9¢*
and y" — 6y + 5y =5x>+ 3x — 16.
(b) Use part (a) to find particular solutions o
y' =6y + 5y =5x>+ 3x — 16 — 9¢**
and y" — 6y + 5y = —10x% — 6x + 32 + &**.
36. (a) By inspection find a particular solution of
y" + 2y = 10.
(b) By inspection find a particular solution of
v+ 2y = —4x.

(¢) Find a particular solution of y” + 2y = —4x + 10.
(d) Find a particular solution of y” + 2y = 8x + 5.
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Discussion Problems

37. Let n=1, 2, 3,... . Discuss how the observations
D"x"~!' = 0and D"x" = n! can be used to find the gen-
eral solutions of the given differential equations.
@y'=0  ®y=0 (©y=0
@y =2 (@y=6 &y V=24

4.2 REDUCTION OF ORDER ° 129

(e) By the superposition principle, Theorem 4.1.2,
both linear combinations y = c1y; + ¢y, and
Y = 1Y + Y, are solutions of the differential
equation. Discuss whether one, both, or neither of
the linear combinations is a general solution of the
differential equation on the interval (—o, ©).

40. TIs the set of functions f;(x) = e**2, fo(x) = &3 lin-
38. Suppose that y; = e* and y, = " are two solutions of early dependent or linearly independent on (—oo, ©0)?
a homogeneous linear differential equation. Explain Discuss.
why y3 = cosh x and y4 = sinh x are also solutions of ) )
the equation. 41. Suppose y1, Va2, . . . , Vi are k linearly independent solu-
tions on (—%, «) of a homogeneous linear nth-order
39. (a) Verify that y; =x* and y» = |x]’ are linearly differential equation with constant coefficients. By
independent solutions of the differential equation Theorem 4.1.2 it follows that y,; = 0 is also a solution
x%y" = 4xy’ + 6y = 0 on the interval (—2, =). of the differential equation. Is the set of solutions
(b) Show that W(yy, y,) = 0 for every real number x. V1, V2, - -+ » Vi» Vi+1 linearly dependent or linearly inde-
Does this result violate Theorem 4.1.3? Explain. pendent on (—, %)? Discuss.
(¢) Verify that ¥, = x* and ¥, = x? are also linearly 42. Suppose that yy, y,, . . ., y are k nontrivial solutions of

independent solutions of the differential equation
in part (a) on the interval (—o, o).

(d) Find a solution of the differential equation satisfy-
ing y(0) = 0, y"(0) = 0.

4.2 REDUCTION OF ORDER

REVIEW MATERIAL

e Section 2.5 (using a substitution)
e Section 4.1

a homogeneous linear nth-order differential equation
with constant coefficients and that k = n + 1. Is the set
of solutions yy, v, . . ., y linearly dependent or linearly
independent on (—o, ©)? Discuss.

INTRODUCTION In the preceding section we saw that the general solution of a homogeneous

linear second-order differential equation

a(x)y" + a,(x)y" + a)(x)y =0 (M

is a linear combination y = ¢y + ¢,),, where y; and y, are solutions that constitute a linearly inde-
pendent set on some interval /. Beginning in the next section, we examine a method for determining
these solutions when the coefficients of the differential equation in (1) are constants. This method,
which is a straightforward exercise in algebra, breaks down in a few cases and yields only a single
solution y; of the DE. It turns out that we can construct a second solution y, of a homogeneous equa-
tion (1) (even when the coefficients in (1) are variable) provided that we know a nontrivial solution
v of the DE. The basic idea described in this section is that equation (1) can be reduced to a linear
first-o der DE by means of a substitution involving the known solution y;. A second solution y, of
(1) is apparent after this first-order di ferential equation is solved.

=— Reduction of Order
that y; is defined on an interval /. We seek a second solution y; so that the set consist-
ing of y; and y; is linearly independent on /. Recall from Section 4.1 that if y; and
y, are linearly independent, then their quotient y,/y; is nonconstant on /—that is,
2(x) /y1(x) = u(x) or yo(x) = u(x)yi(x). The function u(x) can be found by substituting
1o(x) = u(x)y(x) into the given differential equation. This method is called reduction
of order because we must solve a linear first-order di ferential equation to find u.

Suppose that y; denotes a nontrivial solution of (1) and
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DUNVIJNNE A Second Solution by Reduction of Order

Given that y; = e is a solution of y” — y = 0 on the interval (—o°, ), use reduction
of order to find a second solution y;.

SOLUTION Ify = u(x)yi(x) = u(x)e", then the Product Rule gives
Vv =ue*+eu', y'=ue +2eu + eu’,
and so y'—y=eW" +2u")=0.

Since e* # 0, the last equation requires u” + 2u’ = 0. If we make the substitution
w = u’, this linear second-order equation in « becomes w’' + 2w = 0, which is a
linear first-order equation in w. Using the integrating factor e>*, we can write

o [e**w] = 0. After integrating, we get w = cje” > or u' = cje”?*. Integrating
X
again then yields u = —% ce” ¥ + ¢,. Thus
¢
y = u(x)e* = —Ee Y+ et 2)
By picking ¢; = 0 and ¢; = —2, we obtain the desired second solution, y, = ¢ .

Because W(e*, e ™) # 0 for every x, the solutions are linearly independent on

(_oo’ OO)' =

Since we have shown that y; = ¢* and y, = ¢ * are linearly independent solu-
tions of a linear second-order equation, the expression in (2) is actually the general
solution of y” — y = 0 on (—%, ),

— General Case Suppose we divide by a,(x) to put equation (1) in the standard
form

y'+ Py + Oy =0, 3)

where P(x) and Q(x) are continuous on some interval /. Let us suppose further that
1(x) is a known solution of (3) on 7 and that y;(x) # 0 for every x in the interval. If
we define y = u(x)y;(x), it follows that

Y o=wi oy, Y= uyl + 29’ + oy

y'+ Py + Qy=uly! + Pyl + Oy )]+ yu” + 2y + Pypu’ = 0.
%(—)

Z€ro
This implies that we must have
yu” + @yy + Pypu' =0 or  yw' + 2y + Pygw =0, “4)

where we have let w = u’. Observe that the last equation in (4) is both linear and
separable. Separating variables and integrating, we obtain

d !
LY+ pax=0
w b4
In|wy}| = —dex +c or  wyl=ce P,

We solve the last equation for w, use w = u’, and integrate again:

—[Pdx

R

e

u=c dx + c,.
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By choosing ¢; = 1 and ¢; = 0, we find from y = u(x)y(x) that a second solution of
equation (3) is
()ff[’(.\‘) dx
Y2 =) | 5 dx ®)
yix)
It makes a good review of differentiation to verify that the function y,(x) defined in

(5) satisfies equation (3) and that y; and y, are linearly independent on any interval
on which y;(x) is not zero.

DN\ IZNIPE A Second Solution by Formula (5)

2

The function y; = x? is a solution of x?y” — 3x)’ + 4y = 0. Find the general solu-
tion of the differential equation on the interval (0, o).

SOLUTION From the standard form of the equation,

”n 3I 4
V- oy 5y =0,
X X

e}fdx/x
we find from (5 »y =X T dx = e =
X
dx
=x?| —=x*Inux
X

The general solution on the interval (0, o) is given by y = c1y; + c2)»; that is,

y=cix* + cox? In x. =

REMARKS

(i) The derivation and use of formula (5) have been illustrated here because this
formula appears again in the next section and in Sections 4.7 and 6.3. We use (5)
simply to save time in obtaining a desired result. Your instructor will tell you
whether you should memorize (5) or whether you should know the first princi-
ples of reduction of order.

(if) Reduction of order can be used to find the general solution of a nonhomo-
geneous equation ay(x)y" + a1(x)y" + ao(x)y = g(x) whenever a solution y; of
the associated homogeneous equation is known. See Problems 17—20 in
Exercises 4.2.

EXERCISES 4.2

Answers to selected odd-numbered problems begin on page ANS-5.

In Problems 1-16 the indicated function y;(x) is a solution 7. 9" — 12y +4y=0; y; =¥/

of the given differential equation. Use reduction of order or
formula (5), as instructed, to find a second solution y;(x).

1

2
3
4.
5
6

LY =4 Ay =0; y =
V' 2+ y=0; y=xe”
. y"+ 16y =10; y; = cosdx
y"+9y=0; y; =sin3x
.y"—y=0; y =coshx
LY =25y =0; y=e*

X

X

8. 6" +y —y=0; y=e"
9. x%y" — 7xy’ + 16y =0; y; =x*
10. x*y" +2xy' — 6y =0; y; =x>
1. xy" +y" =0; y;=Inx
12. 4x%" +y=0; y;=x"7Inx
13. x%" —xy' +2y=0; y; = xsin(Inx)
14. x*y" —3xy" + 5y =0; y; = x> cos(Inx)
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15. (1 —2x—x?)y"+2(0 +x)y —2y=0; y;=x+1
16. (1 —x?)y" +2xy' =0; y, =1

In Problems 17-20 the indicated function y,(x) is a solution
of the associated homogeneous equation. Use the method
of reduction of order to find a second solution y,(x) of the
homogeneous equation and a particular solution of the given
nonhomogeneous equation.

17. y// _ 4y — 2, = e—2x

18. y"+y' =1, y1=1
19. y" — 3y + 2y =53 y; =eF
20. y' =4 +3y=x; y;=¢e"

Discussion Problems

21. (a) Give a convincing demonstration that the second-
order equation ay” + by’ + ¢y = 0, a, b, and ¢ con-
stants, always possesses at least one solution of the
form y, = €™*, m a constant.

(b) Explain why the differential equation in part (a)
must then have a second solution either of the form

CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

y, = ™" or of the form y, = xe™*, m; and m,
constants.

(¢) Reexamine Problems 1-8. Can you explain why the
statements in parts (a) and (b) above are not
contradicted by the answers to Problems 3—5?

22. Verify that yi(x) = x is a solution of xy” — xy" + y = 0.
Use reduction of order to find a second solution y,(x) in
the form of an infinite series. Conjecture an interval of
definition for y,(x).

Computer Lab Assignments
23. (a) Verify that y (x) = e is a solution of
xy" — (x + 10)y" + 10y = 0.
(b) Use (5) to find a second solution y,(x). Use a CAS to

carry out the required integration.

(¢) Explain, using Corollary (A) of Theorem 4.1.2, why
the second solution can be written compactly as

10

1
nw =3

n=0 "t

4.3 HOMOGENEOUS LINEAR EQUATIONS
WITH CONSTANT COEFFICIENTS

REVIEW MATERIAL

e Review Problems 27-30 in Exercises 1.1 and Theorem 4.1.5
e Review the algebra of solving polynomial equations (see the Student Resource Manual)

INTRODUCTION As a means of motivating the discussion in this section, let us return to first
order differential equations—more specificall , to homogeneous linear equations ay’ + by = 0,
where the coefficients @ # 0 and b are constants. This type of equation can be solved either by
separation of variables or with the aid of an integrating factor, but there is another solution method,
one that uses only algebra. Before illustrating this alternative method, we make one observation:
Solving ay’ + by = 0 for y' yields y’ = ky, where k is a constant. This observation reveals the
nature of the unknown solution y; the only nontrivial elementary function whose derivative is a
constant multiple of itself is an exponential function ™. Now the new solution method: If we substi-
tute y = ™ and y’ = me™* into ay’ + by = 0, we get

ame™ + be™ = 0

or e" (am + b) = 0.

Since e”* is never zero for real values of x, the last equation is satisfied only when m is a solution or
root of the first-degree polynomial equation am + b = 0. For this single value of m, y = ¢ is a
solution of the DE. To illustrate, consider the constant-coefficient equation 2y’ + 5y = 0. It is not
necessary to go through the differentiation and substitution of y = e~ into the DE; we merely have

to form the equation 2m + 5 = 0 and solve it for m. From m = —% we conclude thaty = e
solution of 2y" + 5y = 0, and its general solution on the interval (—o, ©) is y = c,e

—5x/2 is a
—5x/2

In this section we will see that the foregoing procedure can produce exponential solutions for

homogeneous linear higher-order DEs,

a " + a, YD+ @y +ay' +agy =0, (1)

where the coefficients a;, i = 0, 1, . . ., n are real constants and a,, # 0.
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= Auxiliary Equation We begin by considering the special case of the second-
order equation

ay" + by +cy =0, )

where a, b, and ¢ are constants. If we try to find a solution of the form y = ¢, then

after substitution of y’ = me” and y" = m?e™~, equation (2) becomes

am’e”™ + bme™ + ce™ =0 or e (am* + bm + ¢) = 0.

As in the introduction we argue that because ¢”* # 0 for all x, it is apparent that the
only way y = e"* can satisfy the differential equation (2) is when m is chosen as a
root of the quadratic equation

am®> + bm + ¢ = 0. 3)

This last equation is called the auxiliary equation of the differential equa-
tion (2). Since the two roots of (3) are m; = (—b + Vb?> — 4ac)/2a and
m, = (=b — Vb* — 4ac)/2a, there will be three forms of the general solution of
(2) corresponding to the three cases:

+ m; and m; real and distinct (b*> — 4ac > 0),
+ m and m, real and equal (b*> — 4ac = 0), and
+ m and m;, conjugate complex numbers (b> — 4ac < 0).

We discuss each of these cases in turn.

=— Case |: Distinct Real Roots Under the assumption that the auxiliary equation
(3) has two unequal real roots m; and m,, we find two solutions, y; = e™*andy, = e"*.
We see that these functions are linearly independent on (—2, ) and hence form a fun-
damental set. It follows that the general solution of (2) on this interval is

y = Cleln‘,\‘ + 6'2(3”%\‘. (4)

= Case ll: Repeated Real Roots When m; = m;, we necessarily obtain only
one exponential solution, y, = ™. From the quadratic formula we find that
m = —b/2a since the only way to have m; = m is to have b* — 4ac = 0. Tt follows
from (5) in Section 4.2 that a second solution of the equation is

e2mlx
Yy =" [ 5—dx = " | dx = xe™. 5
e 1

In (5) we have used the fact that —b/a = 2m;. The general solution is then
y = ce™ + coxe™, (6)
= Case llI: Conjugate Complex Roots Ifm, and m; are complex, then we can

write m; = a + i and my = a — iB, where a and 8> 0 are real and i> = —1.
Formally, there is no difference between this case and Case I, and hence

Y = CyeletiBr 4 Cyelaipx,

However, in practice we prefer to work with real functions instead of complex
exponentials. To this end we use Euler’s formula:

e = cos 0 + isin 6,
where 6 is any real number.” It follows from this formula that

eP* = cos Bx + isin Bx and e ¥ = cos Bx — isin Bx, (7)

©n

o . . L X
*A formal derivation of Euler’s formula can be obtained from the Maclaurin series e* = >, - by
n=0 n.
substituting x = 76, using i> = —1,i> = —i, . . ., and then separating the series into real and imaginary

parts. The plausibility thus established, we can adopt cos 6 + i sin 6 as the definitio of e™.
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FIGURE 4.3.1

in Example 2

Solution curve of IVP

where we have used cos(—Sx) = cos Bx and sin(—Bx) = —sin Bx. Note that by firs
adding and then subtracting the two equations in (7), we obtain, respectively,

ein + e_in = 2 cos B_x and ein — e_in = 2isin B.X.

Since y = C1e@TP¥ + Crel@ P i5 a solution of (2) for any choice of the constants C,
and C,, the choices C; = C; = 1 and C; = 1, C, = —1 give, in turn, two solutions:

P, = AP 4 @i and ) = g@tiBI — glaiB)
But ¥ = e (P + e7'FY) = 2¢* cos Bx

e (e'Px — e 'Bxy = 2je™ sin Bx.

and V)

Hence from Corollary (A) of Theorem 4.1.2 the last two results show that e** cos Bx
and e™ sin Bx are real solutions of (2). Moreover, these solutions form a fundamen-
tal set on (—, »). Consequently, the general solution is

y = c;e* cos Bx + ce™ sin Bx = e™(c; cos Bx + ¢, sin Bx). ®)

DVNWYINANINE Second-Order DEs

Solve the following differential equations.

(@ 2" —5"—-3y=0 (b) y"—10y" + 25y =0 © V' +4 ' +7y=0

SOLUTION We give the auxiliary equations, the roots, and the corresponding gen-
eral solutions.

(@ 2m*>—5Sm—3=QCQm+ )(m—3)=0, m = —2,m =3

From (4), v = cie 7 + cre™.

() m> = 10m +25=(m —5>=0, m=my=>5

From (6), v = cje™ + cyxe™.

© m+dm+7=0m=—-2+\3 m=-2—\3
From (8) withae = =2, 8 = \/g, y=e 2"(01 cos V3x + ¢, sin \/gv)

DVN\YIHANIPE An Initial-Value Problem

Solve 4y" + 4y’ + 17y = 0, y(0) = —1,y'(0) = 2.

SOLUTION By the quadratic formula we find that the roots of the auxiliary

equation 4m* + 4m + 17 =0 are m; = —3 + 2iand m, = —3 — 2i. Thus from
(8) we have y = e ¥?(c; cos 2x + ¢, sin 2x). Applying the condition y(0) = —1,
we see from e%cicos0+ cysin0)=—1 that ¢ = —1. Differentiating

y = e ¥*(—cos 2x + ¢, sin 2x) and then using y'(0) = 2 gives 2¢, + % =2o0rc = %
Hence the solution of the IVPis y = ¢ */?(—cos 2x + % sin 2x). In Figure 4.3.1 we see

that the solution is oscillatory, but y — 0 as x — oc. =

= Two Equations Worth Knowing The two differential equations

'+ kEy=0 and V' =Ky =0,
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where k is real, are important in applied mathematics. For y” + k?y = 0 the auxiliary
equation m? + k* = 0 has imaginary roots m; = ki and m, = —ki. With « = 0 and
B = k in (8) the general solution of the DE is seen to be

y = ¢, co8 kx + ¢, sin kx. )

On the other hand, the auxiliary equation m? — k> = 0 for y” — k?y = 0 has distinct

real roots m; = k and m; = —k, and so by (4) the general solution of the DE is
y = e + e (10)
Notice that if we choose ¢; = ¢, = % and ¢, = %, cy = —% in (10), we get the particu-

lar solutions y = 1 (e + e ) = cosh kx and y = (¥ — ¢™¥) = sinh kx. Since
cosh kx and sinh kx are linearly independent on any interval of the x-axis, an alterna-
tive form for the general solution of y” — k?y = 0 is

y = ¢, cosh kx + ¢, sinh kx. (11)

See Problems 41 and 42 in Exercises 4.3.

= Higher-Order Equations In general, to solve an nth-order differential equa-
tion (1), where the a;,i = 0, 1, . . ., n are real constants, we must solve an nth-degree
polynomial equation

a,m" + a,_m" '+ -+ am?+ am+ a, = 0. (12)
If all the roots of (12) are real and distinct, then the general solution of (1) is
)/, — Clenu\' + ("Z()'mw + -0+ C”em,,v.

It is somewhat harder to summarize the analogues of Cases II and III because the
roots of an auxiliary equation of degree greater than two can occur in many combi-
nations. For example, a fifth-degree equation could have five distinct real roots, or
three distinct real and two complex roots, or one real and four complex roots, or fiv
real but equal roots, or five real roots but two of them equal, and so on. When m; is a
root of multiplicity & of an nth-degree auxiliary equation (that is, k£ roots are equal
to my), it can be shown that the linearly independent solutions are

) ) - K1
J1,X 11X L S X K J11,X
! T !t - 2
emr,  xe™*, xce™, ..., X' e

and the general solution must contain the linear combination
1

em X

) ) 5o _
ce™ + cxe™ + cyxce™ + - -+ c,\x"

Finally, it should be remembered that when the coefficients are real, complex
roots of an auxiliary equation always appear in conjugate pairs. Thus, for example,
a cubic polynomial equation can have at most two complex roots.

DVN\IHANIEEW Third-Order DE

Solve " + 3y" — 4y = 0.

SOLUTION It should be apparent from inspection of m> + 3m? — 4 = 0 that one
rootis m; = 1, som — 1 is a factor of m® + 3m? — 4. By division we fin

m'+3m*—4=m— Dm*+4m + 4) = (m — 1)(m + 2)%,

so the other roots are m,; = m3 = —2. Thus the general solution of the DE is

) 5 2x
y =cret + ce” 7+ c3xe” N =
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There is more on
this in the SRM.

DVNWYIHAN:N Fourth-Order DE

d'y d?y
Solve% + 2@ +y=0.

SOLUTION The auxiliary equation m* + 2m? + 1 = (m*> + 1)> =0 has roots
m; = m3 = i and my = my = —i. Thus from Case II the solution is

y = Ce* + Coe ™ + Cyxe™ + Cyxe ™.

By Euler’s formula the grouping Cie™ + Cye™™ can be rewritten as

¢;Cosx + ¢, sinx

after a relabeling of constants. Similarly, x(Csze™ + C4e™™¥) can be expressed as
x(c3 cos x + ¢4 sin x). Hence the general solution is

y = ¢ cosx + ¢;sinx + ¢c3x cosx + ¢ux sin x. =

Example 4 illustrates a special case when the auxiliary equation has repeated
complex roots. In general, if m; = a + i3, B > 0 is a complex root of multiplicity £
of an auxiliary equation with real coefficients, then its conjugate m, = a — i is also
a root of multiplicity k. From the 2k complex-valued solutions

Q@B yolatiByx  2olatifx k=l glatiB

Q@B yolamiByx  2elamifx o k—lp(asiB)y

we conclude, with the aid of Euler’s formula, that the general solution of the corre-
sponding differential equation must then contain a linear combination of the 2k real
linearly independent solutions

e*cos Bx, xe**cos Bx, x*e*cos Bx, ..., xFle**cos Bx,

e sin Bx, xe“sin Bx, x**sinBx, ..., xle**sin Bx.
In Example 4 we identify k = 2, « = 0, and 8 = 1.

Of course the most difficult aspect of solving constant-coefficient differential equa-
tions is finding roots of auxiliary equations of degree greater than two. For example,
to solve 3y” + 5" + 10y’ — 4y =0, we must solve 3m> + 5m* + 10m — 4 = 0.
Something we can try is to test the auxiliary equation for rational roots. Recall that
if m; = p/q is a rational root (expressed in lowest terms) of an auxiliary equation
a,m" + - - -+ aym + a, = 0 with integer coefficients, then p is a factor of g and ¢ is
a factor of a,,. For our specific cubic auxiliary equation, all the factors of ¢y = —4 and
a,=3 are p: =1, £2, =4 and ¢: *1, =3, so the possible rational roots are
p/q: £1, £2, =4, t%, t%, ig. Each of these numbers can then be tested—say, by
synthetic division. In this way we discover both the root m;, = % and the factorization

3m® + 5m? + 10m — 4 = (m — )3m® + 6m + 12).

The quadratic formula then yields the remaining roots m, = —1 + \V/3i and
m3=—1— \/3i. Therefore the general solution of 3y"” + 5y” + 10y’ — 4y = 0 is
y = c1e"? + e ¥(cy cos V3x + c3sin V 3x).

= Use of Computers Finding roots or approximation of roots of auxiliary equa-
tions is a routine problem with an appropriate calculator or computer software.
Polynomial equations (in one variable) of degree less than five can be solved by
means of algebraic formulas using the solve commands in Mathematica and Maple.
For auxiliary equations of degree five or greater it might be necessary to resort to nu-
merical commands such as NSolve and FindRoot in Mathematica. Because of their
capability of solving polynomial equations, it is not surprising that these computer
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algebra systems are also able, by means of their dsolve commands, to provide explicit
solutions of homogeneous linear constant-coefficient di ferential equations.

In the classic text Differential Equations by Ralph Palmer Agnew” (used by the
author as a student) the following statement is made:

1t is not reasonable to expect students in this course to have computing skill and
equipment necessary for efficient solving of equations such a

d*y d3y d*y dy
431752 421792 1 141672 1+ 12052 + 3169y = 0. 13
dx x> dx dx Y (13)

Although it is debatable whether computing skills have improved in the intervening
years, it is a certainty that technology has. If one has access to a computer algebra sys-
tem, equation (13) could now be considered reasonable. After simplification and some
relabeling of output, Mathematica yields the (approximate) general solution

y = ;707252 003(0.618605x) + cye072552% 5in(0.618605x)
+ 34T 005(0.75908 1x) + 4”647 5in(0.75908 1x).

Finally, if we are faced with an initial-value problem consisting of, say, a
fourth-order equation, then to fit the general solution of the DE to the four initial
conditions, we must solve four linear equations in four unknowns (the ¢y, ¢, ¢3, c4
in the general solution). Using a CAS to solve the system can save lots of time. See
Problems 69 and 70 in Exercises 4.3 and Problem 41 in Chapter 4 in Review.

*McGraw-Hill, New York, 1960.

EXERCISES 4.3

Answers to selected odd-numbered problems begin on page ANS-5.

In Problems 1-14 find the general solution of the given
second-order differential equation.

1. 4"+y =0 2. y"—=36y=0

3.)y' =y —6p=0 4. )" =3y +2y=0
5.y"+ 8y + 16y =0 6. y" —10y" + 25y =10
7. 12y" =5y =2y =0 8.y'+4  —y=0
9. y"+9y=0 10. 3" +y =10

1.y — 4y +5y=0 12. 20" + 2y +y=0
13. 3y" + 2y +y =0 14. 2y" = 3y' +4y =0

In Problems 15-28 find the general solution of the given
higher-order differential equation.

15. y" —4y" — 5y =0

16. y" —y =0

17. y" = 5"+ 3y +99 =0
18. y" +3y"—4y' — 12y =0

v du
19. W+F—2u—0

3 2y
20. ‘;—ﬁ - % —4x =0

21. y" +3y"+ 3y ' +y=0
22. y" —6y" + 12" =8y =10
23. YWD + " + 3" =0

24,y —2)" +y =0

d*y d*y
25. 16;4—24;—1—9)/:0
26.%—7%—18);:0
27. f; +5%—2%—10%+@+5u—0
28.2%—7%+12z—:+8§—1=0

In Problems 29-36 solve the given initial-value problem.

29. y" + 16y =0, »(0)=2,y'(0)=—

2

d?y
30. d02+y—0 Wm/3) = 0,y'(m/3) = 2
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dy  dy
— —4—=—5y=0 H=0,y(1)=2
e oY , y(1)=0,y"(1)

31.
32. 49" =4y —3y=0, y0)=1,y'(0)=5

33. y"+y' +2y=0, y0)=y'(0)=0

34. " =2 +y=0, y0)=5,y(0)=10

35. y" + 12" + 36y’ =0, »(0)=0,y'(0)=1,y"(0)=—7
36. Y"+2)"=5"—6p=0, y0)=)"(0)=0,)"(0)=1
In Problems 37—-40 solve the given boundary-value problem.
37. " =10y + 25y =0, »0)=1,y1)=0

38. " +4y =0, »0)=0,y(m)=0

39. y"+y=0, »'(0)=0,y'(7/2)=0

40. y"—2y' +2y =0, y0)=1,y(m) =1

In Problems 41 and 42 solve the given problem first using
the form of the general solution given in (10). Solve again,
this time using the form given in (11).

41. y" =3y =0, yp0)=1,y'(0)=5
42. y" =y =0, y0)=1,y'(1)=0

In Problems 4348 each figure represents the graph of a
particular solution of one of the following differential
equations:

(@ y' =3 —4=0

© y'+2y+y=0 @y +y=0

) y' +2y'+2y=0 @y -3y +2y=0
Match a solution curve with one of the differential equations.
Explain your reasoning.

() y'+4 =0

43. Y

FIGURE 4.3.2  Graph for Problem 43

FIGURE 4.3.3  Graph for Problem 44

CHAPTER 4 HIGHER-ORDER DIFFERENTIAL EQUATIONS

45. y

A
N x

FIGURE 4.3.4 Graph for Problem 45

46. Y

FIGURE 4.3.5 Graph for Problem 46
47. y

1 /
/ 1

FIGURE 4.3.6 Graph for Problem 47

48. Y

FIGURE 4.3.7 Graph for Problem 48

In Problems 49-58 find a homogeneous linear differential equa-
tion with constant coefficients whose general solution is given.

49. y = cie + e 3

50. y = cle ™™ + cpe”
51. y = ¢; + ¢ 52. y = ce'™ + cyxe!™
53. y =c,cos3x + ¢,sin3x 54, y = c,cosh7x + ¢,sinh7x
55. y = cje”*cosx + ceFsinx

56. y = ¢, + c,e¥cos5x + cye*sinSx

57. y = ¢, + cx + e

58. y = cjcosx + c,sinx + c3c082x + ¢48in2x
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Discussion Problems

59. Two roots of a cubic auxiliary equation with real coeffi
cients are m; = —% and m, = 3 + i. What is the corre-
sponding homogeneous linear differential equation?
Discuss: Is your answer unique?

60. Find the general solution of 2y + 7y" + 4y" — 4y =0
ifm, = % is one root of its auxiliary equation.

61. Find the general solution of y"” + 6y" +y" — 34y =0
if it is known that y; = e~ cos x is one solution.

62. To solve y® +y =10, we must find the roots of
m*+ 1 =0. This is a trivial problem using a CAS
but can also be done by hand working with complex
numbers. Observe that m* + 1 = (m?> + 1)> — 2m>.
How does this help? Solve the differential equation.

63. Verify thaty = sinh x — 2 cos (x + 7/6) is a particular
solution of y® — y = 0. Reconcile this particular solu-
tion with the general solution of the DE.

64. Consider the boundary-value problem y” + Ay =0,
y(0) =0, y(/2)=0. Discuss: Is it possible to
determine values of A so that the problem possesses
(a) trivial solutions? (b) nontrivial solutions?

Computer Lab Assignments

In Problems 65—68 use a computer either as an aid in solving
the auxiliary equation or as a means of directly obtaining the
general solution of the given differential equation. If you use
a CAS to obtain the general solution, simplify the output and,
if necessary, write the solution in terms of real functions.

65. y" —6y"+2y' +y=0

66. 6.11y" + 8.59y" + 7.93y" + 0.778y = 0

67. 3.15y® — 534y" + 6.33y" —2.03y =0

68. Yy +2y" —y" +2y=0

In Problems 69 and 70 use a CAS as an aid in solving the aux-
iliary equation. Form the general solution of the differential
equation. Then use a CAS as an aid in solving the system of

equations for the coefficients ¢;, i = 1, 2, 3, 4 that results when
the initial conditions are applied to the general solution.

69. 2y + 3y" — 16y" + 159" — 4y = 0,

2(0) = =2,5"(0) = 6,y"(0) = 3,"(0) = 5
70. y® —3y" + 3y —y' =0,

¥(0) = »"(0) = 0,y"(0) = »"(0) = 1

4.4 UNDETERMINED COEFFICIENTS—SUPERPOSITION

APPROACH"

REVIEW MATERIAL

e Review Theorems 4.1.6 and 4.1.7 (Section 4.1)

INTRODUCTION To solve a nonhomogeneous linear differential equation

a,y® + a,_, y""V 4 -+ ay' +oay = g), (M

we must do two things:

¢ find the complementary function y,. and

* find any particular solution y, of the nonhomogeneous equation (1).

Then, as was discussed in Section 4.1, the general solution of (1) is y = y. + y,. The complemen-
tary function y, is the general solution of the associated homogeneous DE of (1), that is,

any(n) + an—ly(nil) +oot aly’ + a()y = 0

In Section 4.3 we saw how to solve these kinds of equations when the coefficients were constants.
Our goal in the present section is to develop a method for obtaining particular solutions.

“Note to the Instructor: In this section the method of undetermined coefficients is developed from th
viewpoint of the superposition principle for nonhomogeneous equations (Theorem 4.7.1). In Section 4.5
an entirely different approach will be presented, one utilizing the concept of differential annihilator

operators. Take your pick.
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— Method of Undetermined Coefficients The first of two ways we shall
consider for obtaining a particular solution y, for a nonhomogeneous linear DE is
called the method of undetermined coefficients The underlying idea behind
this method is a conjecture about the form of y,, an educated guess really, that is
motivated by the kinds of functions that make up the input function g(x). The general
method is limited to linear DEs such as (1) where

e the coefficientsa;, i = 0, 1, . . ., n are constants and

* g(x) is a constant k, a polynomial function, an exponential function ¢,
a sine or cosine function sin Bx or cos Bx, or finite sums and product
of these functions.

— Note Strictly speaking, g(x) = k (constant) is a polynomial function. Since a
constant function is probably not the first thing that comes to mind when you think
of polynomial functions, for emphasis we shall continue to use the redundancy
“constant functions, polynomials, . ...”

The following functions are some examples of the types of inputs g(x) that are
appropriate for this discussion:

g(x) =10, g(x) =x* — 5x, g(x) = 15x — 6 + 8e ™™,
g(x) = sin 3x — 5x cos 2x, g(x) = xefsinx + (3x> — 1)e .

That is, g(x) is a linear combination of functions of the type

=a,x"+a, ,x "+ - +ax+ a,, P(x) e**, P(x) e sin Bx, and P(x)e** cos Bx,

where n is a nonnegative integer and « and B are real numbers. The method of
undetermined coefficients is not applicable to equations of form (1) whe

1
glx)y =Inx, gx)=- gk =tanx, g(x)=sin"'x,
x

and so on. Differential equations in which the input g(x) is a function of this last kind
will be considered in Section 4.6.

The set of functions that consists of constants, polynomials, exponentials
e®*, sines, and cosines has the remarkable property that derivatives of their sums
and products are again sums and products of constants, polynomials, exponen-
tials e“*, sines, and cosines. Because the linear combination of derivatives
a,y + a, , yyV + - +a;y, +ayy, must be identical to g(x), it seems
reasonable to assume that y, has the same form as g(x).

The next two examples illustrate the basic method.

DN IZNINE General Solution Using Undetermined Coefficient

Solve " + 4y" — 2y = 2x*> — 3x + 6. )

SOLUTION Step 1. We first solve the associated homogeneous equation
y" + 4y" — 2y = 0. From the quadratic formula we find that the roots of the auxil-
iary equation m?> + 4m — 2 = 0 are m; = —2 — V6 and m, = —2 + /6. Hence
the complementary function is

Y, = clef(ZJr\/E)x + 026(72+\/€)x.

Step 2. Now, because the function g(x) is a quadratic polynomial, let us assume a
particular solution that is also in the form of a quadratic polynomial:

yp=Ax2+Bx+C.
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We seek to determine specifi coefficients 4, B, and C for which y, is a solution
of (2). Substituting y, and the derivatives

y,=24x + B and v, =24
into the given differential equation (2), we get
vy + 4y — 2y, =24 + 84x + 4B — 24x* — 2Bx — 2C = 2x* — 3x + 6.

Because the last equation is supposed to be an identity, the coefficients of like powers
of x must be equal:

equal

|

| 24|+ [84 - 2B|x+| 24+4B—2C | =2~ 3x+6

That is, —24 =2, 84 — 2B = -3, 24 + 4B — 2C = 6.

Solving this system of equations leads to the values 4 = —1, B = —%, and C = —9.
Thus a particular solution is

yp=—x2—§x—9.

Step 3. The general solution of the given equation is

(2+Ve)x _ 2 éx — 9, =

2

Y=yt = e VO ce

DN\ ILNIPR Particular Solution Using Undetermined Coefficient

Find a particular solution of y” — " + y = 2 sin 3x.

SOLUTION A natural first guess for a particular solution would be 4 sin 3x. But
because successive differentiations of sin 3x produce sin 3x and cos 3x, we are
prompted instead to assume a particular solution that includes both of these terms:

¥p = A cos 3x + B sin 3x.

Differentiating y, and substituting the results into the differential equation gives,
after regrouping,

Yy =¥, + ¥, = (-84 — 3B)cos 3x + (34 — 8B) sin 3x = 2 sin 3x
or

equal

—84 — 3B | cos3x+ | 34 — 8B | sin3x = 0 cos 3x + 2 sin 3x.

From the resulting system of equations,

—84 — 3B =0, 34 — 8B =2,

we get4 = % and B = —%. A particular solution of the equation is
3 16 . 3 _
= ——cos 3x — —- sin 3x. =
T3 73

As we mentioned, the form that we assume for the particular solution y, is an
educated guess; it is not a blind guess. This educated guess must take into consider-
ation not only the types of functions that make up g(x) but also, as we shall see in
Example 4, the functions that make up the complementary function y..
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(DNVIYNIER Forming y, by Superposition

Solve y” — 2y' — 3y = 4x — 5 + 6xe*. 3)

SOLUTION Step 1. First, the solution of the associated homogeneous equation
y" —2y" — 3y =0is found to be y. = cie ¥ + cre*.

Step 2. Next, the presence of 4x — 5 in g(x) suggests that the particular solution
includes a linear polynomial. Furthermore, because the derivative of the product xe>*
produces 2xe** and e>*, we also assume that the particular solution includes both
xe?* and e?*. In other words, g is the sum of two basic kinds of functions:

g(x) = gi(x) + g»2(x) = polynomial + exponentials.

Correspondingly, the superposition principle for nonhomogeneous equations
(Theorem 4.1.7) suggests that we seek a particular solution

yp = ypl + sz’
where y, = Ax + Bandy, = Cxe** + Ee**. Substituting
y, = Ax + B + Cxe*™ + Ee™

into the given equation (3) and grouping like terms gives

Vy = 2y — 3y, = —34x — 24 — 3B — 3Cxe™ + (2C — 3E)e™ = 4x — 5 + 6xe™.  (4)
From this identity we obtain the four equations
—34 =4, —24 — 3B = =5, —-3C =6, 2C — 3E = 0.

The last equation in this system results from the interpretation that the coefficient of
e* in the right member of (4) is zero. Solving, we find4 = —g, B = % C=-2,and
E = —%. Consequently,

4

= ——x4+=-=-2 2x_ﬂ2x
yp_ 3)(7 xXe 3@.

Step 3. The general solution of the equation is

4 23 4
y=ce ¥+t —-x+—— <2x + —) e, =
3 9 3

In light of the superposition principle (Theorem 4.1.7) we can also approach
Example 3 from the viewpoint of solving two simpler problems. You should verify

that substituting
Vp, = Ax + B into y'—2 —3y=4x-5
and y,, = Cxe** + Ee** into  y” — 2y — 3y = 6xe**
yields, in turn, y, = —%x + % andy, = —(2x + g) e?*. A particular solution of (3)

istheny, =y, +y,.
The next example illustrates that sometimes the “obvious” assumption for the
form of y, is not a correct assumption.

(DOVNILNR A Glitch in the Method

Find a particular solution of y” — 5y’ + 4y = 8¢*.

SOLUTION Differentiation of ¢* produces no new functions. Therefore proceeding
as we did in the earlier examples, we can reasonably assume a particular solution of
the form y, = Ae*. But substitution of this expression into the differential equation
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yields the contradictory statement 0 = 8¢*, so we have clearly made the wrong guess
for y,,.

The difficulty here is apparent on examining the complementary function
Ve = c1e* + c;e®. Observe that our assumption Ae* is already present in y.. This
means that e* is a solution of the associated homogeneous differential equation, and
a constant multiple Ae* when substituted into the differential equation necessarily
produces zero.

What then should be the form of y,? Inspired by Case II of Section 4.3, let’s see
whether we can find a particular solution of the for

y, = Axe".
Substituting y, = Axe* + Ae* and yj, = Axe* + 24e" into the differential equation
and simplifying gives
Yy = 5y, + 4y, = —34e* = 8e".
From the last equality we see that the value of A4 is now determined as 4 = —%.
Therefore a particular solution of the given equation is y, = —§x & =

The difference in the procedures used in Examples 1-3 and in Example 4
suggests that we consider two cases. The first case reflects the situation in
Examples 1-3.

— Case | No function in the assumed particular solution is a solution of the asso-
ciated homogeneous differential equation.

In Table 4.4.1 we illustrate some specific examples of g(x) in (1) along with the
corresponding form of the particular solution. We are, of course, taking for granted
that no function in the assumed particular solution y, is duplicated by a function in
the complementary function y..

TABLE 4.4.1 Trial Particular Solutions

a(x) Form of y,
1. 1 (any constant) A
2. 5x+7 Ax + B
3. 3?2 -2 Ax* +Bx+ C
4.3 —x+1 A3+ Bx*+ Cx + E
5. sin 4x A cos 4x + B sin 4x
6. cos 4x A cos 4x + B sin 4x
A Ae>*
8. (9x — 2)e** (dx + B)e>
9. x2e% (Ax> + Bx + C)e>*
10. ¢**sin 4x Ae>* cos 4x + Be** sin 4x
11. 5x% sin 4x (Ax* + Bx + C) cos 4x + (Ex? + Fx + G) sin 4x
12. xe* cos 4x (Ax + B)e** cos 4x + (Cx + E)e sin 4x

DV\WIHANIEW Forms of Particular Solutions— Case I

Determine the form of a particular solution of

(@) y" — 8y’ + 25y = 5x3e ¥ — Te* (b) y" + 4y =xcosx
SOLUTION (a) We can write g(x) = (5x> — 7)e™*. Using entry 9 in Table 4.4.1 as
a model, we assume a particular solution of the form

Yy, = (Ax* + Bx* + Cx + E)e™™.

Note that there is no duplication between the terms in y, and the terms in the comple-
mentary function y, = e**(c; cos 3x + ¢, sin 3x).
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(b) The function g(x) = x cos x is similar to entry 11 in Table 4.4.1 except, of course,
that we use a linear rather than a quadratic polynomial and cos x and sin x instead of
cos 4x and sin 4x in the form of y,:

Yy = (Ax + B)cosx + (Cx + E)sinx.

Again observe that there is no duplication of terms between y, and

Ve = €] €08 2x + ¢; sin 2x. =

If g(x) consists of a sum of, say, m terms of the kind listed in the table, then (as in
Example 3) the assumption for a particular solution y, consists of the sum of the trial
forms y,,¥,., ..., Y, corresponding to these terms:

Vo TV TV T T,
The foregoing sentence can be put another way.

Form Rule for Case I The form of y, is a linear combination of all linearly
independent functions that are generated by repeated differentiations of g(x).

DN\ IJRNE Forming y, by Superposition—Case I

Determine the form of a particular solution of

y" =9y + 14y = 3x> — 5sin 2x + Txe.

SOLUTION
Corresponding to 3x? we assume v, = Ax* + Bx + C.
Corresponding to — 5 sin 2x we assume  y, = £ cos 2x + ['sin 2x.
Corresponding to 7xe® we assume Y, = (Gx + H)e™

The assumption for the particular solution is then
Yy =Y, Ty, ty, =Ax* + Bx + C + Ecos 2x + Fsin2x + (Gx + H)e®™.

No term in this assumption duplicates a term in y, = cje** + cye’™. =

=— Case Il A function in the assumed particular solution is also a solution of the
associated homogeneous differential equation.

The next example is similar to Example 4.

DVNWIHANIE Particular Solution—Case I1

Find a particular solution of y” — 2y’ + y = €*.

SOLUTION The complementary function is y. = cje* + coxe®. As in Example 4,
the assumption y, = 4Ae* will fail, since it is apparent from y. that e is a solution of
the associated homogeneous equation y"” — 2y’ + y = 0. Moreover, we will not be
able to find a particular solution of the form y, = Axe*, since the term xe” is also
duplicated in y.. We next try

y, = Ax*e".

Substituting into the given differential equation yields 24e* = e*, so 4 = % Thus a
particular solution is y, = %xze".
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Suppose again that g(x) consists of m terms of the kind given in Table 4.4.1, and
suppose further that the usual assumption for a particular solution is

Vp =Vt Yt T

where the y, ,i = 1,2, ..., mare the trial particular solution forms corresponding to
these terms. Under the circumstances described in Case II, we can make up the
following general rule.

Multiplication Rule for Case Il  If any y, contains terms that duplicate terms in
Ve, then that y, must be multiplied by x", where n is the smallest positive integer
that eliminates that duplication.

DY\ An Initial-Value Problem

Solve y" + y = 4x + 10 sinx, y(7) = 0, y'(7) = 2.

SOLUTION The solution of the associated homogeneous equation " + y =0
iS y. = ¢; cos x + ¢; sin x. Because g(x) = 4x + 10 sin x is the sum of a linear
polynomial and a sin